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ABSTRACT

Two different kinds of semiclassical approximations are used
to evaluate a previously obtained quéntum mechénical transition
state theory rate expression. No assumptions; however, such as
separébility of the Hgmiltonian, vibrationally adiabatié motion
along a reaction‘coordinate, etc., are incorporafed. Application
is made to the collinear H + H, reaction, and agfeement with accurate
quantum scattéring calculations is found to bé feasonably good. The
results indicate that transition state theory--provided no assumptions
of separability are included--is probably as aécﬁrate quantum me-
chanically as it has been found to be classically for describing the

threshold of chemical reactions with an activation barrier.
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1. INTRODUCTION.

The accurate description of the threshold region of a chemical
reaction with an activation barrier 1s one of thé few important
features of chemical reaction dynamics that can not bé adequately

described by the usual classical trajectory methods. Because of

the importance of this region for determining the thermal rate

constant, however, this is a serious shortcoming of a completely

| classical description. The complex-valued classical trajectory

approach of classical S-matrix theoryl has shown that it can de-
scribe this tunneling region well, but it is often a difficult
calculation to carry out and one desires simpler models which are

accurate.

There have been several recent studies which indicate that the

"fundamental assumption"2 of transition state theory--i.e., the

identifiéation of all flux through a specially bhqsen surface in
cobrdinate'sbace as reactive flux--is quite accﬁrate for energies
in‘the threshold region. Pechukas énd McLafferfy,3 for example,
have'showﬁ that within the realm of classical mgchanics transition
state theory is exact for sufficiently iow energ&; for collinear
system they have also found a simple geometriéal ériterion to
determine a lower limit to this energy below which tramsition
state theory is exact. Also, Chapmén, Garrett, and Miller4 have
éompared tﬁe microcanonical version of classical transition state
theory with a microcanoﬁical classical trajectdry'calculation for

the collinear and for the three-dimensional H +'H2 reaction. In
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the thteé—dimensional case, for example, they find that transition
state thepry’is in essentially exact agreement with the trajectory
results.fbf energies up to about 0.3 eV above‘the'height of the ’ -
activation‘barrier, and even at the felatively ﬁigh energy of 1 eV.
above the barrier height it is only 10%Z larger than the exact
tréjectory result. This means that in a strictly classical world
transitidn state theory would give the rate éonstant for this reaction
essentially.exactly for temperatures up to thoﬁsands of degreeg.
Work by Ma_rcusS and by Morokuma and Karplus6 Hés also.ipdicated
that classical transition state theory is a godd.épproximation
to classiééi dynamics for collision energies not too far above
the barrier height.

As noted above, however, quantum effects.gig_important in
the threshold region} so that a quantum mechanical version of
transition state theory is required. Previous>quéntum mechanical
versions of transition state theory,7’8 however,_ihcorporate other
approximatiqns--e.g., sepa:ability of the Hamilto;ian about the
saddle point of the potential surface, vibrationally adiabatié
motion along a reaction coordinate, etc.,--in é&dition to fhe
"fundamental assumption' itself. It is our hypothésis'that these
additional dynamical approximations are the regsbn that transition
state theéry‘has given pobr agreement with accurate quantum scatter-
ing'calculations;gki.e., we believe that the fundamental assumption
of transition state theory is itself accurate--as in the classical

examples described above--but that it must be implemented quantum

mechanically and without introducing any dynamiéal approximations,

such as sepafability;



Such a theory has recently been formulated;10 i.e., a fully
quantum me?hanical theory which invokes the.fundaﬁental assumption
of trqnsition state theory but makes no other?dynaﬁical approximations.
By introducing a semiclassical approximation for the Boltzmann |
qperator,11 the semiclassical limit of this quéﬁtum mechanical
transition'state theory has also been defiveci.l2 This "semiclassical
transition state theory"12 leads to a very 1nteresfing and physically
intuitive picture of the tunneling dynamics whiéh charactérizes the
threshold region: The tunneling takes place aibng a periodic classi-
cal trajectory on the upside-down potential sufface, and the stgbility
paramete‘rs13 which characterize the periodic orbit appear in the theory
as the generélization of the normal mode frequencies of thé "activated
coﬁplex". It is important that‘althoﬁgh this model invokes a semi-
classical approximation to the quantuﬁ transitioﬁ‘state rate
expression obtained in reference 10 , no approximafions such as
séparability, or vibrational adiabatiéity, are iﬁtroduced.

This papér presents the first numerical reéults of this semi-
classical iimit of quantum transi;ion state theory, here for the
siﬁplest poséib}e example, the collingar H + Hz-teaction. The
agreement with quantum scattering calculations is ;easonably
good, and one sees, for example, how the tunneling "cuts the corner"
inéreasingly as the energy is decreased. Section II summarizes the
semiclassical limit of quantum transition state theory, and the
results of the calculations are presented in Section IV.

Sectioﬁ IIT describes another kind of semicléssical approach

to evaluating the quantum rate expression, this based on a semiclassical
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-approximacién for the quantum mechanical phase”spéce distribution
funétioh;‘:The results of calculations based on ﬁhis model are
also presented in Section IV, and they too are in good agreement .
with accurate scattering calculations. It ié iﬁportant that this
approachiislrelatively simple to implement, so tﬁat it may bé a’
practical procedure for treating reactive systems in three-

dimensions.
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IT. SUMMARY OF PERIODIC ORBIT THEORY.

The rate constant for a collinear A + BC reaction given by

[e]

o -1 -1 "
k(D = o @ em /dE N, @)

where E is é total ehergy and Qa(T) is the parti;ion function per
vunit volume (actually per unit length for a éollinear systém)
for noninterécting reactants. N(E) is the "cuﬁmulativg reaction
prqbabiliﬁyf that was designated P(E) in referénée 12; we have made
this chghge‘in notation in ordér to conform méfe‘closely with
previousvwofk of other researchefs; Eq. (2.1) is no approximation
in itself, and to see how the semiclassical "pétiodic orbit" result
of reference 12 relates to other theories, it;ié»illustrative to
review the form taken by N(E) in Variousunan;umvmechanical and
clasgsical approximations.

The dynamically exact quantum mechanical rate constant, for
example, cofresponds to Eq. (2.1) with N(E) given in terﬁs of
reactive S-matrix elements which come from a quéhtum scattefing

calculation:

2

N = E: oy, @1 . 22
Tp2Ma

where n_ and n, denote the quantum state of the reactant and product
molecules, BC and AB, respectively. Dynamicallywexact classical

mechanics corresponds to Eq. (2.1) with.N(E)‘given by
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where F is the number of degrees of freedom (F-= 2 in the collinear
case), f(q) is the function of coordinates which defines the surface
in configuration space, f(%) = 0, which divides réactants and products,
and M is the number of time a trajectory which begins Qith initial
conditions(g;g)op the dividing surface recrosses this surface as time
is run forward to + ® and backward to - . NCi(E) is independent of
the partiéulér choice of the dividing surface. .

Classical transition state theory correspondé fo Eq. (2.1) with
N(E) given by Eq. (2.3) with the assﬁmption M= 0,_i.e., the assumption
that there ére no trajectories which recross the dividing surface;z’3
;this.result;of course, is not invariant to the choice of tﬁe dividing
surfacé. Thus,

1

Nep rop(E) = 2mh b~ fdp fdq S(E-H) 6[f(q)] 7|3g B u

1

If the coordinate qp measures distance normal to the dividing surface,

then

~

and it is not hard to show that Eq. (2.4) then becomes



3 2

e
o
o
ﬁn‘;?i.
&é
o
P
Fop)
S

N ® = 0" FV jap  sag  mE-H,_ D (2.5)

CL TST F-

where h(x) is tﬁe step-function

h(x) = 1, x>0

0, x<0 s

and the F-1 dimensional phase spacelaverage is over all degrees

of freedom other than 9ps HF 1 is the Hamiltonian for the remaining
F-1 degrees bﬁ freedom with the potential energy‘surface evaluated

at qp = 0. For the collinear case, Eq. (2.5) réads

2

‘ _ -1 Pu . . »

where u  1is the coordinate along fhe dividing sﬁtféce (actually
a dividing line in the collinear case) and V(u,s)_is.the total
potential épergy funcfion; s is the coordinate éerpendicular_to
the dividiﬁg surface. (See Figure 1 of réfereﬁéé 10.) It is

(E);is the classical

clear from Eqs. (2.5) and (2.6) that NCL TST

approximatioh'to the humber of quantum states for the system with

F-1 degrees of freedom which have energy less Fhaﬁ or equal to E.
Thevconventional quantum meéhahical‘versidn of transition

étate theofy?»is'meaningful only if the pofentia;‘is aésuméd to

be separable;

V() = V@) + V() r.  @



Vl(ﬁ) is é'potential well, and Vz(s) a potential barrier. If
Ptun(Et) is the one dimensional tunneling prdbhﬁility for the
8 dégree éf freedom with translational enérgy étwand if {En},
n= 0,;., ére the vibrational eigenvalues for_ﬁﬁe poteﬁtial

well Vl’ then N(E) is given in the separable limit of quantum

mechanical transition state theory by
NseP QM TST(_E) - z : Peun & - En) o (2.8)
' n=0 - S .
Although the vibrationally adiabatic model8 does not assume
separability in precisely the same form as Eq.. (2.7), it leads
to a fuﬁction N(E) of the same form as Eq. (2{85,
The more general quantum mechanical transition state theory

derived in reference 10 corresponds to Eq. (2.1) with N(E) given

by

Nou rsr®) = 2mh tr[6(E - H) 3(s) %lps/nfll s 2.9)

‘which one recognizés as the obvious quantum meéhanical version of
Eq. (2.4). Thes_emiclassicalvlimit12 of,this'g#ﬁ;ession involves

a beriodic trajeéﬁory on the upéide—gggg potential surface. If

6(E) is the classical action integral (in unitgfof.h) along this
periodic'trajéctory with energy E and u(E) the stability parameter
which characterizes it (it is an unstable perio&ié trajectory), then
the Semiclassical limit of Eq. (2.9) is -

(E)‘ - 1 R

N I+ expl26(E) + (m + 3) Q(E)] -

SC. TST (2.10)

n=



The_peridd of the periodic tréjectory'is related to the action

integral by.

T(E) = - me' (E)

and it is useful to define the fréquencybw(E) by . 

w(E) = u(E)/Tf(E) H

Eq. (2.10) then reads

= 1 .
“sc s1® Z T+ exp(26(E) - 26 (B) ho(® @ + p1 &1

=0
If the potential function is separable, as in Eq. (2.7), then the
action integrél 0(E) is the ordinary one dimensional barrier penetra-
tion integral for the potential barrier V2(s), and_w;—which is not
a function of energy in this case--is the harmonic ffequency for the
potential well Vl(u).
Eq. (2;11), however, actually gives poor agreement with the exact

quantum mechanical N_. (E) of Eq. (2.2), and thisucaﬁ'be understood in

QM _
the following way. For a separable potential function [Eq. (2.7)]

Eq. (2.8) ié the correct result for quantum mechahical transition state
theory. The one dimensional WKB approximation for the tunneling
probabiliﬁy isl4 |

1

Ptun(Et) T 1+ exp[ZG(Et)] ’ (2.12)
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where 6(E£) is the barrier penetration integfal»fbr the potential.
barrier Vé(s) with translational energy Et' With'thié semiclassical
approximation for the one dimensional tunneliﬁg'probability and with

a harmonic approximation to the energy levels of the potential well

vl(u) ]
- 1 o |
e, = M+, (2.13)
Eq. (2.8) becomes .
' 1
N (E) = E . (2.14)
Sep QM TST bewd 1 + exp[20(E - (n + %)hw]

This is seen to be identical to Eq. (2.11) if one makes the

approximation

0(E - (+Dhw) = 8B -0 ®ho m+D) (2.15)

i.e., if.one keeps only the lowest order term in an expansion

in powers of h. .The approximation in Eq. (2.15) ;s certainly
.consistent Qith the semiclassical nature of thé fheory, but for
very quantumflike systems, such as H + H2, the'frequency w is
large enough to make Eq. (2.15) a poor approximation.

The ideé for correcting Eq. (2.11), therefofe, is to.identify

the exponenf as the first two terms of a Taylor series expansion
in powers of h and then to "unexpand" it. One thus defines the

energy En_so that
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‘ , )
B(E) = 6(E) - 0 (E) hw(E) (n+3
to lowest order in h, and this leads to the choicé

. L | =
En = E - hw(En) (n + 5) 3 | : (2.16)

i.e., En is the root of this equation (which is easily solved

by successive substitution). The interpretation”is that En is

the translational enefgy‘for motion along the "reaction coordinate''—-
i.e., the periodic path--if the transverse degreé of freedom is

in vibrational quantum state n. The modified expression for |

semiclassical transition state theory becomes

1
No¢ 7sT(®) = 1 + exp[26 (En)] ?
, —

(2.17)

with En determined for a given value of E by Ed; (2;16).

In the éeparable limit the frequency w(E) bgdomes energy
independent, and.Eqs. (2.16) and (2.17) give Eq.—(2.14); the
only approximation in this case is the WKB appro#imation for
one dimensiénal funneling, and one knows this to be Quite adequate.
The interest in the semiclassical version of transition state
theory, howéver,vis for the nonseparable case,:ahd Section IV
gives numerical results for the comparison of Eqs. (2.16) and

(2.17) with the exact quantum result for N(E), Eq. (2.2).
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III. A SEMICLASSICAL PHASE SPACE DISTRIBUTION.

The quantum mechanical rate expression of.transition
state thedry obtained in reference 10 was shoWn';o be'équivalent
to the completély classical expression if the‘élassical distribu-
~F _-B8H(p,q)

tion functidn, h , is replaced by the Wigner distribution

function, W(p,q):

-F ., ' -ipeg'/h 1 ', -BH, 1
W) = hFsag RGN qqu g - 2> L G

: ' L . 10 :
That is, the rate constant of quantum transition state theory i

is

)

6O

k(D = Q (D7 fap faq W(p,@) SE@] § 2R, @) !

f(g) = O-defining the "dividing surface" in the usua1 way. : !
This Section describes another kind of seﬁiélassical a;proximation
for the fate constant which is obtained by introducing a semiclassical
appfoximatioﬁ for the quantum mechanical phase space distribution
function. The distribution function we use is suggested by expressions
which arose in considering the classical path apﬁroximation for the . :

' 11 - .
Boltzmann operator.” = Thus the quantum partition function, which is

given in terms of the distribution function by
Q = Jdp, fdgg W(pg.qp) s (3.3)

is also given by
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: ~BH
Q = Jdg, <30|e lqy>
-BH
' | 52 | .
= Jdq fdgq, |<31|e [SO>| . o (3.4)

Using the classical path approximation for the matrix eiements
in Eq. (3.4) and changing variables of integration (see ref. 11
for more details) gives the following semiclassical approximation

for the partition funct:en:

Q = r;“F/:iBOﬁgo exp[-hZ /dT H(T))] | (3.5)
| 0 |

where H(T) = H(p(t), q(T)) is the value of the Hamiltonian at

"time" T, with q(7) and p(7) determined by the equations of

motion
Ty 5H . .
1@ = 5 = p/m (3.6a)
; % .
R © _ OoH _ aVv I | :
p (D = 55 = * 3 : (3.6b)

(note the + sign in Eq. (3.6b)) with initial conditions

'3(0)' (3.7a)

1]
£
(=]

[l
o

E<O) Yo . " (3.7b)

Eq. (3.6) describes a classical trajectory in thé‘time variable

T on the upside-down potential surface -V(q).
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Comparing Eqs. (3.3) and (3.5), the temptation is to
identify the integrand of Eq. (3.5) as an approximation to
the Wigner distribution function. Liouville's'theorem, however,

implies that
dgo dgo = dE(T) dS(T) s

for any T, so it follows simply that

| 2" % |
Q = h—Fﬁgo/;go exp [- % /dr H(DT. - 3.8
Ty ;' o o

for any value of Ty with (S(T), E(T)) still determined by Eq.b
(3.6) with the initial conditions in Eq. (3.7). Although qQ is
independént of the choice for To in Eq. (3.8), ﬁhé'integrand—-
the function of Py and 99 which one wishes to ideﬁtify as the
distribution function--is not. )

The chéice for T, which seems most justified is the one

0
which is most symmetrical,

T = j%?

0 . : e _ (3.9

one then identifies the integrand of Eq. (3.8) as the semiclassical

distribution function:

=
0w

=
\4-\
(=9

. -F
W(Bo530)' = h exp [~

T H(1)] - (3.10)
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where the trajectory (E(T), q(1)) 1is detérmined_by Egs. (3.6)-

(3.7). This choice for 1, is reinforced by the fact that for

0

a one-dimensional parabolic barrier,

V(x) = —-;'—mwzxz . SR O (3.11)

the one-dimensional tunneling coefficient F,.- .

<0 O

r = 2mhR er(O) /dx/dp W(p,x) 6(X)H% [p] ,  (3.12)

e o] -0

which one obtains with the distribution function in Eq. (3.10)
is found to bé

1

I = ZheB/sin@ hug) | (3.13)

which is the exact result for this case. The éhpice Ty = %?

is the only one which gives the correct tunneling'coefficient,
Eq. (3.13), for the parabélic barrier. One can also show that
Eq. (3.10) gives the exact partition function fér'a'harmonic
osciilator, but any value of To in Eq. (3.8) will do this.

Ohe already knowé that the distribution fﬁncfion of Eq..(3.10)
gives partition functions quite well,11 and the dn;y other feature
that it must describe for the present applicatién:is tunneling.

It was noted above that it gives the exact resﬁlﬁ_for a one~dimensional
parabolic,barrier, but to get a more revealing measure of ité accuracy
in this regard we have considered tunneling through the one-dimensional

Eckart barrier,
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V(g)f = v, sechz(x/a) . o , (3.14)

- ‘ - . 16
This is a convenient test case since Johnston - has tabulated

the exact value of I' for the potential for a wide'range of

the two dimensionless parameters

: 2V 1/2 - R !
u = %? 6—59) ; ' (3.15a)
o = @ﬁé (2m vo)l/2 ; '_. . (3.15b)

u is proportionai to 1/T, T the temperature, and'd is a measure
of how quantum-like the system is (the smaller a; the more
quantum-1like).

Figufe 1 shows the comparison between the exaét16 tunneling
factor T (solid line) and the result given by Eqs. (3.10) and
(3.12) (broken line) as a function of u for twb values of a.
.[Zim r =.1 in all cases.] The one-dimensionai bafrier for the

u+0

H + Hz_reaction, for example, corresponds to'aiz'10-12, so that

o =4 is considerably more quantum-like than the H + H, system, and

2
o = 20 is more classical-like. These one—dimensional_results

are therefqre quite encouraging and suggest thét the distribution
function in Eq. (3.10) is sufficiently accurate so far as the one-
dimensional aspect of tunneling is concerned. |
For the collinear H + H2 reaction Eq. (3.2), with Eq. (3.10)
for the distribution function, gives the rate constant as
. e

—

C; o oo ' ) 4

- -1 -2 1.,Ps 2 ‘
k'b*—a _-.<Qa (2mh) dps du fdpu 3 Im lexp [- h/ dt 'H(T)].,(3.16)

hg
A
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where H(T) is evaluated along the classiéal'trajectory that

evolves on  the upside-down>potential surface ‘with initial

conditions
s(0) = 0
'.u(O).”é u
pS(O) = Py
pu(O) = P, ; (3.17)

one integrates the equations of motion forward from T = 0 to
T = 253 and backward from T = 0 to T = - %? » in order to

‘compute the exponent in the integrand of Eq. (3.16). The

three dimensional integral is evaluated numericaliy, and in.
higher dimensional systems one would probablyvresbrt to Monte
Carlo integrétion methods!

Finally, it should be noted that within chig model it is
a trivigi‘matter to include the full classical dynamics of
the reaction’in real time, eliminating the neéd £§‘make the
'"fundamenpalvassumption" itself; this follows ffom-the discussion
in Section V ﬁf ref. 10. For the collinear H>+ HZ reaction,

for example, the necessary modification to Eq. (3.16) is simply

to insert in the integrand the factor

M L
1+ (-1) | o
2+ D) ’ | | (3.18)

where M is the number of times that the trajectory, with the

initial conditions of Eq. (3.17), crosses the line s = 0 as real
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time is run forward to + « and backward to - . (Note that
this tféjectory is on the ordinary, right—sidé ;b potential
surface.) This procedure essentiglly amoﬁnts;;o a Keck—type1
classiéal tfajectory calculation with the modification that
the claséicél distribution function is replaced by the above
semiclassical one. One thus carried out a claésical trajectory
calculation in.real time to determine the "transmission
coefficieﬁt"‘, Eq. (3.18), and then with the same initial -
conditions.carries out another trajectory caléﬁiation on

the upside-down potential surface to determine_tﬁe value of
the semiclassical distfibution function for the given initial
point in phase space. The reader should fecognizé‘thatla
calculation such as this should Se'quite practical even for-

three—dimehsional A + BC collision systems.
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IV. RESULTS.

Consider first the results of the periodic orbit model
described in Section II. Calculations were carfied out

[

for the collinear reaction,

H+H +H | I (4.1)

b, > H

2
using theiiTruhlar—Kuppermam]'i8 potential surfaéé for H3 (a
Wall--Porterl9 fit to the scaled Shavitt-Stevéns-Minn—Karpluszo
potentiél_surface) and also for the Porterél(arplus21 potential
surface. |

Figuré 2 shows the periodic trajectory for two different
energies E, one just below the barrier and oné fér below it.
So lbng as E < Vsp (the only.region considered in ;his>paper)
the trajectories are all real valued and relatively easy ﬁo
find because of their high symmetry. Tﬁere is Qﬁly one such
trajectory fbr a given energy. As E -~ VSp the trajectory becomes
infinitesimally short in length and moves to'the saddle poiht
of the potential surface; for lower energies the:periodic trajectofy
"cuts the corner" of the potential surface, thevmbre so the lower
the energy.

Figures 3 and 4 show the action integral Q(E) and the
stability parameter w(E) as a function of ghe tofal energy

for the Truhlar-Kuppermann potential surface. One notes that

2im  O(E)

=0 (4.2a)
E+V
5p
2im w(E)‘ = w+ ’ ] : ) (4.2b)
BV o .

5Pp.
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where m+ is the symmetric stretch frequency at the saddle
point, the Quantity which appears in conventional transition

state theory. It is tempting to suspect that‘thelzero energy

H

limit of w(E) might be w
' 2

, the vibrational ffeddency of the

isolated HZ molecule:

éig w(E).= sz . B : (4.3)
Although this is clearly the trend seen in Figufe 4, it does
not appear to be quantitatively true.

The cummulative reaction probability for the two potential
surfaces is shown in Figures 5 and 6. The solid lines are the
" exact quantum mechanical values,22 Eq. (2.2), and the daehed
lines are the semiclassical transition state theor& approximation
given by Eq. (2.17). The agreement between the two is seen to be
reasonably good. The accuracy of this semicléséical transition
state theory is, in fact, almost as good as the results of classical
S-matrix theory.l |

The results based on the eemiclassical phaee'space distribution
of Section III are shown in Figures 7 and 8; ehe_duantity shown is .
the rate constant for reaction (4.1) ae a functiqn‘of temperature on
the Truhlar—Kuppermann18 and Porter—Karplus21 éotential surfaces,
respectiveiy} For comparison the rate constant of conventional
transition state theory,

+ -1 o
L =‘Qa-1 kT [2 sinh (-h“;—B)] S, (4.4)
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where w+lis the symmetric stretch frequency at thé saddle point,

is also shown (the lower solid line). No tuﬁﬁeiing factor is

included invK. (4.4) since Truhlar andeuppe_rm::_mn9 find that

the use of ény of the Variety of one-dimensional tunneling

corrections tends to do more}hérm than good.  dne sees that this
semiclassical approximation to quantum transifioﬁ state theory

ha; gone’a'long way toward correcting the deficiéncies of conventional
trapsition state theory. >At 200°K, for exampie,.Fonvéntional

transition state theory is about a factor of 30 and 70 too small,

respectively, for the Truhlar-Kuppermann and Porter-Karplus

~ potential surfaces, while this semiclassical approximation to

quantum transition state theory is correspondingly a factor of 1.6

and 2.3 too small.
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V. CONCLUDING REMARKS.

The results of both of the semiclassical approximationsvto
the quéntum transition state theory rate constant are in reasonably
good ag:ééﬁent with the corresponding’quantum'scattering calculations.
The indication is, therefore, that the "fundamental assumption” of
transition state theory is valid in the threshéld region of this
.reaction quantum meéhanically, just as it has béeﬁ_seen to be
classically.4 It is not possible to say whether the remaining
discrepahéy is due to transition state theory itself or to the
approximations used to evaluate the quantum ekpreésion. Other ways
of evaluating the quantum rate expression are béing explored, and
it may be that they can help answer this question. 

12 summarized in Section II is the

The semiclaésical limit,
theoretically more appealing of the two approaéhes described in this
paper. It is obtained from a well established:préscription--the
stationary bhase approximétion-—and the resulting periodic trajectory
and its stability parameteré have interesting pﬁyéical interpretations.
The approach_based on the semiclassical distribution function.of Section
III, however, is clearly the more practical of,thé two, and it seems to
be no less accurate. It would certainly seem fhat calculationé of this

type are feasible for three-dimensional A + BC reactive systems, and

applications such as these are planned.
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FIGURE CAPTIONS

1. One dimensional tunneling coefficient for the Eckart

5.

barriér.[Eq. (3.14)]; the dimensionless_péfameters

a and u are defined by Eq. (3.15). The solid line is

thé exact quantum mechanical values given iﬁ reference
16, and the brdken line the result given by Ed. (3.12)
with the semiclassical phase space disbribﬁfion function
of Eq. (3.10). |

A perspective view of the upside-down H, potential surface

3
with the periodic trajectories corresponding to two different

energies. The circle shows the position of the saddle point.

The classical action integral (a generalized barrier

penetration integral) along the periodic trajectory on

the upside-~down H3 potential surface, as a:fugction of
total energy E. VSp is the height of the saddle point.

The stability frequency (defined following:Eq. (2.10))

for the (unstable) periodic trajectory on'fhe:upside—down
H3 potential surface, as a fuﬁction of totél energy E.

The quantity plotted is Ehe ratio of the stability frequenéy

to the vibrational frequency of the free H2 molecule, wy .
2
The cummulative reaction probability N(E) as-a function of

total energy E = E0 +-% th , here for the collinear H + H

reaction on the Truhlar-Kuppermann (reference 18) potential

2

surface. The solid line is the exact quantum mechanical

result, Eq. (2.2), of reference 22, and the points connected
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by the broken line are the values given by the semiclassical

limit of quantum transition state theory, Eq. (2.17).

‘Same as Figure 5 except with the Porter-Karplus (ref. 21)

potential surface.
Rate constant as a function of temperaturé'for the collinear

H + H, reaction, here with the Truhlar—Kupperménn (ref. 18)

2
potential surface. The upﬁer line is the exact quantum result
(ref; 9), the lower line the result of cbnyehtional transition
state theory, Eq. (4.4), and the points the results given by
the Eq. (3.16) which is based on use of ‘the semiclassical phase
spaée distribution function. |

Same as Figure 7 except with the Porter—Karpiﬁs (ref. 21)

potential surface.
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