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Statistical mechanics characterizes systems in or near equilibrium using a handful of “state” vari-
ables, e.g. temperature, rather than 1023 degrees of freedom. Statistical physics describes the
expansion of the early universe, aspects of black holes, and most fruitfully, phases of matter and
their properties. Quantum considerations have improved this understanding over time and revealed
new phenomena, especially in complicated “strongly correlated” systems. Topological phases of
matter, e.g., are of both fundamental and practical interest: these phases cannot be distinguished
locally, unlike ice and water, which also allows them to store and process quantum information in
a “fault-tolerant” manner, recently proposed for application to quantum computation. However,
above zero temperature, thermal effects can overwrite this information.

Recent experiments on isolated systems have raised fundamental questions and revealed new
routes to quantum computing. We now know that entanglement, generated dynamically as a
quantum state evolves, “hides” local information about the past, producing familiar equilibrium
states, described by a temperature. However, many systems do not thermalize: strong disorder
can lead to MBL, which supports numerous phenomena forbidden in equilibrium and can protect
quantum information at infinite temperature. In particular, both MBL and thermal systems are
robust phases of matter, with a novel, athermal phase transition between them.

This thesis begins with an overview of MBL and thermalization, followed by an overview of
exactly soluble quantum systems. We then turn to an important result in the field by this author:
we introduce the first nontrivial example of an integrable Floquet model and comment on its
solution and salient features. We then discuss how integrable models can provide insight into
quantum thermalization, e.g. in terms of entanglement growth and demonstrating that conserved
charges diffuse. We then investigate thermalization away from the integrable limit, also known as
“quantum chaos.” We review the standard techniques in this field and, briefly, several important
results, before reproducing work by this author establishing definitively the long-conjectured result
that the onset of thermalization in the presence of a conserved charge is governed by diffusion
of said charge. We then investigate the interplay of conventional and topological order with
nonequilibrium phase structure, with applications to quantum computation in mind. We review
localization-protected quantum order in several models. We then investigate two models with non-
Abelian symmetry, and show that MBL in such models can only realize if the symmetry breaks
spontaneously to an Abelian subgroup. Finally, we conclude by examining open quantum systems,
where we find several counterintuitive results that show that baths can, in some cases, enhance
localization in certain systems, which may have use in realizing quantum computation.
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Chapter 1

Introduction

1.1 Equilibrium and Thermodynamics

Most of our understanding of physical systems relies on the concept of equilibrium. From expansion
of the early universe to classifying phases of matter, most techniques and theories in some manner
invoke the notion that a system is in equilibrium with its “environment,” a mysterious entity that
may represent the immediate surroundings of a particular experiment or the entire rest of the
universe. Even theories of dynamics and many out-of-equilibrium systems rely on some notion
of proximity to equilibrium, or the existence of “local equilibrium,” e.g. a temperature T (x, t)
that varies in space and time, rather than being globally uniform; however, local or otherwise,
thermodynamic quantities like temperature are only well-defined in equilibrium.

The subject of thermodynamics developed the concept of equilibrium to explain certain phe-
nomena that now fall under the umbrellas of physics, chemistry, and various aspects of engineering.
Thermodynamics describes various “thermal cycles,” e.g. engines and refrigerators (which are also
“engines”), and requires the existence of an external thermal reservoir with which the system may
exchange heat or volume, e.g., throughout the cycle. Thermodynamics established several types
of equilibria that can exist between two systems: if, on average, the two systems do not exchange
energy, they are said to be in thermal equilibrium; if, on average, the two systems do not exchange
particles, they are said to be in chemical equilibrium; if, on average, the systems do not exchange
volume—i.e., changes in their interface maintain the average volume of each—the systems are in
mechanical equilibrium. Additionally, thermodynamics establishes a handful of laws, which bear
the subject’s namesake, for example that if two systems, A and B, are each in thermal equilibrium
with a third system, C, then so too must A and B be in thermal equilibrium with one another.

A key feature of thermodynamics is the associated reduction of variables: a classical system with
a “typical” number of particles—i.e. a mole, or 1023 particles—is well described not by the positions
and momenta of this absurd number of particles, but by the total number of particles, N , the
pressure, P , volume, V , and temperature, T . This is captured by the ideal gas law, PV = NkBT,
where kBT has units of energy, and kB is the deservedly named Boltzmann constant. Such laws
were first derived using thermodynamic principles, rather than microscopic scrutiny, and are quite
valid in describing simple physical scenarios, e.g. gases inside containers. Thermodynamics also
introduced a number of useful quantities that do not have such an obvious microscopic utility, e.g.
entropy (which generally relates to the number of available states), and by extension, free energy.

In addition to their admission of a description in terms of an ensemble of similar systems
parametrized by a handful of state variables, systems in thermal equilibrium have several other
salient features. Chief among these is the existence of a steady state: at late times, after which
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the system has thermalized, it should reach a time-independent state. Additionally, this state
should not be dependent on the system’s history, e.g. details of how and why the system was not
originally in equilibrium, or its configuration in the distant past.

The subset of dynamical systems that can achieve thermal equilibrium is further restricted to
systems that are Poincaré recurrent [1]. Poincaré recurrence applies to certain dynamical systems
for which the volume of phase space is conserved, and essentially notes that a given configuration
realized at some time, t, will recur if one waits long enough; hence, recurrent systems are arbitrarily
close to periodic in time, at sufficiently long time scales. However, thermalization requires the
additional property of ergodicity, which derives from the ability of the system to explore the
entirety of a constant-energy hypersurface in configuration space. Ergodic systems are a subset of
recurrent systems, and the main implication of ergodicity is that averages of measurable quantities
over time should agree with averages taken over ensembles of similar systems [2, 3].

The framework of classical statistical mechanics justifies thermodynamics, deriving the familiar
properties of thermodynamics—and particularly, statistical ensembles—from microscopic consid-
erations. In general, many aspects of the statistical treatment of open classical systems—i.e. those
in equilibrium with an external thermal reservoir—can be shown to realize when one treats the
system and an explicit bath in isolation: the system and bath indeed thermalize for suitable mod-
els of the latter [2]. In fact, there are only a handful of classical systems that do not thermalize:
glassy systems have slow dynamics and do not thermalize on experimentally relevant time scales,
but they are thermal in the infinite-time limit; “active matter” systems are associated with driving
forces that maintain the system in a nonequilibrium state, such that tuning the driving terms to
zero results in equilibration; finally, the class of classical systems that do not thermalize in any
limit is that of integrable models, for which the equations of motion can be solved exactly. Because
of this, information about the initial configuration is always accessible at late times. The quantum
analogy of integrability will be discussed in Ch. 2, and is more nuanced. Although neither classical
nor quantum integrable models are thermal in the usual sense, they both relax to a steady state
described by a modified statistical ensemble, and have other features in common with systems that
do thermalize.

A classical system in isolation evolves according to complicated, coupled nonlinear equations
of motion, which derive from the Hamiltonian, H({q⃗j},{p⃗j}, t). For an isolated classical system,
one expects H to be time-independent, corresponding to global conservation of energy, E = H.
The positions and momenta of the constituent particles—given respectively by {q⃗j} and {p⃗j}—
depend on time in a manner determined by the form of H. Strictly speaking, an isolated classical
system evolves from its initial configuration at t = 0 to its configuration at time t in a completely
deterministic manner [2, 3]. However, the resulting set of coupled nonlinear partial differential
equations of the dN (where d is the dimension of space and N the number of particles) coordinates
and momenta are generally not tractable for N > 2.

Hence, it is useful to describe these systems probabilistically, motivated by the success of
thermodynamics and justified by the concept of chaos, which will be discussed shortly. The
system is therefore described by a time-dependent probability density, %, which is a function of
the dN -dimensional phase space coordinates, i.e. positions Q⃗ = (q⃗1, q⃗1, . . . , q⃗N−1, q⃗N) and momenta
P⃗ = (p⃗1, p⃗1, . . . , p⃗N−1, p⃗N). The probability that the system’s phase space coordinates, Q⃗ and P⃗ ,
at time t are within a differential phase space volume element dΓ = dQ⃗ dP⃗ of the true trajectory
given by the initial conditions is given by

% (Q⃗, P⃗ ; t)dΓ , (1.1.1)

where dΓ is a dN -dimensional phase space measure, and Γ represents a manifold of possible phase
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space trajectories at a given energy.
Because % is positive semidefinite and integrates to unity, it is a probability density [2, 3]. A

key feature is that % behaves like the density of a fluid: any change at a given point in phase
space at some time must be accompanied by a corresponding and conserving change elsewhere,
and this must happen in a continuous manner. Hence, % has an associated continuity equation,
and conservation law related to the incompressibility of phase space [2, 3].

By Liouville’s theorem, one has that this phase-space probability distribution function % must
be constant in time along the allowed, constant-energy trajectories of the system, which are solu-
tions to Hamilton’s equations. This means that a convective time derivative of %, evaluated along
the trajectories, must be zero. We then demand that at late times, the system reach a steady state;
for time-independent Hamiltonians, this corresponds to the demand that ∂t % = 0. The remainder
of the continuity equation is automatically satisfied if % depends on the phase space coordinates
only through the Hamiltonian, and thus one has some phase space probability density %(H).

It is therefore natural to suppose that, at late times, the system and its dynamics have no
preference for any particular region of the hypersurface of phase space corresponding to fixed
energy, E. The corresponding form of % is the simplest possible solution to the Liouville equation
that describes it, which is % = %0(E) δ(H −E), where H is the Hamiltonian. The overall prefactor
must satisfy a normalization condition. This choice corresponds to the microcanonical ensemble
(µCE), which is due to the observation by Gibbs [2] that the surface of all configurations with
energy E, a constant of motion, can be interpreted as an ensemble of similar systems. This is the
simplest thermodynamic ensemble, and is a valid ensemble for computing the averages of various
functions of phase space coordinates in the thermodynamic limit [2, 3].

For an ergodic system to reach a steady state at late times requires the concept of “mixing” [3].
Systems that satisfy this property are inherently ergodic—just as ergodic systems are inherently
recurrent—but the converse need not hold. Essentially, mixing amounts to the observation that
a dynamical system more-or-less evenly distributes itself in phase space. For a simple example, a
system with two types of particles, a and b, with fractions νa and νb (with νa + νb = 1) will, at late
times, have the property that any choice of subregion of the system delineated in real space will,
on average, feature the same ratios of the two particles as does the system as a whole.

The mechanism for reaching the history-independent steady state associated with ergodicity
and mixing in classical dynamical systems is chaos. Additionally, this requires some uncertainty in
the initial (or distant past) configuration of the system. A feature of nonlinear coupled differential
equations—such as the equations of motion of many-body classical systems—is exponential sensi-
tivity to initial conditions. Any small change in the initial configuration of a system with chaotic
dynamics typically results in wildly different configurations at later times.

As an example, consider a system of classical spins living on the sites of a one-dimensional
lattice, with classical coordinates S(x, t), which have some associated classical dynamics. We
consider an initial configuration of the system given by S(x,0), along with another configuration
that differs from S(x,0) only at x = 0, by an infinitesimal amount, dS(0,0). Evolving these
two states under identical nonlinear classical dynamics, this infinitesimal uncertainty will spread
through the system, and we define dS(x, t) as the difference between the two states at each site, x,
at times t > 0. If the system is chaotic, one expects dS(x, t) to grow in time, although it may have
a random sign. Therefore, we quantify the extent of this discrepancy via the out-of-time-ordered
correlation function (OTOC),

C (x, t) ≡ ⟨(dS(x, t)
dS(0,0)

)
2

⟩ ∼ et λ(v) , (1.1.2)
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where the OTOC is evaluated along rays x = vt, and λ(v) is the velocity-dependent “Lyapunov
exponent,” and the average is taken over initial configurations at a given energy. The Lyapunov
exponent quantifies the rate of separation of infinitesimally proximal classical trajectories.

For chaotic systems, one has λ(v) > 0 for v < vLR = vB, where the threshold velocity is the
Lieb-Robinson velocity or “butterfly velocity,” which defines a light cone for the spread of infor-
mation about discrepancies in initial conditions: along the light cone, one has λ(vB) = 0. Inside
the light cone, differences in initial configurations grow exponentially in time, which is perhaps
the most notable feature of chaotic systems. Along the light cone, information about the discrep-
ancies spreads through the system, with the same magnitude discrepancy. Outside the light cone,
differences decay in time, with λ < 0.

For classical integrable systems, one has λ = 0. Considering the interpretation of the Lya-
punov exponent in terms of nearby trajectories, we note that integrable models have an extensive
set of conserved quantities, which stem from the fact that the bare degrees of freedom can be
“rotated” amongst one another to produce as many decoupled equations of motion as there are
microscopic degrees of freedom (i.e., “N”). Correspondingly, any initial difference between two
states will simply modify the various independent trajectories affected by said change, and there
is no “growth” in this discrepancy. Any initial discrepancy between two systems can be recovered
at arbitrarily late times. Thus, it is possible to recover statistical ensembles of classical integrable
models [2]; however, integrable models remember details of their past, and fail to be ergodic due
to the independent nature of their phase space trajectories.

Certain models of quantum systems with well-defined classical limits (e.g. “large-N” models
and, relatedly, the Sachdev-Ye-Kitaev model [4–8]) are chaotic in the classical sense described
above, as can be seen from scrutiny of their classical limits [7–9]. However, generic and very
quantum models, e.g. interacting two-state degrees of freedom, cannot be described as above:
there is no sense in which one can prepare small local deviations from a given configuration, and
correspondingly, there is no λ > 0 regime. Therefore, other means are required to diagnose quantum
chaos, which will be the subject of Ch. 5.

For nonintegrable many-body classical systems, by providing for some slight uncertainty in the
initial configuration of a chaotic system, the evolution will magnify this uncertainty exponentially in
time. Hence, a system with a tiny but finite amount of initial uncertainty will develop macroscopic
uncertainty due to chaos, saturating over time to some steady state for which the uncertainty
realizes a statistical ensemble of equivalent systems, e.g. the configurations comprising the constant
energy surface of the µCE. Additionally, information about the precise initial configuration is
“scrambled” under the chaotic dynamics: this growth in uncertainty is not generally invertible;
therefore, given some late time set of possible configurations, it is not generally possible to undo
dynamical growth of uncertainty to recover the initial state (within the light cone). However, some
initial uncertainty is essential for isolated classical systems to thermalize. Statistical mechanics
becomes valid at late times, after which the system has reached such an ensemble under its chaotic
dynamics; due to ergodicity, averages over the ensemble will be equivalent to averages over time,
which are highly predictive owing to the steady-state property.

So far, this discussion has described classical systems in isolation. However, statistical me-
chanics typically uses ensembles to describe classical systems in contact with a thermal reservoir,
including the aforementioned µCE. In classical systems, the primary purpose of the thermal reser-
voir (which will also be referred to as the “bath,” “environment,” or “outside”) is to exchange
extensive conserved quantities with the system of interest to facilitate mixing, which allows the
latter to reach a history-independent steady state well-described by ensembles. The standard set
of conserved quantities are energy, E, particle number, N , and volume, V . In addition to the
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microcanonical ensemble, in which N is implicitly fixed for isolated systems, statistical mechanics
commonly uses a number of others, each of which should produce identical results in the thermo-
dynamic limit (for thermal systems), due to the “equivalence of ensembles.” Thus, the ensembles
realize generic distributions of similar classical configurations that in some way fix any quantities
that are conserved under the dynamics and scale with the number of particles, N , or volume, V
(i.e., extensive conserved quantities).

There exist several alternatives to the µCE, all of which require the existence of a thermal
reservoir. These ensembles replace the energy parameter of the µCE with temperature, which
requires that the system be in thermal equilibrium with something else. In general, each ensemble
fixes precisely one extensive, conserved quantity, and assigns to all others Lagrange multipliers—
e.g. β for energy. For example, the Gibbs directly fixes particle number, N , and fixes the Lagrange
multipliers β and p—inverse temperature and pressure, respectively—rather than energy, E, and
volume, V . If there are more extensive conserved quantities, there should be correspondingly more
Lagrange multipliers. In calculating expectation values and other quantities, one averages over
all phase space configurations—i.e., not merely constant energy surfaces—with the appropriate
Gibbs-Boltzmann weights, e.g. exp(−βH − νN − pV ). Other ensembles include the ordinary
canonical ensemble (OCE), which is a T,V,N ensemble, and the grand canonical ensemble (GCE),
a T,µ, V ensemble. The OCE corresponds to the standard Gibbs-Boltzmann distribution, where
one sums over configurations with the correct number of particles, volume, and so on, but samples
configurations at all energies with the weight exp(−βH). These ensembles and their corresponding
partition functions can be derived from basic probabilistic considerations in which a particular
quantity is held fixed [3].

Again, these ensembles necessarily lead to equivalent predictions in the thermodynamic limit,
and the various partition functions, “free energies,” susceptibilities, and similar quantities are
related by “Maxwell relations” [3]. In general, a given model will be more easily resolved using a
particular ensemble, and that is the primary motivation for considering different ensembles. As an
example, one can derive the ideal gas law from microscopics quite straightforwardly in the OCE or
Gibbs ensemble. Regarding the equation pV = kBNT , depending on the ensemble, either p or V
will be an “independent” variable (i.e. a parameter of the ensemble), with the other defined by a
Maxwell relation, or generally speaking, in terms of the ensemble in question and its parameters.

These ensembles are readily extended to describe quantum systems by replacing integrals over
classical phase space with traces over the many-body Hilbert space, and replacing classical “num-
bers” with the corresponding quantum “operators.” Generally speaking, the Gibbs-type ensembles
are more useful in quantum systems, as it is easier to introduce Lagrange multipliers than perform
restricted sums. As an example, consider a system of free fermions that live on a lattice. There
is no notion of volume in this problem, merely energy and particle number. This problem is most
easily treated in the GCE, which introduces a temperature T = 1/kBβ and chemical potential, µ,
but the trace over the many-body Hilbert space is not restricted. Defining the fermion modes in
Fourier space, the energies are given by ε(k), for k ∈ {1,2, . . . , L − 1, L}, and the total energy is
given by Ĥ = ∑k ε(k)c

†
kck, where nk = c

†
kck ∈ {0,1} is the occupation of the kth mode. The total

particle number is given by N̂ = ∑k c
†
kck, so the grand canonical weight acts on a quantum state

as exp[−βĤ +βµN̂] = exp[−β∑k(ε(k)−µ)nk] in this case. The trace is given by summing over all
combinations of nk = 0,1, which factorizes nicely for noninteracting models, giving a useful form
for the partition function, free energy, and other thermodynamic quantities. For bosons, the nk
factors sum over all nonnegative integers, which realizes a geometric series.

However, in this treatment, the bath remains a mystery as in the classical case, and is also
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fully classical: there are no operators that act on the bath, nor is there a defined Hilbert space for
the bath. There is therefore no means for the bath and system to entangle (in the strict quantum
sense of the word). As we will see in Sec. 1.3, this is actually an important point. For classical
systems, the mystery baths are on firmer ground, as they lead to results equivalent to those that
obtain from full consideration of a classical system coupled to a classical reservoir with an explicit
microscopic model [2]. While this form of quantum statistical mechanics has been quite effective
in describing numerous quantum phenomena, in contrast to the classical case, it has not been
fully established under what circumstances quantum systems thermalize with quantum baths, the
regimes of violation and their stability, and related physics. However, some of this has been hashed
out in very recent years, and will be discussed in the remainder of the introduction.

1.2 Isolated Quantum Systems

The following sections draw heavily from notes taken by the author from various lectures given by
Prof. David Huse of Princeton University, and particularly Ref. [9].

Recent progress in the experimental preparation of quantum systems well isolated from their envi-
ronments has raised fundamental questions about how quantum systems thermalize, and if there
are other possibilities. The importance of these questions extends beyond cold atom experiments:
the universe is an isolated quantum system. Although isolated systems were originally investigated
by the likes of Boltzmann (for classical systems) and von Neumann (quantum systems) [2, 3, 9],
interest in these systems has been renewed by the combination of substantial advances in exper-
iments in the field of atomic, molecular, and optical physics (AMO)—and cold atom systems in
particular—along with knowledge of the physics of localization developed since Anderson’s seminal
work on localization [10].

In fact, at the time of the initial publication, Anderson noted that sufficiently disordered models
of noninteracting electrons would not be able to equilibrate; however, this insight was largely
overlooked during the next half century of research on localized systems. In 2006, Basko, Aleiner,
and Altschuler showed that single-particle Anderson-localization is stable to weak interactions [10,
11]. Around this time, David Huse and collaborators revived Anderson’s insight: they noted
that equilibrium statistical mechanics is not the right language in which to consider many-body
localization (MBL)1 [9, 12–14].

This led to the discovery that MBL is actually a robust, nonequilibrium phase of matter that
does not thermalize in any sense [9, 12–14]. Intriguingly, this phase is entirely beyond the con-
ventional, equilibrium theory of phases of matter, and there exists a phase transition between the
nonequilibrium MBL phase and a thermal phase, to which the conventional theory of phases and
phase transitions applies. As we shall see, the unconventional nature of the MBL phase allows it
to host a number of phenomena forbidden in equilibrium; some of these have intriguing potential
for application, e.g. to quantum computation [15].

We now review various types of isolated quantum systems, and introduce some basic ideas for
their study. These quantum systems are many-body, which is to say that their fundamental degrees
of freedom interact with one another; those degrees of freedom may be spins, cold atoms, q-bits,
etc. Of paramount importance is the fact that these systems are closed : they are not in contact

1The acronym “MBL” will be used interchangeably to denote both “many-body localization” and “many-body
localized.”
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with a bath, environment, or any external degrees of freedom capable of acting as a reservoir in
any sense. We will, however, allow for the study of “driven” systems, which are distinct from
systems coupled to external baths in a manner that will be made precise.

There exist a number of well-defined questions that one can address for a given system; for a
handful of cases, these questions have known answers. In general, problems in this setting are quite
difficult to tackle, as they require knowledge of highly excited states throughout the entire many-
body spectrum and the presence of strong—which is often to say, nonperturbative—interactions
and spatial inhomogeneity (a.k.a. “disorder”), among other complications. This and subsequent
sections are devoted to addressing the following for an appropriate system of interest [9]:

Question 1.1. Does a given system successfully act as a bath for its constituent subsystems?

If the answer to the Question 1.1 is yes, then the quantum system thermalizes; the best understood
case for which the answer is “no” that is “generic” in some sense is MBL. This is because MBL
is stable and not fine-tuned, which is to say it is robust to small perturbations of fairly arbitrary
nature. While there exist other athermal states that can realize in isolated quantum systems, they
are less established, and may not be stable phases of matter. Some possible examples include
quantum critical glasses, many-body quantum scars, and certain kinetically constrained systems.

For many models in one spatial dimension, it is possible to tune parametrically between be-
tween the “yes” and “no” answers to Question 1.1; when “no” corresponds to MBL, there is an
unconventional phase transition between these two options.

1.2.1 Types of systems

Broadly speaking, there are three classes of systems of interest:

1. Hamiltonian systems, which here refers specifically to time-independent Hamiltonians.
From an experimental or physical point of view, this describes systems that are fully and prop-
erly isolated and quantum, or describes systems that are well isolated at times sufficiently
short that the outside world has not yet had any effect, but long enough for interactions
to have taken effect. The relevant equation is the Schrödinger equation, diagonalized by
many-body energy eigenstates ∣n⟩ satisfying

Ĥ ∣n⟩ = En∣n⟩ . (1.2.1)

Dynamically, a given system is prepared in some initial state ∣ψ(0)⟩ at time t = 0, which is
a linear superposition of energy eigenstates with weight cn on the nth eigenstate, ∣n⟩. The
state at time t is given by

∣ψ (t)⟩ =
D
∑
n=1

e−iEntcn∣n⟩ , (1.2.2)

where D is the total many-body Hilbert space dimension. While Eq. (1.2.2) is quite simple,
the energies and eigenstates ∣n⟩ are not simple in any sense for generic many-body systems;
correspondingly, the dynamics may be quite complicated to diagnose despite the apparent
solubility of Eq. (1.2.2).

2. Driven systems, which differ from Hamiltonian systems as defined above in that Ĥ → Ĥ(t)
is time dependent. Such driving is classical, in that only the coefficients of various terms in
the Hamiltonian vary in time, but there is no explicit coupling to external [quantum] degrees
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of freedom. Driven systems of this type are still considered closed because no entanglement
can be generated between the system and the drive source (there is no “back action”).
This applies to systems in which the drive corresponds to classical degrees of freedom, or
is coherent (in which case it will not entangle with the system degrees of freedom). The
relevant equation is the time-dependent Schrödinger equation,

i
d

dt
∣ψ (t)⟩ = Ĥ (t) ∣ψ (t)⟩ , (1.2.3)

and the unitary operator that evolves a many-body state ∣ψ⟩ from time t0 to time t is given
by

Û (t, t0) = T̂ exp

⎧⎪⎪⎨⎪⎪⎩
− i
h̵

t

∫
t0

dt′ Ĥ (t′)
⎫⎪⎪⎬⎪⎪⎭
, (1.2.4)

where T̂ is the time-ordering operator.

3. Floquet systems, which are a special case of driven systems that satisfy a discrete time
translation symmetry2:

Ĥ (t + T ) = Ĥ (t) , (1.2.5)

where T is the period of the drive, not to be confused with temperature. For these models,
we restrict our attention to discrete times, which are integer multiples of drive period, i.e.,
tn = nT for n ∈ N. The dynamics are then captured by the Floquet unitary,

F̂ = Û (T,0) , (1.2.6)

which evolves the system by a single period, where Û is defined by Eq. (1.2.4). The discrete-
time dynamics are given by an analogue of the Schrödinger equation,

∣ψ (tn)⟩ = F̂ ∣ψ (tn−1)⟩ , (1.2.7)

and one can study eigenstates of the Floquet operator F̂ directly. In general, we will not
study the physics within the drive period, as this reduces to the previous driven case: the
physics unique to the Floquet setting is associated with these discrete time steps. Addition-
ally, one can define Floquet models without recourse to time-dependent Hamiltonians, and
directly define the single-period unitary operator, F̂ ; dynamics are generated by repeated
application of F̂ . The eigenvalues of F̂ have the form e−iεn , where εn are pseudoenergies,
only define modulo 2π/T . Unlike true energies, which are eigenvalues of the Hamiltonian,
the pseudoenergy does not correspond to an extensive conserved quantity.

Note that all three of the above systems evolve unitarily. This will be a requirement for the
discussion to follow, but does not apply to certain open systems, e.g. those coupled to baths in
the Lindblad formalism, or systems in which an external observer makes “measurements” during
the evolution. These scenarios are interesting, but largely unrelated to the contents of this thesis.

In the Floquet case, one has discrete time translation invariance—i.e., an additional symmetry,
which compared to a general drive (the second case above), implies that there exist eigenstates and
eigenvalues of the evolution operator. The existence of such an eigenspectrum for the evolution
will be important, as many results for both thermalization and localization derive from spectral
properties.

2In contrast to the continuous temporal translation symmetry of Hamiltonian systems.
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In the Hamiltonian case, one has continuous time translation invariance. As in the Floquet
case, one has eigenstates and eigenvalues of the evolution operator, and the ability to diagnose
spectral properties. Unlike the Floquet case, Hamiltonian systems have a conserved energy. The
existence of an extensive conserved quantity provides additional insight from transport. Note that
the pseudoenergy eigenvalues of the Floquet evolution do not correspond to an extensive conserved
quantity, and thus cannot “be transported.”

We will also consider models with additional symmetry structure on top of the “symmetries”
defined above. If the symmetries correspond to an extensive conserved quantity, one can have
transport of said quantity. However, any such features will be in addition to the basic case in
which there is no additional structure, and the results from the latter case still ought to hold
in general, though as we shall see there are some notable caveats, e.g. the incompatibility of
non-Abelian symmetries and MBL.

We will essentially ignore the second case (driven systems) in the discussion that follows. These
systems are generally hard to treat, and the fact that the evolution does not have a spectrum and
one cannot study transport without explicitly imbuing the system with a symmetry does not help.
Additionally, these systems probably cannot be many-body localized; nonetheless, by considering
random evolution, i.e. by constructing Û(t, t0) in Eq. (1.2.4) directly out of random unitary
matrices, one can learn quite a bit about thermalization, as will be discussed in Ch. 5. In that
treatment, there is no associated time-dependent Hamiltonian.

As a final comment before proceeding, the results of the following sections can be thought
of as applying to a conventional “open system,” if one considers the combined system and bath
[environment] to be a single closed system. The key distinction is that Question 1.1 refers to all
valid choices of subsystems3, while for the aforementioned case, one need only consider a specific
bipartition of the whole, closed system into the subsystem of interest (i.e., the system that is open)
and bath, provided all other conditions apply.

1.2.2 Quantum quenches

In general, it is not physically tractable to prepare a quantum system in an eigenstate of the
operator that governs the system’s evolution. Broadly speaking, isolated quantum systems are
analyzed from one of two perspectives: the first is to consider the properties of eigenstates of
the evolution (provided the latter has continuous or discrete time translation invariance), and the
second is to consider the dynamical and late time properties of systems prepared in some physical
state that is not an eigenstate of the evolution, also known as a “quantum quench.”

Definition 1.1. A quantum quench refers to preparing a system in some experimentally realizable
initial state that crucially is not an eigenstate of the evolution operator, Û , and allowing the system
to evolve therefrom. The number of eigenstates of Û with which the initial state has nonzero
overlap scales exponentially in the size of the system. Specifically, the term “quench” refers to the
preparation of the system in this state.

Note that the system is necessarily not closed during the quenching procedure, though it is closed
immediately thereafter, and remains so. In general, the initial states have low entanglement: they
are generally unentangled product states in the näıve physical basis, but may have entanglement
between regions that scales with the boundary of the region. The motivation for this stipulation

3This validity will be defined in the next section.
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is twofold: firstly, such states are the most reasonable to prepare in the laboratory setting, and
secondly, such states are the furthest from being thermal, as will soon be explained.

Following the quench, the system is allowed to evolve under its own dynamics. One then mea-
sures various quantities, e.g. expectation values of local observables, ⟨ψ(t)∣Ô∣ψ(t)⟩, correlation
functions of such observables, ⟨Ô(x, t)Ô(0,0)⟩, and other quantities as a function of time. Re-
stricting to Hamiltonian systems, the quench deposits an extensive amount of energy, E, into the
system relative to the ground system. The same can be said for other extensive conserved quan-
tities, which allows for the study of transport following a quench, and leads to a hydrodynamic
picture of thermalization, as will be discussed in Ch. 4 and Ch. 5. Because the initial state has
overlap with eigenstates throughout the spectrum, the dynamics following a quench probes physics
of highly excited states, and has little to do with the physics of ground states commonly addressed
in more conventional areas of strongly correlated condensed matter physics.

1.3 Quantum Thermalization

We begin by defining thermalization of an isolated quantum system:

Definition 1.2. An isolated quantum system is thermal if, as a whole, it is able to act as a proper
bath for all valid choices of constituent subsystems.

The terms “proper” and “valid” will be elucidated shortly.
Classically, the role of the bath is to exchange extensive conserved quantities with the system;

secondarily, it helps generates entropy and allows the system to explore its phase space. Quantumly,
the most important function of the bath is the dynamical generation of entanglement between the
system and bath degrees of freedom. For a subsystem of an isolated quantum system to reproduce
equilibrium thermodynamics, it must “forget” the details of its initial conditions and eventually
reach a time-independent steady state.

In each of the three cases noted in Section 1.2, the many-body state of the full system at time t is
completely determined by the initial conditions. Thus, the only way for the state of the subsystem
[on its own] to be independent of these conditions is for the details of the subsystem’s initial state
to be hidden nonlocally. The mechanism for this is quantum entanglement: as the system becomes
entangled under its own dynamics, it becomes impossible to recover any information about the
past by making measurements solely on the subsystem’s degrees of freedom. As the system evolves,
more and more of these details are encoded in the inaccessible bath degrees of freedom. In quantum
systems, the exchange of conserved quantities, e.g. energy, is a secondary role of the bath.

Classical thermal systems maximize entropy, which constrains the “ensembles” one uses to
describe these systems. In quantum systems, one finds that entanglement entropy plays the usual
role of thermodynamic entropy, which is itself an extensive quantity. Thus, if a quantum system is
thermal, then the entanglement must be maximal, and the entanglement entropy must scale with
the volume of the relevant subsystem, e.g. SA = αVol(A); because entanglement is maximized, the
coefficient α must saturate the maximal value.

1.3.1 Valid subsystems

To be more precise, let us denote by S all of the degrees of freedom in a given, closed system. The
system S is further divided into a subsystem of interest, which we denote A, and its complement,
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A B

Figure 1.1: Schematic depiction of the system S = A∪B, where A is the subsystem of interest, in
which all measurements will be made, and B = A is its complement, which acts as a bath for A.

B = A, such that S = A∪B. The former, A, is analogous to the “system” in the usual, open setting,
and is the thing we care about. A useful mnemonic is “B for bath,” the role of the complement
of A is to entangle with A itself so as to conceal information about the latter’s past, in the finest
tradition of baths.

There are some constraints on the identification of a subset of degrees of freedom A ⊂ S if A is
to correspond to a “valid choice of subsystem,” per Definition 1.2 of quantum thermalization. A
typical picture is given by Fig. 1.1, in which the subsystem A is a connected subregion of the full
system S: such “real space” delineations are always valid, and generally need not be connected.

Though such choices are most common, it is not necessary for A to be defined in real space. The
main constraint on whether or not a subsystem is valid is locality, which is automatically satisfied
by defining A in real space. While we do not require A be defined explicitly in real space, we do
assume that the näıve degrees of freedom in S admit a local description of some kind. In other
words, there must be some means of describing the definition of A that does not require knowledge
of the entire system S at once. For example, a definition of A in momentum space—defined via
Fourier transform—is also perfectly valid, as the Fourier transform merely constitutes a sum over
terms in real space with the same locality (i.e., one-body operators map to the sum over one-body
operators, and thus remain one-body).

To make this more precise, let us consider the many-body Hilbert space H and Hamiltonian Ĥ
describing S4. We decompose the full Hilbert space via

H = HA ⊗HB , (1.3.1)

where HA = span ({∣a⟩}), where the set {∣a⟩} denotes a complete orthonormal basis for A (and
likewise for B). As an aside, it is possible that strictly speaking the full Hilbert space H of S is
a subset of span ({∣a⟩}) ⊗ span ({∣b⟩}), e.g. due to constraints that make it impossible to form a
separate basis for the configurations of A and B independently; attempting to do so results in over
counting. However, this detail is unimportant to the discussion at hand.

For notational simplicity, let us suppose that the evolution of the full system S in time is
described by a Hamiltonian, Ĥ, which may be time-dependent. We then decompose the Hamil-
tonian into three parts, one acting nontrivially only on degrees of freedom in A, another acting
nontrivially only on degrees of freedom in B, and a boundary term that couples the two:

Ĥ = ĤA ⊗ 1̂B + 1̂A ⊗ ĤB + Ĥ int
AB , (1.3.2)

where 1̂ is the identity. In standard equilibrium statistical mechanics, one defines A in real space,
à la Fig. 1.1, and takes its size to infinity; since energy is extensive, the interaction term coupling

4Here “Hamiltonian” is used imprecisely to mean any of the three cases enumerated in Section 1.2, and does not
imply time-independence.
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regions A and B scales with the boundary of A, while the other terms scale with the volume of
their respective regions, and the interaction term is therefore negligible by comparison. In this
case, we will not take A to be infinitely large at the outset, and this approximation will generally
be incorrect: to determine whether or not S is thermal, we must determine that it is so for all
valid choices of A, including small ones.

In the real world, physics is local. For A to constitute a valid subsystem, the Hamiltonian
describing it, given by ĤA in Eq. (1.3.2) must be local in terms of some basic degrees of freedom.
This locality is defined in the quantum information sense, which is to say, the number of degrees of
freedom involved in determining the elements of ĤA must be finite. All of the systems considered
in this thesis will have a natural description in terms of degrees of freedom—e.g., spins—defined in
real space. This is true of most models one would naturally consider; however, it is worth noting
that the procedure being outlined herein is not limited in scope to such models, but extends to
generic models that are sufficiently local.

It is perhaps most illustrative to give an example of an invalid choice of subsystem A. For
example, imagine that the eigenbasis, {∣n⟩} of the full many-body Hamiltonian Ĥ in Eq. (1.3.2) is
known. We can define a Pauli Ẑ operator by choosing half the energy eigenstates, and assigning
them to the state ∣ ↑j⟩, and assigning the other half to the state ∣ ↓j⟩, where Ẑj ∣ ↑j⟩ = +∣ ↑j⟩ and

Ẑj ∣ ↓j⟩ = −∣ ↓j⟩. In terms of operators, Zj is the sum of projectors onto eigenstates associated to ↑j
minus all projectors associated to ↓j. We define a new spin 1/2 at site j′ by choosing a different

assignment of half the eigenstates as before. All such operators commute with the Hamiltonian Ĥ
by construction5 Any choice of A using degrees of freedom defined by this mapping will not result
in thermalization, which can be seen from the fact that the Hamiltonian is completely trivial and
no entanglement between these degrees of freedom can be generated by the dynamics, precisely
because they are defined in terms of eigenstates of the dynamics. The reason this is not generic
is that, for many-body systems, the energy eigenstates necessarily require information about all
degrees of freedom in any basic, physical basis.

Before proceeding, it is worth reviewing a few basic principles from quantum mechanics. First,
we define an observable,

Definition 1.3. An observable is a Hermitian operator that is sufficiently low order in the sense
of locality or number of degrees of freedom involved in a physical—or experimentally motivated—
basis.

The notion of “low order” is entirely dependent on the choice of basis; this is difficult to define in
an abstract sense, but it is extremely difficult to find actual physical models where this definition
remains elusive. In general, there should exist some basis that captures the most local aspects
of a system that can be resolved experimentally, which are the “fundamental” or “basic” degrees
of freedom, in some sense. For example, for spins on a lattice, this would correspond to the
orientation of a single spin along a given axis. Low order is then defined in this language, and
refers to the number of fundamental degrees of freedom. Note that not all Hermitian operators are
observable: in fact, if one were to define random Hermitian operators in the many-body Hilbert
space, such operators in general will not be observable, unless the system is so small that nothing
can be nonlocal.

5All of the projectors onto eigenstates necessarily commute with one another, as the eigenstates define an
orthonormal basis; the Hamiltonian is merely a sum over these projectors, each weighted by the corresponding
energy eigenvalue.
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1.3.2 Thermal states

Understanding thermalization of quantum systems requires some notion of a thermal state. There
are two types of states in quantum systems: pure states and mixed states. The former are con-
venient theoretical constructs, represented by a vector, ∣ψ⟩, in the many-body Hilbert space. Any
superposition of a pure state is also a pure state by linearity of Hilbert spaces. The corresponding
density matrix of any pure state is ρ̂ = ∣ψ⟩⟨ψ∣.

In the laboratory, all states are mixed states: a mixed state is given by a density matrix ρ̂ that
is the sum of density matrices corresponding to pure states

ρ̂mixed =
D
∑
α=1

pα∣α⟩⟨α∣ , (1.3.3)

where pα are the probabilities associated to the pure states indexed α. Like probabilities, these
must sum to unity, i.e. Tr[ ρ̂ ] = 1 is a property of density matrices. Additionally, since ∣α⟩⟨α∣ is a
projector, density matrices satisfy ρ̂2 = ρ̂. Finally, the quantum expectation values of observables
are given in terms of the density matrix via

⟨Ô⟩ = Tr[ Ô ρ̂ ] = Tr[ ρ̂ Ô ] , (1.3.4)

and when ρ̂ corresponds to a pure state, this reproduces the usual form of expectation values

ρ̂ = ∣ψ⟩⟨ψ∣ Ô⇒ ⟨Ô⟩ = Tr[ Ô ρ̂ ] = ⟨ψ∣Ô∣ψ⟩ . (1.3.5)

Finally, the density matrix evolves from its initial form ρ̂(t0) at some specified time t0 [which one
generally refers to as t = 0] according to

ρ̂ (t) = Û (t,0) ρ̂ (0) Û † (t,0) , (1.3.6)

where Û (t,0) is the same unitary that evolves many-body states, as defined in Section 1.2, e.g.
in Eq. (1.2.4). This is easy to see for a pure state, ρ̂ = ∣ψ⟩⟨ψ∣, where ρ̂(t) is given by taking
∣ψ⟩→ ∣ψ(t)⟩ = Û(t,0) ∣ψ(0)⟩.

Density matrices are useful compared to standard states ∣ψ⟩ because they encode a probability
distribution straightforwardly; we will also make use of standard properties of the reduced density
matrix for the subsystem A,

Definition 1.4. For a system S = A ∪ B described by the full density matrix ρ̂AB, the reduced
density matrix, ρ̂A, describing the degrees of freedom in A is given by ρ̂A = Tr

B
[ ρ̂AB ].

The reduced density matrix is particularly useful because, for any observable ÔA whose support

lies entirely in the subsystem A, the expectation value ⟨ÔA⟩ can be computed using the reduced
density matrix ρ̂A, rather than that of the full system. Thermal states are then defined in terms
of density matrices as follows:

Definition 1.5. A thermal system S dynamically evolves to a thermal state under its own
dynamics that is in thermal equilibrium in the following sense: For any bipartition of the system
S = A ∪B into a subextensive subsystem A and an extensive subsystem B, as the thermodynamic
limit Vol (S) →∞ is taken with Vol (A) /Vol (S) → 0, one recovers a sequence of density matrices
ρ̂eq
AB, which are thermal if

ρ̂A(t) = Tr
B

[ ρ̂AB(t) ]→ ρ̂eq
A (T,µ, . . . ) = Tr

B
[ ρ̂eq

AB ] , (1.3.7)
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at suitably late times, t, as this limit is taken, where ρ̂eq
A (T,µ, . . . ) only depends upon a handful

of state variables as in standard thermodynamics, corresponding to any relevant thermodynamic
ensemble.

Note that the notion of a “thermal state” is only sharply defined in the thermodynamic limit, in
which the number of degrees of freedom in the full system, S, is taken to infinity. Correspondingly,
all extensive quantities describing S—e.g. volume, energy, etc.—diverge in this limit. We require
that the volume of A grow slower than B, and vanishingly so as the thermodynamic limit is taken on
the full system. As this limit is taken, one recovers a sequence of states, which converge to a specific
state—independent of the microscopic details and initial conditions of A—as the thermodynamic
limit is taken for S, in which case that state is the thermal state.

Any standard ensemble from statistical mechanics should result in the same reduced density
matrix for the subsystem A at late enough times for A to have equilibrated. However, because the
full system S evolves unitarily from its initial state, these choices will result in different density
matrices for the full system A∪B. In general, ρ̂eq

AB = exp(−βĤAB) should be a valid choice, though
in contrast standard equilibrium statistical mechanics, this is not the only choice or a even a
necessary one a priori. As a reminder, Definition 1.5 should apply for all valid choices of A using
the same choice of ρ̂eq

AB (or sequence thereof in the thermodynamic limit); this may breakdown for
extremely inhomogeneous systems, and we will ignore such systems.

In the presence of conservation laws, including temperature, the ensemble must either specify
directly the values of each of the system’s extensive conserved quantities, as in the standard
microcanonical ensemble, or their conjugate quantities, which are Lagrange multipliers for the
conserved quantities (i.e. the coolness [inverse temperature] β ∝ 1/T is conjugate to energy,
chemical potential µ is conjugate to particle number, N , pressure p to volume, and so on), as in
the general statistical ensembles. Note that noncommuting conserved quantities are not a problem,
as the noncommutativity is expected to vanish in the thermodynamic limit.

A special case and notable exception is integrability. Quantum integrable models have an
extensive number of extensive conserved quantities, and relax to a “generalized” equilibrium de-
scribed by a Generalized Gibbs Ensemble (GGE) featuring infinitely many Lagrange multipliers
for its infinitely many conserved quantities. These will be discussed separately in Ch. 2.

For a quantity to be conserved, it must commute with the evolution of the system, e.g. [Ĥ, Ô] =
0. To be extensive, these quantities must have a nonvanishing local density. Examples include
quantities that can be expressed as the sum of local terms, such as energy (the Hamiltonian is
generally the sum of local terms), magnetization Ŝztot = ∑j Ŝzj in models of spins, and so on. On
the other hand, there is no local density for the pseuoenergies of Floquet systems, or for projectors
onto particular Hamiltonian eigenstates, which necessarily commute with the Hamiltonian itself,
but for which one cannot define a density that is nonvanishing in the thermodynamic limit.

Further, it is essential that the uncertainty of an extensive conserved quantity be subextensive.
An example in which this is not the case is a system prepared in superposition of two different
energy eigenstates with very different energies. This is problematic because it complicates or
even precludes the definition of a temperature. While there may be theoretical scenarios in which
macroscopic superpositions of this type can nonetheless correspond to well-defined state variables
with particular values, these are unlikely to be realized in any experimental setting. A typical case
is for the uncertainty—or variance—in energy, e.g., to scale as ∆E ∼

√
V , where V is the volume.

To summarize: The thermal state ρ̂eq
AB is defined for the full system S = A ∪ B without refer-

14



ence to dynamics, and may be chosen to correspond to any of a number of statistical ensembles,
all of which should result in the same physical properties and satisfy the same criteria. In par-
ticular, the ensemble should account for each of the system’s extensive conserved quantities, if
any, either by fixing their value directly, or assigning them a corresponding Lagrange multiplier.
For any choice of sub-extensive subsystem A, upon tracing out the degrees of freedom in B = A,
and taking the limit Vol (B) →∞, one recovers a reduced density matrix for A alone that is pro-
duces the correct expectation values for local observables (at suitably late times for the system
to have reached equilibrium and thermalized). For a given identification of A, all [valid] choices
of ensembles should result in the same reduced density matrix for A, a property also known as
the “equivalence of ensembles.” Additionally, the choice of ρ̂eq

AB must be valid for all choices of A,
when the thermodynamic limit is taken on the system as a whole with A finite.

In principle, one can extract thermodynamic quantities from the equilibrium state ρ̂eq
AB, al-

though this may be impractical from a theoretical standpoint. As an example, one could imagine
affixing to the system S some extra degrees of freedom—e.g., a narrow tube filled with mercury—
which collectively act as a thermometer. All of the above discussion should apply equally to the
choice of A corresponding precisely to the auxiliary thermometric degrees of freedom. One can
then make a measurement using the reduced density matrix for A to measure the temperature,
and thereby extract this information from the full system’s equilibrium thermal state, ρ̂eq

AB. In
general, the difficulty lies in “calibrating” such thermometers.

Some final notes:

• This applies to pure states equally as well as to mixed state density matrices.

• One can take ρ̂eq
AB to be the standard Boltzmann weight for the full system. However, the

usual practice in conventional equilibrium statistical mechanics of fixing the reduced density
matrix for A to be given by exp (−βĤA) is not valid, as it ignores the interaction terms
coupling A to the rest of the system, which we cannot take to be negligible without taking
Vol (A)→∞. In an average sense, and in that limit, this may be true, but strictly speaking
the point is to describe internal thermalization of S as a whole, which requires consideration
of finite subsystems A, which must be completely and correctly described by the equilibrium
state ρ̂eq

AB of the whole system.

• A single energy eigenstate, ∣n⟩, is also a valid microcanonical ensemble. Note that if there are
extensive conserved quantities other than energy, these must be fixed as well, if not already
fixed by ∣n⟩.

1.3.3 Thermalization following a quench

In the laboratory, a system is initialized in a given state at time t = 0, and allowed to evolve
under its own dynamics thereafter. If the system is thermal, we expect the system to evolve to the
thermal state described in Section 1.3.2. This is also known as a quantum quench, as discussed in
Sec. 1.2.2. As previously noted, the full density matrix evolves according to

ρ̂AB (t) = Û (t,0) ρ̂AB (0) Û † (t,0) , (1.3.6)

and if the system thermalizes, then as t →∞, the full density matrix approaches the equilibrium
density matrix, ρ̂eq

AB, which can take the form of any of a number of density matrices corresponding
to equivalent ensembles—described by only a handful of parameters, e.g. T and µ—to reproduce
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fully the correct results for all observables made in the subregion A, for any valid, subextensive
choice of A ⊂ S.

As t→∞, the only information about the initial conditions that can one can observe locally is
encoded in the state variables that parametrize ρ̂eq

AB, e.g. temperature, T , and chemical potential,
µ. All other details are otherwise “hidden” nonlocally in S = A ∪ B. For example, the apparent
temperature of the equilibrium state that the system approaches as t →∞ is fixed by the energy
density of the initial state. Hence, if the system is in a macroscopic superposition of states with
very different energies, temperature will not be well defined if and/or when the system equilibrates,
as discussed in Section 1.3.2. Whether or not this temperature can be measured in any sense is
unimportant; rather, if the system thermalizes, then the properties of all subsystems A should
follow from choosing ρ̂eq

AB to be the standard Gibbs-Boltzmann distribution with a temperature
that is fixed by the initial energy density, e.g. The same applies to all other parameters of the
ensemble, associated to other extensive conserved quantities as applicable.

A special case is a system with time-dependent evolution Ĥ(t) and no other extensive conserved
quantities. In this case, there are no thermal parameters, and ρ̂eq

AB must be proportional to the
identity, appropriately normalized:

ρ̂eq
AB = D−11̂AB , (1.3.8)

where D is the many-body Hilbert space dimension, ensuring that the density matrix has unit
trace. In this case, the reduced density matrix is also proportional to the identity operator for the
reduced Hilbert space. This is the equilibrium density matrix for random, time-dependent, and
Floquet evolution in the absence of any other conserved quantities.

1.3.4 The eigenstate thermalization hypothesis

The Eigenstate Thermalization Hypothesis (ETH) refers to specific conditions under which an
isolated quantum system may be thermal. These conditions are sufficient, but known not to be
necessary: ETH is simply one scenario under which thermalization occurs, and its constraints are,
in fact, too strong. Due to the fact that it has only been realized recently that one can relax some
of these constraints, in later parts of the thesis, “ETH” will be used as a shorthand for general
thermal quantum systems.

Historical Remarks The history of ETH spans many years and some contributions are often
overlooked, due to the fact that widespread interest in quantum thermalization has only taken hold
very recently. Any historical review would be remiss to neglect Landau, who made a statement in
a footnote in one of the volumes on theoretical physics that captures the essence of ETH. From
experience, ignoring this detail during a talk will provoke a Russian member of the audience to
interject, “Not so much question but historical comment: since you say it is just a ‘hypothesis,’ I
should point out that Landau actually was first to note this.” Not surprisingly, this is true. The
1980s saw a surge of interest in quantum chaos, and some of these concepts appear in a numerical
study of a noninteracting spin chain in work by Jensen and Shankar [16]. At the tail end of this,
Deutsch and Srednicki respectively published papers [17, 18] in 1991 and 1994 that are widely
credited as establishing ETH. These were widely neglected until cold atom experimentation saw
incredible advances and became popular among condensed matter theorists; interest was revived
by Rigol and collaborators in a paper studying the Bose-Hubbard model [19], at which point the
subject took off. And for most if not all topics that appear in this thesis, Tomaž Prosen probably
wrote a paper on the subject 5 to 20 years before it became popular.
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Diagonal ETH The Eigenstate Thermalization Hypothesis necessarily requires eigenstates of
the evolution operator, and so we restrict to Hamiltonian and Floquet systems. For notational
convenience, let us use the language of Hamiltonians, though the analogous equations for Floquet
are basically the same, with energies replaced by pseudoenergies. We start from the Schrödinger
equation

Ĥ ∣n⟩ = En∣n⟩ , (1.2.1)

and initialize the system in a pure state at time t = 0 given by

∣ψ (0)⟩ =
D
∑
n=1

cn∣n⟩ , (1.3.9)

so that the state at time t is given simply by

∣ψ (t)⟩ =
D
∑
n=1

e−iEntcn∣n⟩ . (1.2.2)

Consider the expectation value of an observable Ô at time t,

⟨Ô⟩ (t) = ⟨ψ (t) ∣Ô∣ψ (t)⟩ (1.3.10)

=
D
∑
n=1

∣cn∣
2 ⟨n∣Ô∣n⟩ +

D
∑

n,m=1
n≠m

ei(Em−En)tc∗ncm⟨n∣Ô∣m⟩ , (1.3.11)

and as t→∞, the coefficients multiplying the off-diagonal terms ⟨n∣Ô∣m⟩ are randomly distributed
about the unit circle, as are the matrix elements themselves, and as L, t → ∞, the second term
in Eq. (1.3.11) vanish if the system thermalizes. This is known as dephasing, and implies that
for thermal systems, the late-time expectation values of observables are given by the diagonal
ensemble, i.e. the diagonal elements of the observable in a basis that diagonalizes the evolution
operator. Thus, we have at late times

⟨Ô⟩ (t) =
D
∑
n=1

∣cn∣
2 ⟨n∣Ô∣n⟩ , (1.3.12)

which is notably time-independent, consistent with the steady state condition of thermal equilib-
rium.

However, recall that in equilibrium, the expectation values of observables must be independent
of the initial conditions, encoded by the coefficients cn in Eq. (1.3.12). Since∑n ∣cn∣

2 = ⟨ψ(0)∣ψ(0)⟩ =
1, this is obviously accomplished if ⟨n∣Ô∣n⟩ is independent of the eigenstate ∣n⟩, in which case

⟨Ô⟩ (t)→ ⟨Ô⟩eq
!= ⟨n∣Ô∣n⟩ , ∀ ∣n⟩ , (1.3.13)

which means any eigenstate of the Hamiltonian [or evolution operator] is a perfectly valid mi-
crocanonical ensemble. Even for nonequilibrium initial states where the off-diagonal terms in
Eq. (1.3.11) are not remotely negligible at t = 0 one will find that said terms vanish at late times,
and owing to the normalization condition constraining the coefficients cn, the result Eq. (1.3.13)
recovers.

Definition 1.6. The Eigenstate Thermalization Hypothesis is the statement ⟨n∣Ô∣n⟩ → ⟨Ô⟩eq,

∀ ∣n⟩, with ⟨Ô⟩eq independent of the eigenstate, ∣n⟩. From this and dephasing, the result ⟨Ô⟩ (t)→
⟨Ô⟩eq as t→∞ follows automatically.
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Some additional comments:

• Occasionally in conventional thermodynamics the order of limits can be important. That is
also true here: the t → ∞ limit should be taken prior to—or rather, faster than—the limit
of infinite volume.

• The various statements made about observables only apply to those that are sufficiently local.
To be sufficiently local, an observable’s support must be limited to a valid, subextensive choice
of A ⊂ S.

• The constraints noted in Section 1.3.2 still apply to the coefficients cn. To wit, any uncertainty
in the expectation value of extensive conserved quantities must be subextensive to make for
a nice ensemble. For temperature, e.g., to be well defined, one should restrict to an initial
state ∣ψ(0)⟩ with the majority of its weight on eigenstates {∣n⟩} in some window of energy.
The average energy density will set the temperature.

• Any finite-size system will have small deviations from the result Eq. (1.3.13) that vanish
in the thermodynamic limit. There will be slight variations between ⟨n∣Ô∣n⟩ from state to
state, and the off-diagonal term in Eq. (1.3.11) will vary a bit around zero at different times,
t. This vanishes in the large time limit.

• The statement “∀ ∣n⟩” in Definition 1.6 of ETH is overkill, and responsible for making ETH
“too strong” a statement. One could imagine a system containing one or several eigenstates
∣n⟩ for which Eq. (1.3.13) fails to hold, but the effect of these states, both in terms of the
overall fraction of the eigenstates they represent, and the extent to which they violate ETH,
vanishes in the thermodynamic limit. Additionally, the strong version of ETH seems to hold
valid even for numerical studies on small systems.

• Degeneracies in the energy spectrum are not a problem, unless the degeneracy of a given
energy is extensive, which is highly nongeneric. For subextensive degeneracy, any effect
in the off-diagonal terms in Eq. (1.3.11) will be cancelled by other degeneracy effects with
opposite sign, and this all vanishes as L, t→∞.

• There are swaths of systems for which ETH is false, including many-body localized systems,
quantum scars, etc. Note that a modified version of ETH holds for integrable systems that
accounts for their infinite set of conserved quantities, but there is no meaningful distinction
between ETH and its modified counterpart at the level of this discussion.

• All of these results are for interacting systems, free systems are different, and generally fall
into the category of integrability. Disordered free systems can instead be similar to many-
body localized systems, to be discussed, depending on dimension and disorder strength.

Off-diagonal ETH Srednicki showed that for thermalization to occur, it is sufficient for the
off-diagonal terms in Eq. (1.3.11) to satisfy

⟨n∣Ô∣m⟩ = e−S(E)/2 f (En,Em) Rn,m , (1.3.14)

where S is the thermodynamic entropy of the whole system S = A ∪ B, evaluated at the mean
energy E = (En +Em)/2, and f is an arbitrary function that falls off for large ∆E = ∣En −Em∣, and
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may depend on E as well; the coefficients Rn,m look like elements of a random matrix, and if R
is a random matrix, then the system is definitely thermal. The matrix R encodes ingredients like
locality, and model-dependent details. Both f and R should be O(1); the entropy S is extensive,
and thus the leading factor in Eq. (1.3.14) suppresses the off-diagonal matrix elements of Ô in the
eigenbasis of the evolution operator in the thermodynamic limit. It is not settled what conditions
are necessary to ensure the validity of Eq. (1.3.14).

Note that Eq. (1.3.14) implies Eq. (1.3.13). The eigenstates {∣n⟩} are eigenstates of the evolu-
tion, and therefore have no dynamics. This also means that they already satisfy the steady-state
condition for thermal states, but to be truly thermal, must also reproduce thermal equilibrium
expectation values. This is captured by Eq. (1.3.13). Since eigenstates do not evolve, if an eigen-
state is thermal, it is thermal from t = 0. Together, Eq. (1.3.14) and Eq. (1.3.13) provide that “all
eigenstates are thermal” Ô⇒ “all initial pure states thermalize,” which is somewhat intuitive,
but also unnecessary, as previously explained.

Volume-law entanglement entropy The von Neumann entanglement entropy is a measure
of entanglement between a subsystem A and its complement, B, given in terms of the reduced
density matrix for subsystem A, ρ̂A via

SA∣B = −Tr[ ρ̂A ln ρ̂A ] , (1.3.15)

and one recovers the same value using instead the reduced density matrix for B. Note that there
are other measures of entanglement, e.g. Rényi entropies, and similar quantities, e.g. mutual
information, that may be of use.

For systems that thermalize, the thermodynamic entropy is equal to the entanglement entropy.
This is best understood for systems with no conserved quantities, as in the context of those systems
it is clearest that entanglement is the mechanism for equilibration and thermalization in quantum
systems. Because entropy is extensive, one must therefore have

SA∣B = sA (T,µ, . . . ) Vol (A) , (1.3.16)

where the coefficient sA (T,µ, . . . ) is the equilibrium entropy density as a function of the relevant
state variables. Because thermal states maximize entropy, quantum thermal states maximize sA
and therefore entanglement in general. As we will see in briefly in Sec. 1.5—as well as Ch. 4 and
Ch. 5—for a system prepared in a product state at t = 0 (i.e. a state with no entanglement and
S
A∣B = 0 at t = 0), entanglement entropy grows linearly in time until saturating to the value given

by Eq. (1.3.16). The time required for the system to thermalize is given by this time for systems
with no conserved quantities; in the presence of such conserved charges, thermalization may be
further delayed by transport of that charge, as we will see in Ch. 5. While thermalization implies
volume-law entanglement entropy, the converse does not hold.

Finally, note that ETH is merely one scenario by which thermalization can occur, but it is not
the only one. However, it does seem to be fairly generic, supported even by exact numerics for
very small systems. These arguments are even more successful in the context of random evolution,
for which provable results exist in certain limits, as will be discussed in Ch. 5. Rigorous proofs are
otherwise rare, if even possible; ETH should be regarded as a conjecture supported by experimental
and general observation, along with various numerical studies and other arguments.
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1.4 Many-Body Localization

Anderson published his seminal work on localization in 1958, and was interested in nonergodic
behavior, particularly in the context spins in Silicon experiments [10]. That paper, and most
work following it, related to noninteracting systems, but was contemporaneously conjectured to
survive weak interactions. The insight into nonergodicity was not appreciated until half a century
later, when people began considering nonperturbative interactions in such systems more seriously.
For the purposes of this section, there will be no need to delve into the rich history of Anderson
localization6, and the noninteracting physics will recover as a simple limit of the general results.

However, it is worth noting that numerous phenomena from single-particle localization or lo-
calization in low-temperature systems do not exist in the general setting of MBL. For example,
“weak localization” of noninteracting particles subject to low disorder—characterized by a local-
ization length that is large compared to the mean free path—does not seem to have a many-body
analogue. While knowledge of single-particle localization has helped shape our present understand-
ing of MBL, it is unwise to assume that aspects of single-particle localization—especially those
concerning ground state physics—port over to the nonequilibrium study of MBL.

1.4.1 General formulation

Localization can be understood in a fairly general sense in the following way. Begin by choosing a
local basis in which the Hamiltonian, Ĥ, is mostly diagonal, e.g.

Ĥ → Ĥdiag + Ĥoff , such that ∥Ĥdiag∥ ≫ ∥Ĥoff∥ . (1.4.1)

For most of the models studied in the literature, Ĥ is written in the basis of lattice sites, and
is already mostly diagonal in that basis. However, the results for those systems can be extended
to slightly more generic systems by a local rotation of basis that brings the Hamiltonian into the
form Eq. (1.4.1).

The diagonal term can be regarded as an on-site potential, and may encode diagonal interactions
as well. The off-diagonal term corresponds to hopping in the one-body case, and can be viewed
as hopping in the rotated basis, or in Fock space. In general, if a system localizes, the correct
choice of this basis and decomposition in Eq. (1.4.1) will be obvious. Dynamically, the diagonal
term gives phases to the components of ∣ψ⟩ in the local basis, and the off-diagonal term generates
transitions between these basis states.

Suppose that Ĥdiag has eigenvalues V 0
n , which for noninteracting Ĥdiag correspond to the po-

tential on the generalized site n. The off-diagonal terms “hop” between the Ĥdiag eigenstates ∣m⟩
and ∣n⟩ [with respective eigenvalues V 0

m and V 0
n ] with coupling tm,n,

Ĥdiag =
D
∑
n=1

V 0
n ∣n⟩⟨n∣ (1.4.2)

Ĥoff = ∑
m≠n

tm,n∣m⟩⟨n∣ . (1.4.3)

For tm,n ≳ ∣V 0
n − V 0

m∣, the eigenstates of the diagonal part are strongly mixed, resulting in a de-

localized state when Ĥdiag is many-body. In the other limit tm,n ≪ ∣V 0
n − V 0

m∣, there is minimal

6This term is commonly used to refer to localization in noninteracting systems, but many-body localization
could easily be called many-body Anderson localization.
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mixing, and perturbation theory in the off-diagonal term converges, resulting in “localization” to
the corresponding local basis used to recover the diagonal part, with exponentially vanishing tails
away from this configuration.

In this case, the eigenstates are localized to a handful of basis states. In this case, blocks of
eigenstates of Ĥdiag are “detuned,” as the energy difference between various local configurations
far exceed the coupling strengths of any dynamical process(es) that connect them. Strong spatial
disorder can lead to such localization, as can “deterministic” potentials that are incommensurate
to the lattice, e.g. quasiperiodic potentials V (r) = V0 cos(k ⋅ r) for k an irrational multiple of the
lattice spacing, destroying any translation invariance. Thus, detuning, and not randomness, is the
essential feature for many-body localization.

Note that the case where Ĥ is noninteracting has been studied at length, and differs from
the above discussion in some important ways. For example, in one dimension, disordered non-
interacting models of spinless fermions, spins 1/2, q-bits, etc., are always localized, although the
localization length may be quite large. However, noninteracting models are easier to solve, have
been studied at length in the literature, and are not automatically robust to the inclusion of
interactions, and therefore not necessarily generic or stable. Thus, we will not worry about them.

Finally, this discussion also applies to the Floquet setting, as the evolution still has eigenstates.
For the Floquet case, one ought to compare the difference in eigenphases ∣eiθn − eiθm ∣ to the coupling
tm,n, which will only be meaningfully defined modulo 2π/T .

1.4.2 A more specific formulation

More concrete results can be obtained by restricting to two-state systems, e.g. q-bits, spins 1/2, or
spinless fermions. Let us work in the spin language, and define the diagonal part of the Hamiltonian

Ĥdiag = Ĥ0 =∑
n⃗

hn⃗Ẑn⃗ , (1.4.4)

where n⃗ are some site-like index, which may have multiple components, and Ẑn is the Pauli matrix
measuring the component of the nth spin along the z direction7, and

hn⃗ > 0 , with hn⃗ ≠ hm⃗ if m⃗ ≠ n⃗ , (1.4.5)

are any set of coefficients that do not repeat in any regular pattern as a function of n⃗, e.g.
independently drawn random numbers, or a quasiperiodic function of n⃗ that is incommensurate
to the “lattice.” Note that n⃗ may describe real sites, single-particle orbitals, or any other sensible
parametrization of degrees of freedom that is either strictly local or decays exponentially in real
space. In general, it is easiest to regard n⃗ as indexing sites. Whatever the choice of n⃗, the
corresponding Pauli operators must satisfy the usual relation that Pauli matrices on different
“sites” commute, i.e. [Zn⃗, Zm⃗] = 0. Also note that this discussion can be extended to Floquet
systems as in Section 1.4.1.

The eigenstates of the Hamiltonian given in Eq. (1.4.4) are unentangled, classical product
states: letting Ẑj ∣n⟩ = zj ∣n⟩ for an eigenstate ∣n⟩, the eigenstates are then enumerated by the
various configurations of these local eigenvalues, {zj = ±1}. Because they are eigenstates of the
Hamiltonian, and therefore the evolution operator, these states have no dynamics, and remain
unentangled classical product states for all time. No entanglement is generated under the evolution,

7This notation is more common in the Quantum Information community. To quote one of my mentors, John
McGreevy, “Sight is a valuable commodity. In order not to waste it, let us use Ẑ instead of σ̂z.”
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and it is therefore not possible for this model to thermalize in the sense described in previous
sections8, and the system remains localized in the eigenbasis of Ĥ0. The next step is to address
stability to generic perturbations, which must include interactions.

However, localization in Hilbert space [or “Fock” space, as it is often termed in the context of
many-body systems], or to any of the basis states, does not give a correct picture of MBL in generic
systems. For single-particle localization, one can understand the many-body problem entirely in
terms of single-body physics, and single-particle wave functions can be localized to a site, n⃗, but
this does not hold for many-body states like ∣n⟩. Truly, MBL corresponds to localization in the
coordinate space n⃗, and the thing that is localized are the eigenoperators {Ẑn⃗}. For Ĥ0 as defined
in Eq. (1.4.4), these operators are strictly local in the n⃗ basis, and possibly exponentially localized
in some lattice basis; these operators are conserved in the sense that [Ĥ0, Ẑn⃗] = [Ẑn⃗, Ẑm⃗] = 0, and

they are complete in the sense that the eigenvalues of all {Ẑn⃗} fully specify the many-body energy
E.

Note that many-body wavefunctions cannot be “local” in any specific or general sense, with the
exception of cases where the wavefunction is “separable.” However, generally speaking, many-body
wavefunctions can only be separable if the problem is not truly many-body, and the many-body
wavefunction is merely a [Slater determinant] product of single-body wavefunctions, which can be
localized in real space. The more general way to phrase localization is in terms of localization
of operators, as above; for single-body problems, the operators that are localized measure the
occupation of a localized single-body orbital.

While the eigenstates of Ĥ0 do not have dynamics for trivial reasons, general initial states will
not be eigenstates of this Hamiltonian. The dynamics of a general initial state simply involve
Larmor precession of the various Ẑn⃗, with each degree of freedom—indexed by n⃗—precessing at a
different frequency. There is no generation of entanglement as these spins independently precess,
nor is there transport, e.g. of energy, for the model defined in Eq. (1.4.4).

To make things many-body, we add weak interactions to Ĥ0. For the definition of Ĥ0 in
Eq. (1.4.4) to remain sensible, we should only include interaction terms that involve operators
acting on two or more sites [or pseudo-sites] n⃗. In general, we will restrict to the case of two-body
interactions, and generally speaking, the terms we add to Ĥ0 correspond to nearest-neighbor, two-
body interactions of degrees of freedoms on the bare, physical sites. One would next rotate the full
Hamiltonian to diagonalize all single-body terms—including any such terms that arise from the
bare interactions—and these single-particle terms are cast into the form Ĥ0 in Eq. (1.4.4). This
process will rotate a given interaction term into terms that flip one or more of the eigenvalues of a
given Ẑn⃗, and likely also result in interactions between these operators, e.g. of the form JmnẐn⃗Ẑm⃗.

Provided there are no degeneracies, this many-body localized structure is perturbatively stable
to interactions, provided the strength of interactions is weak compared to the overall scale of the
coefficients h in Eq. (1.4.4). When this happens, the terms that flip the values of the local operators
Ẑn⃗ can be treated using perturbation theory to modify the single-body {Ẑn⃗}, and the perturbation
series converges. This was a primary result of the work of Basko, Aleiner, and Altschuler [11], and
was also posited by Anderson in ref. 10. The vanishing of transport in the single-body case will
prove generic to many-body localized systems, but other dynamical properties, e.g. the generation
of entanglement, will be modified in the presence of interactions.

8As a minor caveat, if the ground state of Ĥ0 [or of −Ĥ0] is unique—i.e., nondegenerate—then that particular
state will obey ETH because of this uniqueness, according to David Huse.
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1.4.3 The many-body localized phase

For models with short-range interactions, there are a number of cases where MBL is fairly well
understood. To clarify,

Definition 1.7. For interactions or hopping terms in many-body quantum systems to be short-
ranged, the coupling strengths for terms connecting distant points in real space must decay expo-
nentially in the distance, and sufficiently rapidly for this decay to be evident on reasonable—i.e.
subextensive—scales.

Nearest-neighbor and next-nearest neighbor interactions are the most common examples. Such
short-ranged models have the same general structure as Ĥ0, as defined in Eq. (1.4.4). The key
feature that gives rise to the properties of the MBL phase is the existence of a complete set of
local integrals of motion (or “LIOMs,” also referred to as “`-bit,” in contrast to the näıve, physical
degrees of freedom, which are “p-bits”) [20]. In general, the LIOM is associated to the operator
τ̂ zn, which is conserved by the dynamics, while the `-bit is the degree of freedom that is measured
by τ̂ zn. The LIOMs are defined by:

Definition 1.8. A complete set of local integrals of motion (LIOMs) is defined by a set of operators
acting on psuedo-spin degrees of freedom, {τ̂ zn}. These objects are local in the sense that the support
of the nonidentity component(s) of τ̂ zn decays exponentially in the distance from some primary locus
in real space, e.g. site n. The term “integral of motion” denotes that these quantities are conserved :

[τ̂ zn, Û] = [τ̂ zn, τ̂ zm] = 0 , (1.4.6)

where Û is the unitary evolution operator, corresponding to Hamiltonian or Floquet dynamics.
This set of operators is “complete” in that the eigenvalues—and eigenstates—of the evolution Û
are fully and uniquely specified by enumerating all possible configurations of the `-bits in the basis
of the operators {τ̂ zn}.

In the MBL phase, the Hamiltonian can be expressed purely in terms of the operators {τ̂ zn}, and
operators such as τ̂xn do not appear, as in Eq. (1.4.7): there are no “dynamics” of the `-bits.
The MBL phase therefore has an extensive number of conserved quantities, i.e. an emergent
integrability ; unlike proper integrable systems, here the conserved quantities are localized 2. Note
that this framework applies equally well to single-particle Anderson localization [10], where the
`-bits correspond to localized single-particle orbitals, and the LIOMs are the “occupancies” of
those orbitals. In that case, the `-bit is a two-state degree of freedom; in general cases, the `-bit
will always have the same dimension as the p-bits, i.e. the local Hilbert space dimension in real
space. In the literature, it is common to default to q-bits (i.e., a two-state local Hilbert space),
but the generalization to q-dits (i.e., a d-state local Hilbert space) is trivial.

Regarding the diagonal Hamiltonian, Ĥ0, from Eq. (1.4.4), one notes that this Hamiltonian has

already been cast into the `-bit language by construction, with {Ẑn⃗} the corresponding LIOMs.
The important point is that, in the best understood version of the MBL phase, turning on a weak
interaction term Ĥint “dresses” these LIOMs (and corresponding `-bits) via perturbation theory in
the interaction terms, in a manner analogous to the dressing of noninteracting electrons to form
effectively free quasiparticles with dressed properties in Landau’s Fermi liquid. In contrast to the
Fermi liquid, where the quasiparticle lifetime is infinite only precisely at the Fermi surface, the
“quasiparticles” of the MBL phase have an infinite lifetime, and are therefore perfectly stable.
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Note that there may be other types of MBL beyond this description, e.g. in models with
long-range interactions, or other scenarios. However, this point remains largely speculative and
unresolved at the time of writing.

In one spatial dimension and for a particular Hamiltonian model, there exists a proof due to
John Imbrie [21] that MBL exists in the above described form. This proof accounts for nonper-
turbative effects, and makes the assumption that there is limited attraction between energy levels
so that eigenenergies do not accumulate at certain values and cause the denominators that arise
in perturbation theory to diverge. While this assumption has led some to regard Imbrie’s work as
a derivation and not a proof, it is worth noting that while there does not exist a rigorous proof of
Imbrie’s assumption, there are few if any models that are not fine-tuned and known not have this
property. Given the physical reasonability of this assumption, Imbrie’s work can be regarded as a
rigorous proof of the stability of a particular Ĥ0 to sufficiently weak interactions Ĥint of a particular

form. The form of Ĥ0 and Ĥint considered should be fairly generic, implying the procedure may
be replicated for other models.

In terms of the `-bits, the full Hamiltonian Ĥ given by Eq. (1.4.1) takes the generalized Ising
form

Ĥ =
L

∑
n=1

h̃nτ̂
z
n +

L

∑
m,n=1
m>n

J̃m,nτ̂
z
mτ̂

z
n + . . . , (1.4.7)

where the omitted terms . . . above contain higher-order terms involving only the z component of
the `-bit operators. Additionally, these terms decay exponentially quickly in the largest separation
between any two `-bits involved, and terms acting on a greater number of `-bits generally have
smaller coefficients. All such terms are diagonal in the `-bit basis, and these terms arise from
rotating away all off-diagonal terms in Ĥoff . Since the . . . terms contain interactions between the
`-bits involving arbitrary numbers of bodies, this model is local because it is diagonalized by a set
of local operators. If this prescription works, in the one dimensional MBL phase, the single-particle
terms must be dominant.

Note that the definitions of the `-bits are not unique. This is rarely mentioned in the literature,
but actually recovering an `-bit description for a given model is generally not an easy task. However,
in general, the `-bits are local: the rotations that diagonalize Ĥoff should be local, and it may be
possible to get a fairly accurate version of the LIOMs by truncating to some specified order in
perturbation theory or, somewhat equivalently, using a shallow-depth unitary circuit of finite
depth.

1.5 Localized vs. Thermal Phases

Both thermal phases, described in Section 1.3, and many-body localized phases, described in Sec-
tion 1.4, are proper phases of matter, with an unconventional, nonequilibrium, nonthermodynamic
phase transition between the two. This transition can be regarded as a transition of the eigen-
states, or relatedly, a dynamical transition: whereas thermodynamic phase transitions correspond
to singularities in thermodynamic quantities, e.g. free energies, the many-body [de-]localization
transition may be observed in the resulting dynamics, e.g. vanishing transport in the MBL phase.
Studying this nonequilibrium phase structure will be the subject of Ch. 6, but this section will
cover some introductory aspects. An early overview comparing the thermal (ergodic, ETH) phase,
the MBL phase, and single-particle Anderson localization—taken from Ref. 12—is given in Table
1.1. These results will be explained in this section.
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Thermal Single-particle localized Many-body localized
Memory of initial Some memory of local Some memory of local

conditions ‘hidden’ in initial conditions initial conditions
global operators preserved in local preserved in local

at long times observables at long times observables at long times
ETH true ETH false ETH false

May have nonzero Zero Zero
dc conductivity dc conductivity dc conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum
Eigenstates with Eigenstates with Eigenstates with

volume-law entanglement area-law entanglement area-law entanglement
Power-law spreading No spreading Logarithmic spreading

of entanglement of entanglement of entanglement
Dephasing No dephasing Dephasing
Dissipation No dissipation No dissipation

Table 1.1: Comparison of thermal (ETH), single-particle (Anderson) localized, and many-body
localized (MBL) phases, taken from Ref. [12].

1.5.1 The “standard model” for MBL-ETH

Unlike the model of high energy particle physics bearing the same moniker, the “standard model”
of MBL is not so-named for any physical reason. It is not even necessarily a “good” model, merely
one that was utilized during the first studies of MBL as a strictly nonequilibrium phenomenon.
The model is the isotropic spin-1/2 Heisenberg chain with antiferromagnetic couplings9 and on-site
disordered magnetic fields, given by

Ĥstd =
J

4

L−1

∑
j=1

(σ⃗j ⋅ σ⃗j+1 − 1̂) + 1

2

L

∑
j=1

hjσ̂
z
j (1.5.1)

= J
2

L−1

∑
j=1

(σ̂+j σ̂−j+1 + h.c.)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hopping

+ J
4

L−1

∑
j=1

σ̂zj σ̂
z
j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
interactions

+ 1

2

L

∑
j=1

hjσ̂
z
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
disorder

, (1.5.2)

where σ⃗j = (σ̂xj , σ̂
y
j , σ̂

z
j ), σ̂+j = ∣ ↑j⟩⟨↓j ∣, σ̂−j = ∣ ↓j⟩⟨↑j ∣, and the fields {hj} are independently drawn

(i.i.d.) random numbers, sampled equiprobably from the interval [−h,h], where the parameter h
controls the overall strength of disorder. The model is clearly strictly local, involving only on-site
and nearest-neighbor terms, and has an overall U(1) symmetry corresponding to conservation of
Ŝz = ∑j σ̂zj , where it is typical to restrict to an even number of sites, L, and half filling, Ŝz = 0.

Being Hamiltonian, this model has a conserved energy, Ĥ. It is also standard to consider open
boundaries: there is neither computational nor analytical advantage to periodic boundaries—
usually invoked to construct momentum eigenstates—due to disorder, which breaks translation
invariance; additionally, it is easier to measure numerically the bipartite entanglement entropy on
an open chain; finally, compared to periodic boundaries, one can meaningfully measure correlation
functions to twice the distance for a chain of size L on an open chain (nothing can be farther than
L/2 from anything else on a ring).

9For highly excited states and in the presence of sufficiently strong disorder, these signs don’t appear to matter.
This includes repulsive versus attractive interactions, which I checked numerically at one point.
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One subideal feature of the Hamiltonian given in Eq. (1.5.2) is that, in the limit h → 0, the
Hamiltonian is both non-Abelian and integrable. In the limit of no disorder, this model becomes the
Heisenberg ferromagnet, which has a more complicated SU(2) symmetry in which all components
of spin, Ŝx, Ŝy, and Ŝz, are conserved, and do not commute with one another. Such complications
are not generic. A better choice of “standard model” would have been a Floquet model with no
extensive conserved quantities, well away from any integrable point, even in the limit of vanishing
disorder, to better and more independently probe various physics.

Many-body localization edge in the random-field Heisenberg chain

David J. Luitz, Nicolas Laflorencie, and Fabien Alet
Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France⇤

(Dated: November 3, 2014)

We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation of
the many body localization transition including the existence of an extensive many-body mobility
edge. The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-
law entanglement, and a full delocalization in the Hilbert space. Conversely, the localized regime
displays Poisson statistics, area-law entanglement and non ergodicity in the Hilbert space where
a true localization never occurs. We perform finite size scaling to extract the critical edge and
exponent of the localization length divergence.

PACS numbers: 75.10.Pq, 72.15.Rn, 05.30.Rt

The interplay of disorder and interactions in quan-
tum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following pre-
cursors works [1–4], perturbative calculations [5, 6] have
established that the celebrated Anderson localization [7]
can survive interactions, and that for large enough dis-
order, many-body eigenstates can also “localize” (in a
sense to be precised later) and form a new phase of matter
commonly referred to as the many-body localized (MBL)
phase.

The enormous boost of interest for this topic over the
last years can probably be ascribed to the fact that the
MBL phase challenges the very foundations of quantum
statistical physics, leading to striking theoretical and ex-
perimental consequences [8, 9]. Several key features of
the MBL phase can be highlighted as follows. It is non-
ergodic, and breaks the eigenstate thermalization hy-
pothesis (ETH) [10–12]: a closed system in the MBL
phase does not thermalize solely following its own dy-
namics. The possible presence of a many-body mobility
edge (at a finite energy density in the spectrum) indi-
cates that conductivity should vanish in a finite tem-
perature range in a MBL system [5, 6]. Coupling to
an external bath will eventually destroy the properties
of the MBL phase, but recent arguments show that it
can survive and be detected using spectral signatures for
weak bath-coupling [13]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–
17]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [18–
22]. Finally, a striking phenomenological approach [23]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-

Figure 1. Disorder (h) — Energy density (✏) phase dia-
gram of the disordered Heisenberg chain Eq. (1). The er-
godic phase (dark region with a participation entropy vol-
ume law coe�cient a1 ' 1) is separated from the localized
regime (bright region with a1 ⌧ 1). Various symbols (see
legend) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L 2 {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

tion [24–26], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates
at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.

Going beyond perturbative approaches, direct numer-
ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [14, 17, 21, 27–42]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
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Figure 1.2: Figure (a)—reprinted with permission from Ref. 22 [David J. Luitz, Nicolas Laflorencie,
and Fabien Alet, Phys. Rev. B, 91, 081103(R), Feb. 2015] Copyright (2015) by the American
Physical Society—shows numerical evidence for the MBL phase diagram for the “standard model”
out to L = 22 sites using a variety of measures. Figure (b) represents Sketch of the phase diagram
for the “standard model,” representing a combination of numerical studies of finite systems and
other analytical results, which should hold in the thermodynamic limit L → ∞. Note the error
bars on the location of the MBL transition. The vertical axes in both represent the energy density,
ε, normalized in the full range from the ground state to most excited state; the horizontal axis,
h/J , is the strength of disorder normalized by that of interactions (and hopping terms).

Nonetheless, the “standard model” has been studied at length numerically: a phase diagram
based on state-of-the-art numerics is reproduced in Fig. ??(a) from Ref. 22. In these numerical
studies, one fixes the symmetry sector—i.e. total magnetization, Ŝztot—generally focusing on the
largest sector, which has equal numbers of up and down spins. One then varies the ratio of
the parameters h and J , often working at infinite temperature, in which case all energies are
equiprobable. In this case, the expectation value of an observable is given by the expectation value
in an eigenstate of the Hamiltonian, averaged over all eigenstates with equal weight. In practice,
to reproduce such spectral averages it is sufficient to use Lanczos algorithms and study a handful
of states (say, 50) from the middle of the spectrum.

However, other studies sample throughout the spectrum, as shown in Fig. ??(a), motivated by
the notion of mobility edges from single-particle localization. In the latter case, eigenstates at the
“edges” of the energy band are localized, while a window of states in the middle of the spectrum
are delocalized. However, the “fully” many-body localized phase is characterized by a complete set
of local integrals of motion, which can only be reconciled with localization throughout the entire
many-body spectrum. The full MBL phase is the only one known to exist in the thermodynamic
limit. However, as depicted in Fig. 1.2b(b), there may exist “weak” MBL phases, or MBL-like
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phases, that do feature such phenomena, and hence we have allowed for such a many-body mobility
edge beneath the full MBL transition, where states at the outer edges of the spectrum may be
MBL, but not in the sense of having a complete set of LIOMs (i.e. {τ̂ z` } operators). However, the
current expectation is that the thermal (i.e. ergodic, or ETH) region of Fig. 1.2b(b) may in fact
grow in extent in the thermodynamic limit.

Definition 1.9. The strong—or full—MBL phase is characterized by a complete set of LIOMs,
which characterize the entire spectrum of eigenstates of the evolution operator. Therefore, this
phase is only well-defined in the Hamiltonian and Floquet settings, and by construction precludes
a “mobility edge,” e.g. of the type found in single-particle localized systems in d > 1. The strong
or full MBL phase is a robust phase of matter, and the only type of MBL known to exist in the
thermodynamic limit. This phase is essentially known to be limited to one spatial dimension (1d).

The strong MBL phase should be contrasted with another type of localization, which we refer to
as “weak MBL.”

Definition 1.10. Weak MBL refers to systems that appear to show all of the properties of strong
MBL. They are “weak” in the sense that they are not “strong.” Systems realizing weak-MBL
may differ from strong MBL in that: they are not robust to generic perturbations; the localization
physics is only dynamically realized on short time scales (also known as “pre-thermal” regimes); the
localization physics is limited to finite sizes and does not survive upon taking the thermodynamic
limit; the system does not feature a complete set of local integrals of motion that satisfy Definition
1.8; and possibly other points of comparison. Compared to strong MBL, weak MBL is far more
accessible both experimentally and numerically, and therefore should not be discounted. However,
it does not share the most impressive feature of strong MBL, which is to say that it is generally
not a phase of matter.

Whether there exist versions of MBL that differ from the definition of strong MBL (Def. 1.9) but
still manage to realize a phase of matter remains an open question. Note that the numerical phase
diagram in Ref. 22 must be taken with a grain of salt because of the existence of weak MBL. While
most numerical studies report a critical disorder strength of roughly hc/J ≈ 3.5, the theoretical
phase diagram in Fig. 1.2b—meant to capture the thermodynamic limit—extends the critical value
out to five to be safe, and includes error bars to emphasize the fact that it is presently unclear the
extent to which the numerical studies of Ref. 22 are capturing full MBL, as opposed to its weaker
variants.

Note that a phase diagram of the form given in Fig. 1.2b should hold roughly for a model
that is quasiperiodic, rather than disordered, likely with a different value of hc/J , where h refers
to the strength of the deterministic spatial potential, which should be incommensurate with the
lattice. The main difference between quasiperiodicity versus disorder should be sample-to-sample
variations, especially in the properties of eigenstates and the various measures of thermalization
versus localization.

1.5.2 Comment on techniques

Due to the complicated and generic nature of these systems, most of studies rely upon exact
or nearly exact numerics for extremely small systems. A number of studies have focused on
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dynamical aspects of ETH/MBL, which allows for the study of roughly 30 spins 1/2 by using
Krylov spaces [23]. Others examine the properties of eigenstates—which were shown in Sec. 1.3.4
to be valid ensembles—generally sampled from the middle of the spectrum. Other studies use
the infinite temperature ensemble (as T →∞—i.e., β → 0—the standard Gibbs-Boltzmann weight
e−βĤ → 1̂), which is also what happens in systems with neither symmetries nor continuous time
translation invariance. In most cases, such spectral averages are well approximated by sampling a
handful of states (i.e. roughly 50) from the middle of the spectrum, allowing for the use of Lanczos
diagonalization methods. Such techniques can describe roughly 25 spins 1/2.

In general, progress is made in solving a given quantum system using some simplifying as-
sumptions. For example, in studying equilibrium systems at T = 0, one can restrict to the ground
state, and possibly low-lying excitations, and use procedures such as the density matrix renormal-
ization group (DMRG) [24, 25] to target the lowest energy state in each “update,” and restrict
to a manifold of states with extremely low entanglement. For translation invariant model, it is
possible to use the “infinite” version, iDMRG, and find the ground state of an infinite system by
studying a handful of sites. In the setting of MBL versus ETH, one is interested in arbitrarily
excited states of interacting, disordered models (i.e. those without translation invariance and for
which the Hilbert space does not factorize), which may not have any simplifying symmetries, and
are known—in the thermal phase—to have an entanglement entropy that scales with the volume
of a given region. Each of these individually is enough to kill most techniques. Additionally, most
perturbative techniques rely on perturbing about a noninteracting and homogenous part of the
Hamiltonian, i.e. a hopping term. However, such techniques treat both interactions and disorder
perturbatively, yet it is now well established that these two terms determine whether a system
is MBL or thermal, and that there exist a number of nonperturbative instabilities that must be
considered. Therefore, perturbing in either—let alone both—of these quantities is not a reliable
way to study nonequilibrium phase structure.

However, one phenomenological property of MBL phases is that their highly excited states have
most or all of the properties of quantum ground states, i.e. area-law entanglement and the ability
to host quantum order and quantum phase transitions. This insight has led to the adaptation of
several techniques used to study ground-state physics to the MBL setting, but these techniques are
generally not useful on the thermal side, or near the many-body delocalization transition, which
is theorized to be governed by Griffiths—or “rare region”—effects.

The first example is the strong disorder renormalization group (SDRG), also known as the real
space renormalization group (RSRG), sometimes written as RSRG-X in the literature when applied
to excited states in the context of MBL. These techniques coarse-grain the Hamiltonian in real
space, diagonalizing the strongest terms first, and fixing their state, and generating new couplings
between neighboring degrees of freedom at lowest order in perturbation theory. For certain systems,
e.g. the disordered Ising chain, each step results in a Hamiltonian of the same form, with a single
site fixed in a particular state, i.e. ∣ ↑⟩, and the sites on either side are coupled perturbatively,
and the site that was fixed is “frozen in.” However, this theory requires the assumption of strong
disorder: if there are nearby terms—especially those that do not commute—with comparable
couplings, the technique is no longer valid. Assuming strong disorder, each step of the RG only
strengthens the disorder distribution: if the technique is valid, the model flows to infinite disorder
(and associated infinite disorder critical points / fixed points), and is asymptotically exact in that
limit. However, there are conjectures that certain transitions only hold in the infinite disorder
limit. These properties and several implementations of RSRG-X will appear in Ch. 6. It is worth
noting that RSRG ignores a lot of “quantumness” as it fixes the wavefunction into a classical
product state in certain cases. In other cases, e.g. those characterized by “random-singlets,” some
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entanglement is generated, but the maximal scaling with the size of a region is logL, short of the
volume law entanglement of thermal phases. Therefore, RSRG-X of this type essentially cannot
resolve thermal eigenstates.

Another technique that works deep in the [full] MBL phase is an adaptation of DMRG to
excited states, DMRG-X [26]. This technique relies on the fact that MBL eigenstates have area-
law entanglement, and are therefore amenable to the entanglement-truncation procedure exploited
by DMRG-X. However, this technique necessarily breaks down near the transition, and is therefore
not capable of answering most of the outstanding questions surrounding nonequilibrium phases.
Without being overly dismissive, it is also unlikely that DMRG-X can provide insight beyond that
afforded by a knowledge of the existence of local integrals of motion. Additionally, the technique
may not be valid outside the MBL regime that is characterized by a complete set of LIOMs.

Finally, other techniques, such as the numerical linked-cluster expansion (NLC), are often only
truly useful on the thermal side of the transition, and only provide access to larger systems when
considering particular quantities, e.g. entanglement entropy. For this technique in particular, it
is possible to measure the entanglement entropy of a generic system out to twice as many sites
as one could study using exact numerics (and not Lanczos methods). However, a mere doubling
(i.e. L = 30 instead of L = 15) is not justified compared even to Lanczos and shit-invert methods
considering the inexact nature.

1.5.3 Spectral properties

A particularly transparent heuristic of “quantum chaos” or thermalization is afforded by spectral
properties. As systems without any time-translation invariance do not have an eigenspectrum
for their evolution, such systems cannot be diagnosed in this way, and we restrict to Floquet and
[time-independent] Hamiltonian systems. A key fingerprint of chaos is given by level repulsion: the
energy levels of a thermal system know about one another and repel. This is related to “avoided
crossings” from standard perturbation theory: thermal quantum systems constitute a phase of
matter, and are therefore robust to perturbations, and so weakly perturbing the model will adjust
the levels, which will not “cross” but rather “repel.” Other intuitive pictures may be presented in
the literature.

In contrast, integrable models and MBL systems have an extensive set of local conserved
quantities. Thus, the many-body spectrum is recovered from populating an extensive number
of independent quantum numbers. Because these quantities are independent, albeit for different
reasons, the distribution of levels of integrable and MBL systems realizes the Poisson distribution.
Thermal systems, on the other hand, realize Wigner-Dyson distributions corresponding to the
symmetries present in the model. Much of our understanding of this matter comes from random
matrix theory (RMT), and in fact, an intuitive picture is that thermal systems ought to have the
properties of random matrices. This will be explored and utilized more explicitly in Ch. 5.

In Hamiltonian [Floquet] systems, the “spectrum” refers respectively to the set of energies
[pseudoenergies]. A useful diagnostic is the “r ratio” [27], defined by

r =
D
∑
n=2

min (En+1 −En,En −En−1)
max (En+1 −En,En −En−1)

, (1.5.3)

where n ∈ {1,2, . . . ,D − 1,D} labels the energy [pseudoenergy] eigenvalues in ascending order. It
is also typical to average r over an ensemble of similar systems; at infinite temperature it often
suffices to sample a finite set of eigenvalues from the middle of the spectrum. The r-ratio is used
as a diagnostic of the ETH-MBL transition in the “standard model,” as can be seen in Fig. 1.2a.
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In both MBL and integrable models, there are many levels that are unrelated to one another:
in the former case, because the model is localized, and the eigenvalues of LIOM operators that
are well separated in real space are unrelated and do not repel (i.e. this can be derived directly
from the `-bit formalism, but also follows generally from the notion of localization); in the latter
case, there are extensively many symmetry sectors that are independent, and thus do not repel.
For general models with a symmetry, the r ratio should be computed within a symmetry sector to
avoid spuriously Poisson values. The value in the Poisson case (uncorrelated spectrum) is known

⟨r⟩ Orthogonal Unitary Symplectic
Gaussian 0.535898 0.602658 0.676168
Circular 0.526922 0.596543 0.671921
Poisson 0.386294

Table 1.2: Expected values of the r statistic, defined in Eq. (1.5.3), for various ensembles, quoted
from Ref. [27].

exactly, corresponding to r = 2 ln 2 − 1 ≈ 0.38. For the Wigner-Dyson ensembles, the values are
known theoretically but only to numerical accuracy. The expected values can be found in Table 1.2.
Hamiltonian systems fall into one of the Gaussian ensembles: those with time reversal symmetry
correspond to the Gaussian orthogonal ensemble (GOE), those without time reversal symmetry
(i.e. chiral Hamiltonians) correspond to the Gaussian unitary ensemble (GUE), and symplectic
ensembles (GSE) refer to systems with time-reversal but no other “rotational” symmetries, and are
less common. Circular ensembles are the equivalent of Gaussian ensembles for unitary matrices,
and hold for Floquet systems, falling into the same three categories with the same relation to
symmetry.

In addition to the r ratio, another simple measure of spectral rigidity is the spectral form
factor, to which much of Ch. 5 is devoted. The spectral form factor probes two point-correlations
of the density of eigenvalues of the evolution operator, and provides a coarse-grained snapshot
of the system that can appear to favor quantum chaos, especially in numerical simulations [28].
However, it can be used to extract other useful information. This quantity will be discussed in
more detail in Ch. 5.

1.5.4 Entanglement entropy

As discussed in Sec. 1.3, for quantum systems in a thermal phase, both eigenstates and late-
time states following a quench are expected to show volume-law entanglement. Specifically, this
means that the von Neumann entropy associated with a bipartition of isolated quantum degrees
of freedom, S, into a system, A, and bath, B—defined in Eq. (1.3.15)—scales with the volume of
A10. For a one dimensional system this implies for the entanglement entropy

SA∣B = −Tr ρ̂A ln ρ̂A = αVol (A)∝ LdA , (1.5.4)

where d is the spatial dimension. Additionally, thermal systems maximize entropy, and thus the
coefficient of proportionality, α, should be the maximal one. As an aside, there will be variations
between eigenstates and realizations of disorder in any given measurement.

10In general, the entanglement entropy is limited by the smaller of the two components; however, per the formalism
used in Sec. 1.3, this must always be A.
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In localized phases, one expects area law entanglement, much like one expects in quantum
ground states. In single-body and many-body localized phases, this is easily understood as a direct
consequence of the existence of exponentially localized eigenoperators (i.e. the LIOMs, {τ̂ z}). The
entanglement across a bipartition of the system scales with the extent to which information about
the state—encoded entirely in the LIOMs themselves—crosses the cut. Since the `-bits upon which
the LIOMs act are exponentially localized in real space, as are the LIOMs themselves, the amount
of entanglement of the region A of the system falls off exponentially with the distance from the
entanglement cut. Hence, for all practical purposes, the entanglement entropy scales with the size
of the cut itself, which is one dimension lower than the system itself, and thus, an “area law” (in
the typical setting of d = 1, this corresponds to a constant independent of the system’s length) [29].

In some sense, volume-law scaling of entanglement with system size is a defining feature of
the thermal phase, and area-law entanglement away from the ground state is a feature of local-
ized phases. Additionally, systems described by a model that sits exactly at a quantum phase
transition—also known as “critical systems”—are expected to show logarithmic scaling of entan-
glement entropy [30]. This is a natural result of having correlations on all length scales, and in
equilibrium, is closely connected to conformal field theory. Whether or not nonequilibrium critical
phases exist is an interesting and largely open question [31–33], which will appear in Ch. 6. As
a final note, in d = 1, it is extremely difficult to differentiate between area-law, logarithmic, and
volume-law dependence on subregion size, which generally is limited to roughly fourteen sites in
the best cases.

An interesting feature of the ETH-MBL transition is that the entanglement entropy changes be-
tween volume- and area-law scaling across the transition. In contrast, quantum phase transitions—
which occur at T = 0 in quantum models as one tunes another parameter (e.g. magnetic field)—are
between two phases with area-law entanglement. Thermal phase transitions, which are the most
familiar and common, are between two phases with volume-law entanglement (i.e. both phases are
thermal). At the time of its discovery, the MBL-ETH transition was the first of this type; since
then, additional such transitions have been uncovered. For example, the highly entangled state of
an otherwise thermal system can be reduced to an area-law state by repeated local measurements,
which “collapse” the corresponding degrees of freedom, spoiling any entanglement they may have
had with their surroundings [9].

1.5.5 Entanglement production

For thermal systems, mechanisms for the production of entanglement evolving from an initial
product state (i.e. a quench from an unentangled initial state) will be discussed in Ch. 4, using
insights from integrability, and Ch. 5, using random circuits and the technology of “quantum
chaos.” The general expectation is that entanglement entropy in thermal—as well as integrable—
systems following a quench should grow linearly in time [9, 19,34].

The fact that eigenstates of the evolution operator in the full MBL phase have area-law (i.e.,
constant for the standard 1d setting) entanglement might lead one to believe that entanglement
is uninteresting in the MBL phase. While this is true in the single-body case, where the lack
of interactions limit substantially the spread of entanglement, the MBL phase is actually more
interesting, and grows logarithmically in time. Although this was brought to the general attention
of the community by Ref. 35, as with many matters related to the various areas of physics that
appear in this thesis, this was pointed out several years before by Prosen and collaborators in
Ref. 36. This was also shown directly from the LIOM picture in Ref. 29. Eventually, the entan-
glement entropy grows to a maximal late-time value with volume-law scaling; this late-time value
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may have a lower coefficient of proportionality than one expects for thermal systems.
Let us consider a quantum quench in an MBL phase from an initially unentangled state.

Consider the phenomenological model of an MBL phase, given by the `-bit Hamiltonian defined
in Eq. (1.4.7),

Ĥ =
L

∑
n=1

h̃nẐn +
L

∑
m,n=1
m>n

J̃m,nẐmẐn + . . . , (1.4.7)

where, as a reminder, the coefficient of higher n-body terms generally have smaller coefficients
than fewer-body terms, which also necessarily fall off more quickly on average. In this basis, the
eigenstates of the Hamiltonian are at most area-law entangled in the näıve basis (i.e. the real space
“p-bits”), and are unentangled in the basis of `-bits upon which the LIOMs, {Ẑn} (or {τ̂ zn} in the
literature), act.

For the initial state, ∣ψ(0)⟩, we choose a physically preparable pure state that is an unentangled
tensor product over configurations physical sites, i.e., a product state in the p-bit basis. States of
this type will have area-law entanglement in the basis of `-bits; crucially, the initial state is not
an eigenstate of Ĥ in Eq. (1.4.7). We will also consider other initial states that are not in a local
eigenstate of any of the LIOMs that fully specify Ĥ. For example, the eigenstates of Ĥ are given
by enumerating the eigenvalues of the LIOMs, {Ẑn}; we allow for initial states that are product
states of {X̂n}, where {Ẑn, X̂n} = 0. The LIOM operator Ẑn is conjugate to X̂n: each operator flips
back and forth between the eigenstates of the others, as with the corresponding Pauli matrices.

We now imagine replacing all many-body terms in Eq. (1.4.7) with an “effective” two-body
interaction,

∑
m,n

Jeff
mnẐmẐn = ∑

m,n

[J(2)
mnẐmẐn +∑

p

[J(3)
mnpẐmẐnẐp +∑

q

[J(4)
mnpqẐmẐnẐpẐq + . . . ]]] , (1.5.5)

which encodes all higher-body terms in a mean-field sense. The precise details will not be important
to this analysis. However, we do expect

Jeff
m,n ∼ J0 exp (− ∣n −m∣ /ζz) , (1.5.6)

where ζz need not be the same as the decay length associated with J
(2)
mn or any other length scale

in Eq. (1.4.7). It is expected to be O(1). The effective Hamiltonian is then given by

Ĥ =
L

∑
n=1

h̃nẐn +
L

∑
m,n=1
m>n

Jeff
mnẐmẐn , (1.5.7)

which is Ising-like, but nonetheless acts nontrivially on the states we will consider.
Our initial states are unentangled in some basis, and we now address how the Hamiltonian

given in Eq. (1.5.7) generates entanglement. While it is possible for one-body terms close to the
entanglement cut to generate entanglement when acting on a product state of p-bit configurations,
such terms cannot generate entanglement in the bulk of either region, A or B, and are therefore not
the dominant process. such terms do not generate entanglement acting on product states prepared
in the {X̂n} basis.

The dominant contribution to entanglement production is the two-body term, and in particular,
the terms in which Ẑm acts in the bulk of A and Ẑn acts in the bulk of B or vice versa. Because
the Hamiltonian is strictly local, the number of such terms that have O(1) coefficients scales with
the boundary delineating A and B. For the 1d system of interest, this is an O(1) number. Of
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course, there are O(L2) terms with vanishing coefficients, which are negligible. The ability of any
such term to entangle A and B can be rigorously bounded in such local models by

dS (A)
dt

≤ c ∥Jeff
mnτ̂

z
mτ̂

z
n∥ , (1.5.8)

where c is a constant that can be computed numerically [29]. Essentially, the maximum entangle-
ment entropy that can be generated in A by a unitary operator of the form exp (−i ÔAB t) acting
notrivially on both A and B is bounded by the logarithm of the local Hilbert space dimension (in
region A) on which it acts. In general, the maximum is saturated when tÔAB ∼ 1 is order unity.
This occurs when

t J0 exp (− ∣n −m∣ /ζz) ≈ 1 , i.e. rent (t) = ζz log [J0t] , (1.5.9)

is the distance over which `-bits are entangled. Essentially, all spins within rent (t) of the cut at
time t are entangled. Physically, entanglement is generated because the physical state at a given
time is a product over `-bits not oriented directly along the z axis, and the Hamiltonian causes
the `-bits to precess about the z axis at a rate dependent on the orientation of other `-bits, some
of which are on the other side of the entanglement cut.

The size of the entangled subregion of A grows logarithmically in time until it spans the en-
tirety of A, at which point it will be proportional to LA, i.e. volume-law. However, as previously
mentioned, it is generally expected that the coefficient of proportionality, α, in the volume law
S(A) = αLA, will generally be less than the thermal coefficient. However, initial states correspond-

ing to {X̂n} eigenstates are a notable exception, due to dephasing. In general, there may be other
states that are weird, though it is worth noting that the {X̂n} states may not be experimentally
feasible.

1.5.6 Operator spreading

The general understanding of information propagation in many-body quantum systems relies heav-
ily either on concepts from transport or the existence of well-defined quasiparticle excitations.
However, recent scrutiny of quantum systems with neither particle-like excitations nor exten-
sive conserved quantities that can be transported has motivated the development of other means
to study the propagation of information, motivated by ideas from the quantum information and
quantum computation communities. Operator spreading captures many universal features of other
measures of information spreading, and is more generic than entanglement spreading, e.g.

Operator spreading for thermal systems will be discussed in Ch. 4, which describes the transport
of extensive conserved quantities using broken integrability, and Ch. 5, which will briefly address
operator spreading in generic chaotic systems, which need not have any notion of a quasiparticle
or any extensive conserved quantities.

In localized systems it is natural to expect that there exist many operators that do not spread at
all, and that generic operators may spread slowly. For example, the LIOM operators, {Ẑn} ({τ̂ zn} in
the literature), commute with the evolution operator, and therefore do not spread. In fact, they do
not do anything under the dynamics generated by the Hamiltonian given in Eq. (1.4.7). Since the
Hamiltonian—and by extension, the unitary time evolution operator—can be expressed purely in
the {Ẑn} basis, operators that do not commute with these LIOMs have a chance of spreading. The
LIOM cycle operators, {X̂n}, which “flip” or “cycle” between eigenstates of the LIOM operators,
{Ẑn}, likely have the best chance of spreading (amongst single-body operators).
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The time evolution of the operator τ̂xn is given by

i
d

dt
X̂n = [Ĥ, X̂n] = X̂n +∑

m

J
(2)
nmŶnẐm +∑

m,p

J
(3)
nmpŶnẐmẐp + . . . , (1.5.10)

where Ĥ is given by Eq. (1.4.7), and note that the righthand side of the above expression does
not commute with Ĥ. In fact, there is one operator in each of the above terms that does not
commute with Ĥ: in the very first term, this is X̂n, and in all other terms it is Ŷn. Taking another
commutator will turn the Ŷ operators into X̂ operators and vice versa, and multiply them with
other Ẑ operators (which commute with Ĥ). Dynamically, in generic states (those that are not
eigenstates of Ĥ), the nth `-bit therefore precesses at a rate determined by the configuration of
other spins, as noted in Sec. 1.5.5 in the context of entanglement entropy.

Additionally, the support of the operator X̂n(t) grows in time under the dynamics. In this
context, “support” refers to the number of sites upon which a given operator does not act as
the identity. Because the Hamiltonian given in Eq. (1.4.7) connects all terms, the support of
X̂n immediately extends to all sites after an infinitesimal evolution, however the corresponding
coefficients decay exponentially. As a direct consequence, the region in which X̂n(t) has O(1)
support (i.e. acts on a site as a nonidentity with magnitude ∥X̂n(t)∥ ∼ 1) grows logarithmically in
time away from site n, much like entanglement entropy.

Thus, information about operators and entanglement entropy in generic states in the MBL
phase both spread from an initial locus (i.e. the t = 0 support of the operator or the entanglement
cut) according to ζz ln t. Operator spreading is the fundamental quantity, and entanglement
growth follows therefrom [9]. Note that the coefficient ζz is a decay length that can be extracted
from the scale on which two-body LIOM-LIOM interaction terms in the Hamiltonian—written in
the form of Eq. (1.4.7)—decay. From the spreading of `-bit operators, one can extract information
about operator spreading in the basis of p-bits by superposing the `-bit operators with exponential
tails. In general, off-diagonal components will spread, while diagonal components of operators are
likely static.
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Chapter 2

Integrability

2.1 What Is Integrability?

“If you gotta ask, you’ll never know.”
-Louis Armstrong, asked to define “Jazz”1

Quantum integrable models possess exact quasiparticle solutions, which can be understood in
principle even in the thermodynamic limit without recourse to the use of statistical ensembles.
The term “integrability” refers to the fact that the set of coupled differential equations for classical
integrable systems are soluble, and thus one can “integrate” these equations using the initial
conditions at t = 0 to recover the behavior at arbitrary times. However, due to the fact that such
a direct relationship between the configuration of an integrable system at late times t ≫ 0 and
its initial configuration at t = 0 exists, integrable systems cannot thermalize in the usual sense.
Analogous properties hold for quantum integrable systems, which also possess exact solutions and
an extensive set of conserved quantities (or integrals of motion). Both classical and quantum
integrable models do relax and admit a description in terms of “Generalized Gibbs Ensemble,”
which will be discussed in Sec. 2.5.

Although the first quantum integrable model was solved back in 1931, the subject remains
very much alive and interesting nearly a century later. In fact, only in the last two decades was it
realized that an entire, infinite family of conserved quantities had been unaccounted for in the very
same model that was solved in the 1930s. One of the most promising features of integrable models is
their description using generalize hydrodynamics (GHD), the subject of Sec. 2.6, which describes
transport, correlation functions, and more in terms of a hydrodynamic variables, providing a
valuable reduction in complexity and number of degrees of freedom. However, early on, it was
thought that this theoretical framework was invalid as it was unable to reproduce the correct
Drude weights for particle transport in the XXZ model. Subsequently, and perhaps while doing
something entirely different, Tomaž Prosen unearthed an infinite number of additional conserved
quantities for that model; upon accounting for these extra charges, GHD produced the Drude
weights correctly.

In addition, until the publication of Ref. 37 by this author—which is reproduced in greater
detail in Ch. 3—it was not known whether there existed models that were interacting, integrable,
quantum, and unique to the Floquet setting. Of course, free theories are technically integrable,

1I got the idea to use this quote from Wikipedia (The Free Encyclopedia), whose article on integrability quotes
Nigel Hitchin, who quotes Louis Amstrong. So already integrability is a multidisciplinary pursuit.
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and free Floquet quantum systems have been known for some time. Additionally, Tomaž Prosen
established [38] a means of constructing integrable Floquet models using the “R matrix”—which
will be introduced in Sec. 2.3—of an integrable Hamiltonian, but these models can be smoothly
deformed to Hamiltonian evolution, and cannot possess interesting features unique to the Floquet
setting such as chiral quasiparticles in the bulk of a system.

Finally, it is common in theoretical models of condensed matter systems to use free theories as
a starting point and add new ingredients, such as interactions and disorder, using the machinery
of perturbation theory. However, interacting integrable models already possess exact quasiparticle
solutions, making them a superior starting point from which to perturb to general models. For most
integrable models, the utility of these exact solutions is offset by the complexity or impossibility
of solving the quantization condition on the momenta of the constituent particles; however, in
most—if not all—cases, this complexity is actually alleviated in the thermodynamic limit, where
one can invoke the thermodynamic Bethe Ansatz (TBA), described in Sec. 2.4.

2.2 The Coordinate Bethe Ansatz

The coordinate Bethe Ansatz (CBA), also known as the nested Bethe Ansatz (acronym unneces-
sary) [39–42], was the original technique used by Hans Bethe2 in 1931 [39] to solve the so-called
Heisenberg model, which was one of the first quantum models put forth to describe the behavior
of quantum degrees of freedom (in this case, spins in a magnet). The field of integrability has
since expanded, and generally speaking, the Algebraic Bethe Ansatz (ABA), which will be covered
briefly in Sec. 2.3, is much more generic and powerful. However, the CBA is nonetheless worthy
of study, and many other properties of integrable models follow directly therefrom. It is worth
noting that the CBA is probably only applicable in one dimension.

In this section, we will treat the the canonical example of an integrable quantum system, and
the first historical example: the XXX Heisenberg ferromagnet, given by

ĤXXX = −J
4

L−1

∑
j=1

(σ⃗j ⋅ σ⃗j+1 − 1̂) , (2.2.1)

where σ⃗j = (σ̂xj , σ̂
y
j , σ̂

z
j ) are spin-1/2 operators acting on a local two-state Hilbert space C2. The

spins 1/2 are arranged in a one dimensional ring (i.e. with periodic boundaries, site j + L is site
j), and the term “ferromagnet” refers to the sign of J being positive. This model has an SU(2)
symmetry, corresponding to rotations

Ûα = exp(−iθα
L

∑
j=1

σ̂αj ) , (2.2.2)

for α = x, y, z, all of which commute with ĤXXX as defined in Eq. (2.2.1). The exponentiated
quantities in Eq. (2.2.2) above are examples of conserved quantities, the most familiar being the
z-axis magnetization

Ŝztot ≡
1

2

L

∑
j=1

σ̂zj , (2.2.3)

2Bethe did not call his solution method the “Bethe Ansatz.”
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which commutes with the Hamiltonian. A slightly more generic form with only U(1) symmetry—
corresponding to conservation of Ŝztot as defined in Eq. (2.2.3)—is given by the XXZ model,

ĤXXZ = −
J

2

L−1

∑
j=1

(σ̂+j σ̂−j+1 + σ̂−j σ̂+j+1) −
J ∆

4

L−1

∑
j=1

(σ̂zj σ̂zj+1 − 1̂) + h
L

∑
j=1

σ̂zj , (2.2.4)

which realizes ĤXXX for ∆ = 1 and h = 0. In principle, it would be easiest to derive the general
solutions for the XXZ model defined in Eq. (2.2.4), and take the appropriate limits to recover
the XXX results, with such a derivation provided in Ref. 40. However, we will have no use for
the XXZ model, and will restrict to XXX from the outset to avoid having superfluous variables
floating about (the XXX model will make an appearance in Ch. 5 in the context of many-body
quantum chaos in the presence of conserved charges).

The first consideration in treating the XXX Hamiltonian defined in Eq. (2.2.1) is symmetry.
We work in the local z basis, and begin by divvying the various many-body states into sectors
labelled by total magnetization along the z axis, i.e. Ŝztot as defined in Eq. (2.2.3). The sectors
with Ŝztot = ±L/2 correspond to all spins either up or down, and have precisely one state. These
states are annihilated by the ĤXXX, which can be seen perhaps most readily by regarding the form
given by Eq. (2.2.4) with h = 0 (the value of ∆ is unimportant for these states). These two states
have eigenvalue 0; in fact, one can derive from the SU(2) symmetry that each Ŝztot sector has
exactly one state with Hamiltonian eigenvalue 0. That state will be the unique ground state in
the corresponding sector (the many-body ground state therefore has (L + 1)-fold degeneracy).

Let us denote the vacuum by
∣0⟩ ≡ ∣ ↑↑↑ . . . ↑↑⟩ , (2.2.5)

i.e. the state with all spins up, corresponding to Ŝztot = +L/2. The fundamental excitations above
this vacuum states, ∣0⟩, are given by flipping a single spin. Such flipped-spin excitations correspond
to a change in the total spin by one, and are known as magnons. We now define the sector ladder
operators

Ŝ± =
L

∑
j=1

σ̂±j , (2.2.6)

where, as always, σ̂+j = ∣ ↑j ⟩⟨ ↓j ∣ and σ̂±j = (σ̂∓j )
†
. Starting from the state ∣0⟩, we recover the ground

state in subsequent Ŝztot sectors—starting with Ŝztot = (L − 1) /2—by acting with Ŝ±. In a sector
with Ŝztot = S, corresponding to N = N↓ = L/2 − S magnons, the ground state is given by

∣S⟩ = (Ŝ−)
N
∣0⟩ , (2.2.7)

and the low-lying excitations above ∣S⟩ are plane-wave superpositions of magnons, e.g. of the form

∣S, k⟩ = 1√
L

L

∑
j=1

eikjσ̂−j ∣S + 1⟩ , (2.2.8)

with ∣S + 1⟩ being the ground state of the sector with one fewer magnon, defined by Eq. (2.2.7).

2.2.1 Single-magnon solution

The simplest starting point is to examine the sector containing single-magnon excitations. In fact,
the general premise of the Bethe Ansatz techniques is that the full spectrum of the Hamiltonian
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is given by the sum of dispersions corresponding to single-particle dispersions, ε(k), with the
quantization of the allowed momenta, k, governed by complicated equations. Thus, the first step
in trying to solve an integrable model must be identifying the single-particle excitations, which we
have already done. Here, we find their dispersion.

There are L single particle states on a chain with L sites, corresponding to the L different
places to flip a spin from ∣0⟩ in the physical z-basis. We can label these states by the real-space
position of the particle. The available states are then ∣j⟩ for j ∈ {1,2, . . . , L − 1, L}. Because our
system is on a ring, all labels j are defined modulo L, such that ∣j +L⟩ ≅ ∣j⟩. Acting on such a
basis state, the Hamiltonian ĤXXX, whose many-body form is given by Eq. (2.2.1), takes the form

Ĥ = −J
2

L

∑
j=1

(∣j + 1⟩⟨j∣ + ∣j − 1⟩⟨j∣ − 2∣j⟩⟨j∣) , (2.2.9)

where the final term comes from the the fact that precisely two of the interaction terms in Eq. (2.2.1)
give −J/2 (the interaction term is zero for aligned spins and −J/2 for misaligned spins; there are
precisely two misalignments for any position of the magnon), as depicted in Fig. 2.1.

Figure 2.1: Representation of the single-body problem: regardless of where the flipped spin is on
the lattice, there are precisely two bonds along which σ̂zj σ̂

z
j+1 gives −1, indicated by the zig-zag

lines above; the flipped spin is free to hop to the site to the left or right.

We next construct plane waves via Fourier transformation:

∣k⟩ = 1√
L

L

∑
j=1

eikj ∣j⟩ , ∣j⟩ = 1√
L
∑
k

e−ikj ∣k⟩ , (2.2.10)

where the quantization of k is fixed by the condition ∣j +L⟩ = ∣j⟩, which dictates eikL = 1 Ô⇒ k =
2πn/L for n ∈ {1,2, . . . , L − 1, L}. Inserting this definition of ∣j⟩ in terms of plane waves, ∣k⟩ into
Eq. (2.2.9) recovers

Ĥ = −J
2

L

∑
j=1

(∣j + 1⟩⟨j∣ + ∣j − 1⟩⟨j∣ − 2∣j⟩⟨j∣)

= − J

2L

L

∑
j=1

∑
k,k′

eikj (e−ik′(j+1)∣j + 1⟩ + e−ik′(j−1) − 2e−ik
′j) ∣k′⟩⟨k∣

= J

2L
∑
k,k′

(2 − e−ik′1 − eik′1) ∣k′⟩⟨k∣
L

∑
j=1

ei(k−k
′)j

= J

2L
∑
k,k′

(2 − 2 cos [k′]) ∣k′⟩⟨k∣ (Lδk,k′)

= J∑
k

(1 − cos [k]) ∣k⟩⟨k∣ =∑
k

εk∣k⟩⟨k∣ , (2.2.11)
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where εk ∈ [0,2J]. In particular, the low energy physics is captured by small momentum k ≪ 1, in
which case εk ≈ Jk2/2 corresponding to the standard ballistic kinetic energy of free particles.

In the anisotropic case, given by Eq. (2.2.4), the linear term h∑j σ̂zj = 2hS has a fixed value

dependent only on the Ŝztot sector, labelled by eigenvalue S, and not the configuration within the
sector; it can therefore be ignored. However, taking the strength of the σ̂zj σ̂

z
j+1 term to be ∆J/4

modifies the dispersion, given by Eq. (2.2.11), to the general form

εk = J (∆ − cos [k]) . (2.2.12)

2.2.2 Two-magnon solution

We now consider the sector with two magnons, which has “L choose 2” states, i.e. L(L−1)/2 con-
figurations corresponding to all possible ways to flip two spins. The magnons are indistinguishable,
and there is no meaning to labelling them separately. We define a real-space basis {∣j1, j2⟩} subject
to the condition j2 > j1, with j1,2 ∈ {1,2, . . . , L − 1, L}. When the magnons are well separated, as
depicted in Fig. 2.2(a), the action of the Hamiltonian on a given state ∣j1, j2⟩ is given by

ĤXXX∣j1, j2⟩ = ε ∣j1, j2⟩

= −J
2
[∣j1 − 1, j2⟩ + ∣j1 + 1, j2⟩ + ∣j1, j2 − 1⟩ + ∣j1, j2 − 2⟩ − 4∆∣j1, j2⟩] , (2.2.13)

where the anisotropy ∆ → 1 in the Heisenberg XXX case, but is included here for convenience.
For the special case where the magnons are on neighboring sites, i.e. ∣j, j + 1⟩, as depicted in
Fig. 2.2(b), we demand that

ε ∣j, j + 1⟩ = −J
2
[∣j − 1, j + 1⟩ + ∣j, j + 2⟩ − 2∆∣j1, j2⟩] , (2.2.14)

with the same energy ε in both cases. This can also be satisfied by plane waves, as in the single-
magnon sector, with some adjustments. We can extend the formula given by Eq. (2.2.13) to capture
the special cases given by Eq. (2.2.14) for some two-magnon state

∣Ψk1,k2
⟩ = ∑

j1<j2
Ψk1,k2

(j1, j2) ∣j1, j2⟩ , (2.2.15)

if we also insist that the “boundary condition”

Ψk1,k2
(j, j) +Ψk1,k2

(j + 1, j + 1) − 2∆Ψk1,k2
(j, j + 1) = 0 , (2.2.16)

in which case Eq. (2.2.13) is solved everywhere by the Bethe Ansatz wavefunction

Ψk1,k2
(j1, j2) = eik1j1eik2j2 + S (k2, k1) eik2j1eik1j2 , (2.2.17)

where S (k2, k1) = S21 is the scattering matrix.
Using this Ansatz wave function, we recover

ε2 [k1, k2] = ε1 [k1] + ε1 [k2] = J (2 − cos [k1] − cos [k2]) , (2.2.18)

where the two-body dispersion, ε2, is the sum of the one-body dispersions ε1.
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(a) Standard two-body case.

(b) Special two-body case.

Figure 2.2: Representation of the two-body problem. Figure (a) corresponds to the standard case
in which the magnons are sufficiently well separated that the Hamiltonian acts on each indepen-
dently, as in the one body case, e.g. as depicted in Fig. 2.1. Figure (b) corresponds to the special
case in which the magnons are on neighboring sites. In this case, there are only two violated bonds
(σ̂zj σ̂

z
j+1 = −1), and the magnons can only hop outward, since no site can be doubly occupied.

Inserting the Ansatz defined by Eq. (2.2.17) into the boundary condition given by Eq. (2.2.16)
gives an explicit form to the scattering matrix,

S (k2, k1) = −
1 + ei(k1+k2) − 2∆eik2

1 + ei(k1+k2) − 2∆eik1
, (2.2.19)

which also implies that Ψk1,k2
(j1, j2) is zero if k1 = k2. Thus, each momentum mode can be

occupied at most once. This feature holds for all integrable models; however, aside from having a
maximum occupancy of one, the quasiparticle states that arise in general integrable models have
no other properties of [free] fermions.

We also have the properties

S (k1, k2) = [S (k2, k1)]∗ = [S (k2, k1)]−1
, (2.2.20)

as one would expect for a unitary scattering matrix.
The remaining task to complete the solution of this sector is to determine the allowed values

of k1,2. As in the single-magnon case, we have the property that translation by L leaves states
invariant. Thus, we the conditions

Ψk1,k2
(j1, j2) = Ψk1,k2

(j2, j1 +L) = Ψk1,k2
(j1 +L, j2 +L) , (2.2.21)

and the latter constraint, in which both particles are translated by L, dictates that eiL(k1+k2) = 1,
and as usual, the total momentum k1 + k2 = K is quantized according to K = 2πN/L with N ∈
{1,2, . . . , L − 1, L}. The other conditions are given by

eik2L = e−ik1L = S (k2, k1) , (2.2.22)
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which constitutes a Bethe Ansatz equation (BAE). In general, these equations are not easy to
solve, as we will shortly see. It is also worth noting that there exist solutions to these equations
with complex momenta given by kj =K/2± iu/2, such that the total momentum K is real, but the
relative momentum iu is complex. This corresponds to a bound state of the two particles.

2.2.3 Many-magnon solution

We have now solved the XXX model for one and two magnon sectors. Much as the many-body
states of free systems can be expressed in terms of single-body solutions, the key feature of quantum
integrable systems is that many-body states can be expressed in terms of two-body solutions.

Definition 2.1. Quantum integrable models are distinguished by an extensive number of local
conserved quantities (i.e. equal in number to the number of degrees of freedom or system size, each
being defined as the sum of strictly local terms), and exact solutions that are two-body reducible.
All events that the integrable dynamics (Hamiltonian or Floquet unitary) can beget on a given
many-body state can be factorized into two-body processes (i.e. collisions). In contrast, free
systems have exact solutions that are one-body reducible, and the occupation of each single-body
mode is a local conserved quantity. Free quantum systems are a subset of integrable quantum
systems.

For N particles states, one has many-body states of the form

Ψ{kn} ({jn}) = ∑
perm.

Ai1,...,iN exp{i (ki1j1 + ⋅ ⋅ ⋅ + kiN jN)} , (2.2.23)

which is a sum over all permutations of assignments of momenta to the positions.
In most cases, one picks a site on the lattice to call “1,” numbering all sites that follow going

clockwise in increasing order until reaching site L, directly counterclockwise of 1. One then assigns
the “reference” state to the configuration j1 < j2 < ⋅ ⋅ ⋅ < jL, with the momentum kn matched to
jn. Compared to this reference state, any state that differs by having swapped momenta km and
kn picks up a factor of S (kn, km) for xn > xm (in the other case, simply swap the labels m and n,
e.g.).

For concreteness, the three-body wave function is given by

Ψk1,k2,k3
(j1, j2, j3) = eik1j1eik2j2eik3j3 + S (k2, k1) eik2j1eik1j2eik3j3

+ S (k2, k1)S (k3, k1) eik2j1eik3j2eik3j2

+ S (k2, k1)S (k3, k1)S (k3, k2) eik3j1eik2j2eik1j2

+ S (k3, k1)S (k3, k2) eik3j1eik1j2eik2j2 + S (k3, k2) eik1j1eik3j2eik2j2 , (2.2.24)

which corresponds to an eigenstate of ĤXXX given by

∣Ψk1,k2,k3
⟩ = ∑

j1<j2<j3
Ψk1,k2,k3

(j1, j2, j3) ∣j1, j2, j3⟩ , (2.2.25)

with dispersion

ε3 (k1, k2, k3) =
3

∑
n=1

ε1 (kn) , (2.2.26)
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and each of the above equations generalized trivially to more than three bodies. Hence, by solving
the two-body sector, we have the solution for all sectors.

Due to additional particles, there are now extra boundary condition relations for the wavefunc-
tion Ψ, e.g.

Ψ{kn} ({jn}) = Ψ (j1, j2, . . . , jL)
= Ψ (j2, . . . , jL, j1 +L)
= Ψ (j3, . . . , jL, j1 +L, j2 +L)
= . . .
= Ψ (j1 +L, j2 +L, . . . , jL +L) , (2.2.27)

resulting in the N -body Bethe Ansatz equations (BAE)

eiknL =
N

∏
m=1
m≠n

S (kn, km) , (2.2.28)

which has an interpretation as the number of phases acquired as a particle is dragged through
the entire system. For most interacting integrable models, solving the BAE is not possible by
hand, requiring recourse to numerical evaluation for finite numbers of particles. However, the
quantization condition is relaxed as L → ∞, where the continuum limit can be taken for the
allowed momenta. This is the spirit of the thermodynamic Bethe Ansatz, which will be discussed
in Sec. 2.4.

In a trivial extension of Eq. (2.2.26) for three magnons, the energy eigenvalues of general
integrable models are given by

E (k1, . . . , kN) =
N

∑
n=1

ε1 (kn) , (2.2.29)

and for general models, we may generalize the momentum to a “rapidity.” In the Floquet model
considered in Ch. 3, the energy will be replaced by the Floquet pseudoenergy, with many other
details remaining the same.

2.3 The Algebraic Bethe Ansatz

This section is partially reproduced from Ref. [43] by this author—and especially the
Supplementary Material associated with that work—and is the result of substantial contributions

from coauthor Andrea De Luca.

2.3.1 General formulation of the inhomogeneous algebraic Bethe Ansatz

In the coordinate Bethe Ansatz [39–42]—outlined for the Heisenberg model, ĤXXX, in Sec. 2.2—one
seeks multiparticle eigenfunctions—i.e. multimagnon plane waves—along with a scattering matrix
describing the exchange of the excitations’ momenta. However, this approach suffers from technical
complications in generic models, and especially so in Trotterized evolutions, M̂ , consisting of a
“circuit” of two-site gates, which we will encounter in Ch. 5. A more direct approach to treat these
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models is instead based on the equivalent algebraic Bethe Ansatz formulation [44,45]. Restricting
to the case of spins 1/2—i.e. a local Hilbert space given by C2—we introduce the R-matrix

R̂a,b(λ) =
λ

λ + 2i
1̂ab +

2i

λ + 2i
P̂ab , (2.3.1)

which acts on spins 1/2 labelled a and b, and is standard to systems with SU(2) symmetry. The
exchange operator P̂a,b is defined by

P̂a,b∣sa, sb⟩ = ∣sb, sa⟩ . (2.3.2)

The key feature of the R matrix is that is satisfies the Yang-Baxter identity [42].
Going forward, for clarity, indices of the form i, j, k, . . . will indicate sites in the real spin lattice,

while indexes of the form a, b, c, . . . will indicate the auxiliary spaces, all of which are spins 1/2.
The Yang-Baxter identity can be written as an operator identity in C2

a ⊗C2
b ⊗C2

i , and we have

R̂a,b(λ − µ)R̂i,a(λ)R̂i,b(µ) = R̂i,b(µ)R̂i,a(λ)R̂a,b(λ − µ) (2.3.3)

Figure 2.3: Diagrammatic representations of R̂a,b(λ − µ), F̂ (λ,{ξ}), P̂a,b and Ŝ. Note that in the

current convention, R̂a,b(λ − µ) acts in the top right direction.

We next introduce the transfer matrix (or T -matrix), which acts jointly on all L physical spin
degrees of freedom and an auxiliary spin degree of freedom, labelled a:

T̂L,a(λ,{ξ}) = R̂1,a(λ − ξ1)R̂2,a(λ − ξ2) . . . R̂L,a(λ − ξL) , (2.3.4)

where the rapidity λ and inhomogeneities ξ’s are arbitrary complex numbers. Note that the
subscripts in Eq. (2.3.4) label Hilbert spaces, as is customary in the Bethe Ansatz literature (see
also Figure 2.3). Schematically, λ parameterizes the quasimomentum k(λ) carried by the auxiliary
particle while traversing the chain.

A crucial result is that employing Eq. (2.3.3) many times, one can prove the so-called RTT
relation

R̂a,b(λ − µ)T̂L,a(λ,{ξ})T̂L,b(µ,{ξ}) = T̂L,b(µ,{ξ})T̂L,a(λ,{ξ})R̂a,b(λ − µ) (2.3.5)

From this relation it follows that if we set F (λ,{ξ}) as the trace over the auxiliary space, i.e.
F (λ,{ξ}) = Tr

a
[T̂L,a(λ,{ξ})], as illustrated in Figure 2.3, we have that

[F (λ,{ξ}), F (λ′,{ξ})] = 0 , λ, λ′ ∈ C . (2.3.6)
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In the auxiliary space, T̂ (λ) can be written as a 2×2 matrix of operators acting on the physical
spins,

T̂ (λ) = ( Â(λ) B̂(λ)
Ĉ(λ) D̂(λ)

) . (2.3.7)

This construction is useful because the fact that the R-matrix in Eq. (2.3.1) satisfies the Yang-
Baxter relation, given by Eq. (2.3.3), implies a set of algebraic relations between the coefficients
in Eq. (2.3.7), computed at the same inhomogeneities [46].

With this notation it is clear that F (λ,{ξ}) = A(λ,{ξ})+D(λ,{ξ}) and, moreover, Eq. (2.3.5)
can be interpreted as a set of commutation relations for the operators A,B,C,D. Those relevant
for us are

[B(λ,{ξ}),B(µ,{ξ})] = 0 (2.3.8)

A(λ,{ξ})B(µ,{ξ}) = f+(λ − µ)B(µ,{ξ})A(λ,{ξ}) + g+(λ − µ)B(λ,{ξ})A(µ,{ξ}) (2.3.9)

D(λ,{ξ})B(µ,{ξ}) = f−(λ − µ)B(µ,{ξ})D(λ,{ξ}) + g−(λ − µ)B(λ,{ξ})D(µ,{ξ}) (2.3.10)

where the functions

f±(λ) =
λ ∓ 2i

λ
, g±(λ) = ±

2i

λ
(2.3.11)

are independent of the inhomogeneities {ξ}. We fix the vacuum state ∣Ω⟩ = ∣ ↑↑ . . . ↑⟩; this is an
eigenstate of F (λ,{ξ}), since

A(λ,{ξ})∣Ω⟩ = a(λ,{ξ})∣Ω⟩; D(λ,{ξ})∣Ω⟩ = d(λ,{ξ})∣Ω⟩; C(λ,{ξ})∣Ω⟩ = 0 , (2.3.12)

and in the current normalization scheme, one has

a(λ,{ξ}) = 1 , (2.3.13)

d(λ,{ξ}) =∏
i

( λ − ξi
λ − ξi + 2i

) . (2.3.14)

One can then check [46] that the operators B(λ,{ξ}) can be used to build eigenstates of F (λ,{ξ})

F (λ,{ξ})∣{λ}⟩ = Λ(λ,{λ},{ξ})∣{λ}⟩ , (2.3.15)

∣{λ}⟩ ≡ B(λ1,{ξ}) . . .B(λN ,{ξ})∣Ω⟩ (2.3.16)

if the Bethe Ansatz equations (BAE), given by

∏
b≠a

f−(λa − λb)
f+(λa − λb)

= a(λa,{ξ})
d(λa,{ξ})

, (2.3.17)

are satisfied, where a, b = 1, . . . ,N . The eigenvalue Λ(λ,{λ},{ξ}) is given by

Λ(λ,{λ},{ξ}) = a(λ,{ξ})∏
a

f+(λ − λa) + d(λ,{ξ})∏
a

f−(λ − λa) . (2.3.18)

Note that each application of B(λ,{ξ}) decreases by 1 the total magnetization along z:

[B(λ), Ŝz] = B(λ) Ô⇒ Ŝz ∣{λ}⟩ = (L/2 −N)∣{λ}⟩ . (2.3.19)
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2.3.2 Trotterized XXX

To avoid repetition, let us restrict to a single example, which will be of use in Ch. 5, and appears
in Ref. 43 by this author. The model of interest is a discrete-time Floquet model featuring a
circuit construction (depicted in Fig. 2.4, which does not correspond to unitary evolution, but
rather Hermitian evolution. This can be regarded either as evolution of a quantum model in
imaginary time τ = it, or perhaps more reasonably, as a formalism for the real-time evolution of a
classical lattice gas in one dimension with two-state degrees of freedom on each site. Both of these
formulations are equivalent, as will be elucidated in Ch. 5.

T̂j,j+1 =

0
BB@

1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

1
CCA

=
3

4
� 1

4
~�j · ~�j+1

M̂ (t)

M̂ {
Figure 2.4: Depiction of the brick-wall circuit geometry corresponding to the Trotterized XXX
“evolution.” The system is evolved by a single time step by application of the single period
evolution operator, M̂ , a two-layer circuit with the first and second layers—composed of two-site
Hermitian gates, T̂—acting respectively on odd and even bonds. The individual gates, T̂j,j+1 can

be rewritten as 1̂j,j+1−Ĥj,j+1, where Ĥj,j+1 is the local two-site term that appears in the Heisenberg

XXX Hamiltonian in Eq. (2.2.1). Hence, M̂ describes a Trotterized version of the XXX model,
evolved in imaginary time: interpreting the time t as an inverse temperature, t → β = 1/kBT ,

M̂(β) can be regarded as a Trotterization of the XXX partition function.

Referring to Fig. 2.4, the evolution to time t is given by M̂(t) = M̂ t, with the single-period
evolution operator, M̂ ≡ M̂2 ⋅ M̂1 , a depth-two circuit comprised of local two-site gates: assuming

even L, the two layers correspond respectively to odd and even bonds, with M̂1 = T̂1,2 ⊗ T̂3,4 ⊗ . . .
and M̂2 = T̂2,3 ⊗ T̂4,5 ⊗ . . . . The full evolution operator, M̂ , along with the individual layers, M̂1,2

and their constituent gates T̂j,j+1, are Hermitian.

The matrix T̂j,j′ acts only on sites j, j′ as

T̂j,j′ =
1

2
(1̂j,j′ + P̂j,j′), (2.3.20)

where P̂j,j′ = 1
2(

ˆ̂1j,j′ + σ⃗j ⋅ σ⃗j′) is the “swap operator,” defined in Eq. (2.3.2). In terms of classical

lattice gases, the evolution M̂(t) = M̂ t describes a discrete-time symmetric simple exclusion process
(SSEP) for a classical lattice gas [40].

Noting that

T̂j,j+1 ≡ ˆ̂1j,j+1 − Ĥj,j+1 , (2.3.21)

where the “Hamiltonian” can be written

Ĥj,j+1 = −
1

4
(σ⃗j ⋅ σ⃗j+1 − ˆ̂1j,j+1) , (2.3.22)
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takes the form of the local Hamiltonian term of the spin-1/2 Heisenberg ferromagnet, defined in
Eq. (2.2.1). Thus, M̂ has an interpretation as a Trotterization of the time-evolution operator for
ĤXXX in imaginary time. This can also be viewed as the density matrix exp (−βĤXXX) evaluated
at inverse temperature β = t, and without proper normalization.

We now fix the values of the inhomogeneities that appear in the general Bethe Ansatz equations,
i.e. Eq. (2.3.17) in Sec. 2.3.1, according to

ξj = i + (−1)jδ , (2.3.23)

and for clarity, we refer to the transfer matrix for the Trotterized problem as Fδ(λ) ≡ F (λ,{ξ})
with the ξj’s given by Eq. (2.3.23). We also assume L to be an even integer. We then define the
evolution operator as

M̂δ = Fδ(i − δ)−1Fδ(i + δ) . (2.3.24)

Inspecting Eq. (2.3.4), we see that the transfer matrix involves the matrices

R̂a,b(0) = Pa,b , R̂a,b(±δ) ≡ R̂±
a,b , (2.3.25)

and we next introduce the shift operator

S ∣s1, s2, . . . , sL⟩ = ∣s2, s3, . . . sL, s1⟩ , S†S = 1, (2.3.26)

which can be rewritten as a trace over the auxiliary space

S = Tr
a

[P1,aP2,a . . .PL,a] . (2.3.27)

We then write

S†Fδ(i + δ) = Ř+
1,2Ř

+
3,4 . . . Ř

+
L−1,L , (2.3.28a)

S†Fδ(i − δ) = Ř−
L,1Ř

−
2,3 . . . Ř

−
L−2,L−1 , (2.3.28b)

where we introduced

Ř±
ab = P̂abR̂±

ab . (2.3.29)

Note that the relations of Eq. (2.3.28) imply that the square of the shift operator belongs to the
set of commuting operators

S2 = Fδ(i + δ)Fδ(i − δ) , (2.3.30)

as expected from the two-site translation invariance of the Trotterized model. Moreover, from
Eq. (2.3.28b) one can immediately read off the expression for F (i/2 − δ/2)−1 as

Fδ(i − δ)−1 = (Ř−
L−2,L−1)−1(Ř−

L−4,L−3)−1 . . . (Ř−
2,3)−1(Ř−

L,1)−1S† . (2.3.31)

Furthermore, from the definition of the R matrix, i.e. Eq. (2.3.1), one can show that

(R̂±
a,b)−1 = R̂∓

a,b . (2.3.32)

Therefore, we conclude that

M̂δ = Ř+
L−2,L−1Ř

+
L−4,L−3 . . . Ř

+
L,1Ř

+
1,2Ř

+
3,4 . . . Ř

+
L−1,L . (2.3.33)
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Thus, inserting Eq. (2.3.23) into the general Bethe Ansatz equations Eq. (2.3.17), one obtains

(λa + (δ + i)
λa + (δ − i)

)
L/2

(λa − (δ − i)
λa − (δ + i)

)
L/2

=
N

∏
b=1
b≠a

(λa − λb + 2i

λa − λb − 2i
) . (2.3.34)

The eigenvalue of M̂δ corresponding to the state ∣{λ}⟩ is then given by

M̂δ ∣{λ}⟩ =∏
a

f+(i + δ − λa)
f+(i − δ − λa)

∣{λ}⟩ , (2.3.35)

where we used the relation d( i±δ2 ) = 0. We now observe that for δ = i, Ř+ = 1
2(

ˆ̂1 + P̂) and thus

M̂ = lim
δ→i

M̂δ . (2.3.36)

In general, by setting F̂ (λ) ≡ Â (λ) + D̂ (λ), one finds that [F̂ (λ) , F̂ (λ′)] = 0 , ∀ λ,λ′. The
presence of a one-parameter family of commuting quantities establishes integrability for any choice
of {ξj}, but only particular choices give rise to interesting local models. By varying the parameter
δ ∈ [0, i], one can interpolate between the standard XXX spin chain, given by Eq. (2.2.1), and its
Trotterized cousin, M̂ , given by a circuit comprising the T -matrices defined in Eq. (2.3.20). The
isotropic Heisenberg spin chain is recovered for the homogeneous case, ξj = i/2, while the brick-wall

geometry relevant to M̂ is realized via ξj = i (1 + (−1)j), from which it follows that

M̂ = lim
δ→i

F̂ (i − δ)−1
F̂ (i + δ) , (2.3.37)

where the limit is needed to account for the noninvertibility of T̂j,j′ in Eq. (2.3.20).

The common eigenstates of the conserved quantities F̂ (λ) (and thereby M̂) can be obtained
via algebraic properties as described above. Thus M̂ has eigenstates

M̂ ∣λ1, . . . , λN⟩S = e−∑j ε(λj)∣λ1, . . . , λN⟩ , (2.3.38)

where ∣λ1, . . . , λN⟩S = B̂(λ1) . . . B̂(λN)∣S⟩. The integer N encodes the magnetization eigenvalue

via Ŝz ∣λ1, . . . , λN⟩S = (S −N)∣λ1, . . . , λN⟩. Due to interactions, the parameters λ1, . . . , λN are not

free, but satisfy Bethe Ansatz equations—given generally in Eq. (2.3.34)—which for M̂ take the
form

(
λj + 2i

λj − 2i
)
L/2

=
N

∏
j′=1
j′≠j

(
λj − λj′ + 2i

λj − λj′ − 2i
) , (2.3.39)

the solution of which provides the full spectrum of M̂ .
The eigenvalues in Eq. (2.3.35) can be written as

M̂B(λ1) . . .B(λN)∣Ω⟩ = e∑a −ε(λa)∣Ω⟩ , ε(λ) = − log
λ2

λ2 + 4
(2.3.40)

where ε(λ) plays the role of an effective magnon energy. Using Eq. (2.3.30) recovers the spectrum
of the shift operator

S2∣{λ}⟩ = e2i∑a k(λa)∣{λ}⟩ , e2ik(λ) = (λ + 2i

λ − 2i
) (2.3.41)

which coincides with the relation k(λ) = arccot(λ/2) ∈ [−π/2, π/2] that recovers for M̂ . In terms
of this rapidity-dependent momentum, the dispersion relation in Eq. (2.3.40) can be rewritten as

ε(λ) = 2 ln cosk(λ). (2.3.42)
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2.4 The Thermodynamic Bethe Ansatz

2.4.1 Roots of the Bethe equations

The thermodynamic Bethe Ansatz (TBA) is a powerful tool for describing one-dimensional in-
tegrable quantum models in the thermodynamic limit, L → ∞, where, e.g., L is the number of
spins in a Heisenberg chain. We begin by sketching the TBA formalism, and then apply it to the
Trotterized XXX example used in the previous section.

The starting point is the coupled set of Bethe Ansatz equations (BAE), i.e. Eq. (2.2.28) for
the XXX model, which take the general form

eiknL =
N

∏
m=1
m≠n

S (kn, km) , (2.2.28)

where S is the scattering matrix, N is the number of particles, and L the number of sites, or the
equivalent generalization. Taking the logarithm of both sides gives a more standard version of the
BAE,

Lkn = 2π In − i ∑
m≠n

ln [S (kn, km)] , (2.4.1)

where In is integer, which may be zero, and it is typical to rename the logarithm of the scattering
matrix

Θ (kn, km) = −i ln [S (kn, km)] . (2.4.2)

As a quick note, the total momentum is given by summation over n of Eq. (2.4.1),

K =∑
n

kn =
2π

L
∑
n

In +
N

∑
m,n=1
m≠n

Θ (kn, km) = 2π

L
∑
n

In . (2.4.3)

Note that in certain models, e.g. XXZ and its variants, one must also account explicitly for string
solutions to the BAE, corresponding to multiparticle bound states. Additionally, there are minor
caveats for continuum models, e.g. Lieb-Liniger. These cases are well understood and extensive
literature exists on the subject, so we will not devote any consideration to such matters.

The next step in the TBA formalism is to replace the integer quantum numbers, {In}, which
completely label a state, by “counting functions” for the corresponding rapidity or momentum,
according to In = Lc(λn), where λn is a rapidity variable, related to momentum. In this case
Eq. (2.4.1) becomes

c (λn) =
1

2π
k (λn) −

1

2πL

N

∑
m=1
m≠n

Θ (λ,λm) , (2.4.4)

where, in the case Lc(λ) = In, if the momentum (or rapidity) mode corresponding to In is occupied,
one has a “particle,” and if it is unoccupied, one has a “hole.”

We now define root solutions to the BAE, which correspond to the particle and hole densities,
ρp (λ) and ρh (λ), and their sum, the total density of states, ρs (λ), given by

ρs (λ) = ρp (λ) + ρh (λ) = d c
dλ

, (2.4.5)

where Lρp (λ)dλ is the number of particles with rapidity between λ and λ + dλ, and Lρh (λ)dλ is
the density of holes in the same rapidity interval.
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Returning to Eq. (2.4.4), clearly the sum over m ≠ n is not particularly compatible with the
continuum notation, and we convert the sum to an integral to recover the expression for c(λ),
writing

1

L

N

∑
m=1
m≠n

ln [S (λn, λm)]→
N

∑
m=1
m≠n

ln [S (λn, λm)] λm − λm+1

L (λm − λm+1)
→ ∫ dλ ln S (k (λn) , k (λ))ρp (λ) ,

(2.4.6)
and we have

c (λ) = 1

2π
k (λ) + 1

2πi ∫
dλ′ ln S (λ,λ′)ρp (λ′) , (2.4.7)

and we can take the rapidity derivative of the counting function in Eq. (2.4.5) explicitly using
Eq. (2.4.7) to recover

ρs (λ) = ρp (λ) + ρh (λ) = 1

2π

dk

dλ
+ [K̂ρp] (λ) , (2.4.8)

where the operator K̂ denotes convolution against the differential scattering kernel K,

[K̂g] (θ) = ∫
dφ

2π
K (θ, φ) g (φ) , where K (θ, φ) = 1

i

d

dθ
ln S (θ, φ) , (2.4.9)

where in many models, S is symmetric in θ, φ, and many TBA references use the opposite sign
convention, whereas this notation is more consistent with the generalized hydrodynamics literature.

2.4.2 Yang-Yang free energy

To proceed, we next define the entropy as the logarithm of the number of available states, given
by

dS (λ) = log
(Lρs (λ)dλ)!

(Lρp (λ)dλ)! (Lρh (λ)dλ)!
, (2.4.10)

where for multiple species of particles the argument of the logarithm becomes a product over
species. Using L→∞ and Stirling’s approximation for log n!, one has

dS (λ) = Ldλ [ρs (λ) lnρs (λ) − ρp (λ) lnρp (λ) − ρh (λ) lnρh (λ) + . . . ] , (2.4.11)

and integrating over λ one defines the entropy density as a functional of the TBA root densities,

s = ∫ dλ [ρs (λ) lnρs (λ) − ρp (λ) lnρp (λ) − ρh (λ) lnρh (λ)] , (2.4.12)

also known as the Yang-Yang entropy [45,47].
Denoting by ε(λ) the energy dispersion as a function of rapidity, the energy density is given by

e = ∫ dλε (λ) ρp (λ) , (2.4.13)

which bears an obvious resemblance to the continuum limit of the second quantized energy for free
fermions.

Combining these two, one recovers the free energy density f = e − Ts, such that expectation
values in the thermodynamic limit are given by a partition function Z = exp (−Lf/T ),

f = ∫ dλ [ε (λ) ρp (λ) + ρp (λ) lnρp (λ) + ρh (λ) lnρh (λ) − ρs (λ) lnρs (λ)] . (2.4.14)

49



2.4.3 TBA equations

As in nonintegrable settings, we seek root densities ρp and ρh that minimize the Yang-Yang free
energy given by Eq. (2.4.14). We vary the free energy with respect to the quasiparticle density ρp,
subject to the constraint given by Eq. (2.4.5), i.e. variations in the hole density are given by

δρh = −δρp + K̂δρp , (2.4.15)

and introducing the TBA pseudoenergy ε, by analogy to free fermion problems,

ρh (λ)
ρp (λ)

= eε(λ)/T , (2.4.16)

and doing some functional differentiation, one recovers the TBA equation

ε(λ) = ε (λ) − T log [1 + e−ε/T ] K̂† , (2.4.17)

where the † has the same meaning as in linear algebra: the convolution operator acts from the
right.

Using a few manipulations, one can massage the free energy given by Eq. (2.4.14) into the form

f = −T ∫
dλ

2π
log [1 + e−ε/T ] , (2.4.18)

expressed in terms of the pseudoenergy solution ε to the TBA equation, i.e. Eq. (2.4.17).

2.4.4 String hypothesis for Trotterized XXX

Returning to the example of the Trotterized XXX model, more work is required to deal with
the complicated quantization conditions for the spectrum of M̂ . Continuing this analysis, the
other solutions to the Bethe Ansatz equations (BAE), given by Eq. (2.3.39), are recovered via
application of the “string hypothesis [41]. One assumes that standard strings can be used, since
the scattering matrix—given by the right-hand side of Eq. (2.3.39)—is unchanged compared to the
standard XXX spin chain. Therefore, one can assume that the roots of the BAE are arranged as

λ
(n,m)
α = λ(n)

α + i(2m − n + 1) , m = 0, . . . , n − 1 , (2.4.19)

where n is the number of roots contained in the n-string. The index α labels the string “type”
and λ

(n)
α ∈ R is the string “center,” corresponding to the real part of the momentum, in analogy

to the discussion of two-magnon bound states at the end of Sec. 2.2.2. Deviations with respect to
Eq. (2.4.19) are expected to be exponentially suppressed in the system size, L. Here, we assume
that the string hypothesis is valid at least for generic values of the parameter δ, which we retain
as a regularizer, to be sent to i.

Inserting the string Ansatz into the BAE (i.e. Eq. (2.3.39)), we recover the string form of the
Bethe Ansatz equation which involves only the string centers. The derivation follows as a trivial
analogy to the derivation for the XXX spin chain, e.g. in Ch. 8 of Ref. 45.

One then obtains the logarithmic form of the BAE for the string centers

Lθ
(δ)
n (λ(n)

α ) = 2πI
(n)
α + ∑

(m,β)≠(n,α)
Θn,m(λnα − λmβ ) . (2.4.20)
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The above equation is nearly identical to that corresponding to the standard XXX spin chain,
which recovers upon replacing θ(λ)→ θ(δ)(λ), where for an arbitrary function g(λ) we define

g(δ)(λ) = 1

2
(g(λ + δ) + g(λ − δ)) , (2.4.21)

and set

θn(λ) = 2 arctan(λ/n) . (2.4.22)

We then take the thermodynamic limit, L→∞, of Eq. (2.4.20) in the standard sense, by introduc-
ing the density of roots and holes for each string length n, respectively ρn(λ) and ρhn(λ), defined
in Eq. (2.4.5) in Sec. 2.4.1 with a different notation3. For the present discussion, the ensemble of
root densities characterizes each eigenstate in the thermodynamic limit as the density of the string
centers,

ρn(λ) =
1

L
∑
α

δ(λ − λ(n)
α ) , n = 1, . . . ,∞ . (2.4.23)

From this it follows that the eigenvalues of M̂ and the total magnetization Ŝztot converge to

⟨{λ}∣M̂ ∣{λ}⟩ L→∞= exp [L
∞
∑
n=1

εn(λ)ρn(λ)] (2.4.24)

⟨{λ}∣Sz ∣{λ}⟩ L→∞= L

2
−L

∞
∑
n=1

nρn(λ) , (2.4.25)

where we define the effective energy of the n-string magnon according to

εn(λ) ≡
n−1

∑
m=0

ε(λ + i(2m − n + 1)) = ln(λ
2 + (n − 1)2

λ2 + (n + 1)2
) . (2.4.26)

The Bethe Ansatz equations, given by Eq. (2.4.20), translate into a functional relation between
the density of roots and the density of holes

a
(δ)
n (λ) = ρn(λ) + ρhn(λ) +

∞
∑
m=1

(Tnm ○ ρm)(λ) , n = 1, . . . ,∞ , (2.4.27)

where we denote the convolution as

(g ○ h)(λ) = ∫ dλ′g(λ − λ′)h(λ′) , (2.4.28)

and we defined the quantities

an(λ) =
1

2π

d

dλ
θ(λ/n) = 1

π

n

λ2 + n2
(2.4.29)

Tnm(λ) = a∣n−m∣(λ)(1 − δn,m) + an+m(λ) + 2
n+m−1

∑
`=∣n−m∣+1

a`(λ) . (2.4.30)

3The notation of Sec. 2.4.1 will be used in future sections, the notation has been altered for the present discussion
to account for multiple particles species.
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2.4.5 TBA for Trotterized XXX

As a particular example, consider the evaluation of the function φ(t, s) defined by

φ(t, s) = − lim
L→∞

L−1 ln Tr
s
(M̂ t) , (2.4.31)

and recognizing M̂ t ≈ exp (−tĤXXX), the trace above represents a Trotterized analogue to the
partition function of theXXX model at inverse temperature β = t, and thus φ has an interpretation
as a free energy density in the Trotterized model.

To account for the projection onto the subspace S = sL, we make use of the Legendre transform,
namely

φ(t, s) = max
h

[ψ(t, h) − 2hs] , ψ(t, h) = − lim
L→∞

L−1 log Tr [M̂ te2hSz] (2.4.32)

where the trace in Eq. (2.4.32) is unrestricted vis a vis magnetization sector. We now compute
ψ(t, h) exactly using the formalism of the TBA. The standard procedure is to rewrite the trace as
a functional integral over the root/holes densities

Tr [M te−2hSz] =∑
{λ}

⟨{λ}∣M te2hSz ∣{λ}⟩ = ∫ DρnDρhn δ(BAE)e−LF[ρ,ρh] , (2.4.33)

where the δ(BAE) enforces the relation that appears in Eq. (2.4.27). The functional F(ρ, ρh) takes
the form

F[ρ, ρh] = −h +∑
n
∫ dxρn(λ)(εn(λ) + 2hn) + SY Y [ρ, ρh] (2.4.34)

SY Y [ρ, ρh] = −ρn(λ) ln(1 + ρ
h
n(λ)
ρn(λ)

) − ρhn(λ) ln(1 + ρn(λ)
ρhn(λ)

) , (2.4.35)

where the Yang-Yang entropy SY Y [ρ, ρh] [47] accounts for the exponentially large number of states
described by the same root densities. At large L, the minimization of F[ρ, ρh] leads to the equations
for ηn(λ) = ρhn(λ)/ρn(λ)

lnηn(λ) = tεn(λ) + 2hn +
∞
∑
m=1

Tnm ○ ln(1 + η−1
m (λ)) . (2.4.36)

Inserting this solution in the expression for F[ρ, ρh] we get its value at the minimum, namely

ψ(t, h) = −h −∑
n
∫ dxa

(δ)
n (λ) ln (1 + η−1

n (λ)) , (2.4.37)

which holds for arbitrary δ, and can be further simplified for δ → i. Indeed, writing explicitly the
case n = 1 of Eq. (2.4.36):

ln(1 + η1(λ)) = tg(δ)1 (λ) + 2h +
∞
∑
m=1

(am−1 + am+1) ○ ln(1 + η−1
m (λ)) . (2.4.38)

We moreover note that
am−1(λ) + am+1(λ)

2
= a(i)m (λ) (2.4.39)

we obtain

ψ(t, h) ≡ lim
λ→0

tε1(λ) − ln η1(λ)
2

(2.4.40)

Note that the limiting procedure is required just because both g
(i)
1 (λ) and lnη1(λ) are singular for

λ→ 0, but their difference is not.
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2.5 Generalized Thermalization

Classical integrable models do not thermalize in any limit; however, they can nonetheless be
described using statistical mechanics. Because their equations of motion can be integrated directly,
there is no notion of chaos in classical integrable systems: any finite uncertainty in the initial
conditions remains finite as the system evolves—corresponding to a Lyapunov exponent of zero—
in contrast to chaotic systems, where such uncertainty is magnified exponentially within a Lieb-
Robinson “light cone,” allowing the system to approach equilibrium and justifying the use of
statistical ensembles. Essentially, integrable models indeed remember local details of their past
configuration, and this information remains accessible to local measurements.

Additionally, because integrable systems have an infinite number of extensive, local conserved
quantities in the thermodynamic limit, they cannot be described in terms of a handful of state
variables, unlike typical thermal systems. In fact, if one were not aware of the need to specify the
values of these conserved charges, an integrable system would appear athermal, e.g. in terms of
spectral properties, due to the existence of infinitely many independent sectors whose eigenvalues
do not repel.

However, there are aspects of thermalization that integrable systems do realize. For example,
these models generally relax to a steady state that is independent of time, much like thermal
systems. Additionally, this steady state can be described by a local density matrix, which may be
drawn from a generalized ensemble—designed to account for the special properties of integrable
models—to reproduce the expectation values of local observables using statistical mechanics.

The reason that integrable models remember details of their initial conditions is that they are
translation invariant. Hence, following a quench, the expectation value of the energy density, for
example, is given by

e(t) = lim
t→∞

lim
L→∞

L−1 ⟨ψ(t)∣Ĥ ∣ψ(t)⟩ = lim
t→∞

lim
L→∞

L−1 ⟨ψ(t)∣Ĥj,j+1∣ψ(t)⟩ , (2.5.1)

due to translation invariance of the Hamiltonian and its eigenstates. This translation invariance is
built into the model and its eigenstates, and not merely some property that recovers in an average
sense. Unlike thermal phases, which are robust to small perturbations, integrability is fine-tuned,
and this property would be destroyed by introducing spatial inhomogeneity, e.g.

As can be seen from Eq. (2.5.1), at any time t following a quench, one can make a strictly
local measurement in a finite subsystem and thereby recover information about the initial energy
density, and the initial energy itself. However, as discussed in Ch. 1, this is also expected to hold
for nonintegrable quantum systems that do thermalize in the standard sense: in such systems, the
energy density of the state at t = 0 dictates the late-time “temperature” of the system following
the quench. If the system is translation invariant, one expects to recover this information locally,
per Eq. (2.5.1); for inhomogeneous systems, it may be possible for the choice of subsystem A to
change somewhat the effective temperature, as the subsystem A may exchange energy with its
“environment,” B, under the global dynamics.

This is also true of classical thermal systems, and the origin of the microcanonical ensemble:
thermal systems forget as much information about the past as is permitted. However, since energy
is preserved by the dynamics, this will generally be preserved to late times, and thus the system
must remember it. The microcanonical ensemble therefore consists of all states that have the
same energy, as these are the set of states that can be realized from the initial configuration. This
provides a perfectly valid thermal ensemble.

However, if there exist other extensive, conserved quantities that can be expressed as the
sum of local terms, then the expectation value of these conserved quantities in the distant past
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will also be accessible at arbitrarily late times, determined by a formula essentially identical to
Eq. (2.5.1). In this case, we must generalize the microcanonical ensemble, accounting for these
conserved quantities using the generalized microcanonical ensemble [48–51], which, like its non-
generalized counterpart, fixes directly the value of each conserved quantity, and the partition
function is essentially a delta function that selects configurations with precisely the correct values
of these quantities. The values of all other observables are free to fluctuate. Denoting by ∣n⟩ the
various eigenstates of an integrable Hamiltonian, the expectation value of an observable Ô in the
generalized microcanonical ensemble is given by

⟨Ô⟩GµE = ∑
n

′ ⟨n∣Ô∣n⟩ , (2.5.2)

where the ′ denotes a restriction of the sum over eigenstates to those that agree on the values
of charges. This can be generalized sensibly to describe systems with any number of translation
invariant, extensive, local conserved quantities.

However, integrable systems in the thermodynamic limit have an infinite number of such quan-
tities. In the special case of free systems, fixing the eigenvalues of each of these charges fixes
the eigenstate of the evolution, and forms a complete many-body basis; for general, interacting
integrable systems, it is natural to expect that no two eigenstates agree exactly on every single
charge. Thus, to recover a valid statistical ensemble, one can use a truncated generalized micro-
canonical ensemble that agrees only on a limited set of the charges that are of interest, and/or
simply demand that the expectation values of these charges are close to one another. Considering
the standard case of post-quench dynamics, in analogy to Sec. 1.3.3, one restricts to eigenstates
∣n⟩ for which the expectation values of the charges are parametrically close to their initial values,
i.e.

∣ ⟨n∣Q̂j ∣n⟩ − ⟨ψ(0)∣Q̂j ∣ψ(0)⟩ ∣ < δQj , (2.5.3)

which defines a valid statistical ensemble to which integrable models relax following a quench [48,
52,53].

However, it is more common to use Gibbs ensembles, where instead of specifying the values of
conserved quantities, one assigns to each conserved quantity a Lagrange multiplier—e.g. inverse
temperature β = 1/T to energy, E, chemical potential µ to particle number, N , and so on—and fixes
instead the value of the Lagrange multiplier. In a direct extension of the standard Gibbs ensemble
for thermal systems with finitely many conserved quantities, the Generalized Gibbs Ensemble
(GGE) [48, 48–51] assigns an infinite number of Lagrange multipliers, {βj} to the expectation

values of the each of the infinitely many charges Qj = ⟨Q̂j⟩. In particular, one has the partition
function

ZGGE =∑
n

exp(−∑
j

βj⟨n∣Q̂j ∣n⟩) , (2.5.4)

and the expectation values of observables are given by

⟨Ô⟩GGE = ∑n ⟨n∣Ô∣n⟩ e−∑j βj⟨n∣Q̂j ∣n⟩

∑n e−∑j βj⟨n∣Q̂j ∣n⟩
, (2.5.5)

and by equivalence of ensembles, one should have

Ô = ⟨Ô⟩GGE = ⟨Ô⟩GµE , (2.5.6)
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and as in the microcanonical case, it is common practice to truncate the generalized Gibbs ensemble
to fix only finitely many of the {βj}. In contrast to the GµE, in the GGE this is mathematically
quite simple, as one simply sets βj = 0 for any charge not part of the truncated set. From
the perspective of the partition function, this amounts to omitting Lagrange multipliers for any
quantity one does not care to fix, which in practice will be the vast majority.

As a final note, there is no good reason to call these “generalized” Gibbs ensembles, as nothing
about Gibbs’ original formulation was contingent on there being exactly three—or even finitely
many—Lagrange multipliers (or conserved quantities). However, it has become common nomen-
clature to preface standard techniques with the word “generalized” in the context of quantum
integrability. However, the generalized microcanonical ensemble does in fact generalize the µCE
of thermal systems, which historically only accounted for energy.

2.6 Generalized Hydrodynamics

2.6.1 Semiclassical approximation: Bethe-Boltzmann

Generalized hydrodynamics (GHD) proceeds in much the same fashion as regular hydrodynamics,
which apply to conserved quantities in general. There are two equivalent formulations, in terms
of the infinitely many conserved quantities themselves, and relatedly, in terms of the quasiparticle
density, which corresponds to the root densities that appear in the TBA equations, i.e. Eq. (2.4.17)
in Secs. 2.4.1 and 2.4.3. In previous sections, all quantities were strictly global, and to use the
hydrodynamic framework (as is standard practice for instance in the treatment of kinetic the-
ory that recovers the Boltzmann equation, and other semiclassical procedures), one trades global
equilibrium—or general globally defined quantities—for locally varying counterparts [54–56].

Considering a generalized Gibbs ensemble (GGE) of the type defined in Sec. 2.5, one can
capture this local structure (i.e. x dependence) by sending βj → βj (x). It is also possible to
formulate the derivation of the Boltzmann equation using a physically motivated, but perhaps less
rigorous method, outlined in Ref. 54. In this case, one divides the system into M cells, with the
ith cell having length Li, and further supposes that

• The system is quantum mechanical on length scales comparable to Li, but semi-classical on
length scales comparable to the size of the full system, L. This provides for the specification,
e.g., of the particle number, Ni(t), of cell i at time t, but not particle positions within cell i.

• The constituent particles of the ith cell are in an eigenstate ∣ψi(t)⟩ of the Ni(t)-body Hamil-
tonian of cell i.

• The thermodynamic limit can be taken on Li and Ni(t) in the ith cell, i.e. Li,Ni(t) → ∞
with their ratio, ρi(t) = Ni(t)/Li finite. This density is directly related to root densities of
the TBA equations.

• The full system size L≫ Li, and there are many cells, i. In this case, ρi(t)→ ρ(i, t)→ ρ(x, t),
and similarly for the densities of other relevant quantities. However, the infinitely many
densities of conserved charges, qi, can be recovered from the quasiparticle density that comes
from TBA.

• This also requires that quantities like ρi(t) and the density of states in cell i vary sufficiently
slowly with i and t that they may be treated as continuous and differentiable functions
ρ(x, t).
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• Finally, this requires that the full wavefunction for the entire system is a tensor product of
the wavefunctions in the individual cells.

2.6.2 Insights from TBA

Here we consider the physics of a quantum quench in an integrable model using the TBA formalism.
We use the generalized µCE outlined in Sec. 2.5 that does not fix exactly the expectation values of
all conserved quantities, but rather, requires that they be within some threshold of their expectation
value as calculated at t = 0. Essentially, this amounts to relaxing the usual δ function associated
to the microcanonical partition function to a distribution of small but finite width. In this case,
if we consider the eigenstates within this microcanonical window, in the thermodynamic limit,
this collection of eigenstates defines a single macrostate, ∣ρp, ρh⟩, due to the nature of the TBA
formalism4, which acts like the steady state of thermal systems.

Note that we are generally interested in working with quenches, rather than in direct eigen-
states of the integrable model, as the hydrodynamic regime is expected to describe the relaxation
from local equilibrium to the global equilibrium steady-state described by the thermodynamic
macrostate ∣ρp, ρh⟩. In general, one can extract from the t = 0 state the appropriate expectation
values of all conserved quantities, which generally can be expressed in terms of ρp, as shown below.
Thus, one can recover the macrostate ∣ρp, ρh⟩ and introduce local structure—in the form of spa-
tiotemporal dependence, ρp (θ) → ρp (θ;x, t)—to calculate all local properties as one approaches
the steady state, following local equilibration as described by the semi-classical picture of the
previous section.

Thus, one has a spatially and temporally varying root density ρp (θ;x, t), where θ is a generic
rapidity index. For relativistic models, e.g. XXZ and Sinh-Gordon, θ is actually a rapidity. For
Galilean-invariant models, e.g. free fermions and Lieb-Liniger, θ is proportional to momentum
itself, θ = vgroup (θ) = p/m. It will also prove convenient to define the occupation factor (or “Fermi
factor,” so-called because the quasiparticle modes can be at most singly occupied),

n (θ;x, t) =
ρp (θ;x, t)
ρs (θ;x, t)

, (2.6.1)

where ρs (θ) is the locally varying density of states, defined globally in the TBA formalism via
Eq. (2.4.5). It will also be important to recall the operator, K̂, denoting convolution against the
differential scattering kernel:

[K̂g] (θ) = ∫
dφ

2π
K (θ, φ) g (φ) , where K (θ, φ) = 1

i

d

dθ
ln S (θ, φ) . (4.3.4)

With some manipulations, one can prove from TBA the relation

2πρs (θ) = p′ (θ) + 2π [K̂ ρp] (θ) , (2.6.2)

where p′ (θ) = dp/dθ is the derivative of the momentum with respect to rapidity (a constant in
Galilean invariant models). This can be re-written as

ρs (θ) =
1

2π
(1 − K̂n)

−1
(p′) = 1

2π
(p′)dr (θ) , (2.6.3)

4This assumes a particular notion of the generalized microcanonical ensemble and the “window,” which is
intertwined with the thermodynamic Bethe Ansatz itself and well formulated in the literature.
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where n is the occupation factor defined in Eq. (2.6.1) and the “dressing operation” is defined for
arbitrary functions of rapidity via

(g)dr (θ) = [(1 − K̂ N̂ )
−1
g] (θ) , (2.6.4)

where N̂ denotes convolution against a diagonal operator with kernel n (θ) δ (θ − φ), and is equiv-
alent to multiplication by the occupation factor, n. Note that the inverse operator above may be
evaluated by expressing the above as a geometric series in K̂N̂ , or using an alternate formulation:

(g)dr (θ) = g (θ) + ∫
dφ

2π
K (θ, φ)n (φ) (g)dr (φ) , (2.6.5)

and in general, these must be computed numerically. For Lieb-Liniger, such numerical computation
converges extremely rapidly as one iterates Eq. (2.6.5).

We must also define the effective velocity, veff (θ) of a quasiparticle with rapidity θ. Compared
to the group velocity,

vgroup (θ) = ε
′ (θ)
p′ (θ)

, (2.6.6)

the effective velocity is the actual propagation velocity of quasiparticles, accounting for collisions
between particles of different rapidities, which dresses the group velocity in analogy to the dressing
defined in Eq. (2.6.5),

veff (θ) = vgroup (θ) + ∫ dφ
1

p′ (θ)
K (θ, φ)ρp (φ) (veff (φ) − veff (θ)) , (2.6.7)

and using some manipulations of Eq. (2.6.1), Eq. (2.6.3), and the above, one has

ρp (θ) = n (θ)
2π

(p′)dr (θ) , ρp (θ) veff (θ) = n (θ)
2π

(ε′)dr (θ) , (2.6.8)

and dividing these relations recovers

veff (θ) = (ε′)dr (θ)
(p′)dr (θ)

, (2.6.9)

which is similar to the group velocity definition, Eq. (2.6.6).
An important takeaway from Eq. (2.6.8) is that the spacetime dependence of all quantities that

one might consider can be regarded as inherited from the occupation function n (θ;x, t). Regarding
Eq. (2.6.8), the only quantities that appear on the righthand side of the two expressions are the
occupation factor, n, and direct functions of rapidity, e.g. the differential scattering kernel, K,
and rapidity derivatives of the momentum, p, and single-particle energy, ε. Such quantities do
not inherit local structure from the procedure of divvying the system into hydrodynamic “cells”
that imbues densities and related quantities with semiclassical, local structure. This is standard
to such semiclassical techniques, where rapidity-dependent quantities are associated to quantum
numbers, which are uniform across hydrodynamic cells, and by construction do not have local
variations. All spatiotemporal variations are acquired solely through functional dependence on
quantities related to the density, all of which can be expressed in terms of the “bare” quantities
above (i.e. momentum- or rapidity-like quantities) and n. One could equivalently regard the
quasiparticle density ρp as being the fundamental source of local structure. However because it

is n and not ρp that appears in the dressing operator (1 − K̂n)
−1

, and because—unlike ρp—the
hydrodynamic equation for n are diagonal in rapidity (and therefore a hydrodynamic eigenmode),
we regard n as the fundamental quantity.
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2.6.3 Quasiparticle continuity equation

In the quasiparticle language, the hydrodynamics of the quasiparticles with density ρp (θ;x, t) is
given simply by the continuity equation

∂tρp (θ;x, t) + ∂x [veff (θ;x, t)ρp (θ;x, t)] = 0 , (2.6.10)

where veff (θ;x, t)ρp (θ;x, t) is the current of quasiparticles with rapidity θ. We can make use of
the definitions in Eq. (2.6.8), defining

Û = N̂ (1 − K̂N̂ )
−1

, (2.6.11)

we have 2π ρp = Û (p′) and 2π veff ρp = Û (ε′), and we note that

∂x,tÛ f = (1 − nK̂)
−1
∂x,tn (1 − K̂n)

−1
f = (1 − nK̂)

−1
∂x,tnf

dr , (2.6.12)

and Eq. (2.6.10) becomes

0 = 1

2π
(1 − nK̂)

−1
{(p′)dr

∂tn + (ε′)dr
∂tn} (2.6.13)

= (1 − nK̂)
−1 (p′)dr

2π
{∂tn +

(ε′)dr

(p′)dr
∂tn} (2.6.14)

= (1 − nK̂)
−1
ρs {∂tn + veff∂xn} , (2.6.15)

which we include in detail so the extension to a nonzero righthand side of Eq. (2.6.10) is clear. In
the integrable case, the continuity equation becomes

∂tn (θ;x, t) + veff [θ;n]∂xn (θ;x, t) = 0 , (2.6.16)

which is diagonal. Thus, the occupation factor, n, diagonalizes the GHD equation in the quasi-
particle language, Eq. (2.6.10).

We can also rewrite Eq. (2.6.10) using similar manipulations. Defining the convolution operator

Â = (1 − nK̂)
−1
veff (1 − nK̂) , (2.6.17)

we can partially “undo” the diagonalization that produced Eq. (2.6.16) to recover

∂tρp (θ;x, t) + [Â∂xρp] (θ;x, t) = 0 , (2.6.18)

which is not diagonal in rapidity, but does simplify the derivative situation.
In all of the equations above, it is clear that a key feature of integrable hydrodynamics is

ballistic transport. This can be seen by solving Eq. (2.6.16) using the method of characteristics.

2.6.4 Ballistic transport of quasiparticles

The Fermi factor equation, Eq. (2.6.16), is quasilinear, and therefore soluble in principle (and
practice) via characteristic coordinates [57]. We make the Ansatz for the solution

n (θ;x, t) = ∫ dφ∫ dyK [θ, x, t;φ, y,0] n0 (φ; y) , (2.6.19)
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where the initial condition at t = 0, n (θ;x, t) = n0 (θ;x), which implies U [θ, x,0;φ, y,0] = δ (x − y) δ (θ − φ).
The occupation factor equation, Eq. (2.6.16), is

0 = {∂t + veff [θ, n]∂x}n (θ;x, t) , (2.6.20)

which is solved by

0 = {∂t + veff [θ, n]∂x}U [θ, x, t;φ, y,0] . (2.6.21)

We define some function Xθ(t) such that

dXθ

dt
= veff[θ, ñ] , (2.6.22)

where the velocity is allowed to depend on the solution ñ (θ; t) ≡ n (θ;Xθ(t), t), and therefore the
kernel (or “propagator”) U .

We make an Ansatz for the propagator, U [θ, t;φ, y] ≡ U [θ,Xθ(t), t;φ, y], where x → Xθ(t).
Since X satisfies Eq. (2.6.22), the righthand side of Eq. (4.3.15) becomes a total derivative of U
with respect to t, i.e. d/dt = ∂t + veff [θ, n]∂x, and Eq. (4.3.15) is solved if

dU

dt
= ∂tU + veff [θ, n]∂xU = 0 , (2.6.23)

which combined with Eq. (2.6.22), turns the partial differential equation (PDE), Eq. (4.3.15), into
two coupled ordinary differential equations (ODEs), if one regards of the arguments θ, φ, y of U
as labels and not independent variables. Unlike PDEs, nonlinear ODEs are often soluble, which
makes the method of characteristics generally powerful. This case is particularly easy, since the
equation dU/dt = 0 simply implies that U is constant, equal to its t = 0 value,

U [θ, t;φ, y] = U [θ,0;φ, y] , (2.6.24)

where the time zero version is given by

U ∣t=0 = lim
t→0
U [θ,Xθ(t), t;φ, y] = δ (θ − φ) δ (Xθ (0) − y) , (2.6.25)

and the full solution recovers from expressing Xθ (0) in terms of x↔Xθ(t) and t itself. Thus, the
solution for n is given by

ñ (θ; t) = n0 (θ;Xθ(0)) , (2.6.26)

which as written is independent of t, and both sides of Eq. (2.6.22) can be integrated directly over
time, from 0 to t, to obtain

Xθ (t) −Xθ (0) = tveff[θ, n0 (⋅;X⋅(0))] , (2.6.27)

and solving for Xθ(0) provides the full solution

n (θ;x, t) = ñint = n0 (θ;x − tveff [θ, n]) , (2.6.28)

which is slightly complicated only because the effective velocity is both a function of rapidity, θ,
and a functional of the occupation factor, n.
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2.6.5 Euler hydrodynamics of charges

Because hydrodynamics is associated with conservation laws, it is also natural to consider GHD
in the languages of the charges, rather than the “Bethe-Boltzmann” formalism treated thus
far [54, 56, 58, 59]. However, the average value of the charges in terms of a given GGE are given
straightforwardly using the root densities, i.e. ρp (θ). In particular, associated to the nth charge,
qn is the rapidity-dependent single-particle eigenvalue hn (θ), and the set of all functions hn form
a complete set that can fully specify any smooth function of rapidity. Because of this, there is
a direct mapping from the space of densities as a function of rapidity, ρp (θ), and the space of
charges, qn = ⟨qn⟩. The latter are defined by

qn (x, t) = ∫ dθ hn (θ) ρp (θ;x, t) = ∫
dθ

2π

dp

dθ
hdr
n (θ)n (θ;x, t) , (2.6.29)

and the corresponding currents, jn = ⟨jn⟩, are given by

jn (x, t) = ∫ dθ hn (θ) veff (θ) ρp (θ;x, t) = ∫
dθ

2π

dE

dθ
hdr
n (θ)n (θ;x, t) , (2.6.30)

where the latter expressions in the preceding equations show that the currents and charges are
essentially integrals of the occupation factor over momentum and energy, respectively, weighted by
the dressed spectral function h. The latter equation, Eq. (2.6.30), is only valid at the level of Euler
hydrodynamics; at the level of Navier-Stokes hydrodynamics, we must allow for the possibility
that the expectation values of local observables are sensitive to the gradient of the quasiparticle
density. However, this correction can simply be added to the hydrodynamic equations later on,
and we will address it separately.

At the level of Euler hydrodynamics, the continuity equation for the nth charge is given by

∂tqn (x, t) + ∂xjn (x, t) = 0 , (2.6.31)

where the nth current should be considered as a functional of all charges {qm}. This is given
approximately by

∂xjn (x, t) =∑
m

Anm∂xqm (x, t) , (2.6.32)

where

Anm = δ jn
δqm

= ∫ dθhn (θ) [Âhm] (θ) = ∫ dθhdr
n (θ) veff (θ) (hm − n (θ) [K̂hm] (θ)) , (2.6.33)

where Â is the same matrix defined in Eq. (2.6.17).

2.6.6 Navier-Stokes hydrodynamics of charges

There are also corrections to Eq. (2.6.30) at the Navier-Stokes scale [58–60],

jNav,n(x, t) = jEul,n(x, t) (2.6.34)

− 1

2 ∫
dθhn (θ)∫ dφD [θ, φ;ρp (⋅)]∂xρp (φ) ,

where jEul,n is the Euler version, Eq. (2.6.30). The form of the diffusion matrix is constrained by
various physical properties, and depends on the GGE in question.

It is worth noting that this correction necessarily vanishes for any charge for which the corre-
sponding current is itself a conserved charge, including the total particle density in Lieb-Liniger
and free fermion (i.e. Galilean-invariant) models, or the energy density in XXZ or Sinh-Gordon
(i.e. relativistic) models. In both cases, the current corresponds to momentum density.
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Chapter 3

Floquet Integrability

This Chapter is largely drawn from Ref. 37 by this author.

3.1 Introduction

Periodically driven (or “Floquet”) quantum systems have become a major theme in many-body
physics [61–75]: driving enables one to engineer exotic states of matter experimentally [76–79] to
realize phases that are absent in equilibrium [67–69, 80–88]. Floquet dynamics are captured by a
unitary, F̂ , which evolves the system by a single period; when F̂ is not smoothy connected to the
identity, the resulting dynamics are distinct from those of any “static” Hamiltonian (eiĤt is always
deformable to the identity). This is particularly transparent in noninteracting Floquet systems:
their band structure is compactified in both quasimomentum and quasienergy, which allows for
band structures that wind nontrivially in quasienergy (Figure 3.1a), which cannot be realized in
local lattice Hamiltonians [66–70, 80, 81]. Thus, Floquet systems can host unpaired chiral modes,
while Hamiltonian dynamics only admit chiral modes on the boundaries of higher-dimensional
systems [66, 68, 89, 90]. In systems with nontrivial quasienergy winding, each single-particle state
has a quantized time-averaged current; protocols that accomplish such adiabatic particle transfer
are called “Thouless pumps” [66,91,92].

These topological features remain long-lived in certain interacting models [92–94]; however,
interactions generally heat a system up to infinite temperature, unless it is integrable or many-body
localized (MBL) [11,12,14,95–99]. Although MBL can protect Floquet topological phases [15,82,
99–112], such localized phases do not host chiral modes. Interacting integrable systems are another
broad class of systems that do not thermalize [19,113–115]; whether distinctively Floquet versions
exist has been less discussed [38,116–119].

This Chapter presents an interacting integrable Floquet model that hosts quasiparticles with
a nontrivial winding number, i.e. an integrable Thouless pump. Unlike previously proposed
interacting integrable Floquet systems, this model is not smoothly connected to any Hamiltonian,
and is thus inherently Floquet, rather than an “integrable Trotterization” [38]. This model is a
fully quantum extension of an integrable cellular automaton known as Rule 54, or the Floquet
Fredrickson-Andersen (FFA) model [120–122]. FFA’s simplicity has elucidated various puzzles
concerning hydrodynamics and operator growth in generic interacting integrable systems [121–128].
FFA can be written as a Floquet unitary comprising local gates, but it is classical in that it

61



maps computational-basis product states to one another. Although FFA has chiral quasiparticles,
they do not disperse, but instead all have one of two group velocities, ±1. The dispersing FFA
(DFFA) generalization we introduce here alternates the FFA dynamics with that of a particular
strictly local Hamiltonian, making the model fully quantum by restoring dispersion while preserving
integrability. This generalization remains simple enough that the Bethe equations can be solved
analytically—a remarkable feature for an interacting model. This model is simple because the
quantization of either quasiparticle species depends only on the total number of quasiparticles of
each species, and not on their rapidities. This simplicity also manifests in the existence of special
local operators that remain lightly entangled at all times, as in FFA [125, 128]. This model is
the first representative of a class of interacting integrable models specific to the Floquet setting,
featuring stable chiral quasiparticles.

3.2 The Dispersing Floquet Frederickson-Andersen Model

The model is defined on a chain of 2L q-bits (i.e. spins 1/2) with dynamics generated by the
repeated application of the Floquet operator, the unitary evolution operator that evolves the
system by a single period. The Floquet unitary comprises a sequence of three unitaries, the first
two corresponding to the nondispersing model, and the latter to a “Hamiltonian” evolution term
e−iλĤ responsible for the dispersion,

F̂ (λ) = e−iλĤ ∏
j even

Ûj−1,j,j+1 ∏
j odd

Ûj−1,j,j+1, (3.2.1)

with gates
Ûj−1,j,j+1 ≡ CNOT(1→ 2)CNOT(3→ 2)Toff.(1,3→ 2), (3.2.2)

in terms of controlled NOT (CNOT) and Toffoli gates [129], and Ĥ is a Hamiltonian specified
below. In simpler terms, Ûj−1,j,j+1 is the instruction “flip spin j if one or both of its nearest
neighbors is up.” The two layers of the FFA unitary in terms of spin-1/2 operators each have the
form

F̂sites = ⊗
j∈sites

Ûj−1,j,j+1 (3.2.3)

≡ ⊗
j∈sites

[σxj (1̂ − d̂j−1d̂j+1) + d̂j−1d̂j+1] , (3.2.4)

where “sites” are even or odd, and d̂j = 1
2
(1̂j − σzj ) is the projector onto ↓ on site j in the σz basis.

Analogously, we define the projector onto ↑ as ûj = 1
2
(1̂j + σzj ) for later use. For λ = 0, the third

step of the drive vanishes, and this model reduces to FFA, F̂ (0) = F̂0. In principle, F̂0 is applied

first, however by construction [Ĥ, F̂0] = 0, and thus the Hamiltonian and FFA have simultaneous
eigenstates.

3.2.1 Nondispersing limit

On its own, F̂0 hosts two species of chiral quasiparticle excitations above the vacuum state ∣0⟩ =
∣ ↓ ↓ . . . ↓⟩, indexed ν = +1 for “right-movers” and ν = −1 for “left-movers.” We regard the 2L
physical sites as L unit cells: the nth unit cell contains the A site 2n− 1 and B site 2n. If both of
these sites are ↑, then there is a ν = +1 right-moving doublon in cell n; if the B site of cell n − 1
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Figure 3.1: Chiral quasiparticles in the DFFA model. (a) Dispersion relations showing the (bare)
single-particle Floquet quasienergies ε(k) for both + and − quasiparticles, for λ = 0.3 (solid lines)
and λ = 0.65 (dashed lines). Both bands are topological (chiral) as they wrap around the periodic
quasienergy direction, and can only exist in a periodically driven system. Note that for λ = 0.65,
the ±-particles can be left(right)-moving for some range of momenta. (b) Soliton gas picture.
The scattering events in the DFFA model factorize onto simple two-body processes, which semi-
classically correspond to a displacement ∆x = ±1 after a collision, independently of the momenta
of the quasiparticles.

and A site of n are both ↑, there is a ν = −1 left-moving doublon in cell n. Additionally, we refer
to isolated ↑’s as molecules, which contain one of each mover: a molecule on the A site of cell n
corresponds to both ν = ±1 movers in cell n; a B molecule in cell n corresponds to a + at n and
− at n + 1. The molecule states ↓↑↓ arise during collisions between the two species. Apart from
these collisions, F̂0 acts by changing the positions of the ± particles by ±1 unit cell, and conserves
independently the number of each, N±.

In the FFA model all quasiparticle excitations have two possible velocities and no dispersion.
The structure of conservation laws in this model differs from that of generic interacting integrable
models, in which a generalized Gibbs ensemble (GGE) [50] can be fully specified through the dis-
tribution of quasiparticle velocities. In the FFA model, there are only two velocities, which do
not fully specify a state. The remaining conservation laws correspond to asymptotic “spacings”
between adjacent quasiparticles of the same species [122]. In the zero-density limit, the bare spac-
ings between same-species quasiparticles are conserved, since all such quasiparticles have the same
velocity. At nonzero densities, one can define an asymptotic spacing by accounting for interaction
effects: e.g., suppose we have two + quasiparticles that are n steps apart; the quasiparticle on the
right collides first with a − quasiparticle and is time delayed by one step: therefore, while there
is a − quasiparticle between them, the two + quasiparticles will be exactly n − 1 steps apart if
their asymptotic spacing is n. Given a spin configuration, its asymptotic spacings can be found
numerically by simulating its free expansion into vacuum [122].
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3.2.2 Adding dispersion

We now construct Ĥ, the Hamiltonian part of Eq. (3.2.1), to generate dispersion while maintaining
integrability. Conservation of particle number automatically precludes many simple terms, i.e.
most single spin processes. Even a pair-hopping term like σ̂+i σ̂

+
i+1σ̂

−
i+2σ̂

−
i+3 will not conserve N±: it

can bring two + doublons to neighboring unit cells, producing a − doublon on the intervening bond.
The simplest N±-conserving operator that disperses quasiparticles is ĥj ≡ d̂j−1σ̂

+
j σ̂

+
j+1σ̂

−
j+2σ̂

−
j+3d̂j+4,

where d̂j ≡ 1
2(1 − σ̂zj ) [analogously, ûj ≡ 1

2(1 + σ̂zj )]. This term “checks” that it would not create

any new quasiparticles before moving one. Setting Ĥ = ∑j(ĥj + ĥ
†
j) would give a simple dispersive

extension of FFA; however, we cannot confirm that this preserves integrability, so we add other
terms:

Ĥ = ∑i
(d̂iσ̂+i+1σ̂

+
i+2σ̂

−
i+3σ̂

−
i+4d̂i+5 + d̂iσ̂+i+1σ̂

−
i+2d̂i+3

+d̂iσ̂+i+1σ̂
+
i+2ûi+3d̂i+4 + refl.

+d̂iσ̂+i+1σ̂
+
i+2σ̂

−
i+3ûi+4ûi+5 + refl.

+d̂iûi+1σ̂
+
i+2ûi+3ûi+4 + refl.

+ûiûi+1σ̂
+
i+2σ̂

−
i+3ûi+4ûi+5) + h.c., (3.2.5)

where “refl.” indicates that one should reverse the sequence of indices in the previous term. In the
quasiparticle language, Ĥ, given by Eq. (3.2.5), maps a configuration σ to a uniform superposition
of all configurations σ′ with a single quasiparticle moved by one unit cell, providedN± are preserved.

The Hamiltonian given by Eq. (3.2.5) commutes with F̂0, but nevertheless acts nontrivially be-

cause F̂0 has exponentially degenerate eigenstates: for a given N± in a system of size L, there are
only O(L2) eigenvalues, but exponentially many basis states, corresponding to different quasipar-
ticle positions. The Hamiltonian defined in Eq. (3.2.5) lifts the degeneracy in this subspace, and
thus makes the dynamics fully quantum. This perturbation cures many pathological features of
the FFA model that are due to these degeneracies, such as its failure to equilibrate to the diagonal
ensemble [122].

3.3 The Coordinate Bethe Ansatz for FFA

3.3.1 Vacuum state

The DFFA model has a “vacuum” state given by ∣0⟩ = ∣ ↓↓ . . . ↓↓⟩ upon which F̂0 acts as the identity.
The elementary excitations are “doublons”, or pairs of neighboring flipped spins ↑↑, and come in
two flavors, depending on whether the first spin is on an even or odd site. Thus, we regard the
lattice of consisting of L two-site unit cells, labelled A and B, corresponding respectively to odd
and even sites in the original enumeration. From the vacuum, we create a ν = L (−1) doublon in
the nth unit cell by flipping the sites 2n − 2 and 2n − 1, or a ν = R (+1) doublon in the nth unit
cell by flipping sites 2n − 1 and 2n.

In isolation, F̂0 will act by moving the ν = −1 doublons one unit cell to the left, and the ν = +1
doublons one unit cell to the right, and hence we refer to these respectively as left- and right-
movers, or more commonly, by their displacement δx = ±1 under FFA. FFA conserves the total
momentum, as well as the respective numbers of left and right movers 1.

1In a sense, FFA itself acts like a “chiral translation” symmetry; unlike the standard translation symmetry, FFA
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3.3.2 Single-body sectors

The single particle excitations of this model are given by plane wave superpositions of these
excitations:

∣k, ν⟩ = L−1/2
L

∑
n=0

eiknσx2n−1σ
x
2n+ν−1∣0⟩ s.t. F̂0∣k, ν⟩ = e−iεν(k)∣k, ν⟩, with εν (k) = νk, (3.3.1)

where k is the momentum. Note that the unit cell translation operator T̂ commutes with both
F̂0 and Ĥ; its eigenvalues are e−ik for k = 2πq/L for integer q ∈ {1,2, . . . , L}. From the above

expression, we see that F̂0 has the same action as T̂ on right movers and T̂ −1 = T̂ † on left-movers.

Looking to more-body sectors, if only one species is present, F̂0 acts as a translation operator
(or its inverse, depending on ν = ±1). There are never collisions between particles of the same
species under FFA, only those of opposite species. Unlike a conventional translation operator,
FFA is special in that it has its own S matrix associated with this scattering of left and right
movers, which we will observe in sectors containing both species ν = ±1.

3.3.3 Counting excitations

To describe sectors with additional movers, we must understand the counting of the number of
movers in a given configuration. When one of each movers is present, at some point F̂0 will cause
them to collide, realizing one of two “molecule” states, which are special configurations with a
single, isolated up spin. One obtains an A or B molecule in the nth unit cell when, respectively,
the spin on the A or B site of that unit cell is up, with both of its neighbors down (↓2n−2↑2n−1↓2n
or ↓2n−1↑2n↓2n+1 ). In the former case (A), both the left- and right-mover are taken to be in unit
cell n (i.e. they have the same position), in the latter, the right mover is still at cell n, but the
left-mover is in cell n + 1.

Thus, we say there is a ν = +1 right-mover in unit cell n if both spins in the unit cell are up (in
which case the mover is a doublon; this is independent of the neighboring spins), or if either spin
in the unit cell is up, with both neighbors down. The condition for a ν = −1 left-mover is shifted
to the left by one physical spin compared to the right : if the B site of cell n − 1 and the A site of
cell n are up, there is a left-moving doublon in cell n (again, independent of neighboring spins); if
either of these spins is up and both its neighbors down, then there is a left-mover in site n that is
part of a molecule. With this, rather than label states by the configurations of the physical spin
half degrees of freedom, we will do so by the positions of the various movers and their form (i.e.
doublons vs. molecules).

3.3.4 Two-body sectors

Let us now consider F̂0 when N+ = N− = 1, which will provide insight into generic many-body

sectors. Acting on the majority of configurations, F̂0 moves the left and right movers one site in
their namesake direction, however when the two are nearby, we obtain the following collisions in
the ∣x+, x−⟩ basis for doublons and ∣α,x⟩ basis for molecules, with α = A,B:

↓ ↑ ↑
+
↓
∗
↓ ↓ ↑ ↑

−
↓ Ð→ ↓↑

+

∗
↑ ↑
−
↓ Ð→ ↓

∗
↑
B
↓ Ð→ ↓↑ ↑

−

∗
↓ ↑ ↑

+
↓

∣n − 1, n + 2⟩ Ð→ ∣n,n + 1⟩ Ð→ ∣B,n⟩ Ð→ ∣n + 1, n⟩
(3.3.2)

by itself constitutes an integrable model, and is associated with its own S matrix. Hence, we do not reduce FFA to
the status of a symmetry in our treatment of this model.
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↓ ↑ ↑
+

∗
↓ ↑ ↑

−
↓ Ð→ ↓

∗
↑
A
↓ Ð→ ↓↑

−

∗
↑ ↑
+
↓ Ð→ ↓↑ ↑

−
↓
∗
↓↓ ↑ ↑

+
↓

∣n − 1, n + 1⟩ Ð→ ∣A,n⟩ Ð→ ∣n,n⟩ Ð→ ∣n + 1, n − 1⟩
, (3.3.3)

where in Eq. (3.3.2) the ∗ site is 2n , and in Eq. (3.3.3) the ∗ site is 2n−1. As in the single-particle
(or single-species) sectors, F̂0 acts by cycling through the states in a closed “orbit”, much like the

eigenstates of the translation operator, T̂ .
For N+ = N− = 1, F̂0 changes the separation of the movers δ ≡ x− − x+ by two (excepting a

“delay” step which leaves both in place) (3.3.2–3.3.3). Hence if L is even, F̂0 preserves δ modulo 2,
yielding two distinct orbits with degenerate eigenvalues under FFA, distinguished by δ mod 2; if L
is odd, then both types of collisions must occur before we return to the initial configuration. Much
of this discussion will apply to sectors with more movers, and the general method for constructing
eigenstates will be the same.

Let us now construct eigenstates of F̂0 for N+ = N− = 1 and even L = 2`. As noted, there are

two degenerate orbits of `+1 states under F̂0, corresponding respectively to the collision processes
given in Eq. (3.3.3) and Eq. (3.3.2), or equivalently, A vs. B molecules, or δ even vs. odd. The
fact that the orbits are closed follows from the identity F̂ `+1

0 T̂ ±` = 1̂, which immediately dictates

the eigenvalues of F̂0,

F̂0∣n, k,α⟩ = e−iθn,k ∣n, k,α⟩ , θn,k =
2πn − `k
` + 1

= 4πn −Lk
L + 2

, (3.3.4)

where α = A,B designates the orbit based on its molecule, as depicted in (3.3.2–3.3.3). The
eigenvalue θn,k = ∑± ±k± is the relative momentum and k = ∑± k± is the total momentum, set by
translation invariance as usual.

We now formulate the eigenstates of F̂0 explicitly: we will first define a natural basis for this
sector, which will allow us to conveniently express the allowed orbits, and finally, massage these
eigenstates into the traditional plane-wave form common to integrable systems. The first step is
the definition of a translation-invariant basis for this sector, indexed by the separation δ

∣δ, k⟩ = L−1/2
L

∑
j=1

eikj ∣x+ = j, x− = j + δmodL⟩ (3.3.5)

for the doublon configurations, and for the molecules α = A,B:

∣α, k⟩ = L−1/2
L

∑
j=1

eikj ∣α, j⟩, (3.3.6)

though in this sector, one can also interpret the molecules as additional values of δ. We define
the eigenstates of F̂0 with respect to some “reference configuration”, which we choose to be the
corresponding molecule states ∣α, k⟩ for notational convenience, i.e. the eigenstates are formed as

∣n, k,α⟩ ≡ (` + 1)−1/2
`

∑
m=0

e−imθn,kF̂ −m
0 ∣α, k⟩, . (3.3.7)

For clarity, we can write out these orbits as

∣n, k,A⟩ = (` + 1)−1/2 {∣A,k⟩ + eiθn,k ∣δ = 0, k⟩ +
`−1

∑
m=1

eim(k−θn,k)∣δ = 2m,k⟩} (3.3.8a)

∣n, k,B⟩ = (` + 1)−1/2 {∣B,k⟩ + e−iθn,k ∣δ = 1, k⟩ + e−iθn,k
`−1

∑
m=1

eim(k−θn,k)∣δ = 2m + 1, k⟩} , (3.3.8b)
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and note that a different choice of “reference configuration” will result in an overall factor of eiθn,k

to some power compared to the above.
We can massage Eq. (3.3.8) into a form that looks like plane waves by rotating the A/B eigen-

states into symmetric or anti-symmetric linear combinations, parametrized by η = ±1 (unrelated
to ν = +/− = R/L):

∣n, k, η⟩ = 1√
2
(∣n, k,A⟩ + ηeiψ ∣n, k,B⟩) , , (3.3.9)

and consideration of the action of the Hamiltonian in Section 3.4.2 dictates that ψ = (k + θn,k) /2 =
k+. Expanding this we have

∣k+, k−⟩∝
L

∑
x=1

ei(k++k−)x (∣A,x⟩ + eik+ ∣B,x⟩) +
L

∑
x±=1
x+≠x−

eik+x+eik−x− ∣x+, x−⟩ + ei(k+−k−)
L

∑
x=1

ei(k++k−)x∣x , x⟩,

(3.3.10)
where η from Eq. (3.3.9) has been eliminated in favor of extending the allowed values of (k+, k−)
from the quantization of k and θn,k to include π-shifted pairs (k+ + π, k− + π). Although these

states will be degenerate under F̂0, this distinction is necessary for the counting of states, and Ĥ
will lift these degeneracies in 3.4.2.

Recalling that the molecules also correspond to particular configurations of the two movers,
the coefficient of the A molecule terms are also of the same plane wave form eik+x+eik−x− as most
of the doublon terms; however, the B-molecule at cell n now corresponds to a right-mover at n
and a left-mover at n+1, so its coefficient is in fact ei(k+−k−)eik+x+eik−x− , and we note that the same
extra factor of ei(k+−k−) has been applied to the same-cell doublon terms ∣x,x⟩. These states are the
respective “delay” states (i.e. the movers are in the same positions as in the preceding state under
FFA) in the orbits defined in Eq. (3.3.2) and Eq. (3.3.3), respectively. Thus, we have identified
the S matrix for FFA:

S̃ (k+, k−) = +ei(k+−k−) , (3.3.11)

where, compared to the S matrices of other known integrable systems, here we have an overall
sign of +1 rather than −1 due to the distinguishability of the two particles. Because these particles
are distinguishable, we ascribe no meaning to swapping the order of the momentum arguments.

Note the fact that this S matrix multiplies only two of the configurations in Eq. (3.3.10) is an
artifact of our choice of reference configuration, i.e., Eq. (3.3.8). In general, the S matrix defined
in Eq. (3.3.11) appears on all post-collision configurations until the end of the “orbit”, which for
our choice was rather immediate. One could also make the natural choice that all terms with
x− ≤ x+ (and the B molecule) get an S matrix, and all others do not. The quantization condition
on θ ensures that there is no mismatch.

To complete our treatment of this sector, when the number of unit cells, L = 2` + 1, is odd, by
analogy to Eq. (3.3.4) we have

F̂0∣m,k⟩ = e−iθm ∣m,k⟩, θm = 2πm

L + 2
≅ 2πm′ −Lk

L + 2
, (3.3.12)

where here θ need not depend on k since F̂L+2
0 = 1̂, and compared to Eq. (3.3.4) we allow twice as

many values of the integer m. We construct eigenstates as before as orbits under F̂0 starting from
the A molecule states for concreteness, and again recover a state of the general form of Eq. (3.3.9),
with the explicit value of ψ = π (m +Lk/2π) + (k + θm) /2, where m is the index of θm. Unlike
Eq. (3.3.9), we have a single sector of size L+ 2, and here there is no parameter η, and the overall
sign of the B terms relative the A terms is set by ψ. The placement of the S matrices is the same
as for even L eigenstates.
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3.3.5 More-body sectors

In sectors with arbitrary numbers of particles, the eigenstates of F̂0 continue to be orbits con-
structed in a similar fashion, and based on the results for small sectors, we can guess the pattern
for the quantization, which we have confirmed numerically. In general, one has

K = ∑
±
K± = 2πNk

L
Nk ∈ {1,2, . . . , L − 1, L} (3.3.13a)

Θ = ∑
±
±K± = 2πNθ + (N+ −N− −L)K

L +N+ +N−
Nθ ∈ {1, . . . , L +N+ +N−} , (3.3.13b)

provided that L +N+ +N− is odd. If L +N+ +N− is even, then we have

Θ = ∑
±
±K± = 4πNθ + (N+ −N− −L)K

L +N+ +N−
Nθ ∈ {1, . . . ,

1

2
(L +N+ +N−)} , (3.3.13c)

which comes from operator identities of the form F̂
[ 1

2
](L+N++N−)

0 T̂m = 1̂ (for some m). These equa-
tions also fully determine the total momentum of all right-movers, K+, and the total momentum of
all left-movers, K−. However, without a Hamiltonian term, it is not clear that there is a means to
extract the allowed momenta of the individual movers, or re-write linear combinations of the var-
ious degenerate orbits as plane-waves in general many-body sectors, as one expects for integrable
systems. As for the placement of S matrices in these eigenstates, one need only choose a reference
state as the “default” ordering of the movers, and for each configuration with a different order of
movers (due to collisions), apply corresponding S matrices as in the N+ = N− = 1 sector.

3.4 The Hamiltonian Perturbation

To generalize FFA, we will now include a dispersing Hamiltonian term in the evolution

F̂ (λ) = e−iλĤ ⋅ F̂0, (3.4.1)

where Ĥ is a local Hamiltonian that acts on a given configuration σ of ± particles by mapping
them with unit weight to all other configurations σ′ such that exactly one of the movers has been
moved by a single unit cell, while preserving the number of movers of each type N±. In cases
where there are two states corresponding to a particular configuration of movers, the Hamiltonian
will map to the configuration σ′ that is closest to σ under bare FFA, thereby preserving the phase
delays of the latter.

In fact, the action of this Hamiltonian is quite straightforward, however owing to the com-
plicated nature of defining the locations of the movers, the form of Ĥ on the physical spins will
appear quite complicated and nongeneric. Writing Ĥ as the sum over local terms Ĥn, we have

Ĥn = d̂nσ̂+n+1σ̂
+
n+2σ

−
n+3σ̂

−
n+4d̂n+5

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
doublon hopping

+ d̂nσ̂
+
n+1σ̂

−
n+2d̂n+3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
molecule hopping

+ d̂nσ̂
+
n+1σ̂

+
n+2ûn+3d̂n+4 + refl.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
molec.↔doublons

+ d̂nσ̂
+
n+1σ̂

+
n+2σ̂

−
n+3ûn+4ûn+5 + refl.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
doublon absorption

+ d̂nûn+1σ̂
+
n+2ûn+3ûn+4 + refl.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
molecule absorption

+ ûnûn+1σ̂
+
n+2σ̂

−
n+3ûn+4ûn+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exchange

+h.c.,

(3.4.2)

where ‘+ refl.’ indicates that one should also include the same term with the operators in reverse
order, and the Hermitian conjugate of each term above should also be included; as before, d̂
projects onto ↓z, and û projects onto ↑z.

68



3.4.1 Single-species sectors

In the single-particle sector, and single-species sector in general, only the first term in Eq. (3.4.2)
acts nontrivially. This term takes the form d̂nσ̂+n+1σ̂

+
n+2σ

−
n+3σ̂

−
n+4d̂n+5 + h.c., and hops a doublon (of

either type) by one unit cell, provided no other particles are nearby, and hence adds to the purely
chiral pseudo-energies of bare FFA, ε = ±k a more typical cosine dispersion2. For the single particle
eigenstates of FFA, one has

F̂ (λ) ∣k,±⟩ = e−iε∣k,±⟩, with ε = ±k + 2λ cos (k) , (3.4.3)

where the cosine term is independent of the species index, ν = ±1, as Ĥ does not differentiate
between the two.

We now consider the two-body sector; when necessary for concreteness, let us take them to be +
particles (right movers). Since the particles are indistinguishable and cannot be placed in adjacent
unit cells, this gives 1

2L (L − 3) states ∣x1, x2⟩ with x2 > x1 + 1. The action of F̂0 on these states is

trivial: F̂0∣x1, x2⟩ = ∣x1 ± 1, x2 ± 1⟩, and amounts to translation. Since [F̂0, Ĥ] = 0, eigenstates of Ĥ

will automatically be eigenstates of F̂0. These eigenstates will take the standard coordinate Bethe
Ansatz (CBA) form

∣k1, k2⟩∝ ∑
x2>x1+1

(ei(k1x1+k2x2) + S (k2, k1) ei(k1x2+k2x1)) ∣x1, x2⟩, (3.4.4)

where S (k2, k1) is the same-species S matrix corresponding to the swapping of momenta k1 and
k2. Unlike the S matrix for FFA that applies to particles of opposite species, the order of the
momenta are important here, however the form of S is the same for both ν = ±1.

The corresponding wave function is given – up to an overall normalization constant – by

Ψk1,k2 (x1, x2) ≡ ⟨x1, x2∣k1, k2⟩∝ (ei(k1x1+k2x2) + S (k2, k1) ei(k1x2+k2x1)) . (3.4.5)

From this follows the “Schrödinger equation”

e−iε±(k1,k2)⟨x1, x2∣k1, k2⟩ = ⟨x1, x2∣e−iλĤF̂0∣k1, k2⟩ = e∓i(k1+k2)⟨x1, x2∣e−iλĤ ∣k1, k2⟩. (3.4.6)

Because this system is integrable, one expects ε± (k1, k2) = ε± (k1)+ε± (k2) = ± (k1 + k2)+2λ cos (k1)+
2λ cos (k2), and factoring this out, one has e−iλE(k1,k2)⟨x1, x2∣k1, k2⟩ = ⟨x1, x2∣e−iλĤ ∣k1, k2⟩, where
E (k1, k2) = 2 cos (k1)+ 2 cos (k2). However, clearly ∣k1, k2⟩ is an eigenstate of Ĥ, independent of λ,
and we can write the preceding equalities in the more familiar form

E (k1, k2)Ψk1,k2 (x1, x2) = Ψk1,k2 (x1 − 1, x2)+Ψk1,k2 (x1 + 1, x2)+Ψk1,k2 (x1, x2 − 1)+Ψk1,k2 (x1, x2 + 1) ,
(3.4.7)

with
E (k1, k2) = 2 cos (k1) + 2 cos (k2) = E1 (k1) +E1 (k2) . (3.4.8)

The Ansatz embodied in Eq. (3.4.4) already satisfies Eq. (3.4.7) when x2 −x1 > 2 for any choice of
S (k2, k1). The form of the latter factor may be determined in the usual fashion by ensuring that
Eq. (3.4.7) holds—with the same eigenvalue E (k1, k2), given by Eq. (3.4.8)—when x2 = x1 + 2,
which gives

S (k2, k1) = −ei(k2−k1), (3.4.9)

2One might expect this term to be sufficient, and indeed a Hamiltonian comprising only this term may well be
integrable, but we are unable to solve for its eigenstates and spectrum.
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which resembles the FFA S matrix S̃, excepting the overall factor of −1 and meaning of the order of
the momentum arguments, both of which derive from indistinguishability. We finish our solution
of the two body problem by figuring out the quantization of the momenta k1 and k2. Their sum
K = k1 + k2 is constrained by translation invariance, an generally a quantity we will fix by hand.
Additionally, one has the Bethe Ansatz Equations (BAE), obtained by bringing one of the particles
around the system, i.e. demanding Ψk1,k2 (x1, x2) = Ψk1,k2 (x2, x1 +L)

e−ik1L = S (k2, k1) = eik2L, (3.4.10)

although because ei(k1+k2)L = 1, this is only truly a single relation. As in other integrable models,
we also have

S (k2, k1) = S (k1, k2)∗ = S (k1, k2)−1
. (3.4.11)

These BAE admit straightforward solutions

k2 =K − k1 , k1 =
(2m + 1) π
L − 2

− K

L − 2
, (3.4.12)

for m ∈ {1,2, . . . , L − 2}, which we have confirmed with exact numerical diagonalization.
With any number of movers of the same type, the wave functions take the form

Ψk1,...,kNν
(x1, . . . , xNν) = ∑

perm

Aj1,...,jNν exp (ikj1x1 + ⋅ ⋅ ⋅ + ikjNνxNν) , (3.4.13)

where a given permutation that exchanges the momenta kn and km>n is accompanied by an S
matrix S (km, kn) as usual. For example, for three particles of the same species, ν, one has wave
functions

Ψk1,k2,k3 (x1, x2, x3) = eik1x1eik2x2eik3x3 + S21e
ik2x1eik1x2eik3x3 + S21S31e

ik2x1eik3x2eik1x3

+S21S31S32e
ik3x1eik2x2eik1x3 + S31S32e

ik3x1eik1x2eik2x3 + S32e
ik1x1eik3x2eik2x3 , (3.4.14)

where S32 is a temporary shorthand for S (k3, k2). As more particles of the same species are added,
one includes additional permuted terms to the wave function, accompanied by S matrices for the
corresponding permuted momenta.

These wave functions correspond to eigenstates of both F̂0 and Ĥ, with eigenvalue under the
latter

Ĥ ∣k1, . . . , kNν ⟩ = E (k1, . . . , kNν) ∣k1, . . . , kNν ⟩ =
Nν

∑
m=1

E1 (km) ∣k1, . . . , kNν ⟩ (3.4.15)

and as for the two-body sector, the quantization condition obtains by bringing one particle around
the system:

eikmL =
Nν

∏
n=1
n≠m

S (km, kn) , (3.4.16)

which also reduces to Eq. (3.4.10) for Nν = 2. As in that case, one also has the quantization of
total momentum ∑m km = K = 2πq/L for q ∈ {1,2, . . . , L}. Together, these equations admit exact
solutions, in contrast to most known integrable models, which we can see by noting

eikjL =
Nν

∏
j′=1
j′≠j

Sνν (kj, kj′) = −
Nν

∏
j′=1

(−ei(kj−kj′)) = ei(π(Nν−1)+Nνkj)
Nν

∏
j′=1

e−ikj′ = ei(π(Nν−1)+Nνkj)e−iK , (3.4.17)
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which implies 1 = e−i(π(Nν−1)−K+(L−Nν)kj) = e2πimj , from which we extract the solutions for Nν − 1 of
the momenta

kj =
1

L −Nν

(π (2mj +Nν − 1) −K) , (3.4.18)

where mj ∈ {1,2, . . . , L −Nν}, and the final momentum given by kNν =K −∑Nν−1
m=1 km. Additionally,

one has the constraint that no two particles can have the same momentum. Lastly, Eq. (3.4.18)
reduces to Eq. (3.4.12) for Nν = 2.

3.4.2 Sectors with both species

We now consider the full Floquet drive F̂ (λ) in sectors with both ± particles. The smallest such
sector has N± = 1, and we already found eigenstates for this sector in the context of F̂0. Re-visiting

this sector will help explain many of the terms in Ĥ beyond the doublon hopping term, which was
the only nontrivial term in the single-species sectors discussed in Section 3.4.1.

even ∶ δ = 4 → δ = 2 → δ = A → δ = 0 → δ = L − 2
↕ ⤡ ↕ ⤡ ↕ ⤡ ↕ ⤡ ↕

odd ∶ δ = 3 → δ = 1 → δ = B → δ = L − 1 → δ = L − 3

. . .

Figure 3.2: There are two types of collision processes under the bare FFA dynamics, corresponding
to even or odd separations, and respectively, the appearance of A or B molecules. The FFA
unitary evolution operator F̂0 cycles between the states in these orbits, reproduced diagramatically
above, with blue arrows indicating the action of the FFA model, black arrows indicating processes
produced by the doublon hopping term, and red arrows indicating processes corresponding to all
other Hamiltonian terms.

The full Hamiltonian acts as follows on position basis states ∣x+, x−⟩, ∣A,x⟩, ∣B,x⟩; starting
with the “general” case (the black arrows in Figure 3.2), and then listing “exceptions” (red arrows
in Figure 3.2), we have

Ĥ ∣x+, x−⟩ = ∣x+ + 1, x−⟩ + ∣x+ − 1, x−⟩ + ∣x+, x− + 1⟩ + ∣x+, x− − 1⟩ (3.4.19a)

Ĥ ∣x,x + 1⟩ = ∣A,x⟩ + ∣A,x + 1⟩ + ∣x − 1, x + 1⟩ + ∣x,x + 2⟩ (3.4.19b)

Ĥ ∣A,x⟩ = ∣x,x + 1⟩ + ∣x − 1, x⟩ + ∣B,x⟩ + ∣B,x − 1⟩ (3.4.19c)

Ĥ ∣B,x⟩ = ∣A,x⟩ + ∣A,x + 1⟩ + ∣x,x⟩ + ∣x + 1, x + 1⟩ (3.4.19d)

Ĥ ∣x,x⟩ = ∣B,x⟩ + ∣B,x − 1⟩ + ∣x + 1, x⟩ + ∣x,x − 1⟩ (3.4.19e)

Ĥ ∣x + 1, x⟩ = ∣x,x⟩ + ∣x + 1, x + 1⟩ + ∣x + 2, x⟩ + ∣x + 1, x − 1⟩, (3.4.19f)

where if not specifically listed above, the action of Ĥ on a state defaults to Eq. (3.4.19a).
To see that Ĥ and F̂0 have simultaneous eigenstates, consider N+ = N− = 1 with L = 2` is even,

in which case the eigenstates of F̂0 are ∣n, k,α⟩ for α = A,B, corresponding to the type of molecule
that obtains (or even/odd separations, respectively). We rotate to form eigenstates as symmetric
or anti-symmetric combinations of these two,

∣n, k, η⟩ = 1√
2
(∣n, k,A⟩ + ηeiψ ∣n, k,B⟩) , (3.3.9)
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with η = ±1 (unrelated to the species index ν = ±1). Using equations Eq. (3.4.19), we find that

Ĥ ∣n, k,A⟩ = 4 cos(k
2
) cos(

θn,k
2

) ei(k+θn,k)/2∣n, k,B⟩, (3.4.20)

explaining why we chose ψ = (k + θn,k) /2 = k+ in Section 3.3. We also note that

4 cos(k
2
) cos(

θn,k
2

) = 2 cos (kL) + 2 cos (kR) = E (kL, kR) = E1 (kL) +E1 (kR) , (3.4.21)

as expected, apart from the factor of η multiplying the contents of Eq. (3.4.21). We absorb
the overall sign η = ±1 into the definition of the allowed momenta k+ and k− by noting that
cos (k ± π) = − cos (k), and that shifting both k+ and k− by π preserves both k = k+ + k− and
θ = k+ − k− modulo 2π. Finally, when L is odd, these two degenerate orbits merge into one,
eliminating the free parameter η, which is replaced by the factor (−1)m+Lk/2π where m indexes the
allowed eigenvalues θ, per Eq. (3.3.12). It is also worth noting that Ĥ lifts degeneracies of F̂0,
such as that of the sector with N± = 1 with L even; because of this, the full, dispersing model has
spectral properties more reminiscent of conventional integrable systems.

As we add more movers of either type, not much changes compared to the above, with a few
notable exceptions. The first is that new collision processes emerge: for example with N+ = 1 and
N− = 2, F̂0 factorizes into its action on an isolated left-mover, and its action as in the N± = 1

sector, with the singular exception that F̂0∣B,x⟩ ⊗ ∣x− = x + 2⟩ = ∣A,x + 1⟩ ⊗ ∣x− = x⟩. However,

no knowledge of these new processes is necessary to form eigenstates, since the eigenstates of Ĥ
will also be eigenstates of F̂0. Second, we have the possibility of “cluster states” with three or

more physical spins up. Looking at the same N+ = 1 and N− = 2 sector, F̂0∣A,x⟩ ⊗ ∣x− = x + 2⟩ =
∣x+ = x;x− = x,x + 2⟩, where the latter looks like . . . ↓ ↑2x−2 ↑2x−1 ↑2x ↑2x+1 ↓ . . . . For each additional
mover (of alternating type), we have the possibility of a cluster with one additional up spin. In the
N+ = 1 and N− = 2 sector, the two left-movers can only be in adjacent unit cells if the right-mover
is in the same position as the first left-mover. Therefore, the right-mover is stuck: it cannot be
moved by Ĥ without moving one of the left-movers at the same time. Since Ĥ can only act by
moving one quasiparticle, only the outer left-movers can be moved, and they must be moved out
of the cluster. This property holds for larger, generic clusters as well.

In fact, the action of Ĥ on these “cluster” configurations explains all the remaining terms not
accounted for by Figure 3.2. In general, all of the doublons in the cluster are locked in place,
and Ĥ can only act by bringing movers into or out of the cluster at the edges, either in the form
of molecules or two-body clusters (↑ ↑ ↑). Lastly, there is a term allowing for one mover to hop
between adjacent clusters. It is also worth noting that the same-species S matrix S (k2, k1) is
designed to give zero weight to a state with movers of the same type on adjacent sites. One might
then worry that these cluster configurations will have zero weight; fortunately, these states are
also “delay states”, i.e. two (or more) of the movers will be in the same place if one acts with F̂ −1

0 ,
and therefore they will also have a factor of S̃ that will prevent the weight on these states from
vanishing.

3.4.3 Form of the solution

For generic many-body sectors, the eigenstates are constructed from plane waves (solutions to
the single-particle sector) as in Hamiltonian integrable systems. First, we write the “näıve” wave
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function for a given configuration as the product of the wave functions within the two sectors given
by Eq. (3.4.13), i.e.

Ψk+1 ,...,k
+
N+ ;k−1 ,...,k

−
N−

(x+1 , . . . , x+N+ ; x−1 , . . . , x
−
N−) = Ψk+1 ,...,k

+
N+

(x+1 , . . . , x+N+) Ψk−1 ,...,k
−
N−

(x−1 , . . . , x−N−) ,

(3.4.22)
each of which is the sum over permutations of the momenta in that sector. Unlike the single-
species sectors, we will also have molecule configurations, for which the form of the wave-function
is identical to the doublon configurations: plane waves evaluated at the prescribed positions of the
molecules’ constituent movers. We then identify a “reference” configuration, i.e. an ordering of all
the ± movers, starting from the first unit cell, and compared to this configuration, any configuration
in which the order of a + and − is interchanged picks up an S matrix for that collision, S̃ (k+n, k−m).

This is most easily seen in sectors with sufficiently low density to admit a state where all −
particles are to the right of all + particles; in this case, every state with the mth − left of the
nth + will be multiplied by S̃ (k+in , k

−
im

). Since the wave function is a superposition over different
assignments of the momenta {k+n, k−m} to the various movers, each individual term in the sum will
have a different momentum appearing in any particular factor of S̃, as S̃ is associated to the
movers. In summary:

Ψk+1 ,...,k
+
N+ ;k−1 ,...,k

−
N−

(x+1 , . . . , x+N+ ; x−1 , . . . , x
−
N−) =

∑
perm

A+
n1,...,nN+A

−
m1,...,mN−ς (k

+
n1
, . . . , k+nN+ ;k−m1

, . . . , k−mN−) e
ik+n1

x+1+ik−m1
x−1+⋅⋅⋅+ik+nN+ x

+
N++ik

−
mN− x

−
N− ,

(3.4.23)

where the coefficients A are unity for unpermuted labels, and acquire factors S21 if the momenta
of the first and second mover (of a given species) are swapped. The factor ς is a place-holder for
the product of necessary +− S matrices, S̃ (k+nj , k−mi), relative some “default” configuration of the
movers.

The structure of these eigenstates gives rise to the quantization of the momenta. Recall that
the quantization of F̂0, which is independent of Ĥ, constrains Θ = K+ −K− = ∑± ±K±, and as
always, translation invariance dictates the quantization of total momentum K =K+ +K− = ∑±K±,
per Eq. (3.3.13). Even in a trivial limit wherein we omitted F̂0 from our Floquet drive, the

fact that [F̂0, Ĥ] = 0 would still lead to the same quantization condition. Since a quantization
condition exists for both the sums and differences of K±, the two are both independently fixed.
What remains is a formula of the form Eq. (3.4.16) for scenarios in which both movers are present.
As in that case, these conditions obtain from moving one quasiparticle around the entire system,
and correspondingly, contains S matrices corresponding to all of the resultant collisions. Thus,
compared to Eq. (3.4.16), one expects the full quantization condition to contain S matrix factors
corresponding to collisions between quasiparticles of opposite chirality as well. Indeed, those
equations are

eik
ν
j L =

Nν

∏
n=1
n≠j

S (kνj , kνn)
Nν̄

∏
m=1

S̃ ν̄ (kνj , kν̄m) (3.4.24a)
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where again, there is no meaning to switching the order of the momenta for S̃. For right-movers
with momenta pj, this takes the form

eipjL =
N+
∏
n=1
n≠j

S (pj , pn)
N+
∏
m=1

S̃−1 (pj , qm) , (3.4.24b)

= −
N+
∏
n=1

[−ei(pj−pn)]
N−
∏
m=1

[ei(qm−pj)] (3.4.24c)

= (−1)N+−1
ei(N+ pj−K+)ei(K−−N−pj), (3.4.24d)

and for left-movers with momenta qj, the form

eiqjL =
N−
∏
n=1
n≠j

S (qj , qn)
n+
∏
m=1

S̃ (pm , qj) (3.4.24e)

= −
N−
∏
n=1

[−ei(qj−qn)]
N+
∏
m=1

[ei(pm−qj)] (3.4.24f)

= (−1)N−−1
ei(N− qj−K−)ei(K+−N+qj). (3.4.24g)

In either case, one then has

eik
±
j L = (−1)N±−1

ei(N± k±j −K±)ei(K∓−N∓k±j ) (3.4.24h)

which implies

e2πim±
j = 1 = ei(L−N±+N∓)k±j ei(K±−K∓) (−1)N±−1

, (3.4.24i)

from which we can easily extract the solutions

k+j =
π (2m+

j +N+ − 1) −Θ

L −N+ +N−
m+
j ∈ {1,2, . . . , L −N+ +N−} (3.4.25a)

k−j =
π (2m−

j +N− − 1) +Θ

L −N− +N+
m−
j ∈ {1,2, . . . , L −N− +N+} . (3.4.25b)

The solutions to this model consist of all {k±j } of the form Eq. (3.4.25) where K and Θ satisfy

Eq. (3.3.13), and ∑N±
j=1 k

±
j = K± = 1

2 (K ±Θ). Additionally, no two movers of the same type may
have the same momentum. These BAE have been tested against exact numerics for small systems,
and appear to hold for all accessible sizes (roughly 22 physical spins and N± ∼ L/2, and out to
larger L for lower filling fractions). The corresponding eigenvalues under the combined action are
given by

e−iλĤF̂0∣k+1 , . . . , k+N+ ; k−1 , . . . , k
−
N−⟩ = e

−iε(k+1 ,...,k+N+ ;k−1 ,...,k
−
N−)∣k+1 , . . . , k+N+ ; k−1 , . . . , k

−
N−⟩, (3.4.26)

with

ε (k+1 , . . . , k+N+ ; k−1 , . . . , k
−
N−) =∑

±

N±
∑
j=1

{±k±j + 2λ cos (k±j )} . (3.4.27)
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3.5 Summary of the Bethe Ansatz Solution

For clarity, here is a concise summary of the coordinate Bethe Ansatz solution, which applies both
to FFA and its dispersing counterpart, DFFA.

Single-quasiparticle sectors We first find eigenstates of Eq. (3.2.1) for a single ± quasiparticle,
∣j,±⟩ = σx2jσx2j±1−1∣0⟩. The Fourier transform is an eigenstate of F̂ (λ),

F̂ (λ) ∣k, ν⟩ = e−iνk−2iλ cosk∣k, ν⟩, (3.5.1)

where ν = ±1, with +1 corresponding to right-movers and −1 to left-movers. Here, λ controls the
strength of the dispersing term, and k = 2πm/L for integer m, with L the system size in unit cells
(each containing two sites). This model thus has two chiral bands, as shown in Figure. 3.1. For
λ < 1/2, all + (−) quasiparticles have right- (left-) moving group velocities, but for λ > 1/2, both
species have left- and right-moving quasiparticles. The group velocities of ± quasiparticles are
given by v0

±,k = ±1 − 2λ sink. These chiral bands are characterized by a quantized winding number

ν = ∫
π

−π
dk
2πv

0
±,k = ±1, which is the invariant characterizing Thouless pumping [66,91,92].

Bethe Ansatz solution We now move on to multi-particle sectors. We note, first, that in the
absence of left-movers, the FFA evolution is just a trivial global translation. In this purely right-
moving sector, the dynamics of + quasiparticles consists of hopping and hardcore nearest-neighbor
repulsion. The scattering phase shift between particles of the same species is thus

S++(k2, k1) = S−−(k2, k1) = S(k2, k1) = −ei(k2−k1) . (3.5.2)

Meanwhile, the scattering between left and right movers is engineered to retain the FFA form
such that the phase shift after a collision is S−+(k+, k−) = S̃(k+, k−) = +ei(k+−k−), and no meaning
is ascribed to the order of the arguments. Higher-body collisions factorize onto the two-body
scattering processes, ensuring integrability. For a many-body state with fixed (N+,N−), where
{k±j } refer to the momenta of the ±-quasiparticles, we find the following quantization condition

eik
+
j L =

N+
∏
n=1
n≠j

S (k+j , k+n)
N−
∏
m=1
S̃∗ (k+j , k−m) ,

eik
−
j L =

N−
∏
n=1
n≠j

S (k−j , k−n)
N+
∏
m=1
S̃ (k−j , k+m) . (3.5.3)

These quantization conditions have the same form as Bethe equations in Hamiltonian systems.
Translational invariance and the recurrence properties of the FFA model (with which the Hamil-
tonian defined in Eq. (3.4.2) commutes) impose two further constraints. We require, first, that

∑j k+j +∑j k−j = K, where K = 2πm/L with m is one of the allowed global momenta, and second,
that the relative momentum ∑j k+j −∑j k−j = Θ, where

Θ = 2πNθ + (N+ −N− −L)K
L +N− +N+

, (3.5.4)

with 1 ≤ Nθ ≤ (L + N− + N+) an integer, unless L + N− + N+ is even, in which case Nθ must
be as well. Finally, no two quasiparticles of the same species may occupy the same momentum
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state, as in general integrable systems. With these constraints the solutions given by Eq. (3.5.3)
fully characterize the eigenstates in a finite system, and the corresponding quasienergy e−iε of the
Floquet unitary, given by Eq. (3.2.1), reads ε = ∑ν=±∑Nνn=1(νkνn + 2λ coskνn).

Remarkably, these equations are simple enough that they can be solved exactly for any finite
system. The set of allowed momenta for either species, ν is

kνj =
π(2mν

j +Nν − 1) − νΘ

L −Nν +Nν̄

, (3.5.5)

with ν̄ = −ν and 1 ≤mν
j ≤ L−Nν+Nν̄ . The number of available m±

j decreases with the total number
of ± movers because neighboring unit cells cannot both host ±’s without a ∓ between them. We
also note that the quantization condition depends on the total number and momentum of the
± quasiparticles, not on the details of their distribution. Relatedly, Eq. (3.5.3) and Eq. (3.5.5)
do not depend on λ, and thus also apply to F̂0, though in that model, the phase shift between
quasiparticles of the same species is ill-defined as they move in unison and never collide.

The DFFA model corrects several pathological features of FFA. We show this numerically by
analyzing the quasienergy level statistics using exact diagonalization (ED), finding that the levels
do not repel, as plotted in Figure 3.3), consistent with integrability. We also confirm using ED that
the value of the “r-ratio” [95] is consistent with a Poisson distribution for all λ > 0, as expected
for integrable models.
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Figure 3.3: Numerical results. Quasi-energy level statistics as a function of λ, for several values of
N± and K at L = 9: (a) the r ratio shows good agreement with a Poisson distribution (dashed line)
for all λ > 0; (b) the distribution of r for λ = 1.0 (inset) does not show level repulsion, consistent
with integrability. Plot of the OTOC C(t) for L = 14 unit cells with N+ = 1 and N− = 2, for (c)
λ = 0, corresponding to FFA, and (d) λ = 0.05, where we see that the OTOC does not “fill in”
behind the front except through the dispersion of the perturbed quasiparticle. All data obtained
from exact diagonalization.
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3.6 Operator Dynamics

The rapidity-independent scattering kernels in the DFFA model have important consequences for
operator spreading, which is simpler here than in generic integrable models [125]. In the generic
case, any operator creates a “light cone” that fills in at late times: a spatially local operator has
a spread of momenta and thus of group velocities, and the velocity-dependence of the scattering
kernel implies that perturbing the velocity of one quasiparticle will affect the trajectories of all
the others. This does not happen either in the hard rod gas or in the DFFA model, since the
scattering kernel in these models is velocity-independent and consequently, any perturbation that
preserves N± will only affect the state of one quasiparticle. Thus the butterfly cone, measured via
the out-of-time-order correlator [130–133] (OTOC) C (x, t) ≡ 1

2
∣Tr{[ĥj=2, σ̂

z
x (t)]2}∣ does not “fill

in” except through the dispersion of the perturbed quasiparticle, as depicted in Figure 3.3. This
property can also be seen from the coordinate Bethe ansatz: an operator that changes the velocity
of a + quasiparticle does not alter the quantization condition for any other quasiparticles, and thus
does not force a global rearrangement, in contrast to the generic case.

3.7 The Thermodynamic Bethe Ansatz for FFA

The Bethe Ansatz equations given by Eq. (3.4.24) admit exact and simple solutions, as seen in
Eq. (3.4.25). Although these equations and solutions remain simple even as L→∞, it is nonetheless
useful to go through the standard procedure of the thermodynamic Bethe Ansatz (TBA), which
has been successfully applied to other integrable models [45]. In particular, the exceptionally
simple nature of this model’s S matrices will translate into simple results in the TBA formalism.
As well, this will provide access to statistical mechanics of this model and generalized Gibbs
ensembles (GGE), which stand apart from known interacting integrable models not only due to
their simplified form, but the Floquet nature of the model requires that one forego the use of the
standard Yang-Yang “free energy’ [47], as this model has neither an extensive conserved energy
nor a corresponding notion of temperature. We will find it convenient to introduce the following
function:

S0 (k2 − k1) = ei(k2−k1), (3.7.1)

such that S (k2, k1) = − S0 (k2 − k1) = S∗ (k1, k2) for either ν = ±1, and S̃ (k+m, k−n) = S̃ (k−n, k+m) =
+S0 (k+m − k−n).

3.7.1 Bethe equations in the thermodynamic limit

We begin with quantization condition given by Eq. (3.4.25),

2πmν
j = Lkνj + i

Nν

∑
n=1
n≠j

ln −S0 (kνj − kνn) + i
Nν̄

∑
m=1

ln S0 (kν̄m − kνj ) , (3.7.2)

and replace the quantum numbers mν
j with counting functions Lcν (k), as in the standard appli-

cation of the TBA in Section 2.4 of Chapter 2, where the index ν labels species (as is the case
in the presence of string excitations in the Trotterized XXX model). When Lcν (k) = mν

j , if the
momentum mode corresponding to mν

j is occupied, this corresponds to the presence of a particle;
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otherwise, there is a hole. The counting function for FFA (or DFFA) satisfies

cν (k) =
k

2π
+ i

2πL
{iπNν +

Nν

∑
n=1

ln S0 (kνj − kνn) −
N∓
∑
m=1

ln S0 (kν̄m − kνj )] . (3.7.3)

Note that due to the comparatively simple structure of the DFFA model, it is possible to simplify
Eq. (3.7.3) substantially; however, to maintain consistency with other works on TBA, we proceed
without doing so. The total density of states, ρs,ν , which is the sum of the densities of particles
and holes,

ρs,ν = ρp,ν + ρh,ν , (3.7.4)

obtains by differentiating the counting function, cν (k), with respect to its momentum argument:

ρp,ν (k) + ρh,ν (k) = ρs,ν (k) =
d cν
dk

(k) . (3.7.5)

Note that we will use implicitly the relation

1

L
∑
n=1
n≠m

f (k(m) − kn)→
π

∫
−π

dk′ f (k(m) − k′)ρp,ν (k′) . (3.7.6)

To match other references on integrable systems, we define the S matrix in the space of species
labels via

Sνν′ (q2, q1) = δνν′S (q2, q1) + (1 − δνν′) S̃ν
′ (q2, q1) , (3.7.7)

where in the second term ν′ is an exponent, not a superscript, and these objects are also defined
in Eq. (3.7.1). The differential scattering kernel K is then given by

Kνν′ (q, q′) ≡
1

i

d

dq
ln Sνν′ (q − q′) =

1

i
(iδνν′ − i (1 − δνν′)) = (2 δνν′ − 1) = νν′, (3.7.8)

when both ν, ν′ take the values ±1 (+1 for right-movers and −1 for left-movers). The convolution
operator K̂ is therefore

[K̂ f]ν (q) =∑
ν′

π

∫
−π

dq′

2π
Kν,ν′ (q, q′) fν′ (q′) =∑

ν′
ν ν′ ⟨fν′ (q)⟩q , (3.7.9)

which is notably independent of momentum.
Given the above, the density of states, ρs,ν is therefore

ρs,ν (p) =
1

2π

⎧⎪⎪⎨⎪⎪⎩
1 −

π

∫
−π

dp′ ρp,ν (p′) +
π

∫
−π

dq ρp,ν̄ (q)
⎫⎪⎪⎬⎪⎪⎭
= 1

2π
(1 + Nν −Nν̄

L
) = 1

2π
(1 − %ν + %ν̄) ,

(3.7.10a)

where ν̄ = −ν is the other label, and %ν =
Nν
L =

π

∫
−π
dk ρp,ν (k). Summarizing these results:

ρp,ν (k) + ρh,ν (k) = ρs,ν (k) =
d cν
dk

(k) = 1

2π
(1 + %ν̄ − %ν) =

1

2π

⎧⎪⎪⎨⎪⎪⎩
1 +

π

∫
−π

dk′ [ρp,ν̄ (k′) − ρp,ν (k′)]
⎫⎪⎪⎬⎪⎪⎭
,

(3.7.11)
which means that ρp,ν is independent of k, as are ρs,ν and ρh,ν . Since all densities are k-independent,
as is the differential scattering kernel and occupation factor, all dressing operations will be com-
pletely trivial, which will substantially simplify the use of TBA and generalized hydrodynamics
(GHD).

78



3.7.2 Effective TBA partition function

We now construct an effective partition function with respect to which one can compute thermo-
dynamic expectation value via the generalized Gibbs ensemble (GGE). The partition function is
the exponential of an effective “free energy,” which is a poor choice of name for a Floquet system.
Instead, we will refer to the analogous object as the “[generalized] Gibbs potential” (GGP), or
symbolically: G = LG. Because the model is Floquet, there is no extensive conserved energy, nor
a definition of temperature, T ; correspondingly, we do not insist other quantities inherit units of
energy, and the need for β and other quantities does not arise:

Z = e−G = ∫ D [ρ+, ρ−] e−LG[ρ+,ρ−] (3.7.12)

= ∫ D [ρ+, ρ−] e−µ+N+ e−µ−N− eLSY Y [ρ+,ρ−], (3.7.13)

where SY Y is the Yang-Yang entropy function corresponding to the densities of states ρs,ν that
correspond to the TBA equations, Eq. (3.7.11). For concreteness, we restricted to a GGE speci-
fied by two chemical potentials µ± for the two-quasiparticle species. Correspondingly, the above
becomes

G [ρ+, ρ−] = µ+%+ + µ−%− − SY Y [ρ+, ρ−] (3.7.14)

= ∑
ν=±1

π

∫
−π

dk {µνρp,ν − [ρs,ν ln ρs,ν − ρp,ν ln ρp,ν − ρh,ν ln ρh,ν]} . (3.7.15)

Since the partition function has the form Z = ∫ Dρe−LG[ρ] as L → ∞, we can compute this
integral by saddle point, i.e. finding extrema of G. Thus, we will use a functional variation,
sending ρp,ν → ρp,ν + δρp,ν and G → G + δG, and then choose ρp,ν such that δG → 0. We will also
make use of the fact that the variations of the particle and hole densities are related by the TBA
Bethe equations, Eq. (3.7.11), and derive a variational relation therefrom:

δρs,ν (k) = δρp,ν (k) + δρh,ν (k) =
1

2π

π

∫
−π

dk′ [δρp,ν̄ (k′) − δρp,ν (k′)] (3.7.16)

and with this, we are ready to extremize the GGP:

δG = ∑
ν=±1

π

∫
−π

dk {µνδρp,ν − [δρp,ν ln
ρs,ν

ρp,ν

+ δρh,ν ln
ρs,ν

ρh,ν

]}, (3.7.17)

where so far, all ρ’s have been functions of k. We now invoke Eq. (3.7.16) and must be explicit
about this. After a few standard manipulations [45] one has

δG = ∑
ν=±1

π

∫
−π

dk δρp,ν (k)
⎧⎪⎪⎨⎪⎪⎩
µν −

⎡⎢⎢⎢⎢⎣
ln
ρh,ν

ρp,ν

−
π

∫
−π

dq

2π
ln (1 +

ρp,ν (q)
ρh,ν (q)

) +
π

∫
−π

dq

2π
ln (1 +

ρp,ν̄ (q)
ρh,ν̄ (q)

)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,

(3.7.18)

which is zero if the quantity in curly braces above is zero. Writing
ρh,ν(k)
ρp,ν(k)

= eεν(k), the extremization

is guaranteed by the TBA equations:

εν (k) = µν +
π

∫
−π

dq

2π
ln

1 + e− εν(q)
1 + e− εν̄(q)

. (3.7.19)
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These equations imply that εν does not depend on momentum, so that

εν = µν + ln
1 + e−εν
1 + e−εν̄

, (3.7.20)

In the case where N+ = N−, whence one has µ+ = µ− = µ, the equations simplify even further to
εν = µ for both ν = ±1.

3.7.3 Summary of thermodynamics

In the thermodynamic limit, one defines densities of quasiparticles at a given species and rapidity,
ρ±(k), as well as total densities of states ρtot

± (k), related via the Bethe equations

2πρs,±(q) = 2πρp,±(q) + 2πρh,±(q) = 1 + %∓ − %±, (3.7.21)

where

%± ≡
π

∫
−π

dq ρp,± (q) = N±/L . (3.7.22)

These equations follow from the continuum limit of Eq. (3.5.3), with the scattering kernels

Kνν′ =
1

2πi

d

dk
lnSνν′ , (3.7.23)

with ν, ν′ ∈ {+,−}, i.e.

K++ = K−− = 1/(2π) , K+− = K−+ = −1/(2π) . (3.7.24)

Starting with these equations, one can straightforwardly construct generalized equilibrium
states of this Floquet system. We emphasize that since the DFFA model is integrable, its
dynamics lead to nontrivial steady states that are distinct from featureless infinite tempera-
ture states that would be expected for generic interacting Floquet systems. For concreteness
we focus on generalized equilibrium states characterized by a given density of ± quasiparticles
via the partition function Z = ∑{σ} e

−µ−N−−µ+N+ , but our discussion extends naturally to arbi-
trary GGEs for this model. In terms of quasiparticle densities, the partition function reads
Z ∼ ∫ DρeL ∫ dkSYYe−Lµ+ ∫ dkρk,+−Lµ− ∫ dkρk,− where SYY is the so-called Yang-Yang entropy [45, 47]
associated with the occupation of quasiparticle states. In the thermodynamic limit these integrals
are dominated by their saddle point, giving rise to thermodynamic Bethe Ansatz (TBA) equations
analogous to Hamiltonian integrable systems [45]. This leads to the following equations for the
occupation numbers (Fermi factors)

nν(k) ≡
ρp,ν(k)
ρs,ν(k)

≡ (1 + eεν(q))−1 , (3.7.25)

which turn out to be independent of k:

ε± = µ± + log (1 + e−ε±
1 + e−ε∓

) . (3.7.26)

Together with Eq. (3.7.21) this forms a complete characterization of the generalized Gibbs ensem-
ble. For λ = 0 (i.e. the FFA model), the properties of this ensemble can also be derived by a
transfer-matrix calculation [125]; these approaches give equivalent results. These TBA solutions
allow one to probe the physics of Thouless pumps in an interacting model even in the limit L→∞,
and generalize the formalism to the Floquet setting.
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3.8 Generalized Hydrodynamics

3.8.1 General results

Coarse-grained dynamics in the FFA and DFFA models can be described using the recently de-
veloped theory of generalized hydrodynamics (GHD) [54–56,59,134–149]. GHD treats the system
semiclassically as a soliton gas [136]. There are two species of solitons, labelled by ν = ±1, whose
bare group velocities v0

k follow from the dispersion relation, Eq. (3.5.1). When solitons collide,
each pick up a semi-classical displacement ∆x = 2πK in the direction of motion, as depicted in
Figure 3.1. Like-species (unlike-species) collisions speed up (slow down) solitons by one step. Col-
lisions lead to a dressing of the velocities [52, 55, 56], with the effective velocities in a state with
quasiparticle densities ρp,±(k) given by

v± (k) = v0
± (k) + ∫ dq(v± (k) − v± (q))ρp,± (q) − ∫ dq(v± (k) − v∓ (q))ρp,∓ (q) . (3.8.1)

The generalized hydrodynamics [55,56] of the DFFA model follows immediately from the TBA
equations derived in Sec. 3.7. Let us consider a (generalized) equilibrium state with filling n = 1

1+eµ ,
corresponding to µ+ = µ− = µ. The effective (dressed) velocities of the quasiparticles in this simple
GGE follow from the equation given in the main text, and they are given by

v±,k = ±
1

1 + 2%
− 2λ sink. (3.8.2)

As in generic interacting integrable models, the quasiparticle trajectories broaden diffusively due to
the random collisions with other quasiparticles. The variance of the position of a given quasiparticle
at time t is given by [58,125]

δx2
ν,k(t) = t

1

[ρs,ν (k)]2∑
ν′
∫ dk′ ∣vν (k) − vν′ (k′)∣ [Kdr

νν′(k, k′)]2ρp,ν′ (k′) (1 − nν′ (k′)) , (3.8.3)

where

Kdr
νν′(k, k′) = Kνν′(k, k′) −∑

ν′′
∫ dk′′Kνν′′(k, k′′)Kdr

ν′′ν′(k′′, k′)nν′′ (k′′) , (3.8.4)

is the “dressed kernel”, and nν (k) = ρp,ν (k) /ρs,ν (k) is the filling fraction (or “Fermi factor”).
We evaluate these formulae in an equilibrium state with chemical potential µ, corresponding to a
given filling

%ν = ∫ dk ρp,ν (k) , (3.8.5)

and when the chemical potentials for left- and right-movers are both µ, the fillings % are equal.
The equations for the dressed Kernels become

Kdr
++ =

1

2π
− % (Kdr

++ −Kdr
+−) , (3.8.6)

Kdr
+− = −

1

2π
− % (Kdr

+− −Kdr
++) , (3.8.7)

so that

Kdr
++ = Kdr

−− =
1

2π(1 + 2%)
, Kdr

+− = Kdr
−+ = −

1

2π(1 + 2%)
. (3.8.8)
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These explicit expressions for the dressed kernels combined with the dressed velocities, Eq. (3.8.2),
fully determine the quasiparticle broadening using Eq. (3.8.3). This expression simplifies even
further in the case of the pure FFA model (λ = 0). Focusing on a right-mover, the effective velocity
reads ± v± = 1 − 2%

1+2% =
1

1+2% . This yields

δx2(t) = t(2π)2 (∫
π

−π
dk′) ∣2v+∣ (Kdr

+−)2 1

2π
%(1 − %) = t2%(1 − %)

(1 + 2%)3
. (3.8.9)

This coincides with the formula found in Ref. 125 using a more elementary transfer matrix ap-
proach.

3.8.2 Charge and current formalism

Let us restrict to the bare FFA model, sans dispersion for the remainder of our hydrodynamic
treatment. One useful feature of this model is that the hydrodynamic equations for the two most
physically relevant conserved quantities, the densities of left and right movers, decouple from the
infinitely many other conserved quantities, which relate to asymptotic spacing. Additionally, both
the group and effective velocities without dispersion are extremely simple (vgrp

R = 1, vgrp
L = −1), and

in working in a GGE with µL = µR = µ, we find that no quantities depend on momentum.
The important conserved charges correspond to the total density of left [right] movers, inte-

grated over rapidity, which we denote %ν = ∫ dθρp,ν (θ;x, t) = 2πρp,ν (⋅;x, t), as the densities are
rapidity independent. Importantly, we will use ν = L,R explicitly, to avoid confusion with a dif-
ferent meaning of the ±. We can solve for the effective velocities as functionals of these quantities,

vR = 1 −
2%L

1 + %R + %L
(3.8.10a)

vR = −1 +
2%R

1 + %R + %L
, (3.8.10b)

and the corresponding hydrodynamic equations without perturbations are

∂t%ν + ∂x [vν%ν] = 0 , (3.8.11)

for ν = L,R.
However, a superior notation is afforded by defining hydrodynamic charges via a rotation of

the quantities %ν :
q± = %R ± %L , (3.8.12)

in terms of which the GHD equations are

∂tq+ + ∂xj+ = 0 (3.8.13)

∂tq− + ∂xj− = 0 , (3.8.14)

where

j+ = q− , j− =
q2
− + q+
1 + q+

, (3.8.15)

in this GGE, as can be seen by expressing vν in terms of q±,

vR = q− + 1

q+ + 1
, vL =

q− − 1

q+ + 1
. (3.8.16)
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The ability to express currents directly in terms of charges without approximation does not appear
to extend to other interacting integrable models, and depends crucially on the fact that in this
GGE none of the relevant quantities depend on rapidity.

Inserting these definitions for the currents, we obtain two coupled GHD equations in terms of
q± only:

0 = ∂tq+ + ∂xq− (3.8.17)

0 = ∂tq− +
2q−
q+ + 1

∂xq− +
1 − q2

−

(q+ + 1)2∂xq+ , (3.8.18)

and the latter expression can be re-written in terms of the bare velocities,

0 = ∂tq− + (vR + vL)∂xq− − vRvL∂xq+ . (3.8.19)

3.8.3 Ballistic hydrodynamics

Taking an extra time derivative of Eq. (4.5.9) and Eq. (4.5.10), one can insert the latter into the
former, i.e.

∂2
t q+ = −∂x∂tq− , (3.8.20)

where the righthand side is equal to a spatial derivative of the other terms in Eq. (4.5.10). By
reinserting Eq. (4.5.9), we can replace all spatial derivatives of q− with time derivatives of q+, the
result is:

(∂2
t + (vL + vR)∂x∂t + vLvR∂2

x) q+ =
(vR − vL) (∂tq+ + vL∂xq+) (∂tq+ + vR∂xq+) , (3.8.21)

and noting that
(∂t + vν̄∂x) vν = 0 (3.8.22)

is equivalent to Eq. (4.5.10) for Γ = 0, we can rewrite the lefthand side of Eq. (4.5.13) as
(∂t + vR∂x) (∂t + vL∂x) q+, in which case both the left and right sides of Eq. (4.5.13) are zero if
either

(∂t + vν∂x) q+ = 0 , (3.8.23)

for either choice ν = L,R, demonstrating that q+ is exactly ballistic.
Choosing a solution for q+ corresponding to the same ν as in Eq. (4.5.16), one can then rewrite

Eq. (4.5.10) as

0 = ∂tq− + (vR + vL)∂xq− − vRvL∂xq+ (3.8.24)

0 = ∂tq− − vR∂tq+ − vL∂tq+ + vν̄∂tq+ (3.8.25)

0 = ∂tq− − vν∂tq+ (3.8.26)

0 = ∂tq− + vν∂xq− , (3.8.27)

which shows that q− satisfies the same equation as q+ and propagates ballistically with the same
velocity. This means that the sum and difference of q±, i.e. %L,R, also propagate ballistically, e.g.
with their corresponding velocity, vL,R,

(∂t + vL,R∂x)%ν=L,R = 0 , (3.8.28)
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and it seems that these modes can propagate with the velocity of the other mover.
We can also express the individual charges %ν in terms of the Fermi factors and show that the

latter propagate ballistically, as one expects in general integrable models. The occupation factor
is defined by

nν (k) =
ρp,ν (k)
ρs,ν (k)

= %ν/2π
(1 + %ν̄ − %ν) /2π

= %ν
1 + %ν̄ − %ν

= nν , (3.8.29)

and with some simple iterations one can recover

%ν =
nν (1 + 2nν̄)
1 + nν + nν̄

, (3.8.30)

and one can insert this into any of the relations for the charges to find the exact relation

(∂t + vν∂x)nν (x, t) = 0 , (3.8.31)

which agrees with the general result for hydrodynamics of integrable models: they are diagonalized
by the occupation factor.

Note that in certain ensembles, it may be more complicated to demonstrate certain results for
the charges, though the occupation factor results should always hold. In fully general scenarios,
it may be possible to see diffusion of q−, e.g., at the level of Navier-Stokes hydrodynamics. How-
ever, one should always find that q+ propagates ballistically—as long as it is conserved—as it has
the special property that its current, j+ = q−, is itself a conserved charge. Thus, the hydrody-
namic equations, e.g. Eq. (4.5.9), for q+ do not receive corrections at the level of Navier-Stokes
hydrodynamics, compared to the Euler equations provided above.

3.9 Summary and Outlook

In summary, we present and solve exactly a Floquet model that is the first of its kind in a number
of respects. It is the first example of an interacting integrable Floquet model that is neither
smoothly deformable to Hamiltonian dynamics [38] nor classically simulable (FFA). Our solution
of the dispersing model has provided insight into the physics of FFA, which prior to this work
was not confirmed to be integrable in the Yang-Baxter sense; the dispersing model regularizes
several pathological features of FFA. Our model nonetheless preserves the chiral quasiparticle
excitations of FFA, which realize topological Thouless pumping. Despite the complicated nature of
the Hamiltonian terms, the resulting Bethe equations, Eq. (3.5.3), and TBA equations, Eq. (3.7.26),
are the simplest of any interacting integrable model as far as we are. This model shows the
existence of interacting Floquet models with stable chiral quasiparticles, and suggests a route to
finding others, building on integrable cellular automata [120,124,150,151].

Finally, we briefly discuss the experimental implications of this work. The FFA model itself
is simple to implement on extant “noisy intermediate-scale quantum computers” [152] based on
ion traps, cold atoms, or superconducting qubits, since the CNOT and Toffoli gates are basic,
well-developed gates. The Hamiltonian, given by Eq. (3.2.5), is more challenging, although a
Trotterized version that preserves integrability can be implemented on small gate-based quantum
simulators; transport, operator growth [153], and even level statistics [154] have been measured in
this setting. There might also be simpler-to-realize deformations of FFA that retain integrability
(e.g., models that only contain the doublon hopping term). Exploring such deformations is an
interesting topic for future work.
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Chapter 4

Quantum Thermalization from
Integrability Breaking

Parts of this Chapter are drawn from Ref. 155 by this author.

4.1 Introduction

In one dimension, many paradigmatic models of quantum many-body physics—such as the Hub-
bard, Heisenberg, and Lieb-Liniger models—are integrable. These models approximately describe
a variety of experiments, in contexts ranging from quasi-one-dimensional materials to ultracold
atomic gases. Thus, approximate integrability is of wide experimental relevance. In nearly
integrable systems, the short-time dynamics are integrable, feature infinitely many conserva-
tion laws, and are described by the recently developed framework of generalized hydrodynam-
ics (GHD) outlined in Ch. 2; at long enough times, however, the dynamics are chaotic, feature
a finite set of conservation laws, and are presumably described by conventional hydrodynam-
ics [54–56,58–60,148,156].

In addition, while a number of properties of integrable systems are not generic to thermal
systems, other properties may well be. Other aspects of thermal systems may be recovered by
perturbing about fine-tuned integrable Hamiltonians (or Floquet unitaries), which explicitly break
the extensive set of conserved quantities to a mere handful, and remove other pathological features
of integrable models. When such perturbations are sufficiently weak to admit perturbative treat-
ment, they can be regarded as introducing a finite lifetime to the absolutely stable quasiparticles
of integrable models. The existence of such quasiparticle solutions of the unperturbed integrable
model—which may include nonperturbative interactions—provides a useful platform from which
to investigate thermalization.

Many early studies of thermal systems relied upon integrable models and their exact solutions
to gain insight into more general systems [19, 157]. For example, in Ref. 19, numerous aspects
of thermal systems, including spectral properties, are confirmed via consideration of generalized
Gibbs ensembles, and has been extended since [158]. Additionally, using integrability, one can
show analytically how the ideal conductivity of metals arises from microscopics [135]. Finally, as
previously mentioned, various systems—including truly integrable and nearly integrable models—
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that are relevant to experiments have been studied using integrability as a starting point, e.g. the
quantum Newton’s cradle [146,159].

4.2 Entanglement Dynamics

The fact that integrable models have well-defined quasiparticle solutions lends itself to an intuitive
picture of the dynamical spread of entanglement following a global quantum quench [34,160–163].
Importantly, the quasiparticle modes that delimit the eigenstates of integrable models behave like
free particles, albeit with complicated quantization conditions owing to the fact that they secretly
encode interactions. However, for all intents and purposes, these particles are perfectly stable,
parametrized by a “rapidity” label related to the momentum—each of which can be at most singly
occupied—and the set of occupations delimits a “microstate.” In the thermodynamic limit, the
quantization relaxes as the allowed rapidities are continuous; the system is then described by a
“macrostate,” specified by the roots of the Bethe equations that arise from the thermodynamic
Bethe Ansatz (TBA). These roots correspond to the densities of quasiparticles and “holes” in
rapidity space, denoted ρp and ρh, respectively. Associated to the macrostate is an entropy of
configuration, corresponding to the number of equivalent microstates (i.e. microscopic eigenstates),
quantified by the Yang-Yang entropy, which is analogous to thermodynamic entropy for integrable
models.

We then consider a global quantum quench of an integrable system, in which the entire system is
prepared in some states at time t = 0 that is not an eigenstate of the evolution. For standard thermal
systems, although the global system never reaches a steady state that is in any way independent
of the t = 0 state, local subsystems can do so. Unlike standard thermal systems, integrable models
possess an extensive set of local (and quasilocal) conserved quantities, which prevents this from
happening even locally, as explained in Ch. 2 and Sec. 2.5 in particular. However, integrable
models can be described by statistical ensembles, as detailed in Sec. 2.5, though they will not have
several properties of thermal ensembles.

Consider now the generalized microcanonical ensemble outlined in Sec. 2.5, and consider en-
sembles that do not exactly fix the values of all conserved quantities, but rather insist that they
be within some threshold of their expectation value at t = 0. Essentially, this amounts to relaxing
the usual δ function associated to the microcanonical partition function to a distribution of small
but finite width. In this case, if we consider the eigenstates within this microcanonical window,
in the thermodynamic limit, these eigenstates give rise to a single macrostate, ∣ρp, ρh⟩, due to the
nature of the TBA formalism1. If one is able to extract from the state at t = 0 the appropriate
expectation values of all conserved quantities (which generally can be expressed in terms of ρp, as
noted in Sec. 2.6), then one can recover the macrostate ∣ρp, ρh⟩ and calculate all local properties
of the steady state—given by ∣ρp⟩—at all times following the quench. It is from this picture that
generalized hydrodynamics (GHD) emerges.

The same semiclassical picture that gives rise to GHD also admits a picture of the spreading
of entanglement. We assume the initial state at t = 0 is a product state in the real space basis,
and therefore unentangled, with S = 0. In particular, we note that the thermodynamic entropy of
a given subsystem, A, at very late times must be equal to the entanglement entropy accumulated
dynamically during that time [34,160,162]. The quantitative results for the spread of entanglement
entropy in integrable models was sketched in Ref. 160, and has been established quite rigorously

1This assumes a particular notion of the generalized microcanonical ensemble and the “window,” which is
intertwined with the thermodynamic Bethe Ansatz itself and well formulated in the literature.

86



by subsequent works, e.g. Refs. 162 and 34. That argument is based on “light cone spreading
of entanglement” by quasiparticles created by the quench; the original work relied heavily on
conformal field theory [160], with later works showing that this picture is, in fact, quite generic to
integrable models.

t

t

2 v(p) t > LA

2 v(p) t < LA

LA

AB B

A BB

Figure 4.1: A sketch of the semiclassical pictures used in Ref. 160. The figure depicts the semi-
classical propagation of quasiparticles created in pairs following a global quench in an integrable
system. The entanglement entropy between two regions, A and B, at time t > 0 is related to
the number of quasiparticles pairs created at t = 0 where one of the quasiparticles ended up in
A and the other in B. The entanglement entropy grows linear until it saturates Vol (A) = LA, in
agreement with results for thermal systems.

Restricting to the standard case of Hamiltonian systems, a generic quench deposits an extensive
amount of energy into the system relative its ground state (or steady state). The only means by
which the system can relax to a steady state is for this excess of energy to create quasiparticle
pairs. From a different point of view, the action of the Hamiltonian on generic states that are not
eigenstates will necessarily involve the creation of quasiparticle pairs above some TBA macrostate.
For initial states that are not terribly inhomogeneous, in general, quasiparticle pairs will be created
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fairly uniformly throughout the system [160], and the key feature is that only quasiparticles created
at the same point (or within some relevant distance of one another) are entangled. Therefore, at
late times, t > 0, the entanglement between regions A and B is given precisely by the number of
quasiparticles currently in B for which their counterpart, created by the quench, is in A. Thus, for
a given entanglement cut at some time, t, one recovers the entanglement entropy by retracing the
semiclassical quasiparticle trajectories to t = 0, as depicted in Fig. 4.1

Since the particles propagate semiclassically, it is possible to trace them back to their starting
point at time t = 0. In particular, the points x and y can only be entangled at time t > 0 if a left-
moving quasiparticle arriving at x is entangled with a right-moving particle arriving at y, both at
time t, which can only happen if x±v(p)t ∼ y∓v(p)t, where p is the quasiparticle momentum, which
relates directly to the rapidity. In practice, we will be interested in the entanglement between two
regions, and therefore an exact equality will not be necessary. Assuming that particles pairs with
momenta p,−p are created with some probability f(p), this leads to the simple formula

SA∣B (t) ≈ ∫
xa∈A

dxa∫
x
b
∈B
dxb∫

x0∈S
dx0 ∫ dpf (p) δ (xa − x0 − v (p) t) δ (xb − x0 + v (p) t)

(4.2.1)

∝ t ∫ dpf (p) 2v (p) Θ (LA − 2v (p) t) +LA ∫ dpf (p) Θ (2v (p) t −LA) , (4.2.2)

where f(p) depends on the quench protocol, the velocities are determined from TBA, and we
have taken LA < LB as usual. Note that this requires taking the limit LA, t →∞ with their ratio
fixed. These limits are taken after taking the full length of the system, L, to be infinite. The
first term above shows the linear growth of entanglement in time, which is precisely waht one
expects for standard thermal systems; the second terms captures the saturation to a final value
that scales linearly in the volume of A, also as expected for thermal systems. This formalism is
exact for noninteracting integrable models, and has been refined and extended in numerous ways,
but retains the same overall structure and leads to the same qualitative results [34, 161,162].

4.3 Hydrodynamics of Thermal Systems

In GHD, transport is generically ballistic—with some quantities exhibiting diffusive broadening
depending on the generalized Gibbs ensemble (GGE) of choice—although there are various limits
featuring more exotic behavior; in conventional hydrodynamics, one expects conserved quantities
to diffuse, unless the system possesses Galilean invariance. The timescales governing this crossover
from ballistic to diffusive hydrodynamics have recently been explored both experimentally and
numerically, and have been shown to match a Fermi golden rule (FGR) prediction, with matrix
elements that are evaluated numerically via exact diagonalization on small systems. However, ex-
cept in noninteracting and weakly interacting models, the nature of relaxation, and the coefficients
governing the long-time hydrodynamics, have not been computed. The existing perturbative re-
sults do not apply to many of the experimentally relevant settings, such as the Heisenberg and
Hubbard models, which are, in general, strongly interacting integrable systems.

Here, we develop a framework for computing relaxation and diffusion in nearly integrable
systems, building on the formalism of GHD. A central result is a compact formula for the diffusion
constant in nearly integrable systems with one (or a few) residual conservation laws. The specifics
of the integrability-breaking mechanism enter this formula through a set of microscopic rates that
govern the decay of the approximately conserved quantities. In general, these rates depend on the
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microscopic mechanism of integrability-breaking. However, for integrability-breaking perturbations
that are spatially slowly varying (e.g., smooth potentials and long-range interactions), these rates
can themselves be expressed in terms of GHD data; in these cases the diffusion constant can be
fully expressed in terms of GHD data. Having introduced these general results, we apply them to
some specific systems in which the physics is particularly transparent, and finally comment on the
case in which the integrable dynamics is itself nontrivial.

4.3.1 Hydrodynamic equations

The quasi-particle picture of GHD consists of an equation for the density, ρp (θ;x, t), which is
related to roots of the TBA equations for an integrable system divvied up into fluid cells, but with
some caveats. We use the notation of the GHD literature for comparison, but this should not be
construed as an endorsement. The density equation is

∂tρp (θ;x, t) + ∂x [veff
θ ρp] (θ;x, t) = Γ [θ;ρp (θ;x, t)] , (4.3.1)

where θ is a “rapidity.” In the integrable case, Γ = 0.
It will be convenient to use the “dressing” operator, defined by

gdr (θ) = [(1 − T̂ N̂ )
−1
g] (θ) , (4.3.2)

where N̂ denotes multiplication by the Fermi [occupation] factor, n(θ) = ρp (θ) /ρs (θ), where

ρs (θ) is the total density of states, which also derives from TBA; K̂ denotes convolution with the
differential scattering kernel, i.e.,

[N̂ g] (θ) = ∫ dφδ (θ − φ) n (φ) g (φ) (4.3.3)

[K̂ g] (θ) = ∫ dφ
ϕ (θ, φ)

2π
g (φ) , (4.3.4)

where ϕ (θ, φ) = −i∂θS (θ, φ)2. For many models of interest, we generally have

ϕ(θ, φ) = ϕ(φ, θ) = ϕ(θ − φ) . (4.3.5)

We also define a pseudo-dressing operator

D̂ = 1

ρs (θ)
(1 − N̂ K̂) . (4.3.6)

Using these relations, Eq. (4.3.1) can be written

∂tρp (θ;x, t) + [Â ∂xρp] (θ;x, t) = Γ [θ;ρp (θ;x, t)] , (4.3.7)

where
Â = D̂−1 veff D̂ . (4.3.8)

The lefthand side of Eq. (4.3.1) is diagonalized by mapping to the Fermi factor, n (θ;x, t):
∂tn (θ;x, t) + veff (θ;x, t)∂xn (θ;x, t) = D̂Γ [θ, n] , (4.3.9)

where veff depends on x, t solely through its dependence on n:

veff (θ;x, t) = (ε′)dr

(p′)dr
, (4.3.10)

where p(θ) and ε(θ) are, respectively, the rapidity-dependent momentum and energy3; for Galilean

2For multi-species models, there are subtleties related to transpose, etc., but these seem to work out.
3These are independent of x and t and follow from Bethe Ansatz.
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invariant models, p = mθ, ε = mθ2/2. In this sense, the effective velocity is a function of θ and a
functional of n.

Note that Eq. (4.3.1) and Eq. (4.3.9) are quasilinear expressions. While there are few techniques
for nonlinear equations, one of them—the method of characteristics—applies to such equations.
Even for Γ = 0, this does not seem to work for Eq. (4.3.1) or Eq. (4.3.7), only for n, i.e., Eq. (4.3.9).
Particular forms of Γ admit such a solution for Eq. (4.3.1), and one such example will be considered
in Sec. 4.3.3: one finds exact ballistic propagation in the integrable case; for the simple case
Γ→ n (θ;x, t) /τ (θ)—which manifestly breaks all conserved quantities—we find a similar solution
with an overall exponential damping.

By integrating the equations for ρp (θ) over θ, weighted by appropriate functions, hn(θ), one
obtains equations involving the conserved charges, qn. There is a direct correspondence between
the space of these objects, the space of densities ρp (θ;x, t), and the space of occupation factors,
n. The average charges and currents are respectively defined by

qn (x, t) ≡ ∫ dθ hn (θ) ρp (θ;x, t) (4.3.11a)

jn (x, t) ≡ ∫ dθ hn (θ) veff [θ;x, t] ρp (θ;x, t) . (4.3.11b)

The definitions in Eq. (4.3.11) are valid for any integrable model on the Euler scale, including
those with multiple quasiparticle species.

4.3.2 Integrability breaking term

For systems in which the integrability-breaking perturbation term is much smaller in magnitude
than the couplings corresponding to the underlying integrable theory, the former can be treated
perturbatively, and the formalism of generalized hydrodynamics can still be used. In general,
details of the integrability-breaking term should be accounted for in the GGE used to compute
various quantities in the thermodynamic and hydrodynamic picture, since these quantities will
determine the steady state to which the system relaxes at late time, e.g. in the linear response
regime. The integrability-breaking term on the righthand side of Eq. (4.3.1) can be recovered using
the standard Fermi golden rule calculation for the rate that appears in collision integrals in kinetic
theory [54–56,59,60].

For interacting integrable systems, the quasiparticle solutions are essentially free, as the Hamil-
tonian (or Floquet unitary) can be expressed purely in terms of the occupations of these quasipar-
ticle modes and their corresponding dispersion. However, the quasiparticles do scatter elastically
with one another under unitary evolution of a typical state (i.e., a state that is not an eigenstate)
and in the hydrodynamic picture. However, this scattering is accounted for entirely by using the
dressed velocity, defined in Eq. (4.3.10). Therefore, there is no need for a collision integral in the
GHD equations, and any scattering events must be induced by terms that break integrability.

Thus, the integrability-breaking term is directly analogous to impurity scatterers and other
physics that appear in the standard Boltzmann equation for thermal systems. This term, which
we denote Γ, will be a function of rapidity, and a functional of the quasiparticle density, ρp, and will
derive from matrix elements in the same way that decay rates are derived from FGR. An important
point is that, for certain reasonable integrability-breaking perturbations—e.g., certain power-law
two-body interactions in the interacting Bose gas and general continuous spatial potentials coupled
to the density—the corresponding matrix elements for the FGR terms, and thus the function
Γ, can be evaluated using GHD. This is because, in contrast to standard hydrodynamics, which
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provides equations for one-point functions, the GHD formalism actually provides information about
certain types of n-point functions, and in particular, those corresponding to correlations among the
integrable model’s charges and currents. Hence, perturbations that are related directly to charges,
currents, or two-point operators involving these objects, are likely possible to evaluate using GHD.

For more general terms, these can be recovered perturbatively to low order using form fac-
tor expansions, which evaluate the matrix elements of generic processes that create particle-hole
pairs over a given TBA macrostate. For concreteness, consider a system of interacting particles
with a conserved density q(x), i.e. ∫ dθρp (θ;x, t) (e.g., the z component of magnetization in the
XXZ model or the particle density in the Lieb-Liniger model). Now we consider integrability
breaking due to a long-range density-density interaction of the form V (x−y)q(x)q(y). Long-range
interactions are well-suited to hydrodynamic treatment because they involve small momentum
transfer: hydrodynamics only applies to systems that can be understood by truncating to at most
two spatiotemporal derivatives, and thus must be well-described by truncation to second order in
momentum. However, we must also restrict to interactions that fall off sufficiently rapidly (i.e.
faster than ∣x − y∣−2

) that the small-k limit of the Fourier transform V (k) is well-defined. An
ideal situation would be, e.g., two weakly coupled integrable “tubes,” separated by a distance d
that is large compared to microscopic length scales. In that case, one can partition the system
into hydrodynamic cells of size ≳ d, yielding local GHD at long distances, but also restricting the
integrability-breaking collisions to small momentum transfer.

In this case, one uses the form factor expansion of arbitrary operators given in Ref. 60. This
expansion is presented in detail in that reference, and will not be reproduced here. For certain
operators outlined above, this expansion is exact and can be computed purely in terms of GHD
data and the GGE in question. For more general perturbations, one should perform an expansion
in terms of processes that create particle-hole pairs, and those that create two particle-hole pairs.
In general, one can regard processes that necessarily involve higher order processes as beyond
the scope of perturbation theory [60]. However, for higher-order operators that can be expressed
directly in terms of the charges and currents, this may be possible using various results for n-point
functions [56, 59, 59, 60, 156, 164]. Thus, it is generally quite feasible to evaluate the Fermi golden
rule term to leading and even subleading order in perturbation theory.

4.3.3 Simple case: Fully broken integrability

The hydrodynamic equation in terms of the Fermi factor, i.e. Eq. (4.3.9), can be solved exactly
via characteristics in a simplified case, where we have only a diagonal term from the Fermi golden
rule. We start with the demand that

n (θ;x, t) = ∫ dφ∫ dyK [θ, x, t;φ, y,0] n0 (φ; y) , (4.3.12)

where the initial condition at t = 0, n (θ;x, t) = n0 (θ;x), which implies

K [θ, x,0;φ, y,0] = δ (x − y) δ (θ − φ) . (4.3.13)

The occupation factor equation, Eq. (4.3.9), in the limit Γ→ 0 becomes

0 = { 1

τ (θ)
+ ∂t + veff [θ, n]∂x}n (θ;x, t) , (4.3.14)

which is solved by

0 = { 1

τ (θ)
+ ∂t + veff [θ, n]∂x} [θ, x, t;φ, y,0] . (4.3.15)
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We define some function Xθ(t) such that

dXθ

dt
= veff[θ, ñ] , (4.3.16)

where the velocity is allowed to depend on the solution ñ (θ; t) ≡ n (θ;Xθ(t), t), and therefore the
kernel/propagator K.

We make an Ansatz for the propagator, U [θ, t;φ, y] ≡ K [θ,Xθ(t), t;φ, y], where x → Xθ(t).
Since X satisfies Eq. (4.3.16), the righthand side of Eq. (4.3.15) contains the diagonal τ term
along with a total derivative of U with respect to t, i.e. d/dt = ∂t + veff [θ, n]∂x, and Eq. (4.3.15) is
solved if

− U
τ
= dU
dt

, (4.3.17)

which combined with Eq. (4.3.16), turn the PDE, Eq. (4.3.15), into two coupled ODEs, if we think
of the arguments θ, φ, y of U as labels. Unlike PDEs, nonlinear ODEs are often soluble, in this
case, it’s unimportant because the hard ODE, Eq. (4.3.17), is actually linear; it is solved if U by

U [θ, t;φ, y] = e−t/τ(θ)U [θ,0;φ, y] , (4.3.18)

where the time zero version is given by

U ∣t=0 = lim
t→0
K [θ,Xθ(t), t;φ, y] = δ (θ − φ) δ (Xθ (0) − y) , (4.3.19)

and now, to return to the full solution, we must express Xθ (0) in terms of x↔Xθ(t) and t itself.
This is a bit more difficult than the integrable case treated in Ch. 2, where, instead, we have

ñeasy (θ; t) = e−t/τ(θ) n0 (θ;Xθ(0)) , (4.3.20)

which, in contrast to the integrable case, depends on t. However, the righthand side is independent
of X(t), allowing for the formal integration of both sides of Eq. (4.3.16) from 0 to t, leading to

Xθ (t) −Xθ (0) =
t

∫
0

dt′ veff[θ, ñeasy (⋅; t′)] , (4.3.21)

which still allows for the replacement of Xθ (0) with expressions involving t and x↔Xθ (t). Finally,
we have

neasy (θ;x, t) = e−t/τ(θ)n0 (θ;x −Xθ (t)) , (4.3.22)

which is a bit more convoluted, but shows that one clearly recovers decay of n.
Note that this diagonal form corresponds to

D̂Γ [θ, n] = n(θ;x, t)
τ(θ)

, (4.3.23)

in Eq. (4.3.9). Such a term is present for a reasonable form of Γ—e.g. corresponding to a pertur-
bation that preserves only particle number of the form used in Sec. 4.6—and without linearization.
However, this term by itself breaks all conservation laws, and so one expects all of the charges to
decay. This seems to be consistent with Eq. (4.3.22). Any diffusion due to this simple form of Γ
will be subleading to the overall decay.
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4.3.4 Linearized hydrodynamics of quasiparticles

Since the full, nonlinear hydrodynamics, given by Eq. (4.3.9), are generally not tractable, we work
in the “linear response” regime. Essentially, we regard the solution for the Fermi factor, e.g., as
taking the form

n (θ;x, t)→ n (θ) + δn (θ;x, t) , (4.3.24)

where the first term gives the “background,” which does not vary locally and relates to the TBA
steady-state values. The second term is the response of the system to the perturbation and local
variations, truncated to linear order in δ. We define the analogous quantities:

ρp (θ;x, t)→ ρp (θ) + δρp (θ;x, t) (4.3.25)

ρs (θ;x, t)→ ρs (θ) + δρs (θ;x, t) , (4.3.26)

where the second term in each will be considered small, and the limit δ → 0 can be taken to recover
various relations: one can think of δ as a parameter that can be tuned to zero to obtain trivial
solutions, though we also use δn to refer to the varying part.

To wit, taking δ → 0 in Eq. (4.3.1) and Eq. (4.3.9) gives the long-time “background” solution(s),
i.e. the respective conditions

0 = λΓ [ρp (θ) ; θ] (4.3.27a)

0 = λ

ρs (θ)
(1 − n (θ) K̂)Γ [n (⋅) ; ⋅] , (4.3.27b)

where the functional dependence of Γ on the first argument is different in the two lines above,
and ⋅ is a placeholder for a θ-type parameter, to be convolved. The first relation, Eq. (4.3.27a),
suggests that the nonvarying part of Γ ought to be zero (in the TBA steady state), and renders
the latter redundant.

We have another condition from the fact that the microscopic integrability-breaking terms
preserve the total number of particles (by assumption):

0 = ∫ dθΓ [n (θ;x, t) ; θ] = ∫ dθΓ [n (θ) ; θ] , (4.3.28)

which is trivially satisfied as δ → 0, since the integrand is null in this case.
Note that ρp and ρs are related to the background occupation factor, n by the usual relations,

ρs (θ) =
1

2π
(1 − K̂n)

−1
(dp
dθ

) , (4.3.29)

and from this,
ρp (θ) = n (θ)ρs (θ) . (4.3.30)

As it happens, we will have no need for the quantity δρs (θ;x, t). However, the nontrivial part
of the quasiparticle density, δρp (θ;x, t), can be recovered from the relation

2πρs (θ) =
dp

dθ
+ 2πK̂N̂ρs , (4.3.31)

by multiplying from the left by n (θ), which recovers

δρp (θ;x, t) = (1 − n (θ) K̂)
−1
ρs (θ) δn (θ;x, t) . (4.3.32)
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We now linearize the righthand side of Eq. (4.3.9), by taking a Taylor series with respect to
the occupation factor, and retaining only O (δ) terms. In particular, we note straightaway that
differentiation of ρs (θ) will result in a term that goes like −1/ρs (θ) times the original righthand side
of Eq. (4.3.1) evaluated at δ = 0, which is zero by Eq. (4.3.27b). Hence, we can replace the ρs (θ)
denominator with its average, ρs (θ). There is also a factor of n (θ) encoded by N̂ ; because Γ = 0,
when we take the δ = 0 limit of the equation for ρp (θ;x, t), Eq. (4.3.1), as seen in Eq. (4.3.27a),
this term vanishes as well.

Hence, we need only expand Γ itself in terms of the occupation factors, and Eq. (4.3.9) becomes

∂tδn + veff
θ ∂xδn =

λ

ρs (θ)
(1 − n (θ) K̂)∫ dβ

δΓ

δn (β)
δn (β) (4.3.33)

= λ

ρs (θ)
∫ dαdβ (δ (α − θ) − n (θ)ϕ (θ,α)) δΓ [n (α) ;α]

δn (β)
δn (β)

(4.3.34)

∂tδn (θ;x, t) + veff
θ ∂xδn (θ;x, t) = λ∫ dβ γ (θ, β) δn (β;x, t) (4.3.35)

and the lefthand side is diagonal in every sense, but the righthand side remains to be diagonalized in
rapidity space. We can imagine doing perturbation theory in the off-diagonal terms of Eq. (4.3.35),
using the fact that the integrability-breaking perturbation terms Γ are small, as parametrized by
λ, which we can take to be strictly less than one if needed to ensure convergence, and invoking
hydrodynamics as required.

Starting from Eq. (4.3.35),

∂tδn (θ;x, t) + veff
θ ∂xδn (θ;x, t) = λ∫ dβ γ (θ, β) δn (β;x, t) , (4.3.35)

we assert a perturbative solution δn of the form

δn (θ;x, t) =
∞
∑
`=0

λ`δn
(`) (θ;x, t) , (4.3.36)

and then we evaluate Eq. (4.3.35) order-by-order in λ.
At order λ0, we have the “bare” equation

∂tδn
(0) (θ;x, t) + veff

θ ∂xδn
(0) (θ;x, t) = 0 , (4.3.37)

which has a straightforward solution in terms of the initial, t = 0, profile of the occupation factor.
Demanding for the full solution

δn (θ;x, t = 0) = η0 (θ;x) , (4.3.38)

where η is a known/given function (because η looks like n?), the solutions to Eq. (4.3.37) are given
by

δn
(0) (θ;x, t) = η(0)0 (θ;x − veff

θ t) , (4.3.39)

which is pretty easy, and we have included the notation η
(0)
0 to allow for the fully generic possibility

of λ-dependent initial condition(s).
From this, we can obtain all the corrections at higher order in λ by noting

∂tδn
(`) (θ;x, t) + veff

θ ∂xδn
(`) (θ;x, t) = ∫ dβ γ (θ, β) δn(`−1) (β;x, t) , (4.3.40)
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which has a solution of the form

δn
(`) (θ;x, t) = η(`)0 (θ;x − veff

θ t) +
x

∫
x−veff

θ
t

dy

veff
θ
∫ dβ γ (θ, β) δn(`−1) (β; y, t + y − x

veff
θ

) , (4.3.41)

where there is a good chance we will absorb all of the initial condition into the ` = 0 term,
eliminating the first term above for all ` > 0.

We define the more complicated convolution operator Ĝ : f (θ;x, t) → g (θ;x, t) (i.e. this
operator acts on the spatial and temporal arguments, and not merely the rapidity), via

g (θ;x, t) = Ĝ f (θ;x, t) =
x

∫
x−veff

θ
t

dy

veff
θ
∫ dβ γ (θ, β) f (β; y, t + y − x

veff
θ

) , (4.3.42)

and we take η` (x) = 0 for ` > 0, and write the initial condition as δn (θ;x, t = 0) = η0 (θ;x). In this
case, the full solution for δn, given by Eq. (4.3.36), is

δn (θ;x, t) =
∞
∑
`=0

λ`Ĝ`η0 (θ;x − veff
θ t) (4.3.43)

= (1̂ − λĜ)
−1
η0 (θ;x − veff

θ t) , (4.3.44)

which looks nice, but a lot of ugliness is hidden in Ĝ. Of course, we always have the option to use
the series expansion, truncated to some order λ`, but this doesn’t seem to be helpful given that
convolution with γ is...convoluted and equally foreboding equations define other quantities—e.g.
the effective velocity—for generic models

Using Eq. (4.3.32), we can obtain the full answer for the quasi-particle density from the lin-
earized solution for the Fermi factor:

δρp (θ;x, t) = (1 − n (θ) K̂)
−1

(1̂ − λĜ)
−1
ρs (ϑ) η0 (ϑ;x − veff

ϑ t) , (4.3.45)

where ϑ is simply a dummy variable of the θ-type, and after all convolution has been taken care of
the righthand side should be a function of θ. We could also replace ρs (ϑ) η0 (ϑ;x) with the initial
condition for the varying part of the quasiparticle density, ρp (ϑ;x, t = 0), i.e. ρ0 (ϑ;x).

Note that this can be evaluated directly for initial conditions corresponding to any continuously
integrable function, including generic analytic functions, the Dirac δ function, and so on. Although
it is difficult to look at this form and see that it corresponds to diffusion of particles (which we
have taken to be preserved by Γ ≠ 0), this solution closely resembles the diffusive propagators that
recover from kinetic theory. As in that case, in the setting of broken integrability, the particles
propagate ballistically between collisions, which randomly scatter their propagation velocities to
new values; however, the principle difference, which complicates the overall form of the solution, is
the fact that dressing and undressing operators act on particle density (or propagator) in between
scattering events and ballistic propagation. Although this is likely tractable for a specific choice
of model and form of Γ, it is difficult to proceed in generality, and we therefore turn to the charge
and current formulation of GHD.

4.3.5 Soliton gas techniques

In addition to the solutions provided herein, largely in the linear response regime, another im-
portant feature of generalized hydrodynamic is that it is possible to simulate actual integrable
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systems numerically and at scale. This involves the use of classical soliton gases, outlined in
Ref. 164. Essentially, the insight is that the important physics of relaxation, scattering, and other
hydrodynamic features is well captured by viewing the quasiparticles of the quantum model as
classical solitons (i.e. hard rods), and imbuing them with the appropriate velocities, scattering
matrices, and other properties of the quantum model. The reasoning is the same that leads to
the semiclassical picture of kinetic theory in the first place. Hence, the theoretical predictions
presented herein are supplemented by the ability to simulate them precisely, e.g. for the sake of
comparison to experiment.

4.4 Diffusive Hydrodynamics of Conserved Charges from

Integrability Breaking

We generally have to linearize, as explained previously, but in the language of currents and charges,
we can recover exact diffusion—along with the diffusion constant—without further approximation.
We consider the case where the conservation of all but one of the charges {qn} is spoiled by the
integrability breaking term. Let us label the charge that remains conserved qn.

The general equation for the mth charge is

∂tqm + ∂xjm = Γm [{qj}] , (4.4.1)

where Γm is the integral over rapidity of the function hm(θ) times Γ [θ;ρp (⋅)] from the righthand
side of the quasiparticle density of equation. For m = n, the special charge, we have Γn = 0.
However, we want to write everything in terms of charges, and so we expand the above quantities
using functional derivatives:

∂tqm +∑
m′
Am,m′∂xqm′ =∑

m′
Γm,m′qm′ , (4.4.2)

where Am,m′ is the functional derivative of the current jm with respect to charge qm′ . Aussi, on a

Γm,m′ =
δΓm
δqm′

, (4.4.3)

analogously, and we will not make reference to single-indexed Γ again in this section.
Donc, avec quelques massages, on a pour la mième charge:

(∂t +Am,m∂x − Γm,m) qn = ∑
m′≠m

(Γm,m′ −Am,m′∂x) qm′ , (4.4.4)

et pour le cas particulier de m = n, on a

(∂t +An,n∂x) qn = − ∑
m≠n

An,m∂xqm , (4.4.5)

et on peut mettre la première équation, Eq. (4.4.4), en la deuxième, et on trouve

(∂t +An,n∂x) qn = − ∑
m≠n

An,m∂xqm

= − ∑
m≠n

An,m∂x (∂t +Am,m∂x − Γm,m)−1
∑
m′≠m

(Γm,m′ −Am,m′∂x) qm′ , (4.4.6)
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et on définit

[Γ̂]m,m′ = Γm,m′ = γmδm,m′ + (1 − δm,m′) Γ̃m,m′ (4.4.7)

[Â]m,m′ = Am,m′ = amδm,m′ + (1 − δm,m′) Ãm,m′ , (4.4.8)

and I’ll use this convention of twiddles for offdiagonal pieces and lowercase for diagonal pieces,
with

Γ̂ = Γ̃ + γ̂ (4.4.9)

Â = Ã + â , (4.4.10)

just as a reminder that we can define these things as matrices in the space of charge indices. We
will also use the operators

ĝ = (∂t + â∂x − γ̂)
−1

(4.4.11)

[ĝ]m,m′ = (∂t +Am,m∂x − Γm,m)−1
δm,n (4.4.12)

∆̃ = Γ̃ − Ã∂x (4.4.13)

[∆̃]m,n = (Γmn −Amn∂x) (1 − δm,n) , (4.4.14)

où—et Je l’écris en anglais parce que c’est important—all internal sums over m and n skip m,n = 0,
and only include this if explicitly evaluated at the 0 index. Otherwise, all the indices are fair game.
To avoid confusion, and ensure invertibility of various operators, we will use projectors Pn onto
the nth index (the special one), and P n onto all other states, with Pn + P n = 1̂. We now insert
these handy definitions into Eq. (4.4.6), et on a

(∂t +An,n∂x) qn = − [Ã ∂xP n ĝ ∆̃Pn]
n,n
qn −∑

m

[Ã ∂xP n ĝ ∆̃P n]
n,m

qm , (4.4.15)

and as an aside, many of these restrictions are enforced automatically (i.e. with the projectors lots
of twiddles matrices are equal to their regular forms). On a maintenant,

(∂t +An,n∂x) qn = − [Â ∂xP n ĝ ∆̃Pn ]
n,n
qn − [Â ∂xP n ĝ ∆̃P n ĝ ∆̃Pn ]

n,n
qn

− [Â ∂xP n ĝ ∆̃P n ĝ ∆̃P n ĝ ∆̃]
n,n
qn − . . . (4.4.16)

∂tqn +An,n∂xqn = − [Â ∂xP n

∞
∑
`=1

[ĝ ∆̃P n ]
`
]
n,n

qn (4.4.17)

∂tqn +An,n∂xqn = −
∞
∑
`=0

[Â ∂xP n [ĝ ∆̃P n ]
`
ĝ ∆̃Pn]

n,n

qn , (4.4.18)

which we can further simplify by being clever.
We note the following:

∆̃ = Γ̃ − Ã∂x = Γ̂ − γ̂ − Â∂x + â∂x (4.4.19)

= − (Â∂x − Γ̂) + â∂x − γ̂ = − (∂tÂ∂x − Γ̂) + ∂t + â∂x − γ̂ (4.4.20)

= −Ĝ−1 + ĝ−1 (4.4.21)

Ĝ = (∂tÂ∂x − Γ̂)
−1

, (4.4.22)
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from which we can see that

F̂ ≡
∞
∑
`=0

P n [ĝ ∆̃P n ]
`
=

∞
∑
`=0

P n [(1 − ĝĜ−1)P n ]
`
= P n

1

P n [1 − (1 − ĝĜ−1)]P n

P n , (4.4.23)

which includes redundant projectors. Since the inverse of Ĝ is only even defined in the projected
subspace, this becomes

F̂ = P n

1

ĝĜ−1
P n = P n [ĝĜ−1]

−1
P n = P n Ĝ ĝ

−1P n , (4.4.24)

which we insert into Eq. (4.4.18) to obtain

∂tqn +An,n∂xqn = −
∞
∑
`=0

[Â ∂xP n [ĝ ∆̃P n ]
`
ĝ ∆̃Pn]

n,n

qn

= − [Â ∂xP n Ĝ ĝ
−1 ĝ ∆̃Pn]

n,n
qn (4.4.25)

= − [Â ∂xP n Ĝ ∆̃Pn]
n,n
qn (4.4.26)

= − [Â ∂xP n (∂t + Â∂x − Γ̂)
−1
P n (Γ̃ − Ã∂x)Pn]

n,n
qn , (4.4.27)

and since the rightmost term is flanked by projectors onto different states, these terms are neces-
sarily off-diagonal, and we can replace the twiddled guys with the regular ones:

∂tqn +An,n∂xqn = − [Â ∂xP n (∂t + Â∂x − Γ̂)
−1
P n (Γ̂ − Â∂x)Pn]

n,n
qn , (4.4.28)

and now we factor out a Γ̂ of the inverse term, and expand it—fully legitimately—as a geometric
series, noting that the order of the operators is due to the fact that (AB)−1 = B−1A−1, and we can
write

(∂t + Â∂x − Γ̂)
−1
= − (1 − Γ̂−1∂t + Γ̂−1Â∂x)

−1
Γ̂−1 (4.4.29)

= −
∞
∑
`=0

(Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1 , (4.4.30)

which we insert into Eq. (4.4.28) to recover

∂tqn +An,n∂xqn =
∞
∑
`=0

[Â ∂xP n (Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1P n (Γ̂ − Â∂x)Pn]
n,n
qn , (4.4.31)

and regarding the Γ−1Γ (where the latter term is the first in the rightmost parenthetical), we note
that

P n [Γ̂−1P n Γ̂] Pn = P n [P n] Pn = 0 , (4.4.32)

which is to say that Γ−1 is only defined in the P n subspace, and therefore Γ−1 = Γ−1P n and

Γ−1Γ = P n and the above expression vanishes. Et voilà, l’équation complète (par Eq. (4.4.31)) est

∂tqn +An,n∂xqn = −
∞
∑
`=0

[Â ∂xP n (Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1P n Â∂xPn]
n,n
qn , (4.4.33)
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, and it is worth pointing out that any term with ` > 0 has more than two derivatives. To
hydrodynamic order, there are no time derivatives.

As a reminder, the only approximation made here was to linearize the equations for charge and
current, and relatedly, to decompose of the currents and Γm onto charges. In general, functional
differentiation allows this. However, such steps seem to be necessary simply to treat the diffusive
corrections that enter at the level of Navier-Stokes hydrodynamics, even in the fully integrable
case. To make Eq. (4.4.33) more aesthetically pleasing and physically informative, we expand
in spatiotemporal derivatives to second order. We can then use another recursion procedure to
eliminate time derivatives of qn on the righthand side in favor of higher-order terms by plugging the
lefthand side into the righthand side and repeating. As a reminder, such higher-order derivatives
strictly cannot be included at the level of hydrodynamics; indeed, if such terms are necessary, then
hydrodynamics does not apply at all.

At the level of hydrodynamics, the full expression is then

∂tqn +An,n∂xqn = − [Â ∂x Γ̂−1Â∂x ]n,n qn , (4.4.34)

where the overall minus sign is fine, since in general Γ ∼ −τ−1, where τ > 0, and there are implicit
projectors P n between Γ̂−1 and its friends. Note that if An,n = 0, the drift term goes away, and
if this quantity is nonzero we actually expect this term to be present, since somehow the current
of qn is proportional to a conserved charge, which is qn itself. There are particular scenarios in
which one might expect this to be the case; in more general scenarios, the GGE should dictate
that An,n = 0, producing ordinary diffusion as one would expect.

4.5 Hydrodynamics in FFA

The FFA model is characterized by two species of chiral quasiparticle excitations, which we term left
and right movers. Note that we work here with the nondispersing variant of FFA in the interest of
simplicity. Most of this model’s conserved quantities are unimportant, save the respective numbers
of each movers. Throughout, we work in a GGE in which both movers’ densities are coupled to
the same chemical potential. In this ensemble, and without dispersion, the quasiparticle densities
and group velocities do not depend on rapidity (vgrp

R = 1, vgrp
L = −1).

The important conserved charges correspond to the total density of left [right] movers, inte-
grated over rapidity, which we denote qν (x, t) = ∫ dθρp,ν (θ;x, t) = 2πρp,ν (⋅;x, t), as the densities
are rapidity independent. As for Galilean models, when integrability is preserved, the total number
of particles ∫ dxqν (x, t) = Nν is time independent.

We can solve for the velocities as functionals of these quantities,

vR = 1 −
2qL

1 + qR + qL
(4.5.1a)

vR = −1 +
2qR

1 + qR + qL
, (4.5.1b)

and the corresponding hydrodynamic equations without perturbations are

∂tqν + ∂x [vνqν] = 0 , (4.5.2)

for ν = L,R.
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4.5.1 Integrability breaking

We will be interested in terms that preserve the total number of movers, qR + qL, but do not
conserve qν individually, i.e.

∂tqν + ∂x [vνqν] = Γ [qν , qν] (qν − qν) , (4.5.3)

for arbitrary functional Γ. We will find it more convenient to work with the quantities

q± = qR ± qL , (4.5.4)

in terms of which the GHD equations are

∂tq+ + ∂xj+ = 0 (4.5.5)

∂tq− + ∂xj− = −2Γ [q+, q−] q− , (4.5.6)

where

j+ = q− , j− =
q2
− + q+
1 + q+

, (4.5.7)

in this GGE, as can be seen by expressing vν in terms of q±,

vR = q− + 1

q+ + 1
, vL =

q− − 1

q+ + 1
. (4.5.8)

The ability to express currents directly in terms of charges does not extend to other interacting
integrable models as far as we are aware, and depends crucially on the fact that in this GGE none
of the relevant quantities depend on rapidity.

Inserting these definitions for the currents, we obtain two coupled GHD equations in terms of
q± only:

∂tq+ + ∂xq− = 0 (4.5.9)

∂tq− +
2q−
q+ + 1

∂xq− +
1 − q2

−

(q+ + 1)2∂xq+ = −2Γ [q+, q−] q− , (4.5.10)

and the latter expression can be re-written in terms of the bare velocities,

∂tq− + (vR + vL)∂xq− − vRvL∂xq+ = −2 Γ q− . (4.5.11)

Note that we do not consider breaking of N+ (and conservation of N−) as this case has numerous
pathological features, for example that the current j− depends on q−, and will therefore exhibit
biased diffusion. Additionally, it is difficult to imagine perturbations that break the conservation
of total charge but preserve relative charge that do not eventually see the system relax to N+ = 0,
in which case N− = 0 as well. Hence, we restrict only to breaking of N− in the remainder.

4.5.2 Reminder: Integrable case

Note that in the integrable case, Γ = 0, one expects exact ballistic transport of q+ because its
corresponding current is the conserved charge q−, as can be seen in terms of the Fermi factor.
Additionally, taking an extra time derivative of Eq. (4.5.9) and Eq. (4.5.10), one can insert the
latter into the former, i.e.

∂2
t q+ = −∂x∂tq− , (4.5.12)
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where the righthand side is equal to a spatial derivative of the other terms in Eq. (4.5.10). By
reinserting Eq. (4.5.9), we can replace all spatial derivatives of q− with time derivatives of q+, the
result is:

(∂2
t + (vL + vR)∂x∂t + vLvR∂2

x) q+ =
(vR − vL) (∂tq+ + vL∂xq+) (∂tq+ + vR∂xq+) , (4.5.13)

and noting that
(∂t + vν∂x) vν = 0 (4.5.14)

is equivalent to Eq. (4.5.10) for Γ = 0, we can rewrite the lefthand side of Eq. (4.5.13) as

(∂t + vR∂x) (∂t + vL∂x) q+ , (4.5.15)

in which case both the left and right sides of Eq. (4.5.13) are zero if either

(∂t + vν∂x) q+ = 0 , (4.5.16)

for either choice ν = L,R, demonstrating that q+ is exactly ballistic.
Choosing a solution for q+ corresponding to the same ν as in Eq. (4.5.16), one can then rewrite

Eq. (4.5.10) for Γ = 0 as

∂tq− + (vR + vL)∂xq− − vRvL∂xq+ = 0 (4.5.17)

∂tq− − vR∂tq+ − vL∂tq+ + vν∂tq+ = 0 (4.5.18)

∂tq− − vν∂tq+ = 0 (4.5.19)

∂tq− + vν∂xq− = 0 , (4.5.20)

which proves that q− satisfies the same equation as q+ and is ballistic with the same velocity.

4.5.3 Recovering diffusion

We note straightaway that the linearized version of Eq. (4.5.10) with Γ ≠ 0 should correspond to
decay of q−. Linearizing that equation recovers precisely decay, with a “source” determined by q+,
which of course will, strictly speaking, depend on q−. We will be interested in the behavior of q+,
and to see this, we repeat the procedure of taking an extra time derivative that gives rise to exact
ballistic hydrodynamics in the integrable case. The result is a modification of Eq. (4.5.13),

(∂2
t + (vL + vR)∂x∂t + vLvR∂2

x + 2 Γ∂t) q+ =
(vR − vL) (∂tq+ + vL∂xq+) (∂tq+ + vR∂xq+)

+2q− (
∂ Γ

∂q+
∂xq+ −

∂ Γ

∂q−
∂tq+) , (4.5.21)

which is a bit more complicated.
However, at late times, we expect q− to have decayed substantially compared to other terms,

and also that the ∂2
t q+ term is small compared to 2 Γ∂tq+. Approximating q− → 0, referring to the

definitions of the velocities, we now write vR = v0, vL = −v0, where

v0 = (1 + q+)
−1

, (4.5.22)
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and at late times, Eq. (4.5.21) becomes

(2 Γ∂t − v2
0∂

2
x) q+ = 2v0 {(∂tq+)

2 − v2
0 (∂xq+)

2} , (4.5.23)

and if we ignore these nonlinear terms at late times, we get diffusion,

∂tq+ =D∂2
xq+ , (4.5.24)

where the diffusion “constant” is given by

D = v2
0

2Γ
= 1

2Γ (1 + q+)
2 , (4.5.25)

and a more careful treatment may be possible, e.g. writing the righthand side of Eq. (4.5.24) in
the form ∂xD [q+]∂xq+, corresponding to nonlinear diffusion.

Note that had we included a diffusive correction to the Euler equation for q−, Eq. (4.5.10), this
would result in a term of order ∂3

x in the final equation for q+, which would therefore be dropped as
such terms play no role at the level of hydrodynamics. Since q− decays to zero, it is not important
if it also diffuses while decaying.

Repeating the procedure more carefully, one has

∂2
t q+ = −∂t∂xq− = ∂x (−∂tq−) (4.5.26)

= ∂x [2Γq− +
2q−
q+ + 1

∂xq− +
1 − q2

−

(q+ + 1)2∂xq+] (4.5.27)

= −2Γ∂tq+ + 2q− [
∂ Γ

∂q+
∂xq+ −

∂ Γ

∂q−
∂tq+]

+ ∂x [
2q−
q+ + 1

∂xq−] + ∂x [
1 − q2

−

(q+ + 1)2∂xq+] , (4.5.28)

and now we drop ∂2
t q+ compared to 2Γ∂tq+ at late times, and writing

Γ̃ = Γ + q−
∂ Γ

∂q−
, (4.5.29)

and

ṽ = 2q−
∂ Γ

∂q−
, (4.5.30)

we have

2Γ̃∂tq+ − ṽ∂xq+ = ∂x [
2q−
q+ + 1

∂xq− +
1 − q2

−

(q+ + 1)2∂xq+] , (4.5.31)

which has the form of nonlinear diffusion with drift given by ṽ. At late times, ṽ → 0 and Γ̃→ Γ as
q− → 0. The second term on the righthand side has the exact form of nonlinear diffusion, the first
term results from the fact that the effective “diffusion constant” in general models will not be of
the form ∂xD [q⋅]∂xqν , but rather ∑ν ∂xDν,ν∂xqν .

Examining the term in Eq. (4.5.31) containing ∂xq−, we can expand this as 2 (1 + q+)
−1 (∂tq+)

2

plus terms proportional to q−, which therefore vanish on the same timescale that justified ignoring
∂2
t q+ at late times. Finally, we can justify ignoring (∂tq+)

2
for precisely the same reason as ∂2

t q+ at
late times, and justify ignoring this term, to recover Eq. (4.5.24) with nonlinear diffusion constant

D = 1 − q2
−

2 (Γ + q− ∂ Γ
∂q−

) (1 + q+)
2
, (4.5.32)

which reduces to Eq. (4.5.25) for Γt≫ 1.
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4.5.4 Linearized solution

Although it was possible to recover diffusion in FFA with only q+ conserved without recourse to
linear response using only a handful of approximations, it will be useful to examine the resulting
equations in the linear response regime for comparison. In particular, we can repeat the calculation
of Sec. 4.4 for the special case where the current of the conserved charge, j+ = q− is itself a conserved
charge, and there are no other charges present, corresponding to FFA. We also note that the
δ = 0 limit of the linear response equations seem to require that q− = 0, i.e. at late times, the
relative charge decays to zero in this GGE (which is indeed globally true for µL = µR). Regarding
Eq. (4.4.33),

∂tq+ +A+,+∂xq+ = −
∞
∑
`=0

[Â ∂xP− (Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1P− Â∂xP+]+,+ q+ , , (4.4.33)

and we net use the fact that A+,− = 1 and A+,+ = 0, with A−,⋅ arbitrary. We also use the fact that
Γ+,± = 0. In this case, the leading A’s on the left get evaluated with their first index as 0, which
requires that their second index be one. In that case, the above simplifies to

∂tq+ = −Â+,− ∂x

∞
∑
`=0

[(Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1]
−,−

Â−,+∂xq+ , (4.5.33)

and recalling that all internal indices in the matrix multiplication in the square braces above are
only defined in the subspace that does not include +. Since all charges other than q− decouple
from q+, this means that only diagonal elements can appear above, and using A+,− = 1 and

A−,+ =
1 − q2

−

(1 + q+)
2 = 1

(1 + q+)
2 = v2

0 , (4.5.34)

and noting that Γ̂−,− = −2Γ and A−,− ∝ q− = 0, we then have

∂tq+ = ∂x
∞
∑
`=0

(Γ̂−1∂t)
` v2

0

2Γ
∂xq+ , (4.5.35)

∂tq+ =
v2

0

2Γ
∂2
xq+ +O (∂3) , (4.5.36)

which agrees exactly with the diffusion constant computed without linearization, given in Eq. (4.5.25).
Additionally, had we chosen a different GGE, for example one for which q− ≠ 0, we would instead
recover the result given in Eq. (4.5.32), which is equivalent upon taking q− → 0. In that case, it
must be the case that Γ→ 0; however, this is not a problem as Γ would not appear in Eq. (4.5.35),
but would instead be replaced by the quantities that appear in Eq. (4.5.32). Although FFA fails
to be generic in numerous ways, this seems to suggest that linear response is an excellent ap-
proximation, in that the resulting equations capture most or all of the physics of the nonlinear
equations.

4.6 Hydrodynamics in Bose Gases

4.6.1 Basics of the Lieb-Liniger model

Other than FFA, the simplest interacting integrable model—in terms of the complexity of its
quantization condition and solutions—corresponds to a Bose gas in the continuum with a repulsive
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δ-function interaction, also known as the Lieb-Liniger model. The corresponding Hamiltonian is
generally written in the form

Ĥ = −∑
j

1

2m

∂2

∂x2
j

+ c∑
i<j
δ (xi − xj) , (4.6.1)

where {xj} labels the positions of the bosons. In the limit c →∞, at remotely low energies there
can be at most one boson in a given position; correspondingly, in this limit, the excitations behave
like free fermions [56,59,165]. In general, we can take the mass, m, to be unity for convenience.

The differential scattering kernel is given by

ϕ (θ, φ) = 4c

(θ − φ)2 + 4c2
, (4.6.2)

and the charges, qn, and currents, jn, recover from integration against the single-particle eigenval-
ues, which are the rapidity-dependent functions hn(θ),

hn (θ) =m
θn

n!
, (4.6.3)

and thus n = 0 corresponds to particle number—or mass—density, n = 1 to momentum, n = 2 to
energy, and so on. Other relations exist as well, for example, the interpretation of the current of
momentum as a generalized “pressure.”

We also note that q1 = j0, as can be seen by integrating the effective velocity against the
quasiparticle density. Because p′(θ) = m is independent of rapidity and the scattering kernel ϕ is
symmetric in its arguments, this becomes

∫ dθ ρp (θ) veff (θ) = ∫ dθ ρp (θ) vgrp (θ)+∫ dθ ∫ dφρp (θ) ϕ (θ, φ) ρp (φ) [veff (φ) − veff (θ)] /m ,

(4.6.4)
where the second term vanishes by a simple change of variables, φ↔ θ in one of the two terms in
square braces under the double integral, and noting that vgrp (θ) = ε′(θ)/p′(θ) = θ = h1(θ), we see
this is the case.

Except for the specific form of the Hamiltonian, given by Eq. (4.6.1), and differential scattering
kernel, given by Eq. (4.6.2), all other features are not merely properties of the Lieb-Liniger model,
but all Galilean-invariant integrable models.

4.6.2 Hydrodynamic equations

In particular, we will be interested in perturbations that preserve only particle number, q0. Thus,
for the quasiparticle density, ρp (θ;x, t), we have

∂tρp (θ;x, t) + ∂x [veff
θ ρp] (θ;x, t) = Γ [θ;ρp (θ;x, t)] , (4.6.5)

where, in the integrable case, Γ = 0. This can also be written

∂tρp (θ;x, t) + [Â ∂xρp] (θ;x, t) = Γ [θ;ρp (θ;x, t)] , (4.6.6)

where the operator Â is the same operator defined in previous sections.
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We can also integrate the equations for ρp (θ) over θ with appropriate functions, hn(θ) to obtain
equations involving the charges, qn, which will be addressed in Sec. 4.6.4. The average charges and
currents are respectively defined by

qn (x, t) ≡ ∫ dθ hn (θ) ρp (θ;x, t) = ∫
dθ

2π
p′ (θ)n (θ;x, t)hdr

n (θ) (4.6.7a)

jn (x, t) ≡ ∫ dθ hn (θ) veff [θ;x, t] ρp (θ;x, t) = ∫
dθ

2π
ε′ (θ)n (θ;x, t)hdr

n (θ) , (4.6.7b)

where p(θ) and E(θ) are respectively the momentum and energy, whose derivatives with respect
to rapidity appear above; for Galilean invariant models, p = mθ, E = mθ2/2. The definitions,
Eq. (4.3.11), are valid for any integrable model on the Euler scale, including multiple quasiparticle
species.

4.6.3 Relaxation time approximation

For particle number, we have the exact relation

∂tq0 + ∂xq1 = 0 , (4.6.8)

which means that

−∫ dθ ∂tρp (θ;x, t) = ∫ dθ ∂x [veff (θ;x, t)ρp (θ;x, t)]

= ∫ dθ θ∂xρp (θ;x, t) = ∫ dθ [Â∂xρp (⋅;x, t)] (θ) , (4.6.9)

and for the first charge, q1, which happens to be the zeroth current j0, we have

∂tq1 + ∂xj1 = Γ1 + . . . , (4.6.10)

where . . . represent a Navier-Stokes correction that is strictly zero for Eq. (4.6.8), and we will find
this is not important to this equation either. Note that Γ1 is some semiarbitrary functional of the
charges and currents, given by

Γ1 = ∫ dθ θΓ [θ] (4.6.11)

= ∫ dθ θ {∫ dφW [θ, φ; . . . ]ρp (φ;x, t) − ρp (θ;x, t)∫ dφW [φ, θ; . . . ]} , (4.6.12)

where W is allowed to be a functional of the quasiparticle density, and W [θ, φ] = W [φ, θ] must
hold, independent of any sense in which W is a functional of ρp. Writing

1

τ (θ)
≡ ∫ dφW [θ, φ] = ∫ dφW [φ, θ] , (4.6.13)

we have

Γ [θ] = −
ρp (θ;x, t)
τ (θ)

+ ∫ dθW [θ, φ]ρp (φ;x, t) , (4.6.14)

which automatically satisfies

Γ0 = ∫ dθΓ [θ] = 0 , (4.6.15)

105



due to the structure of W , and for the RHS of the q1 equation we have

Γ1 = −∫ dθ θ
ρp (θ;x, t)
τ (θ)

+ ∫ dθ ∫ dφθW [θ, φ] ρp (φ;x, t) , (4.6.16)

and we can imagine Taylor expanding W about θ, φ = 0, and in its functional dependence if needed,
i.e.

W [θ, φ; . . . ] =W0 +W1 (θ + φ) +W1,1θφ +
1

2
W2 (θ2 + φ2) + . . . , (4.6.17)

and keeping only the lowest order term for now, as is standard practice in the usual application of
kinetic theory, we take W to be independent of rapidities, etc., and we take

W → 1

τ

1

∫ dθ1
, (4.6.18)

for normalization, with τ independent of rapidity, and to lowest order, we recover the general
formula

Γn = −
1

τ ∫
dθhn (θ)ρp (θ) + 1

τ
∫ dθhn (θ)
∫ dθ1

∫ dφρp (φ) , (4.6.19)

due to the normalization condition for W . Note that the second term on the righthand side
above vanishes unless n is even, because hn integrates to hn+1 and h2n are even functions of
rapidity. In general, we must use standard techniques for complete bases that are not orthonormal,
which involves division by a two-point function. For simplicity, we can assume that ∫ dθh2n (θ) =
∫ dθh0 (θ), but this is unimportant since we are only interested in the n = 1 case, where this term
vanishes, and we have

Γ1 = −
1

τ ∫
dθh1 (θ)ρp (θ) = −q1

τ
, (4.6.20)

which gives a nice decay equation for q1:

∂tq1 + ∂xj1 = −τ−1q1 , (4.6.21)

where we have ignored higher order corrections. Note that the version of Γn given in Eq. (4.6.19)
to lowest order satisfies the constraint Γ0 = 0, and if we wanted to expand to include higher order
corrections, we would have to ensure that this was still the case. However, given standard practices
in kinetic theory, it is probably fine to make the approximation that W scatters all rapidities into
one another with equal probabilities (i.e., the standard relaxation time approximation).

To proceed, we take a spatial derivative of Eq. (4.6.21) and a time derivative of Eq. (4.6.8),
recovering

∂2
t q0 = −∂t∂xq1 = ∂x (−∂tq1) (4.6.22)

= ∂x (∂xj1 + τ−1q1) (4.6.23)

= ∂2
xj1 + τ−1∂xq1 (4.6.24)

= ∂2
xj1 − τ−1∂tq0 , (4.6.25)
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which we obtained by using the original relation, Eq. (4.6.8). We now drop ∂2
t q0, as it is dominated

at late times by τ−1∂tq0, to recover a nice expression

∂tq0 = τ∂2
xj1 , (4.6.26)

which already looks diffusive. However, we can improve upon this. As a brief aside, note that had
we included the Navier-Stokes diffusive correction for q1, it would appear in Eq. (4.6.26) at order ∂3

x,
which is therefore negligible at the level of hydrodynamics. As for q1, since we have established that
it decays to zero, it is unimportant whether or not this charge also diffuses while decaying, since
we evaluate the diffusion constant in the long-time limit, at which point any diffusive broadening
of q1 will be unimportant (this limit is captured by ignoring ∂2

t q0 in favor of τ−1∂tq0).
We now massage the righthand side of Eq. (4.6.26):

τ∂2
xj1 = τ∂2

x ∫ dθ θ veff
θ ρp (θ;x, t) (4.6.27)

= τ∂x∫ dθ θ ∂x [veff
θ ρp (θ;x, t)] (4.6.28)

= τ∂x∫ dθ θ [Â∂xρp (⋅;x, t)] (θ) , (4.6.29)

which already resembles the expected form corresponding to nonlinear diffusion, and would be of
exactly the correct form if, instead of ∂xρp, we had ∂xq0. While we could perform an expansion

of Â, but this would neglect infinitely many terms, and it is not actually clear at this stage that
those terms are small. We now proceed

= τ∂x∫ dθ θ (1 − nK̂)
−1
veff
⋅ (1 − nK̂)∂xρp (4.6.30)

= τ∂x∫ dθ θ
∞
∑
`=0

(nK̂)
`
veff
⋅ (1 − nK̂)∂xρp (4.6.31)

= τ∂x∫ dθ0 θ0

∞
∑
`=0

{
`

∏
k=1
∫

dθk
2π

n (θk−1)ϕ (θk−1, θk)} veff
θ`

× ∫
dθ`+1

2π
{2πδ (θ` − θ`−1) − n (θ`)ϕ (θ`, θ`+1)}∂xρp (θ`+1;x, t) , (4.6.32)

and putting the terms in different places and numbering them in reverse order—which is the trick
one uses to recover similar identities, e.g. for qn in terms of dressed h functions vs. undressed
ones—one writes

= τ∂x
∞
∑
`=0
∫ dα0 ∂xρp (α0;x, t) [

`+1

∏
k=1
∫

dαk
2π

] {2πδ (α0 − α1) − n (α1)ϕ (α0, α1)}

× veff
α1

[
`

∏
k=1

n (αk+1)ϕ (αk+1, αk)] α`+1 , (4.6.33)

and we can put these terns in a more useful ordering, and reverting from α to θ for convenience,

= τ∂x∫ dθ0 ∂xρp (θ0;x, t)∫
dθ1

2π
{2πδ (θ0 − θ1) − ϕ (θ0, θ1)n (θ1)}

× veff
θ1

∞
∑
`=0

{
`+1

∏
k=2
∫

dθk
2π

ϕ (θk−1, θk)n (θk)} θ`+1 , (4.6.34)
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which, in terms of operators, is given by

∂tq0 = τ∂2
xj1 (4.6.35)

= τ∂x∫ dθ∂xρp (θ) (1 − K̂Tn) veff
⋅ (1 − K̂Tn)

−1
θ , (4.6.36)

where the last θ is merely a dummy rapidity index. Note that, for Lieb-Liniger, K̂ is its own
transpose, and for generic models, this actually works out. Thus, the above becomes

∂tq0 = τ∂x∫ dθ∂xρp (θ) (1 − K̂n) veff
⋅ (θ)dr

(4.6.37)

= τ∂x∫ dθ∂xρp (θ) (1 − K̂n) veff
⋅ hdr

1 (⋅) (4.6.38)

= τ∂x∫ dθ∂xρp (θ) (1 − K̂n) veff
⋅

(ε′ (θ))dr

m
, (4.6.39)

where m = p′ (θ) can be taken to unity, but we will keep track of it for now. We can relate the

dressed derivative of the energy to the velocity, (ε′ (θ))dr = (p′ (θ))dr
veff
θ , to recover

∂tq0 = τ∂x∫ dθ∂xρp (θ) (1 − K̂n) (p′)dr (⋅)
p′ (⋅)

(veff
⋅ )2

(4.6.40)

= τ ∂x∫ dθ ∂xρp (θ) (1 − K̂n) (1)dr (veff
⋅ )2

(4.6.41)

∂tq0 = τ ∂x∫ dθ ∂xρp (θ) (1 − K̂n) hdr
0 (⋅) (veff

⋅ )2
, (4.6.42)

which now very closely resembles the answer recovered for FFA, i.e. D ∼ τv2.
A lazy route would be to pretend that the undressing operator, (1 − K̂n), acted only on (1)dr

to turn it back into a 1, leaving just v2. In fact, this term is truly present, and is the lowest order
term present in an expansion in K̂ operators. Steaming ahead, we can rewrite the righthand side
of Eq. (4.6.42) as

τ∂x∫ dθ∂xρp (θ) (1 − K̂n) (veff
⋅ )2 (1 − K̂n)

−1
(h0) , (4.6.43)

where h0 = 1. We then take the näıve step of performing an expansion of the two dressing operators
to recover terms of the form

v2 + [v2, K̂n] + . . . , (4.6.44)

which is only justified if the scattering kernel, ϕ, is small. However, for moderate interaction
strengths, c≫ 1, this is in fact the case.

We now pursue another route, defining the undressing operator Û with kernel

U (θ, φ) = δ (θ − φ) − 1

2π
ϕ (θ, φ)n (φ) , (4.6.45)

and we can write Eq. (4.6.42) as

∂tq0 = τ ∂x∫ dθ ∂xρp (θ) ∫ dφU (θ, φ) [veff (φ)]2 (1)dr (φ) (4.6.46)

= ∂x∫ dθD [θ;ρp] ∂xρp (θ) , (4.6.47)
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which is very close to having the right form we want, and seems to agree with FFA. To wrap this
up, we shift φ by θ in the integral to recover

= τ ∂x∫ dθ ∂xρp (θ) ∫ dφ {δ (φ) − 1

2π
ϕ (φ)n (φ + θ)} [veff (φ + θ)]2 (1)dr (φ + θ) ,

(4.6.48)

and now we can justify expanding everything except ρp (θ) about θ = 0. This expansion is of
precisely the same type that was used previously for the integrability breaking term, Γ, and is
therefore connected to the relaxation time approximation. Because the single-particle eigenfunc-
tions for the charges in Lieb-Liniger correspond to a Taylor series in rapidity, this can also be
viewed as related to hydrodynamic projection, i.e. onto the slowest modes. To lowest order, we
have

∂tq0 = τ ∂x∫ dθ ∂xρp (θ) ∫ dφ {δ (φ) − 1

2π
ϕ (φ)n (φ)} [veff (φ)]2 (1)dr (φ) , (4.6.49)

along with possible O (θ) terms. That expansion will add terms that involve qn for n corresponding
to the order of the expansion in θ. It is possible that these fall off in strength, or that much of the θ
dependence is actually washed out by the φ integral in the first place, resulting in small couplings.
Lastly, all qn for n > 0 decay, so regardless, these corrections will vanish on the timescale τ that
allowed us to ignore the ∂2

t q0 term earlier on (i.e. an argument based on relevant time scales). To
lowest order, this is

∂tq0 = τ ∂xD ∫ dθ ∂xρp (θ) = τ ∂x [D ∂xq0] , (4.6.50)

corresponding to nonlinear diffusion; to lowest order, the diffusion constant—which is a functional
of the density (or charges and currents)—is given by

D = ∫ dφ {δ (φ) − 1

2π
ϕ (φ)n (φ)} [veff (φ)]2 (1)dr (φ) , (4.6.51)

which seems to agree with all other results, i.e.

D ∝ τ⟨v2⟩ , (4.6.52)

and did not involve explicit linearization. However, in practice, there is no way to recover the
dressing operator, effective velocity, or other quantities without linearizing. Therefore, we should
compare to the results that recover from linearization.

4.6.4 Linear response

Starting from Eq. (4.4.33), i.e.,

∂tqn +An,n∂xqn = −
∞
∑
`=0

[Â ∂xP n (Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1P n Â∂xPn]
n,n
qn ,

we note that for the case of interest, A0,m = δm,1, in which case the above becomes

∂tq0 = −∂x
∞
∑
`=0

∑
n>0

[(Γ̂−1∂t + Γ̂−1Â∂x)
`

Γ̂−1]
1,n
Ân,0 ∂x q0 , (4.6.53)
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and limiting to two derivatives as required by hydrodynamics, we have

∂tq0 = −∑
n>0

[Γ̂−1]
1,n
Ân,0 ∂

2
x q0 , (4.6.54)

and using the standard expansion of Γ, with Γ1,1 = −1/τ1, we have

∂tq0 = τ1 Â1,0 ∂
2
x q0 − −∑

n>1

[Γ̂−1]
1,n
Ân,0 ∂

2
x q0 , (4.6.55)

where the terms in the sum are expected to be less significant in the limit corresponding to the
relaxation time approximation. Note that A1,0 ∝ ⟨(veff)2⟩, and hence we find

D ∼ ⟨v2⟩
Γ

= τ⟨v2⟩ , (4.6.56)

in agreement with the previous derivation and FFA.

4.7 Summary and Outlook

In summary, we have showcased a number of scenarios in which integrability can be used to
gain insight into more generic systems. In particular, interacting integrable models represent
an advantageous starting point for any perturbative treatment compared to free systems, as the
former includes interactions from the outset. The existence of exact quasiparticle solutions makes
integrable models particularly convenient to study, and they can de described—both directly and
via statistical ensembles—in the thermodynamic limit.

In addition to diagnosing spectral properties and the spread of entanglement, integrable sys-
tems are ideal for consideration of transport, due largely to their well-developed hydrodynamic
description. We examined at length how one can start from an integrable model and break all but
one of its conservation laws to recover a hydrodynamic description of a thermal (ergodic) system
with a single conserved quantity. As one would expect, this charge diffuses, and the formalism
of generalized hydrodynamics allows for the evaluation of the diffusion constant both for general
models with generic perturbations, and for a number of specific cases. In all cases, we find that the
diffusion constant, D ∝ v2 /Γ, as one would expect, where Γ is the decay rate of the nonconserved
quantities, determined by Fermi’s golden rule. A key feature is the ability to compute this quantity
entirely in the framework of integrability, i.e. using GHD data.

Such techniques are expected to be useful going forward, e.g. in computing transport, the expec-
tation values of local observables, and correlation functions in near-integrable systems. For exam-
ple, this technique should be directly applicable to quantum Newton’s cradle experiments [146,159],
Bose gases in general, and a number of cold atom experiments that are nearly integrable.

There may be other applications of particular integrable models going forward as well. For ex-
ample, the Hamiltonian that defines the dispersing Floquet Frederickson-Andersen model (DFFA)
is highly constrained, and has excitations that are not one-body in the underlying degrees of free-
dom defining the model. By removing certain terms and adding other generic terms, it may be
possible to realize many-body quantum scars in the intuitive setting of an integrable model, which
has well-defined symmetries and quasiparticle excitations. It is also worth noting that, in the limit
L →∞, with NR/L −NL/L = O(1/L) and NR/L = NL/L finite, the quantization condition for the
allowed momenta in DFFA becomes kj = 2πnj/L + δ, which is the same as Fourier transforms.
Thus, the excitations resemble free fermions in a manner that may be possible to exploit—this is
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not the case in other interacting integrable models, save the trivial c→∞ limit of Lieb-Liniger. By
alternating the DFFA dynamics with on-site disorder (in the physical basis of qubits), it may be
possible to find another concrete example of many-body localization in the thermodynamic limit.
Finally, because DFFA has topologically nontrivial quasiparticle excitations and nonperturbative
interactions, it may be a useful platform for scrutinizing thermal systems with topological prop-
erties. This may be extended by unearthing new Floquet integrable models, e.g. starting from
classical cellular automata and adding dispersion. We relegate these topics to future research.
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Chapter 5

Quantum Chaos

5.1 Introduction

Integrability is a useful platform for investigating aspects of thermal systems by adding perturba-
tions that violate most or all of their infinitely many conservation laws and imbue a finite lifetime
to their quasiparticle excitations. However, it is also worthwhile to understand quantum thermal-
ization, also known as “quantum chaos,” away from the integrable limit so as to separate fully the
physics associated with conservation laws and well-defined quasiparticles from the most generic
aspects of thermalization, which should hold for general evolution (i.e. Hamiltonian, Floquet, and
typical driven systems), even in the absence of any extensive conserved quantities or any notion of
quasiparticle excitations, as can certainly be realized in the laboratory. Additionally, the classical
analogues to quantum integrable versus quantum chaotic models stand directly opposed: classical
integrable systems are the only classical systems that do not exhibit chaos or thermalize in any
sense, which further motivates the scrutiny of quantum chaos in a setting unrelated to integrability.

In classical terms, chaotic systems are generally described by a coupled set of nonlinear equa-
tions of motion, which render them highly sensitive to their initial conditions. For classical systems,
this is central to the use of statistical ensembles: acknowledging even a tiny amount of uncertainty
in the initial conditions of a classical system, the notion of chaos ensures that as the system ap-
proaches its late-time steady state this uncertainty will be exponentially magnified, producing an
ensemble of possible configurations for the system to explore, with no “memory” of the particular
initial state. However, quantum systems are, by definition, perfectly sensitive to their initial condi-
tions: a given initial state always evolves to a single, specific state, which is completely determined
by its initial conditions. The quantum system cannot globally “forget” its initial state, nor is there
an exactly corresponding notion of exponential growth of uncertainty: a quantum system can be
prepared in some initial state with macroscopic uncertainty in the expectation values of numerous
observables and subsequently evolved under its own dynamics to a single state.

However, as was discussed in Ch. 1, quantum systems do not require this exponential growth in
uncertainty to provide a valid ensemble: uncertainty is built into quantum states. Any physically
preparable initial state will not be an eigenstate of the evolution (for any models worth considering),
and will thus entangle as it evolves forming an ensemble. Alternatively, a system in an eigenstate
of the evolution will not be in an eigenstate of generic local observables, and thus eigenstates of the
evolution, which are already steady states by construction, also provide perfectly valid ensembles.
So despite the apparent paradox that quantum systems have perfect memory of their initial states,
due to entanglement generated associated to the evolution of a quantum system (either generated
dynamically evolving from a product state or encoded directly into eigenstates of the evolution),

112



the initial state is completely inaccessible to any local measurements. Additionally, compared to
classical systems, quantum systems have uncertainty built in.

In the strict sense of the classical phenomenon, there is no such thing as quantum chaos. Some
definitions of quantum chaos are formulated for models with well-defined classical limits [4–8]: for
such models, quantum chaos is associated with the realization of classical chaos in the classical
limit of the quantum model. Efforts to extend quantities such as Lyapunov exponents to quantum
systems have revealed the need for special care, and that in general this may not necessarily be a
reasonable procedure [133]. Hence, more recently, those studying quantum chaos have sought to
define the phenomenon separately from its classical counterpart.

5.2 Random Unitary Circuits

The notion of quantum chaos—or quantum ergodicity, as often phrased in the context of the
eigenstate thermalization hypothesis (ETH)—is intertwined with random matrix theory (RMT):
first, quantum chaotic systems are characterized by an RMT eigenvalue distribution [166, 167];
second, their eigenfunctions can be understood as random vectors [168–171]. One consequence is
that quantum thermalization (or chaos) is always associated with level repulsion between energy
eigenvalues. In practice, this spectral rigidity has often been used as an efficient means to pinpoint
quantum ergodicity breaking [14,158,172–174].

The validity and possible regimes of violation of ETH have been scrutinized in different types
of chaotic systems [175–180]; however, numerical tests of ETH are challenging as they require the
diagonalization of Hamiltonians where the total number of elements scales exponentially with the
number of microscopic degrees of freedom [176, 181–183]. An obvious limitation is that, while
RMT captures several aspects of quantum chaos, replacing the microscopic time evolution by a
colossal random matrix acting on the full many-body Hilbert space overlooks a key facet of the
former, namely locality.

Recent efforts have endeavored to establish and improve upon minimal models of chaotic many
body quantum systems starting from RMT, and enforcing locality via random local unitary gates to
form “circuits” [180, 184–193]. Such models generally display quantum chaos, as characterized by
entanglement entropy, the decay of local observables, and out-of-time-ordered correlation functions
[184,186,187].

Unitary circuits were initially used in the quantum information community in relation to quan-
tum computation, but have also seen recent use in the context of quantum information of black
holes. More recently, these models have been adapted to investigate many-body quantum chaos.
In particular, there are three main categories of circuit models, all of which use n-site unitary
gates drawn from a distribution of Haar masure, defaulting to two-site gates absent any particular
reason to do otherwise, and act on q-dimensional spins (also known as “qudits”) arranged on a
lattice, which may be in one dimension or higher. The first type of circuit model evolves the
system by applying two-site gates at random: all gates are drawn independently, and at each time
step, a bond is selected at random and its constituent sites acted upon by the unitary gate. The
second type of model features a “brick wall” geometry: all gates at all points in spacetime are
drawn independently, and a single time step involves a depth-two circuit, with the first layer acting
on even bonds and the second layer acting on odd bonds or vice versa. The third type of model
features the same brick wall geometry, but gates are only drawn randomly in space: these models
are “Floquet” random unitary circuits (FRUCs): the gates comprising the two layers that make
up a single time step (or period) are chosen at random, and the system is evolved thereafter by
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repeated application of precisely the same gates. There are also many models used in the study of
quantum chaos that are not of the random circuit type, however these models are not of immediate
or direct interest.

The primary reason for using random unitary circuits is that they are simple. Simply from
their geometry, it is easy to see how information about local operators or entanglement propagates
in these systems. One can also immediately establish a “speed of light” and associated “light
cone” that bound the spreading of information, which arises directly from the circuit geometry
and local structure. However, the speed of propagation of information and entanglement generally
falls short of such bounds. More importantly, referring to the three types of models enumerated in
Ch. 1, the first two circuit models fall into the category of “driven” systems, and the FRUCs are
manifestly Floquet. In all three cases, these systems do not have an extensive conserved energy,
and unless one puts them in by hand, these models may have no extensive conserved quantities
of any kind. Additionally, they have no obvious quasiparticle excitations. Thus, these models are
able to probe the most basic and structureless aspects of quantum chaos, and separate the roles of
extensive conserved quantities, and other “typical” features of general thermal systems from the
basic mechanism for chaos. These models are also as far as possible from the limit of integrability.

The purpose of randomness is to model generic systems. Consider a generic quantum system
that is robust to small perturbations and has no extensive conserved quantities or well-defined
quasiparticles: there is no reason to expect that any such model (i.e. any generic) can be solved,
and the only conceivable means to learn anything would be to consider an ensemble of similar
systems. Such an ensemble is most easily captured by using random matrices, which also provide
analytic control in certain limits, making it possible to learn things about generic systems. The
randomness is thus a tool for describing generic systems. The degree of difficulty of performing
the ensemble average depends on which type of circuit structure is being used and the observable
or physical quantity being measured. In general, the Floquet circuit is the most challenging to
use, and in all cases, taking q to be large provides simplifications1.

A circuit model of the first type was used to characterize the spread of entanglement in quantum
chaotic systems [184]. Models of the second type are most frequently employed in the literature—
having a more appealing and consistent structure than models of the first type while being less
complicated than models of the third type—to characterize operator spreading and related physics,
including in the presence of certain symmetries [185,186,189,190,193].

Models of the third type—i.e. Floquet random circuits—allow for the analytical derivation
of RMT spectral rigidity, in the limit of large local Hilbert space dimension [187, 188] or at fine-
tuned solvable points [192, 194]. More precisely, these works demonstrated that RMT behavior
only appears for eigenvalue separations small on the scale of the inverse of the Thouless time, tTh,

named in analogy with single-particle disordered conductors [195, 196]. The value of tTh depends
on the linear system size L and characterizes the time scale for the onset of quantum chaos. It
remains an open question to understand which mechanisms control the scaling of tTh with L. In
the remainder, we will restrict to circuits of the third type and the study of spectral properties.

1Note that q, the local Hilbert space dimension, is the only free “parameter” once one decides on a particular
circuit format and restricts to a particular gate size and the Haar ensemble.
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5.3 Chaotic Dynamics of Quantum Information

5.3.1 Entanglement growth

The spread of entanglement was first studied using random unitary circuits in Ref. 184, to which
the reader is referred for a more complete analysis, along with a treatment of higher dimensions.
Here, we briefly review a particular and illustrative calculation from that work, and comment on
other work. 5

time step
U

FIG. 3. Dynamical update in the solvable model: application
of a random unitary U to a randomly chosen pair of adjacent
spins.

1. Dynamics of Hartley entropy

A useful starting point is to consider the n ! 0 limit
of the Renyi entropy, S0. This is known as the Hart-
ley entropy, and quantifies (the logarithm of) the num-
ber of nonzero eigenvalues of the reduced density matrix.
Equivalently, the Hartley entropy determines the neces-
sary value of the local bond dimension in an exact matrix
product representation [21, 42] of the state:

S0(x) = log (bond dimension at x) . (11)

Like the von Neumann entropy, the Hartley entropy of
neighboring bonds can di↵er by at most one:

��S0(x + 1)� S0(x)
��  1. (12)

Recall that logarithms are base q. For the present we
keep q finite.

For the random dynamics described above (Sec. II A),
the Hartley entropy obeys an extremely simple dynam-
ical rule. In a given time step, a unitary is applied at
a random bond, say at x. Applying this unitary may
change the Hartley entropy across the bond x; the en-
tropy remains unchanged for all other bonds. The rule
for the change in S0(x) is that, with probability one, it
increases to the maximal value allowed by the general
constraint (12):

S0(x, t + 1) = min{S0(x� 1, t), S0(x + 1, t)} + 1. (13)

This ‘maximal growth’ of S0 occurs with probability one
when all unitaries are chosen randomly. Fine-tuned uni-
taries (e.g. the identity) may give a smaller value, but
these choices are measure zero with respect to the Haar
distribution.

We present a rigorous proof of Eq. 13 in Appendix A.
The appendix also gives a heuristic parameter-counting
argument which suggests the same result, but as ex-
plained there the more rigorous argument is necessary.

The dynamical rule in Eq. 13 defines a simple but non-
trivial stochastic process. Before discussing its proper-
ties, we use Eq. 13 as a starting point to show that in
the limit of large Hilbert space dimension the von Neu-
mann entropy (and in fact all the higher Renyi entropies)
obeys the same dynamical rule. The von Neumann en-
tropy is of more interest than S0, since the latter behaves
pathologically in many circumstances3.

3 This is because it simply counts up all the (nonzero) eigenvalues

2. Limit of large Hilbert space dimension

The present quantum circuit dynamics lead to a solv-
able model in the limit of large local Hilbert space di-
mension, q ! 1. In this limit all the Renyi entropies
obey the dynamical rule in Eq. 13.

To show this we consider the reduced density matrix
for a cut at x, where x is the bond to which we are
applying the unitary in a given time step. We may write
⇢x(t + 1) in terms of ⇢x�1(t) and the applied unitary
matrix. Averaging Tr ⇢2

x over the choice of this unitary,
we then obtain:

⌦
Tr ⇢x(t + 1)2

↵
Haar

=
q

q2 + 1

�
Tr ⇢x�1(t)

2 + Tr ⇢x+1(t)
2
�
.

See App. B for details. In terms of the second Renyi
entropy S2 this is:

D
q�S2(x,t+1)

E
Haar

=
q�S2(x�1,t)�1 + q�S2(x�1,t)�1

1 + 1/q2
.

(14)
The general constraint S2  S0 allows us to write

S2(x, t) = S0(x, t)��(x, t) (15)

with � � 0. We now use Eqs. 13, 14 to show that � is
infinitesimal at large q. Rewriting Eq. 14 in terms of �,
and substituting Eq. 13, immediately shows

D
q�(x,t+1)

E
Haar

< q�(x�1,t) + q�(x+1,t). (16)

For a simple bound4, define �max(t) to be the maximal
value of �(x, t) in the entire system. The equation above
implies

D
q�max(t+1)

E
Haar

< 2q�max(t) (17)

We may iterate this by averaging over successively earlier
unitaries:

D
e(ln q)�max(t)

E
Haar

< 2t. (18)

This shows that as q !1 at fixed time t, the probability
distribution for � concentrates on � = 0, so that S2 and
S0 become equal.

This implies that the entanglement spectrum is flat,
so in fact all the Renyi entropies obey Eq. 13 for the
application of a unitary across bond x.

in the spectrum of ⇢x, regardless of how small they are. For ex-
ample, Hamiltonian dynamics in continuous time — as opposed
to unitary circuits like the above — will generally give an infinite
growth rate for S0, in contrast to the finite growth rate for SvN

and the higher Renyi entropies.
4 For a large system, this bound on

⌦
q�max

↵
will be far from the

tightest possible since we have not exploited the large size of the
system.

Figure 5.1: Figure from Ref. 184 (open access). Action of the circuit, Ŵ , in a single time step. An
independently drawn two-site Haar random unitary gate is applied to a bond selected at random
in each time step.

Ref. 184 employs random unitary circuits of the first type: at each step, a two-site gate is
randomly drawn from a distribution of Haar measure and applied to a bond selected at random,
as depicted in Fig. 5.1. The local degrees of freedom are qudits, i.e. q-state colors, and the
model has no symmetries of any kind. To measure entanglement, we consider a system of finite
length, L, and imagine bipartitioning the system somewhere in real space, and evaluating the
entanglement entropy at some time, t, to recover the entanglement entropy, S(x, t). Although this
technique works in higher dimensions, let us restrict to one dimension, and imagining placing the
entanglement cut immediately to the right of site x. Using the standard practice for entanglement
growth, we take the initial density matrix for this system is at t = 0 to be a pure product state,
from which the density evolves according to

ρ̂AB (t) = Ŵ (t) ∣ψ⟩⟨ψ∣ Ŵ †(t) , (5.3.1)

where Ŵ (t) is the random unitary evolution operator realized by the circuit. The reduced density
matrix, ρ̂A (t) = TrB [ρ̂AB (t)], is formed by tracing over configurations of degrees of freedom in
“B,” i.e. tracing over all qudits at sites y > x. Because the von Neumann entropy defined in Ch. 1
is generally difficult to evaluate for generic and random systems, owing to the its dependence on
the trace of the logarithm of ρ̂A (t), we instead make use of a family of Rényi entropies, with the
αth Rényi entropy defined in terms of the reduced density matrix via

q−(α−1)Sα(t) = Tr[ρ̂αA (t)] , (5.3.2)

which recovers the von Neumann entanglement entropy in the limit α → 12, and q appears on the
lefthand side (rather than e) due to the standard practice in information theory of taking base-q
logarithms, which accurately encodes the number of “bits.”

Measuring general Rényi entropies can be quite convoluted, and most studies simply examine
S2, which provides a valuable measure of entanglement, but does not necessarily give any insight

2In practice, it is uncommon to measure various Rényi entropies, extract the α dependence, and extrapolate to
α = 1. The Rényi entropies already provide a useful measure of entanglement.
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into the von Neumann entanglement entropy. What should be clear is that we can establish an
upper bound on the entanglement entropy via

Sα(t) ≤ S0(t) = logq Tr[ (ρ̂A (t))0 ] , (5.3.3)

and this bound applies to the von Neumann limit (α → 1) as well. The trace over ρ̂0
A essentially

accounts the number of nonzero diagonal elements (or eigenvalues) of the reduced density matrix
at time t. Since the eigenvalues of the reduced density matrix sum to unity, the number of nonzero
eigenvalues will always bound from above the trace of any power of ρ̂A. 2

originally introduced to describe the stochastic growth of
a surface with time t [29]. In the simplest setting, we find
that the ‘height’ of this surface at a point x in space is
simply the von Neumann entanglement entropy S(x, t)
for a bipartition which splits the system in two at x.
The average entanglement grows linearly in time, while
fluctuations are characterized by non-trivial exponents.
We support this identification with analytical arguments
and numerical results for discrete time quantum evolu-
tion (unitary circuits).

The KPZ universality class also includes two other
classical problems besides surface growth [29, 30], as sum-
marized in Fig. 1. We show that each one provides a
useful perspective on entanglement dynamics. They are
the statistical mechanics of a directed polymer in a dis-
ordered potential landscape [31], and 1D hydrodynamics
with noise (the noisy Burgers equation [32]). Remark-
ably, entanglement growth can be related to all three of
the classical problems in in Fig. 1, which are sometimes
referred to as the ‘KPZ triumvirate’ [33].

In the quantum setting, the directed polymer is related
to the ‘minimal cut’, a curve in space-time which bisects
the unitary circuit representing the time evolution. This
is reminiscent of the Ryu-Takayanagi prescription for cal-
culating the entanglement entropy of conformal field the-
ories in the AdS-CFT correspondence, which makes use
of a minimal surface in the bulk space [34], and anal-
ogous results for certain tensor network states [35–37].
Here however the cut lives in spacetime rather than in
space, and its shape is random rather than determinis-
tic. (For a di↵erent use of the idea of a minimal cut in
spacetime, see Ref. [9].) This picture is more general than
the surface growth picture, as it allows one to consider
the entropy for any bipartition of the system. It also al-
lows us to generalize from 1D to higher dimensions. In
d+1 spacetime dimensions the minimal cut becomes a d-
dimensional membrane pinned by disorder. This picture
allows us to pin down approximate critical exponents for
noisy entanglement growth in any number of dimensions.

This picture also leads to a conjecture for entangle-
ment growth in systems without noise, both in 1D and
higher dimensions, as we discuss below. According to this
conjecture, the calculation of the entanglement in higher
dimensions reduces to a deterministic elastic problem for
the ‘minimal membrane’ in spacetime.

The third member of the triumvirate in Fig. 1 is a
noisy hydrodynamic equation describing the di↵usion of
interacting (classical) particles in 1D. We show that this
can be related to the spreading of quantum operators
under the unitary evolution, giving a detailed treatment
of the special case of stabilizer circuits. Note that while
the minimal cut picture generalizes to higher dimensions,
the KPZ and hydrodynamic pictures are special to 1D.

We propose that noisy dynamics are a useful toy model
for quantum quenches in generic (non-integrable, non-
conformally–invariant) systems, even without noise. The
logic of our approach is to pin down the universal be-
haviour of noisy systems (Secs. II—VI), to establish sim-
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FIG. 1. The KPZ ‘triumvirate’ is made up of three very
di↵erent problems in classical statistical mechanics which all
map to the KPZ universality class. As we will discuss, each
of them can be usefully related to entanglement in 1+1D.

ple heuristics capturing this behaviour (Secs. III, IV), and
then to draw conclusions that are likely to be true even
without noise (Secs. V, VIII). While the detailed physics
of entanglement fluctuations certainly relies on noise, the
coarser features of the dynamics — i.e. the leading or-
der time dependence of the entanglement entropy and
mutual information — is in fact deterministic. We con-
jecture that this leading order behaviour (as captured by
the directed polymer and hydrodynamic pictures) car-
ries over to Hamiltonian dynamics without noise. On
the basis of this we address (Sec. V) some features of
entanglement growth that have previously been unclear.
We argue that in generic 1D systems the entanglement
growth rate can be interpreted as a well-defined speed
vE , but that this speed is smaller than another charac-
teristic speed, which is the speed ṽ at which quantum
operators spread out under the dynamics. This di↵er-
ence is related to the failure of pictures for entanglement
growth in terms of independently spreading operators.
We discuss the meaning of vE . In Sec. VIII we discuss
the geometry-dependence of the dynamical entanglement
in higher-dimensional systems.
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Figure 5.2: Figure from Ref. 184 (open access). Depiction of the “KPZ triumverate,” the three
models principally associated to the KPZ universality class, and depicts how notions of information
spreading in chaotic systems in D = 1 + 1 can be mapped onto each of these three.

Concerned with an upper bound on entanglement growth, Ref. 184 investigated the zeroth
Rényi entropy, or equivalently, the rank of the reduced density matrix, for a given time, t, and
choice of entanglement cut. The primary result of this study was the finding that the growth
and fluctuations of this entanglement measure obey the Kardar-Parisi-Zhang (KPZ) equation, a
well-studied and exactly soluble nonlinear model from classical statistical mechanics. Associated
with the equation is the KPZ universality class, which consists of three distinct types of problems,
all described by the KPZ equation, as depicted in Fig. 5.2, and any problem that can be mapped
onto a problem in the KPZ universality class therefore inherits the known, universal features of
models in this class.

Referring to Fig. 5.2, the first two questions relate to the growth of entanglement, and the latter
to operator growth. In the remainder, we will consider the “minimal cut” picture of entanglement
in one spatial dimension, which maps onto the problem of a directed polymer in a random medium.
In this formulation of the problem, the entanglement measure, S(x, t), given by the zeroth Rényi
entropy, is determined entirely by the geometry of the random circuit in spacetime, depicted in
Fig. 5.3. Recall that gates are applied essentially randomly in space and time. After t time steps,
one chooses a site x, and partitions (i.e. “cuts”) the system in two, with region A corresponding
to sites {1,2, . . . , x − 1, x} and region B to sites {x + 1, x + 2, . . . , L − 1, L}.

Since the initial state is unentangled, if—for a particular instance of the circuit—at time t no
two-site unitary gates have been applied to the bond joining sites x and x+1, then the many-body
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FIG. 6. Any cut through the unitary circuit which separates
the legs to the left and right of x (on the top boundary) gives
an upper bound on S(x, t). The best such bound is given
by the minimal cut (note that the cut shown in the figure is
not the minimal one). Finding the minimal cut in a random
network is akin to finding the lowest energy state of a polymer
in a random potential landscape.

Consider again a random quantum circuit in 1+1D,
and a curve like that in Fig. 6 which bisects the cir-
cuit and divides the physical degrees of freedom into two
at position x. Any such curve gives an upper bound
on the entanglement: all the Renyi entropies satisfy
S(x)  Scut, where Scut is the number of ‘legs’ that the
curve passes through. (This is because the rank of the
reduced density matrix ⇢x is at most qScut .7) The best
bound of this type is given by the minimal cut, which
passes through the smallest number of legs. We denote
the corresponding estimate for the entropy Smin-cut(x).
If the geometry of the circuit is random, Smin-cut(x) and
the corresponding curve are also random.

In the solvable large q model, Smin-cut(x) in fact gives
the von Neumann entropy exactly. This follows straight-
forwardly from the results of the previous section (see be-
low). In a typical microscopic model, on the other hand,
Smin-cut is only a bound on the true entropy. Neverthe-
less we conjecture that the following is generally valid as a
coarse-grained picture: i.e. that it correctly captures the
universal properties of the entanglement dynamics. This
conjecture is equivalent to the applicability of the KPZ
description to generic noisy systems; further evidence for
the latter is in Secs. IV, VI.

The problem of finding the minimal curve is a version
of a well studied problem in classical statistical mechan-
ics, known as the directed polymer in a random environ-
ment or DPRE [31, 45]. Here the polymer is the curve
which bisects the circuit, and its energy E(x) is equal to
Scut(x), the number of legs it bisects. The spatial coordi-
nate of the polymer’s upper endpoint is fixed at x, while

7 This can be seen by writing the density matrix in terms of a sum
over the indices on the cut bonds.

the lower endpoint is free. Finding Smin-cut(x) is equiva-
lent to finding the minimal value of the polymer’s energy.
This corresponds to the polymer problem at zero temper-
ature; however the universal behaviour of the DPRE is
the same at zero and at nonzero temperature.8

DPRE models with short-range-correlated disorder are
in the same universality class as the KPZ equation [29].
Let E(x, t) be the minimal energy of the polymer in a
sample of height t. We may increase t by adding an
additional layer to the top of the sample. E(x, t + �t)
can then be expressed recursively in terms of E(y, t) for
the various possible values of y. In the continuum limit,
this leads to an equation for E(x, t) which is precisely the
KPZ equation [29]. The KPZ exponents given in Sec. II
may therefore be applied to the energy of the polymer.
The exponent z = 3/2 also determines the lengthscale
for transverse fluctuations of the polymer:

�x ⇠ (�t)2/3. (20)

Since in our case the minimal E is simply Smin-cut, we
find that the latter executes KPZ growth. In the light
of the previous section, this is not surprising. In fact
in our solvable model, Smin-cut is exactly equal to the
true entanglement entropy (in the large q limit). This
follows from the fact that the recursive construction of
E(t) described above precisely matches the large q dy-
namics of Eq. 19. Examples of non-unitary tensor net-
works in which the minimal cut bound becomes exact are
also known [36], including a large-bond-dimension limit
similar to that discussed here [37].

The utility of the DPRE picture is that it is far more
generalizable than the surface growth picture, which is
restricted to the entropy across a single cut in 1D. As
noted above, the value of Smin-cut in a given microscopic
model is typically not equal to any of the physical en-
tropies Sn with n > 0. Nevertheless we conjecture that
the DPRE and KPZ pictures are valid universal descrip-
tions for all noisy models, so long as they are not fine
tuned or nonlocal. This includes Hamiltonian dynamics
in continuous time; we discuss this case further in the
Outlook section.

A. Saturation in the minimal cut picture

Eq. 20 shows that the coarse-grained minimal cut is
essentially vertical (prior to saturation of the entropy):
the lengthscale for transverse fluctuations is negligible in
comparison with t. This leads to an extremely simple
deterministic picture for the leading-order behaviour of
the entanglement, which we will discuss in more detail in

8 For any finite temperature, the DPRE flows under renormaliza-
tion to a zero temperature fixed point at which temperature is
an irrelevant perturbation.

Figure 5.3: Figure from Ref. 184 (open access). Any cut through the circuit starting at the
entanglement partition point, x, at time t, which separates the legs to the left and right of x,
provides an upper bound on the entanglement entropy, S(x, t).

wavefunction can be factorized as a direct product of wavefunctions for regions A and B. For
the regions to entangle, at least one unitary gate must be applied to the bond straddling the cut.
When that happens, other gates can then help spread entanglement into A and B.

Several simplification arise because we are only interested in establishing an upper bound on
the entanglement entropy, rather than quantifying it precisely. This is further simplified by the fact
that this bound, the zeroth Rényi entropy, is simply equal to the number of number of nonzero
diagonal elements of ρ̂A. In particular, an upper bound for S0 is given by actually making an
entanglement cut, starting at x, t, and continuing the line until either the bottom or sides are
reached, as depicted in Fig. 5.3, and we define Scut in terms of the number of gates and vertical
lines crossed. Note that the value of Scut for any choice of cut provides an upper bound for all
Rényi entropies; the best bound is provided by the minimal cut. In particular,

Scut = # lines crossed + 2 × # gates crossed , (5.3.4)

and one can restrict to cuts that never cross gates without loss of generality (this also explains the
factor of two on the second term above: avoiding a gate requires crossing a vertical line twice).

Such “cut-based” measures of entanglement draw from literature in other areas of physics [184].
The reasoning is as follows: the rank of the reduced density matrix corresponding to a cut at x, t
is bounded from above by qScut because one can evaluate the wave function at time t as the sum
over unentangled wavefunctions that factorize across the cut, and the number of terms in the
sum is equal to the rank of the reduced density matrix; this number depends on the number of
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intermediate links—generated by Ŵ (t)—which can be no more than the number of vertical lines
crossed as depicted in Fig. 5.3. For example, if no gates are applied at the bond x,x + 1, then
a vertical line suffices, giving Scut = 0, which is consistent with the fact that no entanglement
has been generated across the cut. If a single cut is necessary, this means that, on one or both
sides of the cut, only one spin has been entangled across the cut. The formulation of the reduced
density matrix (for the subsystem with only one spin entangled across the cut) as a sum over
factorized wavefunctions then requires summing at most over the possible configurations of this
entangled spin, which is at most q. This provides an upper bound on every Rényi entropy, with
S0 potentially saturating this bound, Scut = logq q = 1. Scenarios requiring additional cut vertical
legs follow accordingly.

While any choice of cut provides an upper bound, the best bound is provided by the best—or
minimal—cut. The problem of finding the minimal cut falls in the KPZ universality class: this
problem maps to the problem of finding the ground states of directed polymers in random media.
In the classical problem, the polymer there moves laterally in x and vertically in t (using the
labels of the circuit), just like the entanglement cut; there exists an energy penalty for bending
the polymer, which corresponds to Scut here; there is a random spatial potential that obstructs the
polymer, manifested here by the random structure of the gates, e.g. as depicted in Fig. 5.3. There
is a large body of literature on the polymer problem that can be imported here, and in particular,
one has the KPZ equation

∂tS(x, t) = ν∂2
xS(x, t) −

λ

2
(∂xS(x, t))

2 + η(x, t) + c , (5.3.5)

which can be viewed as diffusive propagation in the presence of noise, η—which comes from the
random placement of unitary gates—placement, along with a nonlinear term that generates the
interesting physics, and a constant that implies steady growth of entropy in time. In particular,
the constant C controls the growth behavior of the entropy, which is clearly linear in time if one
ignores the other terms; the other terms describe fluctuations of S(x, t).

While the finding that the fluctuations of S are described by the KPZ equation is an important
result, in the remainder, we will focus on understanding the growth of entanglement in the circuit
setting. In particular, ignoring the noise and spatial fluctuations of S(x, t) in Eq. (5.3.5), which
are universally subleading, with

⟨S(x, t)⟩ = vE t +Bt1/3 , (5.3.6)

where ⟨. . .⟩ denotes averaging over ensembles (gate realizations), and the exponent 1/3 in the second
term derives from the KPZ universality class. The validity of KPZ exponents have been confirmed
through extensive numerical study. This equation highlights the linear growth of entanglement, as
observed in small systems numerics and predicted from integrability (e.g. in Ch. 4). This can also
be understood through coarse-grained, ensemble-averaged consideration of the circuit.

We ignore the specific details of gate placement in any particular realization of the circuit, and
consider only what happens in an average sense. At very short times, one expects on average that
there is a probability t/L that a gate will be applied across a particular choice of cut, x; rescaling
our definition of time so that L/2 applications of gates corresponds to a single unit of time, one
expects on average to have to cross exactly one leg of the circuit per time step. Thus, at early
times, one expects linear growth of S with t. However, we must also recall that one has the option
to terminate the cut at the chain’s side.

At intermediate times, this can be difficult to diagnose for cuts near the chain’s center. Instead,
let us consider a cut near the edge of the chain. For example, considering a cut between sites n
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and n + 1, one expects that after nL applications of gates, on average, the minimal cut will be
given by making a cut that goes directly out the side of the chain; prior to this time, it is, on
average, optimal to make a cut that goes straight down. Combining these pictures, one expects
entanglement to grow linearly in time, i.e., S(x, t) = α(x) t, and plateau at a value determined
by the growth rate, i.e. Smax(x, t) = α(x)x for t ≥ x, in the previously detailed units. Thus, one
concludes that

⟨S (x, t)⟩ =
⎧⎪⎪⎨⎪⎪⎩

vE t for x ≥ vE t
x for x < vE t

, (5.3.7)

when we neglect the subleading terms in Eq. (5.3.5). This picture is fully consistent with nu-
merical studies on small systems, direct simulations of circuits, predictions from integrability, and
thermodynamic principles. 15
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FIG. 15. The von Neumann entropy S(x, t) for a system of
length L = 459, as a function of x, for several successive times
(t = 340, 690, 1024, 1365, 1707, 2048 and 4096), in the Clif-
ford evolution. The figure shows how the state evolves from
a product state to a near-maximally entangled one. Prior
to saturation the entanglement displays KPZ-like stochastic
growth. S(x, t) is in units of log 2.

more rapidly closer to the boundary, because the maxi-
mum entanglement across a bond is proportional to its
distance from the boundary. At very late times S(x, t)
saturates to a pyramid-like profile representing close-to-
maximal entanglement. Our interest is in the stochastic
growth prior to saturation, which we will show is KPZ–
like. All observables in the following are measured far
from the boundary, in order to avoid finite-size e↵ects
associated with saturation.

Fig. [16] shows successive snapshots for a subregion
of a larger system of L = 1025 bonds (times t =
170, 340, 512, 682, from bottom to top). The maximal
slope that can appear is 1, in accord with Eq. 3. Note
the gradual roughening of the surface and the growing
correlation length.

Fig. 17 shows the ‘height’ and ‘width’ of the growing
surface,

h(t) = hSvN(x, t)i, w(t) =
q
hhS2

vN(x, t)ii (46)

for very long times. These quantities have been averaged
over at least 105 realisations. In each realisation only the
entanglement across the center bond is used (therefore
all data points are uncorrelated) and the system size is
L = at, where a is chosen to avoid finite size e↵ects (see
Appendix E). We obtain estimates �h and �w of the ex-
ponent � by fitting the data to the expected forms (cf.
Eqs.6,7):

h(t) = vE t + B t�h , w(t) = C t�w + D t⌘. (47)

Here ⌘ (with ⌘ < �w) captures subleading corrections.
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FIG. 16. The von Neumann entropy S(x, t) in units of log 2,
far from the boundaries, in a system of length L = 1025 at
various times (from bottom to top t = 170, 340, 512 and 682)
evolved with the Cli↵ord evolution scheme. ⇠ schematically
shows the typical correlation length Eq. [8] which grows in

time like t1/z.

We find:

�h = 0.33 ± 0.01, �w = 0.32 ± 0.02. (48)

Both estimates of � are in excellent agreement with the
KPZ value � = 1/3. The solid lines in Fig. 17 show the
fits (the fit parameters are in Table I). The dashed lines
show the slopes corresponding to the expected asymp-
totic power laws, h(t) ⇠ t and w(t) ⇠ t1/3.

The analysis in Sec. IV implies that vE is a well-defined
velocity, and vEt is a sharply-defined lengthscale charac-
terizing the range of entanglement in the state. We may
confirm this by measuring this lengthscale directly. In
Appendix E we do this by checking the scaling form for
the saturation behaviour of the entanglement given in
Sec. III A.

Note the small value of the subleading exponent ⌘ ob-
tained from the fit. This implies that finite time cor-
rections are reduced if we plot the numerical derivative
dw/d log t rather than w itself (both quantities scale as
t1/3 at long times). This is done in Fig. 18. The data
fits well to the t1/3 law even at short times. This will be
useful for the more general dynamics where long times
are not available.

Finally, Fig. 19 shows the spatial correlator G(r) de-
fined in Eq. 9, as a function of separation r, for three
successive times. For small r the correlation grows like a
r↵ with ↵ ' 1/2, in agreement with the KPZ prediction
for this exponent. For distances r � ⇠(t), the correla-
tor saturates to a value proportional to w(t). The figure
gives an idea of the size of the correlation length ⇠(t) for
these times.

Figure 5.4: Figure from Ref. 184 (open access). Numerical simulation of the von Neumann
entanglement entropy, S(x, t), using Clifford gates on a system with L = 459 spins 1/2, evaluated
for successive times t = 340, 690, 1024, 1365, 1707, 2048, and 4096. The overall pyramid shape is
associated with the times at which entanglement across a cut at x saturates to the maximal value:
in the circuit language, this is the time after which it becomes more effective (on average) to draw
the cut from x to the side of the circuit, rather than the bottom. The maximal entanglement
entropy is realized at the center of the chain after t ≈ L/2, as expected.

For different circuit geometries, including Trotterizations of Hamiltonian dynamics, the ex-
pected number of “crossed legs” changes, but the intuition that, after some amount of time, the
minimal cut corresponds to one exiting the side of the circuit still holds. Thus, the picture of linear
growth followed by a plateau ought to be quite generic, with different evolutions realizing different
coefficients of linear growths, i.e., different values of vE. For maximally chaotic systems, this will
approach the light cone velocity, which is the maximum speed of information propagation, dic-
tated by the geometry of the circuit; for actual physical systems, the entanglement velocity will be
lower. The validity of the above results have been confirmed using a 1/q expansion in non-Floquet
circuits with brick-wall geometry [185, 186] and Floquet circuits with brick-wall geometry [187];
additionally, this is supported by direct numerical study of standard circuits (e.g. Clifford circuits,
used to generate Fig. 5.4) [184] and numerical and analytical study of numerous other chaotic
models [9].
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5.3.2 Operator growth

As was seen in Ch. 1, in the Heisenberg picture of time evolution, the complexity of generic op-
erators grows in time to involve increasing numbers of degrees of freedom. The support of an
operator—defined as the number of degrees of freedom upon which the operator acts nontriv-
ially (i.e. not as the identity, 1̂)—grows with each time step, due to the fact that the chaotic
dynamics connects (and entangles) degrees of freedom. At late times, i.e. timescales associated
with thermalization, the operator Ŵ †(t) Ô(0) Ŵ (t) will involve so many degrees of freedom that
direct measurement is essentially impossible. Of course, in the Schrödinger picture, operators are
constant in time, and states evolve in complexity. However, what this picture tells us is that
given a measurement outcome for a local observable, the result of the same measurement at the
initial time, t = 0, corresponding to Ŵ (t) Ô Ŵ †(t), is so much more complex and nonlocal as to
be nonrecoverable. This provides a useful means to understand how information in chaotic many-
body quantum systems—e.g. about the system in the distant past—is “hidden” nonlocally by the
dynamics, so that at sufficiently late times, the outcome of any measurement of a local observable
acting on a particular subsystem is insensitive to initial conditions.
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FIG. 1. Left: Random unitary circuit in 1+1D. Each brick represents an independently Haar-

random unitary, acting on the Hilbert space of two adjacent ‘spins’ of local Hilbert space dimension q.

Right: Schematic Behavior of the average OTOC: We find that the average OTOC C(x, t) (where

the average is over the local unitaries in the quantum circuit) has a front which broadens as t↵, with the

indicated exponents in various spatial dimensions d.

measured by

C(x, t) ⌘ 1

2
Tr ⇢[O0(t), Yx]†[O0(t), Yx] (1)

where the expectation value has been taken in an appropriate Gibbs state. (For our purposes

this will be taken to be the infinite temperature Gibbs state ⇢1, which is the state to which

random circuit dynamics equilibrate.) To make the connection with the out-of-time-order correlator

(OTOC), we may expand out the commutators in (1). For simplicity let us assume for the moment

that the operators O0 and Yx are both Pauli-like operators squaring to the identity. We then have

C(x, t) = 1 � Tr ⇢1O0(t)YxO0(t)Yx. (2)

The second term, in which the operators are not time ordered, is the OTOC.

At a given time t, the range of x where the commutator C(x, t) is significantly larger than

zero gives a measure of the size of the operator. This region typically grows ballistically [54],

even when local conserved quantities exhibit di↵usive transport [30, 45, 46, 55].1 The immediate

natural questions about C(x, t) include: what is the ‘butterfly’ velocity vB associated with this

ballistic growth? What is the spatial structure of C(x, t)? Is there a ‘hydrodynamic’ equation for

C(x, t) at large time and distance scales? Are there important di↵erences between 1+1D and higher

dimensions? We will answer all these questions for the case where the time evolution operator U(t)

is a circuit composed of Haar random unitaries, as in Fig. 1a.

1 Strongly disordered Hamiltonians in 1+1D provide counterexamples to this ballistic spreading.

(a) Results for OTOCs.

4

which is the same for all initial operators sharing the
same right endpoint.

To understand how ⇢R evolves in time, consider the
e↵ect of applying a single two-site gate on sites s and
s + 1. There are q4 � 1 nontrivial operators acting on
this two-site Hilbert space. Of these, q2�1 contribute to
⇢R(s, ⌧) (the ones that are trivial on site s+1), while the
other q2(q2 � 1) contribute to ⇢R(s + 1, ⌧). Under a two
site Haar random unitary transformation all the possible
transitions between any of these q4 � 1 operators have,
on average, the same probability6. The upshot is that
after the application of the unitary gate the density ⇢R

evolves as

⇢R(s, ⌧ + 1) = (1 � p) [⇢R(s, ⌧) + ⇢R(s + 1, ⌧)] ; (7a)

⇢R(s + 1, ⌧ + 1) = p [⇢R(s, ⌧) + ⇢R(s + 1, ⌧)] , (7b)

with probabilities p = q2

q2+1 and 1�p = 1
q2+1 . To apply a

similar argument for two subsequent layers of the circuit
it is useful to redefine the density by grouping together
the pairs of sites on which the first layer of the circuit
acts. We abuse notation and denote this quantity as

⇢R(x, t) ⌘ ⇢R(s = 2x � 1, ⌧ = 2t) + ⇢R(s = 2x, ⌧ = 2t),
(8)

where we now only consider the value of the operator
density at even time steps ⌧ = 2t. Applying Eq. (7) for
two layers we arrive at the equation

⇢R(x, t + 1) = 2p(1 � p) ⇢R(x, t)+

+ p2 ⇢R(x � 1, t) + (1 � p)2 ⇢R(x + 1, t). (9)

Thus the right endpoints of Pauli strings perform a bi-
ased random walk on the lattice, where in each step they
move to the right with probability p2, to the left with
probability (1�p)2, and stay on the same site otherwise.
A feature of the above equation is that the time evolu-
tion of ⇢R is independent of the internal structure of the
operator and thus the solution ⇢R(x, t) will be the same
for all initial Pauli strings, modulo a shift x ! x � x0

where x0 is defined by the right endpoint of the initial
string.

The result of the random walk process outlined above
is a front that propagates to the right from its initial
position x0 as hxi � x0 = vBt with a butterfly velocity

vB = p2 � (1 � p)2 = q2�1
q2+1 . Thus the speed at which

the operator weight travels is smaller than the light cone
velocity: vB < vLC = 1. This resonates somewhat with
the result of Ref. 41. The width of the front increases
in time as hx2i � hxi2 = 2Dt with di↵usion constant

D =
p

1 � v2
B/4 = q/2

q2+1 . Note that in the limit q ! 1
the ‘particle’ described by ⇢R(x, t) hops to the right with
probability 1 in each step, and consequently the front
becomes infinitely sharp with velocity vB ! vLC = 1.

The total weight of left endpoints, ⇢L(x, t), obeys a
similar equation except that it propagates to the left with
velocity �vB, while di↵using at the same rate, as shown

in Fig. 2. This means that at time t the vast majority
of quantum information initially stored in �µ with left
(right) endpoint xl (xr) is carried by operators with sup-
port [xl � vBt, xr + vB⌧ ], but where the precise position
of either endpoint can be uncertain within a region of
width �x ⇠

p
Dt.
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FIG. 2. Spreading of a one-site operator averaged over ran-
dom unitary circuits. ⇢R(s, ⌧) (⇢L(s, ⌧)) is the total weight
carried by Pauli strings with right (left) endpoint at site s at
time ⌧ . Figure (c) shows the sum of these two functions (mul-
tiplied by

p
⌧ to show the position of the front more clearly).

Almost all the weight is carried by operators with endpoints
at the two fronts propagating out from the initial site with

speed vB = q2�1
q2+1

. These fronts in turn broaden di↵usively

in time as
p
⌧ . The two other velocity scales, the light cone

velocity vLC and the entanglement velocity vE (see Eq. (27))
are also indicated, satisfying vE < vB < vLC. The values of
⇢R and ⇢L after 100 layers of the circuit are shown in Fig. (b).
Fig. (a) shows the integrated operator weights R(s) (L(s)),
denoting the total weight left (right) of site s, along with the
OTO commutator C(s, ⌧). The OTOC saturates to 1 inside
the front and has the value 1/2 exactly at ⌧ = s/vB

We can find the full distribution of ⇢R(x, t) using a
standard generating functional method. In the rest of
this section we will use coordinates relative to the initial
position of the front, i.e. x � x0 ! x. The solution to
Eq. (9) than reads

⇢R(x, t) =
q2(t+x)

(1 + q2)2t

✓
2t

t + x

◆
. (10)

In the scaling limit t, x ! 1 but keeping x/t ⇡ vB fixed
this becomes (using Stirling’s approximation)

⇢R(x = vBt + O(
p

t)) =
1p

⇡(1 � v2
B)t

e
� (x�vBt)2

(1�v2
B

)t , (11)

(b) General operator spreading.

Figure 5.5: Figure a is from Ref. 185 (open access). Here, d is the spatial dimension, and C(x, t) is
the ensemble-averaged OTOC corresponding to generic observables sampled from a generalization
of the Pauli X̂ and Ẑ matrices to qudits (with local Hilbert space dimension q). The finding is that
propagates ballistically at the “butterfly velocity,” vB, which derives its name from the butterfly
effect associated with classical chaos; the operator “front” broadens as tα as the front propagates.
In one dimension, this corresponds to biased diffusion: ballistic propagation of the operator front in
space, with diffusive broadening of the front itself. In two dimensions, the broadening is described
by the KPZ equation, which is unrelated to the recovery of KPZ for entanglement growth in one
dimension. Figure b is from Ref. 186 (open access). Numerical study of the growth of generic
single-site operators with time in one spatial dimension. The result is ballistic propagation of the
operator front with diffusive broadening, in agreement with Fig. a.

In contrast to the situations that one can access by perturbing about integrable models, here we
are particularly interested in the spread of operators unrelated to any conservation laws, although
we will address conservation laws as well. As in the previous section, we will limit our consideration
to one dimension, although Ref. 185 provides results for out-of-time-ordered correlation functions
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(OTOCs) in d = 1,2,3 spatial dimensions, summarized in Fig. 5.5(a). The correlation function,
C3, in Ref. 185 is defined by

C (x, t) = 1

2
Tr { ρ̂ [Ô0 (t) , Ŷj]† [Ô0 (t) , Ŷj] } , (5.3.8)

where Ô0 acts only on site 0 at time t = 0, and evolves according to Ô0 (t) = Ŵ † (t) Ô0 (0) Ŵ (t).
Under the evolution, the number of sites upon which Ô0(t) acts grows with time; in this example,

the “size” of Ô0(t) is taken to be the region of sites in which Ô0(t) fails to commute with typical

operators, Ŷj with O(1) strength on site j. Since there are no conserved quantities, including

energy, the standard choice of equilibrium density matrix, ρ̂, is the identity, 1̂. The OTOC is
averaged over ensembles of circuits and choices of the typical operator.

Going forward, we follow the discussion of Ref. 186, but note that the methodology and results
are essentially the same as those of Ref. 185. To describe generic observables, it is most convenient
to define a basis of all possible operators in the many-body Hilbert space, which has dimension qdL.
We restrict to one spatial dimension, d = 1, and consider only generic systems with no “special”
states, i.e. neither symmetries nor constraints, so that all qL states can be connected dynamically.
We enumerate a basis of q2L unique operators in analogy to the Pauli matrices, 1̂j, X̂j , Ŷj , Ẑj ,
defined on each site, j, which for two-level systems enumerate all 4L unique operators that can act
on the many-body system. Local operators will act as the identity on most degrees of freedom.
This operator basis is particularly useful due to its local construction: each basis operator is a
string of operators that act on individual sites; local operators are those that act as the identity
on all but a handful of sites. Any given operator, Ô, will be a linear superposition of the basis
operators: this basis enumerates a vector space in which all operators live, and we assign to this
vector space the symmetric inner product

⟨Â∣B̂⟩ ≡ 1

qL
Tr [Â†B̂] , (5.3.9)

which defines the norm of an operator Ô as
√

⟨Ô∣Ô⟩.
Consider a generic operator of interest, Ô0, which at time t = 0 acts as the identity on all but

one site, which we call “0,” upon which Ô0 realizes any linear combination of the basis operators
for site 0. We note that the basis operators, {σ̂µ} evolve according to

σ̂µ (t) = Ŵ † (t) σ̂µ Ŵ (t) =∑
ν

cµν (t) σ̂ν , (5.3.10)

where the time-dependent coefficient cµν (t) gives the overlap of the operator string labelled ν with
the time-evolved string µ. Using standard completeness relations, this is given by

cµν (t) = ⟨σ̂ν ∣σ̂µ(t)⟩ = 1

qL
Tr {(σ̂ν)†

Ŵ † (t) σ̂µ Ŵ (t)} . (5.3.11)

For convenience, one can take Ô0 to correspond to a particular choice of σ̂µ, which acts as the
identity except on site 0, rather than a linear combination of such operators. In this case, at t = 0,
cµν(0) = δµ,ν , and because the basis operators generalize Pauli matrices, Ô0 has unit norm. Since

3The OTOC is actually given by 1 − C, which also recovers from C if one drops the factor of 1/2 and the
commutator brackets.
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the dynamics are unitary, for t > 0, the norm of Ô0 must be preserved; for this constrains the
coefficients, c, to satisfy

⟨Ô∣Ô⟩ = 1 =∑
ν

∣cµν(t)∣
2
, (5.3.12)

as with standard vector spaces. Thus, the coefficients ∣c∣2 are like probabilities: they are positive
semi-definite and sum to unity.

For short times, there is little or no weight, cµν , on strings σ̂ν with nonidentity components far
from site 0. In general, the goal of this exercise is to understand how the strings that contribute
to Eq. (5.3.10) get longer with time under the dynamics generated by Ŵ . To analyze the extent
to which the support of Ô0 spreads in time t, it is convenient to introduce the concepts of right
[left] weights, which we interpret as a density. The right weight of σ̂µ evolved to time t is given by

ρµR (j, t) = ∑
ν

′ ∣cµν(t)∣
2
, (5.3.13)

where the prime indicates restriction to strings ν for which the rightmost nonidentity operator acts
on site j. An analogous equation defines the left weight. Because the sum over j of ρµR (j, t) = 1,
this quantity can be interpreted as a density.

To understand the dynamics of the right weight, we need only consider the action of a single
two-site unitary gate, i.e. corresponding to sites j, j + 1, which takes the system from time t to
time t + 1. Consider strings with right weights at sites j and j + 1 at time t and t + 1. Of the
q4−1 nonidentity operators that act on the Hilbert space corresponding to these two sites, q2−1 of
these act nontrivially only on ρµR (j, t), with the remaining q4 − q2 operators acting on ρµR (j + 1, t)
(including operators that act on both). The Haar random unitary generates all possible transitions
between these q4−1 operators, and with roughly the same probability (after averaging). Thus, the
probability for a right weight at site j to stay in place is given by the fraction of operators that
act only on site j, i.e. p = (q2 − 1)/(q4 − 1) = 1/(q2 + 1). The ensemble-averaged probability for the
right weight to move from site j to site j + 1 under this gate is given by 1 − p = q2/(q2 + 1).

Consideration of the ensemble-averaged effect of subsequent layers of the circuit leads straight-
forwardly to the conclusion that the right weight performs a biased random walk under the action
of the circuit, Ŵ , moving to the right with probability pR = q4/(q2 + 1)2 and to the left with
probability pL = 1/(q2 + 1)2, and stays put with probability 1− pL − pR = 2q2/(q2 + 1)2. In the limit
q →∞, pR → 1, and the probability to stay put or go back vanish. The result of this random walk
is that the front propagates from x = 0 ballistically, with ⟨x⟩ = vBt, with the butterfly velocity
given by

vB = p+ − p− =
q4

(q2 + 1)2 −
1

(q2 + 1)2 = q
2 − 1

q2 + 1
, (5.3.14)

where p+ is the probability with which the right [left] weight moves to the right [left], and p−
the probability the front moves in the direction opposite its namesake. For q → ∞, the butterfly
velocity approaches the light cone velocity, 1. For physical systems, the butterfly velocity will be
less than the light cone velocity.

The corresponding stochastic evolution equation for the ensemble-averaged right [left] weight4

is

ρR(x, t + 1) = 2p(1 − p)ρR(x, t) + (1 − p)2ρR(x − 1, t) + p2ρR(x + 1, t) , (5.3.15)

4Technically, the right weight is relaxed from ρµR (j, t) to ρµR (x, t), where x corresponds to the bonds upon which
the first layer of the circuit acts, rather than specific sites.
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which is a lattice version of biased diffusion, which has solution

ρR(x, t) =
q2(t+x)

(1 + q2)2t
( 2t
t + x) , (5.3.16)

and taking t, x → ∞ with x/t ≈ vB fixed, one can invoke Stirling’s approximation to recover the
[biased] diffusive kernel

ρR (x = vBt +O(
√
t)) = 1√

π(1 − v2
B)t

exp{−
(x − vBt)

2

(1 − v2
B) t

} , (5.3.17)

so that the operator front propagates ballistically with velocity vB, and the front itself broadens
diffusively.

Similar considerations can be used to characterize OTOCs as well, and are in agreement with
Ref. 185. In particular, the OTOC grows sharply after the light cone arrives, but does not exhibit
an exponential growth—i.e. related to the Lyapunov exponent—as one might expect from classical
chaos. Details of the OTOC are unimportant to the considerations of this thesis. In addition to
their specific results, these works [185,186]—along with results from integrability breaking—paint a
clear picture that at intermediate-to-late times, thermal (or chaotic) systems are well-described by
hydrodynamics, even in the absence of conserved quantities (i.e. hydrodynamics of information).

The above procedure can be repeated in the presence of an extensive conserved quantity, e.g.
a U(1) symmetry corresponding to the conservation of the z-component of spin, appropriately
generalized to q-state degrees of freedom. This procedure is outlined in contemporary Refs. 189
and 190. In the presence of a conserved charge, we must consider separately operators that
overlap with the conserved charge, and the nonconserved component of a given operator. One
then finds that the conserved part of the operator diffuses, as one expects for conserved charges.
Additionally, the weight of the operator corresponding to the conserved part is transferred at some
rate under the dynamics to nonconserved operators, which spread ballistically, as described above.
The nonconserved components propagate much more quickly and become nonlocal, providing a
“reservoir” that allows for dissipation, as one generally expects to find in thermal systems.

5.4 Spectral Statistics in a Minimal Model

A minimal model of many-body quantum chaos is given by a brick-wall Floquet unitary circuit
comprising two-site gates, which acts on q-state “colors” that live on a lattice. Because the model
is Floquet, all times are discrete, t ∈ N, and evolution by t time steps is given by t applications
of the single period evolution operator, Ŵ . The brick-wall structure of Ŵ is depicted in Fig. 5.6.
Using this model, Ref. 187 obtained analytic expressions for the spectral form factor (SFF), decay
of local observables, out-of-time-ordered commutators (OTOCs), and the second Renyi entropy.
Excepting the SFF, these results agree with previous studies on non-Floquet circuits, but are more
difficult to obtain than in the latter setting; the SFF is a measure of spectral rigidity, and has no
meaning in non-Floquet circuits, which do not have a spectrum.

Thus, while dynamics are more difficult to tackle in the Floquet setting, the primary advantage
of the latter is the ability to access spectral properties. There exist several common probes of
spectral signatures of quantum chaos, another being the r ratio that measures the ratio of level
spacings, and thereby level repulsion. The spectral form factor, K(t), is the Fourier transform of
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t = 1

t = 1/2

Figure 5.6: A depiction of the Floquet unitary circuit.

the two-point correlation function of the density of eigenvalues of the evolution, i.e.

K(t) ≡
D
∑

m,n=1

⟨ei(θm−θn)t⟩ = ⟨∣Tr [Ŵ (t)]∣
2
⟩ , (5.4.1)

where {θm} are the eigenphases of Ŵ , D is the many-body Hilbert space dimension, Ŵ (t) is
equivalent to the tth power of Ŵ due to the Floquet structure, and ⟨. . .⟩ denotes the average over
an ensemble of statistically similar systems. The SFF is the Fourier transform of the two-point
correlation function of eigenphases. Clearly for t = 0 one has K(0) = D2, and going forward we will
only refer to K(t) for t > 0.

For t≪ D, K(t) probes correlations between levels with a separation far greater than the mean
level spacing, ∝ D−1. In chaotic systems, one expects K(t) to be linear in t due to “Coulombic
suppresion” of long-wavelength fluctuations in the density of eigenvalues of Ŵ . For uncorrelated
eigenphases, K(t) = D for all times, as can be demonstrated exactly for free fermions on a lattice
with a disordered on-site potential, e.g. For t ∼ D, K(t) captures correlations between eigenvalues
with separations comparable to the mean level spacing. It is therefore expected that for t ≥ tHeis

one has K(t) = D, where the Heisenberg time, tHeis = D is equal to the many-body Hilbert space
dimension, or inverse mean level spacing. In a näıve sense, once this threshold has been met, K(t)
reflects eigenvalues {θm} that are in an average sense closer to θn than the mean level spacing,
which gives only the m = n terms in the sum in Eq. (5.4.1).

Figure 5.7: A schematic illustration of the diagrammatic representation of K(t) according to
Ref. 187.

According to Ref. 187, the evaluation of the ensemble average in Eq. (5.4.1), which defines
K(t), amounts to generating all diagrams by pairing two-site unitary gates with their Hermitian
conjugates at each bond, as schematically illustrated in Fig. 5.7. However, for a given t, there are
(t!)2(L−1)

diagrams in total, making further approximation necessary. The only parameter at our
disposal is q, and the situation becomes far more tractable as q →∞. Although this limit can be
problematic when considering operator spreading, it does not appear to afflict the SFF in quite
the same way.

In the large-q limit, the leading contributions consist of t different diagrams—where t ∈ Z is the
time measured in Floquet periods—each of which has an identical “cyclical” pairing at all sites (or
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bonds, perhaps more accurately) as illustrated in Figs. 5.7 and 5.8. A rigorous derivation can be
found in Ref. 187. These t diagrams are “Gaussian,” in the sense that they can be evaluated using

4

FIG. 2. Illustration of Tr[O(t)O(0)] for t = 2. U and U† are
represented by rectangles, respectively shaded in light and
dark grey. The local operator Ox is represented by a square.
The curled lines at the top and bottom edge indicate closed
loops which denote the trace operation. Left: initial expres-
sion. Right: after cancellation of U with U† wherever possi-
ble.

FIG. 3. Illustration of Tr[O(t)O(0)] for t = 2 formed by fold-
ing Fig. 2 (right) so that timelines run upwards for W and
downwards for W †.

of a single site. To this end, and in anticipation of the
disorder average, we switch to an alternative notation for

Ui,i+1 and U†
i,i+1 in which individual sites appear sepa-

rately, as shown in Fig. 4.

With these preliminaries in place, we can set out a di-
agrammatic representation for ensemble averages. It is a
many-body extension of the one introduced for averages
over the CUE by Brouwer and Beenakker.16 It can be ap-
plied to an arbitrary observable f(W ) but to be definite
we illustrate it for K(t) with t = 2 and L = 2, so that
W (2) = [U1,2]

2. In general three steps are involved.

(i) The observable f(W ) is represented as a collection
of single-site diagrams using the notation introduced in
Fig. 4. For the example of K(t=2), one starts from the
many-body diagram shown in Fig. 5 (right) and obtains
the single-site representation shown in Fig. 6 (left). Note
that in Fig. 6 and the following, it is convenient to draw
site diagrams with the time axis horizontal, rather than
vertical as in many-body diagrams.

(ii) The ensemble average hf(W )i is computed by gen-

FIG. 4. Adaptations to diagrammatic notation made in order
to show time evolution of an individual site. The shaded rect-
angles representing Ui,i+1 and U†

i,i+1 are replaced by pairs of
double lines, with an arrow directed from the column-label to
the row-label of the matrix. To record the distinction between
odd and even i, the double lines are blue in the first case and
red in the second.

erating a collection of single-site ‘contracted’ diagrams
G = {Gi}L

i=1 as follows. On each site, filled U -dots are
connected to filled U †-dots of the same color on the same
site with a dashed line (a contraction) in all possible
ways, and likewise for the empty dots.

Since U and U† act on neighbouring pairs of sites, these
contractions must be matched: for even i the choice of
contractions between blue dots must be the same in the
diagrams Gi�1 and Gi; similarly for the red dots and
the diagrams Gi, Gi+1. We refer to this as the bond
constraint.

(iii) Each contracted site diagram Gi gives rise to an
algebraic expression A(Gi), obtained as the product of
two factors

A(Gi) = AT (Gi)AU (Gi) . (14)

These factors are associated with loops of two kinds,
called T -loops and U -loops in Ref. 16. Examples of these
two types of loop are illustrated in Fig. 7.

A T -loop is a closed sequence of alternating single and
dashed lines. It carries an index corresponding to one of
the q basis states at a site. We generate the contribution
associated with each T -loop by summing over its index.
This leads to a factor of q for a T -loop of single lines
if it does not pass through any operator insertion, or of
Tr(O1O2 . . . ) if the T -loop passes through the operators
{O1, O2, . . .}. The overall factor AT (Gi) is obtained as
the product of the individual factors coming from each
T -loop.

A U -loop is a closed sequence of alternating double
and dashed lines. The length c of a U -loop is defined
as half of the number of double lines it contains. Let
Ri = {c

(r)
k }ri

k=1 and Bi = {c
(b)
k }bi

k=1 be the sets of lengths
of red and blue loops in Gi. Then from the theory of
CUE averages16

AU (Gi) = (VRi
VBi

)1/2 (15)

(a) Diagrammatic notation.

6

A. Spectral form factor

Consider the spectral form factor K(t) introduced in
(5). Applying the procedure described in Sec. III (and
generalising the example given for L = 2 and t = 2 in
Fig. 6), we obtain for L > 2 a many-body diagram con-
sisting of single-site diagrams as shown in Fig. 8. Here
each time step in W (t) contributes with two unitaries,
leading to 4t dots divided into four types of dots – blue
or red, and empty or filled.

FIG. 8. The site diagram associated with Tr[W (t)]Tr[W †(t)].
It is colour coded as follows: for an odd site i, the blue dots
and double lines are contributions from Ui,i+1 or U†

i,i+1 and

the red ones are from Ui�1,i or U†
i�1,i. For an even site, this

coding is reversed.

Next we consider ensemble-averaging this diagram,
making all possible contractions. On a single site, one
can easily check that one of the diagrams with the max-
imum number of loops is, for example, the top site di-
agram in Fig. 9. Since this diagram is Gaussian and
⌧i = ui = 2t and ni = 4t, its contribution for large q is
simply 1. There are t equivalent diagrams of this kind,
obtained by cyclically shifting the bottom dots with re-
spect to the top ones, as shown in Fig. 9. Additionally,
once one of these configurations has been chosen on the
site i, the bond constraint forces all other sites to be in
the same configuration in order to maximise the number
of loops. In consequence we get the result K(t) = |t|. A
proof of this statement is given in Appendix. C.

B. Relaxation of local observables

Our result for the relaxation of local observables is
given in (7). The basis for it is as follows (proofs are
given Appendix D). Contributions to tr [O(x, t)O(x)] are
generated by contractions of the site diagrams shown in
Fig. 10. The leading contribution Gi at a site i 6= x is
from a contraction of the form shown in Fig. 11 (top).
However, if this contraction is made at every site i 6= x,
then because of the bond constraint it also applies at site
x and yields A(Gx) / Tr Ox = 0. An example of an al-
ternative contraction, for which A(Gx) 6= 0, is also shown
in Fig. 11. With such a choice at i = x, the bond con-
straint imposes contractions at nearby sites i 6= x that
are sub-leading in q.

We have also evaluated the leading non-zero contribu-

FIG. 9. Three examples from a total of t leading order dia-
grams for K(t) at t > 0.

FIG. 10. Site diagrams associated with [O(x, t=2)O(x)]av at
sites x and i = x + 2. Color coding is as in Fig. 8 .

tions to (7) for large q at small values of t. We find

h[O(x, t)O(x)]avi =

8
>>><
>>>:

1 for t = 0

0 for t = 1 .

q�7 for t = 2 .

16q�11 for t = 3 .

(19)

These results are interesting for two reasons. First, the
equivalent quantity for time evolution with a random uni-
tary circuit is identically zero at all t 6= 0. The results
hence expose a di↵erence between our Floquet model and
random unitary circuits. The finite relaxation rate at fi-
nite q in the Floquet model is consistent with expected
generic behaviour, whereas complete relaxation for any
t 6= 0 is likely to be a special feature of random unitary
circuits. Second, and quite separately, the dominant con-
tributions arise from non-Gaussian diagrams: for exam-
ple, at t = 3 the largest Gaussian term is 2q�9, but is
cancelled by non-Gaussian contributions.

(b) Leading t diagrams.

Figure 5.8: Figure from Ref. 187 by collaborators (open access). Figure (a) represents a convenient
notation for performing the diagrammatic expansion, as appears in [187]. Figure (b) considers the
Haar averaging of unitaries (and their conjugates) corresponding to a single bond, i, i + 1. There
are t leading diagrams: the upper diagram corresponds to pairing the first Û with the first Û †

and so on; the next diagrams correspond to cyclic pairings, which due to cyclic invariance of the
trace—represented by the closed outer loop—are all equivalent to one another. This produces an
overall factor of t, which is the expected behavior for chaotic systems.

the Wick contraction of a random unitary and its conjugate. The diagrams depicted in Fig. 5.8b,
contribute factors

Uk,l
i,j U

∗k′,l′
i′,j′ = 1

q2
δi,i′δj,j′δk,k′δl,l′ , (5.4.2)

to leading order. Other diagrams have more complicated prefactors, and are subleading in q−1.
Additionally, while Fig. 5.8b depicts a single bond, note that the evaluation of the Haar contractions
of the indices of that bond constrain the indices that feed into the unitaries connected to neighbors
on either side, fixing the contraction of those indices to match exactly the contractions of the first
bond considered, i.e. as shown in Fig. 5.8b. This is referred to as the “bond constraint” in
Ref. 187, and gives the leading terms contributing to K(t) from consideration of a single bond.
Any deviations from the bond constraint carry a penalty of q−2 at minimum, and generally q−4 or
higher, and are thus strongly subleading.

While the q → ∞ limit may seem drastic, and partially problematic as D, tHeis → ∞, it is

worth noting a few things. As previously mentioned, for a given t, there are (t!)2(L−1)
diagrams in

total, which make even the task of collecting only the subleading diagrams for some arbitrary time
untenable. Additionally, it is well known that for finite q,L, no expansion in 1/q can capture the
transition from the linear ramp to the post-Heisenberg plateau, which would be the only benefit
to having tHeis finite. There does not appear to be an established means to move away from the
q →∞ limit while retaining both generality and analytic control.
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However, taking q → ∞, tracing over expressions of the type that appear in Eq. (5.4.2) will
cancel the factor of q−2, and the result of the ensemble averaging, to leading order, is unity. The
factor of t corresponding to the cyclically equivalent diagrams in Fig. 5.8b is all that remains: this
is precisely the linear ramp regime that indicates quantum chaos. Additionally, this result depends
crucially on the gate structure: if sites are decoupled in particular ways, K(t) grows much more
quickly, corresponding to less chaotic dynamics. For example, if Ŵ consists only of single-site
unitary gates, then K(t) = tL out to the Heisenberg time, q. If Ŵ consists only of one of the two
layers, i.e. only even bonds, then K(t) = tL/2 out to the Heisenberg time q2. This pattern holds
for any dynamics involving disconnected blocks of n sites. One way to think about the finite q
limit is to imagine that, at early times, interactions have not yet had adequate time to couple
the system, which therefore behaves initially as L decoupled blocks. As the system evolves and
entangles through interactions, these sites merge into chaotic blocks of size ξ, each of which has
Kξ(t) = t, with the overall SFF scaling as tL/ξ, until all blocks have merged into a single block
that spans the entire system, after which K(t) = t, unless K(t) for the whole system saturates
to D before the system can thermalize, in which case, which would indicate that the system is
not chaotic. The time required to reach the linear ramp regime is known as the Thouless time,
tth. In Sec. 5.5, we investigate the Thouless time in models with symmetries, where it is expected
that even in the most chaotic of systems, the system’s thermalization is delayed by the need for
information about the conservation law to spread through the system.

5.5 Spectral Statistics in Models with Conserved Charges

This Sec. is largely drawn from Ref. 43 by this author.

5.5.1 Overview

In this Section, we investigate the effect of a local conserved quantity Q̂ on the behavior of tTh

and, more generally, on the spectral properties of the evolution operator, Ŵ , of a Floquet system.
In particular, we consider the two-point spectral form factor (SFF) K(t), defined in Eq. (5.4.1) in
Sec. 5.4,

K(t) ≡
D
∑

m,n=1

⟨ei(θm−θn)t⟩ = ⟨∣Tr [Ŵ (t)]∣
2
⟩ .

For spatially extended one-dimensional (1d) systems without a conserved density [188,197], K(t) ≃
tL/ξ(t) for t≪ tTh: the system can be seen as partitioned into L/ξ(t) chaotic blocks, with a length

ξ(t) that grows with t. RMT behavior is recovered for t ≳ tTh with ξ(t = tTh) ∼ L. In the presence

of a conserved quantity with diffusive transport, it is natural to expect tTh ∼ L2/D, where D is
the diffusion constant. The idea that the timescale L2/D controls the onset of RMT spectral
correlations was proposed on a heuristic basis in [193], with support from a variety of estimates
and numerical studies. Here we establish this result in an exact treatment of a minimal model.
We also set out the scaling behavior of K(t) in the time interval 1 ≪ t ≲ tTh and show that this
holds for a numerical simulation of an actual Floquet system with a conserved charge.
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To probe K(t) we build on a Floquet circuit model introduced in [187] and introduced in
Sec. 5.4, consisting of a chain with q-state “spins” (or “colors”) at each site. The model has a time-
evolution operator Ŵ constructed from unitary gates that act on neighboring pairs of sites. Gates
are randomly selected in space but repeated periodically in time. Using a diagrammatic method
to average over the individual matrices [198], to leading order at large q, one finds K(t) =KCUE(t)
for any t ≠ 0, so that tTh → 0 as q → ∞. In the following, we formulate and characterize an
extension of this model that hosts a U(1) symmetry corresponding to a local, conserved operator
Q̂ that commutes with Ŵ . In this way, the limit q →∞ has a twofold convenience: first, it allows
controlled diagrammatic calculations; second, it washes out any effect on K(t) not due to Q̂.

5.5.2 Model

The model we use is a Floquet random unitary circuit (FRUC) defined on a chain of L sites with
local Hilbert space Hloc ≡ Cq ⊗ C2, the on-site tensor product of a q-dimensional color and a spin
1/2. The former degree of freedom facilitates Haar averaging [187,188,190], and we encode a U(1)
symmetry using the latter, following [190], corresponding (in standard notation) to conservation
of Q̂ = Ŝz = 1

2 ∑
L
j=1 σ̂

z
j . This model with its single symmetry is expected to capture the spectral

properties of generic models with a single, extensive conserved quantity.
4

t = 0

t = 1

t = 2

t = 3

t = 4

2i 2i + 1

U(q2)

##

"#, #"

""

FIG. 1. Left: a diagram of the random unitary circuit. Each
site (black dot) is the direct product of a two-state qubit
and a q-state qudit. Each gate (blue box) locally conserves
Stot

z , the total z component of the two qubits it acts upon,
and is thus a block-diagonal unitary of the form shown on
the right, with each block of each gate independently Haar-
random. The smaller blocks do not flip the qubits and thus
operate only on the two qudits, while the larger block also
produces Stot

z -conserving qubit “flip-flops”.

by U(t) =
Qt

t0=1 U(t0, t0 � 1), where

U(t0, t0 � 1) =

(Q
i U2i,2i+1 if t0 is even,Q
i U2i�1,2i if t0 is odd.

(3)

As a result of the conservation law, each two-site unitary
gate Ui,i+1 is a (4q2 ⇥ 4q2)-dimensional block-diagonal
matrix. Labeling the spin state on each site i as (" a)i or
(# b)i, where the first label is the spin state in the Pauli z
basis and the second label is the qudit state, the structure
of Ui,i+1 looks like: (i) a (q2 ⇥ q2) block acting in the
(" a)i ⌦ (" b)i+1 subspace, (ii) a (2q2 ⇥ 2q2) block acting
in the (" a)i⌦(# b)i+1, (# a)i⌦(" b)i+1 subspace, and (iii)
a (q2 ⇥ q2) block acting in the (# a)i ⌦ (# b)i+1 subspace.
Each of these blocks is a Haar-random unitary, and each
block in each two-site gate is chosen independently of all
others.

To characterize the time-evolution of local operators,
it is useful to define a complete orthonormal basis of op-
erators on each site. For the spin, we can use the Pauli
matrices on each site to define an onsite basis as

{�µ=0,1,2,3
i } ⌘ {Ii, ri, li, zi} = {Ii,

�+
ip
2
,
��

ip
2
,�z

i },

so ri and li are suitably normalized spin raising and low-
ering operators, respectively. These basis operators all
have a definite �Stot

z (such as “raise/lower by one”) un-
der the U(1) symmetry that conserves Stot

z and are thus

more convenient than the Pauli �
x/y
i matrices for char-

acterizing the U(1)-conserving dynamics. For the qudit,
one can construct higher-dimensional generalizations of

the Pauli matrices {⌃µ=0,1,···q2�1
i } that are normalized

such that Tr(⌃µ†
i ⌃⌫

i )/q = �µ⌫ . Then, the tensor product
Bµ⌫

i ⌘ �µ
i ⌦⌃⌫

i generates a local basis for the 4q2 opera-
tors acting on each composite site i, denoted in shorthand
as (I⌃⌫)i, (r⌃⌫)i, (l⌃⌫)i and (z⌃⌫)i. Using this basis, the

time evolved operator O(t) can be expanded as:

O(t) =
X

S
aS(t)S, (4)

where each generalized Pauli string S is one of (4q2)L ba-
sis product operators,

Q
i Bµi⌫i

i . Since the basis strings
satisfy Tr[S†S 0]/(2q)L = �SS0 , the coe�cients aS can
be obtained as aS(t) = Tr[S†O(t)]/(2q)L. Finally, we

normalize the initial operator O0 such that Tr[O†
0O0] =

(2q)L which, by the unitarity of the dynamics, implies
that the total weight of O(t) on all strings S is also nor-
malized to 1:

X

S
|aS(t)|2 = 1. (5)

This sum rule is the e↵ective conservation law due to
unitarity37,38.

There are a few classes of operators on site i that evolve
di↵erently under the action of this conserving unitary
circuit. First, (zI)i measures the local conserved charge,
and (II)i is the identity operator. The conservation law
implies that Stot

z is conserved so that

Stot
z =

X

i

(zI)i, U(t)†Stot
z U(t) = Stot

z , (6)

and the operators (II)i(II)i+1, (zI)i(zI)i+1, and

[(zI)i(II)i+1 + (II)i(zI)i+1]/
p

2 are left invariant by the
action of all local gates Ui,i+1. Further, if one starts with
an operator with a definite �Stot

z under the U(1) sym-
metry (for example, (r⌃⌫)i raises the spin by one), the
action of the circuit preserves this �Stot

z . Appendix A
summarizes the action of Ui,i+1 on all possible two-site
operators.

It will be subsequently useful to separate the spreading
operator into conserved and non-conserved pieces. To
intuitively understand this separation, consider an initial
density matrix

⇢(0) = (Iall + AO0)/(2q)L, (7)

where Iall is the background equilibrium state which is
the identity on the full system; AO0 is a traceless local on-
site perturbation at the origin to this equilibrium state,

with O0 normalized such that Tr[O†
0O0] = (2q)L, and A is

the amplitude of this perturbation, which must be small
enough so ⇢ remains non-negative. The system conserves
Stot

z (6) so that

hStot
z i(t) = A

Tr[O0(t)S
tot
z ]

(2q)L
= hStot

z i(0) = A
Tr[O0S

tot
z ]

(2q)L
,

(8)

where hi(t) denotes expectation values in the state ⇢(t).
If the perturbation injects some local charge at the origin
then, on general grounds, we expect this “extra” charge

to spread di↵usively so that h(zI)xi ⇠ 1p
t
e�x2/4Dt. We

Figure 5.9: Figure from Ref. 190 (open access). Overall structure of the U(1) conserving circuit
and local gates. The individual 4q2 × 4q2 two-site unitary gates, Ûj,j+1, are block diagonal in the z

basis of the spins 1/2 due to the conservation of local magnetization Szj,j+1 = (σ̂zj + σ̂zj+1) /2. If the
spins j and j + 1 are jointly in the ↑↑ or ↓↓ states, the gate acts nontrivially only on the q-state
colors as a q2 × q2 unitary. If the j and j + 1 spins are in either of the states ↑↓ or ↓↑, the gate
may mix them, acting as a 2q2 × 2q2 unitary. Each of the three unitary blocks are independently
drawnly drawn from a distribution of Haar measure, indicated by their different colors.

The single-period—or Floquet—evolution operator Ŵ ≡ Ŵ2 ⋅ Ŵ1 is given here by a depth-two
circuit comprised of local two-site gates: assuming even L, the two layers correspond respectively
to odd and even bonds, with Ŵ1 = Û1,2 ⊗ Û3,4 ⊗ . . . and Ŵ2 = Û2,3 ⊗ Û4,5 ⊗ . . . ÛL,1. We require

that each Ûj,j+1 preserves the local magnetization Szj,j+1 = 1
2
(σ̂zj + σ̂zj+1) [189, 190]. Thus Ûj,j+1 is

a 4q2 × 4q2 block diagonal matrix, acting as a q2 × q2 matrix in each of the ↑↑ and ↓↓ subspaces,
and as a 2q2 × 2q2 matrix in the ↑↓ , ↓↑ subspace, with all three blocks independently drawn Haar
random unitaries, as depicted in Fig. 5.9.
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To characterize spectral correlations in this quantum circuit, we compute the SFF as defined
in Eq. (5.4.1). Since [Ŵ , Ŝz] = 0, Ŵ is block-diagonal, levels from different Ŝz sectors do not repel;
thus, we define

K(t, s) ≡ ⟨Tr
s
[Ŵ (t)]Tr

s
[Ŵ †(t)]⟩ (5.5.1)

where ‘s’ indicates restriction to the subspace Ŝz = S = Ls and ⟨⋯⟩ denotes Haar averaging, which
can be performed diagrammatically as depicted in Fig. 5.7. Note that for finite L, only a discrete
set of values of s are allowed.

5.5.3 Effective spin-1/2 calculation

The ensemble averaging in Eq. (5.5.1) maps K(t, s) to the partition function of a Trotterized
Heisenberg ferromagnet. Evaluating this average amounts to generating all diagrams [187] by
pairing unitaries Ûj,j+1 with their complex conjugates Û †

j,j+1 at each bond, as depicted in Sec. 5.4,
but now with additional spin degrees of freedom involved.

(a) (b)

Figure 5.10: (a): The three leading diagrams of K(t) at t = 3 in the large-q limit [187]. For each
diagram, every site i takes the same configuration. (b): The diagrammatical representation of
Uk,γ;lδ
i,α;j,β, where the Roman [Greek] indices correspond to color [spin] degrees of freedom.

As in the case without auxiliary spin 1/2 degrees of freedom, the evaluation of the ensemble
average in Eq. (5.5.1), which defines the restricted spectral form factor, K(t, s), amounts to gen-
erating all diagrams by pairing unitary gates with their Hermitian conjugates at each bond, as
schematically illustrated in Figs. 5.7 and 5.10a. As q → ∞, the leading contributions come from
t diagrams, each of which has an identical ‘cyclical’ pairing at all sites [187]. These t diagrams
are ‘Gaussian’, in the sense that they can be evaluated using the Wick contraction of a random
unitary and its conjugate (Fig. 5.10b),

Uk,α;l,α
i,α;j,α U

∗k′,α;l′,α
i′,α;j′,α = 1

q2
δi,i′δj,j′δk,k′δl,l′

Uk,α;l,β
i,α;j,β U

∗k′,α;l′,β
i′,α;j′,β = 1

2q2
δi,i′δj,j′δk,k′δl,l′ if α ≠ β

, (5.5.2)

where Roman [Greek] indices correspond to color [spin] degrees of freedom, in an extension of
Eq. (5.4.2). Using Eq. (5.5.2), we translate each of these t diagrams into an algebraic term by
summing over the color and spin degrees of freedom.

The sum over the “color” degrees of freedom will cancel out all factors of q that appear in
Eq. (5.5.2), as seen in Sec. 5.4 [187]. This leaves a sum over the spin degrees of freedom, subject
to the constraint Sz = ∑Lj=1 σ̂

z
j = sL. Observe that the choice of spin degrees of freedom in Ŵ fixes
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those in Ŵ † due to Eq. (5.5.2). Consequently, the sum over configurations of the spins 1/2 can be
computed by enumerating all possible ways to assign spins in the diagrammatic representation of
Tr
s
[Ŵ ]—as illustrated in Fig. 5.11—such that (i) the global magnetization satisfies Sz = Ls along

any horizontal fixed-time slice of the diagram, and (ii) the local magnetization Szj,j+1 ≡ σ̂zj + σ̂zj+1 is
preserved across each two-site gate.

Figure 5.11: The sum over spins can be computed by finding all possible configurations of the
spins 1/2 allowed in the diagrammatic representation of Tr

s
[Ŵ ], such that the global magnetization

satisfies Sz = sL (s = 0 as depicted above), and the local magnetization is conserved by each gate.

This allows for the sum over spins to be reproduced by an equivalent expression,

lim
q→∞

K(t, s) = ∣t∣Tr
s
[M̂ t ] , (5.5.3)

where the factor of ∣t∣ comes from there being t such leading diagrams. The trace over the effective
spin-1/2 evolution operator, M̂ , accounts for the sum over the color and spin degrees of freedom
in a given leading diagram. Like Ŵ , M̂ ≡ M̂2 ⋅ M̂1 consists of two layers: M̂1 = T̂1,2 ⊗ T̂3,4 ⊗ . . .
and M̂2 = T̂2,3 ⊗ T̂4,5 ⊗ . . . , as depicted in Fig. 5.12. M̂ is hermitian, owing to contraction of a
unitary and its conjugate, and is invariant under a shift by two sites due to ensemble averaging.
The matrix T̂j,j′ acts only on sites j, j′ as

T̂j,j′ =
1

2
(1̂j,j′ + P̂j,j′) =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

⎞
⎟⎟⎟
⎠
, (5.5.4)

where the factor of 1
2 in T̂j,j′ originates from the 1

2q2 term in Eq. (5.5.2), and the “swap operator,”

P̂ is given by

P̂j,j′ =
1

2
(1̂j,j′ + σ⃗j ⋅ σ⃗j′) . (5.5.5)

We note that M̂ describes a discrete-time symmetric simple exclusion process (SSEP) for a classical
lattice gas [40]. Although the original FRUC featured a U(1) symmetry, after Haar averaging and
taking q →∞, K(t, s) exhibits an enlarged SU(2) invariance in the remaining spin-1/2 variables;
we believe this is specific to the large-q limit. Additionally, as we clarify below, M̂ belongs to a
family of commuting transfer matrices, unveiling an emergent integrability, and the possibility of
computing K(t, s) exactly [38].

This model leads to a Thouless time that scales diffusively. To see this, note that

T̂j,j+1 ≡ ˆ̂1j,j+1 − Ĥj,j+1 , (5.5.6)

where the two-site “Hamiltonian term,”

Ĥj,j+1 = −
1

4
(σ⃗j ⋅ σ⃗j+1 − ˆ̂1j,j+1) , (5.5.7)
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T̂j,j+1 =

0
BB@

1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

1
CCA

=
3

4
� 1

4
~�j · ~�j+1

M̂ (t)

M̂ {

Figure 5.12: Figure 2.4 from Ch. 2 included here for convenience. On the left is a depiction of the
brick-wall circuit geometry corresponding to the Trotterized XXX “evolution” operator, M̂ . On
the right are the individual two-site gates, T̂j,j+1, which comprise the circuit, expressed in terms

of Ĥj,j+1, which is the local two-site term that appears in the Heisenberg XXX Hamiltonian in
Eq. (2.2.1) in Ch. 2.

describes the spin 1/2 Heisenberg ferromagnet, i.e. the XXX model discussed in Ch. 2. Thus,
we can interpret Tr[M̂ t] in Eq. (5.5.3) as a Trotterization of the partition function of the XXX
model at inverse temperature β = t, i.e.

Tr
s
[M̂ t] ≃ Tr

s
[e−tHXXX] , with HXXX =∑

j

Ĥj,j+1 . (5.5.8)

Hence, the behavior of K(t, s) at late times reflects the low-temperature properties of the Heisen-
berg ferromagnet, HXXX, which has (L + 1)-fold degenerate ground states with vanishing en-
ergy. Each Sz sector has a unique ground state, ∣S⟩ ≡ (Ŝ−)N↓ ∣ ↑ . . . ↑⟩ with Ŝ± ≡ ∑j σ̂±j and
N↓ = L/2 − S = L (1/2 − s). Low-lying excitations above each ∣S⟩ are magnons, i.e. plane-wave
superpositions of spin flips

∣S, k⟩ = 1√
L

L

∑
j=1

eijkσ̂−j ∣S + 1⟩ , k = 2πp

L
, (5.5.9)

characterized by a quadratic dispersion relation ε(k) ∝ k2 at small k. Expanding in t ≫ L2, one
expects only the lowest energy magnon contributes and

lim
q→∞

K(t, s) =
t≫L2

∣t∣ (1 + e−
4π2t
L2 + . . . ) . (5.5.10)

This suggests diffusive scaling of the Thouless time, tTh ∝ L2; a similar correspondence with HXXX

was established in [193] for random unitary circuits with a conserved density, lending support for
the generality of this result. However, to investigate the regime 1 ≪ t ≪ L2, we must consider
states with extensive numbers of magnons, and many-body effects.

5.5.4 Solution via integrability

Many of the details of this calculation can be found in Ch. 2, where the model of interest to
the analysis of Eq. (5.5.3) is the “Trotterized XXX” model, which can be studied using Bethe
Ansatz techniques. The computation of Trs [M̂ t] would be simplified by knowledge of the full
eigenspectrum of M̂ . Following the coordinate Bethe Ansatz for HXXX [41, 42], one seeks multi-
magnon eigenfunctions, i.e. plane-waves, along with a scattering matrix describing the exchange
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of the excitations’ momenta. However, this approach suffers from technical complications due to
the circuit construction of M̂ . A more direct approach is instead based on the equivalent algebraic
Bethe Ansatz formulation [44], detailed in Sec. 2.3 of Ch. 2.

The result of that calculation is the dispersion relation for M̂ , given by

ε(λ) ≡ −2 ln cosk(λ). (5.5.11)

At small k, a quadratic dispersion relation is recovered, ε→ k2, as is expected since the discrepan-
cies between M̂ t and e−tHXXX become irrelevant at long wavelengths. However, it is worth noting
that the coefficient of the dispersion is markedly different in these two cases, and the exact dis-
persion should be used. Although knowledge of the dispersion and the quantization conditions of
the allowed momenta, k, simplify substantially the evaluation of Eq. (5.5.3), the main bottleneck
remains the exponential growth in L of the Hilbert space dimension, and the difficulty in solving
the Bethe Ansatz equations that constrain the allowed momentum values.

However, in the thermodynamic limit L,S → ∞ with s = S/L fixed, the solutions of the
Bethe Ansatz equations acquire a simple structure, as explained in Sec. 2.4 of Ch. 2. Using
the thermodynamic Bethe Ansatz formalism, as detailed in Sec. 2.4, we can compute a quantity
analogous to the free energy of the Trotterized partition function, from which the relevant scaling
properties can be extracted.

5.5.5 Scaling form

We define the function

φ(t, s) = − lim
L→∞

L−1 ln [K (t, s) /∣t∣] , (5.5.12)

which can be computed exactly for any integer t, either by solving an infinite set of coupled integral
equations—i.e. the Thermodynamic Bethe Ansatz (TBA) [45, 47]—or, perhaps more efficiently,
via the ‘quantum transfer matrix method’ [199, 200], which requires the solution of an algebraic
equation in 2 ∣t∣ variables (see also Appendix A). While the latter is better suited to calculating
K(t) at a particular time t, the former affords analytic insight into behavior at large times. Since
the limit L→∞ implies tHeis →∞, we expand Eq. (5.5.12) about large t using TBA,

φ(t, s) = − C√
t
+ 1

2(2s + 1)t
+ . . . , (5.5.13)

where the constant C = ζ(3/2)/
√

4π , where ζ(z) is the Riemann Zeta function, and q →∞ is taken
implicitly. Ignoring the Trotterized structure of M̂ and taking M̂ ∼ e−HXXX relates Eq. (5.5.13)
to the low-temperature expansion of the specific heat close to the ferromagnetic ground state of
HXXX [201,202].

The form of Eq. (5.5.13) implies diffusive scaling even for t≪DL2. From the behavior φ(t, s) ∼
(Dt)−1/2 it is apparent that the value of D is independent of s, a consequence of the emergent SU(2)
symmetry at q → ∞. However, the scaling limit relevant for K(t) in the regime 1 ≪ t ≲ tTh is
distinct from that recovered from TBA, i.e. Eq. (5.5.13): the former requires t,L → ∞ with
x ≡ t/L2 fixed, while the latter requires the thermodynamic limit L →∞ at fixed t. Nevertheless,
these results suggest a scaling form

lim
t,L→∞

ln [K(t, s)/t] = κ(x, s) . (5.5.14)
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Figure 5.13: Behavior of K(t). Upper figure (main panel): lnK (t) /t vs t/L2. The scaling collapse
of data for L = 14, 16, and 18 indicates that the Thouless time tTh is controlled by diffusion; small
deviations for L = 12 are presumably a finite-size effect. The full line is a fit to the scaling function
given by Eq. (5.5.16) with D = 0.05. Inset: same data vs t for comparison. Lower panel: K(t) for
L = 12; the small system size narrows the relative extent of the ramp regime K(t) = t, highlighting
the short-time, pre-RMT behavior.

Despite the inherent integrability, exact calculation of κ(x, s) is a challenging task. Nevertheless,
its asymptotic behavior can be read off from Eq. (5.5.10) and Eq. (5.5.13): for early times (x≪ 1)
one inserts Eq. (5.5.12) into Eq. (5.5.13); for late times (x≫ 1) one expands the logarithm on the
righthand side of Eq. (5.5.10). Thus

κ(x, s) ∼
x≪1

Cx−1/2 and κ(x, s) ∼
x≫1

e−4π2x . (5.5.15)

By treating the magnons as noninteracting bosons, using Tr[M̂ t ] ≈ Tr[e−tH], we recover

κ (x, s) = −∑
n≠0

ln [1 − e−xD(2πn)2

] , (5.5.16)

which precisely agrees with Eq. (5.5.15) if one uses the diffusion constant D = 1 associated to the
true dispersion, Eq. (5.5.11), at small k. Although these predictions are obtained for q → ∞, we
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expect their qualitative features to be valid for generic chaotic many-body systems with conserved
charges. More details are provided in Appendix A.

5.5.6 Numerical evidence

We now turn to numerical simulation to test Eq. (5.5.14) in chaotic quantum systems at finite q.
At q = 1, the FRUC considered above exhibits a numerically small diffusion constant that makes it
difficult to avoid finite-size effects at the accessible values of L. Instead, we use a model adapted
from [189], defined by

Ŵ = e−it4Ĥ4e−it3Ĥ3e−it2Ĥ2e−it1Ĥ1 , (5.5.17)

where

Ĥ1 =∑
j

(J1
z σ̂

z
j σ̂

z
j+1 + h1

j σ̂
z
j )

Ĥ3 =∑
j

(J2
z σ̂

z
j σ̂

z
j+2 + h2

j σ̂
z
j )

Ĥ2 = Ĥ4 = Jxy∑
j

(σ̂xj σ̂xj+1 + σ̂
y
j σ̂

y
j+1) , (5.5.18)

with periodic boundary conditions. We take J1
z = (

√
3 + 5) /6, J2

z =
√

5/2, and Jxy = (2
√

3 + 3) /7,

with h1,2
n drawn independently from the uniform distribution [−1.0,1.0] for ensemble averaging.

We choose t1 = 0.4, t2 = 0.1, t3 = 0.3, and t4 = 0.2 to avoid time-reversal symmetry around any
instant in the period (we check that nearest-neighbor level statistics are CUE). In contrast to
a recent study [203], we did not investigate K(t) at strong disorder, as our concern is with the
behavior of ergodic systems.

5.5.7 Discussion

We have presented analytical and numerical evidence showing the significance of the Thouless
time tTh = L2/D for spectral correlations in systems with a conserved charge. These results are
consistent with a scaling form K(t) ∼ ∣t∣ exp [κ(t/L2)]. We believe this form to be generic in
describing the onset of chaos in quantum systems with a conserved quantity. We also provide a
form, Eq. (5.5.16), of the scaling function, κ, defined in Eq. (5.5.14), by neglecting the interactions
between magnons in our FRUC, which is in good agreement with our numerical simulations. The
question of the exactness and universality of Eq. (5.5.16) is an interesting topic for future study.

5.6 Summary and Outlook

In summary, we have demonstrated how one can use random unitary evolution to study quantum
thermalization away from the limit of integrability, i.e. quantum chaos. This technique draws
from the fact that thermal systems should have the properties of an ensemble of similar systems,
captured by random matrices, along with particular ingredients, such as the Haar measure and
diagrammatic averaging, which provide analytic control. Particularly, we have seen how evolving
under a random unitary circuit—which enforces locality—gives rise to specific and expected results
relating to the dynamical spread of quantum information, e.g. the spreading of entanglement and
information about generic operators. Although for certain quantum models it is possible to define
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sensible Lyapunov exponents, the results discussed above provide a more generic notion of quantum
chaos, e.g., as distinct from athermal and/or integrable quantum systems.

Additionally, we note that early work using this technique sought to probe minimal models of
many-body quantum chaos, i.e. those without symmetries, and notion of quasiparticles, or other
nongeneric features. However, subsequent works have shown that one can systematically include
such ingredients into circuits of interest to probe more particular and even—in the cases of circuits
with conserved quantities—more generic systems. However, it remains to be seen how much more
utility can be extracted from the use of circuits. The primary advantage of using circuits is the
ability to study the thermodynamic limit and still recover analytical results. Often times, this
is facilitated via a “classical” expansion, i.e. large q. In such cases, much of the quantumness
of a true system is essentially overlooked, and the results correspond only to the most chaotic of
systems, with typical systems showing less chaos (i.e., slower scrambling times, slower propagation
of information, and so on).

However, in some cases, e.g. the spectral form factor calculation in the presence of conserved
quantities, this can actually work out quite well. Referring to the latter case, discussed in detail
in Sec. 5.5, the calculation of the spectral form factor is generally only tractable at very short
times, or in the limit q →∞. In general, it is not even possible to enumerate all terms that recover
at first order in 1/q. The SFF is then diagnosed in several limits, though in the thermodynamic
limit, it remains possible to recover answers in most regimes. Despite the use of q,L, t → ∞, the
analytic prediction of the circuit calculation is in remarkably good agreement with numerical data
corresponding to the opposite: q = 1, L ≲ 18, t ≳ 1. Additionally, by approximating the magnons
of the resulting spin-1/2 calculation as free bosons with the same dispersion—expanded to lowest
order in momentum—we recovered a scaling function that interpolates precisely between the two
limiting forms recovered from the exact calculation. More surprisingly, this same function displays
excellent agreement with numerical data for small systems, merely by taking the coefficient of
the ballistic dispersion, ε(k) = Dk2, to be a free parameter. Understanding why this free boson
calculation is so effective remains an open question for future work [43].

One possibly interesting direction for future research, currently underway by this author, is the
consideration of spectral properties (i.e. K(t)) in models with kinetic constraints. These systems
are generally expected to be less chaotic than conventional systems, and their classical counterparts
are used to model dynamics in nonergodic classical glasses. At the level of the circuits, there is
little distinction between a symmetry and a constraint: in fact, the U(1) conserving circuit can
also be regarded as encoding the constraint of simple exclusion, i.e. that no two magnons (spin
flips) can occupy the same site. In the U(1) case, we found that K(t) = tTr [M̂ t], where M̂ encodes
a symmetric simple exclusion process. Viewing the U(1) conservation of the z-component of spin
in each two-site gate as a constraint, rather than the local enforcement of a global symmetry, we
note that putting in the constraint of symmetric simple exclusion in the quantum circuit leads to
a form of K(t) that is directly related to the sum of return probabilities in the classical circuit
with the same constraint. This property will extend to generic constraints that one may wish
to put in the circuit, which leads to surprising results. For example, the nonconserving East
circuit results in K(t) = tTr [M̂ t], with M̂ a Trotterized classical East circuit. At late times,
K is dominated by the gap between the trivial eigenstate of M̂ with eigenvalue unity, and the
lowest excited state. For the classical East model, this is known to scale as L−2, corresponding
to diffusion. However, there is no obvious local conserved quantity to be diffused. For models
with both symmetries and constraints, we find subdiffusion. This same method may be applied to
circuits with dipole symmetries, building off recent work [204] to analyze fracton models. From the
above, absent degeneracies and other complications, one generally expects diffusion or subdiffusion.
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In particular, this anomalous diffusion is likely associated to symmetry-like objects that can be
identified in constrained systems, which was recently the subject of Ref. 204.
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Chapter 6

Order in Non-Equilibrium Phases

6.1 Introduction

One of the interesting properties of MBL is its ability to support quantum orders at energy densities
corresponding to large or infinite temperatures, among other phenomena that are forbidden in
equilibrium systems. One useful view on MBL phases is that highly excited states of MBL systems
have many properties of ground states of equilibrium systems, e.g. in terms of the protection of
quantum information.

6.2 Localization-Protected Order

The simplest model that hosts localization-protected quantum order in its excited state phase
structure is essentially the transverse field Ising model [205]. This is the same model that gives
the simplest picture of quantum order in the equilibrium setting. To extend this model to the
nonequilibrium setting, we consider the Hamiltonian

ĤIsing = −∑
j

(JjẐjẐj+1 + hjX̂j + J ′j (ẐjẐj+2 + X̂jX̂j+1)) , (6.2.1)

where the J ′j terms are self-dual and destroy the mapping of the first two terms (the standard
Ising/Kitaev chain) to spinless free fermions (a p-wave superconductor). Additionally, each cou-
pling is an independently drawn random number from the interval (0,W ] with W > 0 characterizing
overall disorder strength, although we also should regard these couplings as having a knob that
tunes the strength of the interactions, i.e. {J ′j}. Note that these couplings should be drawn from
different distributions on the aforementioned interval.

In equilibrium and at zero temperature, the “clean” version of the Hamiltonian given in
Eq. (6.2.1) (i.e. Ji = J , hi = h, and J ′i = J), exhibits a well known quantum phase transition
of the equilibrium variety (i.e. in the ground state) between a J ≫ h ferromagnet (FM) with a
pair of degenerate ground states and J ≪ h paramagnet (PM) with a unique ground state. Map-
ping the model to fermions via Jordan-Wigner, the FM (PM) phase corresponds to a topological
(trivial) phase with (without) zero-energy Majorana edge modes. As one moves to finite tempera-
ture, T > 0, the excitations above the ground state play a role: In the FM phase, these excitations
are domain walls between the two degenerate ground states. The choice of clean couplings ensures
translation invariance, which allows the domain walls to move freely across the system with no
additional energy penalty. Thus, at any finite temperature, the penalty of creating domain walls
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Figure 1. Schematic non-equilibrium (eigenstate) phase structure of the random

quantum Ising chain. Disorder is parametrized by W ; h tunes the system across the

transition. J 0 is the interaction strength which favors thermalization (ETH phase). At

strong disorder, two distinct MBL phases are possible. See text for discussion.

to evade MBL even for strong disorder, is the random-bond spin-1
2

Heisenberg chain

H =
X

i

Ji
~Si · ~Si+1, (4)

with random couplings Ji. First, the SU(2) symmetry of (4) is incompatible with the

area-law structure of MBL systems [47, 48]. Moreover, renormalization-group [15, 39]

and resonance-counting arguments [48] indicate that a non-ergodic phase with a more

exotic (logarithmic) entanglement structure is unstable to thermalization. These results

indicate that no matter how strongly disordered eq. (4) is, this system remains thermal

(“ergodic”), though the dynamics en route to thermalization may well be glassy [48,49].

The crucial feature of (4) that prevents MBL is its non-abelian SU(2) symmetry

group. In fact, even discrete non-abelian groups – as opposed to Lie groups like SU(2)

– su�ce to forbid symmetry-preserving MBL phases. (This is particularly salient where

the symmetry is necessary to protect topological features, as we discuss below.) For

instance, consider generalizing (3) to the quantum Potts chain,

H = �
X

j

Jj�
†
j�

†
j+1 � hj⌧

†
j + h.c., (5)

where the operators �j and ⌧j act on a three-dimensional single-site Hilbert space via

� |mi = e
2⇡mi

3 |mi and ⌧̂ |mi = |m + 1i, with the ket labels taken modulo 3. This

Hamiltonian has a global Z3 rotation symmetry generated by Q̂ =
Q

j ⌧j and a Z2

mirror symmetry X̂ ⌘Qj Xj, where Xj exchanges the |1i, |2i eigenstates of �̂j; clearly,

Q̂3 = X̂ 2 = 1. Together, Q̂, X̂ generate the permutation group S3
⇠= Z3 o Z2, where

the semidirect product structure reflects the fact that Q̂, X̂ do not commute. This

model was studied numerically in Refs. [50, 51]. Unlike (4), model (5) supports two

distinct broken-symmetry MBL phases at strong disorder, that correspond to breaking

either the Z3 clock or the Z2 chiral symmetries. However, in contrast to the Ising case,

there is no symmetry-preserving MBL paramagnet: MBL phases necessarily break the

S3 non-abelian symmetry spontaneously down to an Abelian subgroup. The Heisenberg

and Potts results are examples of a general “no-go” theorem discussed below.

Figure 6.1: Nonequilibrium, eigenstate phase diagram for the modified Ising chain given by
Eq. (6.2.1). A similar figure appears in Ref. 205. The eigenstates in the “Spin Glass” (SG) MBL
phase are “cat states,” i.e., macroscopic superposition of two different states that are related by the
global Z2 symmetry operator, ∏j X̂j . The eigenstates in the “paramagnet” (PM) MBL phase have

the structure of simple products of eigenvalues of the local Z2 symmetry operator, X̂j . The thermal
phase (ETH) is symmetry-preserving, and therefore a standard paramagnet. Note that the real
space renormalization group for excited states (RSRG-X) predicts a direct transition between the
MBL-PM and MBL-SG phases, separated by an infinite-randomness critical point (at the self-dual
point). It is unclear if a direct transition between two MBL phases with different symmetries can
exist at finite disorder; thus, a red line separates these phases at strong but finite disorder.

can be afforded by the system, and the domain walls sweep through the system with no energy
penalty, destroying the order. Thus, in equilibrium and at finite temperature, the translation-
invariant Ising chain has a crossover—rather than a transition—as the ratio h/J is tuned across
the putative critical value from T = 0.

In the limit of strong disorder, W , or weak interactions, {J ′j}, the system can realize an MBL
phase, as described in Ch. 1. When the system is in the MBL phase, the domain wall excitations
on the ferromagnetic side are pinned (i.e. localized) by disorder, even when the density of such
excitations is appreciably greater than zero. By mapping the problem to Majoranas, both single
spin flips and domain walls are characterized by Majorana bilinears: the pinning of domain walls
therefore amounts to localization of a finite density of quasiparticle excitations. For strong disorder,
when the typical bond strength, log Jj , is large compared to the typical field strength, log hj, the
system is said to have “spin glass order” [15, 206, 207], which is analogous to the ferromagnetic
phase of clean, equilibrium systems, in that the object ⟨Ẑi Ẑj ⟩ ≠ 0, even as ∣i − j∣→∞. However, in
contrast to the homogeneous, low-temperature, equilibrium counterpart, not all spins or domains
will be aligned, and although the z component of distant spins ought to be correlated, they can be
antialigned, e.g., resulting in an algebraic sign that depends on i and j. However, it is nonetheless
the case that the spins are effectively “frozen” in some configuration, defined along the z axis,
which depends on the eigenstate in question. Hence, it is typical to define an order parameter that
is the square of the above quantity, summed over sites, averaged over eigenstates, and appropriate
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normalized, as will be done in Secs. 6.4 and 6.5.

In the opposite limit of bond strength relative field strength, i.e. log Jj ≪ log hj, the system
can still realize an MBL phase for sufficiently strong disorder. However, in this limit there is
no spin-glass order, e.g. as measured by correlations of the above-described form: rather, this
limit realizes an MBL paramagnet. In terms of Majoranas, compared to the spin glass phase, in
the paramagnet spin flips are localized; the spin-flip is also a Majorana bilinear defined on the
dual sites, and the spin-flip excitation is dual to the domain wall. An interesting fact is that, for
sufficiently strong disorder, both the spin glass and paramagnet appear to exist across the entire
eigenspectrum, as one varies the relative strengths of typical bonds and fields, and both phases
have been verified numerically [207].

By decreasing the strength of disorder or increasing the strength of interactions, one finds a
delocalization transition from the MBL phase to a thermal phase in which only the paramagnet
seems to survive. Thus, the spin glass phase is said to be “protected” by localization; this phe-
nomenon is referred to as “localization-protected order” [15]. The [eigenstate] phase diagram for
the Hamiltonian given in Eq. (6.2.1) is sketched in Fig. 6.1. It remains unsettled whether or not
there is a direct transition from the MBL paramagnet to the MBL spin glass, or if instead there
is an intervening thermal phase that is not visible in small-systems numerics or using infinite-
disorder techniques [9, 15,208]. Studies employing the latter technique seem to find evidence that
such transitions exist, at least at infinite disorder—to which these methods flow asymptotically—
[31, 206, 208–213]; however, there are reasons to suspect that such transitions are not possible for
systems with finite disorder in the thermodynamic limit [9]. Additionally, there are indications
that the transition (or crossover) between the MBL paramagnet and spin glass is governed by an
infinite-randomness fixed point, which arises naturally in the setting of strong-disorder (or real
space) renormalization group methods [32,33,205,213,214].

6.3 Disordered Clock Models

6.3.1 Introduction

The Z2 Ising model has a special place amongst lattice spin models because it lies at the intersection
between standard spin-1/2 models (and by extension models of q-bits and spinless fermions), and
Zn clock models, models with onsite dihedral symmetry, Dn, and Sn Potts models. The latter
three are related, and reduce to the same model for n = 2. The spin s models have local Hilbert
space dimension d = 2s + 1, and d = n for the Zn, Dn, and Sn models. In each case, there is an
operator associated with measurement, and is typically expressed as a diagonal operator in the
local basis: this is typically denoted Ŝz for general spin models, and σ̂z or Ẑ for spin 1/2; for the
clock and Potts models, this is simply denoted ˆsigma by convention. Additionally, there exist
operators that shift or ‘cycle’ through the states: for general spin models these are raising and
lowering operators Ŝ±, and for spin 1/2 one can also define the spin flip operator σ̂x = X̂ = σ̂+ + σ̂−;
in the clock-type models the cycle operators are denoted τ̂ and τ̂ †. In the special case of n = 2,
one has Ẑ = σ̂ and X̂ = τ̂ = τ̂ †, since τ̂ 2 = 1̂.

A key distinction is that there is a “highest” state in a spin model that is annihilated by the
raising operator, given by ∣ + s⟩ in the Ŝz basis, along with a lowest state that is annihilated by the
lowering operator, given by ∣ − s⟩ in the Ŝz basis. However, the key feature of clock models is that
their raising and lowing operators are cyclic, much like the hands on a clock: the raising operator
τ̂ acts on the highest state under the weight operator, σ̂, by cycling it around the “clock” back to
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the lowest state. For an n state clock or Potts model, one has ∣n⟩ = ∣0⟩, and all related quantities
are only defined modulo n.

6.3.2 The generic Zn model

It is convenient to define the nth root of unity,

ω = exp(2πi

n
) (6.3.1)

to streamline notation. The default basis corresponds to the on-site eigenstates of the weight
operator, σ̂j:

σ̂∣m⟩ = ωm∣m⟩ , σ̂†∣m⟩ = ω−m∣m⟩ , σ̂n = (σ̂†)n = 1̂ , σ̂† = σ̂n−1 (6.3.2)

τ̂ ∣m⟩ = ∣m + 1⟩ , τ̂ †∣m⟩ = ∣m − 1⟩ , τ̂n = (τ̂ †)n = 1̂ , τ̂ † = τ̂n−1 (6.3.3)

These two operators do not have a straightforward [anti-]commutation relation, only the multipli-
cation rule:

σ̂τ̂ = ωτ̂ σ̂. (6.3.4)

The three remaining relations are easy to find:

σ̂†τ̂ † = ωτ̂ †σ̂† , σ̂τ̂ † = ω−1τ̂ †σ̂ , σ̂†τ̂ = ω−1τ̂ σ̂† (6.3.5)

The shift and weight operators are dual to one another: in the basis of eigenstates of the shift
operators τ̂j, the weight operator ωj acts by shifting τ̂ states. We will denote eigenstates of the
shift operator τ̂ by ∣q⟩, defined via

∣q⟩ = 1√
n
∑
m

ω−qm∣m⟩ (6.3.6)

τ̂ ∣q⟩ = ωq ∣q⟩ (6.3.7)

σ̂∣q⟩ = ∣q − 1⟩ (6.3.8)

Generic Hamiltonians with Zn symmetry feature two types of terms, which are dual to one
another, as in the n = 2 Ising model. The first is the nearest-neighbor interaction term—or
“topological” term—which compares the states of neighboring sites j, j + 1 in the σ̂ basis,

Ĥtop = −J
L−1

∑
j=1

n−1

∑
m=1

am (σ̂†
j σ̂j+1)

m
, (6.3.9)

with the condition
an−m = a∗m , (6.3.10)

for Hermiticity. Note that if n is even, an/2 must be purely real.
The other term is the “transverse field” or “trivial” (i.e. non-topological) term,

Ĥtriv = −f
L−1

∑
j=1

n−1

∑
m=1

bm (τ̂j)
m
, (6.3.11)

where bn−m = b∗m for Hermiticity.
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The above describes “clean” systems without spatial disorder, but generally we will be inter-
ested in the case in which all of the above coefficients vary from site to site, and we can dispense
with the overall sign without loss of generality. Additionally, by further constraining the coefficients
am,j and bm,j, for n > 2 the symmetry can be enlarged: the dihedral group

Dn = Zn ⋊Z2 , (6.3.12)

corresponding to the dihedral symmetries of regular n-sided polygons, where the Zn discrete rota-
tion and the “chiral” Z2 reflection symmetry do not commute, or the permutation group Sn, which
includes the cyclic group Zn as a proper subset, and where S2 = Z2, S3 = D3 = Z3 ⋊ Z2, and for
n > 2 is non-Abelian and finite, consisting of all cycles and permutations of n objects. The Potts
model arises if all coefficients a are equal to one another (for a given bond), and the same for b
(for a given site).

In a sense, the clock models are “chiral” Potts models. Additionally, it is likely possible to
realize more complicated on-site symmetries in models with larger n. The n = 3 Potts model is of
particular interest because S3 is the smallest finite non-Abelian group. All of the models described
above have the property that they are self-dual.

We can exchange the measurement and cycle operators for a description in terms of “parafermion”
operators, which extend the construct of the Majorana fermion used to understand the Ising model.
The local Hilbert space of each site is represented by two parafermion modes. The on-site cycle
operator is a bilinear involving the two modes on the same site, and the nearest-neighbor inter-
action term is also a bilinear consists of the two parafermions joined by the link (one from each
site). These two parafermion types can be thought of as a single type of parafermion that lives on
a lattice with twice as many sites as the original model. In this case the Hamiltonian takes on the
form:

Ĥ = −
2L−1

∑
x=1

ω1/2
n−1

∑
m=1

K
(m)
x (α†

xαx+1)
n
, (6.3.13)

and we now explain this mapping in greater detail.

6.3.3 Parafermion description

The two terms in the Clock/ Potts Hamiltonian may each be expressed using two species of
parafermion operators, defined by

χj ≡ (
j−1

∏
k=1

τ̂k) σ̂j , χ̃j ≡ −ω−1/2χj τ̂j = −ω+1/2 (
j

∏
k=1

τ̂k) σ̂j , (6.3.14)

and obey the relations

(χj)
n = (χ†

j)
n = 1 , (χj)

n−1 = χ†
j (6.3.15)

(χ̃j)
n = (χ̃†

j)
n = 1 , (χ̃j)

n−1 = χ̃†
j (6.3.16)

The multiplication rules for these operators are interesting in that they depend on the site. For
k > j:

χjχk = ωχkχj , χ†
jχ

†
k = ωχ

†
kχ

†
j , χ†

jχk = ω
−1χkχ

†
j , χjχ

†
k = ω

−1χ†
kχj (6.3.17)

χ̃jχ̃k = ωχ̃kχ̃j , χ̃†
jχ̃

†
k = ωχ̃

†
kχ̃

†
j , χ̃†

jχ̃k = ω
−1χ̃kχ̃

†
j , χ̃jχ̃

†
k = ω

−1χ̃†
kχ̃j (6.3.18)
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and for k ≥ j:

χjχ̃k = ωχ̃kχj , χ†
jχ̃

†
k = ωχ̃

†
kχ

†
j , χ†

jχ̃k = ω
−1χ̃kχ

†
j , χjχ̃

†
k = ω

−1χ̃†
kχj (6.3.19)

We can invert these definitions to obtain expressions for the two terms of the original Hamiltonian:

σ̂†
j σ̂j+1 = −ω1/2χ̃†

jχj+1 (6.3.20)

τ̂j = −ω1/2χ†
jχ̃j (6.3.21)

We see above that there are two modes per site, and we know from the duality that we can also
define the same theory between the sites. Thus, it is convenient to think of the mode χ̃j as acting

to the right of mode χj on site j. We define a “comprehensive” parafermion mode, α as follows:

α2j−1 ≡ χj , α2j ≡ χ̃j. (6.3.22)

Using this convention, both terms in the Hamiltonian have the same form,

∑
x
∑
m

K
(m)
x (α†

xαx+1)
m
, (6.3.23)

where the weight necessarily depends on the pseudo-site, even for the clean system (where it
amounts to perfect dimerization between the f and J terms).

The on-site multiplication rules for the α operators are given by

(αj)
n = (α†

j)
n = 1 , (αj)

n−1 = α† , (α†
j)
n−1 = α , (6.3.24)

and the multiplication rules for k > j are

αjαk = ωαkαj , α†
jα

†
k = ωα

†
kα

†
j , α†

jαk = ω
−1αkα

†
j , αjα

†
k = ω

−1α†
kαj . (6.3.25)

6.3.4 Real space renormalization group for n = 3 parafermions

The n = 3 clock model is described by the Hamiltonian

Ĥ =
L−1

∑
j=1

Jj (eiφj σ̂†
j σ̂j+1 + h.c.) +

L

∑
j=1

fj (eiθj τ̂j + h.c.) , (6.3.26)

which can be cast into the parafermion language via

σ̂†
j σ̂j+1 = −ω1/2χ̃†

jχj+1 = ω−1χ̃†
jχj+1

τ̂j = −ω1/2χ†
jχ̃j = ω−1χ†

jχ̃j .

Using the α operators, one defines new weights and phases (this can be done with a single expression
by using a factor of (−1)x),

(Kx , ϕx) =
⎧⎪⎪⎨⎪⎪⎩

(Jj , φj) if x = 2j

(fj , θj) if x = 2j − 1
,

in terms of which the Hamiltonian given in Eq. (6.3.26) takes the simple form

Ĥ =
2L−1

∑
x=1

ω−1Kx (eiϕxα†
xαx+1 + e−iϕxαxα

†
x+1) . (6.3.27)
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The real space renormalization group (RSRG) [31–33, 206, 209, 213, 215, 216] is a coarse graining
procedure that resolves the eigenstates and energy eigenvalues of the Hamiltonian in real space,
by constructing diagonalizing Hamiltonian terms in descending order of strength, and obtaining
corrections due to overlapping terms via second order [degenerate] perturbation theory. Additional
details can be found in Appendix B.1, along with the references cited above. In scenarios where
this technique works, the distribution of couplings is modified as the RG runs, and flows toward
infinite disorder, where the RSRG is asymptotically exact.

Suppose we find the strongest bond on some [pseudo-]site x, with strong coupling Kx = Ω.
Writing φx → Φ, we then diagonalize

Ĥ0 = Ωω−1 (eiΦα†
xαx+1 + e−iΦαxα

†
x+1) , (6.3.28)

and note that the operator ω−1α†
xαx+1 recovers either τ̂j or σ̂†

j σ̂j+1, and therefore has eigenvalues
ωqx , where qx is some book-keeping integer with value 0,1,2. Thus, the unperturbed energy for
Ĥ0 is

E0 = 2Ωcos(Φ + 2πqx
3

) . (6.3.29)

The perturbation, V , consists of couplings to nearest neighbors. To treat this problem requires
consideration of four pseudosites: we denote the two pseudosites corresponding to the strong bond,
Ω, by x,x+1, and the two pseudosites flanking this strong bond on the left and right will be denoted
L and R, respectively, as depicted in Fig. 6.2. The dashed red line in Fig. 6.2 indicates the strongest

Figure 6.2: Representation of a given step in the RSRG procedure for the Z3 clock model.

bond, with coupling Ω; the two solid lines on top represent terms associated with the perturbing
potential, V ,

V ≡ Ω ω−1{KL(eiϕLα†
Lαx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ûL

+ e−iϕLαLα†
x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
û†
L

) +KR(eiϕRα†
x+1αR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ûR

+ e−iϕRαx+1α
†
R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
û†
R

)}, (6.3.30)

so that the full Hamiltonian is given by

Ĥ = Ĥ0 + λV̂ , λ = Ω−1. (6.3.31)

After fixing the state of the strong bond—i.e. choosing a particular value of the “unperturbed”
energy E0 by fixing the state of the strong bond, qx ∈ {0,1,2}—the next step is to resolve the terms
V̂ to lowest order using degenerate perturbation theory about Ĥ0, i.e.

⟨ψα∣Ṽ ∣ψβ⟩ = Ω−2 ∑
∣γ⟩∉Hd

⟨ψα∣V ∣γ⟩⟨γ∣V ∣ψβ⟩
E0 − ⟨γ∣H0∣γ⟩

, (6.3.32)

and for each of the four terms, {ûi}, in Eq. (6.3.30), one takes ∣γ⟩ = û
L/R∣ψβ⟩ or û†

L/R∣ψβ⟩, as the

case may be, and denotes the energy eigenvalue of the intermediate state (under the unperturbed
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Hamiltonian) Eγ. For each u term acting on the ket ∣ψβ⟩, there are two other û terms that may

contribute from the next operation of V̂ . The first is the conjugate of the original, which will yield a
term proportional to the identity overall. This term is trivial, and the resulting term is proportional
to the identity, and therefore a constant that is unimportant physically. For a given choice of u,
there is precisely one other term that can return the state ûi∣ψ⟩ to the same configuration of the
strong bond, x,x+1, while acting as nonidentity operators on all other parafermion modes. Thus,
there are four possible terms that can be generated, which take the form

⟨ψα∣Ṽ1∣ψβ⟩ =
KLKR

ω2 ∑
ui∈V

⟨ϕα∣ûi∗
1

E0 − Ĥ0

ûi∣ϕβ⟩. (6.3.33)

The four possible configurations of ûi∗ûi are:

ei(ϕL+ϕR)α†
Lαxα

†
x+1αR ei(ϕL+ϕR)α†

x+1αRα
†
Lαx

e−i(ϕL+ϕR)αLα
†
xαx+1α

†
R e−i(ϕL+ϕR)αx+1α

†
RαLα

†
x

(6.3.34)

For each of the two possible phases, both terms carrying that phase are equivalent in total, but the
intermediate state, and denominator in Eq. (6.3.33) are different. Going through the two terms,
and realizing they act on a qx state:

α†
Lαxα

†
x+1αR = α†

x+1αRα
†
Lαx = α

†
LαRαxα

†
x+1 = α

†
LαR (ω1−qx) (6.3.35)

αLα
†
xαx+1α

†
R = αx+1α

†
RαLα

†
x = αLα

†
Rα

†
xαx+1 = αLα

†
R (ω1+qx) (6.3.36)

To calculate the energy differences, the action of each quadratic parafermion term on an H0

eigenstate will be useful:

α†
x+1αR ∶ qx → qx + 1

αx+1α
†
R ∶ qx → qx − 1

α†
Lαx ∶ qx → qx − 1

αLα
†
x ∶ qx → qx + 1

These four terms can be written as follows:

Ṽ = KLKR

2Ω
∑
±

ω−2 (ei(ϕL+ϕR)ω1−qxα†
LαR + e−i(ϕL+ϕR)ω1+qxαLα

†
R)

cos(Φ + 2πqx
3 ) − cos(Φ + 2π

3 (qx ± 1))
,

and writing cos(2π/3) = −1/2, some manipulations recover

= ω−1

⎧⎪⎪⎨⎪⎪⎩

KLKR

Ω

cos (Φ + 2πqx
3

)
cos 2 (Φ + 2πqx

3
) + 1

2

⎫⎪⎪⎬⎪⎪⎭
{ei(ϕL+ϕR−

2πqx
3

)α†
LαR + e−i(ϕL+ϕR−

2πqx
3

)αLα
†
R} (6.3.37)

= ω−1K̃LR {eiϕ̃LRα†
LαR + e−iϕ̃LRαLα

†
R} , (6.3.38)

which has the same form as original Hamiltonian, but the parafermion modes on sites x,x+1 have
both dropped out, creating an effective bond between sites L = x − 1 and R = x + 2, with coupling
K̃LR and chiral phase ϕ̃LR. As a special aside, for the Ising case n = 2, qx disappears completely
from the bond renormalization (and there are no phases).
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The important equations from the RG fusion are:

K̃LR = KLKR

Ω

cos (Φ + 2πqx
3

)
cos 2 (Φ + 2πqx

3
) + 1

2

(6.3.39a)

ϕ̃LR = ϕL + ϕR −
2πqx

3
(6.3.39b)

6.3.5 Discussion

Regarding the renormalization that occurs from decimating (i.e. diagonalizing) a strong parafermion
pair, and fusing its neighbors, i.e. Eq. (6.3.39), it is clear that this has the same general form as
the n = 2 Ising case. The main new ingredient is the existence of phases, renormalized according to
Eq. (6.3.39b). As in the Ising case, with each step, exactly two parafermion modes “drop out” of
the Hamiltonian, and a new, effective Hamiltonian forms that has the same form as the original,
with modified couplings straddling the decimated parafermions. Also as in the Ising case, this RG
flows to infinite disorder.

If, on average, more bonds are decimated than fields, the system will be in the Zn spin glass
phase, analogous to the Z2 spin glass described in Sec. 6.2. On the other hand, if more fields are
decimated, the system flows to a Zn paramagnet. At infinite disorder (to which the RG flows), both
phases are MBL, as they are strongly localized. The former, spin glass phase, features topological
edge modes, realized by Zn parafermions. The latter is, paramagnet, corresponds to a trivial phase.
Note that at weak disorder, where one expects thermal phases, the RSRG procedure invoked above
is likely not valid, as one will have too many nearly-degenerate couplings when starting the RG,
all of which must be accounted for in a given step. This can result in nonlocal mixing of terms,
generating extra entanglement and leading to a breakdown of the technique, but also suggesting
thermalization due to strong repulsion of many-body levels and entanglement production.

In particular, the Z3 clock model is expected to have the same nonequilibrium eigenstate phase
structure as its Z2 cousin, the transverse field Ising chain. One note is that, compared to the Ising
Hamiltonian defined in Eq. (6.2.1), the “integrability-breaking” terms are not necessary for n > 2:
While these theories are bilinear in the parafermion language, they are not integrable in the same
sense, because parafermions cannot be counted. The integrability of the Ising case is due largely
to a mapping from Majorana to Dirac (or “regular”) fermions, for which bilinearity is significant.
Nonetheless, all of the richness of equilibrium phase diagrams of Z3 clock models relies crucially on
certain ratios between the various couplings, including the phases, and the absence of disorder. For
generic models of the form Eq. (6.3.26), none of these phases will be realizable with any nonzero
disorder. Thus, the phase diagram for the Z3 clock model should be described by Fig. 6.1.

Finally, for precisely the same reasons that the Z3 clock model has the same phase diagram as
the Z2 Ising model, we predict that all Zn clock models have the same phase structure. Although
these models have extra terms with increasing n, randomness prevents the type of fine-tuning
required to realize more complicated phase structure in clean systems in equilibrium (and usually
at T = 0). In particular, whether the system is MBL or thermal is determined entirely by the
relative strength of interactions versus disorder (or, if preferable, simply the overall strength of
disorder). If the system is thermal, it must be a paramagnet; however, at strong disorder, it may
be possible to realize either a paramagnet or a spin glass. Because the disorder is strong, one can
invoke the RSRG used for Z2,3, and independent of n, on average one either decimates more fields
or more bonds. In the latter case, it is possible to realize a spin glass, with the glassy structure of
domains given by fixing the various bonds under the RG.
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However, this procedure and result are complicated if we allow the model to have a different
symmetry, e.g. the dihedral symmetries or permutation symmetries mentioned previously. This
will be the subject of Sec. 6.4.

6.4 The Disordered S3 Potts Model

This Section is largely drawn from Ref. 33 by this author.

6.4.1 Introduction

Little is known about the generic properties and possible phases of quantum systems out of equi-
librium, where even a basic understanding at the level of Landau theory has remained elusive.
Many-body systems can reach an effective equilibrium state under their own dynamics even in
isolation, a process encoded in the properties of individual eigenstates via a set of criteria col-
lectively termed the eigenstate thermalization hypothesis (ETH) [169, 170]. A distinct class of
many-body localized (MBL) systems [11, 12], usually with quenched randomness, violate these
criteria and cannot self-thermalize. As they need not satisfy the stringent requirements imposed
by ETH, even highly excited eigenstates of MBL systems can exhibit properties usually associated
with quantum ground states [15, 101]. This permits the classification of out-of-equilibrium MBL
systems into distinct eigenstate phases separated by eigenstate phase transitions [208], echoing the
classification of ground states and critical points in equilibrium systems, and providing a window
into nonequilibrium quantum order.

As ETH systems conform to the expectations of equilibrium statistical mechanics, at infinite
effective temperature (T →∞) they exhibit the eigenstate phase structure of a thermal paramag-
net, with trivial spatial and temporal correlations. In contrast, MBL systems can exhibit richer
behavior — for instance, an MBL Ising model can exhibit both broken-symmetry (spin glass) and
paramagnetic phases even for T → ∞ [15, 206, 207, 210]. In this regime — that is dominated by
properties of highly-excited eigenstates — a particularly sharp distinction emerges for non-Abelian
symmetries. While ETH systems with such symmetries are again thermal paramagnets as T →∞,
a fully MBL phase is inconsistent with non-Abelian symmetry [217]. This indicates that the onset
of full MBL must coincide with breaking of the symmetry, and that any symmetry-preserving
phase is either (i) thermal, in the sense of ETH; or (ii) an athermal ‘quantum critical glass’ [31]
that does not admit the local tensor product description of a fully MBL phase. In recent work [32],
we illustrated the former scenario in fermion chains with U(1)⋊Z2 symmetry, whose non-Abelian
semi-direct product structure (denoted ‘⋊’) reflects the nontrivial action of a Z2 particle-hole sym-
metry (PHS) on a conserved U(1) charge. As disorder is increased, PHS is spontaneously broken
in highly excited eigenstates whenever they are fully MBL. This rules out the possibility of using
PHS in conjunction with MBL to stabilize a topological phase — corresponding to class AIII in the
usual taxonomy [218,219] of symmetry-protected topological (SPT) phases — as T →∞. Similar
considerations [217] limit MBL-protected SPT phases [100, 220–222], and rule out many phases
that host non-Abelian anyons.

Some 1d topological phases host non-Abelian parafermionic edge modes independent of any
protecting symmetries [223], and are therefore apparently more amenable to localization protec-
tion. However, such 1D parafermionic chains are still inextricably linked to symmetry, although
indirectly: they are related, via the Fradkin-Kadanoff mapping [224], to Zn quantum clock mod-
els, with the topological (trivial) phases of the parafermions corresponding to ordered (disordered)
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phases of the spins [223]. The question of MBL protection of parafermion edge modes then turns
on the interplay of localization with the symmetry of the spin chain. Though Zn itself is Abelian,
for special achiral parameter values, Zn clock models with n ≥ 3 acquire an additional Z2 reflection
symmetry, enhancing the global symmetry to that of the non-Abelian dihedral group Dn ≅ Zn⋊Z2.
For n = 3, since D3 = S3, this is equivalent to the 3-state quantum Potts model. Our focus here
is on understanding how the non-Abelian symmetry of this model influences its nonequilibrium
phase structure.

This question is interesting for several reasons, explored in the remainder of this paper. First,
while superficially similar to the previously-studied U(1)⋊Z2 example, the D3 model has a richer
phase diagram — intuitively, U(1) symmetry constrains possible phases more strongly than D3

symmetry. Second, since breaking U(1) symmetry is impossible even with MBL in d = 1, the only
possibility for an MBL phase in a U(1) ⋊ Z2 system breaks the Z2 symmetry; in the clock model,
the Z3 subgroup of D3 may also be broken. This means that at strong disorder it may be possible
to tune between distinct MBL phases via an unusual critical point. Third, there is the intriguing
possibility of an athermal, symmetry-preserving quantum critical glass phase [case (ii) discussed
above]. Finally, to return to our original motivation, Z3 breaking in highly excited eigenstates
translates via duality [225] to the existence of a nonequilibrium topological phase that hosts edge
parafermion modes relevant to fault-tolerant quantum computing.

Before proceeding, we mention that related work by Prakash et al. [226], also considered the
role of non-Abelian symmetries in the excited states of a somewhat distinct model. The results
presented here are consistent with that work—where they overlap—though their emphasis was not
on the nature of the critical behavior between MBL phases. Their work also speculates as to the
existence of a QCG phase, a question on which we remain for the moment agnostic.

6.4.2 Model and symmetries

We now turn to the Z3 quantum clock—or Potts—model, described by the Hamiltonian

H = −
L−1

∑
j=1

Jje
iφj σ̂†

j σ̂j+1 −
L

∑
j=1

fje
iθj τ̂j + h.c., (6.4.1)

where Jj, fj, θj, φj are all real, and discussed below. The operators commute on different sites
and satisfy

σ̂3
j = τ̂ 3

j = 1, σ̂j τ̂j = ωτ̂jσ̂j, (6.4.2)

on a single site, where ω = e 2πi
3 .

In the eigenbasis of the weight operator, σ̂, defined by: σ̂∣m⟩ = ωm∣m⟩, τ̂ is a shift opera-
tor: τ̂ ∣m⟩ = ∣m + 1⟩, with ket labels taken modulo 3 henceforth. The conjugate τ̂ -eigenbasis ∣q⟩
interchanges these roles: τ̂ ∣q⟩ = ωq ∣q⟩, σ̂∣q⟩ = ∣q − 1⟩. Viewed as a 3-state quantum rotor, −i ln σ̂
represents the angle of the rotor, and the τ̂ measures its angular momentum (modulo 3).

For generic parameter choices, Eq. (6.4.1) has a global Z3 rotation symmetry generated by
Q̂ = ∏j τ̂j, with Q̂3 = 1. For φj, θj ≡ 0 mod π/3, there is also a Z2 mirror symmetry: X̂ ≡ ∏j X̂j,
where X̂j exchanges the ∣1⟩, ∣2⟩ eigenstates of either σ̂j, τ̂j, and X̂ 2 = 1. Together, Q̂, X̂ generate

the group D3 = S3 ≅ Z3 ⋊ Z2, where the semidirect product structure reflects the fact that Q̂, X̂
do not commute. Consequently, in the σ̂j basis there are two additional Z2 symmetries X̂ Q̂, X̂ Q̂

2
,

which respectively leave ∣1⟩, ∣2⟩ invariant, while exchanging the other states. When they are viewed
as 3-state quantum rotors in the xy-plane, Q̂ is a 2π/3 rotation, and X̂ is a mirror reflection of the
rotor about one of its 3 directions (which also inverts the angular momentum, τ̂).
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In the clean limit of the Z3 Hamiltonian Eq. (6.4.1), the ground state has an ordered phase
that spontaneously breaks Q̂ for J ≫ f , and a disordered phase for J ≪ f . These correspond
respectively to parafermionic phases with and without edge zero modes [223]. The chiral couplings
explicitly break Z2, and the ground states in both limits break two of the Z2 reflection symmetries

X̂ , X̂ Q̂, X̂ Q̂
2
. This model also possesses a sequence of incommensurate phases [227,228]. Extensive

recent work [229–233] has focused on the clean case; we shall instead study the situation when
the couplings are disordered, i.e. Jj and fj on each site are i.i.d. random variables, while keeping
φj, θj ≡ 0 mod π/3, so that the symmetry group is D3. We wish to understand whether highly
excited eigenstates of Eq. (6.4.1) satisfy ETH, or are instead MBL; and if the latter, whether and
how they break the non-Abelian D3 symmetry. We note that previous analysis [234] of low-energy
excited-states of clock models focused on edge zero modes in clean systems, a setting quite distinct
from the nonequilibrium disordered case studied here. For the non-Abelian XXZ chain [32], the
excited-state real-space renormalization group [206] (RSRG-X) provides useful insights; here, the
reduced D3 symmetry complicates matters, as explained in Appendix B.1. Since RSRG-X is
inconclusive, we turn instead to a numerical analysis, which we now describe.

6.4.3 Numerics

We investigate the random D3 chain via numerical exact diagonalization of Eq. (6.4.1). Since we
have three states per site, only a discrete global symmetry, and study highly excited eigenstates, we
are limited to systems of length L ≤ 10. Therefore, we must perform finite-size scaling analysis of
our data in order to extract the phase diagram and conjectured critical behavior. It is convenient
to parametrize couplings as Jj = λj (1+δ)2 and fj = λ′j

(1−δ)
2 ; with this choice, δ = ±1 are trivial limits

corresponding to idealized fixed-point Hamiltonians for the ordered (spin glass) and paramagnetic
phases respectively. (In the parafermionic language, δ is the dimerization, i.e. the bias in strength
between odd and even couplings.) The random coefficients λ,λ′ are drawn from the distribution
P (λ) = 1

W λ
1−1/W , where disorder is stronger for larger W , with W = 1.0 equivalent to a uniform

distribution on (0,1]. For each realization of disorder we use the shift-invert method [22] to obtain
N = 50 eigenstates from approximately the middle of the many-body spectrum, and average our
data over 103 − 104 such realizations. We use open boundary conditions, and slightly reduce the
Hilbert space size by restricting to eigenstates of both Q̂ and X̂ with eigenvalue unity. Although
Q̂ and X̂ do not commute, states constructed in the τ̂ basis have eigenvalue ωQ under Q̂, where
Q = ∑j qj mod 3, and if Q = 0 for some such state, then the Z2 partner of this state also has Q = 0.

In this way, we can construct a basis of simultaneous eigenstates of Q̂ and X̂ from states with
Q̂∣ψ⟩ = ∣ψ⟩ by superposing such states with their Z2 partner.

6.4.4 Observables

To map out the ergodic and localized regions in the transverse field-disorder plane (here parametrized
by δ,W respectively), we numerically measure several indicative quantities. We study the energy
level statistics via the ‘r-ratio’ [14], defined in terms of gaps δn = En − En−1 between successive
energy eigenvalues as r = min(δn, δn−1)/max(δn, δn−1). Once all symmetries have been taken into
account, for ETH systems energy level repulsion results in r ≈ 0.53, characteristic of the Gaus-
sian orthogonal random matrix ensemble, whereas for MBL systems r ≈ 0.38, reflecting the Poisson
statistics when level repulsion is absent [14,95]. It is crucial that we consider only eigenstates within
a given symmetry sector, as pairing between different sectors will artificially suppress r [15, 32] in
broken-symmetry states, and our auxiliary Z2 order parameter is only valid when evaluated with
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eigenstates of the Z3 cycle. We do not show level statistics data for ∣δ∣ ≳ 0.7 as they show unphys-
ically small r-ratios due to ‘fragmentation’ of the spectrum in the vicinity of perfect dimerization.
We also study the scaling of the half-chain entanglement entropy S

(n)
E = −Trρ̂n ln ρ̂n, computed in

the nth eigenstate from the reduced density matrix ρ̂n ≡ Tri>⌈L/2⌉∣n⟩⟨n∣.

6.4.5 Order parameters

Glassy breaking of the Z3 symmetry may be diagnosed by an Edwards-Anderson-type order pa-
rameter,

τ̂P ottseq ∶ s3opm3 =
1

NL2

N
∑
n=1

∑
i≠j

∣⟨n∣σ̂†
i σ̂j ∣n⟩∣

2
, (6.4.3)

where n labels eigenstates. This is analogous to the order parameter used to analyze MBL phases
in the Ising [207] and XXZ [32] chains, and will be nonzero in an eigenstate only if Z3 symmetry is
broken. The square average ensures that quenched site-to-site and eigenstate-to-eigenstate varia-
tions do not cancel, a standard strategy employed for spin-glass order. Breaking Z3 automatically
breaks Z2; we verify this explicitly in our numerics, and will justify analytically in Appendix 6.4.7.
We term a phase with m3 ≠ 0 a Z3 spin glass. In the parafermion language, this Z3 spin glass
corresponds to the topological phase with parafermionic edge states.

In addition, there is a Z2 chiral symmetry, X̂ , in the transverse-field phase f ≫ J , in which Z3

is preserved. To detect glassy chiral ordering, we examine

mχ =
1

NL2

N
∑
n=1

∑
i≠j

∣⟨n∣ĴiĴj ∣n⟩∣
2
, (6.4.4)

where the operator Ĵj = 1
i
√

3
(τ̂j − τ̂

†
j ) = 2√

3
Im(τ̂j) measures the chirality on a single site and

anticommutes with X̂ Q̂n. We term a phase with mχ ≠ 0 but m3 = 0 a chiral Z3 paramagnet since
it preserves Z3 but breaks the chiral Z2 symmetry. In the parafermionic representation, the chiral
paramagnet corresponds to a topologically trivial MBL phase without edge states. Observe that
D3 symmetry is broken in both the Z3 spin glass and the chiral paramagnet: completely in the
former, and down to an Abelian Z3 subgroup in the latter. Note however that mχ = 0 in the Z3

spin glass even though Z2 is broken, as we have defined mχ in the dual basis, which we elucidate
below, e.g. in Section 6.4.7.

6.4.6 Scaling exponents

In the strongly disordered limit W ≫ 1, we conjecture that a direct transition between an MBL
spin glass and a chiral MBL paramagnet occurs at the self-dual point δ = 0, and is characterized by
“random singlet” critical exponents. In particular, we expect this transition to share the universal
properties of the T = 0 disordered Ising chain [235] , including a true correlation length with mean
scaling exponent ν ≥ 2, consistent with Harris and Chayes-Chayes-Fisher-Spencer bounds [236],
where ξ ∼ ∆−ν and ∆ is a disorder-dependent logarithmic measure of distance from criticality [215,
216].

Additionally, the mean critical correlations behave like C̄ij = ∣⟨σ̂zi σ̂zj ⟩∣ ∼ ∣i − j∣−β. For the random
Ising case [215,216], the exponent β has a known value of βIsing = 2−ϕ, where ϕ is the golden ratio
(1 +

√
5) /2. A quick calculation reveals that the Edwards-Anderson-type order parameters used

to detect full D3 symmetry breaking should then scale as L−β as well, viz. m3 = 1
L2 ∑i≠j C̄ (∣i − j∣) ≈
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1
L2 ∫

L

0 dx ∫
L

0 dy ∣x − y∣−β ∝ L−β, and one expects the same value of β = βIsing only if the D3-breaking
transition is in the same universality class as the random Ising transition.

Thus, in performing finite size scaling for strong disorder, we multiply the order parameters by
Lβ to obtain a quantity with scaling dimension zero. We display figures for the values of β and ν
that produce the best quality fit, and take the quality of this collapse as good evidence in favor of
an infinite randomness critical point at δc = 0. However, we do not claim to extract numerically
precise values of either ν or β; we only demonstrate that the data obtained are consistent with
the values of these exponents one would expect from the Ansatz of infinite randomness criticality.
This scaling behavior is relevant only near criticality and at strong disorder (large W , δ ∼ 0). We
find that the expected value of ν = 2 produces a good quality fit, but so too do all ν ∈ [2,3]. As
these also satisfy the Harris bound, we cannot rule them out conclusively.
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Figure 6.3: Figure (a): Random D3 chain at weak disorder, W = 0.5. (Top) Level statistics
measured by r-ratio display two transitions: for ∣δc∣ ≲ 0.5, r tends to the ETH value r ≈ 0.53
characteristic of the Gaussian orthogonal ensemble with increasing L, whereas outside this region
r → 0.38, indicating Poisson statistics of MBL. (Center) Half-chain entanglement entropy density
SE(L)/L is consistent with volume (area) law scaling in the ETH (MBL) regions. (Bottom) Spin-
glass order parameters of Z3 and chiral symmetry (scaled by L, see text) also show crossings at
∣δc∣ ≈ 0.5, showing that MBL coincides with the onset of symmetry-breaking. Figure (b): Random
D3 chain at strong disorder, W = 2.0. (Top) Since r ≈ 0.38 for all values of δ, we infer that the
system is always MBL. (Center) Entanglement entropy density is consistent with area-law scaling
as L → ∞, again consistent with MBL. (Bottom) Scaling collapses of m3 (△) and mχ (◇), both
consistent with a direct transition at δc = 0 between distinct broken-symmetry MBL phases. Here

ν = 2, and ∆ = lnJ−ln f
varJ+varf = 1

2W 2 ln 1+δ
1−δ is a rescaled tuning parameter. [The point where the two

collapsed curves cross has no physical significance.]

6.4.7 Subsidiary Z2 breaking in the Z3 spin glass

For the parameter space we investigate, the model Eq. (6.4.1) has a global D3 = S3 symmetry
generated by the action of a Z3 cycle Q̂ = ∏j τ̂j and a Z2 swap X̂ ≡ ∏j X̂j, where X̂j interchanges
local eigenstates ∣1⟩ ↔ ∣2⟩ of either σj or τj, while leaving ∣0⟩ invariant. In the Z2 Ising model,
spin glass order is detected using an Edwards-Anderson order parameter. The Ising chain has only
a global Z2 symmetry generated by Ŝ = ∏j σ̂

x
j , and the corresponding eigenstate-averaged order
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parameter is

mIsing =
1

NL2

N
∑
n=1

∑
i≠j

∣⟨n∣σ̂zi σ̂zj ∣n⟩∣
2
, (6.4.5)

where σ̂zj anticommutes with the local symmetry generator, σ̂xj . For D3, the analogous opera-

tor Ĵj = 1
i
√

3
(τ̂j − τ̂

†
j ) anticommutes with the chiral Z2 generator X̂j, as evinced by their matrix

representations in the τ̂j-basis:

X̂j =
⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠
j

, Ĵj =
⎛
⎜
⎝

0 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
j

, (6.4.6)

which have the appropriate Pauli matrix structure. We therefore use the conjugate operator Ĵ to
construct the chiral Edwards-Anderson order parameter for X̂ -breaking,

mχ =
1

NL2

N
∑
n=1

∑
i≠j

∣⟨n∣ĴiĴj ∣n⟩∣
2
. (6.4.7)

As previously stated, X̂j has the same matrix form in the σ-basis; one may also construct the

conjugate in that basis, K̂j = 1
i
√

3
(σ̂j − σ̂

†
j), whereupon the order parameter becomes

m̃χ =
1

NL2

N
∑
n=1

∑
i≠j

∣⟨n∣K̂iK̂j ∣n⟩∣
2

(6.4.8)

= 1

9NL2∑
n
i≠j

∣⟨n∣(σ̂†
i σ̂j + σ̂iσ̂

†
j − σ̂

†
i σ̂

†
j − σ̂iσ̂j)∣n⟩∣

2
. (6.4.9)

However, the energy eigenstates ∣n⟩ are constructed as eigenstates of Q̂ = ∏j τ̂j, and therefore
correspond to states with a fixed Z3 charge Q = ∑j qj mod 3. The latter two terms in Eq. (6.4.9)
both change the total Z3 charge by ±1, and therefore have a trivially zero expectation value.

The σ-basis order parameter then becomes m̃χ = 1
9NL2 ∑Nn=1∑i≠j ∣⟨n∣(σ̂

†
i σ̂j + σ̂iσ̂

†
j)∣n⟩∣

2 = 4
9m3, i.e,

proportional to the Edwards Anderson order-parameter for Z3-breaking. As an aside, using either

of the other two Z2 symmetry operators X̂ Q̂, X̂ Q̂
2

and constructing the corresponding order
parameters in the σ-basis has the same result: the only respective changes are factors of ω and ω2

multiplying the trivial σ̂†
i σ̂

†
j term. Hence, the Z3-breaking spin glass necessarily breaks chiral Z2,

and so D3 is fully broken in this phase.

6.4.8 Details of the auxiliary Z2 order parameter

The Z2 order parameter defined in Eq. (6.4.4) measures chiral order in the τ -basis – i.e., breaking of
D3 to a Z3-preserving paramagnet. This order parameter is designed for use only in a paramagnetic
phase, wherein Z3 is preserved, and is not a useful measure of Z2 breaking when evaluated with
states that are not eigenstates of the Z3 generator. Although the derivation from conjugacy to
the Z2 generator derived in the preceding subsection is sufficient, we also performed several sanity
checks to confirm this quantity is reasonable. To wit, it has the appropriate action on generic states
constructed specifically to preserve or break the Z2 symmetry. Additionally, it is everywhere zero
when computed in ground states of the D3 model, where the quantum phase transition at T = 0
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only admits either a fully D3-preserving paramagnet or a spin glass that breaks D3 completely.
Lastly, it shows chiral ordering when calculated in eigenstates of the chiral Z3 Hamiltonian, which
breaks explicitly the Z2 subgroup of D3 (provided f̄j > J̄j). The fact that this quantity is zero even
in D3 ground states and all Z3 eigenstates for J̄j > f̄j confirms that it is only meaningful on the
putatively paramagnetic side of the phase diagram, δ ≤ 0.

6.4.9 Results

Armed with these measures of ergodicity and symmetry breaking, we now study their behavior at
weak and strong disorder.

Weak Disorder For a representative choice of weak disorder, W = 0.5 (Figure 6.3a), we identify
a pair of transitions both in level statistics and entanglement. For ∣δ∣ ≲ 0.5, the r-ratio increases
towards the ETH value of 0.53 with increasing system size, whereas outside this region it decreases
towards the MBL value of 0.38. This is also consistent with the change from area-law to volume-
law scaling observed in the eigenstate-averaged entanglement entropy (SE = ∑Nn=1 S

(n)
E /N ). We

conclude that an ETH region for ∣δ∣ ≲ 0.5 is flanked by a pair of MBL phases. We next study
symmetry-breaking, by considering the scaled quantities Lm3, Lmχ: these scale ∼ L in a phase
with spin-glass order, and vanish in a symmetry preserving phase. Crossings of curves of either
Lm3 or Lmχ corresponding to different system sizes approximately locate transitions between a
paramagnetic and broken-symmetry phase. Within the accuracy of our numerics, these appear to
coincide with the crossings in level statistics, with the δ ≳ 0.5 (δ ≲ 0.5) phase breaking the D3 (Z2)
symmetry in a spin glass sense. We track similar behavior up to W ≈ 1.0, whereupon the ETH
phase disappears; we therefore identify W > 1.0 with strong disorder. Fig. 6.4 shows the extent of
the ETH phase and approximate locations of the crossings in r,m3 and mχ. Crucially, a fully D3

symmetric MBL phase is absent, in accord with general symmetry restrictions [217].

Strong Disorder For strong disorder (e.g. W = 2.0, see Figure 6.3b) we find no evidence
for an ETH phase in either level statistics or entanglement: with increasing L, r → 0.385 and
SE/L decreases, consistent with either MBL or eigenstate criticality [31], for all δ. Extrapolating
from weak disorder, we see that the two MBL-ETH transition lines appear to converge at around
W ≈ 1.0. Recall that the two MBL phases have distinct broken symmetries. At strong disorder,
as the ETH phase is absent and an MBL paramagnet is inconsistent with D3 symmetry [217],
there must be either a direct transition between the two broken-symmetry MBL phases, or an
intervening symmetry-preserving quantum critical glass phase. [A third possibility, namely that a
narrow sliver of ETH phase persists to strong disorder [237,238], is not evident in our numerics but
we cannot rule it out for L→∞.] Although it is challenging to distinguish these scenarios given our
limited range of system sizes, we find some support for the former via finite-size scaling analysis,
as follows. First, we argue that self-duality of Eq. (6.4.1) implies symmetry under reflection of δ,
fixing a single direct transition to occur at δc = 0 (we ignore small finite-size corrections to duality
from the open boundary conditions; note that the weak disorder MBL-ETH transitions are at
roughly ±δc, consistent with duality). Second, we assume that a direct transition between MBL
phases is controlled by an infinite-randomness fixed point, with length-time scaling `ψ ∼ ln t. We
fix ψ = 1/2, characteristic of a random singlet critical point, the generic scenario [235] in systems
with Abelian global symmetries (as both phases lack full non-Abelian D3 symmetry), and use the
scaling form

m(δ,L) = L−βΦ [L1/ν∆] , (6.4.10)
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Figure 6.4: Non-equilibrium global phase diagram of random D3 chain. The MBL-ETH boundary
(red line) is an estimate based on crossings in level statistics and scaled entanglement entropy
(denoted ×, † respectively). For weak disorder we also indicate crossings in the Z3 (△) and chiral
(◇) order parameters. At strong disorder, we find scaling collapse consistent with an infinite-
randomness critical point at δc = 0; however, we cannot conclusively rule out a nonergodic quantum
critical glass in the transition region (hatched). (Inset) schematic of the symmetry-breaking pattern
and the topological/trivial phases of dual parafermions.

where ν = 2, ∆ = lnJ−ln f
varJ+varf =

1
2W 2 ln 1+δ

1−δ tunes across the δc = 0 critical point, and Φ is a universal func-

tion. For m3, the exponent β = 0.372 derives from known results for ψ = 1/2 infinite-randomness
critical scaling of the random transverse-field Ising model [215, 216], which predict an exponent
βIsing = 2 − ϕ. The same scaling does not hold for mχ, where β is not known analytically, and
we merely fit these data using the scaling form Eq. (6.4.10). As we see from the bottom panel of
Fig. 6.3b, the data for m3,mχ show reasonably good collapse when scaled according to Eq. (6.4.10),
with the exponent βχ = 1.5 chosen to show that a satisfactory collapse according to Eq. (6.4.10)
exists, though we do not claim to have extracted a precise value from the data. With no other
free parameters, the collapses are at least consistent with a direct infinite-randomness transition
between the Z3 spin glass and the chiral paramagnet (though other exponent choices also give
reasonable data collapses). Furthermore, we cannot rule out a possible sliver of a quantum critical
glass phase rather than a critical point, which might show similar scaling collapse for accessible
system sizes. We indicate this ambiguity by the hatched lines marking the transition region in
Fig. 6.4.

6.4.10 Discussion

The results for this system are summarized by the global nonequilibrium phase diagram for the
randomD3 chain depicted in Figure 6.4. To the extent this can be determined, MBL always appears
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to coincide with the breaking of the non-Abelian discrete D3 symmetry. The MBL Z3 spin glass
completely breaks this symmetry; in a different language, this phase will host parafermionic zero
modes stable at finite temperature. The other MBL phase is a Z3-symmetric paramagnet, which
— unlike its ground-state counterpart — breaks the remaining Z2 chiral symmetry, consistent with
the no-go theorem forbidding MBL with non-Abelian symmetry. At δ = −1, the model describes a
trivial paramagnet, the eigenstates of which feature extensive degeneracies due to the D3 symmetry.
Our numerics show that for any finite interaction δ > −1, the degeneracy due to the chiral Z2

component of D3 is lifted by spontaneous symmetry breaking. This is precisely the instability of
the MBL phase to non-Abelian symmetries predicted in a previous work [217]. While an ETH
phase intervenes at weak disorder, at strong disorder we find evidence for an infinite-randomness
transition between these distinct broken-symmetry MBL phases, although a more exotic possibility,
an athermal quantum critical glass, cannot be definitively ruled out. We conjecture that similar
features apply, mutatis mutandis, to other non-Abelian random spin chains with Dn symmetry.
Further investigation of such models, e.g. via matrix product state methods [26, 239–241], would
be an interesting avenue for future work.

6.5 The Random-Bond XXZ Model

This Section is largely drawn from Ref. 32 by this author.

6.5.1 Introduction

Many-body localization (MBL) extends the concept of single particle (Anderson) localization due
to random chemical potentials [10] to the excited states of isolated interacting quantum systems [11,
242,243]. MBL systems raise the compelling prospect of supporting quantum coherent information
storage and processing [13,20,244–247], and nontrivial quantum order [15,100,101,206,220,248,249]
in highly excited states far from thermal equilibrium [250]. Moreover, phase transitions between
MBL states [31,206,210,251] (or between MBL and thermalizing systems [14,22,95,214,252,253])
represent new classes of nonequilibrium quantum critical behavior.

A natural generalization of random potential localization is particle-hole symmetric (PHS)
disorder such as that due to random hopping amplitudes (or random vector potentials in dimensions
higher than one). In one dimension and in the absence of interactions, PHS disorder does not fully
localize single-particle states at zero energy, resulting in a marginally localized random-singlet
phase with infinite randomness quantum critical properties [216, 254]. In this paper, we examine
the fate of the highly excited states of this marginally localized phase [255] in the presence of
interactions by studying an equivalent problem, the random-bond XXZ spin 1/2 chain

H =
L−1

∑
i=1

Ji (Sxi Sxi+1 + S
y
i S

y
i+1 +∆iS

z
i S

z
i+1) , (6.5.1)

where Sµi = 1
2σi

µ, and σµi with µ = x, y, z are the standard Pauli matrices. We consider open
boundary conditions. In addition to spin conservation, the Hamiltonian defined in Eq. (6.5.1) has
an Ising symmetry generated by C = ∏i σ

x
i . A Jordan-Wigner transformation maps Eq. (6.5.1)

to a spinless fermion chain with nearest-neighbor interactions (that vanish for ∆i = 0), with C
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now playing the role of PHS. In thermal equilibrium and at zero temperature, interactions are
an irrelevant perturbation and do not affect the ground state critical properties [216]. However,
in the absence of interactions, the excited states are highly degenerate due to the combination of
single-particle integrability and symmetry, and hence even weak interactions can be expected to
dramatically modify the dynamical properties of this system.

Using a combination of real-space renormalization group (RSRG) arguments and exact di-
agonalization we show that arbitrarily weak interactions necessarily destroy the random-singlet
critical properties in excited states, either by inducing thermalization (at weak disorder) or by
spontaneously breaking PHS (strong disorder). In the latter case, this leads to a counterintuitive
scenario wherein the ground state is less localized (more entangled) than excited states. In ad-
dition, the ground-state random singlet phase can be thought of as a phase transition between a
certain 1D symmetry protected topological insulator with chiral symmetry and a trivial insulator,
and hence understanding its dynamical behavior will also shed light on questions of extending
symmetry-protected topological (SPT) order (and related Floquet SPT orders) to highly excited
states in MBL systems. We argue that the spontaneous symmetry breaking inherent at strong
disorder presents a fundamental obstacle to achieving this goal.

These results should be contrasted with a prior study of XXZ chains [209] that used a related
dynamical RSRG method to argue that the quantum critical behavior of the noninteracting ground
state extends to highly excited states. However, as noted in [209], these dynamical RSRG results
apply only to the fine-tuned Néel initial state which artificially removes the excited-state degen-
eracies from the dynamically accessible Hilbert space. We expect that our results reflect the true
dynamical properties of generic (i.e., not fine-tuned) states.

6.5.2 RSRG-X

The T = 0 low-energy physics of the antiferromagnetic XXZ spin chain Eq. (6.5.1) is well understood
in terms of a real-space renormalization group (RSRG) approach valid at strong disorder [216].
The key idea is to focus on the strongest bond of the chain Ω = Ji. Assuming strong disorder,
this bond is typically much larger than its neighbors, Ω ≫ JR, JL (JR/L ≡ Ji±1), so to leading
order we can diagonalize this strong bond by forming a singlet between the spins Si and Si+1.
Quantum fluctuations then induce an effective XXZ coupling between the spins SL = Si−1 and
SR = Si+2. Iterating this procedure, the effective disorder strength grows under renormalization so
that RSRG becomes asymptotically exact – i.e. gives exact results for universal quantities [216].
This approach was recently generalized to construct many-body excited states of random spin
chains by observing that at each step, it is possible to project the strong bond onto an excited-state
manifold [206,209]. The resulting excited-state RSRG (RSRG-X [206]) iteratively resolves smaller
and smaller energy gaps Ω and allows one to construct, in principle, the full many-body spectrum.
Assuming ∆ ≡ ∆i ≠ ±1 to avoid resonances, projecting onto the eigenstates ∣ ↑↓⟩± ∣ ↓↑⟩ of the strong
bond preserves the XXZ form of the effective interaction between SL and SR with parameters
Jeff = JLJR/((1 ∓∆)Ω) and ∆eff = ∆L∆R(∆ ∓ 1)/2, respectively. Another possibility would be to
project onto the zero-energy states ∣+⟩ = ∣ ↑↑⟩, ∣−⟩ = ∣ ↓↓⟩, where these two degenerate states can be
interpreted as components of a new effective superspin Seff with a different U(1) charge Sz = ±1
than the original UV spins 1/2. Spin conservation implies that Seff cannot be flipped by a first
order process like S+L,RS

−
eff + h.c. Keeping track of all the symmetry-allowed processes, we find the

effective Hamiltonian

Heff = JL∆LS
z
LS

z
eff + JR∆RS

z
RS

z
eff +

JLJR
Ω(∆2 − 1)

[
S+LS

−
R

2
+∆S+LS

+
RS

−
eff + h.c.] + . . . (6.5.2)
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Figure 6.5: Phase diagram of the random-bond XXZ chain at energy density ε = 0.5 from exact
diagonalization results. The quantum critical behavior of the free model (∆ = 0) is destroyed by
interactions, giving rise to either an ergodic phase at weak disorder where all spins are highly
entangled, or to a many-body localized phase with spin glass order at strong disorder. The phase
boundary is estimated from finite-size crossings at constant W (blue symbols) or constant ∆ (green
symbols). The excited states in the spin glass phase consist of effective superspins (green spins)
showing a random pattern of frozen magnetization varying from eigenstate to eigenstate.

where we have ignored second-order corrections to the Ising SzL,RS
z
eff terms.

In the noninteracting case [256] (∆i = 0), the effective Hamiltonian always has the same XX
form as the original one so that the procedure can be readily iterated. The sign of the J coupling
being essentially irrelevant, the flow equations for the couplings are identical to the groundstate
ones. This indicates that the random XX chain at finite energy density is a “Quantum Critical
Glass” [31] (QCG), a critical variant of MBL with logarithmic scaling of the entanglement and
power-law mean correlation functions. Crucially, the effective spins Seff (created when projecting
onto the Sz = ±1 excited states) completely decouple from the rest of the chain, thereby producing
an exponential degeneracy of the many-body eigenstates generated by RSRG-X. This degeneracy
is a consequence of the PHS of the single-particle spectrum, that dictates that single-particle
energies come in pairs (ε,−ε). The remainder of this paper focuses on investigating the fate of
these extensive degeneracies upon the inclusion of interactions.

6.5.3 Interaction-induced spin glass order

From Eq. Eq. (6.5.2), we see that the interactions generate two new types of term: second-order
couplings S+LS

+
RS

−
eff + h.c. flipping the effective spin Seff and more importantly Ising couplings

SzR,LS
z
eff generated at first-order in perturbation theory. To leading order, the effective Hamiltonian

takes the form of a simple Ising coupling that will dominate over the much weaker second order
flip-flop terms involving SL, SR. Although it is hard to keep track of all the multi-spin terms
emerging after many RSRG-X iterations, the trend is already clear. Namely, superspins made
of n > 2 aligned UV spins will be eventually generated in the course of the RG. Because of spin
conservation, it is increasingly harder to flip these large superspins as this will involve higher-
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Figure 6.6: Ergodic to spin glass (MBL) transition. At weak disorder (W = 0.5), our data
are consistent with an ergodic to spin glass (MBL) transition as ∆ is increased. Top: Ratio of
consecutive level spacings showing a transition from GOE to Poisson statistics. Middle: Scaling
of χEA showing a divergence with system size in the localized phase. Inset: Extrapolations of mEA

with L−1 finite-size corrections (see text) are consistent with spin glass order in the MBL phase.
Bottom: Finite-size scaling of the entanglement entropy.

order processes in perturbation theory involving many super-spin clusters. This strongly suggests
a physical picture of the excited states in terms of almost frozen superspins with strong Ising
interactions, very weakly coupled by flip-flop terms generated at higher order in perturbation
theory. The eigenstates would then consist of (super)spins showing a random pattern of frozen
magnetization — breaking the Ising symmetry — varying from eigenstate to eigenstate.

Such spontaneous breaking of PHS by interactions generates a random chemical potential term

∑i µiSzi (e.g. in a mean field treatment µi = ∑j=i−1,i+1 Jj∆j⟨Szj ⟩), which localizes the extended
single-particle modes near zero energy and cuts off the quantum critical spin fluctuations at length
scales longer than the spin-glass correlation length. Spontaneous PHS breaking appears to be
the only route to an MBL phase in this model: in particular, single-spin terms hiS

x,y,z
i acting

on the super-spins are forbidden by symmetry. This result implies that whereas the edges of the
many-body spectrum are quantum critical with algebraic mean correlations, high energy density
eigenstates are more localized, in sharp contrast with random-field MBL systems where higher
energy densities tend to favor delocalization [11,22].
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Figure 6.7: Strong disorder spin glass phase (W = 2.0). Left: Poisson statistics of the level spacings.
Inset: when not restricted to a given Z2 sector, the gap ratio r′ decreases with system size (well
below the Poisson value), signaling pairing of the excited eigenstates. Middle: Sub-extensive
scaling of the entanglement entropy. Right: Extrapolations of the spin glass order parameter
mEA = χEA/L are consistent with nonvanishing values in the thermodynamic limit for all values
of ∆ > 0, indicating spin glass order. Extrapolations are performed using 1/L2 (1) and 1/L (2)
finite-size corrections. We note that the small dip around ∆ ≈ 1 is naturally accounted for by the
enhanced probability of local resonances ∆i ≈ 1 [31] (see text). Inset: Linear scaling of χEA with
system size, consistent with spin glass order.

6.5.4 Numerical results

Though the above argument based on RSRG-X strongly suggests that even infinitesimally weak
interactions will destroy the quantum critical glass behavior of the random XX spin chain and
lead to spin glass order instead, it is hard to explicitly track all the higher-order terms generated
during the renormalization process that could (in principle) flip the super-spins. In order to clarify
this issue, we now turn to numerical exact diagonalization methods to study Eq. (6.5.1). We draw
the couplings Ji ∈ (0,1] from the power-law distribution P (J) = 1

W
1

J1−1/W and we choose ∆i to be
uniformly distributed in the interval [−∆,∆]. We also restrict to even L and∑i Szi = 0, and consider
the even sector of the Z2 symmetry C. For each disorder realization, we first calculate the extremal
energies Emin and Emax and define the normalized energy density ε = (E−Emin)/(Emax−Emin). We
then use the shift-invert method [22] to obtain the 50 eigenstates with energy closest to ε = 0.5,
corresponding to the middle of the many-body spectrum. Results are averaged over at least 2×103

disorder realizations.
To distinguish between ergodic and nonergodic phases we measure the level spacing parame-

ter [95]
rn = min(δn, δn+1)/max(δn, δn+1) , (6.5.3)

characterizing the ratio between consecutive level spacings δn = En − En−1 averaged over energy
levels n. Its disorder-averaged value changes from that characteristic of random matrices in the
Gaussian orthogonal ensemble, rGOE ≃ 0.5307 [257] in the ergodic phase, to rPoisson = 2 ln 2 − 1 ≃
0.3863 (reflecting absence of level repulsion) in the MBL regime. We also compute the bipartite
entanglement entropy Sn = −trρn lnρn, where ρn the reduced density matrix in the nth eigenstate
after tracing over half of the system. The entanglement scales as Sn ∼ 1, logL, and L for MBL,
QCG, and thermalizing systems respectively. To characterize the spin glass order, we introduce
an Edwards-Anderson-like order parameter,

mEA = 1

L2∑
n
∑
i≠j

∣⟨n∣σzi σzj ∣n⟩∣
2
, (6.5.4)
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which tends to a constant (zero) in the thermodynamic limit for a spin-glass ordered (disordered)
phase. (We also consider the auxiliary quantity χEA ≡ LmEA [251], which can in principle distin-
guish short-range spin glass order from certain types of quasi-long range order.)

6.5.5 Phase diagram

The results are summarized in the phase diagram of Figure 6.5 (see Appendix C for details). For
weak disorder (0 ≤W ≲ 1.5), and ∆ < ∆c(W ), we find GOE level statistics, extensive entanglement,
and vanishing spin glass order signaling a thermal phase. In this range of W , increasing ∆ drives
an MBL transition to a spin glass-ordered phase at ∆ = ∆c(W ), heralded by a crossing in the
finite size scaling plots of r, S, and χEA, per Figure 6.6.

Interestingly, our numerics strongly suggest that for weak enough disorder, arbitrarily weak
interactions lift the degeneracies of the noninteracting case and lead to thermalization. This is
natural since at weak disorder and ∆ = 0, degenerate PHS-conjugate pairs of orbitals that are either
doubly occupied or both empty (corresponding to superspins in the RSRG-X language) have large
spatial extent and overlap with many other degenerate pairs of orbitals. Then, upon the inclusion
of interactions there are many strongly overlapping resonances that lead to thermalization. In
other words, at weak disorder each orbital typically overlaps with many others, such that the
higher-spin S+LS

+
R . . . S

−
eff type flip-flop terms are no longer strongly suppressed by many powers

of a small parameter, and the massive degeneracy of the noninteracting case can be lifted by
quantum fluctuations which naturally lead to thermalization. For strong disorder however, each
degenerate pair of orbitals are sharply localized and interacts mainly with its nearest neighbors
through predominantly Ising interactions leading to the spin glass MBL phase discussed above.

6.5.6 Strong disorder regime

For strong disorder (W ≳ 1.5), we observe a clear finite-size scaling trend towards Poisson level
statistics, and sub-extensive entanglement entropy. In this strong-disorder regime, our RSRG-X
predictions should apply, and we therefore expect an MBL spin glass phase, as shown in Fig-
ure 6.7. To distinguish between QCG and MBL phases, we examine the scaling of the spin glass
order parameter with system size. Whereas for an MBL phase with long-range spin glass order
limL→∞mEA ≠ 0, for a QCG with only algebraic quasi long-range order, mEA ∼ L−α (χEA ∼ L1−α).
We observe that χEA clearly grows with system size, inconsistent with a QCG with α > 1. In
particular, this observation rules out a QCG in the same universality class as the random XX case
(∆ = 0) [209], which would have α = 2 [216]. From our RSRG-X scenario, we expect two types of
finite size corrections to mEA: 1/L terms coming from short-range ordered regions , and 1/L2 terms
from the vestige of random-XX QCG. Extrapolating our data for mEA using fits to either 1/L or
1/L2 finite-size corrections predicts a nonvanishing limiting value of mEA, suggesting spin-glass
order for all ∆ > 0, as depicted in Figure 6.7. Though our data is perfectly consistent with linear
growth of χEA = LmEA ∼ L, we cannot definitively rule out a more exotic QCG phase with α≪ 1,
distinct from the ∆ = 0 XX random singlet phase.

In this spin glass (MBL) phase, the eigenstates for large systems should be cat states ∣n⟩± =
(∣n⟩ ± C∣n⟩)/

√
2 that are even/odd under the Z2 symmetry generated by C = ∏i σ

x
i , where ∣n⟩ is

some eigenstate-dependent pattern of σz magnetization (with some background of random-singlet
spins). The energy splitting between the two true eigenstates ∣n⟩± is exponentially small in system
size and scales as ∼ e−L/ξ with ξ the localization length, implying that the broken-symmetry state
∣n⟩ becomes metastable in the limit of large systems [15]. Meanwhile, the level spacing scales as
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δ ∼ e−(ln 2)L at “infinite temperature” (corresponding to our choice of normalized energy density
ε = 0.5). At strong disorder, the localization length in the spin glass phase should be small and
we therefore expect the eigenstates to be “paired” [15]: the level spacing between each doublet is
exponentially small compared to the typical level spacing. This implies that the r ratio should
vanish, provided one does not restrict to a given Z2 sector (recall that up to now, we worked in
the even sector of the particle-hole symmetry C). In a quantum critical glass phase (with quasi-
long range order), we expect the energy splitting of these quasi-doublets to become stretched-
exponential [206, 215], i.e., much larger than the many-body level spacing, thereby forbidding a
regime with paired eigenstates. The r ratio thus provides us with a clear way to distinguish true
long-range spin glass order from the quasi-long range order of a quantum critical glass in small
systems.

We checked that for sufficiently strong disorder (W = 2.0 and W = 2.5) where there is no sign
of an ergodic phase, the r ratio computed in the full spectrum of the Sz = 0 sector (denoted by
r′) indeed decreases with system size, even for small values of 0.2 ≤ ∆ ≤ 1.0 (Fig. 6.7) where a
quantum critical glass phase was previously predicted [209]. This strongly supports our claim of a
spin glass phase extending all the way to infinitesimal ∆.

We also remark that the small dip around ∆ ≈ 1 in Fig. 6.7 is naturally explained by the
enhanced probability of local resonances ∣∆i∣ ≈ 1. Recall that uniform anisotropies ∆i = 1, ∀i with
global SU(2) symmetry are known to lead to thermalization for arbitrary disorder strength [31,209,
220]. In our case of inhomogeneous anisotropies distributed uniformly in [−∆,∆], the probability
of having a resonance 1− ε < ∣∆i∣ < 1+ ε for small ε > 0 is obviously strictly zero if ∆ < 1− ε, decays
as ∼ 1/∆ for ∆ > 1 + ε, and therefore exhibits a maximum near ∆ ≈ 1 (at ∆ = 1 + ε).

6.5.7 Constraints on protection of SPT order by MBL

Our RSRG-X arguments and numerical results both show an inherent instability of the XX critical
point towards a noncritical MBL spin glass upon the inclusion of interactions. Interestingly, these
results imply a related instability of certain symmetry protected topological (SPT) orders, that one
might have thought could emerge in highly excited states of MBL systems. Consider Eq. (6.5.1),

with an even number of spins, dimerized hoppings Ji = 1
2J

(0)
i (1 + δi(−1)i), and weak interactions

(∆i ≪ 1). Then the ground state is topologically trivial for δ = δi > 0, but exhibits SPT order with
symmetry-protected spin 1/2 topological edge states for δ < 0 (see Appendix C.2). This model is
dual to a 1D fermion SPT of class AIII [218,219] via a standard Jordan-Wigner mapping, where
the edge states are protected by the symmetry U(1)×ZS2 where S = CK, with K acting as complex
conjugation (see Appendix C.2).

In the perfectly dimerized limit, δ = −1, the ground state consists of singlets on all dimerized
bonds, with dangling spin 1/2 degrees of freedom at the left and right ends, and excitations are
either nondegenerate Sz = 0 triplets, ∣ ↑i↓i+1⟩ + ∣ ↓i↑i+1⟩, or doubly degenerate Sz = ±1 triplets,
∣ ↑i↑i+1⟩, ∣ ↓i↓i+1⟩ on a strong bond. Moving away from the perfectly dimerized limit, δ ≳ −1, these
doubly degenerate Sz = ±1 bond-triplets weakly interact via virtual excitations of the intervening
nondegenerate Sz = 0 bonds. These interactions are strongly random, decaying exponentially in
distance between the Sz = ±1 bonds, and symmetry dictates that these interactions be of XXZ
form (plus less relevant multi-spin interactions). Thus the Sz = ±1 excitations form a new effective
XXZ chain that, crucially, has no memory of the initial dimerization pattern δi. According to
the preceding sections of this paper, at finite energy density this effective XXZ chain will either
thermalize (weak disorder) or spontaneously break symmetry (strong disorder); in both cases, the
underlying SPT order is destroyed.
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6.5.8 Discussion

We have argued that the notion of particle-hole symmetric Anderson localization does not extend
to the MBL case. Even though interactions are an irrelevant perturbation in the ground state, they
drastically affect the structure of excited states leading either to thermalization at weak disorder
or to spontaneously broken particle-hole symmetry at strong disorder, thereby destroying in both
cases the quantum critical properties of the noninteracting model.

Our results also imply the instability of SPT order with U(1)×ZS2 symmetry. Previous analyses
of whether SPT order can extend to highly excited states of MBL systems [220, 248, 249] focused
on whether it is possible to construct a locally integrable (commuting projector) “fixed-point”
model of the phase for which all excited states are localized with concurrent SPT order. Our
present study furnishes an example where such a locally integrable model is possible (the perfectly
dimerized state), but for which there are inherent degeneracies in the excitations that, upon weak
perturbation away from the strictly integrable limit, result in spontaneous symmetry breaking.
Our results also rule out the realization of certain stable Floquet SPT orders [66,68,258,259] with
no equilibrium counterparts, such as those in driven systems, that require an MBL setting to avoid
catastrophic heating [99, 103, 260]. It would be very interesting to investigate whether our results
can be generalized to rule out the existence of PHS many-body localization and related excited
state SPT orders in higher-dimensional systems.

6.6 Non-Abelian Symmetry

The studies referred to in Secs. 6.4 and 6.5 by this author and collaborators led to related work,
Ref. 217, which established the incompatibility of many-body localization with non-Abelian sym-
metries. In particular, any system with a global symmetry groups containing multiplets—which
is to say irreducible representations (“irreps”) with dimension greater than one—is incompatible
with MBL. All non-Abelian symmetry groups fall into this category, including those with finite-
dimensional representations, e.g. the S3 Potts model studied in Sec. 6.4, as well as those with
continuous representations, e.g. the U(1) ⋊ Z2 symmetric random-bond XXZ chain detailed in
Sec. 6.5. An intuitive explanation is that the ` bits that define the fully many-body localized
phase must transform independently under the model’s symmetry, G, which necessarily implies
extensively many local degeneracies in the spectrum if G is non-Abelian.

To illustrate this, suppose a given system with a non-Abelian symmetry G has an MBL phase.
The corresponding ` bits for this model thus transform as irreps of G, with different states of the `
bit (i.e. eigenstates of the LIOM) labeling irreps ofG. ForG to be non-Abelian and act faithfully on
the system, at least some of these irreps must have dimension larger than one, and must therefore
result in degenerate eigenvalues of the LIOM operator. Since the full spectrum of eigenstates of
the model is completely specified by a configuration of these ` bits, correspondingly, the full set
of energy eigenvalues, defined in terms of eigenvalues of the LIOMs, will have degeneracies that
scale exponentially with the system size. A key facet of the MBL phase is that it is a robust
phase of matter, i.e. stable to small but [fairly] arbitrary perturbations; however, the presence
of such superextensive degeneracy in the energy spectrum makes the Hamiltonian unstable to
perturbations, as can be seen using standard perturbation theory. Further, there is no way to
“lift” these degeneracies without breaking the symmetry.

Hence, models with non-Abelian symmetries either realize a thermal phase, or realize MBL
by spontaneously breaking the full non-Abelian symmetry down to a discrete symmetry. In the
models studied in Secs. 6.4 and 6.5, both of these outcomes were realized. Additionally, it may
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be possible to realize more exotic but nonergodic phases in these models. While some evidence
of these phases was observed for the S3 Potts model [33], the limitation of exact numerics and
complicated nature of the RSRG made this impossible to diagnose. Whether such physics can be
realized in general models or those with non-Abelian symmetries, as well as whether this behavior
constitutes a phase of matter, remains an open question [217].

6.7 Summary and Outlook

In conclusion, we have investigated the interplay between both conventional and topological order
and nonequilibrium phase structure—namely, thermalization versus localization. In particular, we
have seen how various aspects associated to ground states of clean quantum systems, e.g., those
in equilibrium with a classical reservoir at T = 0, are realized in highly excited states of disordered
models. Additionally, we have unearthed certain symmetry constraints on MBL phases, and
ruled out the possibility of certain types of MBL-protected topological orders, and shown that
the rich phase structure of clean clock models cannot be realized in the nonequilibrium setting.
We have also showcased the descriptive power of the real-space renormalization group technique
applied to highly excited states. Although this technique presumes strong disorder, it becomes
asymptotically exact as it flows to infinite disorder under the RG. We have also found numerical
evidence for more exotic, nonergodic regimes, which require scrutiny beyond the scope of RSRG
and small systems numerics. While we expect that a wealth of interesting physics may be realized
in this setting, the primary limiting factor is the lack of available techniques that do not suffer
from one or more serious deficiencies or limitations. In the future, we hope to develop techniques
that can access the thermodynamic limit in such nonequilibrium systems, particularly by adapting
successful techniques for more conventional strongly correlated quantum systems.
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Chapter 7

Open Quantum Systems

7.1 Introduction

The ability to realize quantum systems that are well isolated from their environment has led to
new efforts to understand how such systems thermalize. The Eigenstate Thermalization Hypothesis
(ETH) [169,170] provides a mechanism for part of an isolated system to equilibrate with the rest,
which acts as a bath (thermal reservoir), to reproduce the familiar results of statistical mechanics.
These efforts have also revealed classes of non-ergodic systems that do not thermalize per ETH.

In practice, no experiment can remain isolated forever [261–263], which motivates careful the-
oretical study of the environment itself [264–267]. As MBL and ETH focus on highly excited
eigenstates—and therefore effectively at large or infinite effective temperature, T—baths in this
nonequilibrium context are approximated as Markovian, i.e. memoryless on long timescales [265].
In contrast, for T → 0, the bath autocorrelation time can diverge, so that memory effects become
significant. Such non-Markovian baths can arise naturally from quantum dissipation, induced,
e.g. by coupling to a continuum of gapless excitations [268,269]. Most studies heretofore have fo-
cused primarily on the former, Markovian baths, whose action is history-independent: such baths
generally delocalize systems, rendering them more thermal [265].

A fundamental result of ETH is that the mechanism for thermalization of a [sub-]system is
entanglement between the ‘system’ and ‘bath’ [169,170]. Thus, a Markovian bath—which foregoes
any description of the bath itself—necessarily overlooks this key aspect of thermalization. In fact,
the failure of quantum systems to thermalize is highly dependent on such details; hence, Markovian
baths may not be ideal for understanding possible dynamics beyond outright thermalization.

To gain insight into alternative behavior in the presence of baths, we turn to techniques used to
study quantum dissipation; in particular, the model pioneered by Caldeira and Leggett [268, 269]
and used in numerous subsequent works [270–275], which we detail in Sec. 7.2. Although Caldeira-
Leggett baths are designed to thermalize a system (as can be seen using a standard Keldysh
calculation [276]), recent work has shown that it is nonetheless possible for system coupled to
these baths to feature dynamical properties reminiscent of localization [271, 274, 275]. A single
particle, moving in a harmonic potential landscape in the presence of such dissipation will undergo
a dynamical localization transition as the dissipation strength is increased [271], and the decohering
effect of the bath results in effective Zeno localization [277] to one of the potential wells; recently,
it was shown that the inclusion of a second, incommensurate potential will destroy the delocalized
phase entirely, for arbitrary non-zero coupling to the bath [275], as detailed in Sec. 7.3.

Most studies of Caldeira-Leggett (CL) baths involve non-interacting systems, or a single par-
ticle; despite these simplified settings, such systems can nonetheless exhibit phase transitions
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[270, 271, 273, 278–283]. However, exact results for interacting systems have remained largely elu-
sive, and we explore this in Sec. 7.4.

7.2 Caldeira-Leggett Baths

In classical, non-equilibrium statistical physics, Brownian motion of a particle is described by the
Langevin equation,

mq̈ + ηq̇ + ∂V
∂q

= ξ(t) , (7.2.1)

where the ensemble averages of the fluctuating, dissipative force satisfy ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ =
2ηδ(t − t′).

For classical systems, this equation can be derived from first principles using the formalism
of the “megabath” [2], in which regards the system as consisting of the actual system of interest,
and a toy model for a bath. They system and explicit bath are coupled to one another, and the
combined system is itself coupled to the conventional mystery bath standard throughout statistical
mechanics. The latter exists as a crutch for the calculation, as it is not possible in general to solve
the infinitely many coupled nonlinear equations of motion that arise from the Euler-Lagrange
equations for the classical system.

Modeling the bath as a collection of harmonic oscillators, one can then establish thermalization
between the system and explicit bath. Additionally, the Langevin equation, given by Eq. (7.2.1),
recovers directly. There are a number of caveats, of course. For example, the harmonic oscillator
bath is integrable, and thus unable to reach an equilibrium distribution, which is a necessary
condition for the oscillators to serve as a thermal bath as intended. This can be avoided by
assuming that the oscillators had some mysterious interactions in the distant past, and that they
equilibrated to a standard Gibbs-Boltzmann ensemble while the interactions were present, and the
interactions have been conveniently turned off since then to facilitate calculation. The result shows
how dissipation can arise from microscopic considerations of the bath.

The bath model pioneered by Caldeira and Leggett [268, 269, 272, 273] consists of a tower of
quantum simple harmonic oscillators. This quantum bath provides for the demonstration of similar
results compared to its classical counterpart, e.g. dissipation, in quantum systems in contact with
their environment. Note that it is possible to formulate this model in the Keldysh formalism [276],
in which case it is unnecessary to employ the “mega bath” necessary for the analogous classical
calculation1. This calculation is a standard result, and reveals that morally equivalent results
obtain for generic configurations of the bath (i.e. in terms of the initial density matrix in the
distant past) as obtain for the thermal density matrix. The latter can be shown to be equivalent
to the Matsubara formalism, i.e. the mega bath calculation at finite temperature. Hence, we will
rely upon the latter as the formalism is simpler.

The simplest examples involving the Caldeira-Leggett formalism describe the dissipative dy-
namics of a single quantum degree of freedom [268,269,271,278–281]. This can be the position of
a particle, but similar models arise more generally in ‘quantum impurity problems’, describing e.g.
the phase of a resistively and capacitively shunted Josephson junction, a Kondo spin in a metal,
or the scattering phase shift at a quantum point contact or across a mobile impurity in a quantum
fluid [284–286]. Despite their simplicity, these models can nevertheless exhibit phase transitions,
e.g. as a function of dissipation strength [271,280,282,287], and the results of Sec. 7.3.

1It is also worth mentioning that there exists a classical version of Keldysh in which this is also possible, though
difficult.
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To use a particular example relevant to Sec. 7.3, consider a “system” consisting of a single,
quantum particle with position q, in which case the full Hamiltonian for the “system” and Caldeira-
Leggett bath is given by

H = p2

2m
+ V (q) +∑

a

⎛
⎝
P 2
a

2Ma

+ 1

2
Maω

2
a (Qa +

fa[q]
Maω2

a

)
2⎞
⎠
, (7.2.2)

where V (q) is some spatial potential felt by the particle and the rightmost term above is known as a
“counter term” (which appears in the classical version as well), which ensures that the effect of the
bath is purely dissipative [2]. We will primarily concern ourselves with a linear coupling between
the particle and the bath, f[q] = λaq, however it is possible to repeat this procedure for general
couplings, but in general these will result in corrections to the potential, V , in Eq. (7.2.2), and
will be higher-order in temporal nonlocality. Such scenarios are likely less physical, and generally
less soluble.

Under certain conditions, which are sufficiently generic, one can integrate over (i.e. “trace
out”) the bath degrees of freedom to recover an effective action for the hero particle in terms of its
position, q. This procedure relies on the fact that the bath action is Gaussian, and the coupling
to the system is linear in the oscillator displacements, as we show below.

Hence, we use the Euclidean time action, which we separate into terms corresponding to the
system (i.e. the particle at q), bath, and coupling:

S0[q] =
βh̵

∫
0

dτ (m
2
q̇2(τ) + V (q(τ))) , (7.2.3)

and the bare action for the oscillator bath,

SB [{Qa}] =
βh̵

∫
0

dτ∑
a

ma

2
(Q̇2

a(τ) + ω2
aQ

2
a(τ)) , (7.2.4)

and finally, the system-bath coupling,

SC [q,{Qa}] =
βh̵

∫
0

dτ∑
a

fa[q(τ)]Qa(τ) (7.2.5)

where at present, we have ignored the “counter-term,” which we can be inserted later into S0[q].
We wish to calculate the effective action Seff[q], which obtains after integrating out the bath
degrees of freedom,

e−Seff[q]/h̵ =
⟨e−Stot[q,{Qa}]/h̵⟩B
⟨e−SB[{Qa}]/h̵⟩B

(7.2.6)

e−(S0[q]+S′eff[q])/h̵ = e−S0[q]/h̵ ⟨e
−(SC[q,{Qa}]+SB[{Qa}])/h̵⟩B

⟨e−SB[{Qa}]/h̵⟩B
(7.2.7)

e−S
′
eff[q]/h̵ = ⟨e−SC[q,{Qa}]/h̵⟩

B
. (7.2.8)

Consider now the quantity

F0 [q(τ)] = ∫ [DQ] exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

h̵

βh̵

∫
0

dτ (M
2
Q̇2 + M

2
ω2Q2 − γQq)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (7.2.9)
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which can be generalized to an arbitrary coupling that is a function of Euclidean time, γ → −if(τ),
for convenience of notation. We then evaluate

F [f(τ), x1, x2] =
Q(βh̵)=x2

∫
Q(0)=x1

[DQ] exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

h̵

βh̵

∫
0

dτ (M
2
Q̇2 + M

2
ω2Q2 + if(τ)Q(τ))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7.2.10)

= (2πh̵ sinh (βh̵ω)
Mω

)
−1/2

e−Φ[q]/h̵, (7.2.11)

where Φ is an effective action that is written explicitly in equation 3.40 on page 82 of Feynman’s
book, and will be produced in detail below.

To summarize the procedure: Starting from F [f(τ), x1, x2], one can use integration by parts to
expand about the classical path x0(τ), which satisfies the Euler-Lagrange equations for the action
represented by F and satisfies the initial and final conditions x0(0) = x1 and x0(βh̵) = x2. We then
expand the oscillator degree of freedom as Q = x0 + y, where y(0) = y(βh̵) = 0. This procedure is
unnecessary if x1 = x2, which is precisely what one demands in the Matsubara formalism.

This function F will only give the top part2 of the expectation value, which needs to be
normalized, i.e.

e−S
′
eff[q]/h̵ = ⟨e−SC[q,{Qa}]/h̵⟩

B
=

⟨e−(SC[q,{Qa}]+SB[{Qa}])/h̵⟩B
⟨e−SB[{Qa}]/h̵⟩B

=∏
a

∫ dxaF [f(τ), xa, xa]
∫ dxaF [0, xa, xa]

, (7.2.12)

where the oscillator path integrals are computed with Qa(0) = Qa(βh̵) = xa, and subsequently
integrated over possible endpoints xa.

The resulting expression can be solved via Fourier series for both Q and f ,

Q(τ) = a0

2
+

∞
∑
n=1

(an cos(2πnτ

βh̵
) + bn sin(2πnτ

βh̵
)) (7.2.13)

f(τ) = f0

2
+

∞
∑
n=1

(fn cos(2πnτ

βh̵
) + gn sin(2πnτ

βh̵
)) , (7.2.14)

which already encodes the fact that Q(0) = Q(βh̵) ≡ xa, and we can then replace the path integral
over [Q], combined with integration over the constraint xa, with integration over all the coefficients
{an, bn}. Although this involves some monstrous Jacobean, because of the overall normalization
factor in Eq. (7.2.12), this will work out nicely. We have

∏
α

exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− f 2
0

4Mαω2
α

− β

2Mα

∞
∑
n=1

f 2
n + g2

n

(ω2
α + (2πn

βh̵ )
2
)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (7.2.15)

which can be simplified using the formula

1

πλ
+ 2λ

π

∞
∑
n=1

cos (nφ)
n2 + λ2

= cosh (πλ − λ ∣φ∣)
sinh (πλ)

, (7.2.16)

to obtain the effective action

e−S
′
eff[q]/h̵ =∏

a

exp

⎡⎢⎢⎢⎢⎣
− 1

4Mah̵ωa

βh̵

∫
0

dτ

βh̵

∫
0

dτ ′f(τ)f(τ ′)cosh (ωa ∣τ − τ ′∣ − βh̵ωa/2)
sinh (βh̵ωa/2)

⎤⎥⎥⎥⎥⎦
. (7.2.17)

2I believe this is called a “numerator.”
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Recognizing that the function f ought to be periodic in imaginary time on the interval [0, βh̵],
Eq. (7.2.17) becomes

e−S
′
eff[q]/h̵ =∏

a

exp

⎡⎢⎢⎢⎢⎣
− 1

4Mah̵ωa

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′f(τ)f(τ ′)e−ωa∣τ−τ ′∣
⎤⎥⎥⎥⎥⎦
, (7.2.18)

by cleverly extending the bounds of integration over τ ′ to make Eq. (7.2.17) much more user-
friendly.

We now make explicit the function γ = −if(τ), which we take to be linear in the coordinate of
the particle, if(τ) = λaq(τ), into Eq. (7.2.18), so that the resulting action is Gaussian, and because
the coupling is also linear in the bath coordinate, so this is nice and reciprocal. The result is

S′eff[q] = −∑
a

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ2
a

4Maωa

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′q(τ)q(τ ′)e−ωa∣τ−τ ′∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (7.2.19)

and making the substitution q(τ)q(τ ′) = [q2(τ) + q2(τ ′) − (q(τ) − q(τ ′))2] /2 allows for a nice can-
cellation with the counter term that we have thus far largely ignored (which is also related to why
the counter term is needed), and we recover

S′eff[q] =∑
a

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ2
a

8Maωa

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′ (q(τ) − q(τ ′))2
e−ωa∣τ−τ

′∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (7.2.20)

We now make the “useful” identification(s)

α(s) ≡∑
a

λ2
a

4Maωa
e−ωa∣s∣ =

∞

∫
0

dω

2π
J(ω)e−ω∣s∣, (7.2.21)

which defines the bath spectral function, J(ω),

J(ω) = π
2
∑
a

λ2
a

Maωa
δ(ω − ωa) , (7.2.22)

and results in the effective action

S′eff[q] =
1

2

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′ (q(τ) − q(τ ′))2

∞

∫
0

dω

2π
J(ω)e−ω∣τ−τ ′∣. (7.2.23)

In general, one can assume J(ω) is analytic, and possesses either a specific power-law form, J(ω) =
ηγ ∣ω∣γ, or is the sum over such terms.

We will generally be interested in the specific form of J(ω) corresponding to Ohmic dissipation:

J(ω) = η∣ω∣. (7.2.24)

Calculations for and constraints on other forms of J(ω) can be found in Appendix D.1.1, as not
all of these have finite Fourier transforms, a necessary element for obtaining a useful “free theory.”

For the case of Ohmic dissipation, i.e. with J given by Eq. (7.2.24), we obtain the full Euclidean
action for the hero particle

S0 =
η

4π

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′ (q(τ) − q(τ
′)

τ − τ ′
)

2

+ m
2

βh̵

∫
0

dτ (q̇2(τ) + V [q(τ)]) , (7.2.25)

which amounts to an effective temporally non-local term, in addition to the bare terms present in
Eq. (7.2.3).
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7.3 Quantum Brownian Motion

This Section is largely drawn from Ref. 275 by this author.

7.3.1 Introduction

Localization has been a subject of interest for over half a century, following Anderson’s seminal
work on electron propagation in disordered media [10]. Recently, the recognition that the many-
body localized (MBL) insulator is a stable state of matter with robust non-equilibrium phase
structure has sparked renewed interest in the topic [11,13,14,21,250]. Although much of this effort
has focused on isolated systems with uncorrelated disorder, two departures from these prevalent
paradigms have emerged as significant. First, studying localization in open quantum systems
coupled to an external ‘bath’ is both intrinsically interesting [264–267] and relevant to many
experiments [261–263,288]. Second, quasiperiodic systems can also display localization, but unlike
their disordered cousins, may be less susceptible to rare region effects that disrupt MBL in d >
1 [237,238,289–293]. Quasiperiodic potentials can be engineered robustly and controllably in cold
atom experiments, either by superposing two mutually incommensurate optical lattices, or by
‘cut-and-project’ techniques. Experiments have now begun to probe the interplay of localization,
interactions, and coupling to a bath in quasiperiodic systems [261,262,293–298].

In this Section, we show that the properties of a quasiperiodic system can be altered by cou-
pling to a bath with non-trivial dynamics, even without interactions. In a departure from previous
studies [265], we will focus on non-Markovian baths, which arise from models of dissipation, in-
duced, e.g. by coupling to a continuum of gapless excitations [268, 269], as detailed in Sec. 7.2.
Despite their simplicity, these models can nevertheless exhibit phase transitions, e.g. as a function
of dissipation strength [271,280,282,287].

For instance, a particle in a periodic potential can undergo a T = 0 phase transition as the
strength of Ohmic dissipation α is tuned: for α > αc the particle is localized in one of the potential
minima, while for α < αc it is delocalized and undergoes quantum Brownian motion over long
distances, where αc is a critical value of dissipation set by the periodicity of the potential [271]. We
examine the fate of this T = 0 transition for quasiperiodic potentials. We show that the delocalized
phase present at weak dissipation α < αc for a single periodic potential [271] is destabilized by an
additional periodic perturbation, even when the latter has a higher critical dissipation strength in
isolation. The resulting phase diagram depends on the ratio between the periods of the potentials.
In the commensurate case, the delocalized phase survives, but with a lower critical dissipation
strength than for either potential in isolation; for the incommensurate (quasiperiodic) case, it is
destroyed. Notably, with dissipation the delocalized phase is absent even for infinitesimally weak
quasiperiodic perturbations, in striking contrast to the dissipationless case [289] where it survives
up to a critical value of the quasiperiodicity. Although the problem formally maps to a ‘double-
frequency’ boundary sine-Gordon model with no exact solution, we can compute an approximate
localization length using renormalization-group (RG) techniques. We showcase this approach for
examples of commensurate and incommensurate perturbations.

We also find a surprising application of our analysis to the currently more experimentally
realizable setting of a mobile impurity moving in a periodic lattice in one dimension, immersed in
a quantum fluid that it scatters strongly via contact interactions. Here our model describes the
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dissipative dynamics of the scattering phase across the impurity, the relevant commensurability is
between the gas density and the lattice, and the transition corresponds to a change in the impurity
dispersion (energy-momentum relation E(P )), from flat to periodic.

7.3.2 Model

We begin by considering a single quantum particle interacting with a bath of harmonic oscilla-
tors [268,269]. The joint Hamiltonian is

H =H0(q) +
1

2
∑
a

p2
a

ma

+maω
2
a (xa +

fa[q]
maω2

a

)
2

, (7.3.1)

where a indexes the oscillators, q is the spatial coordinate of the particle, and H0 = p2/2m +
V (q), with V (q) a local potential. We assume linear particle-bath coupling f[q] = λaq, and

characterize the bath via its spectral function J(ω) = π
2 ∑a

λ2
a

maωa
δ(ω − ωa). We restrict to Ohmic

dissipation, J(ω) = η∣ω∣, which in the classical/high-temperature limit yields Brownian motion
described by a Langevin equation [268, 269]. Integrating out the bath in the partition function
yields an (imaginary-time) effective action for the particle [299], which for Ohmic dissipation and
V = 0 is

S0 =
βh̵

∫
0

dτ

⎡⎢⎢⎢⎢⎣

m

2
q̇2(τ) + η

2π

∞

∫
−∞

dτ ′
q(τ)q(τ ′)
(τ − τ ′)2

⎤⎥⎥⎥⎥⎦
. (7.3.2)

We scale out a microscopic length q0 (this will be set by the potential) and take θ(τ) = 2πq(τ)/q0.
We identify the characteristic energy scale E0 = (2πh̵)2/mq2

0 required to confine the particle to q0,
so that Λ = E0/h̵ sets the scale of the bare kinetic energy. Since this is irrelevant under the RG by
power counting (compared to the nonlocal bath contribution) we replace it by a cutoff Λ on the
bath term [271,278,279,281]

S0[θ(ω)] =
α

4π

Λ

∫
−Λ

dω

2π
∣ω∣ ∣θ(ω)∣2 . (7.3.3)

Appropriate choices of V (q) realize a number of interesting scenarios. We will exclusively
consider potentials of the form V (q) = −∑µ Vµ cos(λµq), with one or two Vµ initially nonzero. In this
case, we choose q0 = 2π/min[λµ], and rescale parameters to obtain V [θ] = ∑µ Vµ cos(λµθ), where
now λµ ≥ 1 and V1 ≠ 0. We will analyze the phase diagram of S0 + SV , where SV = ∫ dτ V [θ(τ)],
for different choices of λµ.

7.3.3 A single harmonic

We first consider a single harmonic, i.e. Vµ = 0 for µ ≠ 1, corresponding to a particle in a periodic
potential [271,278–282], with

SV[θ(τ)] = −V1∫ dτ cos [θ(τ)] , (7.3.4)

meaning S0 + Sv is a boundary sine-Gordon model. Therefore, the perturbative effect of the
potential to the ‘free fixed point’ Eq. (7.3.3) can be straightforwardly diagnosed using momentum-
shell RG [271, 300], as follows. First, we split the fields into ‘slow’ and ‘fast’ modes θ(ω) =
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θs(ω)Θ[Λ/b − ω] + θf(ω)Θ[ω − Λ/b] where Θ is the unit step function, and b = e`. We then
integrate out the fast modes, possibly generating new terms, using a cumulant expansion about
the Gaussian S0, and rescale frequencies via ω ↦ bω to keep S0 fixed. Finally, we define rescaled
fields via θ (ω̃) = b−1θs(ω). Iterating this transformation, we obtain the RG flow equation for V1:

dV1

d`
= (1 − 1

α
)V1 +O(V 3

1 ). (7.3.5)

This shows that the model has a phase transition at αc = 1: for α < αc, V1 flows to zero under the
RG (corresponding to the free phase), whereas for α > αc, V1 is relevant and the flow is to strong
coupling. In this limit, a variational estimate suggests that the localization length ξ∗ diverges as
(α − αc)−1/2 [271]. The constancy of α under RG follows from two facts. First, note that V1 is
local in time, and coarse-graining preserves locality; in contrast, S0 is nonlocal in time for T → 0,
and so cannot emerge in the perturbative RG. Second, the coefficient of θ is fixed by translational
symmetry, θ → θ + 2πZ. Thus, α does not flow [271]. Additionally, while V1 itself does not receive
corrections at second order in V1, a V2 term is generated at O(V 2

1 ).However, it is less relevant than
V1, which is always the most relevant term generated by the flow to all orders. (This will no longer
be true if a second harmonic Vγ with γ /∈ Z is included.)

7.3.4 Generalized RG flows

We now study the double-frequency (bichromatic) boundary sine-Gordon model,

SV [θ(τ)] = −∫ dτ {V1 cos [θ(τ)] + Vγ cos [γθ(τ)]} , (7.3.6)

where, without loss of generality, we take γ > 1. Observe that with this choice, for α < 1, both
V1 and Vγ are irrelevant if considered in isolation. For γ ∈ Z, any term generated by the RG has
a higher scaling dimension than V1, and is therefore also irrelevant. For γ /∈ Z, we must consider
the terms generated at second order in the RG equations. Intuitively, this is because ‘beating’
between two cosines can yield a cosine with a shorter wavelength, potentially relevant even when
V1, Vγ are not. This picture already signals that rational and irrational γ are physically distinct: in
the former case, there are finitely many such beats; in the latter there are infinitely many. This is
a consequence of the fact that a quasiperiodic potential has no shortest reciprocal lattice vector 3.

To study these effects quantitatively, we determine the RG flow equations. We consider all
wavevectors generated by the RG, corresponding to the set L = {λ ∶ λ = ∣m + γn∣, m,n ∈ Z}
4. While an explicit derivation of RG equations requires a tedious (albeit standard) cumulant
expansion [300], their structure is fixed by the operator product expansion of boundary sine-
Gordon theory:

dVλ
d`

= (1 − λ
2

α
)Vλ + ∑

λ′,λ′′
Cλ′λ′′
λ Vλ′Vλ′′ + . . . (7.3.7)

where Cλ′λ′′
λ = λ′λ′′

2α (δλ,λ′+λ′′ − δλ,λ′−λ′′), and ‘. . .’ denotes higher-order terms that we neglect in
this perturbative analysis. Evidently, this coupled set of equations Eq. (7.3.7) captures the beat
phenomenon described above, since at O(V 2) the RG generates new terms that are absent at the
bare level. These in turn generate other terms as the flow proceeds. The absence of θ ↦ θ + 2π
symmetry may allow additional terms that in principle could affect the RG flows; however, the

3 Though they are not periodic in space, quasicrystals do have a regular structure of Bragg peaks.
4In mathematical terms, L is a Z-module on {1, γ}.
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Figure 7.1: Localization length ξ∗ as a function of dissipation α for quasiperiodic potential with
γ = ϕ (solid green). Inset: same plot on log-log scale. As α is decreased, ξ∗ is a piecewise function

that changes non-analytically for α ∼ αn = ϕ−2n between successive ξn = q0
2π

√
2`n
α (see Eq. (7.3.9)).

set Eq. (7.3.7) remains valid at a perturbative level, and we proceed assuming their validity. To
understand their solution, we consider the scenario where V1 = u0, Vγ = εu0 at the bare level; for a
given α, the question then is to determine (i) the new critical dissipation strength α′c < αc; (ii) the
RG time `∗(α) at which, for α′c < α < αc a relevant potential generated by these bare values flows
to O(1); and (iii) the corresponding localization length associated with this relevant potential. For
` ≳ `∗ we enter the strong-coupling regime where our perturbative RG is no longer reliable. Unlike
in the conventional single-frequency boundary sine-Gordon problem, there is no exact solution or
duality to leverage here. Though we have assumed a flow to strong coupling, we cannot rule out the
possibility of an intermediate fixed point stabilized by higher-order terms neglected in Eq. (7.3.7);
this is a question for future analysis.

Taking γ = m/n ≥ 1 to be an irreducible rational number, the minimum non-zero wavevector
is given by λc = 1/n, and all Vλ for λ ∈ L are irrelevant if α < α′c ≡ λ2

∗, i.e., the delocalized
phase survives, but shrinks in extent. However, for α′c < α < 1, the localization is driven by high-
order ‘beats’: bare V1, Vγ are irrelevant, but generate other Vλs as they flow to zero; eventually,
a relevant term emerges and grows to O(1). The corresponding scale `∗ controls the crossover to
localization: intuitively, it is the scale at which the particle ‘sees’ the potential. To understand
this, we consider Eq. (7.3.7) for a minimal set of Vλ needed to generate a relevant term. We
ignore second-order terms for each unless they help generate the relevant term, which is justified
by numerical iteration of Eq. (7.3.7). We then integrate the flows of V1(`) and Vγ(`) directly [300].
For γ = 3/2 and 1/4 < α < 1, since a relevant term (V1/2) is generated by these two directly, we find
it grows to O(1) in an RG ‘time’

`∗ = α

α′c − α
ln [εu2

0] + . . . , (7.3.8)

where the omitted terms . . . do not involve u0 or ε. We can extract from this scale a localization
length ξ∗ ∝

√
⟨θ2 (τ)⟩, where in evaluating the average we only consider the modes between the
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current RG scale Λe−`
∗

and the original cutoff Λ. We find ξ∗ = q0
2π

√
2`∗
α ∝ (α − αc)−1/2 [300], which

mirrors a variational calculation for the single-harmonic problem [271]. A similar relation for `∗

may be obtained for generic commensurate γ, but with the difference that higher powers of ε and
u0 appear in the logarithm, corresponding to the fact that the relevant operator emerges at a
higher order.

7.3.5 Quasiperiodic case

We now turn to the quasiperiodic (incommensurate) problem. For irrational γ /∈ Q, we see im-
mediately that the minimum non-zero wavevector λc in L is ill-defined. Therefore, the critical
dissipation strength for localization is zero, so that arbitrarily weak dissipation leads to localiza-
tion. Intuitively, for rational γ = m/n, the combined potential V (θ) = V1 cos θ + Vγ cosγθ always
contains a periodic set of equally-spaced minima (e.g., at spacing 2πn); if the dissipation is suffi-
ciently weak that coherent tunneling between these minima remains possible, the delocalized phase
survives. Conversely, for irrational γ, V (θ) hosts no such periodic set of minima — indeed, there
is no real-space periodicity. Therefore, the coherent tunneling is disrupted on long length scales,
so that no matter how small the dissipation, the particle will eventually come to rest in some
potential minimum.

For concreteness, we consider the Fibonacci potential, given by γ = ϕ = 1
2
(1 +

√
5), the Golden

mean. Within L, we note that the decreasing sequence λn ≡ (−1)n (Fn+1 − ϕFn) = ϕ−n – where Fn
is the nth element of the Fibonacci sequence – goes to zero rapidly as n→∞. We will refer to these
as Fibonacci wave numbers: taking λ0 = 1, λ1 = ϕ − 1 is the first new term generated by the RG
with a smaller wave number than those present at the bare level, and subsequent λn are quickly
generated by successive RG iterations, λn = λn−2 − λn−1. Although for a given α there exist many
arbitrary µm,n = m − ϕn such that µ2

m,n < α, a smaller Fibonacci wave number will always have
been generated earlier in the RG, and thus will have had more time to grow in strength and spawn
further λn. Thus, determining the most relevant wave number is simplified relative to a generic
irrational γ (though by analogy to the Fibonacci case, we conjecture they will be generated by
successive ‘best rational approximants’ of γ).

The crossover to localization is controlled by a critical scale `∗, the RG time for some relevant
term to become O(1). We denote λn∗ as the first relevant term become O(1) when all λn are
allowed to be non-zero. Each λn requires RG time `n to grow to O(1), and `∗ corresponds to the
smallest among the `n for a given α, where `n are determined by analogy to Eq. (7.3.8):

`n =
α

ϕ−2n − α
ln [V Fn

γ V Fn+1
1 ] , (7.3.9)

as may be verified by direct integration of Eq. (7.3.7) [300]. Omitted from Eq. (7.3.9) are sub-
leading corrections that vanish in the limit α≪ 1 [300]. As α is decreased, `∗ is set by successive

`n∗ with larger Fibonacci indices: taking V1 = − lnVγ = 1, we see that ξ∗ = q0
2π

√
2`∗
α is determined

by successive `n in a piecewise manner, with `∗ changing from `n to `n+1 at α ∼ ϕ−2n = λ2
n. This

leads to non-analyticity in ξ∗ (Fig. 7.1). Although there is always a relevant, localizing potential
with wave number λn∗ , it requires increasingly long for this term to be generated, corresponding
to `∗ →∞. Dynamically, it will take increasingly longer for the particle to ‘feel’ the localization.
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7.3.6 Experimental realization in a mobile impurity

So far, we have assumed that our model directly describes a particle in a quasiperiodic landscape.
This can be challenging to engineer and observe in cold-atom simulations. We now discuss an
alternative route to the same physics in a mobile impurity problem [284–286, 301]. Consider a
single mobile impurity, with coordinate X and momentum P , in a periodic optical lattice (spacing
a = 1 and length L), and immersed in a quantum fluid. Describing the latter as a Luttinger liquid
with interaction parameter K and velocity v,

Hg =
v

2π

L/2

∫
−L/2

dx [K(∂xθ)2 + 1

K
(∂xφ)2] (7.3.10)

with [φ(x), ∂yθ(y)] = iπδ(x − y) captures its dynamics. We assume that the optical lattice is
sufficiently strong that the impurity has tight-binding dispersion given by Hi = −ti cos(P ), and
that the particle and the gas interact via contact interactions Hint = uρ(X), where ρ(X) is the
density of the gas, and ti and u are coupling strengths. The full Hamiltonian is H =Hi+Hg +Hint.
It is convenient to make a unitary transformation UX = eiPgX to the frame co-moving with the
impurity, so that H ↦ UXHU−1

X =Hg + uρ(0) − ti cos(P −Pg). Since X is now absent from H, P is
conserved and corresponds to the total momentum. We now take the u→∞ limit, corresponding
to a strongly-scattering impurity, where the leading term at O(1/u) involves the tunneling of
gas particles across the impurity. This yields the Josephson-like term Hr ≈ −tg cos(Θ), where
Θ = θ(0+) − θ(0−) describes the phase shift across the impurity. We may relate Pg to Θ by using
the usual Luttinger liquid relations for the density ρ = π−1∂xφ and momentum πφ = ∂xθ:

Pg = ∫
∣x∣>ε
dxρπφ =

1

π ∫∣x∣>ε
dx∂xφ∂xθ = −νΘ, (7.3.11)

where the integral excludes the origin as there is a break in the fluid at the impurity. We have used
the mode expansion φ(x) = φ0+πNL x+φ̃(x), θ(x) = θ0+π JLx+ θ̃(x), where N,J are the total particle
number and current, respectively, and ν = N/L is the average density or filling. Finally, we integrate
out the gapless sound modes of Hg subject to the boundary condition θ(0+, t) − θ(0−, t) = Θ(t);
this generates dissipative dynamics for Θ. Working in imaginary time we arrive at the impurity
effective action

Si =∫ dτ[ti cos(P +γΘ) + tgcos Θ] + α

4π∫
dω∣ω∣∣Θω ∣2 (7.3.12)

with α = 1/K 5, γ = ν; P ≠ 0 does not affect the RG flows, and hence, we see that the impurity is
described by the double-frequency sine-Gordon action, with the wavevector of one of the cosines
tuned by the gas density. Reinstating the lattice spacing a, we see that γ = νa corresponds to the
number of gas atoms in each unit cell of the potential seen by the impurity; evidently, there is
no particular restriction to commensurate γ. In this language, the regime where the cosines are
irrelevant corresponds to an impurity that is non-dispersive, i.e. whose energy is independent of
P , while the one where the cosines are relevant correspond to a dispersive impurity. When the
gas density is commensurate with the impurity potential, the impurity is able to move recoillessly
between minima while simultaneously allowing an integer number of gas particles to tunnel across
it; for sufficiently weak dissipation this ‘dressed’ process continues to show quantum Brownian
motion. This effect is absent in the quasiperiodic case, but depending on the scale at which the

5We take K to be the effective value obtained after eliminating derivative terms of the form ∂xΘ.
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system is probed, the dispersion will show different periodicity set by the potential that controls ξ∗.
We defer further investigation of the impurity realization of the quasiperiodic problem to future
work.

7.3.7 Discussion

In conclusion, we have shown that a quantum particle moving in a quasiperiodic potential is always
localized by a dissipative bath as T → 0. This is in sharp contrast with the well-known quantum
phase transition in the periodic case. We also argued that this physics could be realized in the
strong-coupling regime of a mobile impurity in a one-dimensional Fermi gas moving in a periodic
lattice. On the formal side, we note that while the infrared behavior of the single-frequency
boundary sine-Gordon field theory can be studied using instanton expansions and integrability,
much less is known about multi-frequency variants. It would be very interesting — and of direct
relevance to an experimentally accessible regime of mobile impurity problems — to develop analytic
tools to analyze the flow to strong coupling in this theory, and investigate the possibility of a new
class of intermediate-coupling fixed points.

7.4 Dissipative Quantum Fluids

This Section is largely drawn from Ref. 302 by this author.

7.4.1 Introduction

Here we consider the effect of such a dissipative bath on an interacting, one-dimensional quantum
system, which in various limits may represent any of a number of experiments. Taking the system
to be somewhat insulated from its environment, one expects the bath to have a weak, dissipative
effect thereupon, motivating the use of the CL formalism. Since the CL bath equilibrates with
the system, we exploit standard equilibrium methods to examine the low-temperature properties
of the combined system and bath, and also obtain results for arbitrary T > 0 using the Matsubara
formalism.

At long wavelengths, the physics of fluids comprising either boson or fermion degrees of freedom
(degrees of freedom) is captured by the paradigmatic Luttinger liquid [303–309]. The bare action
Eq. (7.4.1) for this system is quadratic in a scalar, bosonic ‘displacement’ field, φ (x, τ), related
to fluctuations of the density. Depending on microscopic details, there may also be corrections
of the form cos [mφ (x, τ)], for various harmonics m, which may correspond to spatial potentials,
Umklapp processes, etc. We comment on the physical relevance of these terms using correlation
functions and a renormalization group (RG) analysis.

Regarding the partition function of the Luttinger liquid and bath, we can trace out the bath
degrees of freedom exactly [268–275, 299] to obtain an effective theory for the Luttinger liquid
[274, 310–316]. The primary result will be the creation of a temporally non-local density-density
interaction term, which is also quadratic in φ. Hence, we are able to compute various two-point
correlation functions of φ nonperturbatively. Comparing these correlation functions to those of the
‘closed’ Luttinger liquid, we find that the dissipative bath destroys the perfect metallic conductivity
of the Luttinger liquid, and also makes cosine terms far more relevant, in agreement with Ref. 312.

173



The latter renders the system more sensitive to spatial potentials coupling to the density, as well
as back-scattering processes, each of which further localizes the system. Although the CL bath
thermalizes with the Luttinger liquid, in surprising contrast to Markovian baths, the decohering
effect of the CL bath renders the Luttinger liquid more localized.

7.4.2 Model

The ‘system’ is a quantum fluid in a one dimensional ring of length L. For concreteness, we take the
fluid’s microscopic degrees of freedom to be fermions, though our results should hold for bosons as
well [308]. In one dimension, the coarse grained theory of either is the Luttinger liquid [303–309],
with Euclidean action

SLL =
h̵u

2πK

βh̵

∫
0

dτ

L/2

∫
−L/2

dx ((1

u
∂τφ)

2

+ (∂xφ)2) , (7.4.1)

where the velocity, u, and stiffness, K, are given by

u ≡ [(vF + g4)
2 − g2

2]
1/2

, K ≡ [
vF + g4 − g2

vF + g4 + g2

]
1/2

, (7.4.2)

where for spinless fermions, g2 is the small-q matrix element of the interaction between fermions
near opposite Fermi points, and g4 corresponds to fermions near the same Fermi point [307, 308].
We have taken the usual limit of δ-function interactions, but it is possible to treat any sufficiently
short-ranged interaction [307].

The field φ is related to the fermion density via

ρ (x) = − 1

π
∇φ (x) + 1

πα
cos [2kFx − 2φ (x)] + . . . , (7.4.3)

where we have omitted higher harmonics of φ6, and α is a vanishing length scale (UV cutoff). The
conjugate momentum to φ is Π = π−1∇θ, proportional to the current. An equivalent action is given
by replacing φ↔ θ and K ↔K−1 in Eq. (7.4.1).

In general, other terms in Eq. (7.4.1) are possible, e.g. if one considers curvature of the electron
dispersion ε (k), or various potentials that couple to the harmonic parts of the density Eq. (7.4.3).
We neglect these at long wavelengths [307,308] to highlight the leading alteration to the Luttinger
liquid induced by dissipation. We consider the most relevant of these corrections using perturbative
RG in Sec. 7.4.9.

The full model consists of the action Eq. (7.4.1) for the ‘system’, that of the oscillator bath,
SB, and a coupling, SC , between the two:

Sfull [φ,ϕ] = SLL [φ] + SB [ϕ] + SC [φ,ϕ] , (7.4.4)

where in the continuum one has [268–270,272,273]

SB [ϕ] = 1

2

βh̵

∫
0

dτ

L/2

∫
−L/2

dx ((1

c
∂τϕ)

2

+ (∂xϕ)2) , (7.4.5)

6The explicit form of these terms may depend on the bosonization convention and microscopic details, which
are not of central importance in this work. This will also change for the chiral or helical Luttinger liquids.
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for some velocity c. The system-bath coupling is linear in both the density, ρ Eq. (7.4.3) and the
bath field, ϕ,

SC [φ,ϕ] =
βh̵

∫
0

dτ

L/2

∫
−L/2

dxλ (x)ρ (x)∂xϕ . (7.4.6)

for arbitrary λ. Generally, our analysis will not be sensitive to microscopic details of either SB
Eq. (7.4.5) or SC Eq. (7.4.6), i.e. c and λ(x); however some details are essential for the elimination
of the bath degrees of freedom to be tractable. To wit, we require SB Eq. (7.4.5) to be quadratic,
and that SC Eq. (7.4.6) be linear at least in the bath field ϕ. Both stipulations are inherent to the
CL model; and most naturally captured by Eq. (7.4.5) and Eq. (7.4.6).

Regarding the corresponding partition function Z = Tr{e−SLL−SB−SC}, we can integrate (or
trace) out the bath degrees of freedom, ϕ, to obtain a modified theory for the Luttinger liquid
[268–273, 299]. This results in an “effective” term Seff [φ] being added to SLL Eq. (7.4.1), which
will also be bilinear in φ, to produce the Gaussian action

S0 [φ] = SLL [φ] + Seff [φ] . (7.4.7)

This relies crucially on the linearity of Eq. (7.4.6) in both ϕ and ρ ∼ − 1
π∇φ, and SB being quadratic

in ϕ; because this term results from Gaussian integration over ϕ (x, τ), it will always be non-local
in time [272–274,310–316].

In simpler models—where the “system” consists of a single degrees of freedom, e.g. the position
of a particle or a two-level system [268–273]—one makes a particular Ansatz for the bath spectral
function. Because SB is Gaussian, this choice corresponds directly to a particular coupling J (k,ω)
(in Fourier space) for the non-local term Seff Eq. (7.4.8). Absent such an Ansatz, S0 would be
sensitive to non-generic microscopic details of the bath; additionally, this choice affects only the ω-
and k-dependence of the coefficient J of the term(s) in Seff , whereas bilinearity in φ and temporal
non-locality are jointly guaranteed by the linear and quadratic nature of Eq. (7.4.6) and SB in ϕ,
respectively. Following this standard practice in the treatment of CL baths [268–273], we assert
some spectral function (i.e. coupling J (k,ω) in Seff), and invoke RG relevance to constrain which
forms merit consideration.

Thus, in general, one expects a term of the form [274,312]

Seff [φ] = J (k,ω) ∣φω,k∣
2 . (7.4.8)

Taylor expanding J in ω and k recovers a sum of terms Jm,n ∣ω∣m ∣k∣n. Terms with m + n > 2 are
irrelevant in the RG sense, vanishing at long wavelengths. Terms with m+n = 2 are marginal, i.e.
fixed under the RG, and trivially modify the Luttinger liquid’s velocity, u, and stiffness, K. Since
CL baths generate interactions that are nonlocal in time, there should be at least one power of ω;
thus, we restrict to the “Ohmic” form, J ∝ ∣ω∣, to capture the relevant, non-trivial physics of the
bath7, as established in Ref. 312. We add to SLL Eq. (7.4.1) the term

Seff [φ] = h̵ η
2π ∫

dk∫ dω ∣ω∣ ∣φk,ω ∣2 , (7.4.9)

and restrict to η ≥ 0 [268,269,271,274,275,312–315].
A quadratic term of the form Eq. (7.4.9) will always be present in the presence of dissipation,

however in general other terms in Seff may be realized upon integrating out the bath [274,312–315].

7One can regard the parameters u and K as having been modified to absorb any ‘marginal’ terms
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In particular, for spinless fermions, ρ includes harmonics of φ Eq. (7.4.3); if the full form of ρ is cou-
pled to the bath, one expects a temporally non-local term ∝ csc2 (τ − τ ′) cos [φ (x, τ) − φ (x, τ ′)],
and possibly higher harmonics [312,313]. However, the important physics of dissipation is already
captured by the quadratic term Eq. (7.4.9), and not only can we not treat the cosine term exactly,
but its non-local nature complicates slightly the use of RG techniques, which are generally local.

Thus, taking βh̵ and L finite for generality, the effective action for the Luttinger liquid with
the bath degrees of freedom integrated out takes the form

S0 = ∑
k,ωn

u2k2 + ω2
n + uKJ (k,ωn)

2π uK β L
∣φ (k,ωn)∣

2
, (7.4.10)

as appears in Ref. 312. For analytic J , we invoke RG relevance and the arguments above to restrict
our consideration to J (k,ωn) = η ∣ωn∣ Eq. (7.4.9) in the remainder.

7.4.3 Two-point correlation functions

The Luttinger liquid’s Gaussian action Eq. (7.4.1) allows for the computation of many physical
properties directly from two point correlation functions, ⟨φ (x, τ)φ (0,0)⟩. Thus, most of the
calculational “heavy lifting” will be contained in this section, as we recover analytic solutions for
the two point function without further approximation, even at non-zero temperature. We define
the following:

F (x, τ) =K−1⟨[φ (x, τ) − φ (0,0)]2⟩ (7.4.11)

= 2πu

βh̵L
∑
k

∑
ωn

1 − cos (kx + ωnτ)
u2k2 + ω2

n + uKJ (k,ωn)
(7.4.12)

G (x, τ) =K−1⟨φ (x, τ)φ (0,0)⟩ (7.4.13)

= πu

βh̵L
∑
k

∑
ωn

cos (kx + ωnτ)
u2k2 + ω2

n + uKJ (k,ωn)
, (7.4.14)

such that
F (x, τ) = 2G (0,0) − 2G (x, τ) , (7.4.15)

where strictly speaking, G (0,0) is evaluated by first sending x,uτ → α, and subsequently taking
the limit α → 0 where safe [308]. The parameter α is like a lattice spacing, and α−1 = Λ is a UV
cutoff.

We calculate these correlation functions following the same procedure as for the Luttinger liquid
without dissipation (i.e. η = 0) [308]. Surprisingly, we find exact solutions for both G (x, τ) and
F (x, τ) for arbitrary T . Because the calculation is standard, and the results obtained are exact,
we relegate the mathematical derivation to Appendix D.3.1. We also confirm that taking η → 0
reproduces the known results for the standard case in Appendix D.3.3. Finally, while we do not
write them down explicitly, we note that single particle correlation functions obtain directly from
the results of this section, combined with those for the ‘closed’ Luttinger liquid [308, Appendix C].
All of the results presented in this section correspond to the L→∞ limit, with J (k,ω) = η ∣ω∣.

7.4.4 Zero temperature correlation functions

At zero temperature, we send β →∞, simplifying the calculation in Appendix D.3.1, as the sums
over Matsubara frequencies in (7.4.11-7.4.14) become integrals. Regarding Eq. (D.3.11), all of the
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terms containing factors e−mβ... for m ≥ 1 will vanish as β → ∞, leaving only the β-independent
terms. Thus, we have

G (x, τ) =
∞
∑
n=0

e−η̃ u∣τ ∣

2n!
(−η̃ x

2

2u ∣τ ∣
)
n

Kn [η̃ u ∣τ ∣] , (7.4.16)

where Kn is a modified Bessel function of the second kind, and we use the shorthand

η̃ ≡ ηK/2 (7.4.17)

throughout. Unlike the closed Luttinger liquid, the correlation function G is not divergent in
general. In most regimes, the sum over n converges rapidly; in all cases, G decays sharply to zero
for x,uτ ≳ η̃−1.

The correlation function F is given straightforwardly from the above using the relation Eq. (7.4.15)
and the derivation of G (0,0) in Appendix D.3.2. We have at zero temperature F (x, τ) =

− γ − ln
η̃ α

2
−

∞
∑
n=0

e−η̃ u∣τ ∣

n!
(−η̃x

2

2u ∣τ ∣
)
n

Kn [η̃u ∣τ ∣] , (7.4.18)

where γ is the Euler-Mascheroni constant, and implicit is the limit α → 0.
Although these results are exact—in the sense that no approximations were necessary beyond

those outlined in our formulation of the model in Sec. 7.4.2—it is worth considering approximate
forms of Eq. (7.4.16) corresponding to various physical regimes. A handful of limits can be taken
straightforwardly; however, some must be analyzed with additional care. For example, the limits
of η → 0 and τ → 0 should not be taken independently of any others, and the limit x→∞ can only
be taken along with some limit of η or τ .

Long time limit.— Perhaps the most natural; in the limit of large argument, one has for the
Bessel function in Eq. (7.4.16)

lim
z→∞

Kν (z) =
√

π

2z
e−z , (7.4.19)

and inserting this into the definition of G (x, τ) Eq. (7.4.16) gives

G (x, τ) ≈
√

π

8η̃ u ∣τ ∣
exp(−2η̃u ∣τ ∣ − η̃ x2

2u ∣τ ∣
) , (7.4.20)

where clearly the conformal invariance of the η = 0 Luttinger liquid has been destroyed. The
exponential decay in t suppresses correlations for η̃uτ ≳ 1; the remaining factors in Eq. (7.4.20)
resemble a diffusion kernel, with diffusion constant ∝ u/η̃. Thus, a non-zero density introduced
at the origin, x = 0, at time τ = 0 will spread diffusively under the combined system and bath
dynamics Eq. (7.4.10), with exponential suppression on a time scale 1/uη̃.

Auto-correlation limit.— Also of interest is the limit x → 0, corresponding to a temporal
auto-correlation function. Only the n = 0 term in the sum in Eq. (7.4.16) survives, i.e.

G (0, τ) = e
−η̃ u∣τ ∣

2
K0 [η̃ u ∣τ ∣] . (7.4.21)

For nonzero x≪ 1, we retain terms with 1 < n < n∗, resulting in an expansion to order x2n∗ ; we
then expand in the Bessel function’s argument for further insight.
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The small argument limit is uninteresting: the result is parametrically close in x, τ to G(0,0)
Eq. (D.3.13). At τ = 0, we reinstate the α-dependent convergence factor, per Appendix D.3.2, and
expand in z = η̃ u ∣τ ∣

K0 (z)→
∞
∑
k=0

(z/2)2k

(k!)2 (ψ (k + 1) − ln(z
2
)) , (7.4.22)

where ψ is the DiGamma function. Higher order corrections can be found following Appendices
D.3.2 and D.3.4.

The late time limit is unambiguous:

lim
τ→∞

G (0, τ) = 0 , (7.4.23)

referred to as “seizing of the vacuum” [274, 317]. One can show that Eq. (7.4.23) holds for real
time t starting from Eq. (7.4.14) with τ = it, using contour integrals rotated 90○ in the complex
plane, or by analytic continuation of Eq. (7.4.16) to real time. This seizing signals localization of
the fermion degrees of freedom [274,317], and will be discussed in Sec. 7.4.7.

Various interaction limits.— Details of the bare interactions in the Luttinger liquid are en-
coded in the velocity, u, and Luttinger parameter, K, via the parameters g2,4 in Eq. (7.4.2). The
limit K → 1 corresponds to free fermions; other limits, such as K → 0 and K →∞, may be realized
experimentally. Referring to the action Eq. (7.4.1), the Luttinger liquid may be described in terms
of either the field φ or its dual, θ; the corresponding bare actions Eq. (7.4.1) have overall coefficient
K−1 and K, respectively. The two-point functions of φ and θ correspond to the functions G,F , as
the case may be, multiplied by K and K−1, respectively. In the extreme limits K → 0 and K−1 → 0,
one of these will be zero and the other infinite: näıvely, dissipation is unimportant in either limit;
however, consideration of these scenarios likely requires a more careful treatment beyond the scope
of this work.

Curiously, nothing in particular happens to Eq. (7.4.16) in the free fermion limit, K = 1. Rather,
it seems any interesting interaction effects must be encoded in cos [φ] terms of the type mentioned
in Sec. 7.4.2, which we examine in Sec. 7.4.9. Otherwise, the non-interacting limit merely amounts
to a specific value of η̃ = η/2 and u = vF , the Fermi velocity, with nothing remarkable at the level
of density-density correlations.

Weak coupling regime.— Expansion of Eq. (7.4.16) to O(η) is straightforward, as detailed in
Appendix D.3.4. Let us consider F (x, τ) to order η2: at lowest order we recover the dissipationless
result (see Appendix D.3.3),

F (x, τ) = 1

2
ln [x

2 + u2τ 2

α2
] , (7.4.24)

then corrections from the factor exp (−η̃u ∣τ ∣),

+ (1

2
η̃2u2τ 2 − η̃u ∣τ ∣) (γ + 1

2
ln [r2]) , (7.4.25)

and finally, from the Bessel function

+ η̃
2

4
(x2 + u2τ 2)(γ − 1 + 1

2
ln
x2 + u2τ 2

4α2
) , (7.4.26)

and we note that to order η̃2 ∝ η2, only the terms arising from expansion of the overall factor
exp (−η̃u ∣τ ∣) spoil the conformal invariance present for η = 0.
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7.4.5 Finite temperature correlation functions

As shown in Appendix D.3.1, finite temperature correlations are no more difficult to obtain. For
T > 0, G (x, τ) and F (x, τ) contain the respective terms Eq. (7.4.16) and Eq. (7.4.18) present at
T = 0, i.e.

G (x, τ ;T ) = G (x, τ ; 0) +
∞
∑
m=1

∑
±
G (x,mβh̵ ± ∣τ ∣) , (7.4.27)

with G (x, τ ; 0) given by Eq. (7.4.16). The dominant contribution at high temperature corresponds
to m = 1.

By analogy, we obtain F (x, τ ;T ) by adding to F (x, τ ; 0) Eq. (7.4.18) the terms

∞
∑
m=1,
±

{e
−η̃umβh̵

2
K0 [η̃umβh̵] − 2G (x,mβh̵ ± ∣τ ∣)} , (7.4.28)

which is difficult to parse, even restricted to m = 1. Note that exponential factors in G and F that
grow (rather than decay) in ∣τ ∣ are at most unity, since 0 ≤ τ < βh̵.

As for T = 0, one can evaluate a number of physical limits for T > 0; however, apart from the
results of Sec. 7.4.4, which are still present for T > 0, little can be said about the finite temperature
terms in the limits considered in Sec. 7.4.4 without expanding in T . Since the Luttinger liquid
picture breaks down at high energies, only the low temperature limit is reasonable; that limit is
well-captured by the results of Sec. 7.4.4.

Additionally, it is unclear how (or whether) to take the τ → ∞ limit of expressions involving
mβh̵ − ∣τ ∣, since our recovery of Bessel functions Kn [z] is only valid if Re (z) > 0. Given that
0 ≤ τ ≤ βh̵, this does not pose an issue for the result itself; however, for finite β, the “long time”
limit is more subtle. For the purposes of transport and “seizing”, we are interested in the limit of
real time t→∞, which we will address e.g. in Sec. 7.4.7.

7.4.6 Vertex operator correlations

In this section we consider two-point functions of “vertex operators”, related, e.g., to the fermion
creation/annihilation operators. These are exponential correlation functions of the form

C (x, τ ;m) = 1

(2πα)2 ⟨e
imφ(x,τ)e−imφ(0,0)⟩ (7.4.29)

= 1

(2πα)2 exp{−Km2

2
F (x, τ)} , (7.4.30)

where F is given by Eq. (7.4.18) for T = 0 and Eq. (7.4.28) for T > 0.

Unlike the closed Luttinger liquid (η = 0), the absence of a constant, divergent term in G (x, τ)
for η > 0 allows for vertex operator correlations of the form

⟨ei∑kAj φ(xj ,τj)⟩

to be non-zero even for ∑kAj ≠ 0. This will affect the use of standard techniques, e.g. Giamarchi-
Schulz RG [318], for cos [mφ] terms perturbing the action Eq. (7.4.1).
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Let us compare C (x, τ) to its η = 0 form, C0 (x, τ); taking T = 0 and m = 2 for the first
harmonic, to order η2 (see Sec. 7.4.4 and App. D.3.4) one has

Cη (x, τ) = C0 (x, τ) eKη̃
2(x2+u2τ2)/2

×( 4e−2γ

x2 + u2τ 2
)
Kη̃2

4
(3u2τ2+x2−4u∣τ ∣/η̃)

, (7.4.31)

where analysis of the behavior as x, τ →∞ is complicated by competing terms.
However, we can see the limiting behavior at large distances [times] directly from Eq. (7.4.30).

For C (x, τ) of the form Eq. (7.4.29), note that F (x, τ) vanishes as either x, τ →∞ faster than x−2

or (uτ)−2
. In contrast to the dissipationless case, C (x, τ)→ 1, rather than zero, for large x or τ .

Because dissipation Eq. (7.4.8) destroys the conformal invariance of Eq. (7.4.1), we cannot
simply read off RG relevance of cos [mφ] terms perturbing Eq. (7.4.1) from the scaling dimension
of their correlations, C (x, τ). Nevertheless, because G (x, τ) is finite as its arguments approach
infinity, one expects that dissipation will generally render such cosine terms more relevant than
for η = 0, since their correlations no longer vanish at long wavelengths.

7.4.7 Seizing of the vacuum

An earlier prediction for Luttinger liquids coupled to a CL bath [274] is a property termed seizing
of the vacuum [317], corresponding to localization of the bare fermion degrees of freedom at T = 0.
Quantitatively, this is indicated by

lim
t→∞

G (0, t) = 0 , (7.4.32)

for real time, t, and G evaluated at T = 0. This effect was reported in Ref. 274 for a similar model;
the exact solutions of Sec 7.4.3 confirm this property definitively.

It is easy to verify that the Euclidean time correlation function G (0, τ)→ 0 as τ →∞ without
caveat. Using analytic continuation, i.e. ∣τ ∣ = τ sgn τ , and thus ∣τ ∣2 = τ 2 = (it)2 = −t2, we note that
∣τ ∣−nKn [η̃u ∣τ ∣] has a series expansion involving only even powers of τ . Using this, we can take
the limit t → ∞ safely, finding that the summand in Eq. (7.4.16) goes to zero, even without the
help of the exponential decay exp (−η̃u ∣τ ∣). Additionally, it is possible to repeat the proceedings of
Appendix D.3.1 for real time t, which requires the use of a rotated contour compared to Euclidean
time derivation; nonetheless, taking x→ 0, one recovers an expression that unambiguously vanishes
at large times, t→∞.

Surprisingly, this behavior is not limited to the vacuum: the “seizing” effect, characterized
by Eq. (7.4.32), also holds for finite temperature T > 0, and thus is present in excited states as
well. As for T = 0, this can be seen either by analytic continuation of G (x, τ) to real time, or by
reproducing the calculation of G entirely for real time t. The latter requires taking x = 0 at the
outset, and taking t → ∞ when safe. At finite β, the t-dependence dominates, and we see that
G → 0; as β → ∞, one recovers the T = 0 result, which also corresponds to seizing. Hence, we
conclude that this effect is not limited to the ground state, but is present throughout the spectrum.
However, at very high temperatures, one expects both a breakdown of the bosonization procedure
itself, and for thermal fluctuations to outweigh this effect.

7.4.8 Conductivity

We can also see evidence of localization from a transport calculation using the Kubo formula.
Restricting to 1d fermions with electron charge e, the charge density is ρ = − e

π∇φ + . . . ; using the
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continuity equation, ∂tρ +∇j = 0, we have

j (x, t) = e

π
∂tφ (x, t) , (7.4.33)

in the limit of vanishing source, from which we can compute the current in the presence of a weak
source using linear response. The source will be a weak electric field oriented along the wire, given
by E (t) = E0e

−i(ω+iδ)t, where δ is a small, positive real number inserted for convergence purposes.
Writing E = −∂tA, where A is the 1d vector potential, we invoke Ohm’s law

j (q, ω) = σ (q, ω)E (q, ω) , (7.4.34)

where we will take q → 0 to highlight the frequency dependence, and j on the LHS is given by the
expectation value of the current operator Eq. (7.4.33), which we compute using the Kubo formula,

⟨j (x, t)⟩ = ⟨j (x, t)⟩0 + δ⟨j (x, t)⟩ . (7.4.35)

The first term in Eq. (7.4.35) is proportional to the source, A1,

⟨j (x, τ)⟩0 =DA1 (x, τ) = −
e2uK

πh̵
A1 (x, τ) , (7.4.36)

known as the “diamagnetic” contribution. Going to Fourier space, the second term is given by

δj (q, ω) = χ (q;ω)A1 (q, ω) , (7.4.37)

and we can write Ohm’s law Eq. (7.4.34)

σ (q, ω) = j (q, ω)
E (q, ω)

= D + χ (q, ω)
i (ω + iδ)

. (7.4.38)

We next solve for χ, which is a current-current correlation function:

χ (q, ωn) = −
e2ω2

n

π2h̵
⟨φ∗q,ωnφq,ωn⟩ −D , (7.4.39)

and inserting this into Eq. (7.4.38), and analytically continuing iωn = ω + iδ with δ = 0+ one finds

σ (q, ω) = e2

π2ih̵
(ω + iδ) ⟨φ∗q,ωnφq,ωn⟩ (7.4.40)

σ (q, ωn) =
e2ωn
π2h̵

πuK

u2q2 + ω2
n + ηuK ∣ωn∣

, (7.4.41)

and taking q → 0, we recover the dc conductivity by further taking the limit ω → 0, i.e.

σ (ω → 0) = e
2uK

πh̵

1

δ − iω + ηuK sgn (δ − iω)

= e2

πh̵η sgn (δ)
= e2

πh̵η
, (7.4.42)

which is finite. We also note a relation between Eq. (7.4.42) and the condition for seizing, as
discussed in Sec. 7.4.7.

This result Eq. (7.4.42) contrasts sharply with the infinite conductivity of the closed Luttinger
liquid as q, ω → 0. This result does recover for η → 0. Hence, we find further evidence that the
dissipative bath localizes the underlying fermion excitations of the Luttinger liquid.
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Figure 7.2: RG flow in the λ, 1/K plane, for various values of the dissipation strength, η; λ
is the strength of the most relevant harmonic, corresponding to m = 2 in Eq. (7.4.43). We take
the velocity u and the coefficient C in Eq. (7.4.53) to be unity; for η = 0, the Kosterlitz-Thouless
transition corresponds to 1/K∗ = 1/2. The panels a through d correspond respectively to αη = 10−3,
10−1, 1/2, and 1, where α = 1/Λ is a UV cutoff; note horizontal axis is different in each panel, the
critical values 1/K∗ in each are roughly 0.47, 0.42, 0.2, and finally, 0.06 for η = Λ. Under the
RG, η grows exponentially from its initial value, independent of λ and K; for η up to roughly one
tenth the cutoff (panel b), the alteration to the dissipationless phase diagram is rather slight; for
η ≳ Λ/2, we find a marked enhancement in the region of parameter space for which harmonic terms
are relevant.

7.4.9 Relevance of harmonic terms

We now consider the relevance of generic cosine terms, omitted from Eq. (7.4.1), using standard
momentum-shell RG. Our starting point is the action S0, defined in Eq. (7.4.7) and Eq. (7.4.10),
which contains the relevant, non-harmonic terms that one recovers after integrating out the bath
degrees of freedom. We add to this a generic harmonic term of the form

S1 [φ] = uλm
βh̵

∫
0

dτ

L/2

∫
−L/2

dx cos [mφ (x, τ)] , (7.4.43)
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where m ∈ N specifies the harmonic: m = 2 is the first to appear in the density Eq. (7.4.3); an
Umklapp (back-scattering) term corresponds to m = 4 (these will be multiples of two due to our
convention). We defer analysis of multiple harmonics to future work.

We take L,β →∞ so the action Eq. (7.4.10) has an integral form in Fourier space as well,

S0 =
Ω

∫
−Ω

dω

2π

Λ

∫
−Λ

dk

2π

u2k2 + ω2 + ηKu ∣ω∣
2πuK

∣φ (k,ω)∣2 , (7.4.44)

where Ω = u/α and Λ = 1/α are frequency and momentum cutoffs, respectively.
The RG is implemented by separating the field φ (k,ω) = φs (k,ω)+φf (k,ω), with ‘fast’ modes

living in an annulus in the momentum-frequency plane corresponding to (bα)−1 < q < α−1, and

all other modes ‘slow’. Note q =
√
k2 + ω2/u2, α is our usual short-distance cutoff, and b = e` ≥ 1

quantifies the extent of the coarse graining. For a given term, we trace out the ‘fast’ modes, and
then rescale frequency, momentum, and the fields themselves to obtain an effective theory of the
slow degrees of freedom. The rescaling (ω̃ = bω, k̃ = bk) is determined by the requirement that the
‘fixed’ part of the action, S0 remain unchanged under the RG, which requires that ω and k have
the same b, and results immediately in a rescaled coupling η̃ = bη and rescaled field φ̃ given by
φ̃ (k̃, ω̃) = b−2φs (k,ω). In real space, one has x̃ = x/b, τ̃ = τ/b, and φ̃ (x̃, τ̃) = φs (x, τ).

We now have the scaling of η; the RG for all other terms follows from the usual, η = 0 case.
We perform a cumulant expansion of S1 to order λ2

m, which for η = 0, gives rise to standard
Kosterlitz-Thouless RG flow [308]. All other differences compared to the closed case arise from
modification of the ‘fast’ two point function, taken with respect to S0, which includes also the
quadratic dissipation term. That function, KG0,f = ⟨φ2

f (x, τ)⟩0,f is given by

G0,f (x, τ) =∬∣ω∣,∣k∣∈f

dω

2π

dk

2π

πu cos (kx + ωτ)
u2k2 + ω2 + uηK ∣ω∣

, (7.4.45)

which taking x = r cos θ, uτ = r sin θ, k = q cosψ, ω = uq sinψ, becomes

G0,f (x, τ) =
1

4π

Λ

∫
Λ/b

dq

π

∫
0

dψ
cos (qr cos (θ − ψ))
q + ηK ∣sinψ∣

, (7.4.46)

and details of the RG ensure that we need only consider dG/d` as `→ 0 (b→ 1), i.e.

dG0,f

d`
= 1

4π

2π

∫
0

dψ
cos ( rα cos (θ − ψ))

1 + αηK ∣sinψ∣
, (7.4.47)

evaluated either at r = 0, or integrated directly over θ, which we can therefore shift by ψ. In
either case, the numerator’s dependence on ψ is eliminated, and we find a simple relation to the
dissipationless result:

dG0,f

d`
(x, τ, η) = ν (αηK)

dG0,f

d`
(x, τ, η = 0) , (7.4.48)

where

ν (z) = 1

2π

2π

∫
0

dψ
1

1 + z ∣sinψ∣
(7.4.49)

= 1√
1 − z2

(1 − 2

π
tan−1 [ z√

1 − z2
]) , (7.4.50)
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which has important limits ν (0) = 1, ν (1) = 2/π, and ν (z)→ 0 as z →∞.
Thus, the various couplings of this theory flow according to

dη

d`
= η (7.4.51)

dλm
d`

= (2 − m
2K

4
ν (αηK) )λm (7.4.52)

dK−1

d`
= πν (αηK)C0 (K)m2λ2

m , (7.4.53)

where C0 (K) is strictly positive function: it can be recovered from the η = 0 case, but its precise
form is unimportant.

Compared to the usual RG flow with η = 0, here, we see that dissipation is strictly relevant,
with η diverging exponentially as the RG is run. The other two couplings, the stiffness (Luttinger
parameter) K and strength of the harmonic perturbation λm initially follow the usual Kosterlitz-
Thouless flow until η approaches the cutoff, Λ = 1/α, as can be seen in Fig. 7.2. For η ≳ Λ/10,
the harmonic terms become relevant for increasing ranges of K. Throughout, the overall strength
of the Luttinger liquid action Eq. (7.4.1), K−1 also grows, with the rate of growth slowed as η
increases.

Referring to Eq. (7.4.50), for αηK = 1, ν will only have decreased in value from unity to 2/π
compared to the η = 0 value; this gives the impression that any interesting effect due to dissipation
only occurs asymptotically late in the RG. However, due to the dependence of ν on K as well,
dramatic changes occur when αη approaches unity, as depicted in the bottom right of Fig. 7.2,
whereupon the critical value of K−1 for λm is suppressed tenfold compared to η = 0. If η is allowed
to grow beyond the cutoff, only extremely large values of K can prevent harmonic terms from
being relevant; for η ≫ 1/α, K ceases to flow entirely, and Eq. (7.4.52) becomes

dλm
d`

→ 2λm , (7.4.54)

such that all harmonic terms are relevant.

7.4.10 Discussion

In summary, we have investigated the effect of a dissipative bath on the properties of the Luttinger
liquid. We argued that the effective contribution to the Luttinger liquid action corresponding to
Ohmic dissipation captures the generic, relevant physics of CL baths. For this action, we computed
two-point correlation functions non-perturbatively and for arbitrary temperature, finding evidence
that dissipation makes the system vulnerable to localizing potentials. We later confirmed this using
an RG analysis of generic harmonic terms, which we find to be more relevant under coarse-graining
in the presence of dissipation, if not always relevant. For a wide range of parameters, the physics
of the Luttinger liquid is altered substantially. Finally, a simple transport calculation reveals
that dissipation destroys the perfect conductivity of the Luttinger liquid even in the absence
of any spatial potentials or disorder, via Zeno localization. All of these findings show that the
bath effectively enhances localization in this interacting quantum system, in contrast to the usual
intuition from Markovian baths that decoherence ought to make a system less localized.

These surprising results invite follow-up study, which should be facilitated by the exact corre-
lation functions presented here. Given the increased importance of harmonic terms in the presence
of dissipation, one direction for follow-up work is to examine the temporally-nonlocal harmonic

184



terms generated by integrating out the bath. Also, consideration of higher-body correlations,
specialization to physical applications, and higher dimensions may be of interest.

7.5 Summary and Outlook

In summary, we have found that a reasonable model for a dissipative quantum bath, i.e. that of
Caldeira and Leggett, can enhance the effects and appearance of localization in a thermal quantum
system. This result directly contradicts the standard intuition used to scrutinize the stability
(or instability) of localized systems to thermalization: in such cases, the focus is generally on
Markovian baths, which do not capture the most important feature of baths as relates to quantum
thermalization, which is entanglement. Essentially, the mechanism by which the bath localizes the
system is “Zeno localization”: the bath effectively measures the particle(s) repeatedly, and in one-
dimensional many-body systems and single particle systems in the presence of particular potential
landscapes, the coherence necessary for the particle(s) to propagate freely is destroyed by this
interaction with the bath. These results highlight the need for improved understanding of the role
of a weak bath, e.g., as relates to ongoing cold atom experiments. This work suggests an intriguing
possibility of designing multicomponent systems in such a way that the two components (i.e. species
of particles) do not necessarily equilibrate; if the external bath then couples more strongly to the
more thermal of the two components, it may be possible to localize that component, and prevent
thermal decoherence of the less thermal component. Successfully engineering such systems would
be extremely useful to the realization of robust quantum computers.
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Appendix A

Supplementary Material for Random
Unitary Circuits

A.1 Numerical Methods for the U(1) Calculation

For L = 10,12,14, we find the eigenvalues of Ŵ , given by Eq. (5.5.17) in Chapter 5, using exact
diagonalization, and compute Tr[Ŵ (t)] = ∑n eitθn directly to obtain K(t), which is then averaged.
For L = 16 and 18, we sample the trace, computing an approximate version of Tr[Ŵ (t)] via
successive multiplication of Ŵ onto a number of ‘sample states’, which are superpositions of the
basis states, with complex coefficients drawn from a Gaussian distribution with zero mean and
unit variance. One can either sample the trace within a given realization of spatial disorder, or
sample both disorder realizations and the trace concurrently. In either case, we expect the total
number of samples required to reduce noise to a given degree to be the same for either method.

For the 12870 basis states comprising the trace for L = 16, we find that ≲ 100 samples per
disorder realization is sufficient to reproduce the correct behavior for K(t), with ≳ 104 realizations
of disorder. For L = 18, we use concurrent sampling of disorder and the trace; owing to the larger
Hilbert space dimension, to obtain results with noise comparable to the L = 16 data would likely
require O(107) combined samples and realizations. The data shown in the main text correspond
to 4 × 105 combined samples and realizations of disorder. As these data are noisier than those for
smaller system sizes, we also average this data in windows of roughly 25 time steps to reduce noise
further; we plot the average within each window, accompanied by error bars corresponding to the
combination of disorder averaging and this temporal smoothing.

A.2 Large-time expansion

We consider the asymptotic behavior of ψ(t, h) for large t and fixed h. Since ψ(t,−h) = ψ(t, h),
we take h > 0. The case h = 0 requires a different treatment. The functions ηn(λ) admit the
expansion:

ln ηn(λ) = tεn(λ) + 2nh +
∞
∑
k=0

t−k/2qn,k(λ/
√
t) (A.2.1)

The following results are easily verified

∫
∞

−∞
dxan(λ) = 1 , lim

t→∞
tan(

√
tz) = n

πz2
. (A.2.2)
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We have therefore

√
t Tnm(z

√
t) =

t≫1
τn,mδ(z) +

2nm

π
√
tz2

+O(t−3/2) , (A.2.3)

lim
t→∞

ln ηn(
√
tz) = 4n

z2
+ 2nh + qn,0(z) , (A.2.4)

where

τn,m = ∫ dxTn,m(λ) = 2 min(n,m) − δn,m

Indeed, inserting Eq. (A.2.1) into the TBA equations of Chapter 2, we have at the leading order
an equation for qn,0(z),

qn,0(z) =
∞
∑
m=1

τn,m ln(1 + e−
4m
z2

−2mh−e(0)m (z)) . (A.2.5)

These equations can be mapped onto those describing the infinite temperature behavior of the
Trotterized XXX model and admit an exact solution of the form

qn,0(z) = −
4m

z2
− 2mh + log(sinh(n(h + 2z−2)) sinh((n + 2)(h + 2z−2))

sinh(h + 2z−2)2
) . (A.2.6)

In particular, this implies qn,0(z → 0) = 0. At the next order, we have an equation for qn,1(z)

qn,1(z) = −
∞
∑
m=1

τnmqm,1(z)
1 + e

4m
z2

+2mh+qm,0(z)
+

∞
∑
m=1
∫ dz′

2nm

π(z − z′)2
ln(1 + e−

4m
z′2 −2mh−qm,0(z′)) (A.2.7)

Using Eq. (2.4.40), one need only consider the case n = 1. Changing variables via u = h+ 2/z2, one
obtains

ψ(t, h) t≫1= −h −
q1,1(0)
2
√
t

= −h −
∞
∑
m=1
∫

∞

h
dh

m log ( sinh((m+1)u)2

sinh(mu) sinh((m+2)u))√
2π2t(u − h)

. (A.2.8)

Remarkably, exchanging the sum and integral allows for an explicit solution: setting gm = log(sinh(mu))
and using

M

∑
m=1

m(2gm+1 − gm − gm+1) = (M + 1)gM+1 −MgM − g1 , (A.2.9)

one recovers

ψ(t, h) = −h −
Li3/2 (e−2h)

2
√
πt

+ o(t−1/2) . (A.2.10)

The Legendre transform is obtained by observing that at large t, the maximum in Eq. (2.4.32)
corresponds to h ∼ 0. So one expands

Li3/2 (e−2h) = 2
√

2πh + ζ(3/2) +O(h) , (A.2.11)

and finds that Eq. (2.4.32) is maximal at h∗ ≃ 1/(2(1 + 2s)2t). Combining this with Eq. (2.4.32)
recovers the main result, Eq. (5.5.13).
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A.3 Alternative Approach: Quantum Transfer Matrix

The formulation presented in the previous section allows the calculation of the large-time expan-
sion. However, the calculation of ψ(t, h) at arbitrary values of t and h requires the solution of
Eq. (2.4.36), i.e. an infinite set of coupled integral equations. One has to resort to truncation n up
to when convergence is reached. A more numerically efficient procedure is based on the quantum
transfer matrix approach [199]. We first note the relation

Fδ(i − δ)−1 = lim
x→−i−δ

d(x)−1Fδ(x) , (A.3.1)

then using Eq. (2.3.24), one can write

Tr[M t
δe

2hSz] = lim
x→−i−δ

d(x)−tTr[Fδ(x)Fδ(i + δ) . . . Fδ(x)Fδ(i + δ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t times

e2hSz] = Tr[F̃1F̃2 . . . F̃1F̃2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L times

] ,

(A.3.2)
where F̃1,2 are the dual transfer matrices defined on 2t sites, obtained via a 90○ spacetime rotations
(i.e. exchanging space and time), as clarified in Fig. A.1. The advantage of this transformation

Figure A.1: Diagrammatic representation of Tr[M t
δe

2hSz]. Blue (red) boxes group matrices that
act in the time (space) direction. The curly legs at the boundary of the diagram represent the
periodic boundary condition.

is that, in the limit L → ∞, the last trace in Eq. (A.3.2) is dominated by the largest eigenvalue
of the matrix F̃1F̃2. Moreover, integrability is preserved by the spacetime rotation, as can be
checked explicitly from the Yang-Baxter relation, Eq. (2.3.3) (see also Ref. 200); therefore, the
dual transfer matrices can be diagonalized as explained in Ch. 2. Using the general expressions
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given by Eq. (2.3.15) and Eq. (2.3.17), we arrive at the equation

tp̃(λa) +
t

∑
b=1

Θ̃(λa − λb) + ih = π(a − (t − 1)/2) , a = 0, . . . , t − 1 (A.3.3a)

p̃(λ) = arctan(2λ) − arctan(2λ/3) , Θ̃(λ) = arctan(λ) (A.3.3b)

ψ(t, h) = −1

2

t−1

∑
a=0

log( 4λ2
a + 9

16λ2
a + 4

) . (A.3.3c)

Note that Eq. (A.3.3a) can be solved efficiently using standard numerical tools for t ≲ 104; by
inserting the solutions {λa}t−1

a=0 in Eq. (A.3.3c), one can efficiently obtain ψ(t, h) for arbitrary
values of t and h. Finally, φ(t, s) is recovered by Legendre transform. A comparison between the
exact ψ(t, h) obtained with this method and the expansion Eq. (A.2.10) is shown in Figure A.2.
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ψ
(t

,h
)

Figure A.2: The function ψ(t, h) obtained via the QTM method, i.e. Eq. (A.3.3), as a function
of h for different values of t. The dashed lines correspond to the expansion in Eq. (A.2.10). Such
an expansion does not capture the quadratic behavior at h = O(t−1/2) [202].

A.4 Free magnon scaling function

In order to derive the scaling function κ(x, s) given by Eq. (5.5.15) of Chapter 5, we proceed as
follows. First, since we are interested in the limit in which both t,L → ∞, we can neglect the
Trotterized structure of the matrix M̂ , and replace it with the de-Trotterized Hamiltonian via

K (t) = ∣t∣ Tr
s
[M̂ t] ≈ ∣t∣ Tr

s
[e−tĤ] , (A.4.1)

where Ĥ is the XXX Hamiltonian. The scaling function is then defined by

κ (x, s) ≡ ln [K (t) /t] ≈ ln Tr
s
[e−tĤ] , (A.4.2)

with x = t/L2. This is essentially the free energy of the XXX model at “temperature” 1/t.
The single-particle excitations of this effective Ĥ are magnons, which behave effectively as

bosons with quadratic a dispersion relation given by εk =Dk2 at small k. In a system of length L
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with periodic boundary conditions, the momenta are quantized according to k = 2πn/L for integer
n ∈ {0,1, . . . , L − 2, L − 1}. At large t, the dominant contribution to κ comes configurations with
only small-k magnons excited, and at low densities, we can ignore interactions between magnons.
Starting from Eq. (A.4.2),

κ (x, s) = ln Tr [e−tĤ] = ln∏
k≠0

∞
∑
n
k
=0

e−tεknk (A.4.3)

=∑
k≠0

ln
1

1 − e−tDk2 = −∑
n≠0

ln [1 − e−(2πn)
2Dx] , (A.4.4)

where we ignore the k = 0 (n = 0) term as this corresponds to changes in the magnetization sector.
To reproduce the results of the main text, we note that the effective evolution M̂ has dispersion

ε(λ) = −2 ln cos k(λ); to leading order, one has ε(k) = k2, i.e. D = 1. The large x limit of
Eq. (A.4.4) is dominated by the n = 1 term; expanding the logarithm reproduces the limit κ (x) ∼
e−4π2Dx for x≫ 1. Small x corresponds to large L, as we are primarily interested in large t. In this
case, we take the continuum limit, and the sum over momenta is replaced by an integral, which
for either a cosk or k2 dispersion gives κ (x) ∝ 1/

√
x for x≪ 1. Thus, the proposed scaling form

Eq. (A.4.4) reproduces the two limits x≪ 1 and x≫ 1 recovered in the main text with exactly the
same coefficients to leading order.

In comparing with the numerical data at finite q, we leave the diffusion constant D as a free
parameter. In this case, Eq. (A.4.2) is also supported by its agreement with numerical study of
K(t), as depicted in Figure 5.13 in Chapter 5.
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Appendix B

Supplementary Material for Disordered
Clock and Potts Models

B.1 Renormalization Group for the S3 Potts Model

The procedure of Real Space (or “Strong Disorder”) Renormalization Group (RSRG) begins by
locating the strongest bond and diagonalizing the corresponding term in the Hamiltonian. The
next step is to incorporate the effect of the two bonds on either side of the strong bond as a
perturbatively. Using the α parafermion description, it does not matter whether the strongest
random coupling falls on a τ̂j or a σ̂†

j σ̂j+1 term, we can simply write:

H0 ≡ ω−1Kx (α†
xαx+1 + αxα

†
x+1) , (B.1.1)

and for simplicity, we will frequently call the site x − 1 left of the strong bond “L,” and the site
x + 2 to the right of the strong bond “R.” Additionally, the value of the strong bond, Kx ≡ Ω will
be divided out from all terms. The ratios KL/R/Ω = λL/R will be the perturbing parameters.

B.1.1 Details of perturbation theory

For both Potts and Clock systems, the many-body eigenstates of H0 are massively degenerate,
since H0 acts only on a three dimensional subspace of the Hilbert space. Let Q̂ project onto all
eigenstates that also have eigenvalue Ed under H0, and P̂ the projector onto all other states (so
P̂ + Q̂ = 1̂). We begin with the four parafermion Schrödinger equation,

(H0 + λV ) ∣ϕk⟩ = Ek∣ϕk⟩, (B.1.2)

where λV will be a shorthand for λLVL + λRVR. We insert the identity between the ket ∣ϕk⟩ and
the operators as a sum over the two projectors and left multiply by just one of the projectors,
which commute with H0, to obtain the equations:

EkP̂ ∣ϕk⟩ =H0P̂ ∣ϕk⟩ + (P̂ λV Q̂ + P̂ λV P̂ ) ∣ϕk⟩ (B.1.3)

EkQ̂∣ϕk⟩ =H0Q̂∣ϕk⟩ + (Q̂λV Q̂ + Q̂λV P̂ ) ∣ϕk⟩. (B.1.4)

We next define ∣ψk⟩ = Q̂∣ϕk⟩ and ∣χk⟩ = P̂ ∣ϕk⟩. The above two equations become the coupled
equations

Ek∣χk⟩ = (H0 + P̂ λV P̂ ) ∣χk⟩ + P̂ λV ∣ψk⟩ (B.1.3)

Ek∣ψk⟩ = (H0 + Q̂λV Q̂) ∣ψk⟩ + Q̂λV ∣χk⟩. (B.1.4)
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For the chiral clock model wherein none of the eigenvalues of H0 are degenerate, we have that
Q̂V Q̂ = 0, and we combine the equations above into a single equation for ∣ψk⟩, where we a

Looking at Eq. (B.1.3), we note that the operator (Ek −H0 − P̂ λV P̂ )
−1

is well defined when

acting on kets projected by P̂ . Recognizing that acting on ∣χk⟩ with P̂ does not change anything,
we find

∣χk⟩ = P̂ (Ek −H0 − P̂ λV P̂ )
−1
P̂ λV ∣ψk⟩, (B.1.5)

and we can insert this into Eq. (B.1.4) to obtain in a suggestive form:

Ek∣ψk⟩ =H0∣ψk⟩ + Q̂λV P̂ (Ek −H0 − P̂ λV P̂ )
−1
P̂ λV Q̂∣ψk⟩. (B.1.6)

We can obtain analogous equations for ∣χk⟩ as well, but let us focus on a particular model first.

B.1.2 Hamiltonian

The Potts Hamiltonian is given by

H = −
L

∑
j=1

fj (τ̂j + τ̂
†
j ) −

L−1

∑
j=1

Jj (σ̂†
j σ̂j+1 + σ̂jσ̂

†
j+1) , (B.1.7)

and we will consider the case of dimerized random bonds,

fj ≡ λj (
1 − δ

2
) , Jj ≡ λ

′
j (

1 + δ
2

) (B.1.8)

with λj, λ
′
j drawn from the distribution

P (λ) = 1

W
λ1/W−1, (B.1.9)

where W parameterizes the disorder strength. The fully paramagnetic limit corresponds to δ = −1,
and the ferromagnetic limit at δ = +1. We have left the overall algebraic sign common to clean
systems, but the results should hold equally for either overall sign.

B.1.3 Second renormalization

The title derives from “second quantization,” as we will treat the real space renormalization group’s
action on the theory of the effective spins half generated in the first step(s) of the standard RSRG.
First, we provide an overview of the RG:

1. Identify the strongest bond in the Hamiltonian and diagonalize it. At the beginning, this
will be a term with parafermion description −Kxω−1α†

xαx+1 and its Hermite conjugate, which
will have eigenvalues −2Kx,Kx,Kx.

2. The decimation of parafermions into an inert singlet or an effective spin 1/2 is the most
interesting step in the process. The fusion channel is

√
3 ⊗

√
3 → 1 ⊕ 2. At this point, we

populate the corresponding channels with probabilities 1/3 and 2/3, respectively.

(a) For the nondegenerate 1 state with eigenvalue −2Kx, the parafermion modes at x,x+ 1
drop out of the chain, and the modes on either end are given a new effective coupling
at second order perturbation theory. The Hamiltonian is self similar under this step,
but with one site fewer.
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(b) It is helpful to treat singlet formation as a site dropping out of the chain and creating
an effective coupling between its neighbors because without this, we would have to keep
track of terms of order n+ 1 in perturbation theory to describe two spins 1/2 separated
by n. In the course of RG we will just update the new coupling.

(c) If we end up in the 2 space, we have an effective spin 1/2 degree of freedom. No
subsequent step in the RG may tunnel to the trivial subspace. The spin 1/2 can be
represented by an effective parafermion mode

α̃x,x+1 =
1

3
(αx + αx+1 + ωα†

xα
†
x+1) , (B.1.10)

which is equivalent to ŝ−x̃ = ∣1x,x+1⟩⟨2x,x+1∣. The conjugate of α̃x,x+1 is ŝ+x̃, and they
obey all the properties of the Pauli matrices for a single site. They also respect the
parafermion multiplication rules for parafermion operators of different sites.

(d) This RG step maintains interactions between the fused 2 mode and its neighbors, which
can be regarded as first order corrections. There is also a term generated at second
(and trivially1, higher) orders. This expression can be solved exactly in Mathematica
by considering two sites only, and a strong bond J between them, with on-site τ̂ ’s as
perturbations, restricted to the 6×6 subspace of 2⊗3. However, it does not make sense
to diagonalize this full thing in the case where nearby bonds might be strong.

(e) Depending on how dimerized the system is, we may see regions of just a single site
[bond] forming a spin 1/2, or great extents of the chain with neighboring effective spins.

3. For cases where we find two neighboring on-site [link] terms, which are “strong,” and fuse into
neighboring spin 1/2 degrees of freedom, some RG step will eventually have us diagonalize a
spin-spin interaction term.

(a) Perturbation theory tells us that the eigenstate of the full Hamiltonian will—at zeroth
order—be an eigenstate of this first order correction (of XX form). This is just one
reason that the order in which parafermions fuse into spins is of importance. Note that
if the two neighboring spins 1/2 form into singlet-type states ∣±⟩ = ∣ ↑↓⟩ ± ∣ ↓↑⟩, they will
be nondegenerate and “freeze in,” dropping out of the chain. Strictly speaking, the RG
process freezes in any states that form which are nondegenerate, forbidding nontrivial
action on these states at higher order.

(b) In general, the strength of the first order correction between effective spins at sites
j, j + 1, given by Jj, will be roughly an order of magnitude larger than the second order
corrections. This means the state of two or more spins will be dominated by eigenstates
of pairs of spins under an XX interaction.

(c) Considering the case where fj > Jj, the two site couplings for two spins 1/2 are, at first,
second, and third order

Jj,
J2
j

6 (fj + fj+1)
,
J3
j (f 2

j + f 2
j+1)

18f 2
j f

2
j+1

(B.1.11)

1When decimating a single mode, the higher order terms are exactly the same as the second order term as far
as operators.
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with ratios to the first order coupling given by

1,
λ
′
j (1 − ε)

6 (λj + λj+1) (1 + ε)
≲ 1

12
,
λ2
j (1 − ε)

2 (λ2
j + λ2

j+1)
18λ2

jλ
2
j+1 (1 + ε)

2 ≲ 1

9
, (B.1.12)

where ε is a small, positive number specifying how deep in the paramagnetic phase we
are. Any reasonable amount of disorder or greater depth in the paramagnetic phase will
exaggerate this. Additionally, the first order correction is at least six times the three-site
correction at second order. However, a nonrigorous calculation shows the third-order
three-site terms may be nearly half the first order correction at weak disorder and near
the transition...

4. The above shows us that we will be setting eigenstates of the XX model first. We will label
this term

Hj
1 = −Jj (ŝ+j ŝ−j+1 + ŝ−j ŝ+j+1) , (B.1.13)

or Hj
xx. These terms are likely a factor of ten greater than higher order corrections. As

mentioned above, the singlet-type states have unique energies ∓Jj, and will therefore drop
out, though we will still calculate the exact form of the effective interactions due to high-
order terms. The other two states are super-spin states, analogous to those obtained in RG
for the random bond XXZ model.

5. Running the RG again for the singlet-type states, ∣±⟩ generates the following corrections at
first order:

(a) The two-site correction at second order is simply a projector onto the ∣+⟩ state:

2J2
j

3(fj + fj+1)
(∣+⟩⟨+∣)j,j+1 . (B.1.14)

(b) The two-site terms that overlap with only one of the spins give:

J2
j−1

6
( 1

fj
+ 1

fj−1

+ 1

fj + fj−1

) 1̂ (B.1.15)

(c) The three-site corrections at second order do not map the states ∣±⟩ to themselves, so
there are no corrections at first order.

(d) The third order correction on both sites of the singlet is zero, while the corrections that
intersect just one site give the correction

−
J3
j−1

18
( 1

f 2
j−1

+ 1

f 2
j

) 1̂ −
J3
j+1

18
( 1

f 2
j+1

+ 1

f 2
j+2

) 1̂ (B.1.16)

(e) The first order term from the three-site terms intersecting the full singlet is:

∓ Jj (
J2
j−1

9fj−1 (fj−1 + fj)
J2
j+1

9fj−1 (fj+1 + fj+2)
) P̂ (±)

j,j+1. (B.1.17)
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(f) The terms that only intersect one spin in the singlet allow corrections to the hopping
terms on the sides at first order

−
Jj−2J2

j−1

9fj (fj−1 + fj)
(ŝ+j−2ŝ

−
j−2 + h.c.) −

J2
j+1Jj+2

9fj+1 (fj+1 + fj+2)
(ŝ+j+2ŝ

−
j+3 + h.c.) (B.1.18)

(g) The four site corrections contribute the following:

−
Jj−1JjJj+1

9fjfj+1

(ŝ+j−1ŝ
−
j+2 + ŝ−j−1ŝ

+
j+2 + P̂(±)

j−1,j,j+1,j+2) , (B.1.19)

where P̂(±)
j−1,j,j+1,j+2 projects onto the super spin singlet state

1√
2
(∣ ↑↑↓↓⟩ ± ∣ ↓↓↑↑⟩)j−1,j,j+1,j+2 , (B.1.20)

where the sign is determined by the ± state of the inner two sites. Note that the
nontrivial hopping term reveals that the first order perturbations to the singlet state
allow both spins to drop out, preserving the form of the Hamiltonian.

6. We will only go to second order in the RG for the spins and just see what happens, bro:

(a) The terms that arise from an intermittent ∣∓⟩ state give rise to six terms proportional to
the identity, and four terms proportional to ŝzj−1ŝ

z
j+2, which restores the ZZ interaction

as the singlet states drop out. The identity term is proportional to:

±
J4
j−1

72Jj
( 1

fj−1

+ 1

fj
− 1

fj−1 + fj
−
Jj−1

3f 2
j−1

−
Jj−1

3f 2
j

)
2

1̂

±
J2
j+1

72Jj
(
Jj+1

3f 2
j+1

+
Jj+1

3f 2
j+2

+ 1

fj−1 + fj+2

− 1

fj−1

− 1

fj+2

)
2

1̂, (B.1.21)

and the ZZ interaction is

±
J2
j−1J

2
j+1

72Jj
( 1

fj−1

+ 1

fj
− 1

fj−1 + fj
−
Jj−1

3f 2
j−1

−
Jj−1

3f 2
j

)×

(
Jj+1

3f 2
j+1

+
Jj+1

3f 2
j+2

+ 1

fj−1 + fj+2

− 1

fj−1

− 1

fj+2

) ŝzj−1ŝ
z
j+2, (B.1.22)

where in both cases the sign ± is that of the state of the singlet.

7. Now we will move on to the terms generated for the super-spin subspace

(a) The two-site correction ∝ J2
j (Hj

2) acts diagonally on all states of the Hj
xx with energies

Ej
2,↑↑ = E

j
2,↓↓ =

J2
j

3fjfj+1

(fj + fj+1) , (B.1.23)

which can act on all states. We could have incorporated this directly into Hj
xx, which

would not change the degeneracy/ nondegeneracy of the eigenstates. This term has the
opposite algebraic sign compared to the first order correction, meaning it would likely
weaken overall the assertion that H1 > Hj,j+1

3 , a term that was already as close as half
H1. The strong disorder limit alleviates this concern.
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(b) The three-site corrections at second order Hj−1,j
2 and Hj,j+1

2 all kill the singlet-type
states. The effective terms from this are:

2Jj−1Jj
3fj

(ŝ+j−1ŝ
+
j ŝ

+
j+1 + h.c.) +

2JjJj+1

3fj+1

(ŝ+j ŝ+j+1ŝ
+
j+2 + h.c.) , (B.1.24)

i.e. in all cases, the next-nearest neighbor hopping dies, as it cannot map nontrivially
between states in the same subspace.

(c) The two-site correction at third order acts diagonally on the XX states as well, giving

Ej
3,↑↑ = E

j
3,↓↓ = −

J2
j

9f 2
j f

2
j+1

(f 2
j + f 2

j+1) , Ej
3,± = 0, (B.1.25)

analogous to the case at second order. Actually, in all likelihood we can get the two
site correction to all orders via geometric sum.

(d) The three-site correction at third order, as with the correction at second order, is reduced
simply to the triplet creation/annihilation operators in the super-spin subspace, and in
the singlet subspace the energy is:

E± = ∓
Jj
9

(
J2
j−1

fj−1 (fj + fj−1)
+

J2
j+1

fj+2 (fj+2 + fj+1)
) . (B.1.26)

8. And beyond first order, we generate the new and interesting effective terms.

(a) For the singlet states on sites 1,2, the three-site effective corrections are:

i. For just the same term type:

⟨±12∣H(1,2)
2 Q̂ss

12

1

E± −H(1,2)
1

Q̂ss
12H

(1,2)
2 ∣±12⟩ = ∓

J1

2
( J2

3f2

)
2

(1̂ + ŝx3) (B.1.27)

⟨±12∣H(0,1)
2 Q̂ss

12

1

E± −H(1,2)
1

Q̂ss
12H

(0,1)
2 ∣±12⟩ = ∓

J1

2
( J0

3f1

)
2

(1̂ + ŝx0) (B.1.28)

ii. And when we have both H
(1,2)
2 and H

(0,1)
2 , we get −2J0J1J2/9f1f2 times a projector

onto the 0123 states
1√
2
(∣ ↑↑↓↓⟩ ± ∣ ↓↓↑↑⟩) , (B.1.29)

which is a singlet of two super spins at sites 0,1 and 2,3, and the sign is determined
by the type of singlet between sites 1,2. The factor of two comes from the two
orderings.

9. We will also encounter cases where one of the parafermion modes in the strong term for a
given step Kxω−1α†

xαx+1 has not been incorporated into a spin 1/2. This can happen when
a region of strong bonds meets the edge of the chain, or a region of strong on-site τ̂ terms,
and can also happen when a strong field term is next to a field term that is weaker than the
coupling between the sites, in which case we will diagonalize the bond before we have the
chance to try projecting the weak site.
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To summarize, the RG procedure in the non-Abelian case is far more complicated, and is gen-
erally not self-similar. Even in the strongly dimerized limits f ≫ J and f ≪ J , one still must deal
with the fact that the spin objects created by the RSRG are able to grow in size without bound.
However, it is mostly clear that the resulting phase is MBL, and spontaneously breaks at least
one of the constituent symmetries comprising S3 = D3. However, away from these harsh limits,
one is likely to encounter scenarios in which at least one bond [site] is diagonalized before all of
the sites [bonds]. In this case, unless the result of the RG step is a singlet, one will have to deal
with awkward scenarios in which there are dangling parafermion modes, potentially separated by
many sites. These modes complicate the RG even further; in general, the picture at intermediate
dimerizations (i.e. near the transition) is murky due to the non-Abelian symmetry and lack of
self-similarity under the RG. However, there may be evidence of a quantum critical glass [31] or
other more exotic, nonergodic properties.

B.2 Special Effective Phases in the n = 3 Clock Model

One can make the following argument: suppose the phases are randomly distributed about zero,
then after many RG steps the effective phase will be a sum over many random numbers with
average value 0, leaving only a phase proportional to an integer (or half-integer, by factoring out
−1) power of ω. When this happens, the procedure is that of the S3 Potts model. If the system
ends up in the nondegenerate (E0 = ±2Ω) state, then the strong bond drops out per the typical
second-order process. Sites L and R now have effective couplings given by:

K̃LR = (−1)nKLKR

3Ω
, ϕ̃LR = ϕL + ϕR −

2πn

3
. (B.2.1)

Although one might worry that a higher symmetry model is spawned, it is important to note
that such a special value of the effective phase could only occur after many RG fusion steps,
meaning the corresponding term would be a product of a very large number of small quantities.
What’s more, in order for any spin-1/2-type interactions to exist, there must be two such special-
valued phases that emerge. The spin 1/2 behaves as though it has dropped out of the chain (as
per the normal course of the Z3 RSRG) until it meets another spin 1/2 as a nearest neighbor.
This means the Potts-type RG cannot be realized until enough RG steps have occurred to create
two of these spins 1/2. Many RG steps will have occurred at this point, and the behavior of the
couplings under renormalization should be clear. What’s more, an overwhelming portion of the
chain will be “frozen in” already.

It is worth noting that if only two spins 1/2 are generated, the interaction is exactly the XXZ
model between them, which is easily solved for two spins. For three or more of these guys, we get
the full ugliness of Potts, but with couplings that are quite weak compared to the energy scale of
the frozen-in things. These processes will also be highly nonlocal.

B.3 Supplementary Numerical Evidence for the S3 Potts

Model

B.3.1 Supplementary numerics: weak disorder
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(a) W = 0.5 (Appears as Fig. 6.3a in Ch. 6.)
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(b) Additional results for W = 0.6.
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(c) Additional results for W = 0.7.
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(d) Additional results for W = 0.8.
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(e) Additional results for W = 0.9.
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(f) W = 1.0 for comparison

Figure B.1: Weak disorder plots for the disordered S3 Potts model.

B.3.2 Supplementary numerics: Strong disorder

Fig. B.2a-B.2d present additional data showing Poisson level statistics and area law entanglement
as one moves toward strong disorder (W ∼ 2), as well as finite-size scaling collapse predicated on a
direct infinite-randomness transition. Note the improvement in the quality of collapse as we move
to stronger disorder.
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(a) “Strong Disorder” plot for W = 1.0.
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(b) Additional results for W = 1.5
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(c) W = 2.0 for comparison.
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(d) Additional results for W = 2.5.

Figure B.2: Strong disorder plots for the disordered S3 Potts model.
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Appendix C

Supplementary Material for the Random
Bond XXZ Model

C.1 Additional numerical results

C.1.1 Numerics and phase diagram

We compute the r ratio, entanglement entropy, and spin-glass order parameter, mEA = χEA/L,
averaged over eigenstates at energy density ε = 0.5 and disorder realizations for various values of
the parameters W , ∆ and L. The random couplings Ji ∈ (0,1] are drawn from the power-law
distribution P (J) = 1

W
1

J1−1/W and we choose ∆i to be uniformly distributed in the interval [−∆,∆].
At sufficiently weak disorder (i.e., 0 ≤W ⪅ 1.5), we find evidence of an ergodic to MBL transition

as a function of ∆, as depicted in Fig. C.1. For ∆ smaller than a critical value ∆c(W ), the overall
disorder strength is not enough to localize the system, and we observe clear signatures of a thermal
phase (extensive entanglement entropy, GOE level statistics and mEA = 0). For ∆ > ∆c(W ), the
system is localized with Poisson level statistics, sub-extensive entanglement entropy indicating a
breaking of ergodicity and diverging spin glass parameter χEA. The entanglement entropy as a
function of L shows a clear crossover from volume-law to sub-extensive behavior as a function of
∆ (Fig. C.2). This MBL transition can also be observed at fixed ∆ by tuning W , as depicted in
Fig. C.3.

C.1.2 Uniform anisotropies ∆i = ∆

Note that we took the anisotropy parameters ∆i to be random since randomness in Ji generates
randomness in ∆i upon renormalization, so that we expect qualitatively similar conclusions for
uniform ∆i = ∆, except around the pathological SU(2) symmetric point ∣∆∣ = 1 that is known
to lead to thermalization for arbitrary disorder strength [31] (see also [209, 220]). To verify this
numerically, we also considered the case of uniform anisotropies ∆i = ∆ in the strong randomness
regime W = 2 (Fig. C.4). We find that, away from the SU(2)-symmetric point ∆ = 1, the results
are qualitatively similar to the random ∆i case as expected, with a spin-glass MBL phase at all
values of ∆ ≠ 1. Precisely at the SU(2)-symmetric point ∆ = 1, the results are more intricate.
Because of the different spin sectors S2 = j(j + 1) that do not mix with each others, it is natural
to expect Poisson statistics in the Sz = 0 sector even though the system should be thermalizing.
We find numerically a r ratio below the Poisson value, suggesting a finite-size segmentation of the
spectrum. This is consistent with the fact that we observe sub-extensive entanglement for ∆ = 1,
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which suggests that the system has not yet reached the scaling regime which should be dominated
by almost classical large superspins. We nevertheless observe that the point ∆ = 1 is much less
localized than ∆ ≠ 1 for the same disorder strength W = 2. Moreover, our numerical results indicate
the absence of spin glass order precisely at ∆ = 1, also consistent with thermalization. We have also
checked that taking ∆i = ∆ does not modify the phase diagram shown in Fig. 6.5 quantitatively
provided ∆ ≠ 1. We leave a detailed numerical analysis of this interesting SU(2)-symmetric point
for future work, and restrict ourselves to random anisotropies ∆i which lead to qualitatively similar
results but has the strong advantage of avoiding pathological features that are not the subject of
interest for our study.

C.1.3 Additional numerical evidence

Included in this section are several additional plots based on numerical study of this system.

Figure C.1: Ergodic to spin glass (MBL) transition as a function of ∆, for W = 0 (top: uniform
Ji = 1) and W = 1 (bottom). Left: Ratio of consecutive level spacings showing a transition from
GOE to Poisson statistics. Middle: Scaling of χEA showing a divergence with system size in the
localized phase. Right: Finite-size entanglement crossover.

C.2 Fermion Description and Symmetry-Protected Topo-

logical Phases

C.2.1 Mapping to fermions

To be self-contained and make contact with our discussion in the main text, we briefly review
the equivalent descriptions of the XXZ chain in terms of spinless fermions, and its connection to
symmetry protected topological phases (SPTs) for the case of dimerized couplings.

The XXZ spin chain, defined by Eq. (6.5.1), maps to an interacting fermion chain via the
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Figure C.2: Crossover between volume- and area-law scaling of the entanglement entropy as a
function of ∆ for W = 0.5.

Figure C.3: Ergodic to spin glass (MBL) transition as a function of W at fixed ∆ = 2.0.

Jordan-Wigner mapping Szi = c
†
ici − 1

2 , S+i = Sxi + iS
y
i = (∏j<i σ

z
j ) c

†
i :

Hspin =
2N−1

∑
i=1

Ji (Sxi Sxi+1 + S
y
i S

y
i+1 +∆iS

z
i S

z
i+1) ,

Hfermion =
2N−1

∑
i=1

Ji [
1

2
(c†i+1ci + h.c.) +∆i (ni −

1

2
)(ni+1 −

1

2
)] , (C.2.1)

where we take L = 2N even.

C.2.2 Symmetries

We now discuss the symmetries of the above model. We will first describe the symmetries in the
spin language, and then use the Jordan-Wigner mapping to obtain their action on the fermion
operators.

First, the spin chain has a U(1) symmetry generated by Sz rotations Uφ = ∏j e
−iφσzj /2, that

corresponds to the conserved z-axis magnetization. The model also has Z2 time-reversal symmetry,
implemented by T =K, where K is the antilinear operator representing complex conjugation, and
an Ising (Z2) symmetry generated by C = ∏j σ

x
j . Note that the action of this symmetry flips the

axis of the conserved spin, CUφC† = U−φ.
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Figure C.4: Strong disorder regime (W = 2.0) with uniform anisotropy ∆i = ∆. Away from the
pathological SU(2)-symmetric point ∆ = 1, the results are qualitatively similar to the random
∆i case, consistent with a many-body localized phase with spontaneously broken particle-hole
symmetry at all values of ∆ ≠ 1.

Turning to the fermions, we see that the symmetries act on the second-quantized fermion
operators as follows:

UφcjU
†
φ = e

−iφcj,

T cjT −1 = cj with T iT −1 = −i, (C.2.2)

CcjC−1 = (−1)j+1c†j. (C.2.3)

Note that the time-reversal symmetry is antiunitary, while Uφ, C are unitary. In the fermionic
language, U(1) corresponds to the particle number conservation, while C corresponds to particle-
hole symmetry. In addition, we can construct an antiunitary symmetry S ≡ C × T , usually termed
“chiral” or “sublattice” symmetry,

ScjS−1 = (−1)j+1c†j with SiS−1 = −i. (C.2.4)

Note that T 2 = C2 = 1 when acting on fermion operators, but that S2 has no well defined action
on cj, because we can redefine S2 by an arbitrary phase eiα by combining it with a U(1) rotation
S → S̃ = eiα/2∑j njS.

A note on nomenclature. We caution that there is a potentially confusing alternative termi-
nology frequently used for noninteracting fermion systems, wherein the particle-hole symmetry C
is called “antiunitary” while S is called “unitary.” The alternative convention arises because the
traditional symmetry classification of free fermion systems considers the action of symmetries on
the first-quantized Hamiltonian H, where the noninteracting second-quantized Hamiltonian H is
defined via H = ∑i,j c

†
iHijcj (see also footnote on p.7 of [319]). Given a unitary symmetry, C, that

interchanges particles and holes, CciC−1 = ∑j(U∗
C )ijc

†
j, then H satisfies U †

CH∗UC = −H.

Owing to the complex conjugation on the LHS of the preceding expression, the unitary sym-
metry C is sometimes termed “anti-unitary” in this context. Similarly, the anti-unitary symmetry
S implies U †

SHUS = −H, hence S “looks” unitary when acting on H. When referring to operators
as unitary or anti-unitary, we will always refer to the action on the second-quantized operators,
which is more appropriate for the generic case of interacting systems. Hence we will refer to C as
unitary, and S,T as anti-unitary.

203



C.2.3 Ground-state SPT Order

When the hoppings in Eq. (C.2.1) are dimerized, Ji → J
2 (1 − δ(−1)i) with 1 > δ > 0, the ground-

state realizes an SPT phase with symmetry protected topological (complex) fermion zero mode end
states. The nontrivial edge structure is most easily seen by considering the limit of zero interactions
(∆i = 0) and strong dimerization, δ = 1. Here, the fermion Hamiltonian possesses a strictly localized
complex fermionic zero mode c1 (c2N) on the left (right) side of the chain respectively. Focusing
just on the left side of the chain, the fermionic zero mode c1 spans a degenerate two-state Hilbert
space {∣±⟩} with c1∣−⟩ = 0 and ∣+⟩ = c†1∣−⟩.

It turns out that the protection of these edge states relies only on U(1) and the ZS2 subgroup
of ZC2 ×ZT2 , in the sense that we may break T and C separately so long as their product S remains
a good symmetry. Then, the relevant symmetry group is U(1) × ZS2 , corresponding to class AIII
in the Cartan notation [218, 219, 319]. A classic example of a problem in this symmetry class
is the Su-Schrieffer-Heeger model [320]. In d = 1, free fermion problems in this class have a Z
classification, which reduces to a Z4 classification upon including interactions [321].

This zero-energy edge mode has a projective implementation of the U(1)×ZS2 symmetry group,
which protects it from being gapped out by any interaction with local, bulk degrees of freedom,
which all transform nonprojectively, and hence cannot couple in a symmetric fashion with the edge
state. The projective action of symmetry on the edge state can be seen by considering just the Z2

subgroup of the U(1) generated by the fermion number parity: PF = eiπ∑i ni . For the full system
(and for any set of bulk degrees of freedom), PF commutes with charge conjugation, [PF ,S] = 0.
However, acting within the low-energy subspace spanned by the zero-mode states ∣±⟩ of one end of
the chain, we see that ± have opposite eigenvalue of PF : ⟨+∣PF ∣+⟩ = −⟨−∣PF ∣−⟩. On the other hand,
S changes c1 → c†1, and hence exchanges S ∣±⟩ = ∣∓⟩. Hence, the symmetry group is implemented
projectively at the end of the chain: PFSPFS ∣±⟩ = (−1)∣∓⟩. This projective action indicates that
the zero-modes are topologically stable to any symmetry-respecting perturbation that does not
close the bulk gap [321, 322]. In particular, this phase and topological edge states exist in the
ground state over a finite range of parameters near the perfectlydimerized limit (though the zero
modes are generically only exponentially localized to the edge).

The phase described above is the elementary, n = 1, “root” phase of the 1d AIII chains. Absent
interactions, we may combine any integer number, n, of these phases to obtain a new, nontrivial
phase. For n = 2 chains, we denote by c†1 and d†

1 the fermionic edge modes acting on the left
side of the two perfectly-dimerized chains: the ground-state Hilbert space can then be written
as {∣00⟩, ∣10⟩ = c†1∣00⟩, ∣01⟩ = d†

1∣00⟩, ∣11⟩ = c†1d
†
1∣00⟩}. Since Sc1S−1 = c†1 and Sd1S−1 = d†

1, the
sublattice symmetry S acts on the zero-mode states as S ∣00⟩ = ∣10⟩, S ∣11⟩ = −∣00⟩, S ∣10⟩ = ∣01⟩,
and S ∣01⟩ = −∣10⟩. The n = 2 phase therefore has S2 = −1 when acting on the edge states, whereas
S2 = 1 acting on any local bulk degree of freedom. Similarly, n = 3 has a combination of {PF ,S} = 0
and S2 = −1 on the edge states. However, there is no projective action of symmetry for phases with
n = 0 mod 4, and hence, with interactions, these phases become equivalent to topologically trivial
ones [321]. Our argument that the excited states of the n = 1 phase with strong randomness are
unstable to spontaneous symmetry breaking also applies to the other members (n = 2,3) of this
AIII SPT family, and rules out the protection of SPT order.
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Appendix D

Supplementary Material for Open
Quantum Systems

D.1 Details of the Caldeira-Leggett model

D.1.1 Other forms of the spectral function, J

If we consider sub- and super-Ohmic forms of J(ω), we recover only mildly different results. In
particular, we will take

J(ω) = ηγ ∣ω∣γ , (D.1.1)

with γ ≠ 0. Starting from the action given in Eq. (7.2.23) in Sec. 7.2 and plugging in the above
form of J(ω), one has

S′eff[q] =
ηγ
2

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′ (q(τ) − q(τ ′))2

∞

∫
0

dω

2π
ωγe−ω∣τ−τ

′∣ (D.1.2)

=
ηγ
4π

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′ (q(τ) − q(τ ′))2

∞

∫
0

dΩ Ωγe−Ω

∣τ − τ ′∣γ+1 (D.1.3)

=
ηγΓ(γ + 1)

4π

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′
(q(τ) − q(τ ′))2

∣τ − τ ′∣γ+1 . (D.1.4)

It is worth noting that any integer γ ≤ −1 is forbidden, resulting in a divergent value of the above
expression (1/Γ(n) = 0 for n a nonpositive integer).

Now, as with the Ohmic case, we will Fourier transform Eq. (D.1.4):

S′eff[q] =
ηγΓ(γ + 1)

4π

βh̵

∫
0

dτ

∞

∫
−∞

dτ ′
(q(τ) − q(τ ′))2

∣τ − τ ′∣γ+1 =
ηγΓ(γ + 1)

2π

∞

∫
−∞

dt

∞

∫
−∞

ds
(q(s + t) − q(s − t))2

∣2t∣γ+1 ,

(D.1.5)
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for which the Fourier transform is given by

=
ηγΓ(γ + 1)

2π

∞

∫
−∞

dt

∞

∫
−∞

ds

∞

∫
−∞

dω

2π

∞

∫
−∞

dω′

2π

q̃∗(ω′)q̃(ω)
∣2t∣γ+1 ×

[ei(ω−ω′)(s+t) + ei(ω−ω′)(s−t) − eiω(s+t)e−iω′(s−t) − eiω(s−t)e−iω′(s+t)] (D.1.6)

=
ηγΓ(γ + 1)

2π

∞

∫
−∞

dω

2π

∞

∫
−∞

dω′

2π
q̃∗(ω′)q̃(ω)

∞

∫
−∞

dsei(ω−ω
′)s

∞

∫
−∞

dt

∣2t∣γ+1
[ei(ω−ω′)t − ei(ω+ω′)t + h.c.]

(D.1.7)

=
ηγΓ(γ + 1)

2π

∞

∫
−∞

dω

2π

∞

∫
−∞

dω′

2π
q̃∗(ω′)q̃(ω) (2πδ(ω − ω′))

∞

∫
−∞

dt

∣2t∣γ+1
[ei(ω−ω′)t − ei(ω+ω′)t + h.c.]

(D.1.8)

=
ηγΓ(γ + 1)

2π

∞

∫
−∞

dω

2π
∣q̃(ω)∣2

∞

∫
−∞

dt

∣2t∣γ+1
[2 − e2iωt − e−2iωt] , (D.1.9)

where the integral of the constant term “2” in the square braces vanishes for γ > 0. Thus, we
restrict to γ > 0 henceforth. Continuing onward,

S′eff[q] = −
ηγ
2π

Γ(γ + 1)
2γ+1

∞

∫
−∞

dω

2π
∣q̃(ω)∣2

∞

∫
−∞

dt
e2iωt

∣t∣γ+1 + h.c., (D.1.10)

which, for γ > 0 and γ not an even integer, this Fourier transform becomes

S′eff[q] = −
ηγ
2π

Γ(γ + 1)
2γ

∞

∫
−∞

dω

2π
∣q̃(ω)∣2 {2γ+1 ∣ω∣γ cos (πγ/2)Γ(−γ)} (D.1.11)

= −
ηγ
π

(Γ(γ + 1)Γ(−γ)) cos (πγ/2)
∞

∫
−∞

dω

2π
∣ω∣γ ∣q̃(ω)∣2 (D.1.12)

= ηγ
cos (πγ/2)
sin (πγ)

∞

∫
−∞

dω

2π
∣ω∣γ ∣q̃(ω)∣2 (D.1.13)

where we used the fact that Γ(1+ z)Γ(−z) = −π/ sin(πz), and now further simplify with a double-
angle formula:

=
ηγ

2 sin (πγ/2)

∞

∫
−∞

dω

2π
∣ω∣γ ∣q̃(ω)∣2 , (D.1.14)

which, despite the illegality of using the γ product identity above for integer arguments, nonetheless
works out exactly for odd γ ∈ Z.

Inserting dimensionless parameters as usual, along with a cutoff frequency Λ, we have

S′eff[θ] =
h̵

2

Λ

∫
−Λ

dω

2π
K ′(ω) ∣θ̃(ω)∣2 , (D.1.15)

where the Gaussian Kernel

K ′(ω) =
αγ ∣ω∣γ

2π sin(πγ/2)
. (D.1.16)
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If we assume that this temporal self-interaction term is relevant, as for γ = 1, and that the kinetic
term is irrelevant by power counting, then when we calculate the zeroth order correction, we find

⟨S0 [θs, θf ]⟩0,f = S0 [θs] (D.1.17)

= h̵
2

Λ/b

∫
−Λ/b

dω

2π
K ′(ω) ∣θ̃(ω)∣2 , (D.1.18)

and rescaling to restore the original bounds of integration, ±Λ, we have ω′ = bω, giving

= h̵
2
b−1−γ

Λ

∫
−Λ

dω′

2π
K ′(ω′) ∣θ̃(ω′/b)∣2 , (D.1.19)

where now, in contrast to the γ = 1 case, we will need to rescale the field θ(τ) for S0 to be self-
similar. However, this will make our lives incredibly painful when inserting a rescaled field into
the cosine potential, and so we instead maintain that θ′(τ ′) = θ(τ), and instead renormalize the
coupling αγ,

α′γ = b1−γαγ. (D.1.20)

Note that this is all predicated on dropping the kinetic (ω2) term. Now, setting b = e`, we recover
the zeroth-order RG flow for the dissipative coupling αγ:

dαγ
d`

= (1 − γ)αγ, (D.1.21)

so the dissipation itself is irrelevant for γ > 1l. Thus, the function J(ω) must involve a power
of ∣ω∣γ restricted to the interval [0,1]. This result stems from our particular rescaling procedure,
where we elected to preserve θ(τ) to avoid complications with the cosine terms. We could instead
have opted to preserve the form of the Gaussian dissipative term, and dealt with the fallout in the
tight-binding and quasi-periodic perturbing potentials.

D.2 Supplementary Material for Quantum Brownian Mo-

tion

This section contains additional information and details pertaining to Sec. 7.3 in Ch. 7

D.2.1 RG procedure: integrating out fast modes, cumulants

Recognizing that the kinetic part of the bare action is proportional to ω2 and therefore irrelevant
by power-counting in D = 0 + 1, we can omit this term and restrict the bounds of integration over
ω to ±Λ:

S0 [θ (ω)] =
Λ

∫
−Λ

dω

2π

α ∣ω∣
4π

∣θ (ω)∣2 . (D.2.1)

We now define the slow and fast modes as θ (ω) = θf (ω) for Λ/b ≤ ∣ω∣ ≤ Λ and θ (ω) = θs (ω) for
0 ≤ ∣ω∣ ≤ Λ/b, where b ≥ 1 is the parameter for rescaling of frequencies. We will always take the
limit b→ 1 in the ‘momentum shell’ procedure, so that only an infinitesimal number of modes are

207



integrated out at each step. In general, the effective theory for the low energy modes is given by
the action

S̃ [θs] = S0 [θs] +∑
λ

⟨Sλ [θ]⟩0,f −
1

2
⟨[∑

λ

(Sλ [θ] − ⟨Sλ [θ]⟩0,f)]
2

⟩0,f + . . . , (D.2.2)

where the 0, f subscript on the expectation values indicates that the expectation values apply to
the fast fields only, and with respect to the bare action S0. The . . . represent higher cumulant
expressions, although we will find these do not contribute to the RG flow. Note that S0 [θs] is
simply the same bare action, Eq. (D.2.1), with the bounds of integration restricted to the “slow
modes.”

D.2.2 Two point correlation function, G0,f(τ, τ ′)
The two-point correlation function G, will be necessary in formulating the second and higher
cumulants. Denoting by “f” integration over the range Λ/b ≤ ∣ω∣ ≤ Λ, this is

G0,f(τ, τ ′) = ⟨θf(τ)θf(τ ′)⟩0,f = ∫
f

dω

2π ∫f
dω′

2π
⟨θ∗f(ω′)θf(ω)ei(ω

′τ ′−ωτ)⟩
0,f

(D.2.3)

= ∫
f

dω

2π ∫
Λ/b≤∣ω′∣≤Λ

dω′

2π
ei(ω

′τ ′−ωτ) ( 2π

α∣ω∣
) (2πδ(ω − ω′)) = 2

α

Λ

∫
Λ/b

dω

ω
cos (ω(τ ′ − τ)), (D.2.4)

which can be computed to arbitrary precision via Taylor series about τ = τ ′,

G0,f(τ, τ ′) =
2

α
ln b + 2

α

∞
∑
l=1

(−1)l(τ − τ ′)2l

2l ⋅ (2l)!
(Λ2l − (Λ/b)2l) (D.2.5)

= 2

α
ln b − Λ2

2α
(1 − b−2) (τ − τ ′)2 +O((τ − τ ′)4) (D.2.6)

D.2.3 General form of expectation values of exponentials

The harmonic perturbations we consider can be rewritten

Sλ [θ] =∑
±

Vλ
2

βh̵

∫
0

dτ e±iλθ(τ), (D.2.7)

and so the expectation value of n copies of the perturbative terms (i.e. the sum over non-S0 terms)
is given by

⟨Sλ1 . . . Sλn⟩0,f =
n

∏
j=1

⎛
⎜
⎝
∑
λj

Vλj
2
∑
σj=±1

βh̵

∫
0

dτj
⎞
⎟
⎠
⟨
n

∏
j=1

eiσjλjθ(τj)⟩0,f (D.2.8)

=
n

∏
j=1

⎛
⎜
⎝
∑
λj

Vλj
2
∑
σj=±1

βh̵

∫
0

dτj e
iσjλjθs(τj)

⎞
⎟
⎠
⟨
n

∏
j=1

eiσjλjθf (τj)⟩0,f , (D.2.9)
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where the slow terms have been factored out, as they do not participate in the expectation value.
This leaves

⟨∏
j

eiσjλjθf (τj)⟩0,f = ⟨exp{i∑
j

σjλjθf (τj)}⟩0,f

= ⟨exp{i∑
j

σjλj ∫
f

dω

2π
θf (ω) e−iωτj}⟩0,f , (D.2.10)

which is a standard Gaussian functional integral, which evaluates to

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Λ/b≤∣ω∣≤Λ

dω

2π

4π

α ∣ω∣∑j,k
( i

2
σjλj)( i

2
σkλk) eiω(τj−τk)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(D.2.11)

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

α

Λ

∫
Λ/b

dω

ω

⎛
⎝∑j

λ2
j + 2∑

j<k
σjσkλjλk cos (ω (τj − τk))

⎞
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(D.2.12)

= b−
1
α ∑j λ

2
j exp

⎧⎪⎪⎨⎪⎪⎩
−∑
j<k
σjσkλjλkG0,f (τj, τk)

⎫⎪⎪⎬⎪⎪⎭
. (D.2.13)

Note that the j, k indices correspond to imaginary time integration variables, τj, τk. Integrating
out the fast modes gives an overall cutoff-dependence (the leading factor of Eq. (D.2.13)), as
well as the exponential of the sum of two-point correlation functions evaluated at pairs of time
coordinates. The structure of the cumulants will subtract off terms with fewer time coordinates
from the quantities above. In general, these results will be intractable, but noting that the RG
procedure should preserve temporal locality, we will carefully invoke gradient expansions about
the temporal coordinates being equal to a single time τ .

D.2.4 Fixed part of the action: rescaling

The cumulants are calculated with respect to the “fixed” part of the action, Eq. (D.2.2), which
dictates how we ought to rescale our coordinates and fields. We choose this to be the term generated
by integrating out the bath, and require it to be self-similar (“fixed”) under the RG. Thus, as we
integrate out the fast modes to obtain a low energy theory, we rescale the resulting effective action
so that this term remains the same as we run the RG. We have

S̃0 [θ] =
Λ/b

∫
−Λ/b

dω

2π

α ∣ω∣
4π

∣θs (ω)∣2 , (D.2.14)

and we can restore the original bounds of integration by introducing a rescaled frequency ω̃ = bω,
and we then have

S̃0 [θ] =
Λ

∫
−Λ

dω̃

2πb

α ∣ω̃∣
4πb

∣θs (ω̃/b)∣2 , (D.2.15)

which works out just fine if we have θ̃ (ω̃) = b−1θs (ω), in which case

S̃0 [θ] =
Λ

∫
−Λ

dω̃

2π

α ∣ω̃∣
4π

∣θ̃ (ω̃)∣2 , (D.2.16)
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which is, indeed, self-similar. These new frequencies also suggest new temporal coordinates, τ̃ =
b−1τ , and the scaling of the frequency-dependent field implies that the time-dependent version (i.e.
Fourier transform) obeys θ̃ (τ̃) = θs (τ), which is also quite nifty for the sake of the cosine terms.

D.2.5 First cumulant: ⟨δSλ[θ]⟩0,f

The first order (O (V ))contribution to the low-energy action is given straightforwardly from Eq. (D.2.8)
and Eq. (D.2.13) as

S̃
(1) ≡ ⟨∑

λ

Sλ⟩ = ∑
λ

Vλ
2
∑
±

βh̵

∫
0

dτ e±iλθs(τ)⟨ei±λθf (τ)⟩0,f (D.2.17)

=∑
λ

Vλ
2
∑
±

βh̵

∫
0

dτ e±iλθs(τ) [b−λ
2

α ] = ∑
λ

b−
λ2

α Vλ

βh̵

∫
0

dτ cos [λθs (τ)] , (D.2.18)

which we immediately recognize is self-similar, and we implement the rescaling of coordinates and
fields set by the fixed part of the action S0 to recover

∑
λ

b−
λ2

α Vλ

βh̵/b

∫
0

(b dτ̃) cos [λθ̃ (τ̃)] , (D.2.19)

which suggests the renormalized couplings Ṽλ = b1−λ
2

α Vλ, and a rescaled temperature, β̃h̵ = βh̵/b,
and we now have full self-similarity to first order. Note that the rescaling of temperature will not
affect our results.

These results agree with a previous study [271], however in our case, the presence of a second
harmonic potential requires us to examine the second cumulant.

D.2.6 Second cumulant, −1
2 ⟨(∑λSλ − ⟨Sλ⟩)2⟩

0,f

Here we consider the second cumulant,

S̃
(2) ≡ −1

2
∑
λ,λ′

(⟨SλSλ′⟩ − ⟨Sλ⟩⟨Sλ′⟩) , (D.2.20)

which we know how to calculate from Eq. (D.2.13),

S̃
(2) = −∑

λ,λ′

VλVλ′

8
∑

σ,σ′=±1

βh̵

∫
0

dτ

βh̵

∫
0

dτ ′eiσλθs(τ)eiσ
′λ′θs(τ ′)

× {⟨eiσλθf (τ)eiσ′λ′θf (τ ′)⟩0,f − ⟨eiσλθf (τ)⟩0,f ⟨eiσ
′λ′θf (τ ′)⟩0,f} (D.2.21)

= −∑
λ,λ′

VλVλ′

8
∑

σ,σ′=±1

βh̵

∫
0

dτ

βh̵

∫
0

dτ ′eiσλθs(τ)eiσ
′λ′θs(τ ′)b−

λ2

α b−
λ′2
α {e−σσ′λλ′G0,f (τ,τ ′) − 1} (D.2.22)

= −1

4
∑
λ,λ′,±

b−
λ2

α Vλb
−λ

′2
α Vλ′

βh̵

∫
0

dτ

βh̵

∫
0

dτ ′ cos [λθs (τ) ± λ′θs (τ ′)] {e∓λλ
′G0,f (τ,τ ′) − 1} . (D.2.23)

210



We then relate this the terms allowed at bare level using a ‘gradient expansion’ about τ ′ = τ ,
motivated by the fact that the coarse-graining procedure should preserve temporal locality. The
zeroth order term in the gradient expansion tells us that the second order cumulant’s contribution
to the RG is to generate new terms by adding and subtracting the existing wave numbers. When
only a single harmonic is present at bare level (e.g., the case studied in Ref. ?, or a typical
boundary sine-Gordon theory), the only possibilities are to generate integer multiples of the original
harmonic, which are less relevant at first order, and a correction to the kinetic term, which goes
like ω2 and is thus already irrelevant by power-counting. When an additional harmonic that is
a nonintegral multiple of the first is also included, the second order processes can generate new
harmonics smaller and more relevant than those present at bare level. When the second harmonic
is an irrational multiple of the first, the generated harmonics can be arbitrarily small.

D.2.7 Two-point function contributions of higher cumulants

As mentioned in the previous section, higher cumulants will contain products of the form

b−
1
α ∑j λ

2
j exp

⎧⎪⎪⎨⎪⎪⎩
−∑
j<k
σjσkλjλkG0,f (τj, τk)

⎫⎪⎪⎬⎪⎪⎭
≡ b−

1
α ∑j λ

2
j∏
j<k
zj,k,

where it will prove useful to define this quantity zj,k, which depends on τj,k and `. In general, these
terms will be multiplied by factors exp (iσjλjθs (τj)) and some coefficients, and integrated over all
the τj. The rescaling procedure will introduce factors of b = e` there as well. However, we point
out a few things first.

For the second, third, and fourth cumulants, the factors that come from the two point functions
will then have the respective forms

1

2
{1 − z1,2} (D.2.24a)

1

6
{2 + z1,2z1,3z2,3 − z1,2 − z1,3 − z2,3} (D.2.24b)

1

24
{6 − z1,2z1,3z1,4z2,3z2,4z3,4 + z1,2z1,3z2,3 + z1,2z1,4z2,4 + z1,3z1,4z3,4 + z2,3z2,4z3,4

+z1,2z3,4 + z1,3z2,4 + z1,4z2,3 − 2 (z1,2 + z1,3 + z1,4 + z2,3 + z2,4 + z3,4)} . (D.2.24c)

These have the notable property that at ` = 0, zi,j = 1, and the contents of the curly braces
in each case sum to zero. Therefore, in taking the derivative of everything with respect to ` for
the RG flow equation, only the derivatives of these cumulants, given by Eq. (D.2.24), matter (in
implementing the product rule), and we take ` = 0 for all other terms.

What is especially interesting is that for the third and fourth cumulants, the derivative of the
factors themselves with respect to `, evaluated at ` = 0, are precisely zero. Based on the way
the various moments factorize for cumulants beyond the second, it appears that this will hold for
all higher cumulants, and thus, to lowest order in ∆`, there is no contribution to the RG flow
equations beyond second order in the couplings Vλ.

D.2.8 Full RG flow equation

The full RG flow equation, to lowest order in `, is given by

d

d`
Vλ = (1 − λ

2

α
)Vλ + ∑

λ′,λ′′
Cλ
λ′,λ′′Vλ′Vλ′′ +O (`) , (D.2.25)
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where Cλ
λ′,λ′′ =

λ′λ′′
2α

(δλ,λ′+λ′′ − δλ,∣λ′+λ′′∣), and many terms will be counted twice by the sum.

The first order contribution to this equation, which comes from the first cumulant, is easily
obtained by taking a derivative. The second order contribution follows from the standard procedure
used for sine Gordon or Kosterlitz-Thouless RG: we perform a gradient expansion of Eq. (D.2.23)
about τ ′ = τ , keeping only the lowest order term, and factor out a constant that spills over from
dummy integration over τ ′ (i.e. in Eq. (D.2.25), all the V s have been divided by this factor). In
the sine Gordon case, there is only one λ, and the λ + λ process generates a less relevant term,
which we ignore, and the λ − λ term generates a correction to the kinetic energy. In our case, we
ignore the correction to the kinetic energy, as this term is already irrelevant by power coupling.
Additionally, since we have two frequencies at the start of the RG, the second order processes also
generate new harmonics by superposition. Hidden from Eq. (D.2.25) are terms that enter at higher
order in `, including O (V 3) terms, and higher order contributions from the gradient expansion.

D.2.9 Approximate solution of the RG flow equations

In general, we are interested in understanding the flow of couplings when both of the bare
frequencies—which we include by hand—are irrelevant at first order, but some linear combina-
tion of the two is relevant for a given value of dissipation α. We will always take the smaller of
the bare frequencies to be unity, by rescaling our fields, and work with the two frequencies λ = 1,
with bare coupling u0, and λ = γ, with bare coupling εu0.

For γ rational, it is possible to simulate the RG flow equations numerically using iterative
updates, truncating at some arbitrarily large frequency, which will be highly irrelevant. However,
we wish to understand what happens when γ is irrational, in which case there will be no means by
which to truncate the allowed frequencies from below. Here we will describe a means of approxi-
mately integrating the RG flow equations in a manner that is physically sensible, in which we take
γ =m/n with m > n and m,n ∈ Z, and importantly, n−2 < α < 1. We will take

dV1

d`
= (1 − 1

α
)V1 + . . . ,

dVγ
d`

= (1 − m2

n2α
)Vγ + . . . , (D.2.26)

and since these couplings are guaranteed to be irrelevant, we will ignore the higher-order corrections
. . . to their functional form, and integrate them directly to obtain

V1 (`) = e`(1− 1
α
)u0 , Vγ = e

`(1− m2

n2 α
)
εu0, (D.2.27)

and now for simplicity, we will take m = n + 1 so that the relevant term λ = 1/n is formed in a
single iteration of the RG, seen from implementation of Eq. (D.2.25) :

dV1/n

d`
= (1 − 1

n2α
)V1/n −

m

nα
V1Vγ

= (1 − 1

n2α
)V1/n −

mεu2
0

nα
e
`(2−n

2+m2

n2 α
)
, (D.2.28)

and a simple Ansatz for the form of V1/n yields an easy solution:

V1/n = C (`) e`(1− 1
n2 α

) ⇒ V1/n =
mnεu2

0

n2 (α − 1) + 1 −m2
(e`(

1
n2 α

−1) − e`(2− 1
α
(1+m

2

n2 ))) . (D.2.29)
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We now wish to calculate `∗, the RG time for which V1/n, here assumed to be the only relevant
term, grows to value unity. Since we will generally be interested in the limit where α is small, we
will drop the latter term in Eq. (D.2.29), and recover the expression

`∗ = (1 − 1

n2α
)
−1

(ln [εu2
0] + ln [ mn

n2 (α − 1) + 1 −m2
]) , (D.2.30)

plus corrections due to the term we dropped. In general, we will be interested in the scenario
where the second harmonic Vγ is initially quite weak, while the main harmonic is order one (or
vice versa), in which case the logarithm of ε will dominate, and we have

`∗ → ( 1

n2α
− 1)

−1

ln [ε] = α

αc − α
ln [ε] , (D.2.31)

where αc for this rational case is n−2, giving a straightforward scaling form for b∗ = e`∗ as a power
of ε.

In general, more than a single iteration of the second order RG processes will be needed to
generate a relevant coupling. However, we note from the form of Eq. (D.2.31) that the leading
coefficient depends only on the relevant term itself, and not on any of the intermediate steps.
Although this may add a somewhat complicated structure, following the procedure above will
produce, at every step, additional powers of ε and u0, factors resulting from integration as in
Eq. (D.2.29), all of which multiply a sum of terms of the form eA`. All of the complications arising
from integration factors can be separated into a sub-leading contribution to Eq. (D.2.31), and the
only way the number of steps required to generate the relevant term shows up is in the power of ε
(and u0, if we decided to retain it).

For an arbitrary second wave number γ, it would be quite cumbersome to determine the optimal
sequence of second order processes to generate a given, relevant term. However, for the particular
choice of γ = ϕ = 1

2
(1 +

√
5), this is quite simple. For a given value of α, the relevant term generated

in the fewest number of RG iterations will be a Fibonacci wave number, the nth of which is given
by λn ≡ (−1)n (Fn+1 − ϕFn) = ϕ−n. In the first step, the term λ1 = ϕ−1 = ϕ − 1 is generated, and in
general, λn is formed in n steps. Correspondingly, after n steps, there are Fn factors of ε, where
Fn is the nth Fibonacci number, and Fn+2 factors of u0. Thus, supposing n∗ corresponds to the
first Fibonacci potential with a coupling that grows to O(1), then the RG time required to do so
is given by

`∗ → αFn∗

ϕ−2n∗ − α
ln [ε] , (D.2.32)

plus sub-leading corrections. In the limit of large n∗, the parenthetical prefactor goes quickly to
−Fn∗ . For scenarios in which the first relevant λn is just barely relevant, it may be the case that
λn+1 or a subsequent Fibonacci potential grows to O(1) faster than λn, despite being formed later
in the RG, and thus we must always choose the minimal value of `∗ over the various relevant λs
for a given value of α.

D.2.10 Localization length

While the RG time `∗ provides a useful cross-over scale for when the particle begins to “feel”
localized due to the presence of a growing, relevant potential, we also note that it can take a
substantial amount of RG time for this localization to take hold. Although the RG flow equations
clearly show that, for any nonzero value of α, there will exist some potential generated by second
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order processes that is relevant, it is also clear that as α is decreased, it will take longer and longer
for this localization to take effect, and additionally, the potential well to which the particle is
localized will be correspondingly larger. To give this physical meaning, we will extract a localization
length from the crossover time, `∗.

Although it is possible to associate a genuine time scale τ to the RG time `∗, and then calculate
how far the particle travels on such a time scale, the same result is more expediently obtained using
the following definition:

ξ = ⟨q2 (τ)⟩1/2 = q0

2π

√
⟨θ2 (τ)⟩, (D.2.33)

and we perform the average by integrating out only the modes Λ/b∗ ≤ ω ≤ Λ, i.e. those correspond-
ing to our RG time `∗. Additionally, we make the assumption that, until the time `∗ is reached,
the effect of the cosine terms may be ignored in evaluating the two-point function, and we have

⟨θ2 (τ)⟩ = 2

Λ

∫
Λ/b∗

dω

2π
[αω

2π
+ . . . ]

−1

= 2

α
ln (ω)∣ΛΛ/b∗ =

2

α
ln b∗ = 2`∗

α
, (D.2.34)

and from this we conclude that

ξ = q0

2π

√
2`∗

α
. (D.2.35)

We can compare to a previous prediction that the localization length diverges as (α − 1)−1/2
for

the case of integer harmonics by using the result for Eq. (D.2.31) for n = 1, which indeed gives

ξ ∼ (α − 1)−1/2
.

D.3 Supplementary Material for Dissipative Quantum Flu-

ids

D.3.1 Derivation of correlation function

This section details the calculation of the correlation function G (x, τ) for the Luttinger liquid with
dissipation, for any temperature. Starting from Eq. (7.4.13), we take L → ∞ by necessity, and
restricting to the Ohmic case J (k,ω) = η ∣ω∣, we have

G (x, τ) = iu

4π

∞

∫
−∞

dk∮ dz
hB (z) cos (kx − iτz)
z2 − u2k2 − uKη ∣z∣

, (D.3.1)

where z = iω as usual, and using the shorthand η̃ ≡ Kη/2 Eq. (7.4.17), the denominator of
Eq. (D.3.1) has zeros at z∗± = ±uZk, with

Zk = η̃ +
√
η̃2 + k2 , (D.3.2)

which follows straightforwardly from setting z = Reiψ and solving z2 = u2k2 + uKη ∣z∣, where the
righthand side of that expression is real, constraining ψ = nπ/2.

Contour integration over z returns the residues from poles of hB, reproducing the sum over
discrete Matsubara frequencies, as well as residues corresponding to the poles at z∗±. This quantity
vanishes when taken along the great circle ∣z∣→∞, and thus the Matsubara sum is equal to minus
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the contribution from the z∗± poles, as for the “closed” Luttinger liquid. However, in the “open”
case, the poles of the denominator of Eq. (D.3.1) do not simply give Z−1

k , as was the case for η = 0
whence Zk = k. The result is

G (x, τ) =
∞

∫
0

dk
cos (kx)√
η̃2 + k2

×

{nB (uZk) cosh (uτZk) +
1

2
e−u∣τ ∣Zk} (D.3.3)

where Zk is strictly positive, and reduces to k as η → 0. We can massage the term in braces, noting
that cosh (uτZk) = cosh (u ∣τ ∣Zk) = 1

2 ∑± e
±u∣τ ∣Zk , and that

nB (uZk) =
1

eβh̵uZk − 1
=

∞
∑
m=1

e−mβh̵uZk (D.3.4)

meaning all of the terms in curly braces in Eq. (D.3.3) can be written in the form e−A⋅uZk . Explicitly,
the braced term is

1

2
{e−u∣τ ∣Zk +∑

±

∞
∑
m=1

e−u (mβh̵±∣τ ∣)Zk} , (D.3.5)

which simplifies the integration procedure substantially, as all of these terms have the same general
form. For T = 0, i.e. β →∞, the latter term is simply zero. We rewrite Eq. (D.3.3) in the generic
form

G (x, τ) = 1

2
∑
σ

∞

∫
0

dk
cos (kx)√
η̃2 + k2

e−A
(τ)
σ Zk , (D.3.6)

where the τ -dependent coefficients Aσ reproduce the terms in Eq. (D.3.5), indexed by σ.
We next invoke hyperbolic substitution, k ≡ η̃ sinh (λ), and therefore dk = η̃ cosh (λ)dλ and

Zk → η̃ (1 + cosh (λ)), and the integral in Eq. (D.3.6) becomes

∞

∫
0

dλ cos (η̃x sinh (λ)) e−η̃A
(τ)
σ (1+cosh(λ)) , (D.3.7)

and we then invoke a Taylor expansion for the cosine, i.e.,

G (x, τ) = 1

2
∑
σ

e−η̃A
(τ)
σ

∞
∑
n=0

(−1)n (η̃x)2n

(2n)!
×

∞

∫
0

dλ sinh2n (λ) e−η̃A
(τ)
σ cosh(λ) . (D.3.8)

At this point, we make use of a particular integral representation of the modified Bessel function
of the second kind,

Kn (z) =
π1/2 (z/2)n

Γ (n + 1
2
)

∞

∫
0

dt [sinh (t)]2n
e−z cosh(t) , (D.3.9)

or written more usefully,

(2n)!
(2z)n n!

Kn (z) =
∞

∫
0

dt [sinh (t)]2n
e−z cosh(t) , (D.3.10)
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which we can use to express Eq. (D.3.8) exactly as

G (x, τ) =∑
σ

∞
∑
n=0

e−η̃A
(τ)
σ

2n!
( −η̃ x

2

2A
(τ)
σ

)
n

Kn [η̃ A
(τ)
σ ] , (D.3.11)

where A
(τ)
σ are summed over A (τ) = α + u ∣τ ∣ and Am,± (τ) = u (mβh̵ ± ∣τ ∣) for positive integers

m ≥ 1, and we have reinstated α as it would appear had we included the usual convergence factor
e−iωα/u starting from Eq. (D.3.1). Strictly, this convergence factor ought to be included, as is
standard practice even in the dissipationless limit. Unlike the η = 0 case, for η > 0 all integrals
converge, giving exact results, except at τ = 0, necessitating the convergence factor in the ω
integral. Finally, for T = 0, only the former, β-independent term appears in Eq. (D.3.11).

D.3.2 Evaluating G (0,0)
The evaluation of the more generic correlation function F (x, τ) requires knowledge of G (0,0),
which requires the α-dependent versions of A

(τ)
σ in the previous section. We will take α → 0

wherever safe. Regarding Eq. (D.3.11), note that the limit x→ 0 can be taken safely, and only the
n = 0 term remains:

G (0,0) =∑
σ

e−η̃A
(0)
σ

2
K0 [η̃ A

(0)
σ ] , (D.3.12)

where now the sum over σ of the terms A
(0)
σ corresponds to the terms A = α and Am,± = α+umβh̵→

umβh̵, i.e.

G (0,0) = 1

2
K0 [η̃α] +

∞
∑
m=1

e−η̃umβh̵K0 (η̃umβh̵) , (D.3.13)

where only the first term survives at T = 0, and we have already taken the α → 0 limit where safe.
Referring to the exact series expansion for K0 (z), we note that the limit z = η̃α → 0 can be taken
safely in the majority of terms, resulting in

lim
z→0

K0 (z) = −γ − lim
z→0

ln(z
2
) , (D.3.14)

where γ ≈ 0.577216 is the Euler-Mascheroni constant.

D.3.3 Matching the closed case for η → 0

Also note that inserting the form of the expansion of Kn for arbitrary index n about zero argument
into Eq. (D.3.11), and taking the limit η̃ ∝ η → 0 of η̃nKn recovers exactly the results for the closed
case [308]. We recover from Eq. (D.3.11) in the limit η̃ → 0

lim
η̃→0

G (x, τ) =

−1

2
∑
σ

{γ + ln( η̃
2
) + 1

2
ln (A2

σ (τ) + x2)} , (D.3.15)

with A
(τ)
σ defined as before.
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For T = 0, we have only one allowed configuration σ that corresponds to a nonvanishing term,
with A

(τ)
σ → α + u ∣τ ∣. Thus, in this limit Eq. (D.3.15) becomes

lim
η̃,T→0

G (x, τ) = −1

2
lim
η̃→0

ln( η̃
2
)−

γ

2
− 1

4
ln [(α + u ∣τ ∣)2 + x2] , (D.3.16)

which resembles the result i for the closed case [308], though matching divergent constants is murky
at best. However, we note that

lim
η̃,T→0

G (0,0) = −γ
2
− 1

2
lim
η̃→0

ln( η̃ α
2

) , (D.3.17)

and using now the formula for F Eq. (7.4.15) in combination with Eq. (D.3.15), we have for T = 0:

lim
η̃,T→0

F (x, τ) = 1

2
ln [u

2 ∣τ ∣2 + x2

α2
] , (D.3.18)

in perfect agreement with the standard result [308]. At finite temperature, this procedure is
more cumbersome, and we content ourselves with the benchmark given by Eq. (D.3.18) as ample
validation of our results for η ≠ 0.

D.3.4 Expansion for small η

Moving slightly beyond η = 0 may provide some insight. We restrict here to T = 0; while one
can certainly repeat this procedure at finite temperature, it affords little insight beyond the exact
results. Looking at the definition of G (x, τ), i.e. Eq. (7.4.16),

G (x, τ) =
∞
∑
n=0

e−η̃ u∣τ ∣

2n!
(−η̃ x

2

2u ∣τ ∣
)
n

Kn [η̃ u ∣τ ∣] ,

we can rewrite this as
e−z

2

∞
∑
n=0

(−1)n

2n n!
( x

uτ
)

2n

[znKn (z)] , (D.3.19)

where z = η̃ u ∣τ ∣ is a useful shorthand, as we will take the z → 0 limit (recall η̃ ∝ η, per Eq. (7.4.17)).
Note that the limit η → 0 is unimportant to the evaluation of G (0,0) in Appendix D.3.2.

Regarding Eq. (D.3.19), we now evaluate the summand to order z2 as z → 0 (ignoring for now
the term e−z), noting that the Modified Bessel function Kn (x) has a well known Maclaurin series
in z. We have at zeroth order the terms recovered Appendix D.3.3,

e−η̃u∣τ ∣

2
(−γ − ln [ η̃

2
] − 1

2
ln [x2 + u2τ 2]) , (D.3.20)

the latter obtaining from contributions for terms at all n. The lowest terms arising from the
summand at nontrivial order are proportional to η̃2, i.e.

η̃2

8
(x2 + u2τ 2){1 − γ + ln 2 − 1

2
ln [x2 + u2τ 2]} , (D.3.21)
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where we have dropped the overall exponential term above, and γ is the Euler-Mascheroni constant
in both Eq. (D.3.20) and Eq. (D.3.21). Notably, at low order, only the overall factor of e−η̃u∣τ ∣ spoils
the conformal invariance present without dissipation (the invariance is not present in each term
in the summand of Eq. (D.3.19) individually, but is restored by the various contributions from
different terms at a given order in η).

We have then for the correlation function F (x, τ) the following, expanding now the exponential
decay term in η as well:

F (x, τ) = 1

2
ln [x

2 + u2τ 2

α2
]

+( η̃
2u2τ 2

2
− η̃u ∣τ ∣) (γ + ln [ η̃

2
] + 1

2
ln [x2 + u2τ 2])

+ η̃
2

4
(x2 + u2τ 2)(γ − 1 − ln 2 + 1

2
ln [x2 + u2τ 2]) , (D.3.22)

where the term on the righthand side of the first line corresponds to η = 0, and we note that
ηz ln η → 0 as η → 0 for positive z, which eliminates the ln η̃ term in the second line.
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[36] M. Žnidarič, T. c. v. Prosen, and P. Prelovšek, “Many-body localization in the heisenberg
xxz magnet in a random field,” Phys. Rev. B 77 (Feb, 2008) 064426.
http://link.aps.org/doi/10.1103/PhysRevB.77.064426.

[37] A. J. Friedman, S. Gopalakrishnan, and R. Vasseur, “Integrable many-body quantum
floquet-thouless pumps,” Phys. Rev. Lett. 123 (Oct, 2019) 170603.
https://link.aps.org/doi/10.1103/PhysRevLett.123.170603.

[38] M. Vanicat, L. Zadnik, and T. c. v. Prosen, “Integrable trotterization: Local conservation
laws and boundary driving,” Phys. Rev. Lett. 121 (Jul, 2018) 030606.
https://link.aps.org/doi/10.1103/PhysRevLett.121.030606.

[39] H. Bethe, “Zur theorie der metalle,” Zeitschrift für Physik 71 no. 3, (Mar, 1931) 205–226.
https://doi.org/10.1007/BF01341708.

221

http://dx.doi.org/10.1103/physrevx.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://arxiv.org/abs/1307.0507
http://dx.doi.org/10.1103/PhysRevLett.93.260602
http://link.aps.org/doi/10.1103/PhysRevLett.93.260602
http://dx.doi.org/10.1103/PhysRevLett.114.217201
http://link.aps.org/doi/10.1103/PhysRevLett.114.217201
http://dx.doi.org/10.1103/PhysRevB.93.134207
http://dx.doi.org/10.1103/PhysRevB.93.134207
http://link.aps.org/doi/10.1103/PhysRevB.93.134207
http://dx.doi.org/10.1103/physrevb.98.064203
http://dx.doi.org/10.1103/physrevb.98.064203
http://dx.doi.org/10.1103/PhysRevB.98.064203
http://dx.doi.org/10.21468/scipostphys.4.3.017
http://dx.doi.org/10.21468/SciPostPhys.4.3.017
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://link.aps.org/doi/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevB.77.064426
http://link.aps.org/doi/10.1103/PhysRevB.77.064426
http://dx.doi.org/10.1103/PhysRevLett.123.170603
https://link.aps.org/doi/10.1103/PhysRevLett.123.170603
http://dx.doi.org/10.1103/PhysRevLett.121.030606
https://link.aps.org/doi/10.1103/PhysRevLett.121.030606
http://dx.doi.org/10.1007/BF01341708
https://doi.org/10.1007/BF01341708
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