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Abstract

Biochar for sustainable agricultural intensification: technical/economic
potential, and technology adoption

by
Andrew Noel CRANE-DROESCH

Doctor of Philosophy in Energy & Resources
University of California, Berkeley
Professor David 1. Levine, co-chair

Professor Daniel M. Kammen, co-chair

Growing population, changing climate, and human development will require sustainable
agricultural intensification in sub-Saharan Africa — a region where most people still live
in rural areas, and rural poverty remains severe. While the 20th century saw massive
increases in agricultural productivity over most of the world, sub-Saharan Africa was
largely bypassed. In many respects, catching up in the 21st century poses more difficult
challenges than were faced in the 20th — with the novel challenges of climate change, soil
degradation, and the closing agricultural frontier being chief among them. Solutions are
required that profitably improve productivity, strengthen and/or rebuild soil fertility, and
do so within the limits imposed by a warming and carbon-constrained world. This will
be needed if the region is to shake off the stagnation that has characterized it for the past
century, and contribute to solving to the global challenges posed by the coming century.

This dissertation focuses on one potential solution — biochar — and follows it from agro-
nomic efficacy, to preliminary economic analysis, to rigorous trial in the field. As such, it
seeks to be an example of the interdisciplinary approach that I argue is needed to guide
the development, deployment, and scaling of solutions to problems in the environmen-
t/development space.

The first chapter is a meta-analysis of crop yield response to biochar. Using data from
84 studies, I (and co-authors) employ meta-analytical, missing data, and semiparametric
statistical methods to explain heterogeneity in crop yield responses across different soils,
biochars, and agricultural management factors, and then estimate potential changes in
yield across different soil environments globally. We find that soil cation exchange capacity
and organic carbon were strong predictors of yield response, with low cation exchange and
low carbon associated with positive response. We also find that yield response increases
over time since initial application, compared to non-biochar controls. High reported soil
clay content and low soil pH were weaker predictors of higher yield response. No biochar
parameters in our dataset — biochar pH, percentage carbon content, or temperature of
pyrolysis — were significant predictors of yield impacts. Projecting our fitted model onto a
global soil database, we find the largest potential increases in areas with highly weathered
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soils, such as those characterizing much of the humid tropics. Richer soils characterizing
much of the world’s important agricultural areas appear to be less likely to benefit from
biochar.

The second chapter is a preliminary economic analysis of biochar’s potential in two con-
texts — rural western Kenya, and northern Vietnam. Using recall-based datasets from
smallholder farmers, I (and co-authors) estimate yields as a function of biochar and fer-
tilizer use. We find an positive association between biochar use and average yields in
Kenya, but no correlation in Vietnam. We then use these estimates to calculate opti-
mal input mixes under hypothetical biochar and carbon prices, given heterogeneity in
response both to biochar and fertilizer, and heterogeneous budget constraints. In Kenya,
we find that biochar is more-likely-than-not to be profitable to adopt for 23% of our
sample if unsubsidized and available at its current sale price of around $188/ton, while a
hypothetical carbon subsidy of $100/ton COse increases this proportion to 47%, though
these proportions are not different from zero at 95% confidence. Because of limited short-
term complementarity between biochar and inorganic fertilizer, we estimate that biochar
adoption would change profits little, given budget constraints for agricultural inputs. We
conclude that carbon subsidies may have a marginal impact on biochar’s profitability
in Western Kenya, but that further research is needed to improve the precision of these
estimates, extend them to account for any longer-term changes in soil characteristics that
might impact biochar’s profitability, and account for any potential biases stemming from
time-varying variables that not measured or modeled in the context of this study.

The third chapter reports the results of a Kenyan field experiment on adoption and
impact of biochar, which was motivated by the encouraging findings of the previous two
studies. In addition to technical efficacy, I sought to determine what mix of policies
might most effectively speed biochar dissemination, given the slow pace of technological
change in African agriculture over the past several decades. I randomly assigned prices,
demonstrations, and risk-free trials. Yields increased by 37% and 50% in the first two
seasons, and response to inorganic fertilizer improved. However, uptake was 2.6% and 10%
respectively. Farmers were highly price-sensitive. Social network effects were marginally
significant, but positive at low penetration and negative at high penetration. Given
uptake well below the social optimum, subsidies for biochar appear justified from a social
cost/benefit standpoint.

The dissertation closes with a short discussion of lessons learned, and ways forward for
further applied research.



“The only true wisdom is knowing that you know nothing.”

Socrates

“How 1is education supposed to make me feel smarter? Besides, every time I learn some-

thing new, it pushes some old stuff out of my brain. Remember when I took that home
winemaking course, and I forgot how to drive?”

Homer Simpson
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Chapter 1

The Necessity of Sustainable
Intensification in African Agriculture

Global change casts old problems in a new light. This is particularly true with African
agriculture, which, even in today’s rapidly urbanizing world, still employs most people
on the continent. In the period since independence — more than a half-century — African
agriculture has largely stagnated. Productivity remains low, rural poverty remains se-
vere, and the technological advancements in agriculture that have contributed to poverty
alleviation in much of the rest of the world have largely passed Africa by. Global change
makes agricultural intensification — already a critically important and largely unmet goal
— more important than ever. Furthermore, global change renders the past is an imperfect
guide to the future. While recent years have seen a welcome re-focusing of attention
towards African agriculture by governments, NGOs, and the international development
community after decades of neglect, simply righting the wrongs of past policy will not
be sufficient to address the challenges (and meet a few opportunities) posed by global
change — particularly climate change but also other global environmental change, along
with economic and demographic shifts.

This introduction begins by briefly recapitulating the state of agriculture in Sub-Saharan
Africa, along with the case for agricultural intensification in the region. I will then
examine global trends — economic, demographic, and environmental — and discuss what
they mean for both the prospects of and the importance of agricultural development
in the region. I'll conclude with an introduction to the rest of my dissertation, which I
conceptualize as an elaboration of one potential solution — biochar — which the dissertation
follows along the course from scientific proof-of-concept, to preliminary economic analysis,
to rigorous trial in the field among smallholder farmers. The dissertation concludes with
an integrative chapter, summarizing what we’ve learned about both biochar in particular,
and more generally about means of facilitating the transformation in African agriculture
to meet some of the challenges posed by global change.



African Agriculture in 2015

For the past several millennia, agriculture has been the fundamental human activity —
it is that upon which our civilization is based. While this is true throughout the world
(beyond a few remaining hunter-gatherer societies), in few places is it as apparent as it is
throughout sub-Saharan Africa. About 75% of the continent still lives in rural areas, on
par with South Asia, but substantially higher than the rest of the world. Furthermore,
while most of the world has experienced steady gains in agricultural productivity over
this period, Africa has largely been left behind, contributing to persistent rural poverty in
the region [1]. Drivers of Africa’s agricultural stagnation are manifold, inter-related, and
operate on different scales. At the macro and meso levels, dysfunctional institutions, poor
infrastructure, and market failures constrain the options available to farmers [2]. Some
of the most important constraints however are at the micro level, and include imperfect
information, uninsured risk, and iliquidity [3]. In particular, stagnation is often attributed
to lower use of inorganic fertilizers and hybrid seed [4], which in turn is intertwined with
Africa’s post-independence economic history|[5].

Natural resource degradation — central to this dissertation — is among the most important
constraints that African farmers face, given that it mediates most other policy questions
that relate to agricultural intensification in the region. Particularly in the weathered soils
that comprise most of the region, response to inorganic fertilizer is commonly strongly
conditional on soil organic carbon[6, 7]. This can make fertilizers unprofitable, which in
turn can lower demand, which in turn can increase costs to suppliers, which increases
prices. In other contexts, fertilizer may be profitable in expectation, but its profitability
in a given year may be quite variable[8]. For poor households with inadequate safety
nets, such gambles can be unacceptable. This dynamic can lead farmers to take more
nutrients from their soils than are returned [9, 10], lowering soil organic carbon over time,
lowering investment in nutrients, lowering yields, deepening poverty, etc. Several authors
have characterized this as a natural resources poverty trap [11, 12].

Trends

While African agriculture has changed somewhat over the past half-century|[2] the world is
changing fundamentally. Human population is on course to reach 10 billion by the end of
the century, while increased demand for animal products among wealthier people means
that food demand is expected to rise even faster[13]. Africa is expected to contribute
most to this population growth[14]. Given poor trade links with the rest of the world
and likely tighter external demand in the foreseeable future[15], it will become essential
for the region to produce more food.

This will take place under a backdrop of dramatic changes to the climate in the coming
century. Absent adaptation, current estimates put yield decreases between 7-27% by
mid-century [16]. However, maladapatation — defined as responses to climate change that
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exacerbate the problem — seem frighteningly possible. Increased climate risk may make
investments in fertilizer riskier and thus less desirable, while poverty itself may exacerbate
risk aversion and disinclination to invest.

Land scarcity also looms in many regions. On average, the proportion land under agri-
culture in Africa has grown by 6% in the period since independence, and about one third
of this has been into forest [17]. Durations of fallows have decreased and cultivation has
extended into ever-more marginal land [18]. As such, attempting to increase production
via extensification may be both more difficult in the 21st century than it was in the 20th,
while the increasing salience of forest preservation given climate change makes it even
less desirable.

Agricultural Intensification at Baseline

It is clear that African agricultural output must rise if anti-poverty goals are to be met.
Many smallholder farmers are net-buyers of food, and increasing production profitably
represents less expenditure on food[19]. There is also substantial evidence that GDP
growth in agriculture is more effective in reducing poverty than GDP growth in other
sectors[2]. Given that further extensification is either impossible or undesirable in much
of the region, production per unit land will need to increase. Yet the discourse surrounding
agricultural intensification in Africa has a long history, from colonial misunderstandings
of the ecology and the economics of land-abundant farming systems [20, 21], to misguided
and heavy-handed colonial (and post-colonial) mega-projects[22], to efforts to replicate
Asia’s green revolution in the 1960s and 1970s, to more recent efforts aimed at sustain-
able natural resource management. While older efforts were often misguided, changing
conditions since the colonial period have made traditional techniques — such as shifting
cultivation — less sustainable and/or feasible.

Global change and Agricultural Intensification in Africa

Global change will make agricultural intensification in Africa more urgent than ever.
Converging economics and environmental changes — including both the strengthening of
existing dynamics as well as more novel pressures — will render currently sub-optimal path-
ways moreso. On the other hand, global change offers a few opportunities for stimulating
sustainable development, along with some opportunities to contribute towards efforts to
address global challenges. This section briefly sketches several of these dynamics.



Climate variability, soil carbon, and water storage

Throughout much of Africa, convective rainfall generates most of the precipitation on
which rainfed agriculture relies. These events are commonly quite heavy, and can lead
to substantial erosion and runoff. At the same time, a few events can comprise an entire
year’s rainfall in certain areas. Where there are large gaps between rainfall events within
the growing season — or where there is too much rainfall within a short period, crop
performance can suffer.

Rainfall events are expected to grow more intense as climate change progresses [23]. This
increase in intensity is largely absent from many assessments of the effect of climate
change on agriculture that are based on GCM output, as GCMs typically can’t resolve
fine-scale dynamics inside of convective rainfall systems[24]. This means that many of
the assessments of the impact of climate change on agriculture that are based on GCM
output may be overly optimistic.

Soil carbon — variously generated on farms from compost, crop residues, agroforestry, or
biochar — can improve soil hydraulic properties, particularly water-holding capacity. In
wet conditions, it can facilitate infiltration of water in soil, including drainage downwards
— thereby reducing runoff and mitigating erosive pressures. In dry conditions, soil carbon
can serve as a sponge — retaining water that might otherwise be lost from the system. As
rainfall grows more intense, these properties will increase in value.

Soil carbon and fertilizer-use efficiency

In tropical soils, yield response to fertilizer is commonly mediated by soil carbon content.
Given relatively high prices for inorganic fertilizer throughout the continent, along with
their marginal profitability in some areas[6, 7, 25], soil carbon may be a prerequisite
to more-sustainable intensification. As such, augmentation of soil carbon levels can be
an effective approach to agricultural intensification at baseline, irrespective of climate
change. However, production of inorganic fertilizer is commonly greenhouse-gas intensive,
and improving returns to fertilizer can reduce the greenhouse gas intensity of agricultural
production.

Certain fertilizer-specific factors may become increasingly relevant over time as well.
Production of ammonia-based fertilizer generally relies on natural gas as a raw material.
While production of natural gas has increased dramatically in recent years, many de-
veloped countries have begun to burn more of it as fuel. The effect of this dynamic on
fertilizer prices has been ambiguous, but a tighter market could plausibly lead to more
volatility in the future. Given that African farmers (and governments) may be more ex-
posed to downside risk than they are able to seize on upside opportunities, improvement
of fertilizer-use efficiency can buffer any price shocks by reducing absolute demand per
unit crop produced. Finally, any carbon pricing scheme adopted by fertilizer-producing
or gas-producing countries may increase the cost of nitrogenous fertilizers.
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While nitrogen is derived from ambient air (through the use of energy), and combined
with hydrogen (usually derived from natural gas) to form ammonia, phosphate is a non-
renewable, mined resource. Unlike fossil fuels, there is no substitute for phosphorous. And
unlike many other mined minerals, recycling is generally infeasible. While mainstream
estimates do not suggest that “peak phosphorous” will arrive anytime within the next
several decades [26], dwindling phosphate reserves and growing demand imply that prices
must increase over the long term, absent major new discoveries or technological innovation
in phosphorous recovery. Given that tropical soils tend to be more phosphorous-limited
than they are nitrogen-limited, African agriculture will be more exposed to these dy-
namics over the long term than most regions. More-intensive agricultural systems use
phosphorous more efficiently, and improving this intensity will buffer the region against
this longer-term trend.

Finally, increasing weather risk implies increasing investment risk in fertilizer. For poor
farmers, who currently use little fertilizer in large part because of risk [8] this dynamic of
potentially higher prices and certainly higher risk suggests that efforts to increase fertilizer
use might face a serious headwind. Augmenting soil carbon may help to mitigate this
risk by increasing fertilizer use efficiency — effectively lowering its cost per unit output —
while buffering against weather risk.

Intensification and Mitigation

While agricultural intensification in sub-Saharan Africa will almost certainly require use of
inorganic fertilizers to deliver nutrients to degraded soils[4, 27], and while these fertilizers
will tend to be greenhouse-gas intensive, some aspects of agricultural intensification may
actually serve to mitigate climate change. Agroforestry and biochar both divert carbon
from the atmosphere into the soil through biomass. While these inputs will eventually re-
mineralize, many agricultural techniques aimed at bolstering soil carbon would not reach
equilibrium for many years, or even centuries to millennia in the case of biochar[28].
Meanwhile, by improving response to fertilizer, soil carbon decreases carbon emissions
per unit agricultural output. Over the very long term — multiple centuries — widespread
use of biochar, coupled with lower-GHG-intensity fertilizers and tighter nutrient cycling
in agroecosystems could represent a means of drawing down atmospheric concentrations
of carbon dioxide.

Africa and the World

On the whole, Africa imports more food than it exports[1]. Africa also has substantial
yield gaps — technically, yields could improve with better inputs and management[29].
This presents both a risk and an opportunity as food demand and climate change-related
disruptions to food supplies increase in the coming century.



This imbalance is a risk inasmuch as shocks to global food supplies far removed from
Africa can affect Africa. The 2008 and 2011 food crises saw prices rise dramatically,
leading to unrest in much of the region. Droughts in Australia and Russia as well as
floods in South Asia contributed to price rises, as did biofuel policies in the US and
EU[30] — which can be considered to be (potentially misguided) responses to climate
change. In response, several large exporters (Russia and India, in particular) imposed
export bans, exacerbating the crisis elsewhere.

While it has been argued that some countries in the region should de-emphasize agri-
cultural development in favor of non-agricultural export market development[31], these
decisions should weigh likely scenarios of increasing climate-driven and demand-driven
volatility in international food markets, as they are likely to affect the relative desir-
ability of a focus on agricultural development versus reliance on imports and focus on
non-agricultural export sector development.

This imbalance is an opportunity inasmuch as the technical potential exists to increase
agricultural production in the region — dramatically in some cases [29]. This is in contrast
to many developed countries, where technical potential for yield increases is commonly
much lower. While production is indeed threatened by climate change, many climate
change adaptation measures are also measures that facilitate agricultural intensification,
such as the enhancement of soil carbon, establishment of farm trees, and even the de-
velopment of rural roads and grain banks, which could help buffer against shocks at the
same time as they could enable surpluses to reach world markets. Together, this means
that the returns to effectively increasing food production throughout the continent may
be higher than they had been previously.

The Way Forward

At the level of national policy, measures to stimulate the intensification of agriculture
in response to global change are likely to be political questions as much as they are
questions of policy — different actors may have different priorities, and urban populations
often have disproportionate political power in the region. At the micro level however,
it is not always clear what mix of approaches actors in the agricultural sector should
take. While there has been substantial agronomic and agroecological research in the past
several decades on intensive agricultural practices suited to the sorts of agroecosystems
found in sub-Saharan Africa, this research has too-often been divorced from agricultural
economics, which until recently has focused almost entirely on the technologies used in
the Asian and Latin American green revolutions — inorganic fertilizer, hybrid seed, and
irrigation.

Thus, while there has been substantial research on such interventions as agroforestry,
compost, and biochar, it has almost entirely been done by physical or biological scientists,
and rarely considered economic or behavioral issues. These matter as much as technical
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efficacy in stimulating uptake and ultimately transforming agriculture. Many technologies
that are consistent with sustainable, intensive agriculture are too labor-intensive, and as
such are uneconomical for labor constrained households. Other technologies can be too
costly when economies of scale are not met. However, lack of deployment is not proof
of inappropriateness. African farmers, like most people, are poorly modeled as classical
economic actors — they have imperfect information, bounded rationality, lack access to
credit, are unable to internalize the externalities of all of their actions, and tend to
be justifiably averse to risk. These factors can and do explain much of the absence of
technologies that could be beneficial, and addressing these factors has an important role
to play in stimulating agricultural intensification.

Meeting the demands of the coming century will require interdisciplinary approaches to
research and development. The obvious first step for any given technology is scientific
proof-of-concept. This should be followed by basic economic analysis, which in turn should
be followed by rigorous trial in the field. Unfortunately, most technologies developed
aimed at sustainable agricultural intensification stop after the first step, while much work
in economics — in which randomized controlled trials are increasingly the norm in applied
research — too often have fail to interact with the scientific community that has been
engaged with these questions. While impact evaluations conducted by agricultural and
development economists have proliferated over the years, relatively few of these have
explicitly focused on the sorts of technologies needed to achieve sustainable agricultural
intensification in the region.

Biochar as a Case

This dissertation focuses on biochar, and follows the framework described above: scientific
proof of concept, preliminary economic analysis, and rigorous trial in the field. Biochar
has been the subject of substantial agronomic and biogeochemical research over the past
decade, owing to its ability to boost crop yields while slowing the decomposition of its
feedstock biomass. Particularly in weathered soils, yield increases in response to biochar
have been dramatic. This, together with the facts that carbon cycling tends to be faster
in the tropics, and that tropical agricultural soils are commonly carbon-constrained, im-
mediately suggests that biochar might play a role in stimulating sustainable agricultural
intensification.

The first paper is a meta-analysis of yield response to biochar[32]. A proof-of-concept to
test whether available data indeed supports the notion that biochar may be agronomically
effective in weathered soils, I take data from several published studies, and estimate
average yield response to biochar as a function of various soil and biochar properties.
I find that the main predictors of high yield response are low cation exchange capacity
and low soil organic carbon content. Projecting the model onto a global dataset of soil
properties, I find that biochar is likely to have substantially higher benefit in the global
south.



The second paper [33] is a preliminary economic analysis of biochar, based on data col-
lected when I was first scoping my main dissertation project in Bungoma, Kenya. I
collected a recall-based panel dataset of 300 early biochar adopters, and use this to esti-
mate yield response as well as complementarity with inorganic fertilizer. I also incorporate
a similar dataset from early biochar adopters in several regions of Vietnam, which pro-
vides a stark contrast — both economically and agroecologically — with Western Kenya.
I find large yield increases in the Kenya sample, but no effect in the Vietnam dataset.
Using my estimates of impact, I then estimate the impact of a carbon price on optimal
biochar adoption for the Kenya sample. While I find some suggestive evidence that a
price on carbon — in the form of a subsidy for farmers — might stimulate biochar adoption
for a profit-maximizing farmer, results are uncertain, and the paper calls for further re-
search on biochar in smallholder farming systems, using more rigorous methods in which
establishment of causal relationships is more straightforward.

The final paper[34] describes the results of a two-year randomized controlled trial on
biochar adoption and impact among a sample of nearly 1000 farmers in rural Western
Kenya. Motivated by provisional findings in the second paper, this project sought not
only to test the hypothesis that biochar could be profitable, but to seek out mechanisms
by which actors in the sector could stimulate its adoption, starting from the observation
that simple profitability is a necessary but insufficient condition for widespread adoption
of a novel technology. While the experiment suffers from relatively severe misreporting on
the part of respondents, I find substantial impact on crop yields, that biochar’s benefit is
stronger on farms that yield less, and that biochar has substantial complementarity with
inorganic fertilizer. However, uptake was quite low — in spite of substantial agronomic
benefit, farmers only purchased biochar when it was very heavily subsidized. While there
is some evidence that learning about benefits from having a demonstration plot or learn-
ing from the demonstration plots of neighbors increased willingness to pay, demand is
insufficient to sustain a profit-making business supplying biochar. Given that biochar
is unambiguously profitable, low rates of adoption are socially sub-optimal, particularly
when the added value of sequestered carbon is taken into account. From a social cost/ben-
efit perspective, heavy subsidies on biochar are justified, particularly if actors are able to
accurately and efficiently target those with the highest potential benefits, which will tend
to be those with the most degraded soils.

The dissertation concludes with an essay summarizing lessons learned, and charting the
way forward for research with biochar in particular, and technology adoption for sustain-
able agricultural intensification in general.



Chapter 2

Heterogeneous global crop yield
response to biochar: a
meta-regression analysis

Abstract

Biochar may contribute to climate change mitigation at negative cost by sequestering
photosynthetically-fixed carbon in soil while increasing crop yields. The magnitude of
biochar’s potential in this regard will depend on crop yield benefits, which have not been
well-characterized across different soils and biochars. Using data from 84 studies, we
employ meta-analytical, missing data, and semiparametric statistical methods to explain
heterogeneity in crop yield responses across different soils, biochars, and agricultural
management factors, and then estimate potential changes in yield across different soil
environments globally. We find that soil cation exchange capacity and organic carbon were
strong predictors of yield response, with low cation exchange and low carbon associated
with positive response. We also find that yield response increases over time since initial
application, compared to non-biochar controls. High reported soil clay content and low
soil pH were weaker predictors of higher yield response. No biochar parameters in our
dataset — biochar pH, percentage carbon content, or temperature of pyrolysis — were
significant predictors of yield impacts. Projecting our fitted model onto a global soil
database, we find the largest potential increases in areas with highly weathered soils, such
as those characterizing much of the humid tropics. Richer soils characterizing much of
the world’s important agricultural areas appear to be less likely to benefit from biochar.!

IThis paper is co-authored with Samuel Abiven (University of Zurich), Simon Jeffery (Wageningen
University), and Margaret Torn (Lawrence Berkeley National Laboratory), and has been published in
Environmental Research Letters 8, no. 4 (2013): 044049.



2.1 Introduction

Biochar — defined as pyrolyzed (charred) biomass applied to soil — has elicited significant
interest as a strategy for mitigating climate change, and as an agricultural soil amendment
[35-37]. While the long-term persistence of pyrogenic organic material in soil is not well
constrained, there is evidence that its residence time can be considerably greater than
that of other plant-derived inputs to soil [28, 38, 39]. Production and application of
biochar may thereby offer a means of drawing down atmospheric COs concentrations
over time by stabilizing dead plant carbon that would otherwise be mineralized more
rapidly[40]. Inasmuch as biochar is an effective plant fertilizer, it may offer a “win-win”
between climate change mitigation and agricultural production by sequestering carbon,
improving soil fertility, and potentially reducing soil non-CO, greenhouse gas emissions
[41-43].

The upper bound for climate change mitigation through biochar systems has been esti-
mated at approximately 12% of 2010 COj-equivalent greenhouse gas emissions per year
[36]. Of course, realized mitigation benefits are likely to be lower than this estimated
technical potential, with the gap between technological potential and realized benefit de-
pending in large part on the degree to which farmers and other land managers produce
and/or apply biochar to the soils that they manage. Given that farmers and land man-
agers are unlikely to utilize biochar in large quantities unless its use is profitable, the
degree of biochar technology adoption will in turn be strongly dependent on its costs and
benefits — neither of which are well understood.

Increased crop yields are an important part of this benefit. Numerous controlled field and
greenhouse experiments have investigated yield response to biochar, and results have been
summarized in several reviews [37, 44-47]. Quantitative reviews have estimated average
yield benefits from biochar at approximately 10% for crop productivity (encompassing
both harvested yields and aboveground biomass production) [44] and approximately 25%
for aboveground biomass [45]. Variability of these benefits is high however, ranging
between cases where biochar caused a near-failure in plant growth [48] to cases where
biochar caused plants to grow where they would otherwise have failed [49, 50]. It seems
clear that this variability is mediated by soil properties and properties of the applied
biochars. Quantitative reviews have found yield response to be relatively higher in sandy
soils, moderately acidic soils, and in response to biochar produced from animal waste[44,

45).

However, quantitative reviews have been hindered by missing and/or inconsistent report-
ing of soil properties, biochar properties, or other factors which may explain observed
plant response. Therefore they have employed univariate meta-analyses of subsets of pub-
lished data to calculate average responses in under different experimental conditions[44],
or fit linear regression models using only those predictor variables that were reported
in the majority of available primary studies [45]. While useful as a “first pass” at the
data, these approaches may lead to misleading and/or imprecise conclusions stemming
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respectively from correlation between grouping factors and underlying causes, and low
effective sample sizes caused by dropping observations with missing covariate data. The
former issue may increase omitted variables bias, while the latter may limit the global
significance of these reviews by rendering them unable to use the full set of available
studies.

This article addresses these challenges by using statistical methods designed for prob-
lems with missing data [51], thereby allowing us to use a more complete set of available
studies. First, we seek to infer how biochar’s agricultural yield benefit is mediated by
varying soil characteristics, biochar characteristics, and management factors. We do so
by constructing a semiparametric meta-regression model[52-54] and fitting it to a dataset
comprised of 365 observations from 40 studies which compared crop yields in biochar-
using treatments to biochar-free controls. Second, we seek to predict where across the
globe biochar is likely to have the greatest agricultural benefit. We do so by projecting
our fitted model onto a global database of soil properties[55], for a representative biochar
at an agriculturally plausible application rate.

2.2 Data and methods

2.2.1 Data

We extracted data on crop and/or biomass yields, biochar properties, and soil properties
from 84 studies that examine effects of biochar on plant growth (citations of original
studies, as well as full dataset, in SI). Studies were identified using academic search en-
gines, and both peer-reviewed and “grey” literature is included in our dataset. Variables
from the original studies were selected for inclusion into our dataset based on consis-
tent availability across original studies, and theoretical importance. Many key drivers of
yield could not be included however, particularly soil nutrient contents. We ignore soil
nitrogen, phosphorous, potassium, etc., because measures of total content correlate only
imperfectly to availability given heterogeneous soil chemistry. Rather than controlling for
them explicitly, we account for them indirectly by using random effects (see below).

Our dataset includes studies that reported crop yield, plant biomass production, or both.
We use the full set of studies to drive imputation models for the prediction of missing
data (described below). We then discard those studies that do not provide measurements
of grain, legume, or aboveground non-tree fruit yield. 40 of our 84 studies report crop
yields.

Absolute crop yield or plant biomass production is not readily comparable between studies
because of heterogeneity in plant species. To make studies comparable, we analyzed
data as response ratios [56, 57], defined as the natural logarithm of the ratio of biomass
production or crop yield in a given (biochar-incorporating) treatment, to its respective
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zero-biochar control: RR = In (Yieldyeatment +~ Yi€ldeontror).- This ratio is comparable
between diverse studies, while the logarithmic transformation ensures that variability in
the ratio’s denominator has no greater influence on the metric than variability in its
numerator. A response ratio of 0 indicates no change from the control. Response ratio
is readily transformed into a percentage relative increase RI = (eff! — 1) x 100%. If a
study applied biochar at multiple rates, we calculate a separate response ratio for each
treatment level using a common zero-biochar control mean. We thus construct a dataset
of 365 crop yield response ratios, with associated soil and biochar covariates.

Distributions of variables that we analyze, response ratios, and univariate correlations
between variables, are presented in supplementary figures S1, S2, and S3. Our data con-
tains a broad range of soil properties, biochar properties, and response ratios, though
with some gaps and anomalies. For example, no studies in our dataset used biochar pro-
duced between 650 and 900°C. Furthermore, there was no strong univariate relationship
between percentage carbon and pyrolysis temperature. This was somewhat unexpected,
given laboratory studies showing increasing carbon content as a function of pyrolysis
temperature[58], though it is possible that this simple correlation is driven by other
correlated factors, such as feedstock or pyrolysis technology. Increasing pyrolysis tem-
perature was correlated with increasing pH [59], while increasing pH was associated with
lower carbon content. Based on bivariate comparisons of available data, neither the re-
sponse ratio nor its variance were well-explained by any of the variables singly (figures S1,
S2, and S3), though there are suggestive correlations between response ratio and soil pH
and CEC. This lack of strong univariate explanatory power was a key motivation for our
use of the multivariate methods. Finally, we classify the biochars used into one of three
categories; “woody,” “nonwood,” and “manure.” “Woody” biochars are those made from
wood, “nonwood” biochars are those made from plant matter other than wood (mainly
crop residues), and “manure” biochars include any that are derived from animal waste.
18 studies in our crop yield dataset use nonwood chars, 18 use wood chars, and 8 use
manure chars. For variables that we include in our analysis that were missing in primary
studies, corresponding authors were contacted with requests for those data. Neverthe-
less, we lack observations on one or more variables from the majority of the studies in
our dataset (figure S4).

2.2.2 Methods

Our dataset and context have a number of distinctive features that have shaped the an-
alytical methods that we use. First, our dataset is comprised of studies, rather than
primary data. We therefore draw upon “meta-regression” techniques[60, 61], in which
observed effects are modeled as a function of a study-level random effect and a set of
explanatory fixed effects. We specify random effects at the level of unique soil-biochar
combination. This is a slightly lower level than study-level, and is motivated by the fact
that several studies investigate several different soil-biochar combinations. It is nonethe-
less a higher level than a random effect at the common-control experiment level; given
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that there are 230 of these, with many singletons, specification of random effects at this
level would adversely affect confidence intervals [62] while also over-fitting the model. Ob-
servations are weighted such that each common-control experiment in our dataset is given
equal weight, i.e. such that common-control experiments applying biochar at several dif-
ferent application rates do not influence our estimates any more than studies examining
fewer application rates. As is standard practice in meta-regression, we further weight
our observations by the inverse of the variance of the response ratio — a practice aimed
at addressing publication bias and up-weighting studies whose effects are more precisely
estimated[60, 61]. Because our distribution of response ratio variances is highly skewed
and in all cases between zero and one, we weight by the logarithm of the inverse of the
variance.

Second, many of our observations contain missing data along one or more covariates of
interest (figure S4). We use multiple imputation[51, 63] to draw inference using observed
data from partially-missing vectors of observations. Specifically, we construct multiple
imputations via chained equations (MICE) [64, 65], with a relatively large number of
imputations (M = 200) chosen for numerical stability and result replicability. Details of
our imputation modeling and R code for implementation are available in SI. Briefly, the
MICE algorithm operates as follows: It begins by filling in missing values with arbitrary
values. It then cycles through each variable and constructs a regression model to fit
the partially-observed dependent variable to a partially-observed and partially imputed
dataset comprised of the other variables. These models are then used to update the initial
arbitrary imputations, in the form of a draw from the fitted regression model’s predictive
distribution. We cycle through the set of variables many times until our imputations
approximately converge in distribution, saving the values at the final step. We repeat
this entire process once for each of the M = 200 imputations, generating 200 slightly-
different datasets with missing values “filled in” with plausible guesses as to what the
missing values might have been. The 200 fitted models are then combined according to
Rubin’s rules [51]; averaging coefficient vectors, averaging variance-covariance matrices,
and adding a non-negative correction to variance-covariance matrices that is inversely
proportional to the predictive ability of our imputation models. The effect is to widen
confidence intervals where there is either a lot of missing data or where missing values of
data are poorly predicted by observed data.

Third, we have little prior justification for assuming linear relationships between our ob-
served variables and crop yield response ratio, nor do we have strong a priori knowledge of
appropriate functional forms to use. We therefore use semi-parametric techniques to esti-
mate smooth functions mapping our independent variables to RR, employing generalized
additive models[66] fit with the mgcv package in R [52, 53].

Finally, because our dependent variable is the logarithm of the ratio of yields in a biochar-
incorporating treatment over a zero-biochar control, its expectation should go to zero as
the biochar application rate goes to zero. We are therefore unable to simply include the
biochar application rate as an additive term in a statistical model, as such a specification
would generate non-zero estimates of RR at nil biochar application. We therefore employ
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a two-step procedure: we first estimate slopes mapping RR to biochar application rate,
allowing for heterogeneity in slope coefficients by common-control experiment. Several
specifications for estimating these slopes were estimated — the best-fitting model fit a fixed
slope to the logarithm of the biochar application rate (figure S8). Other specifications
tested includes linear slopes and random coefficients models (figures S6-S12). See SI for
further information. From this fitted model, we calculate R~Ri57 BC—3Mg ha—1» Which is an
estimate of the response ratio for a given study at 3 Mg biochar ha=!. We chose 3 Mg
ha~! because relatively low biochar application rates are likely to be more agronomically
realistic than the often-higher rates used in research studies.

To explain heterogeneity in response to biochar, we then fit a statistical model to each
of our 200 sets of estimated RR,, po_s\gna—t and associated partially-imputed soil and
biochar covariates. Our model is specified in equation 2.1:

RRis,BC:SMg ha™! =
a+ 7s + B1(Pot trial==1) + f5_4(Seasons)
+05_7(feedstock types) + Bs_17(Crop)
+f(N app. rate) + f(Py. temp.) + f(BC % carbon)
+f(BC pH) + f(Soil CEC) + f(Soil pH)
+f(Soil org. C)+ f(Soil % clay) + ;s

(2.1)

§ terms indicate parametric coefficients. f() terms indicate non-parametric smooth func-
tions, represented by cubic regression splines with 10 knots spaced evenly over deciles
of the unique values of each variable. In addition, in supporting information we present
a more complex model involving a number of interaction terms, designed to better rep-
resent interdependence among the drivers of plant growth (SI section 7). While doing
so improves model fit and AIC slightly, results are qualitatively similar and individual
model terms lose statistical significance due to collinearity.

The fitted model was then projected onto a global dataset of soil properties[55], after
masking out non-agricultural areas using data on global cropland extent[67]. This dataset
provides 0.5°-resolution data on numerous soil properties, including all of the soil variables
in our model. While soil properties often vary dramatically in a 0.5° x 0.5° gridcell, the
dataset facilitates our exploration of the average effect of biochar across large geographic
areas, recognizing that this spatial averaging may mask local heterogeneity. In addition,
the dataset provides information on heterogeneity within each gridcell; each gridcell is
comprised of a number of different soil series and a fractional spatial extent within the
gridcell. For the purpose of creating a representative soil for each gridcell, weighted
averages for each gridcell were taken, with weights corresponding to the spatial extent
of each within-gridcell soil series. Estimates of relative increase for each gridcell were

mapped by calculating the expected response ratio for each gridcell as R~Rw BC=3Mg ha—! =

f(X4y), where f() indicates our fitted model 2.1, and X indicates spatially averaged soil
properties for gridcells indexed by latitude x and longitude y.
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A more detailed description of our methodology, along with R code for implementation
of our entire analysis is available in SI.

2.3 Results

We estimate an average crop yield increase of approximately 10% for 3 Mg ha~! biochar
addition in the first year after application (figure 1). Variability in this response is high,
ranging from cases where biochar reduced yields to cases with large relative increases
(commonly from cases with near-failure in zero-biochar controls).

Soil properties were the best predictors of this variability (figure 2), with low cation ex-
change capacity and low organic carbon content associated with positive yield response.
Low soil pH and high soil clay content? were weakly (and non-significantly) associated
with positive yield response. Yield response to biochar increased significantly over time,
by approximately 0.068 response ratio units in the second season after application, to ap-
proximately 0.117 response ratio units in the fourth season after application (correspond-
ing to 7.0% and 12.3% percentage point relative increases in crop yields, respectively).
We found little evidence that plant response to biochar is mediated by nitrogen additions
to soil®.

Yield response was invariant to biochar type as parameterized by biochar pH, carbon
content, and pyrolysis temperature. The benefit of manure biochar was higher on aver-
age than that of wood or non-wood biochar, but the effect was highly variable and not
statistically significant. When fitting model 2.1 without observations from manure chars,
or with only wood chars or only nonwood chars (not shown), results were nearly identical
to results from models with all chars included together, though statistical confidence de-
creases due to smaller sample sizes. Similarly, while there was heterogeneity in response
among crop types® and experiment type (field vs greenhouse conditions), these differences
were noisy and not significant.

Since soil properties predict yield response, spatially explicit analysis of where biochar is
likely to have a greater or lesser benefit is possible using global databases of soil properties.

2We note that our definition of “clay content” is simply the clay content presented by authors of
primary studies. Many primary studies do not differentiate between clay minerals and clay-sized particles,
such as aluminum and iron oxides. Figure S18 presents an estimate of the effect of clay content (as
defined by authors of primary studies) as mediated by soil CEC. We find suggestive evidence that high
clay content is a driver of positive response to biochar particularly when cation exchange capacity is low.

3This result reflects the respecification of N application rate as a linear term, because its estimation as
a smooth function led to highly implausible estimates of extreme nonlinearity. Nonparametric estimates
suggested sharply negative response ratios at low N applications and sharply positive ones near 100
kg N ha=!, before leveling to a modestly increasing function beyond 150 kg N ha~!. We therefore
re-parameterized it as a linear parametric term. As such, it loses statistical significance.

4Robustness checks are provided in SI (figure S15) exploring heterogeneity in response to our predictor
variables by crop type. Only very modest heterogeneity was found, supporting our specification of
differences in response by crop as fixed indicator variables uninteracted with soil or biochar parameters.
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Figure 2 projects our fitted model onto the ISRIC-WISE database of global derived soil
properties [55] for a non-wood biochar having median values of all biochar variables, and
applying a dataset-median amount of nitrogen. Supplementary figure S14 gives the same
map, with associated standard errors of fitted values. Values presented in figure 3 have
the interpretation as our model’s estimates of average plant response to biochar solely as a
function of soil and biochar properties. Other factors that may influence yield response to
biochar — such as heterogenetiy between crop species, or differing biochar efficacy across
different climates — may introduce bias in our effect estimates in model 2.1 or in our pre-
dictions in figure 3 if they are correlated with variables present in our model. In addition,
our map abstracts from within-gridcell heterogeneity, and only presents spatially-averaged
estimates.

Given the global distribution of soil properties that we include in our model, our fitted
model implies positive yield response over much of Sub-Saharan Africa, parts of South
America, Southeast Asia, and southeastern North America. These areas are largely co-
incident with areas of highly weathered soils, generally in the tropics or subtropics. Our
fitted model also implies that response in the the belt to the north of Eastern Europe’s
chernozems would likely be positive. Yield response is predicted to be most negative in
organic soils such as those in Indonesia, northern Eurasia and North America. Notably,
our model implies that yield response may be weak and /or negative in many of the world’s
most important grain-producing areas, such as the Eurasian chernozems or central North
American mollisols. Implications for South Asian vertisols, and in much of the North
American corn belt near the great lakes, are predicted to be small to negative.

While our dataset gives good coverage over our parameter space (Figures S1-S3), geo-
graphic coverage is relatively poor in many regions. No studies have reported yield re-
sponse to biochar in central North America, Eastern Europe/Eurasia, the Atlantic coast
of South America, the African Sahel, or the South Asian peninsula. While soil properties
characterizing these regions are represented in our dataset, our predictive maps should
be viewed with caution where geographically out-of-sample predictions are being made.

2.4 Discussion

Our findings differ from previous meta-analyses of plant response to biochar, which used
qualitative methods, univariate comparisons or complete-case regression analysis [37, 44—
47]. Those studies found strong correlations between response ratio and soil pH, benefits
in sandier soils, and stronger benefits in response to animal-derived biochars than plant-
derived biochars. We find only suggestive evidence that soil pH influences response ratio,
and suggestive evidence that soils with low reported clay content can expect weaker
benefits to biochar application. While we estimate that response is higher in animal de-
rived biochars, the result is not significant. In contrast, our results emphasize the roles
of soil cation exchange capacity and soil organic carbon content, with weaker emphasis
on soil pH and opposite results for texture (as defined by reported soil clay content).
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Our estimates and ultimately our projection maps are consistent with biochar’s bene-
fits being maximized on weathered and degraded soils, which tend to have low cation
exchange capacity, low soil organic carbon, low pH, and relatively non-reactive clay min-
eralogy. Somewhat surprisingly, we find little association between response ratio and
biochar properties such as percentage carbon, pyrolysis temperature, or pH. Indeed, this
lack of association (which is also apparent in bivariate scatterplots in figure S2) suggests
that if properties of biochars themselves are relevant in determining yield outcomes, the
variables which we inclue in our model are of either unimportant, or potentially impor-
tant only in mediating the influence of other variables. Explaining mechanisms by which
different biochars influence yield outcomes remains an area for future research.

One of the more interesting and novel findings of our analysis is that biochar’s yield
benefits significantly increase over time, which was found individually in several studies
in our dataset [49, 50, 68-71]. Many of these found slower rates of yield decline under
continuous cultivation using biochar[49, 71], where both control and treatment yields
declined after the initial season of implementation. This distinction between absolute
increases versus slower decreases is important, and deserves further attention in future
research. Response heterogeneity over time also warrants further research — our rather
simple parametrization of time periods as un-interacted dummy variables captures only
mean response over time®. However, plant response to biochar over time has important
implications the economics of its use, and thereby its ability to contribute to climate
change mitigation and improved agricultural productivity. Many biochar systems are
costly in terms of labor or investment. Mechanisms underlying sustained /increased yield
over time — along with improved quantitative understanding of biochar’s retention [73—
75] and decomposition within [28] soil — should improve understanding of the conditions
under which biochar might be economically viable.

Finally, we present a few caveats to the interpretation of our results. First, we em-
phasize that our model presents average effects of our specified dependent variables on
response ratio. While we find only small evidence for heterogeneous effects by crop or
by biochar type, we are unable to exclude their presence. Second, our statistical ap-
proach will inevitably create misspecification bias: the predictor variables in our dataset
are highly interactive in soil, yet we use them to fit an additively separable statistical
model.® However, even when investigating a somewhat richer model with several interac-
tion terms (equation S10, figures S16-S20), results are largely consistent with this more
simple model. We therefore favor the more parsimonious model for ease of interpreta-
tion. Furthermore, given that results from model S10 are generally somewhat larger, we

°In our dataset, the largest increases over control (>150%) beyond year 1 are from poor soils in Brazil
[49] and Zambia [50]. Multi-year responses in other soils were generally in the 10-40% range. In one
study that grew a mix of vegetables on a high-CEC, alkaline soil [72], plant response to biochar actually
declined over time.

6To name a few interactions, cation exchange capacity is determined both by clay mineralogy, soil
organic matter, and pH. Biochar’s surface charge is pH-dependent [76], and it is known to become
encapsulated by clay particles in aggregates [77]. While its own pH tends to be high, the degree to which
soil pH is affected by biochar will depend on buffering capacity.
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favor the more parsimonious version as a more conservative lower bound on potential
outcomes. Finally, predictions made from an imperfect model will inevitably propagate
error. However, as the number of biochar experiments increases with time, statistical
models specified based on a more detailed representation of biochar’s dynamics in soil
would represent a useful avenue for future research.

2.5 Conclusion

Our estimates suggest that biochar has a substantial and specific agroecological niche —
on poor soils characterized by low cation exchange capacity, little soil organic carbon,
and perhaps with lower pH and heavier textures. These characteristics describe many
of the world’s lowest-potential agricultural areas, which are predominantly found in the
humid tropics. Given that many of the world’s poorest agricultural soils exist in loca-
tions that are coincident with high rural poverty [4], our analysis invites further research
on biochar’s potential to play a role in agricultural development. Given that carbon
mineralization from dead plant matter is generally faster in warm and moist conditions,
biochar may represent a more effective means of carbon sequestration in the soils where it
has the most agricultural benefit, than in soils where it has less benefit. This alignment
however would depend on the degree to which biochar mineralization is dependent on
environmental characteristics versus on its intrinsic chemistry, which for biochar remains
poorly understood [28, 78].

Although areas for future research remain, given economically viable production technolo-
gies, technology adoption by potential beneficiaries, and an enabling policy environment,
biochar systems appear to have potential to make a serious contribution to world food
production, particularly in agricultural areas that are currently somewhat marginal in
terms of global food production. Given increasing global food demand, this represents
an important opportunity. While the economic viability of large-scale biochar systems
remains to be demonstrated [79], substantial agronomic benefit over multiple years at
relatively low application rates in certain regions indicates the possibility that some level
of climate change mitigation via biochar systems could be achieved at negative cost.
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2.6 Figures

FIGURE 2.1: Figure 1: Kernel density plot of estimates of relative increase in crop
yields against zero biochar controls in the first harvest after application, in response to
3 Mg ha~! biochar. Dotted red line indicates the sample mean.
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Response Ratio

Response Ratio

FIGURE 2.2: Figure 2: Estimated nonparametric smooth functions and parametric
slope coefficients for factor variables, from model 2.1. Printed p-values are based on
F-tests that f(.) = 0 [80]. Shaded bands or dashed blue lines indicate 95% confidence
intervals for the mean effect of each term. R? averages .81 across 200 imputations.
Figure S13 gives distributions of residuals (from each of the 200 fitted imputation
models) for each datapoint, by study. The model is significantly different from a null

model (with only random effects and no covariates) at p = .003.
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FiGURE 2.3: Figure 3: Model predictions for a median non-wood biochar applied to
maize, projected onto spatially-averaged soil property dataset from Batjes (2005)[55],
in units of percentage relative increase. Areas with < 5% of land in agriculture are
masked using agricultural area extent data from Ramankutty [67]. Blue crosses give

locations of studies used to fit the model.
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Chapter 3

Biochar profitability and carbon
prices: Evidence from Kenya and
Vietnam

Abstract

Biochar can increase agricultural yields while sequestering carbon in soil, thereby con-
tributing to climate change mitigation. However, it is unclear whether biochar requires a
carbon subsidy to render it economically viable. Using recall-based datasets from Kenyan
and Vietnamese smallholder farmers, we estimate yields as a function of biochar and fer-
tilizer use. We find an positive association between biochar use and average yields in
Kenya, but no correlation in Vietnam. We then use these estimates to calculate opti-
mal input mixes under hypothetical biochar and carbon prices, given heterogeneity in
response both to biochar and fertilizer, and heterogeneous budget constraints. In Kenya,
we find that biochar is more-likely-than-not to be profitable to adopt for 23% of our
sample if unsubsidized and available at its current sale price of around $188/ton, while a
hypothetical carbon subsidy of $100/ton COse increases this proportion to 47%, though
these proportions are not different from zero at 95% confidence. Because of limited short-
term complementarity between biochar and inorganic fertilizer, we estimate that biochar
adoption would change profits little, given budget constraints for agricultural inputs. We
conclude that carbon subsidies may have a marginal impact on biochar’s profitability
in Western Kenya, but that further research is needed to improve the precision of these
estimates, extend them to account for any longer-term changes in soil characteristics that
might impact biochar’s profitability, and account for any potential biases stemming from
time-varying variables that not measured or modeled in the context of this study.!

IThis paper is co-authored with Abigail Clare (University of Edinburgh) and Alessandro de Pinto
(International Food Policy Research Institute), and has been submitted for publication in a peer-reviewed
journal.
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3.1 Introduction

Efforts to increase organic carbon content in agricultural soils are growing, particu-
larly in the context of programs aiming to mitigate climate change through soil carbon
sequestration[79, 81]. One method that is gaining increasing attention is the stabilization
of crop residues through pyrolysis — producing charred material termed “biochar” when
used as a soil amendment [35, 82]. The carbon in biochar (typically 50-90% by mass) has
a substantially longer residence time than carbon from similar un-charred plant mate-
rial, and as such may represent a means of sequestering carbon in soils. While biochar’s
residence time in soil remains uncertain, most estimates suggest centennial or millennial
timescales [28, 38, 83], as opposed to sub-annual to decadal timescales for un-charred
plant inputs [84]. Similar to other forms of soil organic matter (SOM), biochar can im-
prove soil fertility across a number of dimensions — improving water holding capacity and
soil structure, while reducing acidity and improving fertilizer-use efficiency [37, 47]. In
areas with weathered soils or low/depleted levels of SOM, biochar may not only improve
soil fertility in ways similar to the addition of SOM, but potentially do so in a way that
is durable over time [32, 49]. Most famously, terra preta de indio soils in the Amazon
basin, to which pre-Columbian populations added considerable quantities of biochar, have
retained high fertility since being abandoned several centuries ago, and much of the car-
bon in these soils has been dated at >1000 years old [85]. These intriguing agronomic
and biogeochemical properties are leading to increasingly applied research, as well as a
fledgling industry|[86].

Recent interest in biochar has largely been catalyzed by the prospect that it might miti-
gate climate change while increasing yields or reducing production costs. Meta-analyses
of crop yield response to biochar applications have found average crop yield increases of
approximately 10% over controls, and substantially higher benefits in highly-weathered
and/or degraded soils [32]. Biochar may also affect other soil properties, leading to re-
duced nutrient leaching (thus improving fertilizer use efficiency)[42, 87-90], and lowered
CH, and N,O emissions from soil [42, 43, 91].

However, the profitability of biochar usage remains understudied and it is unclear what
role it might play in climate change mitigation. Extant studies on the subject have
employed basic economic modeling to assess ex ante biochar’s profitability [92-96], or
modeled optimal pyrolysis temperatures given exogenous prices for biochar [97], or in-
ferred break-even prices for biochar from single agronomic trials [98]. In particular, Pratt
& Moran[99] developed marginal abatement cost curves for biochar, but their results
were highly sensitive to both carbon price assumptions and assumptions about agricul-
tural benefit. Most of these studies have focused primarily on biochar utilization in
developed countries (where it may have lower potential agronomic benefits on average
given prevalent soil types in the global north [32]. An exception is Galgani et al.[100]
who use a life-cycle-assessment framework to model return-on-investment as a function
of carbon subsidies, in the context of biochar production from municipal solid waste in
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Ghana. They find that the profitability of biochar production is highly sensitive to mon-
etary compensation for carbon sequestration, becoming viable at 30 euros per ton COae,
though their result is driven by the assumption of an baseline scenario in which that solid
waste would generate substantial greenhouse gas emissions as a result of landfilling. No
extant studies have included any empirical analysis of benefits for biochar users largely
because little data on biochar-using farmers existed.

Our approach is distinct from the controlled agronomic experiments and theoretical mod-
eling studies that have comprised the literature to date. This paper presents the first
empirical analysis of returns to biochar use among smallholder farmers, using novel recall-
based datasets from early adopters in Kenya and Vietnam.

Our two regions provide a substantially different economic and environmental context
than previous studies, and in turn are quite different from one another. Our western
Kenya dataset is based on a survey of subsistence or semi-subsistence rainfed maize
farmers. By contrast, our Vietnam dataset is based on a survey of farmers practicing
irrigated, intensive rice farming with relatively high levels of inputs. Both of these cases
represent examples of global challenges in agricultural development. The Kenya case can
be compared to much of the rest of sub-Saharan Africa, where fertilizer use remains low
and soil nutrient mining is widespread[9, 10, 101]. This can result in low productivity, land
degradation, and potentially expansion of the agricultural frontier into environmentally
sensitive areas. While many advocate an increase in the use of inorganic fertilizers,
the profitability of these inputs is often conditional on soil fertility itself, and levels of
soil organic matter in particular [6, 7]. As such, technologies that use locally-available
resources to enhance natural soil fertility and increase the efficiency of inputs such as
inorganic fertilizer may contribute to agricultural development.

The Vietnam case represents a different problem; agriculture in much of east and south-
east Asia is extremely intensive and application rates of inorganic fertilizers are very high.
Not only does high use of inorganic fertilizers have negative environmental consequences
[102-104], there is evidence that it is often used to the point where marginal private costs
exceed marginal private benefits [105-107]. In this context, it is hypothesized that the
use of biochar may improve fertilizer efficiency, thereby improving economic returns and
reducing environmental impacts of agriculture in the region.

Though our results are weakened by potential measurement error stemming from recall-
based data, together with the possibility of omitted variables bias, we find both crop
yield increases (in Kenya), and that biochar led to reductions in inorganic fertilizer ex-
penditure. In Kenya, we find that biochar adoption led to 17% average increases in yield
and an average decrease in fertilizer expenditure of about 26%, along with considerable
heterogeneity in response to fertilizer, echoing similar results in the region[25]. However,
we find little evidence of complementarity between biochar and fertilizer on average. This
is somewhat in contrast to results from the region showing that soil carbon improves re-
sponse to fertilizer, implying either that biochar does not act in a manner similar to other
forms of soil carbon, or that any effect must be longer-term — not manifesting after 1-3
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years. Our estimates imply that biochar would be profitable for about 23% of our sam-
ple unsubsidized, increasing to 47% assuming a carbon price of $100/ton COse. Given
uncertainty in the production function however, neither these proportions nor the change
in these proportions is distinguishable from zero at 95% confidence. Our estimates also
imply however that this adoption would change optimized profits and fertilizer expendi-
ture little, given little complementarity between biochar and fertilizer in the short run.
In Vietnam, we find little evidence that biochar adoption improved yields or response
to fertilizer, though we find evidence in some specifications that farmers who adopted
biochar reduced their use of fertilizer. As such, we have weak evidence that biochar en-
abled farmers to maintain yields while reducing fertilizer expenditure, thereby improving
the efficiency of fertilizer use.

Altogether, we find that biochar may have substantial agronomic utility in some settings,
but we find limited evidence that it may stimulate intensification and limited evidence
that it might play a substantial role in climate change mitigation. While further research
is needed to improve the precision of our estimates, we argue that these findings justify
that research.

3.2 Approach, data, and methods

We seek to address two distinct, yet related, questions. First, we seek to identify the
causal effects of biochar adoption on yields. In Kenya, where our data is only comprised
of biochar adopters, this is an average treatment effect on the treated (ATT). In Viet-
nam, where our data includes non-adopting farmers, this is an average treatment effect
(ATE). Given that farmers will not generally hold all else constant when adopting a new
technology, these effects represent both direct agronomic effects of biochar on crop yields,
as well as effects of changes to other inputs that farmers may have made when they began
to use biochar.

Second, we seek to characterize the effect of carbon prices on biochar’s profitability. We do
so by first estimating a production function relating inputs to yields, and then calculate
optimal mixtures of biochar and fertilizer across a gradient of carbon prices, from $0-
$100/ton COqe?. This allows us to estimate a change in carbon prices would affect the
proportion of farmers for whom it would be profitable to adopt biochar.

2The maximum price we use, $100/ton COse, is substantially higher than can be found in any extant
trading schemes. However, it is lower than the $43/Mg C ($158/Mg COze) estimate of the social cost of
carbon taken from a survey of published estimates[108].

24



3.2.1 Data
3.2.1.1 Kenya

Our Kenya dataset was collected from early biochar adopters in Bungoma county and
parts of northern Kakamega county, western Kenya, in June and July of 2011. Agriculture
in the region is dominated by maize and sugar cane production. The former is grown
mostly for consumption, while the latter is a cash crop. The region receives about 1600mm
rainfall annually, distributed bimodally in a long and a short rainy season, with the former
lasting approximately March to June and the latter from August to November. Most
farmers plant two maize crops per year, and yields in the short rains are typically half of
those from the long rains. Soils in the region are relatively weathered. Population density
is higher than that in much of the rest of rural Africa, averaging 100-250 persons/km.
Farm sizes average below 1 hectare, and fallowing — once common in the area — is now
rarely practiced due to land scarcity.

In these two districts, approximately 700-800 farmers had been trained on the use of
biochar by the African Christians Organization Network (ACON), a small Kenyan NGO.
ACON began these trainings in early 2008, after good results were observed on small plots.
ACON typically targeted self-organized community groups, who established biochar demon-
stration plots under ACON’s supervision. After observing good results on these demon-
stration plots, training participants often moved on to use biochar on their own land. New
trainings in new areas typically occurred after friends or relations of previously-trained
farmers learned about ACON’s work and requested trainings for themselves. Most farm-
ers in our sample used biochar from one of three sources: (1) collection of charcoal fines
(small pieces and dust) from charcoal sellers in the area, (2) partially-combusted residues
of home cooking fires, and (3) home production of cooking charcoal (commonly produced
for sale), and utilization of the resultant dust and fine particles as biochar®. None of these
sources is readily scalable. The first and second sources are limited inasmuch as they rep-
resent waste products of other activities, while the third source is constrained both by
Kenyan law, and by the fact that tree-cover is increasingly limited to trees planted and
actively managed for timber and other uses. Farmers using biochar report that they are
constrained by supply — many would like to use more.

More scalable solutions for producing biochar — whether centralized facilities or farm-scale
technologies — were not present in the region at the time that we collected these data.
This has changed in the intervening period — in 2013, a project operating in the area
began producing and selling biochar to farmers, at a price of KSh400/25kg sack (about
$4.5) — an amount sufficient for about 1/8th acre (~1/20th of a hectare) — from sugar

3There is no formal difference between cooking charcoal (generally produced from wood) and biochar.
However, some forms of charcoal are not suitable for fuel, such as charred maize stover or charred sugar-
cane leaves. No farmers reported purchasing wood charcoal to pulverize and add to their soil, suggesting
that farmers perceive wood charcoal to have a higher use value as fuel than as a soil amendment. While
it is possible to make fuel briquettes from chars made from cellulosic feedstocks such as sugarcane leaves
or maize stalks, this practice was not apparent in the area at the time that we conducted our research.
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cane residues, using simple kilns constructed from modified oil drums. We use these
parameters when modeling optimal biochar adoption decisions.

We surveyed 361 biochar-using farm households in June and July of 2011. While ACON
had conducted trainings throughout Kenya and into Uganda, we restricted our survey
to a census of participating households within the borders of Bungoma and Matungu
districts, which adjoin and surround Bungoma town. After removing observations with
missing data on adoption timing or other serious abnormalities, we are left with a sample
of 302 farm households.Surveys focused on maize yields and fertilizer expenditures — all
on a per-acre basis — along with basic demographic information.

We rely on self-reported data from the long rain harvest of 2008 to the season immediately
preceding our survey. Use of recall data may affect our results in one of two ways: either
through errors in memory or systematic untruthfulness. We have no reason to suspect
the latter, though the former could either be a source of classical measurement error or
a source of bias if farmers may systematically recall good or bad experiences differently.*

Because of the likelihood that the farmers who chose to use biochar are systematically
different from those who did not, we did not survey farmers who had not themselves
chosen to use biochar. Instead of constructing a counterfactual from farmers who never
chose to adopt biochar, we exploit heterogeneity in adoption timing between biochar
adopters.®

These surveys were conducted on an extreemly limited budget, and as such, they have
several shortcomings. First, we lack data on several potentially-important omitted vari-
ables. While the longitudinal structure of the data that we collect allows us to control
for all stable covariates, the possibility that there may be important uncaptured varaibles

4In a test of the accuracy of recall-based data from coastal India, de Nicola and Giné[109] find ev-
idence that particularly favorable past outcomes are more likely to be reported accurately, while less
favorable outcomes tend to be forgotten. If this same dynamic holds in our data — probability of upward
bias increasing with distance from the present — then our estimates would tend to be biased downwards,
because upward bias in past outcomes would reduce the difference between pre- and post-adoption out-
comes. Alternatively, unfavorable past outcomes might be more cognitively salient, influencing perception
of normal previous seasons and biasing our estimates upwards. While we cannot be certain of either the
existence or the sign of any potential recall bias, we take some reassurance in the fact that our data on
maize yields roughly matches aggregate trends for Kenya — while our sample produced an average of 2.4,
2.7, and 3.3 tons/ha in the combined long and short rainy seasons of 2008-2010, the country as a whole
produced 2.3, 2.4, and 3.4 million tons.

5As such, our counterfactual group is comprised of biochar adopters during the periods before they
adopted biochar. Our estimates will be interpretable as average treatment effects on the treated (ATT)
— the effects on farmers who themselves choose to adopt — rather than a treatment effect for an average
farmer (ATE). Given that our data is longitudinal, our estimate of the effect of biochar adoption is
derived from time periods in which the transition from non-adoption to adoption is incomplete, and
causal interpretation of estimates requires that differences between adoption groups be purely cross-
sectional, rather than time-varying (i.e.: an assumption of “common trends”). Data from later periods —
by which time almost all in our sample had adopted biochar — plays no role in identifying the treatment
effect, and merely serves to improve statistical precision.
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that vary with time cannot be excluded. These might include seed varieties, labor allo-
cation/expenditure, intercropping, and other inputs like tractors or fertilizer. We do not
know the extent to which their omission will bias our estimates, though we consider their
potential impact in the discussion. Second, because farmers themselves were typically
unable to approximate how much biochar they used, our enumerators resorted to a form
of estimation which we felt to be highly-leading of the respondents. We therefore discon-
tinued questions on biochar quantity, and in all models represent biochar usage with a
dummy variable. Thus, our estimates will carry the interpretation of the average change
observed after using biochar in whatever unknown quantity farmers chose to use it.

Summary statistics by adoption season are given in table 3.2. The large majority of
farmers began using biochar between 2009 and 2010. It is apparent that there is some
heterogeneity in groups by adoption season. Long rains 2010 adopters had slightly more
non-farm income and were slightly more likely to be male, and those few who adopted
biochar ahead of the first and last seasons in our dataset tended to have lower yields and
more land allocated to maize.

Given that our data is longitudinal, we will control for farmer-specific fixed effects in
all models. As such, causal interpretation of our estimates will require that unobserved
time-varying factors affecting yield are balanced across adoption groups. Given that this
is fundamentally untestable, we are forced to take it on as an assumption. However, we
provide a partial check against its violation by directly checking for differential trends
in our outcome variables by adoption group. We do so by first deseasonalizing yields by
regressing them on season dummies, and then calculating a trend for farmer ¢ in time ¢ as
the difference between one season’s de-seasoalized yield and its lag. We then fit models of
the form trend; 1 = A’S + € to subsets of the data for each season (excluding current-
season adopters), where A are factor variables for the season of initial adoption. Results
are given in table 3.3 — we find no evidence of differential trends either pre-adoption or
post-adoption for any of our adoption cohorts. This is consistent with our understanding
of the mechanism by which ACON diffused biochar in the area — conducting trainings in
new areas after good results spread by word-of-mouth, rather than adopting spreading
from early adopters to later adopters within single areas, which might be indicative of
non-ignorable selection into treatment.

Causal interpretation of our estimates is also threatened if different adoption cohorts
face systematically different returns to adoption. If this were the case, then farmers
with higher potential returns to adoption would be likely to select into adoption sooner
than those with lower potential returns, and the difference that we estimate would be
substantially higher than the difference that we would observe if the cohorts switched

6Our panel is not entirely balanced, because farmers sometimes didn’t farm for particular seasons.
This can stem from a number of factors, including illness, lack of money to purchase inputs, or a desire
to farm only during the long rain season rather than the short. If the decision not to farm is related
to time-varying unobserved shocks and also related to adoption timing and to outcome variables, then
treatment effect estimates will be biased. However, results from Poisson and OLS regressions of the
number of seasons not farmed on adoption season suggest little to no correlation between these variables.

27



the order in which they received biochar, and also higher than they would be if selection
of adoption timing was effectively random. Therefore, we directly compare potential
outcomes by simply comparing the change in (deseasonalized) yields in each cohort’s first
season of adoption, via a regression of the form trend,; ,—r = A’ + €. Here, we find that
season 4 adopters experienced a statistically significantly larger jump in yields on biochar
adoption than other cohorts. We therefore exclude season 4 adopters from our sample
hereafter.

3.2.1.2 Vietnam

Our dataset of early biochar adopters in Vietnam is comprised of farmers trained between
2009 and 2012 in Ha Noi, Hung Yen, Hai Duong, and Thai Nguyen provinces of northern
Vietnam, and is based on a household survey conducted in July and August of 2013.
Paddy rice is the region’s dominant crop, though horticulture and animal production are
also important. The region receives plentiful annual rainfall (approx 1700mm /year), and
most farmers plant and harvest rice twice per year, in the spring/summer and summer /fall
growing seasons.

Biochar trainings were initiated by the Institute for Agricultural Environment (IAE),
a research institute under Vietnam’s Ministry of Agriculture and Rural Development.
Much of the impetus for the initiation of these trainings stemmed from seasonal burning
of rice straw and rice husk by farmers near urban Hanoi; given more crop residue than
was needed for animal bedding, animal fodder, and other similar uses, farmers burnt
large quantities of it, leading to air quality problems in surrounding areas. In this con-
text, biochar was seen as a means of valorizing a waste product while mitigating a local
environmental problem. Trainings began in late 2010 in Ha Noi province, in late 2011
in Hai Duong province, and in mid 2012 in Hung Yen province. We also have data from
Thai Nguyen province, where biochar dissemination was conducted by CARE Vietnam
and the University of Thai Nguyen since early 2009, in collaboration with TAE.

As with our Kenyan data, farmers self-selected into biochar outreach activities. Many
were motivated by a desire to enhance soil fertility, while others were motivated by a
desire to find alternatives to the (illegal) burning of rice residue. Many farmers produce
biochar via simple equipment developed and provided freely by TAE, while others pro-
duced biochar by piling feedstock, setting it on fire, and covering it with soil in order to
choke oxygen supply.

Our Vietnam sample includes 1545 observations of 296 farmers in Ha Noi and Hai Duong
provinces, who were selected for the survey at random from lists of households in the ar-
eas where TAE had conducted biochar trainings. We do not include data on farmers from
Hung Yen or Thai Nguyen in our analysis, because all (none) of the farmers who used
biochar in Thai Nguyen (Hung Yen) had begun using by the first remembered period in
our dataset, leaving us unable to use pre-adoption farmers as counterfactuals for them-
selves post-adoption. Because farmers themselves were typically unable to approximate
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how much biochar they used, we specify biochar usage as a dummy variable. In this case
we have data both on biochar adopters (N = 221) and non-adopters (N = 75), and we
use both adoption and adoption timing to create counterfactuals against which we can
measure biochar’s impact. As with the Kenyan data, the Vietnamese data is recall-based,
and contains agricultural data from the 2009 summer/fall season to the 2013 spring/sum-
mer season. As with our Kenya sample, we cannot be sure of the existence or direction
of any recall bias, though trends in our dataset roughly mirror trends in aggregate data
for Vietnam.”

The Vietnamese dataset is also not balanced, because we have data only on seasons that
farmers report remembering; the probability of reported recall is decreasing with time.
Furthermore, the number of seasons remembered per farmer is correlated with fertilizer
use and probability of biochar adoption (result not shown). To avoid potential bias, we
therefore compare estimates using all available data against estimates using season 5-8,
which most farmers recalled.

Summary statistics are provided in table 3.1, by biochar adopter/non-adopter, and by
season of adoption for adopters. Modest heterogeneity in time-invariant variables is ap-
parent; for instance non-adopters have less land on average than adopters, and there is
some heterogeneity in gender and income between adoption groups. More importantly
however for the validity of our fixed-effects idetification strategy, we have no evidence
of different pre- or post-adoption trends among any of our groups in any of the seasons
for which we have data (table 3.3). This suggests that unobserved time-varying factors
affecting yield may be balanced across adoption groups, improving the credibility of the
common trends assumption we’ll require for causal interpretation of our estimates of
effects of adoption.

3.2.2 Econometric Models

We assume an underlying standard formulation of the production function ¢ = f(I, B)
in which I is a vector of inputs such as fertilizers, manure, labor, etc., and B indicates
biochar use. We use a panel/longitudinal regression model to assess the impact of biochar
adoption on average yields. Given that we do not have data on the actual amounts of
the inputs used in our Kenyan data &, we specify the estimable version of our production
function as dependent on fertilizer expenditures F: yieldy; = 0By + Fi,v + X, + €.

"In 2010, 2011 and 2012, Vietnam produced 4.0, 4.23, and 4.36 x107 tons of rice[l], while average
yields in our sample were 8.86, 9.30, and 9.62 tons/hectare. In percentage terms, aggregate yields
increased 4.9% and 8.5% from 2010 in 2011 and 2012, while average yields in our sample increased 5.7
and 9.1% over the same period.

8Though we lack data on fertilizer amounts used in our Kenyan dataset, we have aggregate data on
prices of major fertilizers in the region for each time period in our dataset. We use this aggregate data
to normalize expenditures for each time period to units of fertilizer in the final period of our dataset. To
maintain comparability with our Kenyan data, we follow a similar approach with our Vietnamese dataset
— where we have data on quantities of individual fertilizers used.
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The subscripts ¢ and ¢ represent individual farmer ¢ at time period ¢, B is a variable that
identifies biochar adopters, and X is a matrix of covariates used only for the Vietnamese
data, summarized in table 3.4. Employing a standard error components decomposition
€ = a; + pp + uy, we control for farmer-specific intercepts «; and time effects p;, which
allows for causal interpretation of d if E[u|T, X, e, p] = 0. This is violated if farmers select
into adoption based on un-modeled time-varying factors, which is, given our data, not a
testable assumption. We provide partial evidence that it is not violated by comparing
trends in the unconditional outcome variable (table 3.3), as described above. In the
Vietnamese data, we interact time-period variables with province variables, to account
for the geographic separation between regions. We specify our treatment variable B as
an indicator, equal to zero in absence of adoption and one in presence of adoption but
not back to zero if more biochar isn’t added in the subsequent season — due to biochar’s
persistence in soil.

While the fixed-effects regression above gives unbiased estimates of d conditional on our
assumptions, it does not model heterogeneity in response to biochar or fertilizer. However,
there is evidence that benefits of fertilizer and biochar are heterogeneous [25, 32|, and that
benefits to fertilizer are mediated by soil carbon [6, 7]. We therefore also estimate a mixed
model in which our vector 3 includes both a fixed component and an individual-specific
random component representing heterogeneity in the response to biochar, fertilizer, and
the interaction between the two, mediated by unobserved time-invariant factors that are
controlled-for in our fixed effects «;:

yieldyy = o+ P+ (B1+ B ) Bit + (B2 + Biz) Fert. Exp.,,+ (83 + Bi3) (Fert. Exp.,; X Bi)+e€i
(3.1)

Thus specified, model 3.1 captures not only the average effects of biochar adoption but
also the distribution of the impact of biochar adoption. For estimation, we exploit the
link between penalized regression and random effects[110, 111], specifying random effects
as interactions of a matrix of cross-sectional fixed effects with B, Fertilizer Expenditures
and Bx Fertilizer Expenditures, and shrink them via ridge penalties chosen to maximize
the restricted maximum likelihood smoothing parameter selection criterion [53].

Finally, we provide robustness checks against potential shortcomings with model 3.1.
While we model yields as continuously-distributed, they are clearly non-negative. We
show, for our Kenya data, that several approaches towards accounting for this fact yield
equivalent results, including the addition of a small constant before taking the log, and
specification of discretized yields using negative binomial distribution. This is presented
in appendix B.
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3.2.3 Optimization

We use estimates of 3.1 to investigate the effect of a carbon price on the profitability of
biochar adoption. In our model, farmers choose the proportion of land on which they
apply biochar as well as the amount of inorganic fertilizer applied to each plot. We
use individuals’ maximum observed fertilizer expenditure as a proxy for their budget
constraint and assume the cost of a 25kg bag of biochar to be $4.5 bag, which is the price
observed in the region at the time of this study”. If we assume (conservatively'?) that
this biochar is half-carbon by mass, and that half of this carbon is sufficiently stable to
be considered “sequestered,” then each 25kg sack represents 22.9kg COsequivalent. This
corresponds to 0.45 tons COqe/ha, or 183kg COqe/acre at recommended application rates.

We simulate a program that subsidizes biochar'!, and represent the optimization problem
formally as:

profit; = a:ggich (a (fi(cﬁ)p —cp+ S)) + (1 —a) <ﬁ(697)p - COF)) (3.2)

st.ra(cB+cg—8)+(1—a) <C

Here, a is the proportion of land with biochar, f;() is our fitted model 3.1, ¢ and 2% are
the costs of using fertilizers in presence and absence of biochar, p is the output price, C'?
is the price per-hectare of biochar, S is the corresponding subsidy based on a price for

9As of this writing — three years after our dataset was collected — a project in the region has begun
producing biochar from sugar cane residues for sale to farmers in the region. Recommended application
rates are 2 sacks per 1/4 acre, or slightly less than .5 tons/ha.

10Bjochars are heterogeneous, with larger or smaller carbon fractions depending on feedstock and
pyrolysis technology. Biochar stability is difficult to estimate given its long residence time in soil, the lack
of good natural experiments spanning centuries, and the complexity of physical, chemical, and biological
transformations and translocations in soil. However, current models of biochar decomposition generally
divide it into “labile” and “stable” pools based on the heterogeneity of carbon compounds comprising the
material. Decomposition rates of the labile pool are generally of the same order of magnitude as other
organic substances in soil, while that of the stable pool is often several orders of magnitude less. Mean
residence times for this pool are generally estimated to be on the order of centuries to millennia[38, 112].

11 Alternatively, we could have considered a program which monitored behavior with regard to biochar
application to soil. However, the cost of measuring compliance among many small-scale farmers would
be high, and likely counterproductive given that these monitoring costs would reduce the proportion
of funds available to actually defray the cost of biochar. Second, even at a very high carbon price of
100USD/ton, a farmer applying biochar to a hectare of land would receive a subsidy of 45.2USD, which
is less than the price of an hectare’s-worth of biochar (90.9USD). Thus there are no realistic scenarios in
which adoption of biochar would lead to a cash payout, rather than a simple defrayment of costs. Third,
a program that monitors input usage and provides payouts based on them could value the COse implicit
in any reductions in fertilizer use attributable to substitution with biochar. Any such program would
face serious attribution issues, potentially create perverse incentives for farmers to stop using fertilizer in
order to claim a payout, and also conflict with the existing policy priority of expanding use of inorganic
fertilizer in sub-Saharan Africa as a means of improving food security. Given these factors, we consider
input subsidies — rather than behavior-based cash payouts — to be a more realistic model for how a carbon
price might influence a market for biochar.
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carbon, and C; is a farmer ¢’s budget constraint. Input and output prices are summarized
in table 3.5. Optimization is performed by a simple gridsearch across the feasible region
of the parameters, and p is specified in 1/8-acre increments — reflecting 25kg sacks of
biochar.

The objective function depends critically on ﬁ(), our fitted model 3.1. To characterize
uncertainty in this estimate, we adopt a Bayesian view of its estimated parameters —
treating them as being distributed multivariate-normally, with their mean defined by B
and their covariance defined by our estimated (cluster-robust) variance-covariance ma-
trix!?13. 'We then take 1000 draws from this distribution, conducting optimizations for
each draw of fz() as the emprical distribution of the optimized parameters across the 1000
draws of 5. We do so for a gradient of carbon prices, from $0-$100/ton, and calculate
confidence/credible intervals using the quantiles of the predicted optima defined by dif-
ferent draws of 5. Our estimands of interest are, as a function of carbon price, (1) the
proportion of farmers for whom it is optimal, at varying levels of confidence, to adopt
biochar in any quantity, (2) change in expected profits, (3) the proportion of land that
receives biochar in the first year of the program.

3.3 Results

Estimates for the Kenya and Vietnam datasets are given in tables 3.6 and 3.7. For
the Kenya sample, biochar adoption is associated with a .156 ton/ha increase in maize
yields, as well as a $26.2/ha decrease in fertilizer expenditure. When holding fertilizer
expenditure constant and also controlling for the interaction with fertilizer (which is
negative and marginally statistically significant), the estimate increases to .211 ton/ha.
With pre-adoption yields averaging 1.3 tons/ha, the estimate of the average treatment
effect for biochar-adopting farmers is approximately 11%. In our Vietnam sample, we
do not detect an effect of biochar adoption on yields, though we do detect a decrease in
fertilizer expenditure in regressions run only on season 5-8. The effect on yield remains
statistically insignificant after controlling for available time-varing variables.

12A frequentist interpretation of this procedure would be that we are drawing from the estimated
distribution of parameter estimates that we’d obtain after drawing many different samples from the
meta-population from which our data was drawn.

13We estimate a cluster-robust variance-covariance matrix for models containing penalized terms

N ~ N\ 1 ~ N\ 1 “
as Vg = (X’X—&—AS) ZX;éjé’jX (X’X—!—)\S) , where A is the estimated term-wise smooth-

ing paramter and S is aJ penalty matrix — controlling which components of X are penalized.
Heteroskedasticity-robust F-tests on purely parametric model components are then based off of the
above matrix. Tests of term collections containing penalized elements are done by replacing our cluster-
robust estimate of Vg with the standard one in calculating Wood’s [80] reduced-rank Wald statistic
T, = f]\?}]— f; where V}J_ is a rank-r pseudoinverse of V ;- Doing so accounts for the fact that effec-
tive degrees of freedom for a penalized term or a term containing penalized components are fewer than
the dimensions comprising the portion of the variance-covariance matrix corresponding to the terms for
which the test is desired.
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Mixed model estimates of fixed terms are generally consistent with OLS estimates, with
slightly lower (higher) estimates of the average effects of biochar (fertilizer). In both the
Kenya and Vietnam cases, the random effects are jointly statistically significant. Their
distributions and correlations are given in figure 3.2. In both cases, there is sizable
heterogeneity in response to biochar, which is negatively correlated with heterogeneity in
response to fertilizer. There is little heterogeneity in the interaction between biochar and
fertilizer, though it is positively correlated both with response to biochar and fertilizer.

Profit maximization based on simulations of our production function suggests that biochar
has a relatively small effect on profits, and a small negative effect on fertilizer expenditure
(figure 3.6). Notably, even in presence of compensation for carbon sequestration, results
indicate a low sensitivity of profitability to carbon price (figure 3.3). We are more con-
fident than not that biochar would be profitable to adopt for 23% of our sample, given
no carbon subsidy. Conditional on profitability however, most farmers in most scenarios
apply biochar to only small portions of their land (3.4), irrespective of carbon price. This
proportion increases to 47% with a subsidy of $100/ton COse, though neither proportion
is statistically different from zero at a confidence level of 95%. Profits and fertilizer ex-
penditure appear to be relatively insensitive to carbon price (figure 3.5). In particular,
the benefit of a subsidy is for most farmers a small fraction of the cost of providing it. We
do not conduct optimizations for the Vietnam sample, as average effect on yields is not
statistically significant, and heterogeneous response to biochar and its interaction with
fertilizer are inestimable for those in our sample who did not receive it.

3.4 Discussion

Biochar has elicited substantial interest as a means of sequestering carbon while improv-
ing agricultural yields. Translating technical potential into impact requires wide-scale
adoption, and wide-scale adoption will generally be predicated on economic feasibility.
A priori, we were hopeful to find evidence for such feasibility, given that biochar is one
of the approaches to climate change mitigation expected to generate positive economic
returns in the short run. In particular, in Kenya we were intrigued by the possibility that
biochar might help intensify low-input, low-yielding agriculture, while improving yield re-
sponsiveness to inorganic fertilizer. In the more input-intensive Vietnamese agricultural
system, we were interested in the possibility that biochar might maintain high yields
while reducing the use of inorganic fertilizer with gains in efficiency and a reduction in
GHG emissions.

Evidence in support of these potentials is mixed. We find that biochar improves crop
yields in western Kenya, but find little evidence for complementarity with fertilizer. Even
though our findings could be contradicted by the dynamics of biochar’s influence on
agro-ecosystems over longer periods, we cannot conclude that biochar provides a mean
of stimulating agricultural intensification in the short run. We do find evidence that re-
sponse to biochar is negatively correlated with response to fertilizer — echoing findings by
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Marenya and Barrett[6, 7]). In Vietnam case, we find no evidence that biochar increased
average yields, though substantial heterogeneity in the random coefficient suggests that
there may be circumstances in which biochar applications are valuable; further research
is needed. In Kenya, we find that average yields increased while average fertilizer ex-
penditure decreased. If biochar were available freely, this would imply an increase in
agricultural profit. However, it is unlikely that biochar would be available at no cost at
wide scale to farmers, and estimated optimal input mixes — subject to budget constraints
— suggest that its provision would change profits little, with or without a subsidy. And
while according to our results, one quarter to one half of farmers may find it profitable to
adopt (depending on compensation for carbon sequestration), this adoption might involve
substitution with inorganic fertilizer, which also improves yields but doesn’t appear to
have a statistically significant complementarity with biochar. In focusing on optimality,
we abstract from more complex issues related to technology adoption — of which prof-
itability is only one. Additional work and data is needed to determine how closely our
modeled input decisions capture farmers’ decision-making processes and what sorts of
interventions might be required to stimulate adoption. We are aware that our results are
likely to be sensitive to maize and fertilizer prices. However, while changes in these factors
may change the magnitudes of our estimates, we don’t expect that they will substantially
change results qualitatively.

Our results are weakened by omitted variables that vary with time. We lack data on
seed variety, labor, other crops, or other inputs like tractors or animal rental. Omission
of these variables may bias our estimates, to the extent that they are correlated both
with yields and the timing of biochar or fertilizer use. Hybrid seeds tend to have higher
response to fertilizer than traditional varieties. If farmers used more of these due to any
wealth effect stemming from previous-period biochar adoption, our estimates might over-
state the effect of fertilizer. Heavily-fertilized fields require more weeding, which might
require more labor, which might be out of reach for budget-constrained households. This
would generally bias the effect of fertilizer use upwards. Also, if wealth effect from biochar
adoption led to farmers increasing the amount of land planted, then we’d expect the esti-
mate of biochar’s effect to be biased downwards, given the prevalent inverse relationship
between yields and farm size in African agriculture. Finally, we represent biochar use as
a dummy variable, rather than a continuous variable applied heterogeneously to different
plots within a farm. Any bias inherent in the unobserved proportion of their land to
which biochar was applied will be downward, as we can’t distinguish between plots with
and without biochar. Altogether, we don’t know how serious the effect of omitting these
variables may be.

Several related points beyond the scope of our empirical analysis are worth noting for any
projects aiming to promote biochar utilization. First, biochar’s viability is conditional
on ecological constraints. In particular, biochar requires adequate biomass to serve as
feedstock, a constraint that appears to be met in our contexts[113], but which may not be
in all places, even where biochar may be agronomically beneficial. Indeed, removal of crop
residues from fields — against a counterfactual of in-field decomposition — implies an export
of plant nutrients and an increased erosion risk, even if future external nutrient additions
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may be more efficiently used because of any influence of biochar. These constraints will
vary with soil type, agro-climatic zone, prevalent cropping systems, and other factors.
Biochar’s viability will thus by highly context specific.

Second, even where feedstock is available, biochar production requires some technology
for pyrolysis. These can be centralized or farm-scale. Centralized systems will generally
be costlier, more efficient, and require substantial transportation of bulky feedstocks to
and from farms — though they may capture useful energy in the process[36, 92, 114—
116]. In the absence of strong market demand by farmers and cost-effective and reliable
systems for moving large quantities of biomass, the relative advantage of using feedstocks
to produce biochar rather than electricity remains unclear. Farm-scale systems include
biochar-producing stoves[117] and larger TLUD-kilns[118]. Biochar-producing stoves can
produce useful energy for cooking while remediating problems with indoor air pollution
common in developing country contexts[119]. However it is not clear that the amounts of
biochar produced will be agronomically relevant. Moreover, evidence on the adoption and
sustained use of improved cookstoves in general is mixed[120-123], and it is not clear that
pyrolytic stoves are substantially better than other sorts of improved cookstoves[119].

Third, feedstock availability and labor are commonly seasonal in agriculture, in ways that
may work against the practicality of producing large quantities of biochar. Crop residues
are generally available once or twice per year, which requires that biochar producers
either have substantial capacity for rapid production, or capacity to store large quantities
of biomass while keeping it dry. Seasonal inactivity and/or material storage or drying
costs are likely to impose constraints on centralized systems, due to lower capacity factors
and marginal costs, respectively. Timing of harvests and seasonal wet and dry periods
may shrink the window in which material can be pyrolyzed in some regions; in Kenya,
the short rains follows quickly after the long rains harvest — wetting the material from
which biochar could be produced. Small-scale systems — such as TLUD kilns — are fairly
labor intensive, and are likely to be constrained where agricultural wages are high. These
constraints can be overcome somewhat by decentralized production, though decentralized
production would be more likely to face behavioral technology adoption constraints.

Given these constraints and given the relative invariance of optimal biochar usage to
price (within a realistic range), our results suggest that any approaches to promoting
biochar may be more successful by focusing on removal of barriers to biochar provision
in agricultural markets in the region, in addition to simple subsidization. These factors
would clearly vary by context, but might include extension or other information cam-
paigns, support for nascent biochar producing businesses or nonprofits, and identification
of regions where the above-discussed constraints don’t bind as severely.
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3.5 Conclusion

We find that biochar increased yields in western Kenya, and that its profitability may be
moderately sensitive to a carbon price. However, we don’t find evidence that biochar im-
proves response to fertilizer, and as a consequence we find little evidence that its adoption
would substantially change agricultural profit, given substitution with little complemen-
tarity. In Vietnam, we find no average increase in yields, though in both contexts, we
find substantial heterogeneity in response. This heterogeneity invites further research;
given that biochar appears to work in some contexts more than others, identification of
its niche may maximize the benefits of any programs seeking to leverage it for agricultural
development and climate change mitigation.
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3.6 Figures and tables
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TABLE 3.3: Tests for un-common trends in outcome variables, pre- and post-adoption,
for our Kenya and Vietnam samples. Tables give p-values of F-statistics associated
with regressions of the form trend;; = yield;; — yield;;+1 = A’ 3+ ¢, where A are factor
variables for the season of initial adoption. Each regression omits data from groups
who adopted in the current or previous season. Overall, inter-seasonal changes in yield
are not staistically distinguishable between groups defined by season of adoption.

Season
1-2 2-3 3-4 4-5 5-6 6-7 7-8
0.866 0.606 0.428 0.151 0.488
0.314 0.358 0.304 0.888 0.668 0.700

Kenya
Vietnam

TABLE 3.4: Covariates available for the Vietnamese data.

Mean SD
Fertilizer Expenditure (USD) 175.7173  138.0754
Irrigation Expenditure (USD)  10.4492 5.9096
Labor Expenditure (USD) 193.5237 82.1981

Other Expenditure (USD) 79.0390 55.7009
Manure (kg/ha) 867.8337 1633.8788
Area farmed (ha) 0.1987 0.1034
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TABLE 3.6: Empirical results from Kenya sample. Standard errors adjusted to account
for cross-sectional autocorrelation.

Dependent variable:

Yield Fert. Exp. Yield Yield
FE-OLS FE-OLS FE-OLS FE-LMM
(1) (2) (3) (4)
Biochar 0.156***  —26.218"*  0.211*** 0.171**
(0.060) (6.413) (0.077) (0.071)
Fert. Exp. 0.002** 0.004***

(0.001)  (0.0005)

Biochar x Fert. Exp/ 0.00003 0.0003
(0.001) (0.001)

Observations 1,295 1,270 1,267 1,267
Adjusted R? 0.666 0.562 0.684 0.768
AIC 2506 2203
Note: *p<0.1; **p<0.05; **p<0.01
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Yield (tons maize/ha)

Yield (tons maize/ha)

FIGURE 3.1: Estimates of parametric terms (plots 1 and 2), distributions of random
coefficients (plots 3-5)
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R. Eff. Pred: Biochar

R. Eff. Pred: Biochar

FIGURE 3.2: Correlations between random effects predictions by individual. Linear fits
control for the excluded random effect (i.e.: Biochar x Fert.Exp where biochar effects
are plotted against fertilizer effects), and set the excluded to zero. Note differing scales.
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Proportion adopting biochar

FIGURE 3.3: Left: proportion of our Kenya sample for who biochar adoption would

be optimal from a profit-maximizing perspective, over at least 1/8 of their farm, as

a function of carbon price. The red line give the proportion for whom we are 95%

confident of optimality, the blue line 75%, and the green line gives the proportion

for whom we are more confident than not. Right: assuming profit maximization, the

proportion of land receiving biochar as a function of carbon price. Solid line gives
median estimate; dotted lines give 95% confidence intervals.
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FIGURE 3.4: Conditional on biochar profitability, the estimated optimal proportions
of land to which farmers in our sample would apply biochar, at no subsidy and at
$100/ton CO2e.
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Frequency

Frequency

F1Gure 3.5: Distributions of average change in optimized agricultural profit and fer-
tilizer use as functions of carbon price.
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FIGURE 3.6: Distributions of the average difference in optimized profits and fertilizer
expenditures between scenarios where biochar is available with no subsidy, and scenarios
in which biochar is unavailable. Dotted red lines give means.
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Chapter 4

Subsidies, Social Learning, and
Charcoal Dust: Impact and
Adoption Dynamics of Biochar in
Western Kenya

Abstract

I report the results of a Kenyan field experiment on adoption and impact of biochar,
an agricultural input that improves fertility in poor soils while sequestering carbon. I
randomly assigned prices, demonstrations, and risk-free trials. Yields increased by 37%
and 50% in the first two seasons, and response to inorganic fertilizer improved. How-
ever, uptake was 2.6% and 10% respectively. Farmers were highly price-sensitive. Social
network effects were marginally significant, but positive at low penetration and negative
at high penetration. Given uptake well below the social optimum, subsidies for biochar
appear justified from a social cost/benefit standpoint.

4.1 Introduction

Since independence, African agricultural productivity and input use has grown very little,
while the population remains overwhelmingly rural and poor[17]. This stagnation is
particularly stark in contrast to the massive productivity gains experienced by most of
the rest of the world during the same period. Driven by development of hybrid seed and
inorganic fertilizer, the post-WWII “green revolution” is credited with much of the gain
experienced elsewhere, and considerable attention has been paid to whether and how this
experience might be replicated in sub-Saharan Africa[124-127].

Fertilizer’s profitability [25] as well as its agronomic efficacy [12, 128] can be quite variable
in the region. This profitability is often increasing in by soil carbon content, particularly
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in the geologically weathered soils common to much of sub-Saharan Africa [6, 7, 27].
Increasingly, institutional and academic discourses around agricultural development in
the region have focused on “climate smart” agriculture — a term encompassing the inte-
gration of climate change mitigation and adaptation into development assistance in the
sector[129]. Climate smart agriculture rests somewhat uneasily with the aim of agricul-
tural development through increased use of inorganic fertilizer, as inorganic fertilizers can
be relatively greenhouse gas-intensive in both production and use. However, measures
that increase soil carbon content can mitigate climate change via carbon sequestration,
while potentially stimulating agricultural intensification by improving responsiveness to
fertilizer and thereby the efficiency of its use.

The past several decades have seen substantial agroecological research around this prospect.
Approaches have included agroforestry, conservation agriculture, composting/manuring,
among several others[81, 130, 131]. Increases in yields are commonly strong, but benefits
can take several years to materialize, and adoption rates are often low while disadoption
rates among early adopters are high[132, 133]. Particularly in the context of growing
opportunities to finance such projects under both voluntary carbon markets and poten-
tially emerging international climate change mitigation agreements [134, 135], evidence
is needed on how to use these resources most efficiently to stimulate dissemination, yet
relatively little literature focuses on this area[136].

Concomitantly, problems of technology adoption in African agriculture have received sub-
stantial attention in development economics — largely in isolation from work in climate-
smart agriculture. Following the liberalization of agricultural input markets in the 1980s
and 90s, much of this work has focused on means of stimulating adoption of improved
agricultural technologies while avoiding the use of blanket subsidies, which were consid-
ered expensive, inefficient, and potentially regressive in the way they were implemented|2].
Given that the technologies subsidized were generally profitable in expectation at market
price, the goal has been to identify what barriers impede adoption, and how those might
be overcome[3]. These barriers vary in scale from those mediated by national policy (land
and labor market factors, infrastructure, etc.), to those that are more microeconomic in
nature, such as information, credit availability, risk attitudes, and other behavioral fac-
tors. A large and growing body of research — often using experimental methods — has
found that relaxing these micro-scale barriers has substantially stimulated adoption, while
elucidating mechanisms by which they have worked.

This paper focuses on the intersection of these two issues. I provide the first rigorous
evaluation of the agronomic efficacy and economic utility of biochar[35] — a soil amend-
ment that can increase yields, persistently improve soil fertility, and sequester carbon — in
smallholder agriculture. This is distinct from the controlled agronomic studies that have
comprised the literature to date. While such studies are well-suited to advancing mech-
anistic understanding of biochar’s activity in agroecosystems, they are often conducted
in controlled settings that bear little resemblance to the contexts in which smallholder
farmers operate. In particular, I seek to determine whether the yield impacts seen in
agronomic studies are replicated on the fields of farmers, and whether biochar’s benefits
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— in terms of yields, soil fertility management, and carbon sequestration — are sufficiently
large to justify the cost of its production.

Agronomic benefit and economic viability do not guarantee rapid adoption however|3].
Conditional on these two factors, rates of takeup may still be quite slow. Farmers may
lack information about the new technology — how it works, what mediates its benefits,
the extent of its benefits, or even its existence. In other circumstances, technologies that
are beneficial long-term investments may not meet immediate livelihood or consumption
needs. Particularly where technologies have beneficial environmental externalities, pol-
icymakers may wish to speed rates of dissemination. Yet it is often unclear how to do
this efficiently and effectively. This paper seeks to contrast three methods that have
been researched independently, and implement them in the specific context of biochar —
simple price subsidies, stimulation of social and experiential learning via the provision of
demonstration plots, and risk-free trial offers whereby farmers receive biochar upfront,
and can choose to pay for it after harvest if they find that it was valuable and wish to
buy more in the future.

I find that yields on farmers fields are consistent with, or greater than, results from
agronomic studies, and that biochar improves response to fertilizer — even at the very
low application rates used in this study — about 0.5 tons per hectare, which I found
to be approximately the amount that can be made from the crop residues of a typical
maize field in the region. My data suggest that biochar is highly profitable for the median
farmer to adopt, at a price similar to the cost of its production, even ignoring any benefits
stemming from carbon sequestration and fertility benefits that last beyond the first year.

In spite of this however, adoption rates were quite low. While farmers were highly respon-
sive to risk-free trial offers, most did not repay them. Adoption was much higher in the
second season, but was contingent on heavy subsidies. The effect of the social network is
zero in the first season and unclear in the second — while point estimates suggest that an
increasing share (or proportion) of the network with biochar stimulates adoption at low
levels of penetration, point estimates also suggest declining propensity to adopt biochar
when more than about 12% of the network has biochar. Estimates are noisy however,
and I'm not able to distinguish these estimates from no effect whatsoever at standard
levels of statistical confidence.

Given that biochar is unambiguously profitable yet underadopted, low rates of adoption
are socially suboptimal. This suggests a role for policy to stimulate adoption. I find that a
combination of heavy subsidies and measures to stimulate social learning maximize social
return on investment (though I can’t say at high confidence that the optimal program
would involve no social learning component), but that the amount of carbon sequestered
by biochar is insufficient to justify the cost of programs to stimulate its uptake based on its
carbon benefit alone. However, while public expenditures to stimulate biochar adoption
should yield substantial social return on investment — given its direct agronomic benefit,
its complementarity with fertilizer, and its carbon sequestration potential — the large
subsidies needed to induce farmers to try a new technology may render biochar a less
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attractive public investment than simple fertilizer subsidies, in the short term. Biochar
may be a more favorable investment when considered over the longer term, when carbon
sequestration is valued, or in particularly degraded and/or non-fertilizer-responsive soils.
Further research is needed to place these results into an even more dynamical context,
given that willingness to pay may change over time.

After introducing biochar (section 4.1.1), I provide a brief literature review of the devel-
opment economics literature in this space (section 4.1.2). I then describe the context and
experimental design (section 4.2), including a brief treatment of the semiparametric sta-
tistical methods that I use (section 4.2.2) throughout the paper. The dataset is described
in section4.3. I then provide results (section 4.4) and conclude with a brief discussion
(section 4.5) focused on implications for policy and for further research.

4.1.1 Biochar

Biochar is the product of thermal decomposition of biomass in the absence of oxygen[35].
Termed “pyrolysis,” the process of its production can be given by the following heuristic
chemical reaction:

CH,0 + Heat — Biochar + H, + CH,4 + Heavier hydrocarbons

In essence, heat drives flammable gases and vapor-phase hydrocarbons® from biomass
(approximated as CH20), while the solid that remains is chemically altered, forming
black carbon.? The key distinction between this process and the process of simple com-
bustion is the absence of ambient oxygen. Absent oxygen, a substantial portion of the
feedstock remains in solid form, while heat alters the chemical structure of the remaining
carbon atoms into increasingly condensed aromatic structures® with increasing tempera-
ture. There is no formal distinction between biochar and charcoal, either chemically or in
their manner of production. Rather the two are differentiated by their intended end-use,
though many forms of charred biomass — made, for example, from leaves, grass, or crop

'In traditional charcoal production, these byproducts are vented to the atmosphere, releasing harmful
local air pollutants and greenhouse gazes. In more-advanced biochar production systems (which this
project used, and which are also more efficient), these flammable gases are combusted to further drive
the reaction.

2Detailed treatments of this process — of which the production of fuel charcoal is a special case — can
be found in Brown [115] and in Antal & Gronli [137].

3«Aromatic” carbon refers to carbon that has formed a hexagonal ring of 6 carbon atoms. “Con-
densed” aromatic carbon refers to collections of ring structures that have fused to one another. Graphene
occurs when aromatic carbon is perfectly condensed into sheets of attached rings, while graphite is formed
when these sheets layer onto one another. The degree of aromaticity (i.e.: the proportion of carbon in
aromatic clusters), and the degree of condensation (i.e.: the proportion of ring vertices that are bonded
onto other aromatic rings) varies with a number of parameters of the biochar production process, es-
pecially the temperature of production, which typically varies between 300°C and 750°C. Biochar is
substantially more aromatic that living plant carbon, but substantially less so than graphene. See the
following for more on biochar’s chemistry: [58, 76, 138, 139].
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residues — would tend to be less useful as a fuel than would char made from large pieces
of hardwood, which is more typically used for fuel charcoal.

Like other forms of nonliving organic carbon, biochar will “mineralize” over time, reacting
with oxygen to form carbon dioxide. However, biochar does so much more slowly than the
dead plant matter from which it is formed[28, 38, 83] — decomposing over timescales rang-
ing from centuries to millennia. Early interest in biochar was catalyzed by the discovery
of surprisingly fertile, dark-colored soils in the Brazilian Amazon, which were surrounded
by highly weathered and much less-fertile soils[140]. These soils, which are coincident
with pre-Columbian population centers, contain carbon dated to several centuries before
European contact. Their fertility is attributed largely to addition of biochar, likely via
produced by smoldering combustion during the process of land-clearing for agriculture
(39, 141, 142].

By slowing the reversion of plant carbon back to the carbon dioxide from which it was
formed, biochar suggests itself as a means of climate change mitigation via soil carbon
sequestration. Woolf et al.[36] estimate that biochar may have the technical potential to
mitigate as much as 10% of current global greenhouse gas emissions anually. Of course,
the gap between technical potential and realized potential will depend on deployment
and use of biochar production technology, which will in turn depend on economic feasi-
bility. Biochar’s costs are generally comprised of (1) the opportunity cost of the feedstock
biomass, (2) capital costs of the equipment used to perform pyrolysis, (3) labor costs re-
quired to perform pyrolysis, and (4) transportation costs inherent in moving biomass to
the equipment and biochar from the equipment. These costs vary substantially by context
and by the type of technology used.

On the other hand, biochar’s economic benefits are largely a function of its ability to im-
prove crop yields. Meta-analysis of agronomic studies shows that average yields increases
range from 5% to 30% over controls, with relatively higher increases in the weathered
soils typical of much of the tropics, and lower to negative yield increase in the richer soils
that make up much of the world’s more important food-producing areas in the temper-
ate zone[32, 44, 45]. Similar to other forms of soil organic matter (SOM), biochar can
improve soil fertility across a number of dimensions — improving water holding capacity
and soil structure, while reducing acidity and improving fertilizer-use efficiency [37, 47].%
Importantly, these results have been shown to manifest immediately after application,
and also to persist over multiple seasons beyond the season of initial application, offering
the prospect of durably increasing soil fertility.

4While the sole meta-regression analysis of plant response to biochar did not find evidence that biochar
improved plant response to fertilizer[32], that study did not explore potential heterogeneity in mediators
of response, and it is possible that it may do so in some contexts and not others. I will test for evidence
that it does so in section 4.4.1 below.
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4.1.2 Technology Adoption in Developing-World Agriculture

Biochar appears to offer the prospect of improved agricultural productivity, both directly
and via intensification through the improvement of returns to inorganic fertilizer. This
prospect is particularly attractive given both that biochar may contribute to climate
change mitigation, and that this mitigation potential might justify carbon finance to
support dissemination. However, diffusion and adoption of new agricultural technologies
has proven to be a slow and uncertain process, particularly in sub-Saharan Africa[2,
3]. While profitability of new technologies has been shown to often not be as great as
is commonly supposed [6, 7, 25], demonstration of economic benefit where it exists is
insufficient to guarantee rapid dissemination and widespread adoption[143].

Despite several decades of scholarship on the topic, it remains unclear how to stimu-
late dissemination efficiently. Early canonical papers tended to focus on the long-term
patterns of technology diffusion, which they characterized using logistic models — slow
early dissemination among innovators, followed by acceleration as the innovations caught
on with more farmers, followed by a deceleration as more recalcitrant farmers begin to
adopt[144, 145]. While these works remain touchstones in the literature, their key insights
provide relatively little guidance to actors seeking to speed the rate of diffusion.

From independence to the 1980s, subsidies were the major tool used to stimulate diffusion
of hybrid seed and inorganic fertilizer in sub-Saharan Africa. Faced with criticism for
being inefficient, costly, and potentially regressive, these subsidies were largely phased-
out during the structural adjustment era, which saw an end to the growth in fertilizer
consumption seen in the region in the 1960s and 1970s[5]. During their heyday, fertilizer
subsidies were justified using some of the main hypotheses driving empirical technology
adoption literature in more recent years[146, 147|, particularly that provision of subsidies
would encourage learning-by-doing, and thereby stimulate demand at market prices[148].
While blanket subsidies tend to be poorly targeted and potentially inefficient[149], it is
not always clear what alternative programs might work better. At minimum, the change
in adoption with increasing subsidy can be used as a baseline with which to measure the
efficacy of alternative measures.?

The fact that subsidies are costly has led to their justification on grounds other than
simple dissemination; including the learning-by-doing argument mentioned above, as well
as concerns for the welfare of poor farmers [150]. However, substantial research has also
focused on whether demand might be stimulated in more cost-effective ways — potentially
freeing resources for programs that might address welfare more directly. In particular,
I focus on (social) learning and on novel sales offers designed to simultaneously remove
risks and alleviate liquidity constraints. If equal rates of dissemination can be achieved

SRecent years have seen a resurgence in agricultural subsidies under the umbrella of “smart subsi-
dies,” which seek to improve targeting and efficiency as compared to experiences of post-independence
period[150].
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by stimulating social learning or providing these novel offers, as compared to subsidy pro-
grams, then such programs should be considered preferable as they would free resources
for other development priorities.

Social learning and technology adoption has been a popular topic in the field for the last
two decades. Beyond interest in furthering economic theory — social learning is notoriously
difficult to distinguish from imitation and correlation[151] — interest is often motivated by
the observation that technologies that achieve high rates of penetration weren’t generally
subsidized and seemed to spread virally, with the rapid spread of cellular phones in
the region commonly serving as an example. Several recent studies, often based on field
experiments, have measured the effect of adoption among social network contacts on own-
adoption. Most find large effects [152-156] — on the order of 20% increase in adoption
rates among those with treated contacts or neighbors, though others find more modest
effects[143, 157, 158]. In particular, the relationship between adoption and the number
of social network contacts with a technology has sometimes been found to be concave —
social effects have been strongly positive when there are few adopters in a network, before
declining and becoming negative at high levels of adoption — though different studies find
turning points at different locations [153, 155, 157]. What’s more, several of these studies
have found that social effects work in some contexts but not others. Munshi found
that social effects were stronger stimulating uptake of hybrid wheat than hybrid rice,
arguing that wheat-producing areas were more environmentally-homogeneous than rice-
producing areas, making learning easier in the presence of imperfect information about
the mediators of the new technology’s benefit. Krishnan and Patnam find substantially
stronger social effects for seed adoption than for fertilizer adoption. Conley & Udry find
that the social effects of “bad news” about a combination of inputs are stronger than
those of “good news” about a combination of inputs. Finally, Duflo, Kremer & Robinson
find that social effects are strong in the first year, but disappear in subsequent years —
which is the opposite of what was found in Krishnan and Patnam’s context, where the
effects of extension® faded over time while social effects persisted.

Some of these studies distinguish between social learning via transmission of information
about benefits of technologies, and social influence via imitation and herding[160], while
others haven’t. In general, a correlation between adoption in a network and one’s own
adoption could come either from learning or from imitation, in contexts where it is possible
to exclude the possibility that results are driven by correlated unobservables. This paper
focuses simply on propensity to adopt a technology as a function of the number of social
network contacts that have adopted that technology. In a companion paper”, I distinguish

SWith exceptions[155, 159], studies of social learning and technology adoption in agriculture have
dealt with traditional agricultural extension in little more than passing. This is largely a function of
the developing-country context of the work, where extension services often have insufficient reach, and
“model farmer” models seek to disseminate innovations to wider populations through first deploying
the interventions to selected farmers, and then relying on social learning. Genius et al. find the two
approaches to be complimentary, while Krishnan & Pattam find the extension has a much smaller effect
than social learning. On the other hand, Maertens[157] finds that learning from authoritative sources is
far more predictive of adoption than is the number of farmers in a network who have adopted.

“Companion paper in preparation.
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between social learning and social influence, finding that social network effects operate
primarily through learning.

For technologies with particularly heterogeneous benefits, learning from experience might
be preferable to learning from others. Yet poor farmers may balk at the risk inherent
in investing in a technology with unknown outcomes, and/or they may simply lack the
liquidity needed to do so. Technologies may be offered in such a fashion that these
potential barriers no longer bind. Given that such offers involve a cost to the entity
sponsoring them, they can be considered preferable to a simple subsidy where the cost
of provision is lower than the cost of the subsidy, for a given level of adoption within
a population. In this study, I offer some farmers biochar for sale on a “risk-free trial”
(R) basis — farmers receive a small quantity of biochar for a price, but are told that
they can choose to pay for it or not at harvest. If they pay, then they can continue
to purchase biochar in subsequent seasons. If they do not, then they will be excluded
from future biochar sales. Similar work includes Levine et al.’s [123] work on improved
cookstoves in Uganda. They find that the combination of time-payments (addressing
liquidity constraints) with the right to return (addressing risk) the promoted stove led to
42 percentage points more adoption than control groups. While there isn’t much literature
on these sorts of offers, they represent the combinations of a number of mechanisms, each
well-studied in development economics. While such offers may not make sense as a
business model for sustainable provision of a technology in many contexts®, they may
represent a means of increasing demand by stimulating learning from experience, and it
seems possible a priori that they could be more cost-effective in doing so than simple
subsidies, if they are better at increasing uptake and are repaid at high rates.

4.2 Context, experimental design, and methods

I conducted this study in rural areas surrounding Bungoma, in Western Kenya. The
region receives about 1600mm rainfall annually, distributed bimodally in a long and a
short rainy season, with the former lasting approximately March to June and the latter
from August to November. Agriculture in the region is dominated by maize and sugar
cane production. The former is grown mostly for consumption, while the latter is a
cash crop. Most farmers plant two maize crops per year, and yields in the short rains are
typically half of those from the long rains. Soils in the region are relatively weathered[161].
Population density is higher than that in much of the rest of rural Africa, averaging 100-
250 persons/km?. Farm sizes average below 1 hectare, and fallowing — once common in
the area — is now rarely practiced due to land scarcity.

The project started in early 2013 as a partnership with Re:char Kenya Ltd., a private
business which sold simple biochar production equipment to farmers. Called the “Rutuba’

8Beyond the simple business risk in non-repayment, the threat of exclusion from future sales breaks
down when more than one vendor is selling the technology in question.
9“Rutuba” means “soil fertility” in Kiswahili.
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kiln,” their device was a top-lit updraft gasifier[115] fashioned from oil drums and sheet
steel. While the Rutubas are effective producers of biochar from agricultural waste such
as maize stalks and sugar cane leaves, Re:char was unsuccessful in stimulating sufficient
demand to sustain its operations, and went out of business in mid-2013. While a number
of operational issues may have contributed to this outcome, a central factor explaining
their exit may have been the focus on selling the technology itself — at a price of 4000
Kenyan Shillings (KSh) ($47.1) — which was felt to be too expensive by many in the
region. Furthermore, former Re:char staff speculate that many of the kilns were adopted
by farmers who had the intention of using them extensively, but who then did not do
so during the periods when excess biomass became available, during harvest seasons. At
Re:char’s exit, my project acquired their stock of Rutuba kilns. Rather than selling the
technology directly to farmers, I focused rather on selling the service of biochar production
and application to farmers, as described below.

Before Re:char’s entrance, some biochar dissemination work had been conducted by the
African Christians Organization Network (ACON) — a small NGO based in Bungoma.
ACON’s work started in 2008, after good results were observed on small plots. ACON typ-
ically targeted self-organized community groups, who established biochar demonstration
plots. After observing good results on these demonstration plots, training participants
often moved on to use biochar on their own land.'® Around the time of Re:char’s entrance
however, ACON’s work shifted towards clean cookstoves — leaving my project as the sole
purveyor of biochar in the region by mid-2013.

4.2.1 Experimental design

Because prior experience with either Re:char or ACON might influence biochar adoption,
I selected areas around Bungoma where neither organization had previously worked.
Specifically, I took a number of random draws from a circle centered on Bungoma, ex-
cluded those points that were within 4km of areas where either Re:char or ACON had
previously sold kilns or done demonstrations, and selected the first 4 of those remaining.
A 2km? box was drawn around these points, and households within the zone defined by
the box were identified using satellite images. Figure C.1 gives the locations of the four
zones, and the households within them.

A timeline of the project’s activities is given in figure 4.1. Following approximate identi-
fication of households via satellite, enumerators visited these points, identified which of
those represented households, and conducted the baseline census. Because I'm interested
in agricultural decisionmaking, I define the “household” unit as groups of people who

10Most ACON-trained farmers used biochar from one of three sources: (1) collection of charcoal fines
(small pieces and dust) from charcoal sellers in the area, (2) partially-combusted residues of home cooking
fires, and (3) home production of cooking charcoal (commonly produced for sale), and utilization of the
resultant dust and fine particles as biochar. None of these sources is readily scalable, and quantities used
by these early adopters were quite small — a factor motivating Re:char’s entrance.
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farm separately. Families in this region are commonly polygamous, though some polyga-
mous families farm separately, while others farm collectively. Thus a household could be
a monogamous family, a polygamous family farming together, or one of several wives of
a single husband who farm separately, together with the husband or separate from the
husband, if he farms separately from his wives.

Beginning in August 2013, 75 farmers were selected at random to receive biochar demon-
stration plots.!’ Project staff asked participating farmers to identify a prominent 1/8th-
acre portion of their farm — in the sense that it was relatively more visible to passers-by
than other portions — to comprise the plot. Plots were divided into four portions — half
was to get biochar,'? while the other half didn’t (which half got biochar was decided
with a coin flip). Each of these two halves was further divided in half; we encouraged
farmers to plant a staple food crop in one, and any alternative crop of their choice in
the other. On the biochar half, project staff applied 25kg of biochar, which is equivalent
to an application rate of 0.5 tons per hectare. Plots were demarcated using twine and
marked with signs indicating which had biochar, and which didn’t (figure C.2). Farmers
were asked to treat both halves identically with respect to inputs and labor. The spatial
distribution of the demonstration plots is given in figure C.3. At harvest in December,
project staff measured yields on all demonstration plots using a scale.

We conducted a midline survey in October and November 2013, which focused heavily on
social network data. For each respondent, I selected 75 other fellow respondent households
to ask about, with the probability that farmer ¢ was asked about farmer j being inversely
proportional to the physical distance between them. For each potential link, farmer ¢
was asked if they knew farmer j, using nicknames, spouse names, and place names to
help distinguish people with similar names. Where a farmer 7 indicated that s/he knew
7, surveyors asked about a number of different sorts of linkages, for example how recently
they had seen one another, whether they talked about farming, etc. These are detailed
in section 4.3.

Beginning in late January 2014, enumerators randomly allocated sales offers to all house-
holds. This was done by visiting all households in the the study areas, and offering a
selection of sealed, unmarked envelopes, each containing an informational flyer and a
sales offer with a randomized price. Under the “service model,” farmers were offered the
service of having our team visit their farm with Rutuba kilns, and produce char from their
crop residues'®. The service model was offered at randomly-varying prices, for fixed-ratio
denominations of 50kg per 1/4 acre (i.e.: the application rate was controlled to remain
roughly uniform across all who got biochar). In addition to the random prices offered to
all farmers, some farmers were offered a “risk-free trial” (RFT), whereby they could get

' Not all of the original 75 selected to receive the plots; out of the original 75, 7 people refused, leading
us to select replacements for them. Implications of this are explored in section 4.3, below.

12While biochar production can be somewhat labor-intensive and mediated by skill (depending on the
technology used), biochar application involves very little skill or learning — it is applied together with
fertilizers at planting, either in furrows or in small holes with seeds.

13Where sufficient crop residues weren’t available, staff delivered biochar produced elsewhere.
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a 1/4-acre biochar demonstration plot, but for which they would not be obligated to pay
until after the subsequent harvest. If at that point they did not feel that the result was
sufficient to justify the expense, they were not obligated to pay. If however they wanted
to buy biochar from us again, they were expected to pay the price that was contained
in the envelope. Payment was expected shortly after harvest — in order to minimize
liquidity issues — but was accepted at any time. This distribution of prices and RFT
offers is given in figure C.9. The maximum price — KSh1,250 (USD14.7) per 1/4 acre,
or KSh625/sack (USD7.5) — was constructed with an approximate profit margin of 55%
over the approximate production cost of KSh400/sack (USD4.7) to simulate the margin
for a biochar vendor. During this randomization surveyors also asked about the number
of biochar demonstration plots observed, and the respondent’s subjective impression of
the relative yield on the biochar plot as compared to the control plot.

The final survey round began in August 2014, in which we conducted a second sales offer.
As I'll describe in section 4.4, sales in early 2014 were low. I therefore changed the sales
model in the second round. First, farmers were offered biochar in 25kg sacks (sufficient for
1/8 acre), which were delivered and applied for a random price, ranging from KSh50-400
(USD 0.6-4.7), in increments of KSh50.'* Unlike in the previous season, distribution of
different subsidy levels was flat — more farmers were offered heavy subsidies. In addition,
all farmers who had gotten a RFT in the previous season were offered a randomized
discount on the cost of their RFT repayment, ranging from 50-90%.

Project staff weighted the harvests for all farmers who had gotten biochar for the 2014 long
rains (in early 2014), from both the biochar portions, and the portions without biochar.
In addition we collected plot-level data on fertilizer use, land size, and “selection” — asking
farmers if the place where they applied the biochar was relatively less fertile, more fertile,
or about the same as the portions of their land that did not receive biochar.

4.2.2 Semiparametric statistical methods

My analysis involves relating continuous treatment variables to non-Gaussian outcome
variables. To avoid biases stemming both from functional form and distributional form
mis-specification, I extensively employ generalized additive models. Generalized addi-
tive models (GAMs) [66] are semiparametric generalizations of generalized linear models
(GLM’s). The general form is g(u) = W'0 + F(Z) + € where p is the mean of v,
which follows some distribution in the exponential family, W are variables associated
with parametric slope coefficients and Z are variables represented non-parametrically.
The function F(.) is commonly a sum of univariate smooth terms, but can also include
smooth functions of more than one variable[162]. These smooth functions are typically
represented by penalized splines; specifying F(.) terms using some spline basis — typically

14Rather than simply selling sacks of biochar, staff delivered them and applied them to soil as directed
by the purchasing farmers. This was done to avoid the potential that a farmer who had randomly selected
a low price could buy and resell to his/her neighbors at a higher price.

58



choosing a higher basis dimension than is needed (I use 10 per variable) — and choosing
B to minimize —(B) + Z i3’ S;3, where [(3) is the log likelihood of the model, 3 is

here defined to include blotlh 0 and the penalized coefficients associated with each spline
term. The smoothing penalties \; control over-fitting — common to un-penalized spline
models — and the matrices S; are constructed so that smoothing only applies to non-
parametrically represented terms. The \; are chosen to minimize bias while avoiding
overfitting. I use the the restricted maximum likelihood smoothing parameter selection
criterion[53] throughout, which is similar to the treatment of smoothing parameters as
shrinkage factors in random effects models. Other approaches exist, including general-
ized cross-validation — these methods choose A in order to minimize prediction error, but
are sometimes prone to undersmoothing. When A — oo, the result is equivalent to a
generalized linear model (or OLS in the Gaussian case); GAMs include these as a special
case. Where A is constrained to be 0, the result is an un-penalized spline model, which
will typically be overfit, particularly where basis dimension is sufficiently high as to avoid
substantial bias. Where A is estimated from the data however, the result is a flexible
model in which both the functional form and the degree of smoothing are data-driven.
When continuous variables have nonlinear effects, GAMs can be clear improvement over
parametric techniques; reducing bias compared to linear specification, and often using
fewer effective degrees of freedom than polynomial expansions. Where effects truly are

linear, smoothing parameter selection algorithms will typically recover this. Textbooks
on GAM’s include [52, 163].

Where variables are endogenous — the case for previous season biochar adoption in the
second season — I follow Marra & Radice’s extension of instrumental variables techniques
into the GAM framework, using two-stage generalized additive models (2SGAM)[164].
This framework itself is an extension of the “control functions” framework developed
by Heckman[165], and is similar to the nonparametric instrumental variables methods
developed by Whitney and Powell [166]. Briefly, the approach adjusts for endogeneity in
variables X" (defining X = [W, Z]) by controlling for smooth functions of the residuals
of first stage regressions g(z,) = f(X, I)+v, where p indexes endogenous variables, and
I are the instruments. In the second-stage regressions, I fit g(y) = f(X*) + f(X") +

Z f» (¢p) + €, where X includes exogenous and endogenous variables, and where ¢, is a

P
vector of residuals from the pth first-stage regression.

To account for uncertainty in the first stage regressions, the asymptotic variance-covariance
matrix is calculated with a posterior simulation algorithm. Again following Marra &
Radice, I first draw 25 simulates of the coefficients from the posterior of each first stage
regression, treating the coefficients as 8 ~ N (B, &B>’ yielding 25 draws from the distri-
bution of ¢, for each p. Secondly, the second-stage model is then re-fit with each of these
25 simulates, yielding 25 draws of the second stage coefficients 1°. Third, 100 simulates

15This procedure is implicitly Bayesian, though a frequentist interpretation might be that we are
drawing different estimates of the 3’s that we’d get had we sampled differently from the wider population.
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are taken from the distribution of the coefficients from each of these second-stage models,
yielding 2500 draws in total. The asymptotic variance-covariance matrix is simply the
covariance of these coefficient draws.

4.3 Data and descriptives

Summary statistics on the farmers in the sample are given in table 4.1. The sample is
composed primarily of small farmers with low yields and little other income. Women
are the main agricultural decisionmakers in about 2/3rds of households. Few say that
they had ever heard of ACON, Re:char, or the Rutuba kiln, and few (5%) report ever
using charcoal as fertilizer. Fertilizer use is generally low — most farmers spend just over
$78/ha/season, while the government recommendations for maize in the region call for
125kg of di-ammonium phosphate (DAP) and 125kg of calcium ammonium nitrate (CAN)
per hectare, which together tends to cost around $200.

4.3.1 Compliance and attrition

Of the 1115 people surveyed at baseline, 82 were selected to receive demonstration plots,
9 of whom refused!'®. Five of these refused because they did not plan to farm in the 2013
short rains. The maize on one demonstration plot was eaten by a cow, leaving 72 total
demonstration plots. Summary statistics disaggregated by demonstration plot status are
given in table C.1. Those who got the demonstration plot are somewhat different from
those who did not, though these differences aren’t generally statistically significant. There
are however marginally significant differences in terms of bicycle ownership and having
heard of the Rutuba — a factor that I control for throughout. The 9 farmers who refused
were more likely to own a bicycle than other farmers in the sample (all had bicycles), and
had more land under beans — a result driven by a single outlier.

Over the course of the project after baseline, 289 farmers attrited at any point during
the project — they either refused to be surveyed or could not be found by the survey
team during one of the subsequent rounds. Many of these were missed in one round but
included in later rounds. For example, 873 farmers received sales offers in early 2014,
and 900 received sales offers in late 2014. Statistics from the baseline census by attrition
(defined as having ever missed either a sales offer or a survey round) are given in table
C.2. Those who attrited tend to have similar characteristics than those who did not,
except that those who attrited are less likely to have a male as the main agricultural
decisionmaker, somewhat less likely to be listed as a social contact, and have somewhat
higher incomes — generally consistent with households who have members who travel

16These refusals include 7 refusals from the original pool of 75 demonstration plot draws, and 2 refusals
from the 7 replacements selected subsequently.

60



outside of the region semi-permanently for work. I control for each of these factors
throughout.

4.3.2 Social networks

Social network statistics are given in table 4.2. The average farmer knew about one third
of the 75 that were asked about, but talked about farming with far fewer. The average
farmer had seen the land of about 1/5th of those asked about.

I don’t assume that a farmer who says that they know another farmer is known by that
farmer — I assume a directed network. While the literature is dominated by analysis of
undirected networks, assuming an undirected network is problematic in this context — of
the 7953 instances where both farmer ¢ was asked about farmer j and vice versa, the link
was reciprocal only 67.6% of the time.

Inferences based on networks constructed from sampled nodes are generally biased[167]. T
avoid this bias by imputing missing edges using their conditional expectations, predicted
from the following mixed logit:

/
Same church;;

Same school;;
pr(link;;) = A |a+ Gender; ~ + (B8 + B; + B;) log(Distance;;) + €| (4.1)
Gender;
1 (Gender;——;)

Model 4.1 represents the probability of linkage as a function of distance, at which certain
individuals know and are known at different distances, and controls for gender of the
household’s main agricultural decisionmaker, observed membership in common churches,
and observed attendance of their children in common schools. I fit model 4.1 for several
dimensions of social network linkage, and the results are given in table C.3. To varying
degrees, distance!” is a good predictor of social network linkage across all dimensions.
Men report linkage more frequently, and are reported as known, more frequently than
women. Farmers tend to know farmers of the same gender more often, people in the
same church are more likely to know each other, as are people with children in the same
school. These models are reasonably accurate — distributions of absolute prediction error
(observed minus estimated probability) are given in figure C.4, and are all less than 25%
on average. I use these models to impute links with their conditional expectation where
missing, which are aggregated by respondent to calculate estimated links, given in table
4.2.

"Distance is represented in units of latitude/longitude, which are approximately equivalent near the
equator, where Bungoma is located. 0.01 degrees of latitude is approximately 1km.
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4.4 Results

Results are presented chronologically. I begin with demonstration plot yields, followed by
biochar uptake in early 2014, followed by yield results from the 2014 long rains, followed
by biochar uptake ahead of the 2014 short rains.

4.4.1 Late 2013: Crop yields on demonstration plots

Yield results on demonstration plots are shown in figure 4.2. On average, biochar
plots performed substantially better than non-biochar plots. Assuming a maize price
of $392/ton (the approximate average retail’® price during the project), biochar is prof-
itable in expectation at a cost up to $125/ha (KSh1083/quarter acre) for the average
yields seen in these demonstration plots, and this expectation is positive at 95% confi-
dence at a cost up to $98.7/ha (KSh850/quarter acre)'?. This is less than the cost of
the most-expensive randomly-allocated price of KSh1,250 ($14.7) per 1/4 acre, which is
equivalent to $145.3/ha.

Substantial variability in observed response to biochar suggests that biochar adoption
might not be favored by risk-averse farmers. I explore this by determining what sorts
of risk attitude are theoretically consistent with biochar adoption being favored or dis-
favored at a price of KSh850 per quarter acre, which is the highest price for which the
expectation of biochar’s profitability is significant at 95% confidence. I model the util-
ity of adoption using a mean-standard deviation formulation following Saha [168], where
U(p,0) = p? — 07, and where the two exponential parameters control the degree of
preference for distributions of different shapes. From the demonstration plots, average
profitability is $27 /ha, with a standard deviation of $140. Utility across a range of 6 and
~ is given in figure C.5. At KSh850 per quarter acre, moderate levels of risk aversion may
make biochar adoption an unfavorable prospect for those who might be characterized by
declining average risk aversion?’ with respect to this particular decision.

Risk may be an important reason why a farmer might disfavor the prospect of biochar
adoption, as it is quite profitable in expectation. It is unlikely that there are substantial
hidden costs. Many novel agricultural technologies are labor-intensive, which involves
cost beyond the cost of purchasing the technology[169]. Biochar does not require any
additional labor for application beyond that which is used to apply fertilizer. And while

18The majority of the farmers in the sample consume the majority of the maize that they produce;
very few sell in denominations larger than the 90kg sack. I therefore use retail prices for 90kg sacks,
rather than bulk grain prices.

9This is calculated simply by finding the highest biochar price for which the t-statistic of the difference
in in expected revenue between biochar plots and non-biochar plots — using the $392/ton maize price
assumption — is greater than 1.96.

20Saha shows that 6 < 1 corresponds to declining average risk aversion, and that 6 > 1 corresponds to
increasing average risk aversion.
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any yield-increasing technology will increase weeding, harvesting, and processing labor
requirements, it is also true that biochar’s benefits in terms of durable yield increases
and improved responsiveness to fertilizer are imperfectly observable. As such, it is not
possible to exhaustively characterize all unobserved farmer-specific characteristics that
might make biochar unprofitable, though it does not seem that biochar suffers from
substantial hidden costs.

I explore mediators of observed demonstration plot results (for maize only) by fitting
models of the form

DAP fertilizer
Biochar yield CAN fertilizer
Control yield B Urea fertilizer
Control yield

B+e (4.2)

where g(.) is identity or log, with Gaussian or gamma disturbances, respectively. Results
are given in table 4.3. Unconditionally, the average biochar plot yielded 37% more than
its control. On these demonstration plots, biochar increases response to fertilizer — each
additional kg/plot of calcium-ammonium-nitrate (CAN) fertilizer predicts a 25 percentage
point increase in the yield ratio, while each additional kg/plot of di-ammonium phosphate
(DAP) predicts a 13 percentage point increase (interactive effects of the two are negative,
likely reflecting the fact that both supply nitrogen). Controlling for fertilizer, biochar
does better on lower-yielding farms — each ton of maize per hectare reduces the expected
yield ratio by 32 percentage points. I also fit a log-linked gamma GAM representing
yield ratio as a function of control yield and fertilizer expenditure, which I calculate from
reported fertilizer application rates using market prices prevailing at the time. Marginal
effects from that model are given in figure 4.3 — each 1000KSh increment in fertilizer
expenditure predicts a 10 percentage point increase in yield ratio at low expenditure,
slowing at higher expenditures.

When asked, most farmers who hosted demonstration plots reported that the yields on
the biochar portion were “very good” or “good” compared to the non-biochar portion of
their plot (figure C.6). When asked about the results of the demonstration plots on their
neighbors farms, most farmers reported that they didn’t know/see any demonstration
plots. Those that did tended to say that the results were good or very good. However,
there is little correlation between reported qualitative impressions and measured relative
increases, either for demonstration plot holders assessing the performance of their own
plots, or for others assessing the demonstration plots of people that they know (figure C.7),
a finding that is largely invariant to which dimension of the social network is examined
(table C.4).
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4.4.2 Early 2014: Biochar uptake

Of the 868 farmers who took an envelope containing a price and a sales offer in early
2014,%! 161 adopted biochar (18.5%). The adoption rate was 31.6% for those with a
demonstration plot, and 63.9% for those with a RFT offer. Of the 72 with demonstration
plots, 19 (26%) had RFTs. Only 16 farmers adopted out of the 638 that did not get a
RFT offer (2.6%), of whom 4 had demonstration plots. Of those that did pay upfront,
the average price was KSh293.75, which is a discount of 76.5% off of the maximum price
of KSh1250 per 1/4 acre.

There is little bivariate correlation between biochar uptake and most social network mea-
sures. Figure C.8 gives bivariate logistic fits of uptake as a function of the proportion
of each farmer’s network with a demonstration plot, and of the number of links with
a demonstration plot, controlling for the number of network links (following Kremer &
Miguel [170]). Other dimensions of social network linkage are similarly non-predictive of
uptake (table C.5). Two exceptions are savings groups and church groups; simple logits
predict that having a larger proportion of one’s church or savings group with demon-
stration plots is predictive of one’s own uptake. I'm not able to exclude however that
these results arise due to the multiple comparisons problem, as they are not robust to a
Holm-Bonferroni correction.

I fit several specifications of the following model, representing adoption as a function of
the treatments;

Demo plot
RFT
Price
Share of network w/ Biochar

pr(adopt) = A |a+ f +X'B+e (4.3)

where f() specifies its constituent terms with various interaction structures across speci-
fications, and X is a vector of controls including having heard of Re:char and ACON;, the
gender of the household’s main farmer, household income, whether the household reports
having used charcoal as fertilizer before, zone dummies, and test a number of interactions
between the continuous treatments. Full model output is given in table C.6 and figure
C.10. As with the bivariate analyses, uptake is predicted by lower prices, being offered
a RFT, and having a demonstration plot. The only significant interaction is between
price and being offered biochar on a RFT basis. Estimates of the effects of continu-
ous treatments (price, its interaction with the RFT offer, and the share of the network
with a demonstration plot in the previous season) are associated with high smoothing
parameters, and as such their effects are near-linear. Having had a demonstration plot
is associated with increased propensity to adopt by a factor of 4, or a 0.10% increase in

21 Actually, 873 farmers took envelopes with sales offers, but I drop 5 observations with incomplete or
missing data in any of the covariates used to fit the model, below.
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average probability??. Being offered a RFT rendered farmers approximately 439 times
more likely to adopt, or a 57 percentage point increase in probability of adoption. For
those who were not offered RFTs, increasing price by a $1 (~KSh87) increment approx-
imately halves (0.47) propensity to adopt, or decreases average adoption probability by
12.5%. Those who were offered RFTs were still somewhat price-sensitive, but less so;
each $1 increment added to the price decreased adoption propensity by approximately
one third (0.68), or 5%. The effect of the share of the social network with biochar was
not significant, either alone or interacted with any of the other exogenous treatments.

These results are not driven by anchoring around neighbors’ prices, or the share of neigh-
bors who got a RF'T — figure C.12 gives bivariate nonparametric logit fits of the probability
of adoption as a function of the average price in a network, and the share of the network
that got a RFT. Neither measure is a significant predictor of uptake.

For comparison, I provide an equivalent OLS regression, a parametric logistic regression,
and a Gaussian additive model in figure C.11. While results are qualitatively similar, there
are some differences. In this context, F- and y?-tests indicate significant and insignificant
(p < 0.001,p = 0.47) difference between the parametric and nonparametric Gaussian and
binomial (logistic) models, respectively. As is common with Gaussian approximations
of binomial distributions, these models give predictions outside of the [0,1] interval. In
this context, estimates are reasonably robust to linear functional form assumptions and
Gaussian distributional form assumptions. This will not be the case with analysis of late
2014 adoption, given below.

4.4.3 Mid 2014: Biochar impact on maize yields

I have two sources of data on the impact of the biochar that was adopted in early 2014.
First, staff directly measured yields (i.e.: with a scale) on both biochar-containing and
no-biochar portions of fields of adopting farmers, along with the precise extent of their
plots under maize, using GPS devices. They then asked them how much fertilizer they
applied to each portion of their land, and whether the place to which they added biochar
was “more fertile,” “less fertile,” or “about the same” as the parts without. Second, I
have self-reported data for all farmers. The two datasets have different strengths and
weaknesses. The former avoids the inaccuracy inherent in self-reported data, whether

22 Average marginal effects, along with marginal effects at the mean of covariates, can be misleading
when there is more than one treatment — the case here. Because logistic regressions are not additively
separable, the impact of the considered treatment — the one for which marginal effects are desired — is
dependent on the values of the other treatments. Where there is only one treatment, the sample is a
random draw from the population, and only one factor is exogenously manipulated, then the mean of the
non-manipulated factors should be comparable to the population mean. Where there is more than one
treatment, this is not the case. As such, average marginal effects in the sample cannot be interpreted as
expected marginal effects in the population, unless non-considered treatments are held to zero. This is
the approach presented throughout this paper. Estimated odds ratios, however, are preferable inasmuch
as they are valid across individuals with heterogeneous inherent propensities within a given population.
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from poor short-term recall, error, or untruthfulness, though it is likely that there are
variables which vary between plots for which I lack data. The latter may be affected
by error in recall or deliberate untruthfulness, though its structure lends itself to clean
identification of causal effects of biochar adoption via instrumental variables. I’ll use both
methods, beginning with the former.

4.4.3.1 Direct measurements

On average, biochar plots were 46% the size of non-biochar plots, got 25% less fertilizer,
and were usually less fertile (49%) or of similar fertility (50%) as non-biochar plots. The
approximate cash value of self-reported inputs on biochar vs non-biochar plots was $32.8
vs $78.6 per acre. Yields on biochar plots compared to non-biochar plots are given on the
left side of figure 4.4. On average, biochar plots yielded 0.5 (£0.25) tons/hectare more
than non-biochar plots, with the difference being stronger where the non-biochar plots
yielded less. This difference is higher at low yields and becomes insignificant where yields
pass 2 tons/ha. Assuming a maize price of $392/ton (the average during the project),
expected profitability of a 0.5 t/ha increase in yield is about $153/ha, above the highest
of the randomly-allocated prices that was offered.

Given that farmers with biochar didn’t manage biochar plots identically to non-biochar
plots, this is likely a biased estimate of biochar’s effect. I adjust for differences in how
the plots were treated by fitting models relating yields to observed covariates, and then
using these models to estimate what yields would have been had farmers used the same
amount of fertilizer on both plots, the devoted the same amount of land to biochar as to
control, and used the same quality of land. I begin by modeling

lOg(yZ@ld)zp = 4y + Z fj (X'L'pj> + €ip (44)

J

where p indexes plots (biochar or non-biochar), where X is a set of j explanatory variables
including biochar use (as a dummy) interacted with DAP, CAN, and urea fertilizers, plot
size, a factor variable for reported relative plot fertility. I then calculate adjusted yields
as the fitted values of this model for mean levels of each continuous covariate, plus the
estimated residual, with the biochar dummy equaling 1/0 respectively. Adjusted data is
plotted on the right side of figure 4.4. This adjusted data is non-constant with respect to
inputs and land size — the estimated relationship between biochar and non-biochar yields
would be different at different covariate values. However, at the means of the continuous
covariates the adjusted difference between biochar and non-biochar plots is larger than
it is in the raw data. The fact that adjusted data tends to imply larger differences than
raw data suggests that the differences measured from the raw data are a lower bound to
biochar’s true effect.

As with the demonstration plots, most farmers report that they observed small or large
positive differences between their plots with biochar and their plots without (figure C.13,
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left). However, these reported impressions do not correlate with either raw differences
between plots (not shown) or adjusted differences (figure C.13, right).

4.4.3.2 Self-reported data

Estimating the causal effect of biochar adoption using self-reported data is more straight-

forward. I fit
yield = a+ BC + X'0 + ¢

) 4.
yield;y = a; + P, + BCy + X[,0 + €, (4.5)

using cross-sectional and panel data (recall-based beginning in 2010), respectively. Be-
cause biochar adoption is endogenous, I instrument with the randomized inducements
analyzed above: having a demonstration plot, the share of network contacts with a
demonstration plot, price, RFT, and an interaction between price and RFT.

The estimates of biochar’s effect are generally negative and not significant (table 4.4),
in contrast to estimates from directly measured data. To explore this contrast, I plot
measured yields against reported yields, as well as measured land size against reported
land size, in the upper panel of figure C.14. There is little correlation between what
farmers reported and what was measured. While some farmers plant a portion of their
maize on plots removed from the home area (where the biochar plot tended to be), which
was not measured, this does not drive results — many farmers report having substantially
less land than that which was measured.

To further explore potential problems with self-reported data, I take advantage of an
administrative error which saw several respondents asked the same questions multiple
times. While several survey modules were duplicated, I focus on maize yields for the short
rains of 2013 and the long rains of 2014. For each farmer who was given this module more
than once, reported yield ranges (the difference between the maximum they reported and
the minimum they reported) are given in the lower panel of figure C.14. While most
differences are small — likely representing approximation error — average differences are
82% and 102% of average maize yields for in the 2013 short rains and 2014 long rains,
respectively. The magnitudes of these different answers to identical questions are not
correlated with treatment status (having a demonstration plot, having biochar in 2014,
biochar price, etc), nor are they correlated with membership in NGOs such as One-Acre
Fund. This suggests that this misreporting is either simple approximation error (albeit
very large error) or strategic behavior that doesn’t vary systematically with any facets
of this project — perhaps different farmers had different ideas of what the enumerators
“wanted to hear.” Irrespective of potential explanations however, self-reported yield data
is not trustworthy. And while much work in development economics relies on self-reported
data, this result is not the first time that the accuracy of self-reported data has been called
into question [171, 172].
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4.4.4 Late 2014: Second round biochar adoption

The original experimental design emphasized adoption and impact in the 2014 long rains.
However, uptake in that season was very low. It is possible that too-high prices masked
effects of learning about biochar’s benefits, either from own-experience in having had it,
and from the experience of seeing it’s impact on the plots of neighbors. These considera-
tions guided the re-randomization of prices in August 2014, for the short rains agricultural
season, as well as the offer of discounts for RFT repayment.

4.4.4.1 Risk-free trial repayment

Of the 161 respondents with RFTs, 19 repaid ahead of the 2014 short rains planting sea-
son. Propensity to repay is negatively correlated with repayment price and with previous-
month income, but is uncorrelated with measured results on demonstration plots, and
reported impressions of outcomes on demonstration plots (table C.7).

4.4.4.2 Short rains biochar uptake

Between August and October 2014, 96 farmers bought biochar. Unlike the previous
season, nobody was offered a RFT. The average price at which biochar was purchased
was KSh143 per 25kg sack, similar to the average price of KSh294 in the previous season,
for 50kg. The two seasons are not directly comparable however; the short rains (in the
second half of the year) are generally less important agriculturally. This suggests that
demand should be lower than in the long rains, all else equal.

Various bivariate descriptive plots are presented in figure 4.5. A smaller proportion of
adopters had demonstration plots or biochar in the previous season (figure 4.5a & c).
As previous-season biochar is now endogenous, I instrument for it using fitted values of
model 4.3; biochar adoption in early 2014 is associated with a lowered propensity to adopt
in late 2014(figure 4.5d). The share with biochar in the previous season does not have a
significant bivariate association with adoption propensity (figure 4.5¢). It is endogenous,
though instruments for it exist in the network analogs of predictors of individual adoption
in the previous season — the share of the network with RFTs (figure 4.5f), and the share
of the network receiving low-priced (KSh100-250 per 1/4-acre plot) offers (figure 4.5g)%,
and their interaction (figure 4.5h). However, the relationship between adoption and the
instrumented share of the network (figure 4.51) with biochar shows little difference from

231 also explored the average price offered in a social network as a predictor of the share of the network
receiving biochar. There is a slight negative association between the share of the network adopting
biochar and the average price in the network, though the effect is weaker than that of the share of
the network receiving an cheap offer, as presented in figure 4.5g. Furthermore, given that adoption
propensity was quite nonlinear in price (figure C.8), the share receiving offers for the lowest prices should
theoretically be preferred.
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the endogenous version — no significant association, but suggestive evidence of a concave
relationship. Unsurprisingly, price (figure 4.5j) is a significant predictor of uptake, but
the discounted repayment cost for those with RFTs is not associated with adoption.

I combine the above into a single model:

/ Share with demo ,
Demo Share got BC 2014
pr(adopt) = A | o+ [ BC, } p+f rice +X'B+ Zgi(v» te
RFT repay price '

(4.6)
where terms listed in red are endogenous, and functions g() are functions of the residuals
of the first-stage regressions of the endogenous variables on the instruments, added to
adjust for endogeneity. Results are given in table 4.5. First stage models are highly
significant. The price/RFT interaction predicts prior-year adoption, and the interaction
between the network share having a cheap offer (KSh100 or KSh250) and the network
share having a RF'T is a highly-accurate predictor of the share of the network with biochar.

In the second stage, we see — unsurprisingly — a negative relationship between biochar price
and propensity to adopt, with adoption propensity increasing — and slightly accelerating
— as prices decline. A $1 (~87KSh) reduction of the full price of $4.6 (400KSh) increases
the odds of adoption by a factor of 2.1, while a $1 increase from the minimum price that
was randomly allocated ($0.58) decreases the odds of adoption by a factor of 4.4. In
terms of average marginal effects (holding all other treatments to zero), these represent
a 1.5% increase and 6.2% decrease in probability of adoption, respectively.

The estimated effect of having had biochar previously — either in a demonstration plot
or in the previous season — is negative, though not statistically significant. (The point
estimate suggests a decrease in odds of adoption by a factor of 2.4, with an average partial
effect of less than 1% when other treatments are held to zero). The estimated effect of
the share (or proportion) of the network having biochar is also not significant, though
marginal at p ~ 0.116. Increasing the share of the network from zero to the estimated
optimum — 12% - increases adoption propensity by a factor of 13.7, though only 2%
in absolute probabilities (again, assuming no subsidy or previous exposure to biochar).
Intervals on the effect of the network share indicate high confidence that the effect of
the social network does not increase beyond this optimum, and that it may decrease.
This would be similar to findings by others in literature on social influence and adoption
[153, 155, 157] who report concave relationships between uptake and the share of a social
network with a technology. However, this apparent decline occurs over a region of the
function with relatively little support.

For comparison, I fit model 4.6 as a two-stage least squares (2SLS) linear probability
model (LPM), including quadratic terms where suggested by the nonparametric analysis.
Estimates are given in table C.8. The LPM gives larger and more significant estimates
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than does the GAM - increasing the network share from 5% to 15% suggests a 10%
increase in adoption propensity, and the two quadratic terms are jointly “significant” at
p =~ 0.018. However, the LPM my offer spurious optimism under the present circum-
stances. First, it will be more sensitive to outliers, and there is relatively little support
at the parts of the distribution where strong positive and negative effects on adoption
propensity are modeled by the quadratic. Second, the sample was heavily subsidized on
average — these estimates can be viewed as generalizing to a meta-population that was
similarly subsidized, rather than the population from which the study’s sample was taken.
In other words, the additive separability of the LPM renders it misleading.

4.4.5 Prospective impact of subsidies on welfare and carbon
sequestration

The foregoing results do not directly compare the efficacy of funds spend subsidizing
biochar versus funds spent stimulating social learning, either in terms of uptake, welfare,
or social cost/benefit. Furthermore, they don’t compare the efficacy of money spent stim-
ulating biochar uptake (potentially via a combination of subsidies and demonstrations)
and money spent subsidizing inorganic fertilizer. I do so in this section, by taking condi-
tional expectations of model 4.6 (negative binomial) across a grid of values constructed to
represent hypothetical biochar subsidies and hypothetical expenditure on demonstration
plots, using costs specific to this project’s context. I do so for a median farmer — using
response ratios at median baseline yields, median fertilizer application rates, and median
covariate values of model 4.6, etc. What follows is presented in the spirit of a “back of the
envelope” calculation — conclusions will depend on simple modeling assumptions, though
the implications of altering these modeling assumptions should be transparent.

First, I calculate the expected number of links that a randomly-chosen farmer would
have if I had given out a different number of demonstrations. I do this by taking the
estimated probabilistic adjacency matrix A representing the social network, and for a
gradient of demonstration plot numbers between N=1 and N=200, take 500 samples
(without replacement) of farmers g, where each row is a vector of N 1’s and the rest
zeros, for each farmer in my sample. This gives 500 different possible combinations of
how the demonstration plots could have been allocated for each N. I then calculate the
expected number of links that a given farmer would have to other farmers with a biochar
trial as the mean of the row-wise sum of g’ A.

I use this to calculate the conditional expectation of the number of bags of biochar pur-
chased across a grid of subsidies ranging from free provision to full cost (KSh400/USD4.6
per 25kg bag), and number of demonstration plots ranging from 0 to 200. This is given in
figure 4.6a. The function is maximized with approximately 12% of the population getting
demonstration plots**, where biochar is heavily subsidized or nearly free.

24The median farmer in my sample farms one half acre of maize. As such, I set the maximum biochar
purchase at 4 bags, as each is sufficient for 1/8 acre.
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Figure 4.6b gives program cost in USD /farmer. For provision of demonstration plots, I
assume that each costs double the cost of the biochar itself — a rough estimate based on
this project’s implementation costs — and divide the sum of these costs by the number
of farmers in the sample. Demonstration plot costs are absolute, while subsidy costs are
conditional on uptake by farmers at that level of subsidy and number of demonstration
plots. The blue dashed line in figure 4.6b gives the “optimal ridge” — the combinations
of subsidies and demonstration plots that maximize expected uptake for a given program
expenditure. The best estimate of optimal program expenditure given my assumptions
would involve heavy subsidies at low per-farmer program expenditure, then lowering
subsidies and increasing expenditure on demonstration plots as per-farmer program ex-
penditure increases. Figure C.16 gives confidence regions for the “optimal ridge” estimate
based on uncertainty in model 4.6. I cannot exclude (at 95% confidence) that the optimal
program for the median farmer would spend zero on demonstration plots, though it is in-
creasingly likely that demonstration plots make sense as program expenditures increase.
By contrast, 95% of all scenarios in which per-farmer expenditure is above $6 include
subsidies above 50%.

Figure 4.6¢ gives the implications of the subsidy scheme for the median farmer’s returns
to maize farming net of inputs. This is calculated as

((1 —p)() + p(y * RR — "9 » ba98)> 7

Y

* 100%

where p is the proportion of the median farm’s maize allocation (0.2 ha) covered by the
number of purchased bags of biochar, 7 is median market-valued maize production (222kg
at $0.39/kg) less median market-valued fertilizer usage ($15.5). Response ratio (RR) —
the expected ratio of biochar yield to non-biochar yield for a given level of fertilizer — is
estimated from the model given in figure 4.3 for median non-biochar yields and median
fertilizer expenditure. Profit is maximized where adoption is maximized — at free provision
with about 12% of the network having a demonstration.?

Figure 4.6d gives social return on investment, defined as the difference between farmer
profits under the inducement scheme and the baseline, less the cost of those inducements
(which are dependent on uptake). I find that social return on investment is maximized
at subsidies that induce maximal uptake, topping out at 25%. Incorporating carbon
finance changes the locations of the optima little, though it increases social ROI by
as much as 22 percentage points at optimal uptake. To calculate this, I assume that
biochar is half carbon by mass, that 80% of this carbon is “stable,” and that carbon is
valued at $100/ton. These are generous assumptions — particularly on carbon price and
on biochar’s stability. However, even holding this stability assumption, biochar would

25Note that estimates at free provision involve extrapolation between the maximum subsidy that was
experimentally provided — 87.5% — and 100%. While nonlinearities in response in this interval can’t be
excluded, the optimum with the rightward part of the figure removed still involves maximal subsidies
and about 12% of the network having demonstrations.
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require a carbon price of at least $120/ton for its inducements to be justified solely on
the value of sequestered carbon (figure 4.6f). In general, it appears that the impact
of a carbon price on the attractiveness of expenditure on biochar subsidies is marginal
given extant carbon markets?®, though biochar inducements could be justified purely on
a welfare basis.

These estimates apply to a median farmer in the present dataset. In general, these
estimates suggest that biochar will be increasingly favorable where food prices are higher,
soils are more degraded, fertilizer use is higher, and farmers are more land-constrained.

4.4.5.1 Subsidizing biochar versus fertilizer

Holding fertilizer expenditure constant, the cost of biochar inducements should yield
substantial social return. A natural question is whether better returns might be had else-
where, for example in subsidizing inorganic fertilizer. While I didn’t randomize fertilizer
subsidies, nor do I observe sufficient market variation in fertilizer prices to estimate a
demand curve, I can generate first-order estimates of biochar’s relative benefit under the
assumptions — perhaps unrealistic — that farmers would hold expenditure on inorganic
fertilizer constant in the presence of less-expensive fertilizer, or that farmers would hold
total input expenditure (biochar plus fertilizer) constant in the presence of subsidies for
both inputs. I represent expected yields as

yield = p <fy(Fert. Exp.) X frr(Fert. EXp.)) + (1 = p)(fy (Fert. Exp.))

where fRR is the ratio of biochar yield to non-biochar yield estimated from the model
given in figure 4.3, and evaluated at the median yield in the long rains 2013 (before the
commencement of project activities). Yields as a function of fertilizer are estimated from
the fixed-effects model yield; = a; + P, + f(Fert. Exp.) x SR + ¢;; where SR is a factor
variable equaling one during the short rainy season, and ¢ indexes agricultural seasons?’.

Predicted yield response to fertilizer in the long rainy season is given in figure C.15.

Figure 4.7 gives estimated social return on investment over a gradient of biochar induce-
ment expenditure and fertilizer subsidies, for the median farmer. The dashed blue line
gives the point of optimal social return-on-investment for a given combined biochar and
fertilizer program expenditure. Not accounting for the value of sequestered carbon, and
under the assumption that fertilizer expenditure remains constant as prices increase (left),
or that total expenditure on biochar plus fertilizer is held constant (right), fertilizer sub-
sidies provide higher social ROI than optimal biochar inducements. While biochar and

26Though this estimate of $120/ton is consistent with some valuations of the social cost of carbon[108],
and lower than others.

27This model is fit with self-reported data, for which I suspect substantial misreporting in later peri-
ods. However, given that this model is fit entirely with data collected before commencement of project
activities, I don’t expect intentional misreporting to be a problem.
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fertilizer are highly complimentary, the marginal effect of subsidizing fertilizer is substan-
tially stronger than the interactive effect of biochar and fertilizer together, until fertilizer
use increases substantially. Confidence regions for these estimates — based on posterior
simulation of models predicting adoption, yield, and biochar response ratio — are given
in figures C.17 and C.18. With increasing per-farmer expenditure, fertilizer subsidies
provide positive social return with very high confidence. Optimal expenditure on biochar
subsidies is less certain, and generally not different from zero at 95% confidence, though
the probability that they are are worthwhile increases with total program expenditure.

It should be emphasized that these are first-order estimates, and suffer from a few short-
comings. First, the assumption that farmers would hold expenditure constant as prices
decrease is dubious at best — it seems plausible that farmers could either increase or de-
crease their total expenditure on fertilizer and biochar given a drop in prices. If farmers
increase fertilizer expenditures as prices decline, fertilizer would be further favored over
biochar, unless biochar’s interactive effect with fertilizer is higher than assumed here.
Second, these estimates rely on an estimated relationship between maize yields and fertil-
izer that is based on questionable self-reported data, and which may suffer from omitted
variables bias. If the true relationship is more concave (linear) than assumed here, biochar
inducements would be favored sooner (later). Third, these estimates represent a snapshot
in time. It remains to be seen how farmer uptake of biochar — along with farmer response
to subsidies and in-network demonstrations — would change given more experience with
the project, or in years with different characteristics. Fourth, the effects of biochar on
yields — both directly and through its mediation of fertilizer’s efficacy —are likely to be
persistent in soil over time. As such, biochar’s benefit is likely to be substantially under-
estimated here. Fifth, these estimates can only be interpreted in a partial-equilibrium
sense. Any large-scale program subsidizing biochar and fertilizer is likely to increase pro-
duction, lower local prices (particularly given poor integration with world grain markets),
and thus lead to lower returns. Magnitudes of such potential effects are unclear in this
context, and will vary substantially between contexts as well. Finally, these estimates
are calculated for the median farmer in my Western Kenyan sample; results will vary
substantially across contexts. In especially degraded soils, biochar may be substantially
more useful than fertilizer, making the curves presented in figure 4.7 rise more slowly
and move right more quickly. Conversely, among higher-yielding farmers with fertilizer-
responsive soils, biochar may not be useful at all. Likewise, biochar may make more sense
in countries with lower fertilizer prices, and less sense in contexts where biochar is more
costly to produce.

4.5 Discussion

Altogether, I find that biochar has substantial agronomic utility, but that significant
investment might be required to lead to large scale adoption — at least initially. After
two seasons, demand is substantially lower in this context that what would be required
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to sustain a biochar-producing firm. Yet public investments in increasing this demand
seem likely to lead to very high social returns.

This is based largely on biochar’s impact on crop yields. Here, though, the evidence
is somewhat contradictory. Where directly measured, biochar led to substantial crop
yield increases. However, I find no effect (and negative point estimates) when analyzing
self-reported survey data on yields, or self-reported subjective impression of yield. It is
difficult to avoid the conclusion that there may have been substantial survey nullification.
In other words, farmers may have strategically told enumerators whatever they felt might
be advantageous, based on what they supposed that the priorities of the project might
be. Anecdotally, enumerators reported that many respondents conflated the project with
One Acre Fund (OAF) — a prominent NGO operating in the region that offers agricultural
inputs on credit. Many farmers in the region believe that OAF repossesses assets in the
event of non-payment, though this practice isn’t consistent with OAF’s policies. On the
other hand, OAF doesn’t generally collect on loans when correlated shocks — such as poor
rainfall — occur. This fear of debt, conflation of us with OAF, and perception that we
might not expect repayment if results were poor, could have contributed to the divergence
between what was measured and what was reported. While perhaps plausible, this is little
more than speculation.

Uptake results are equally contradictory, though in different ways. Of the interventions
implemented, the risk-free trial offers were the most effective in stimulating uptake. They
were generally not repaid however, even when farmers’ measured outcomes to adoption
were favorable. Limited focus group discussions with free-trial recipients suggest that
farmers wish to repay the RFT and buy more, but are not prioritizing this ahead of
other costs. It seems likely that some form of psychological factor drives this finding,
perhaps involving present bias; repayment of a trial of biochar given in a previous season
in order to purchase more biochar now may be experienced by a farmer simply as an
increase in the cost of biochar now. Given that farmers are highly price-sensitive, low
levels of repayment are perfectly natural when seen in this light. In other contexts, where
respondents faced the choice of paying for or returning an item — a cookstove, for example,
which can be physically repossessed [123] — farmers are paying to keep something that
they value, rather than paying to maintain the option to purchase more of something
that they value, which will generate returns at a later point in time.

I find no evidence that demonstration plots among social contacts led to more uptake in
the first season, though there is evidence that having a demonstration plot made uptake
more likely. This result reverses itself in the second season, where I find suggestive
evidence of an inverted u-shaped function relating uptake to the proportion of the social
network with biochar — similar to findings of others in the technology adoption literature.
It is unclear why the two seasons were different in this respect, though it is possible that
farmers are learning about one another’s decisions with regard to adoption, rather than
purely viewing their neighbor’s outcomes to adoption.
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Unsurprisingly, price was a significant predictor of uptake in both seasons, but farmers
became somewhat less price sensitive in the second season than they were in the first.
More farmers bought biochar in the second season (96 vs 16), and the estimated functions
mapping price to probability of adoption changed from one that where farmers were
unlikely to buy at any price, to one where the probability of adoption declined steeply with
price. It is unclear what caused this change, and longer longitudinal studies are needed
to elucidate these dynamics. It is possible that farmers’s beliefs about likely outcomes
to adoption become decreasingly diffuse over time, and it is possible that the existence
of the RFT offers made other farmers less willing to purchase for cash upfront, though
it can’t be excluded that the difference is simply driven by season-specific unobserved
factors.

Further work is needed to place these results into a more dynamical context — to what
degree can a “big push” of subsidies over a few years sustain long-term adoption, and
will learning reduce the need for subsidies over time? Can these results be generalized
to different technologies in different contexts? How does price sensitivity change further
with time? Given that most of the current state of knowledge around technology adop-
tion is based on cross-sectional data, further longitudinal work represents an important
opportunity both to improve our understanding and to guide agricultural development
policy.

4.5.1 Welfare implications of biochar subsidization

In increasing yields substantially, sequestering carbon, but yet being underadopted, biochar
is a prime candidate for programs aimed at stimulating its adoption. In this project’s

context, it appears that heavy subsidies maximize social benefit/cost per dollar, along

with a small number of demonstrations. In addition, these estimates of social ROI are

probably underestimates, given the longevity of biochar’s agronomic benefits observed in

other studies, as well as the mitigation value of sequestered carbon.

In the short run, subsidizing biochar alone may not be as effective as subsidizing fertil-
izer, though this will vary with soil characteristics, fertilizer prices, and the economics of
biochar production in different places. Provision of biochar can markedly increase fer-
tilizer efficacy, but not sufficiently in this context to clearly favor biochar subsidies over
fertilizer subsidies. This result does not account for the persistence of biochar’s agronomic
benefit, for which I have no data here, and will be an underestimate where soils are par-
ticularly degraded and response to fertilizer is low. In such contexts, biochar could serve
a role in accelerating agricultural intensification in the region, particularly if its ability to
improve the efficacy of fertilizer is maintained over multiple seasons. In a region where
fertilizer is commonly perceived to be risky and expensive, biochar might make fertilizer
effectively cheaper and therefore less risky by reducing the amount required for a given
yield increment.
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Biochar is likely to be more expensive that other means of increasing soil organic car-
bon content (such as composting, or integration of trees into agricultural landscapes).
However, it increases yields immediately, and decomposes much more slowly than other
organic amendments. These are important advantages — the former from the perspective
of generating interest among poor, present-biased farmers, and the latter from the per-
spective of donors, who may be attracted by the prospect that one “treatment” of biochar
may have benefits over multiple seasons. If long-term yield benefits to biochar in small-
holder agriculture mirror those that have been found in the agronomic literature[32], this
property of biochar endows it with a natural “exit strategy” — a donor could support the
cost of its provision once, generating returns over multiple seasons, before moving on to
a different area. Furthermore, the durability of biochar’s benefit may mitigate concerns
that its use may not be appropriate everywhere given biomass constraints. In general,
opportunity costs for biomass (to serve as biochar feedstock) are not zero, and it could
be difficult in many areas to find sufficient biomass every year for biochar production.
Much like the way in which agricultural lime is applied semi-annually, semi-annual use of
biochar may allow for large areas of land to progressively become amended with it where
it is infeasible large quantities of it to be produced at once.

4.6 Conclusion

I've conducted the first randomized controlled trial on the adoption and impact of biochar
in smallholder agriculture, and found substantial agronomic utility, severely sub-optimal
rates of adoption, and some evidence to guide technology diffusion policy. More research
is needed to explain why adoption was so insensitive to such large observed results. It
appears that relying on social learning to shortcut the high cost of subsidies is likely
to be misguided, but that it might be able to play a complementary role in making
subsidies more effective. Similarly, biochar on its own can increase crop yields, but
should probably be viewed as a means of improving soil quality and returns to inorganic
fertilizer, thereby stimulating sustainable agricultural intensification. Together, these
results demonstrate substantial potential for biochar in African agriculture, they suggest
means of promoting it, and as such could guide approaches for further applied research
and program development in the area.
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4.7 Figures and Tables

FIGURE 4.1: A timeline showing project activities and the region’s agricultural calen-
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TABLE 4.1: Summary statistics describing the sample. Time-varying agricultural vari-
ables (yields, land allocation, etc.) taken from the long rains 2013, before any of the
treatments were implemented.

Statistic N Mean St. Dev. Min Max
Maize Yields (tons/ha) 864  1.093 0.81 0 3.34
Hectares Maize 864 0.35 0.320 0.05 3.24
Hectares Sugar 889 0.1 0.262 0 3.64
Total Land (ha) 889 0.56 1.752 0 51
Fert Exp ($/ha) 887  78.39 72.063 0 374
Income (Sep 2014)($/month) 895  61.79 108.32 0 1,458
Family size 911 5.89 2.49 1 16
in OAF 914 0.23 - 0 1
Gender main farmer (O=female) 914  0.35 - 0 1
Heard of Re:char 914 0.04 - 0 1
Heard of ACON 914  0.09 - 0 1
Heard of the Rutuba Kiln 914  0.051 - 0 1
Ever used charcoal as fertilizer 914 0.05 - 0 1
Ever produced charcoal 914 0.33 - 0 1
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TABLE 4.2: Summary social network statistics.

Statistic N Mean St. Dev.  Min Max
Reported links 945  26.357 10.838 0 61
Estimated links 945  94.151 46.204 8.082  284.035
Rep. talked farming 945 7.180 8.375 0 55
Est. talked farming 945  20.613 26.468 0.258  237.993
Rep. seen land 945  14.520 9.818 0 59
Est. seen land 945  43.419 34.898 1.277  263.011
Rep. same church 945 5.608 5.849 0 29
Est. same church 945  20.765 20.445 2.124  119.939
Rep. same sav group 945 2.841 4.839 0 38
Est. same sav group 945 9.383 14.980 0.538  144.827
N within 1km 945  160.505 50.897 23 299
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FIGURE 4.2: Crop yields on demonstration plots, compared to control plots.
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FIGURE 4.3: Marginal effects of control yield and fertilizer expenditure (on a per-acre

basis) on the mean ratio between biochar-plot yields and control-plot yields from the

late-2013 demonstration plots. Yield ratio specified as gamma-distributed. Fertilizer
expenditures calculated as costs of applied fertilizer at prevailing market prices.
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FIGURE 4.4: Maize yields on biochar plots as compared to non-biochar plots on fields

of farmers adopting in early 2014. Left: raw data. Right: adjusted data, based on

estimates from model 4.4. Univariate fits relating biochar yields to control yields are
log-linked gamma GAMs.
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FIGURE 4.5: Descriptive bivariate plots relating biochar adoption in late 2014 to prior-
season and current-season treatments. Plot (d) sets probability of biochar adoption in
late 2014 against estimated probability of adopting biochar in early 2014, estimated
from model 4.3. Plots (f,g, and h are first stage regressions, predicting the share of the
social network having biochar in the previous season as a function of the proportion
with a RFT offer and the proportion with low biochar prices. Plot (h) presents a
nonparametric interactive model, with the expectation of the share of the network on
the z-axis. Plot (i) gives adoption as a function of the estimates of the model shown in
plot (h). Plot (k) gives adoption propensity as a function of RFT repayment price, for
those who had recieved RFT.
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TABLE 4.5: First and second-stage results of model 4.6. Parametric terms in upper
table, non-parametric terms in lower plot matrix. All coefficients and smooth function
estimates given on the scale of the link function (log or logit). P-values on smooth
estimates are associated with Wood’s [80] reduced-rank Wald test for joint equality
to zero among the coefficients comprising a smoothed term. In addition to the terms
shown, all models control for income, RFT repayment price, and distance from the
center of the project zone. In addition, second-stage models control for smooth functions
of the residuals of the first stage models. These estimates are omitted to save space,
but are available on request.

Dependent variable
Adopted LR2014  Share w/ BC LR2014  Adopt SR2014  # bags SR2014

Intercept —6.59%** —1.98*** —4.23*** —4.11%**
(1.19) (0.01) (0.57) (0.55)
Mateka (zone) —0.24 —0.09*** 1.91** 1.84**
(0.88) (0.01) (0.65) (0.62)
Mukwa (zone) —0.45 0.00 1.07 1.26*
(0.76) (0.01) (0.59) (0.56)
Nasianda (zone) —0.05 0.02 2.56%** 2.42%**
(0.71) (0.01) (0.65) (0.62)
Gender —-0.37 0.01 —0.07 —0.04
(0.36) (0.00) (0.32) (0.29)
Heard of ACON 1.79** 0.00 0.21 0.33
(0.68) (0.01) (0.49) (0.46)
Ever used char as fert. —1.27 0.00 —0.37 0.01
(0.86) (0.01) (0.62) (0.53)
Heard of Re:char -0.10 —0.01 0.18 —0.30
(0.70) (0.01) (0.67) (0.66)
Heard of Rutuba 0.01 0.00 1.19* 0.96
(0.74) (0.01) (0.59) (0.56)
Got demo plot 2.12%* —0.01 —0.94 —0.86
(0.66) (0.01) (0.60) (0.56)
Biochar early 2014 —0.86 —0.97
(0.63) (0.53)
family (link) Binomial(logit) Gamma(log) Binomial(logit)  Neg. Bin.(log)
Deviance explained 0.62 0.96 0.27 0.45
Num. obs. 803 803 803 803

***p < 0.001, **p < 0.01, *p < 0.05
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FIGURE 4.6: Prospective estimates of the welfare and implications and social return
on investment of direct subsidies and provision of demonstration plots for promoting
biochar. All estimates are formed from predicted values (for a median farmer) of models
relating adoption to randomized treatments, as well as yield increase estimated from
results of demonstration plots. All plots share x and y-axes; the percentage subsidy
applied to a bag of biochar, and the number of demonstrations given — which equiva-
lently is the proportion in this project’s sample given a demonstration plot. (a) gives
the expectation of the number of bags of biochar bought by a median farmer. (b)
gives program cost in units of $/farmer. The blue dashed line shows the ridge that
maximizes adoption for a given program expenditure. (c) gives the expected change in
profit for an individual farmer given their expected uptake of biochar at given prices
and demonstration plot densities. (d) gives percentage social return on investment in
subsidies and costs of demonstration plot establishment, defined as expected change in
farmers profit less change in farmer and cost of subsidies. (e) gives additional social
ROI (in percentage points) if sequestered carbon is valued at $100/ton CO2e. (f) gives
the carbon price required for the subsidization/demonstration scheme to break even if
valued solely on the basis of sequestered carbon, solely for the region where the expected
number of bags adopted is greater than 1.
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Fertilizer subsidy (%)

FIGURE 4.7: Percentage social return on investment for a median farmer — defined as
expected farmer profit less increased farmer expenditure less program expenditure — for
fertilizer subsidization (as a percentage of full cost) and biochar inducements (in units
of $/farmer, along the optimal ridge given in figure 4.6b). The left figures assumes
that the farmer will hold fertilizer expenditures constant as they adopt biochar, while
the right figure assumes that total expenditures on biochar plus fertilizer will remain
constant. The dashed blue lines give the program expenditure that maximizes social
ROI; numbers in blue represent program expenditures per farmer (fertilizer and biochar
inducements combined). The dotted line gives the point of equivalence between program
expenditures on fertilizer and program expenditures on biochar.
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Chapter 5

Biochar in Smallholder Agriculture:
The Way Forward

5.1 What have we learned?

Biochar has considerable technical potential to increase crop yields in tropical soils[32].
Not only are these soils coincident with some of the world’s largest “yield gaps”[29], it
seems plausible that biochar might redefine attainable yields in such places, by improving
various soil properties that define attainable yield. As the world enters an era in which the
challenges of meeting a growing demand for food will fall upon ever-less prime agricultural
land, solutions for improving their productivity are needed, and biochar appears to offer
potential to meet them.

However, biochar’s niche appears to be rather limited to these areas, and even to patches
of rather-degraded land within these areas. In the second and third chapters of the
dissertation, I found heterogeneous benefits to biochar adoption among early adopters.
Yield increases tended to be higher where yields were lower, and lower where yields were
higher. No yield benefit at all was found among early adopters in Vietnam. To the extent
that poor soils are coincident with poverty, high potential benefit may be coincident with
low effective demand. This dynamic may have been one of the explanations for the low
uptake observed in the RCT described in the third paper[34]. While farmers only had one
season of observations from which to learn about potential outcomes to biochar adoption,
it is plausible that farmers with better potential outcomes were unable to afford to buy
biochar, while those who were able to afford to buy it may have known that their own
potential outcomes tended to be lower. While this is not directly testable with the data
at hand, it is likely that such dynamics would become more prominent as experience with
biochar increases over time.
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5.2 The way forward

Heavy subsidies induced adoption by most farmers in my Kenya sample. However, for the
median farmer in my Kenyan sample, public money appears to be better-spent subsidizing
inorganic fertilizer than subsidizing biochar, when considering the proposition from a
short-term perspective, and ignoring externalities. While this calculation might be more
favorable to biochar if the sequestered carbon were valued or future benefits to crop
yields were valued, it remains the case that carbon trading schemes have not reached
rural Africans, and implicit discount rates are extremely high [149]. However, focus on
the “typical” farmer ignores heterogeneity in response. If it were possible to know a
priori which farmers had the best potential outcomes, then extension, education, and/or
subsidies could be targeted to these farmers. With the increasing prevalence of soil testing
and analysis services in Kenya and much of the rest of Africa, this prospect deserves
further attention.

However, it is unclear who will provide the biochar needed for such approaches. Low
effective demand among the poor will make it difficult for the private sector to do so.
There may be openings for NGOs operating in the space to do so, but solutions for
biochar production, along with dissemination of a bulky material to dispersed end-users
will be a challenge. And while decentralized systems for biochar production may seem
economical, the failure of re:char to sustain itself selling small-scale biochar production
kilns suggests that behavioral issues will impede the success of this strategy. With little
supply to drive learning and thereby demand, and with benefit being heterogeneous and
contingent, dissemination is likely to be slow.

The problems of growing food demand in the face of environmental change are likely
to worsen in the 21st century, and this does not bode well for the rural poor in sub-
Saharan Africa. While biochar seems to offer one useful tool, its way forward appears
impeded by economic and behavioral factors. These deserve further research. First,
what can be learned about the process of technology dissemination from the experiences
described in this dissertation, and how can this inform dissemination of novel technologies
with a more immediately-apparent business plan? Second, what other approaches might
successfully meet the same needs? Alternatively, under what conditions might biochar
become economically viable? Third, who are the appropriate actors and institutions for
advancing an agenda of applied research and implementation to address this problem
space? The answers to these questions will be highly context dependent — and require
interdisciplinary approaches — but answering them will be central to the achievement of
sustainable agricultural development in an increasingly warming, crowded, and carbon-
constrained future.
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Appendix A

Heterogeneous global crop yield
response to biochar: a
meta-regression analysis:
Supplementary Information

A.1 Summary Statistics

Summary statistics for soil, biochar, and management variables in our dataset are given
in figures A.1, A.2, and A.3.

A.2 Statistical Methods

A.2.1 Missing data methods

Many of the studies in our dataset do not report values of many of the variables that we
use (figure A.4). Standard model-fitting techniques cannot function in the presence of
missing data, so statistical software packages normally omit cases of missing data. This
greatly reduces statistical power where missing data are prevalent, or, in the case where
commonly missing variables are dropped from the analysis, can lead to omitted variables
bias. However, well-developed methods exist for drawing inference about responses to
variables with partially-missing values.

We use multiple imputation (MI), a technique pioneered by Rubin [51, 63]. In MI, sta-
tistical models are specified to predict the missing values of variables, and random draws
are taken from the predictive distribution of these fitted models to “fill in” missing data.
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FIGURE A.1: Summary statistics for soil variables. Diagonals give kernel density plots
of observed (imputed) single variables in red (blue), with their intersection in purple.
Response ratio, the logarithm of the variance of response ratio are represent mean
values of those variables by each unique soil. Off-diagonals give bivariate scatterplots
of two variables, and lowess regression lines, with red dots indicating observed variables
and semi-transparent green dots representing imputed values. Solid black lowess fits
give correlations between observed values of variables, while dotted blue lines give
correlations between imputed variables. RR = response ratio, SOC = soil organic
carbon (g kg=!), CEC = cation exchange capacity (cmol.~!), sand and clay given in
percentage by mass.




FIGURE A.2: Summary statistics for biochar variables. Diagonals give kernel density
plots of observed (imputed) single variables in red (blue), with their intersection in pur-
ple. Response ratio, the logarithm of the variance of response ratio are represent mean
values of those variables by each unique soil. Off-diagonals give bivariate scatterplots
of two variables, and lowess regression lines, with red dots indicating observed variables
and semi-transparent green dots representing imputed values. Solid black lowess fits
give correlations between observed values of variables, while dotted blue lines give cor-
relations between imputed variables. RR = response ratio, HI'T = highest treatment
temperature (maximum temperature attained during pyrolysis), %C = percent carbon
by mass.
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FIGURE A.3: Summary statistics for management variables. Diagonals give kernel den-
sity plots of observed (imputed) single variables in red (blue), with their intersection
in purple. Response ratio, the logarithm of the variance of response ratio are repre-
sent mean values of those variables by each unique soil. Off-diagonals give bivariate
scatterplots of two variables, and lowess regression lines, with red dots indicating ob-
served variables and semi-transparent green dots representing imputed values. Solid
black lowess fits give correlations between observed values of variables, while dotted
blue lines give correlations between imputed variables. RR = response ratio, BCAR =
biochar application rate (tons ha=!), INAR = nitrogen application rate (kg ha=!).
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FIGURE A.4: Patterns of reported and missing data in our dataset of 781 response

ratios from 78 studies, including observations of crop yield and biomass production.

Columns indicate individual observations, blue indicates observed data, red indicates
missing data.

Observed and missing data by variable

Feedstock class
Biochar App. Rate
Soil pH

N App. Rate
Biochar % carbon
Pyrolysis temp
Biochar pH
Var(RR)

Soil cation exchange capacity
Soil org. C

Soil clay %

Soil silt %

Soil sand %

These completed datasets are then analyzed using methods developed for datasets with
no missing values. This process is repeated several times, yielding several fitted models.

The results from the fitted models are then combined. Specifically, parameter estimates
M

Bm from M imputations are simply averaged: B = % Z Bm The variance-covariance
m=1

matrix Vj of the estimated parameters is calculated by first averaging variance-covariance

matrices, and then adding a correction to account for variation between imputation mod-

els:

~ 1
VBZW-F(I-FM)B (Al)
where W = ﬁ Z VCV,,, VCV is the estimated variance-covariance matrix of the esti-

m=1

A

M
. . AT
mated parameters, and B = ﬁ Z (Bm — ﬁ) (ﬁm — B) . This procedure inflates the
m=1

111



standard errors on coefficients about which the imputation model is relatively less certain,
either due to a lot of missing data, or due to a poorly-informative imputation model.

Data can be missing randomly or non-randomly. When data is missing-not-at-random,
special care must be taken to model the probability of data being missing, and to control
for this factor when predicting missing data. We proceed under the assumption that
data is missing at random. This assumption is justified because of the nature of our
data — studies measured or did not measure various variables based on their salience
to the particular hypotheses of the individual study. In the social sciences (for which
multiple imputation was first developed and applied [51]), missingness of data was com-
monly due to non-response in surveys, and particular socioeconomic groups with different
characteristics were often more or less likely to respond. Taking our data to be missing-
not-at-random would require postulating that characteristics of studies that affect that
affect their outcomes are correlated with the probability that data is missing.

For imputation modeling (i.e.: modeling variables and predicting their missing values),
we follow Gelman & Hill [65] in using iterative regression imputation (also known as
multiple imputation by chained equations or MICE [64]). We first divide our variables
into four classes — soil variables, biochar variables, management variables, and outcome
variables. Within each class, we shink the dataset to reflect unique observations — for
example, unique chars or soils rather than repeated observations of the same soil. We
assume that biochar variables are not predictors of the characteristics of the soils to which
they were applied, vice versa, and that management decisions (amount of biochar added,
and amount of nitrogen fertilizer added) were likewise not predictors of the types of soil
to which they were applied or the characteristics of the biochar added. We believe that
this assumption is reasonable because of the nature of our dataset as observations from
randomized controlled trials. Were our dataset comprised of actual use of biochar by
farmers, this assumption would be far more dubious, as amount of biochar or fertilizer
added may well be a predictor of soil type, for example. Outcome variables include
R~Ric7 Bo—3 — the estimated biochar application rate at 3 Mg ha!, and the variance of
the response ratio. These variables are used as predictors in each of the three other
imputation classes that we define. R~RZ-Q Bc—3 1is treated as a latent variable, inasmuch
as it is observed directly for only a small subset of our observations that actually added
biochar at that level. Its estimation, as well as the estimation of other missing variables,
is described below.

Random imputations

We being by filling in missing values of variables using random draws (with replacement)
from observed values of those variables. Mostly, these variables form a continuous distri-
bution with some support specific to the variable. Biochar feedstock, as a factor variable,
was drawn from it’s three-point observed distribution. Nitrogen fertilizer application
rate is naturally left-censored at zero, so we first imputed it as (0/>0) binomial random
variable, and then imputed predicted non-zero cases as with other continuous variables.
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R~Ric, Bo—c was imputed in the first stage using an explicit model. Our preferred specifi-
cation was

RR = B(log(BC. App. Rate +1) x expid) + € (A.2)

where expid is a factor variable for common-control observations. This specification
simply fits a log-linear slope through each set of common-control response ratios, running
through the origin. This is motivated by the nature of the dependent variable as a
response ratio of a biochar treatment to a non-biochar control — its expectation must be
zero when no biochar is added. In addition to this one, we explore several alternative
specifications (section 3, below).

Soil imputations

We use the random imputations as a starting point for explicit models predicting missing
values of variables. We begin with soil variables, by first creating a temporary dataset
wherein each unique soil is represented only once, thereby shrinking the size of the dataset
and avoiding a counter-intuitive situation whereby identical soils might be estimated to
have different characteristics. Models are specified as follows:

imputed
)

ymiss — xtimputedg 4~ PR o+ yplog(varRR +e (A.3)

where miss indicated a partially-missing vector and imputed indicates a vector comprised
of observed data where available, and imputed data where missing. The unique-soil-wise
means of the response ratio and its variance were also controlled for, as failure to include
outcome data in imputation models is known to bias their output.

We cycle through our available soil variables, alternately specifying Y as soil pH, cation
exchange capacity, soil organic carbon, clay content, sand content, and the absolute value
of the study’s lattitude. Variables specified as dependent variables are removed from X
at each step.

After fitting each model, we take a draw from its predictive distribution for each missing
datapoint, which we use to update imputed values of partially-missing variables. After
cycling through each of the 6 soil variables, we merge the updated soil imputations sub-
dataset back into the main dataset.

Biochar imputations are conducted in much the same way. Variables cycled through
include biochar pH, biochar percentage carbon, pyrolysis temperature, and feedstock class
(wood, nonwood, or manure). For feedstock class, we use a multinomial logit model,
rather than an OLS regression.

Imputations for management variables are conducted somewhat differently. For
these (biochar application rate and nitrogen application rate), we use the full dataset,
and account for their left-censored nature. For biochar application rate, we model its log-
arithm as a function of our soil and biochar variables, outcome variables, and interactions
between our outcome variables and crop type, as well as field /greenhouse trial as factor
variables. For nitrogen application rate, we first estimate a logistic regression of whether
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or not N was added, and where our posterior draw predicts that N was added, estimate
the logarithm of nitrogen application rate as a linear function of the same variables as
those predicting biochar application rate. The difference in approach between the two
variables is motivated by the large number of unfertilized observations in our dataset,
while all observations added biochar in some non-zero quantity.

Imputations for outcome variables: the variance of the response ratio is predicted
similarly to the biochar application rate, using all available explanatory variables and a
logarithmic representation of the (highly skewed) dependent variable. R~Ric, BC—c Was then
re-estimated using model A.2, with updated imputations for biochar application rate.

Iteration and convergence: the steps described in this section were completed se-
quentially, updating imputations at each step. The entire algorithm was repeated many
times — further updating imputations — until approximate convergence in distribution was
reached (i.e.: until the mean and variance of each of the several hundred imputations,
taken together, approached some value). An example of a convergence diagnostic plot is
given in figure A.5. Approximate convergence is achieved after 200 cycles (or, at min-
imum, oscillations/changes diminish to exceedingly small practical magnitude). This is
the number of times that we run the algorithm for the production of the multiple imputed
datasets to which we fit our model of interest.
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Production of multiple datasets is accomplished simply by running the above-described
algorithm 200 times (in which 200 imputation cycles are conducted, each), to generate
M = 200 imputed datasets. We use such a large number of imputations to engender
numerical stability and reproducibility of our results[64, 173, 174].

A.3 Different specifications for estimating R~RZ~5’ BC—c

We expect that biochar application rate influences plant outcomes, and we further ex-
pect that this influence would be heterogeneous across biochars, soils, and perhaps other
factors. However, we are unable to control for the biochar application rate as a sim-
ple additive term in our main statistical model because of the nature of our dependent
variable as a response ratio. Including the amount of biochar as a simple additive term
would lead to the non-zero estimates of response rate at zero biochar application. We
therefore construct a dependent variable representing an estimated response ratio for a
common level of biochar application rate; response ratio at for 3 Mg ha=!. Doing so
involves estimating heterogeneous slopes mapping plant response to biochar application
rate for different studies.

We investigate 6 potential specifications for estimating these slopes. Each specification
constrains each slope to run through the origin, reflecting that response ratio equals 0
when biochar application rate equals zero, by definition. The first two specify linear
(model A.4) or logarithmic (model A.5) slopes between response ratio and biochar appli-
cation rate for each set of common-control observations:

RR = B(BC. App. Rate x expid) + € (A.4)

RR = B(log(BC. App. Rate +1) x expid) + € (A.5)

where expid represents a set of common-control observations, which will be a set with one
or more member. In sets with one member, these equations draw a linear slope between
the observation and the origin, or between the average of the members of the set and the
origin in cases where there is more than one observation sharing a common control.

In addition to these linear fixed-effects slopes, we also estimate analogous random co-
efficients models specifying linear and logarithmic slopes, with and without interactions
between soil clay content and soil cation exchange capacity. In specifications with inter-
actions, we allow the size of the slope to be mediated by soil clay content and soil cation
exchange capacity, as it is possible that clay may form biochar-mineral complexes [77], in
ways that may plausibly be mediated by the surface chemistry of constituent clays.

RR = (ﬁ““ + 6@3:73) BC. App. Rate + ¢ (A.6)
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RR = (ﬁ“” + Bexp) log(BC. App. Rate + 1) + ¢ (A.7)

RR = (ﬁ““ + ﬁe“’) BC. App. Rate

+71 (BC. App. Rate x Clay%) + 72 (BC. App. Rate x CEC) + ¢ (A-8)

RR = (ﬁ““ + ﬁewp) log(BC. App. Rate + 1)
+71log((BC. App. Rate + 1) x Clay%) + v2log((BC. App. Rate + 1) x CEC) + ¢
(A.9)

Equations A.6, A.7, A.8, & A.9 treat the slopes as a sample from a normally-distributed
population of slopes, potentially mediated by clay content and soil cation exchange ca-
pacity.

Estimates of RRpc—3 (transformed into relative increase) from equations A.4,A.5, A.6,
A7, A8, & A.9 are given in figure A.6, and fits to the data from each of these models
are given in figures A.7, A.8, A.9, A.10, A.11 & A.12. Figure A.8 gives the best visual fit
to data, and the most favorable AIC of the specificaitons tested. In particular, random
coefficients models estimate slopes that tend towards the mean slope for the data. Of the
two fixed slope models, we use the logarithmic one to drive calculate R~RBc:3 to serve as
the dependent variable for model A.10.
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FIGURE A.6: Estimates of relative increase from equations A.4,A.5, A.6, A.7, A8, &
A.9. Untransformed relative increase, as reported in primary studies, given in black.
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Relative increase (treatment/control)

FIGURE A.7: Slope estimates from equation A.4. Dots indicate observed values, green

asterisk indicate predicted values, and blue lines indicate their divergence. Left and

right figures show the same data; the right figure is zoomed into the biochar application
rates < 20 Mg ha™!
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Relative increase (treatment/control)

FIGURE A.8: Slope estimates from equation A.5. Dots indicate observed values, green

asterisk indicate predicted values, and blue lines indicate their divergence. Left and

right figures show the same data; the right figure is zoomed into the biochar application
rates < 20 Mg ha™!
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Relative increase (treatment/control)

FIGURE A.9: Slope estimates from equation A.6. Dots indicate observed values, green

asterisk indicate predicted values, and blue lines indicate their divergence. Left and

right figures show the same data; the right figure is zoomed into the biochar application
rates < 20 Mg ha™!
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Relative increase (treatment/control)

FIGURE A.10: Slope estimates from equation A.7. Dots indicate observed values, green

asterisk indicate predicted values, and blue lines indicate their divergence. Left and

right figures show the same data; the right figure is zoomed into the biochar application
rates < 20 Mg ha™!
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Relative increase (treatment/control)

FIGURE A.11: Slope estimates from equation A.8. Dots indicate observed values, green

asterisk indicate predicted values, and blue lines indicate their divergence. Left and

right figures show the same data; the right figure is zoomed into the biochar application
rates < 20 Mg ha™!
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Relative increase (treatment/control)

FIGURE A.12: Slope estimates from equation A.9. Dots indicate observed values, green

asterisk indicate predicted values, and blue lines indicate their divergence. Left and

right figures show the same data; the right figure is zoomed into the biochar application
rates < 20 Mg ha™!
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A.4 Model goodness-of-fit by study

Figure A.13 gives a diagnostic of how well individual studies were fit by model A.10.
The largest median divergence was less than 0.1 response ratio units, which is approxi-
mately 11 percentage points of relative increase. Residuals for several studies were highly
variable, indicating poor ability to predict their missing values in imputation models,
and/or large heterogeneity in within-study covariates. Note that a relatively larger por-
tion variance explained by the model was explained by unique soil-biochar random effects
than by our explanatory fixed effects, which is to say that the between-context variation
unattributable to the soil, biochar and management factors that we include in our model
was more important in explaining response ratio than were those factors.

FIGURE A.13: Goodness of fit measured by the distribution of the residuals from each

fo the 200 fitted models for each datapoint, by study. Studies with the bulk of the

distribution of their residuals below the dotted red line were negative outliers, and

studies with the bulk of their distribution above were positive outliers. Distributions

are formed from residuals from each of the 200 imputations used to fit our model. The
x axis lists the last name of the lead author of the study.

Distribution of residuals by study

0.6 —

H

0.4

Residual

-4
.‘
—e-eed

-
'
'
'

{-ﬁgéeé----l-E-E*E H*Hﬁa

4
4

M]---+

k- 10--

F---[I]-+

%4

F---+

F---

!

O
b---CQ----4
I

[l |

-

|
©
N
|
[
-
F
F---
H
b---

]

.
, ;
, ,
, ,
, L
,
,
- _
rrr 11 111U 17 1 1t 1T T T 1T 17T 17T 17T 17T 17T 17T 17T 17T 17T 17T 17T 17T 17T T 17T T T T T T T T 1T T
C U OB E 0BT CUO N ECENTCESCDO IoE »OCIESCNCS IS DS S
m;tgocEOB:SGEQBE:NCCOﬁUQﬁE:EEQEOQEGECSEg
= mmmg:bho<mm%ogocmgoo®xom E£®>‘OE°.Q“SOO'—
EF 2=2F oL S8R T L2908 Q8T S s2z3JNEZSEQIRNRS
8 =F3_oc8d FT os58-8n~g daclp a8 oesS3H
© o O 8Sx T T O o2 X Z2c g o o>~ B EZ
N Z o =] = '3 2 =] S0nn g n = 08
S O 2 82 & n o @ 8 nxz
@ °© 3% X S N g
28 N N N B
<m 2]

125



FIGURE A.14: Model predictions for a median non-wood biochar applied to maize,

projected onto spatially-averaged soil property dataset from Batjes (2005)[55]. Upper

maps give point estimates of percentage relative increase over control for a .5x.5 degree

gridcell, and lower maps give the statistical confidence that the estimated fitted value is

greater than zero. Areas with < 5% of land in agriculture are masked using agricultural
area extent data from Ramankutty [67].

Fitted values for a median non-wood biochar applied to maize, 3t biochar ha™

A.5 Standard errors of fitted values for projection
maps

Our fitted model, projected onto Batjes’ [55] global database of soil properties for repre-
sentative biochars of our three feedstock classes, is given below in figure A.14.
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A.6 Heterogeneity by crop type

By pooling response ratios derived from different crops, we are implicitly making the
assumption that crop yields are moderated identically by our model terms across all crop
types. For example: crop yield response to biochar in increasingly acidic soil is identical
between rice and wheat. There is no a priori reason to believe that this is true, but we
do so because our dataset is too small to treat each crop separately.

It is important to note that our main model controls for heterogeneity in average response,
both through random effects for unique soil-biochar combinations, and, where more than
one type of crop was grown on a unique combination of soil and biochar, indicator variables
for crop types. This section explores unmodeled heterogeneity in response to moderating
variables, rather than modeled heterogeneity in overall means.

We explore this heterogeneity by fitting our model to subsets of our data (with fewer
knots to accomodate fewer degrees of freedom). Estimates of response to the continuous
variables and over time is given in figure A.15.

Only very modest heterogeneity is apparent — we observe suggestive evidence that rice
appears to benefit from biochars with lower carbon contents, and that the response of
maize to biochar is mediated to a greater degree by soil clay and soil organic carbon
content than it is for other crops. However these effects are relatively modest, and
difficult to distinguish from one another statistically. Heterogeneity between crops in
plant response to different sorts of biochar remains an area for further study.

A.7 Model with interactions

In addition to our main predictive model, we estimate a richer model, specified in equation
A.10 with a number of interaction terms. All interaction terms are specified as tensor
products [162], denoted “®.”
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FIGURE A.15: Estimated nonparametric smooth functions from a model with all of our
explanatory variables but no interactions, for different subsets of our dataset defined

by crop type.
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RRis,BC:3Mg ha—! = &
+7s
+p1(Pot trial==1)
+2_4(Seasons since initial application)
+B5—7(feedstock types)

+B6-17(Crop type)
+f(N application rate)
+f(Pyrolysis temperature)

+f(Biochar % carbon)

+ f(Biochar pH)

+f(Soil cation exchange capacity) (A.10)
+£(Soil pH)

+f(Soil organic carbon)

+/(Soil % clay)

+f(Soil pH x season since initial application)

+f(Biochar pH x season since initial application)

+f(Biochar pH ® soil pH)

+f(Soil pH ® soil organic carbon ® cation exchange capacity)

+f(Clay % ® cation exchange capacity)

+f(Pyrolysis temperature ® %C x feedstock type)

+é€is

Selection of interaction terms based on the following hypotheses, drawn from the agro-
nomic literature on biochar and from basic soil science:

1. Yield will be maximized where alkaline biochars are applied to acidic
soils
Biochar is commonly alkaline, and has been observed to increase soil pH in a number
of studies in our dataset. Biochar’s alkalinity is derived from the concentration of
plant mineral fractions during pyrolysis, and both the loss of H and the formation
of carbonates during pyrolysis [59]. Several studies in our dataset observe large
yield responses on low-pH soils [48, 175-180], while Jeffery et al. [44] find higher
average responses among the subset of studies performed on acidic soil. We expect
the effect of biochar alkalinity on crop yields to vary with the pH of the soil to
which it is added, as soils with neutral or high pH would benefit less from liming.
This hypothesis motivates the interaction between soil pH and biochar pH.

2. Plant response to biochar remains positive over time since application
Biochar is persistent in soil [28]. In spite of this persistence however, surfaces of
biochar particles are both biologically and chemically reactive with properties that
change over time [35, 181, 182]. Several studies in our dataset observed plant re-
sponse to biochar over multiple harvest seasons [49, 6871, 183-193], often finding
that yields either increased relative to control, or that first yield increases were main-
tained. In addition, we hypothesize that any plant response to high-pH biochars
will attenuate over time, as cations such as potassium are either leached or taken
up by plants and exported at harvest. This hypothesis motivates the interaction
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between soil and biochar pH and time, as well as the interaction between soil pH
and biochar pH. We have too few available datapoints to construct different tensor
product smooths for biochar pH ® soil pH for each year in our dataset.

. Biochar’s benefits are maximized in poor soils, such as those depleted in
soil organic carbon and low in cation exchange capacity, as it can provide a more
stable source of many of the functions played by other forms of soil organic matter,
including serving as refugia for soil biota, and as a source of amphoteric charge.
Furthermore, soil CEC, soil pH and soil organic carbon content are fundamentally
inter-related: the component of a soil’s CEC that is derived from soil orgaic carbon is
pH-dependent. Therefore, the influence of any one of these variables on crop yield
response to biochar may well depend on the values of the others. We generally
expect response to biochar to be high when any of them is low. This motivates the
three-way interaction between soil pH, CEC, and soil organic carbon.

. Plant response to biochar depends on pyrolysis conditions and feedstock.
Biochar is produced by the heating of biomass in a sub-stoichiometric environment.
Varying temperatures and varying degrees of oxygen occlusion will produce prod-
ucts with different characteristics, which in turn will influence agronomic utility.
Under laboratory conditions where oxygen is completely occluded, higher tempera-
tures will yield biochars with lower H/C and O/C ratios [58]. In addition, biochars
produced at higher temperatures may be less hydrophobic than biochars produced
at lower temperatures [194]. However, imperfect oxygen occlusion occurring in less
sophisticated pyrolysis devices will lead to biochars with higher ash concentrations
per unit carbon (because a greater fraction of the initial carbon will be lost as CO»),
depending on the mineral concentration of the initial feedstock. Biochars produced
at lower temperatures may have higher concentrations of available macro-nutrients
— a particular concern when dealing with charred animal waste, which has been
the subject of numerous papers in our dataset [179, 189, 192, 195-201]. Loss of
macro-nutrients with increasing pyrolysis temperature[202] will likely be particu-
larly important with these chars, which are likely to have higher concentrations of
nitrogen and phosphorous than chars made from vegetable matter such as wood
or grass. This motivates the interaction between pyrolysis temperature, biochar
percent carbon, and feedstock.

. Plant response to biochar will be higher in sandier soils, and in soils rich
in weathered clays.

Biochars may improve water holding capacity, water drainage and infiltration[194,
203], and improve cation exchange[204]. These properties are typically needed most
in sandy soils, and in soils whose clay constituents are highly weathered. We there-
fore expect that yield increases would be maximized in soils with low clay content,
ans soils with high clay content but low CEC. This motivates the interaction be-
tween clay content and soil CEC.
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A.7.1 Model Specification and Fit

Given the large number of interactions in model A.10, we specify only 4 knots per variable,
as opposed to 10 knots per variable for the main model without interactions. Tensor
product interactions in particular require k™ degrees of freedom (pre-penalization), where
k is the number of knots and n is the number of terms in the interaction. We specify our
knots based on a combination of subject-matter knowledge (i.e.: where we would expect
breakpoints to lie) and with the goal of adequate coverage for the support of our dataset.
The knots are specified as follows:

e Soil pH: 4.5, 5.5, 6.5, 7.5

e Soil cation exchange capacity: 5, 12, 19, 26 cmol, kg~!
e Soil organic carbon content: 10, 20, 30, 40 g kg~!

e Soil clay content: 15, 30, 45, 60 %

e Biochar pH: 7.5, 8.5, 9.5, 10.5

e Biochar percent carbon: 30, 45, 60, 80 %

e Pyrolysis temperature: 350, 450, 600, 800 °C

Model A.10 fits the data relatively well, with R? averaging .87. It is significantly different
from a model with only random effects at F=7.1 (p < .01), and significantly different
from our main model at F=10.5 (p < .01). While the model as a whole is significant and
achieves a favorable AIC compared to our main model, none of the individual terms are
statistically significant individually.

A.7.2 Results

Because none of the terms are individually significant, we present contour plots of the
fitted values of the model for most terms, without measures of statistical confidence.
These are intended to be purely suggestive, as we are unable to rule out the hypothesis
that any of our terms individually are different from zero.

Figure A.16 gives estimated yield response to biochar over gradients of soil pH, biochar
pH, and time. Results are qualitatively similar to univariate smooths given in the main
results — response ratio is larger in more acidic soils, and there is little evidence that
biochar pH plays much role in predicting plant response except in season 2, where lower-
pH biochars are associated with higher yields. Figure A.17 gives estimated yield response
to biochar over gradients of soil cation exchange capacity, soil organic carbon content,
and soil pH. Yield response is maximized at low levels of soil organic carbon content
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and low cation exchange capacity. The interaction between these variables appears to be
mediated by soil pH, which changes the shape of the functions relating cation exchange
capacity and soil organic carbon to one another and to response ratio. Figure A.18 gives
estimated yield response to biochar over gradients of soil cation exchange capacity, and
soil clay content. Clay soils with low CEC are predicted to respond positively to biochar.
Figure A.19 gives plant response to biochar for non-wood, manure, and wood biochars
produced at different temperatures and having different carbon contents. While estimates
are quite imprecise, there is slight suggestive evidence that higher pyrolysis temperature
is not beneficial in most circumstances. The effect of biochar carbon content is most
pronounced for manure chars, though these estimates are so imprecise that it is difficult
to take even suggestive evidence from them.

Figure A.20 projects the fitted values of model A.10 onto Batjes’ [55] global soil property
database. Results are qualitatively similar though generally more positive than those for
the main model given in figure A.14. The two models disagree in effect sign primarily in
organic soils in the tropics, notably in Indonesia.

As judged by AIC, model A.10 is superior to our main model with no interactions.
However, we are reluctant to present model A.10 in our main results for two reasons. First,
no terms are individually statistically significant — due largely to collinearity among terms.
As such, it is difficult to infer precisely which terms are key drivers of observed response
ratios. Secondly, we specify only a handful of the interactions that could be reasonably
postulated — our key constraint is available degrees of freedom. With infinite degrees of
freedom, the tensor-product interactions might reasonably be specified as one very large
interaction of 5 terms or more, perhaps including biochar pH, soil pH, soil cation exchange
capacity, soil organic carbon, and soil clay content — potentially interacted further with
time or feedstock. This would be desirable because the effect of changing any one of
these variables could quite plausibly depend on the value of each of these other variables.
Given that we lack the data for such a model, we prefer to present a more parsimonious
specification with ready interpretation. Lastly, given that the no-interaction specification
gives slightly lower estimates of response ratio, we emphasize it as a more conservative
lower bound.

A.8 Data, R code, and original studies

Data and R code for implementing/reproducing our analysis is available at http://
andrewcd.berkeley.edu/BCMA_rcode.zip. The password (required) to decrypt the
archive is “biochar.” Please contact the corresponding author with any requests for
primary studies not readily accessible online.

All original studies that comprise our dataset which are available from peer-reviewed
journals can be found at those outlets. Unpublished studies comprising the dataset
(e.g.: conference presentations/posters, unpublished reports, masters theses) are archived
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FiGURE A.16: Contour plot giving fitted values of model A.10 over gradients of soil
pH, biochar pH, and number of seasons since initial application.
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Contour plot giving fitted values of model A.10 over gradients of soil
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pH =45

pH=5.5

—-20 —

= =25
— =0

~3p

Soil organic carbon (g kg™)

50

40

30

=10 -

~20

10 20 30
Cation exchange capacity (cmol+ kg™)

pH=6.5

I I
20 30
Cation exchange capacity (cmol+ kg™)

pH=75

i

\\\W

— ~

Q\— -~
a\— —

\
— 25

— =35

— 0¢—

Soil organic carbon (g kg™)

50

40

30

20

10

-

/QL’

oV —

L\ o \ \ \
\G\ \p‘?’r \ &
B \\%\\

I I I I
0 10 20 30
Cation exchange capacity (cmol+ kg™)

134

I I I
10 20 30
Cation exchange capacity (cmol+ kg™)




FiGURE A.18: Contour plot giving fitted values of model A.10 over gradients of soil
cation exchange capacity and clay content.
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at http://andrewcd.berkeley.edu/BCMA_unpublished_studies.zip. The password
(required) to decrypt the archive is “biochar.”
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F1GURE A.19: Fitted values and confidence intervals for yield response to biochar from
model A.10 for non-wood, manure, and wood biochars produced at different tempera-
tures and having different resultant carbon contents.
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F1GURE A.20: Model A.10 predictions for a median non-wood biochar applied to maize,

projected onto spatially-averaged soil property dataset from Batjes (2005)[55]. Upper

maps give point estimates of percentage relative increase over control for a .5x.5 degree

gridcell, and lower maps give the statistical confidence that the estimated fitted value is

greater than zero. Areas with < 5% of land in agriculture are masked using agricultural
area extent data from Ramankutty [67].
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Appendix B

Biochar profitability and carbon
prices: Evidence from Kenya and
Vietnam:

Supplementary Information

Our optimization results are based on the following model:

/

Bi
yieldy; = o; + Py + Fert. Exp.;, [,3 + ﬁl] + €5 (B.1)
Fert. Exp.;; X By

Maize yields are represented as a continuous variable, though in reality they are strictly
non-negative. As such, fitted values may fall outside of the feasible range of the outcome
variable. This is the case for model 3.1, as is demonstrated in figure B.1. (In addition, we
see clear evidence of heteroskedasticity, though the effect of this on inference is accounted
for via robust covariance matrix estimation). In addition, we implicitly assume that
the marginal response to fertilizer — both for biochar users and non-users — is constant,
though it may not be in reality. This violation of model assumptions might lead to biased
estimates, so we test for their importance via the following robustness checks:

e We respecify all continuous variables as penalized splines, using generalized additive
models[66, 205].

e We add a small constant to all values maize yield before taking their logarithm.
We demonstrate that this measure, when modeled as an outcome of biochar and
fertilizer use, is inacceptably sensitive to the value of the chosen constant.
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e We change the units of the outcome variable from tons per hectare to 10kg units per
hectare (i.e.: we multiply by 100), and round to the nearest integer. This yields a
discrete measure, that can be modeled assuming a negative binomial distribution®.
We fit each of these models, both parametrically and nonparameterically. We find
that the best-fitting of these models is a nonparametric negative binomial model —
which gives results that are qualitatively similar to model 3.1.

B.0.1 Nonparametric specification

We begin by specifying model 3.1 as an additive mixed model, with smoothness selection
by restricted maximum likelihood. Results of doing so are given in figure B.2. This
specification shows increasing marginal response of yield to fertilizer in the presence of
biochar at high values of fertilizer, as well as narrower distributions of random coefficients
on the effect of fertilizer. This model has a less favorable AIC value that its parametric
counterpart, so we do not favor it. It is likely that the model is unable to distinguish
between a convexity in the interaciton between fertilizer and biochar, and an individually-
specific idiosynchratic response to fertilizer at high application, given that sparsity of data
near at higher fertilizer application rates.

B.0.2 Adding a small constant before logging

Adding a small constant to zero-valued data can facilitate a logarithmic transformation
of the data, which in many cases can stabilize variance and help to satisfy other model
assumptions. In our case however, we find that our results are unacceptably sensitive to
the choice of that constant. We demonstrate this by fitting univariate regressions of our
biochar dummy B on log(yield + ¢), across gradients of ¢ from very small values to 1,
and plotting the estimates of B , along with their 95% confidence intervals.

The left plot gives the result of adding ¢ to all yield measurements. Addition of very
low values — a common practice — renders our esitmates negative, likely via increasing
the leverage of those points on the logarithmic scale. On the other hand, adding 1 to
all observations, such that log(y + ¢) = 0 at y = 0, renders our estimate positive and
statistically significant. The right plot shows the result of adding a small constant only to
those values that contain zeros. Similarly, very small values increase leverage and render
point estimates negative, while higher values generate positive point estimates.

Despite this model’s lack of robustness to the choice of added constant, we fit it anyway
(choosing ¢=0.1) and present the result in figure B.4. Results are qualitatively similar

'We use a negative binomial rather than a poisson, as poisson is not scale invariant and not robust
to overdispersion. Negative binomial, on the other hand, accounts for overdispersion with respect to the
poisson by virtue of the fact that a dispersion parameter is estimated by standard negative binomial
regression software.
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to the those given in figure 3.1, though it is apparent that the variance of the random
coeffients on the effect of biochar have increased.

The logged model is sensitive to the assumption of linearity in its functional form —
respecifying fertilizer and its interaction with biochar nonparametrically using a gener-
alized additive model improves AIC, and suggests a locally negative slope in biochar’s
interaction with fertilizer, before flattening and rising at higher values, and becoming
statistically insignificant B.5.

B.0.3 Negative binomial models

Allison & Waterman [206] provide a simulation study demonstrating that negative bi-
nomial regression is robust to the incidental parameters problem, which can bias the
estimates of nonlinear models with many fixed effects. While our data is continuous,
we change its scale before rounding, to achieve a smoother discrete distribution. Unlike
poisson, the negative binomial distribution estimates two parameters in the course of its
fitting — a mean as well as a dispersion parameter — rendering it less scale-dependent than
a poisson. Specifically, we multiply our yield variable by 100 before rounding, and fit a
log-linked model with the linear predictor specified identically to that of the gaussian
models previously considered — both parametrically and nonparametrically. Results are
given in figures B.6 and B.7. Of these two, the nonparametric model has better AIC.
Results are qualitatively similar to the logged model, which in turn are similar to the
linear parametric specification.
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FIGURE B.2: Estimates of model 3.1 where the continuous variables have been repre-
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FIGURE B.3: Estimates of 8 from models of the form log(y + ¢) = a + B + €, across
gradients of c.
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FIGURE B.4: Estimates of model 3.1 where the outcome variable has been respecified
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FiGure B.5: Estimates of model 3.1 where the outcome variable has been respecified
as log(yield + .01) and the continuous covariates havebeen represented by penalized
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FIGURE B.6: Estimates of model 3.1 where the outcome variable has been multiplied
by 100 and rounded, and specified to follow a negative binomial distribution.
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FIGURE B.7: Estimates of model 3.1 where the outcome variable has been multiplied by
100 and rounded, and specified to follow a negative binomial distribution. Continuous
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Appendix C

Subsidies, Social Learning, and
Charcoal Dust: Impact and
Adoption Dynamics of Biochar in
Western Kenya:

Supplementary Information

TABLE C.1: Comparison of summary statistics by demonstration plot status; taking a
demonstration plot, not being offered a demonstration plot, and refusing a demonstra-
tion plot. The sixth and seventh columns respectively give the p values of the differences
between those with and without demonstration plots, and the differences between those
with, without, and refusing. The latter are p-values associated with F-statistics.

1 2 3
All Got demo  No demo  Refused demo  p(diff(1,2)) p(diff(1,2,3))

N 1115 72 1034 9 - -

Gender (male=1) 0.25 0.28 0.24 0.11 0.53 0.53
Maize yield (t/ha) 1.34 1.30 1.34 1.79 0.71 0.25
Maize hectares 0.35 0.31 0.35 0.48 0.28 0.28
Beans yield 0.23 0.25 0.23 0.10 0.58 0.51
Beans hectares 0.33 0.29 0.33 0.76 0.34 0.02*
Fert. exp. per hectare 88.97 87.40 88.95 103.98 0.86 0.82
Acres sugar 0.10 0.11 0.10 0.01 0.72 0.62
Number listing as social contact 92.73 93.94 92.59 99.13 0.83 0.91
Eigenvector centrality (inbound) 0.21 0.25 0.21 0.23 0.11 0.26
Distance from center of zone 0.01 0.01 0.01 0.01 0.47 0.76
Owns bicycle 0.62 0.46 0.63 1.00 0.09* 0.09*
Number of phones in household 1.11 1.08 1.11 1.33 0.78 0.74
Income per year at baseline 346.55 400.22 341.98 484.71 0.61 0.80
Owns motorcycle 0.07 0.10 0.07 0.22 0.49 0.35
Heard of Re:char 0.04 0.03 0.04 0.11 0.61 0.48
Heard of ACON 0.09 0.11 0.09 0.11 0.59 0.85
Heard of the Rutuba 0.05 0.10 0.05 0.11 0.09* 0.17
Has used charcoal as fertilizer 0.05 0.06 0.05 0.11 0.69 0.61
Has produced charcoal 0.33 0.40 0.32 0.44 0.14 0.26
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Ficgure C.1: Locations of the four zones in which the project operated, in relation
to each other and Bungoma town. Dots represent households in the study. Inset map
shows Bungoma’s location in Kenya.

FiGure C.2: Signs placed on biochar demonstration plots. “Bila” means “without” in
Kiswahili.

Demonstration plot

Bila biochar
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Ficure C.3: The spatial distribution of the biochar demonstration plots, established
in August and September 2013. Each zone is approximately 4km?.
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TABLE C.2: Comparison of summary statistics by farmers who attrited after the base-
line survey, versus those who didn’t. The last column gives the p-value of the difference
between the two.

All  Full Sample Attrited p

N 1115 826 289 -
Gender 0.25 0.27 0.16 <01+
Number listing as social contact  92.73 94.01 89.07 0.17
Eigenvector centrality (inbound)  0.21 0.21 0.22 0.54
Distance from center of zone 0.01 0.01 0.01 0.70
Owns bicycle 0.62 0.61 0.65 0.42
Number of phones in household 1.11 1.13 1.06 0.23
Income per year at baseline 346.55 321.24 420.77 0.11
Owns motorcycle 0.07 0.08 0.06 0.51
Hear of Re:char 0.04 0.04 0.04 0.83
Heard of ACON 0.09 0.09 0.09 0.82
Hear of the Rutuba 0.05 0.06 0.05 0.64
Has used charcoal as fertilizer 0.05 0.05 0.03 0.26
Has produced charcoal 0.33 0.33 0.31 0.55
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F1GURE C.5: Theoretical utility of biochar adoption at a cost of $125/ha (KSh850 per
quarter acre plot), for a hypothetical decisionmaker with a mean-standard deviation
utility function of the form U(u,o) = p? — 7. The mean and standard deviation of
observed profits from demonstration plots are $27 and $140 per hectare, respectively.
The bold contour line represents the combination of taste parameters for the mean
and standard deviation at which the modeled decisionmaker would be indifferent to
biochar adoption. Following Saha [168], v > 0 corresponds to risk aversion, and 6 <
1 corresponds to declining average risk aversion (conditional on v > 0.) This plot
demonstrates that certain sorts of risk aversion could help explain the attractiveness
(or lack thereof) of biochar adoption.
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N. Respondents

FIGURE C.6: Left: Likert-scale responses to the question “how were the yields on the
biochar portion of the demonstration plot, compared to the portion of the demonstration
plot without biochar.” Right: Likert scale responses to the question “among others you
know with biochar demonstration plots, how were yields on the biochar portion of their
demonstration plots, compared to the portions of their demonstration plots without

biochar.”

Impressions of own demo plot

20
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N. Respondents
200
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Very good

Good Same Worse Much worse

Impressions of demo plots of others

[

Very good

Good

Same

Worse

Didn't see

TABLE C.4: Average measured demonstration plot relative increases among social net-

work contacts, by stated perception of the relative magnitude of the average differences,

across different dimensions of social network linkage. We include both reported (sam-
pled) networks (upper panel) and probabilistically imputed networks (lower panel).

Very Good Good Same | Didn’t See

Links 25.53 28.36  31.53 28.23
Average Links with whom farming discussed 24.45 27.95 26.90 24.05
demo plot Links seen in past month 27.71 29.25 28.66 28.66
relative Links seen crops in past month 26.20 2777 32.46 26.64
increase Links seen land in past month 25.24 26.74  28.27 28.73
among Relatives 25.41 25.52  58.55 30.99
reported... Fellow church members 25.64 28.02 28.13 23.70

Fellow savings group members 26.72 34.21 80.84 30.41

Links 27.32 28.14  30.18 28.04
Average Links with whom farming discussed 25.92 26.35 26.14 25.63
demo plot Links seen in past month 28.75 29.30  29.89 29.39
relative Links seen crops in past month 27.20 2747  29.49 27.34
increase Links seen land in past month 26.76 26.75  28.19 27.67
among Relatives 28.45 28.64 39.05 30.10
imputed... Fellow church members 25.98 26.71 27.38 26.21

Fellow savings group members 29.16 29.16 33.34 29.09
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Ficgure C.7: Upper: The distribution of measured percentage differences in yield

between biochar and control portions of demonstration plots, by stated perception of

the relative magnitude of the difference, for holders of demonstration plots. Lower:

the distribution of weighted average measured percentage differences in yield between

biochar and control portions of demonstration plots within (imputed) social networks,

by stated perception of the relative magnitude of the average differences, for the full
sample.
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FiGure C.8: Univariate logistic GAMs relating uptake in early 2014 to the share

of each farmer’s network adopting biochar (left), the number of links in each farmers

network (right), and biochar price (bottom). The right logit controls for the total

number of links in each farmer’s network, and the fit represents the marginal effect at
the mean number of network links.
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F1GURE C.9: The distribution of biochar prices and risk-free trials offered in the 2014
long rains season.
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TABLE C.5: Logistic regression coefficients and naive p-values relating biochar uptake

to the shares (left) and numbers (right) of various dimensions of a social network taking

up biochar, using observed (“Obs.”) and imputed (“impd”) networks. None of the
significant p-values are robust to a Holm-Bonferonni correction.

Share of network Number in network
B se(B) pUAN>0| B se(B) p(A) >0

Links Obs. 0.42 1.35 0.76 -0.02  0.07 0.79
Impd. -1.00 3.77 0.79 -0.06  0.05 0.20

Talked farming Obs. -0.27  0.75 0.72 0.01 0.13 0.94
Impd. -0.76  1.90 0.69 -0.03  0.10 0.79

Seen land Obs. 0.79 0.95 0.40 0.02  0.09 0.80
Impd. 1.74 245 0.48 -0.04  0.07 0.60

Seen Crops Obs. 0.08 0.99 0.94 -0.03  0.09 0.75
Impd. 0.08 2.76 0.98 -0.07  0.07 0.31

Seen Obs. 0.33 1.31 0.80 -0.04  0.07 0.54
Impd. -0.49  3.57 0.89 -0.08 0.05 0.11

Relatives Obs. 0.17  0.70 0.81 -0.06 0.13 0.65
Impd. -0.70  2.47 0.78 -0.09 0.11 0.40

Savings Group Obs. 1.22 0.59 0.04 0.23 0.20 0.25
Impd. 3.60 2.07 0.08 0.17  0.18 0.34

Church Obs. 1.24  0.53 0.02 0.24 0.15 0.11
Impd. 576 2.30 0.01 0.18 0.13 0.16

Distance Within 1km | -1.71  3.83 0.65 -0.01  0.03 0.75
Within 2km | -3.83  5.36 0.48 0.02 0.03 0.44

EV cent. weighted Impd. -5.51 11.87 0.64 -0.06  0.16 0.71
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TABLE C.6: Parametric coefficient estimates and goodness-of-fit statistics from various

specifications of model 4.3. Nonparametric components of these models are given in

figure C.10. The dependent variable is adoption of biochar in early 2014 (in the runup

to the long rains season), and all coefficients represent marginal effects on the logit
scale.

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6 Spec. 7

Intercept —4.39%** 54T _546%**  —5.45***  _559***  _5.46%*F*F 5. 44***
(0.47) (0.79) (0.78) (0.78) (0.82) (0.78) (0.78)
Gender -0.19 —-0.14 —0.10 —0.15 —0.14 —-0.14 —0.16
(0.32) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)
Mateka (zone) —0.47 —0.47 —0.50 —0.45 —0.43 —0.46 —0.48
(0.42) (0.42) (0.42) (0.42) (0.42) (0.42) (0.42)
Mukwa (zone) 0.09 0.04 0.03 0.05 0.09 0.05 0.05
(0.42) (0.42) (0.42) (0.42) (0.42) (0.42) (0.42)
Nasianda (zone) 0.09 0.06 0.05 0.09 0.08 0.06 0.05
(0.49) (0.49) (0.50) (0.50) (0.49) (0.49) (0.49)
Heard of Re:char —0.28 —0.21 —0.20 —0.20 —0.21 —0.21 —0.22
(0.66) (0.63) (0.64) (0.64) (0.64) (0.63) (0.64)
Heard of ACON 1.56** 1.60** 1.54** 1.59** 1.62** 1.60** 1.59**
(0.54) (0.56) (0.56) (0.56) (0.56) (0.56) (0.56)
Ever used char as fert. —0.77 —0.86 —0.85 —0.89 —0.84 —0.85 —0.87
(0.73) (0.74) (0.75) (0.75) (0.74) (0.74) (0.73)
Heard of Rutuba —0.43 —-0.29 -0.27 —0.32 —0.31 -0.29 —-0.29
(0.63) (0.61) (0.61) (0.61) (0.61) (0.62) (0.61)
Got demo plot 1.30* 1.39* 1.36* 1.40* 1.84* 1.36* 1.21
(0.55) (0.57) (0.56) (0.56) (0.80) (0.67) (0.62)
Offered RFT 5.11%** 6.09%** 6.09%** 6.06*** 6.19*** 6.08%** 6.06***
(0.40) (0.73) (0.73) (0.72) (0.76) (0.73) (0.73)
Demo x RFT —0.81
(1.05)
AIC 415.11 407.48 408.59 408.49 408.91 409.48 408.64
BIC 509.04 501.32 514.88 508.10 507.59 508.14 508.43
Deviance explained 0.55 0.56 0.56 0.56 0.56 0.56 0.56
Num. obs. 863 863 863 863 863 863 863
Num. smooth terms 4 5 6 6 5 6 6

**%p < 0.001, **p < 0.01, *p < 0.05
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TABLE C.7: Results of a logistic GAM relating RFT repayment (binary) to whether
or not the respondent had already planted, their reported subjective impression of the
results of the biochar that they got, the amount that they had to repay, their reported
expected expenditure for the 2014 short rains season, the measured difference between
biochar yields and control yields, and their reported income in the previous month.

(Intercept) —4.82* < 2
(159) . «- .
Not yet planted 1.76 g . g "]
(091) i\'—% Y ;’&, o
Partially planted 053 % | =
(0.82) B B & P gy
ImpIeSSIOIl “Very good” 046 0 200 400 600 0 4000 8000 12000
(1 06) Amount to repay Anticipated expenditure SR14
Impression: “Good” —1.03
(1.10)
Impression: “Bad” 0.25 o .
) o e
Impression: “Very bad” 0.64 g ~ g -
(1.21) & ] € 0]
W 0 zas o w0 a0 6
Difference BC vs no BC (tha) September 2014 income
Deviance explained 0.32
Num. obs. 132

***p < 0.001, **p < 0.01, *p < 0.05
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Ficure C.11:
Gaussian, parametric logit, and additive Gaussian. Marginal effects at means of non-
plotted covariates given for Gaussian models (a) and logit model (b). Comparison of
predictions for different models given in (c¢). Differences in marginal effects at means of
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FiGure C.12: Univariate nonparametric logit fits relating the average price for
(partially-imputed) network links (upper) and the proportion of the network having
a RFT offer (lower).

o _| I T T T T TR N S W T TR T 7077 1 1 11
i
[ee]
o | . .
- Proportions adopting
—— Logit fit
o | Logit 95% Cls
g ]
o
e]
&
a T |
o
N
S A
o
S -
T T T T T T T T
700 750 800 850 900 950 1000 1050
Average price for (imputed) links
o _| I T T T T TR N S W T TR T 7077 1 1 11
-
[ee]
S 7 . .
— Proportions adopting
—— Logit fit
o | Logit 95% Cls
g ]
(o]
e}
S
a T |
o
[qV]
S
o
S -

Average price for (imputed) links

164



TABLE C.8: A 2-stage least squares version of model 4.6. First stage models in columns
1-4 —models 1 and 3 are first stages for model 5, while 2 and 4 are first stages for model 6.
Standard errors based on White’s heteroskedasticity-robust variance-covariance matrix
estimate. Plots of the estimated marginal effect of the social network and of price
(based on model 6) given below the table. In addition to reported coefficients, all
models control for area dummies, gender, having a demonstration plot in late 2013,
having heard of ACON, the Rutuba, or Re:char, ever having used charcoal as fertilizer,
previous-month income, and RFT repayment discount.

Dependent Variable: Had biochar early 2014  Share w biochar early 2014 Adopt late 2014
Intercept 0.08 0.15 0.01** —0.02* 0.33*** 0.04
(0.13) (0.19) (0.00) (0.01) (0.09) (0.13)
Got demo plot 0.08 0.08 0.00 0.00 —0.05 —0.05
(0.04) (0.04) (0.00) (0.00) (0.04) (0.04)
Share net. w/demo —0.19 —0.33 0.00 0.00 —0.14 0.06
(0.51) (0.53) (0.03) (0.02) (0.65) (0.67)
Late 2014 BC price —0.01 —0.01 0.00 0.00 —0.09***  —0.09***
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01)
Share with 0.57 —0.53 0.97*** 1.64%**
(0.82) (3.04) (0.04) (0.17)
Share with cheap offer 2.16 3.87 0.09 0.73**
(1.62) (3.29) (0.08) (0.23)
Risk-free trial 0.65%** 0.65*** 0.00 0.00
(0.07) (0.07) (0.00) (0.00)
Early 2014 Price —0.01%** —0.01%** 0.00 0.00
(0.00) (0.00) (0.00) (0.00)
Share with cheap offer x Share with —13.12 —34.49 0.08 —11.14**
(11.22) (50.13) (0.65) (3.69)
Share with cheap offer x (Share with )2 60.85 45.16**
(196.95) (14.33)
Early 2014 price x RFT —0.04*** —0.04*** 0.00 0.00
(0.01) (0.01) (0.00) (0.00)
(Share with )2 4.91 —2.84%**
(12.97) (0.74)
Had biochar early 2014 —0.04 —0.05
(0.06) (0.06)
Share with biochar early 2014 —0.24 3.30*
(0.40) (1.33)
(Share with biochar early 2014)2 —11.10**
(3.99)
RZ 0.72 0.72 0.95 0.96 0.13 0.14
Adj. R2 0.71 0.71 0.95 0.95 0.11 0.11
Num. obs. 803 803 803 803 803 803

**p < 0.001, **p < 0.01, *p < 0.05
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FiGure C.13: Left: impressions of the difference in yield between portions of farms
with biochar, and portions without. Right: distributions of adjusted yield, by stated
impression of impact.
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FiGure C.14: Upper panel: Reported versus measured yields and land under maize

for the portion of the sample adopting biochar in early 2014. Lower panel: range of

reported maize harvests (reported quantities of maize divided by reported land are

under maize) by individual respondents who were surveyed multiple times, for the late-
2013 and early 2014 harvest seasons.

~ " ’ E
E o =
= ° c
- 7 ° 8 © o
T o 8 o] :
> ‘T . l
B ™ E g ] .' o,
= 3
g ° Z oA 7
= - s © '
@) = S °
© 9 | T T T |
0 1 2 3 4 00 02 04 06 08 1.0
Reported maize yield (t/ha) Reported maize land (ha)
Short rains 2013 Long rains 2014
o
™
3 )
5 5 S
> >
g - g 9
L L
. mlloll o o . = =
[ [ [ [ [ [ [ [ [ [
00 05 10 15 20 25 0 1 2 3
Range of reported yields (t/ha) Range of reported yields (t/ha)

167



FicUre C.15: Estimated average response of maize yields to inorganic fertilizer ex-
penditure in the long rainy season, from a fixed-effects regression using data from the
long rains of 2010 through the long rains of 2013.
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FiGURE C.16: Confidence regions for the combination of subsidies and demonstration
plot provision that maximizes adoption at a giver per-farmer program expenditure.
Heatmaps give bivariate kernel densities of this combination, based on estimates of
propensity to adopt as a function of these treatments (model 4.6), along with modeling
assumptions described in section 4.4.5. Calculations based on maximum likelihood
estimates of model 4.6 are given by blue dots, and mirror the line shown in figure
4.6b. Confidence regions for these estimates are calculated by taking 500 draws from

the posterior of model 4.6; 3 ~ N (B, s [;>, and using those simulates in place of the

central estimate in the objective function. 95% confidence regions are drawn to include
the highest-density coordinates that contain 95% of the plot’s density.
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