
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Privacy and Security in Internet-Connected Cameras

Permalink
https://escholarship.org/uc/item/0xs3p357

ISBN
9781728127149

Authors
Valente, Junia
Koneru, Keerthi
Cardenas, Alvaro A

Publication Date
2019-07-08

DOI
10.1109/iciot.2019.00037

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0xs3p357
https://escholarship.org
http://www.cdlib.org/

Privacy and Security in Internet-Connected Cameras

Junia Valente

The University of Texas at Dallas

juniavalente@utdallas.edu

Keerthi Koneru, Alvaro A. Cardenas

University of California, Santa Cruz

{kekoneru, alvaro.cardenas}@ucsc.edu

Abstract—The Internet of Things (IoT) enables us to sense
and share information of real-world events, including poten-
tially privacy-sensitive information about the users’ choices
and behaviors. In this paper we focus on the security and
privacy problems of Internet-connected cameras. We study two
cameras: a consumer camera marketed as a baby monitor, and a
surveillance camera marketed for enterprise (physical) security.
We show how a generic algorithm can be used to infer actions
recorded by the camera, even if the traffic is encrypted, and
we also show how both cameras have security vulnerabilities
that allow a remote attacker to gain access to the video frames
captured by the camera. We also discuss new findings such as
the fact that one camera has multiple vendors and domains that
connect to a single cloud system supported by a single company,
which is a trend we have previously seen in other IoT devices with
one company designing the core-functionality of the device and
then multiple vendors selling the device under their own brand
name and developing different mobile applications for them.

Index Terms—Internet of Things (IoT), Network Traffic Anal-
ysis, Privacy, Security, Surveillance, Smart Camera.

I. INTRODUCTION AND BACKGROUND

With the increase of Internet-connected sensors across the

world passively monitoring the behavior of their users, privacy

is becoming an increasing priority. Internet-connected cameras

in particular have seen a growing popularity, allowing their

users to care for their children, pets, old age relatives, and the

security of their homes; and at the same time, it has given

corporations a reliable surveillance system for their premises.

The security of surveillance cameras however has come into

question by (1) multiple reports of unauthorized camera access

by attackers [6], (2) video feeds of cameras openly available

online and discoverable through the web indexing platform

Shodan [12], and (3) the large number of compromised cam-

eras making part of IoT botnets such as Mirai [7], [14].

In this paper, we study the privacy and security risks of

two Internet-connected cameras: one consumer camera—the

LeFun IP baby monitor camera (lefun-cam) [1]—and one

surveillance camera for corporate settings—the Swann NVW-

470 IP camera (swann-cam) [2]. We discuss how these cameras

perform Wi-Fi provisioning to join local wireless networks.

We then discuss how attackers can infer properties of what the

camera is currently seeing by looking at the network traces (so

even if the network is encrypted, attackers can know if certain

activity is taking place), and then we provide a security review

of the two cameras. We find that both cameras have security

problems that allow attackers with unauthorized access to the

video feed of the cameras. The vulnerabilities we discuss in

this paper are new and were discovered by our lab. We also

confirm a trend we have seen in other IoT devices: multiple

vendors selling IoT devices (of different brands) that depend

on an underlying system maintained by a single company.

II. RELATED WORK

The security of Internet-connected cameras is a growing

concern [6], [13], [16]. New security proposals include using

a trusted computing base for enforcing security properties of

cameras and providing fine-grained access control [20], and

the use of physical challenges to identify false video feeds

where the basic idea is to inject an observable challenge in the

field-of-view of the camera (e.g., a colored light, or a random

Tweet in a display, etc.) so that a verifier can check if the

camera is transmitting the correct video feed [17].

One of the concerns for IoT sensors is the fact that even

if the device is properly configured by following best security

practices, attackers can still infer the activity being captured by

the sensors because of the network traffic patterns they exhibit.

For example, recent work showed how even with encrypted

traffic, attackers can infer sleeping patterns of people in a

smart home, usage of physical appliances, and interactions

with personal assistant devices [8]. Following this line of work,

we propose a generic algorithm that can automatically detect

if people are moving in front of the camera or not. Our algo-

rithm uses a sequential analysis test called the nonparametric

CUmulative SUM (CUSUM) [9], on the number of packets

transmitted per second in the captured network traffic.

In addition to new traffic analysis algorithms, we study

systematically the security practices of two cameras, and we

find and report new vulnerabilities. We have also analyzed the

cloud services used by one of the cameras and observed that

it is possible to login to different DNS domain names with

the same credentials. This confirms a pattern we have seen

for IoT devices where multiple devices are sold / repurposed

from a single underlying product. This fact shows that there

are potentially larger security problems reported for specific

IoT devices as the vulnerabilities might be more widespread

across different vendor products than previously reported.

The rest of the paper is organized as follows. In Section III

we discuss the security practices of how cameras obtain Wi-

Fi credentials to join networks. In Section IV we show how

even when the network traffic between the camera and the

cloud is encrypted, attackers can still infer activity in front of

the camera. In Section V we show our results in analyzing the

security practices of the Swann and LeFun cameras, we discuss

vulnerabilities we found that can allow remote attackers to

173

2019 IEEE International Congress on Internet of Things (ICIOT)

978-1-7281-2714-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ICIOT.2019.00037

access the cameras, control them (e.g., tilt the camera), and get

access to the video feed. We conclude the paper in Section VI.

III. SECURITY ASSOCIATION WITH WI-FI NETWORKS

We study two cameras: the LeFun IP baby monitor camera

(lefun-cam), and the Swann NVW-470 surveillance system

which includes a network video recorder (nvr) and a surveil-

lance camera (swann-cam). We show the devices in Figure 1.

(a) (b)

Figure 1: IoT devices we analyzed: (a) Swann NVW-470

Surveillance System including a Network Video Recorder

(NVR) device and IP camera; and (b) LeFun Baby Monitor.

We start the analysis of these devices by discussing how

they connect to local wireless networks such as home Wi-Fi

networks which are protected with user-defined passwords.

To connect the lefun-cam to a password-protected Wi-Fi

network, we use the MIPC mobile app (available for Android

and iPhone devices) to send the Wi-Fi password to the camera.

The key question during Wi-Fi provisioning is: how can the

mobile phone send this password to the camera such that

nearby eavesdroppers cannot capture our Wi-Fi password?

(e.g., in our previous work we have seen IoT devices receiving

this password in the clear [18]).

In our first analysis of the lefun-cam (early 2018), we found

that this password sharing between the mobile phone and the

camera was done in a novel way: the camera provides an

out-of-band channel so attackers (with Wi-Fi sniffers) cannot

capture the password in the clear. The user would enter the

Wi-Fi password in the MIPC app (in their mobile phone),

and the app would encode the Wi-Fi credentials to a QR

code that camera would then capture to retrieve the Wi-Fi

credentials. (In short, the password was exchanged in the

visible spectrum and not the Wi-Fi spectrum). In general,

creating these out-of-band channels is a novel way to leverage

the sensors of IoT devices (the camera in this case) to share

sensitive information, and which in principle, is more secure

than sharing passwords via wireless communication which can

be sniffed by attackers—however, attackers that could see the

QR code could also obtain the Wi-Fi password, but this threat

scenario is less likely (because of the walls in a house) than

having malicious wireless network sniffers near a home.

When the MIPC app was updated later in 2018, we found that

the way to share the Wi-Fi password had changed: as of this

writing (April of 2019), the app now shares the password via

sound. In this new update, the user inputs the Wi-Fi password

in the MIPC mobile app, and the mobile phone then produces

a sequence of beeping sounds that are then captured by the

microphone of the camera and used to decode the password.

We were not able to find online documentation telling us

more about this way to share passwords. We are also not sure

why the way of sharing Wi-Fi passwords changed. They both

appear to be similarly secure, but these changes can potentially

be the result of other non-security issues (e.g., patents).

In contrast, the swann-cam is directly associated with an

nvr. The nvr that comes with the Swann surveillance camera

kit is a small-sized monitor (similar to a tablet device) for

users to view real-time footage directly from Swann cameras.

It also acts as an Wi-Fi access point for the camera, and the

swann-cam automatically connects to it. The nvr can then be

connected via Ethernet and forward the traffic to the users; or

we can manually input Wi-Fi credentials on the nvr to connect

it (and subsequently the swann-cam) to an Wi-Fi network.

IV. TRAFFIC ANALYSIS

Even if the network traffic from the cameras to the cloud

or remote user devices is encrypted, network traffic analysis

can reveal information about the information being captured

by IoT devices. In this section we show how the two cameras

change their network traffic patterns depending on whether

there is motion in front of the camera or not. This information

can be used by remote attackers to identify if a house is empty.

We analyze two possible scenarios: (1) when everything in

the field of vision of the camera is still, and (2) when there is

a continuous motion of a person in front of the camera. For

each scenario, we collected ten examples for a length of 200
seconds from both cameras. Examples of still videos include

the view of a person sitting still and not moving, the view of

a wall, the view of electrical wires, view of an empty living

room, etc. Our motion video examples also contain a variety

of scenarios such as people moving, walking, exercising, or

doing some work in front of the camera.

Our analysis focuses on observing the number of packets

transmitted per second as the length of the packets for both

cases (still videos and videos with motion) is the same. We

can see that this number differentiates the activities in both

cameras. For example, Figure 2a shows the number of packets

per second for a still video in the lefun-cam, and Figure 2b

shows a representative example with video capturing motion.

0 20 40 60 80 100 120 140 160 180 200

p p ()

Time in seconds

�����

���

���

	��

	��

��

��

���

���

Pa
ck

et
s p

er
 se

co
nd

���
�������������������� �
�������� ����
���

(a) still video

p p ()

������

��

���

���

	��

��

���

�

Time in seconds
���
�������������������� �
�������� ����
���

Pa
ck

et
sp

er
se

co
nd

(b) video with motion

Figure 2: Packets transmitted per second for lefun-cam.

174

We can see a similar result for the swann-cam as shown in

Figure 3. The question is how to find an algorithm that can

detect the type of video reliably and as fast as possible.

0

0

0

0

0

0

Time in seconds

�����

��

���

���

���

�
�

���

��

��

��

�

Pa
ck

et
sp

er
se

co
nd

���
��������������������� �
��������� ����
���

(a) still video

Time in seconds

��

���

���

���

��

���

���

�	�

Pa
ck

et
sp

er
se

co
nd

���
�������������������� �
�������� ����
���

������

(b) video with motion

Figure 3: Packets transmitted per second for swann-cam.

We can clearly observe that the existence of motion or no-

motion in front of the camera can be discerned by the number

of packets sent between two consecutive seconds. This can

allow attackers to infer the living patterns of people living in

smart homes. To analyze this more systematically, we have

developed an algorithm to classify packet traces as containing

motion and no motion.

Recall that in our experiments we collected ten (200-second)

examples of each scenario (motion or still images). During

our analysis, we used three examples (for each scenario) as

training data, and we used the remaining examples as testing

data. We fed the testing data to the nonparametric CUSUM [9]

algorithm shown in Algorithm 1:

Algorithm 1 Nonparametric CUSUM

1: procedure CUSUM(ΔPt, t, μ, b, τ)
2: S0 ← 0
3: for t > 0 do
4: if ΔPt (≤ or ≥) μ then � L⇒≤ ; S ⇒≥
5: St = St−1 + δ − b � true =⇒ δ = 1
6: else
7: St = St−1 + δ − b � false =⇒ δ = 0

end
8: if max(St) ≥ τ then
9: The video has motion.

10: else
11: The video is not capturing motion.

12: end

We explain the parameters of our algorithm in Table I.

Further, the value of b is calculated based on the expected

value obtained from the training data and is given by equation:

E(δΔP<μ)− b

{
≤ 0, still.

> 0, motion.
(1)

The training data from each camera is fed to the above

algorithm to obtain the necessary values for the constants.

Notice that these constants depend on the camera from which

the samples were collected.

Parameter Description
t Time in seconds
S0, St CUSUM value at t = 0 and t = t,

respectively
ΔPt Difference in the number of transmitted

packets between t and t+ 1
L lefun-cam
S swann-cam
μ Minimum ΔP required to detect a

change (constant).
τ Threshold to classify motion sample from

still sample (constant).
b Bias added to the CUSUM function based on

the expected values for still and motion
variations (constant).

Table I: Parameters for CUSUM algorithm

1) Results with the LeFun Camera: We can observe (from

Figure 2a and Figure 2b) that our classification is dependent

on the variation of number of packets sent per second. By

substituting the values of ΔPt in equation (1) and by using

the training data, we obtain the value of b as 0.75.

Using the training data (analyzing the nine combinations—

three motion samples with three still samples), we observed

that the CUSUM function of the sample with motion increases

above 0, whereas the CUSUM function of the sample with still

view decreases below 0 as shown in Figure 4a. We observed

similar characteristics on all the training samples. Hence, if the

statistic reaches a positive predefined threshold we conclude

the video has motion, otherwise if the statistic reaches a

negative predefined threshold we conclude the video has no

motion. We then evaluated this algorithm with 12 samples (six

motion samples and six still samples), and we found that all

the samples were classified correctly as shown in Figure 4b.

y

Still
Motion
still

�����	

�	

�

	

�

	

��

�
	

�
�

��	

St
ep

 in
cr

ea
se

 b
as

ed
 o

n
ac

tiv
ity

Time in seconds
	�� �	����	���	����	��
		
�	�
�	�
	
�	 �		�

(a)

Still
Motion�	

�

	

�

	

��

�
	

�
�

��	

St
ep

 in
cr

ea
se

 b
as

ed
 o

n
ac

tiv
ity

Time in seconds
	�� �	����	���	����	��
		
�	�
�	�
	
�	 �		�

still

�����	

(b)

Figure 4: CUSUM statistic for videos with motion and no

motion for lefun-cam: (a) training sample, (b) testing samples.

2) Results with the Swann Camera: By using the training

data with equation (1), we selected the value of b as 0.13.

Similar to lefun-cam, we obtain good classification results to

distinguish videos with motion from those without motion. We

show our results for the swann-cam in Figure 5.

From the above experimental results, we can see that it is not

hard to distinguish the presence of motion in front of a camera

175

y

Still
Motion
still

�����	

�	

�

	

�

	

��

�
	

�
�

��	

St
ep

 in
cr

ea
se

 b
as

ed
 o

n
ac

tiv
ity

Time in seconds
	�� �	����	���	����	��
		
�	�
�	�
	
�	 �		�

(a)

Still
Motion

�	

�

	

�

	

��

�
	

�
�

��	

St
ep

 in
cr

ea
se

 b
as

ed
 o

n
ac

tiv
ity

Time in seconds
	�� �	����	���	����	��
		
�	�
�	�
	
�	 �		�

still

�����	

(b)

Figure 5: CUSUM statistic for videos with motion and no

motion for swann-cam: (a) training sample, (b) testing samples.

by capturing the network traffic. This is something camera

manufacturers might consider in their design specifications by

identifying a minimal number of “chaff” packets designed to

obscure the differences between traffic containing motion and

traffic containing no motion.

V. SECURITY ANALYSIS

In addition to network traffic inference, attackers may try to

obtain unauthorized access to the cameras. We now describe

the methodology we used to find vulnerabilities in these

devices. In our analysis, we found new vulnerabilities that

allow a remote attacker to spy on their targets through the

Swann and LeFun camera systems. For the Swann system, we

found that the camera contains two misconfigured network

services that unauthorized users (with this knowledge) can

access to view live streams. For the LeFun camera, the attacker

can steal session tokens (transmitted in the clear under certain

scenarios) to impersonate the app, and request the latest image

frames from the camera. We reported the vulnerabilities to

the vendors and followed a responsible disclosure procedure.

Both vendors cooperated to address the security issues we

found. We obtained CVE-2015-8286 and CVE-2015-8287 for

our reported Swann vulnerabilities, and we are in the process

of receiving two CVEs for the LeFun vulnerabilities.

A. Swann Surveillance devices

Firmware analysis. We found our first set of vulnerabilities

by analyzing the firmware of the Swann nvr. Unlike the LeFun

device and other IoT devices we analyzed (e.g., [18], [19]),

the firmware for the nvr was readily available online in the

vendor’s website. So, we downloaded a copy to analyze, and

we found hard-coded passwords for the root user in the

firmware: first, we used the binwalk utility to analyze the

firmware image. We found that the device uses the CramFS

file system—a compressed read-only file system often used

in embedded devices due to its simplicity to save disk space.

Then, it was possible to extract and unpack the entire CramFS

file system (because the firmware was not encrypted), and

find the hashed root password hard-coded in the firmware.

We found that the nvr uses MD5—a weak password hashing

algorithm—to protect the root password. We could easily

crack the hashed password (found on /etc/passwd) with

tools like John The Ripper to obtain the root password. We

summarize these steps as follows:

Step 1: Extract file system from nvr firmware (see Listing 1)

using the following command: dd if=nvr-firmware.pak

bs=1 skip=3249020 of=filesystem.cram

Step 2: Unpack file system (filesystem.cram) using FMK

(Firmware Mod Kit): ./fmk/src/CramFS-2.x/CramFSck

-x firmware-unpacked filesystem.cram

Step 3: Locate the password file in firmware-unpacked (we

found at /etc/passwd), and run a password cracker on

the password file to retrieve the root password.

Listing 1: We use binwalk to analyze the nvr firmware image,

and we found the root password hard-coded in the CramFS file

system (CVE-2015-8286)
[03:30:15] jvalente: binwalk nvr-firmware.pak

DECIMAL HEXADECIMAL DESCRIPTION

425248 0x67D20 uImage header,[...] OS: Linux, CPU: ARM,
image type: OS Kernel Image, compression
type: none, image name: "Linux-2.6.37"

442003 0x6BE93 gzip compressed data, maximum compression,
from Unix, last modified: [...]

3249020 0x31937C CramFS filesystem, little endian, size:
8597504 version 2 sorted_dirs [...]

22815612 0x15C237C PC bitmap, Windows 3.x format,[...]

Network service analysis. Besides analyzing the firmware,

we analyzed the network services running in the nvr, and we

noticed that telnet was opened. Once we retrieved the root

password, we were able to access the nvr via telnet, and use

the root access to launch various attacks. We successfully

tested the following attacks: e.g., expose video feed from

camera to the Internet, use BusyBox utilities like netcat to

create reverse proxies, and further open public-facing ports on

a router. We provide more details in the attacks subsection.
For the Swann camera (swann-cam), we also analyzed

the network services running on the device, and found that

swann-cam uses the real-time streaming protocol (rtsp) to

stream live video on ports 554 and 6001. The rtsp service

is an application-level protocol which provides an extensible

framework for on-demand delivery of real-time data content

(e.g., audio, video) including both live data feeds and stored

clips (through udp or tcp). According to the specifications,

rtsp uses similar web security mechanisms for authentication

(e.g., basic authentication scheme [10] and digest authen-

tication [11]). And furthermore, the specifications say that

rtsp servers “should only allow client-specified destinations

for RTSP-initiated traffic flows if the server has verified the

client’s identity, either against a database of known users using

RTSP authentication mechanisms (preferably digest authenti-

cation or stronger), or other secure means” [15]. However, we

found that the rtsp service running on the swann-cam does

not implement any authentication mechanism. An attacker can

take advantage of this lack of authentication to view live feed

directly via ports 554 and 6001. Essentially, the rtsp media

stream is uniquely identified and accessed in those open ports

by a URL. All the attacker has to do is to figure out this URL.

176

In our security analysis, we reversed the nvr firmware to

look for any hard-coded URLs that the nvr was accessing

in the swann-cam, but found only incomplete rtsp streaming

URLs. However, we found that it is trivial to retrieve the

streaming URL directly from a web server running in the

swann-cam (on port 8000). We summarize our steps as follows:

Step 1: Create a file (e.g., GetStreamUri.xml) and specify in

xml a GetStreamUri command (see Listing 2) based on

the ONVIF Media Service standard [4].

Step 2: Run the GetStreamUri command from any device

connected to the same network as the swann-cam, e.g.,

we can use the following command: #curl -X POST

--header "Content-Type: text/xml" --data-binary

@GetStreamUri.xml http://<swann-cam-ip>:8000/.

Step 3: The camera returns the following rtsp stream URL:

rtsp://<swann-cam-ip>:554/h264Preview_01_main.

Step 4: An attacker on the same network as the swann-cam

can open and view the video stream using: #openRTSP -t

-n rtsp://<swann-cam-ip>:554/h264Preview_01_main

(we found that we can also use port 6001 besides 554).

Then, anyone in the same network as the swann-cam can

use this streaming URL to remotely open a rtsp stream (via

applications such as vlc or openRTSP) and view the live stream

without supplying any username and password. The security

design flaw here is that authentication is enforced only via

the normal flow: i.e., when users access the live feed through

proprietary applications available with the surveillance system,

and not when they access the feed directly via the rtsp

services running on ports 554 and 6001.

Listing 2: GetStreamUri.xml file

<s:Envelope xmlns:s="http://www.w3.org/2003/...">
<s:Body xmlns:xsi="http://www.w3.org/2001/...">
<GetStreamUri xmlns="http://www.onvif.org/...">
<StreamSetup>
<Stream xmlns="http://www.onvif.org/ver10/

schema">RTP-Unicast</Stream>
<Transport xmlns="http://www.onvif.org/...">
<Protocol>RTSP</Protocol>
</Transport>

</StreamSetup>
<ProfileToken>000</ProfileToken>
</GetStreamUri>
</s:Body>
</s:Envelope>

Attacks on Swann surveillance systems. Here we present

attacks that we have successfully tested. In particular, we con-

sider an attacker that can take advantage of the vulnerabilities

we found in the Swann nvr and swann-cam. The attacker

can discover the root password for the nvr and gain full

root access via telnet. Also, the attacker can discover an

alternative path to stream the live feed from the swann-cam

(through ports 554 and 6001) to bypass authentication and

watch live video by visiting a specific URL. Then, the attacker

can combine the root access in the nvr with the rtsp services

lacking authentication to further expose the live feed from the

camera to a local network and even the Internet.

(1) Exposing Camera Stream to Network. We assume the

attacker is initially within the same network as the nvr

(192.168.1.7) but not in the same network as the swann-cam

(10.0.0.141). For example, both the nvr and attacker’s device

are connected to a LAN network, and the swann-cam is con-

nected to the nvr access point as we show in Figure 6.

NVRCamera
telnet 192.168.1.7 23

Cam
�

LAN network

Attackercreate reverse proxy�

192.168.1.710.0.0.141

� request camera feed
forward rtsp traffic
to 192.168.1.7:554

request rtsp traffic

rtsp traffic

�

�
�

AP network

NVR

Figure 6: Attack 1—on Swann surveillance systems—an at-

tacker can use the nvr device as a reverse proxy to expose the

camera feed outside its isolated network.

Attack 1 summary: an attacker can forward the rtsp traffic

(from the swann-cam) via the nvr device. Then anyone inside

a network can access the camera feed (without user authenti-

cation). We illustrate this attack in Figure 6 as follows:

Step 1: The attacker accesses the nvr device remotely via

telnet (using the root password hard-coded on the nvr

firmware).

Step 2: The attacker uses the netcat utility (installed in the

nvr) to create a reverse proxy. First, the attacker moves

to the /mnt/tmp directory; then, runs the following com-

mands from within the nvr: $mknod pipe p and $nc -l

-p 554 0<pipe | nc 10.0.0.141 554 | tee -a pipe.

Step 3: Now that the proxy is setup, an unauthorized user can

access the live feed (routed through the nvr) by using a

video player client (e.g., vlc) or command-line utility

(e.g., openRTSP). The user can run the following com-

mand to start streaming the camera feed: #openRTSP -t

-n rtsp://192.168.1.7:554/h264Preview_01_main.

Steps 4-6 are repeated until the attacker closes the stream:

Step 4: The nvr requests the rtsp traffic from the swann-cam.

Step 5: The swann-cam forwards live stream to the nvr.

Step 6: The nvr routes rtsp traffic back to the attacker’s

computer and the unauthorized user sees the live feed

without supplying any username or passwords.

At this point, any device in the same network as the NVR

can access the live stream from the swann-cam by using the

corresponding URL. This attack shows an example of when

an IoT device (e.g., a nvr device) can be used to infiltrate a

network and further expose services running on an isolated

network to the outside—in this case, to a LAN network. As

we show in the next attack, it is possible to further expose the

live feed to the Internet.

(2) Exposing Camera Stream to the Internet. An attacker

inside the nvr (i.e., logged in as root via the telnet service)

can enable the UPnP service to expose camera feed from an iso-

lated network to the Internet. An attacker can exploit the nvr

to make the camera feed from a local, isolated network to be

accessible via the Internet, without authentication. This attack

extends the previous attack by allowing not only unauthorized

users from within the same network as the nvr, but also anyone

on the Internet, to access the camera feed. This is possible

by allowing a remote user to request the rtsp traffic from a

177

LAN network’s access point, e.g., a router (123.45.678.9),

where the attacker has exposed the rtsp service (lacking user

authentication) via a public-facing port on the router. We

illustrate our network setup in Figure 7.

forward rtsp traffic
to 192.168.1.7:554

NVRNVRCamera
telnet 192.168.1.7 23

Cam
�

LAN network

Attacker

{root@nvr:~} cd /mnt/tmp
{root@nvr:/mnt/tmp} mknod pipe p
{root@nvr:/mnt/tmp} nc –l –p 554 0<pipe | nc 10.0.0.141 554 | tee
–a pipe

create reverse proxy�

�

192.168.1.710.0.0.141

�

{attacker:~} openRTSP –t –n rtsp://123.45.678.9:554/h264Preview_01_main�

enable port forwarding
on router via UPnP

request rtsp traffic
to 10.0.0.141:554

�

	

{root@nvr:~} cd /mnt/app
{root@nvr:/mnt/app} ./upnpc –a 192.168.1.7 554 554 TCP

�
Attacker

request
camera

feed

�

Internet

start streaming
rtsp://123.45.678.9:554/

h264Preview_01_main

request rtsp traffic to 192.168.1.7:554

forward rtsp traffic
to 123.45.678.9:554

�

AP network

�

123.45.678.9

Attacker

Figure 7: Attack 2—on Swann surveillance systems—an at-

tacker can use the nvr as a reverse proxy and use utilities such

as upnp found in the device to expose live feed from an isolated

network to the Internet to be accessed without authentication.

Attack 2 summary: an attacker can forward the rtsp traffic

to the Internet, so anyone can access the camera feed without

user authentication. We illustrate this attack in Figure 7:

Step 1 and 2: Login and create a reverse proxy in the nvr

(see Step 1 and 2 in the previous attack for details).

Step 3: The attacker enables port forwarding on a router via

the UPnP utility on the nvr. This is done by moving to the

/mnt/app directory, and running the following command:

$./upnpc -a 192.168.1.7 554 554 TCP

At this point, the attacker has successfully opened a 554 port

on the router. Therefore, any tcp connection (from any ma-

chine on the Internet) to router’s port 554 will be forwarded to

the local device with IP address 192.168.1.7. In other words,

tcp connections will be forwarded to nvr’s port 554 (which

will forward to swann-cam’s port 554 through the reverse proxy

setup). Responses will be routed back accordingly:

Step 4: A remote attacker can request the camera live

feed—via the Internet—while bypassing user authenti-

cation using the following command: #openRTSP -t -n

rtsp://123.45.678.9:554/h264Preview_01_main.

As a result, the live feed of a surveillance camera deployed

on an isolated network (i.e., nvr network) is now publicly

available to any user on the Internet. The user does not need

to authenticate to start streaming the live feed. Therefore, any

user with knowledge of the rtsp stream URL is able to gain

unauthorized access to the camera feed. As described here,

this is possible because an attacker can maliciously use the

nvr to open public-facing ports on a router as desired.

Discussion and Conclusion. We have presented two main

vulnerabilities we found on Swann Surveillance Systems. First,

we found that the Swann nvr device had a weak root pass-

word hard-coded in the firmware (available on the vendor’s

website). Then, we found that the swann-cam device lacked

proper authentication on their real-time streaming protocols

and provided an alternate URL (accessible over a different

port than what the swann-cam app uses to receive live streams)

that network users can use to view the live feed. Moreover, we

showed two scenarios where an attacker can take advantage

of these vulnerabilities to launch more sophisticated attacks—

such as exposing internal services (behind a firewall and

hub/gateway devices) to the Internet, for anyone to access.

B. LeFun Baby Monitor Camera

Network traffic analysis. Since we did not have access to

the firmware of the LeFun camera (lefun-cam), we focused

our analysis to the network traffic between the LeFun mobile

app and the cloud, and between the cloud and the camera.

As we show in this section, we were able to launch similar

attacks to the LeFun camera as the ones we tested against the

Swann surveillance system (e.g., unauthorized access to live

feed)—even if we focused our assessment in different aspects

of the device, and found other vulnerabilities. By analyzing

the lefun-cam network traffic, we found the following flaws:

(1) Session token exposure vulnerability. We found that the

mobile app (MIPC Android app) for the LeFun camera exposes

valid session tokens when communicating to the cloud server

under certain scenarios (e.g., to configure the camera, setup

cloud storage, associate a new camera to a user account). This

enables an attacker to easily impersonate a victim. We noticed

two main flaws in this system: the app sends valid session

tokens (1) over an insecure channel under some scenarios (e.g.,

via HTTP), and (2) through GET methods (session tokens should

not be transmitted via GET methods [3]). Additionally, the

GET requests expose the camera ID (which identifies a LeFun

camera online). We show a sample GET request in Listing 3:

Listing 3: GET request sample

<protocol>://<mipc-server>:<port>/ccm/<command>?
hfrom_handle=<handle-info>&dsess_nid=<session-id>&
dsess_sn=<cam-id>&<other-parameters>

The GET request contains a command which represents action

commands like ccm_pic_get, ccm_dev_add, and cpms_get. We

further noticed that these commands invoke a JavaScript (e.g.,

ccm_cap_get.js) that is hosted in the cloud web server.

Perhaps the most important parameters include session-id

and cam-id because they authenticate the user. Once a remote

attacker captures the session token and camera ID (from GET

requests sent via http), the attacker can perform any action

as if they were the user. This includes tilting the camera and

controlling the camera movement (e.g., an attacker can rotate

the camera away from an area under surveillance), to changing

basic configuration settings (e.g., an attacker can change the

brightness of the camera to “blind” the camera from capturing

the actual scenery to hide some activity in front of the camera).

Attacks on LeFun baby monitor cameras. We now present

a proof-of-concept attack of how a remote attacker can lever-

age this knowledge to launch an attack. We start our discussion

by first showing how to capture the session token and camera

ID, and then how to impersonate a victim to gain remote access

to the camera feed. We successfully tested and validated this

attack on the lefun-cam. We show our setup in Figure 8.

178

App User
�
���
��CameraCa

click on a vulnerable
action (e.g., cloud

storage config)
�

AttackerAttacker

extract �������� and �������
from the �		
 request�

�

retrieve the latest image frame from camera.

send a �������
�����	��
�� command to
server using any valid �������� and �������.

�

� �
�

send �		

request

traffic

J V 8 / 1 8

Figure 8: Attack 3—on LeFun cameras—a remote attacker can

eavesdrop on a valid session token and camera ID. (Because

some actions the user take via their phone to configure the

camera are transmitted over http GET requests). Then, the

attacker can use this information to craft a valid GET request

and capture image frames from an online remote camera.

Attack 3 summary: we consider a remote attacker on the

network that sits between the app and cloud server (which

communicates directly with the lefun-cam online). The vul-

nerability we found enables an attacker to eavesdrop on

sensitive information and hijack an authenticated session for

a victim user. We illustrate this attack in Figure 8:

Step 1: The user clicks on a vulnerable action while using the

mobile app to configure the lefun-cam. (We classify as

vulnerable any configuration action that the mobile app

sends to the cloud server via http GET).

Step 2: As a result, the app sends a GET request to the cloud

server—containing sensitive data (e.g., a valid session

token, camera ID) in the clear (via http).

At this point the attacker sees the http request similar to

Listing 4. Notice that this GET request is not related to the

attacker’s end goal in accessing the camera feed. However, this

intercepted request gives the attacker a valid session token and

camera ID (highlighted in bold) to craft valid GET requests.

Listing 4: Sample http GET request an attacker can intercept

http://<mipc-server>:7080/ccm/ccm_cloud_get.js?
hfrom_handle=234264&hqid=&dsess=1&dsess_nid=MNaJQ9nedL
G1%2ewsS30%2eOG2dCDpRjCTJq&dsess_sn=1jfiegbp<redacted>

Step 3: The remote attacker captures sess_sn (camera ID)

and sess_nid (session token) from the http GET request.

Now the attacker can craft a valid request. We consider the

attacker wants to retrieve footage from a particular LeFun

camera online. The attacker can then use the ccm_pic_get

command to request the cloud server to return the latest image

frame from the lefun-cam online. We show a sample of this

request in Listing 5. The attacker replaces the <session-id>

with value MNaJQ9nedLG1%2ewsS30%2eOG2dCDpRjCTJq and

<cam-id> with value 1jfiegbp<redacted> (intercepted earlier

in Listing 4). Notice that the attacker may even send this

request via https.

Listing 5: URL to retrieve image frame from a LeFun camera

https://<mipc-server>:7443/ccm/ccm_pic_get.jpg?
hfrom_handle=887330&dsess=1&dsess_nid=<session-id>&
dsess_sn=<cam-id>&dtoken=p0_xxxxxxxxxx

Step 4: The attacker uses the valid session token and camera

ID to craft a GET request, and send to the cloud server.

Step 5: The attacker receives the latest image frame from

the camera. The attacker can repeatedly use the same

request from Step 4 to keep retrieving the latest frame.

(2) Session expiration vulnerability. In our experiment, we

repeated Steps 1-5 to further capture another valid session

token (transmitted via http GET request) and craft a new valid

GET request. (This time the <session-id> had the following

value: MKSfRXVF3UbQDnLfl7b1mjBCIVNjCSck). Then, we used

this new session token to access image frames from our

same LeFun camera again. We noticed that at this point, the

<session-id> from both instances remained valid and active.

Further, we associated our LeFun camera to multiple user

accounts (we tested with three accounts). This means that

when the camera was turned on, all three unique accounts

could simultaneously see the live feed of the same camera.

(However, none of the accounts could tell that other user

accounts could also stream the live feed. Also, it seems

there is no way for a user to ensure their camera has not

been associated to some other user account). Then in our

experiments, we intercepted a <session-id> under each of

the user accounts (using the steps we described above). At

this point, we could use any one of the three <session-id>

values to repeatedly retrieve the latest image frames from our

same LeFun camera, under three different authenticated users.

Vulnerabilities Summary. We found that the LeFun camera

mipc app exposes session tokens in the URL (via GET commands

over unencrypted connections). Also, these session tokens are

not properly managed, and they are not properly rotated after a

successful login: session tokens did not appropriately expire,

and on the contrary, multiple session tokens remained valid

simultaneously, giving enough time for an attacker to operate

under a hijacked session token. We refer the reader to [5]

for more details on common vulnerabilities related to broken

authentication and session management, and considerations

to protect against these vulnerabilities. Also, we presented

proof-of-concept attacks showing that the cloud server uses

insufficient authentication protections: an attacker can use

leaked session information to expose user data on the Internet.

Web server analysis. We also analyzed the network services

running in the lefun-cam, and we found a local web server

with a broken user authentication mechanism. We found that

an attacker—within the same network as the camera—may

create a valid session token by probing the lefun-cam web

server. Then, the attacker can retrieve image frames directly

from the camera web server and control the camera while

bypassing the user authentication required to access the local

web server. We summarize our findings as follows:

Step 1: The attacker tries to login to the local web server with

anything as a password. Surprisingly, this action generates

a GET request that passes a valid session token to the

camera web server (even when the attacker does not know

the correct password to the local camera web server).

179

Step 2: The attacker can then use this session token to create

a GET request (e.g., to retrieve the latest image frame

directly from the camera). The camera web server accepts

this GET request and responds with the latest image frame.

As a result, by simply trying to login to the camera web

server (even with incorrect credentials), the camera generates

a valid session token. Then, an attacker in the network can

successfully bypass authentication in the web server (running

inside the camera), and take any actions on the camera.

App analysis and app reuse assessment. When we down-

load the LeFun camera app MIPC (as specified in the LeFun

camera user manual), we get recommendations for other

camera apps such as: VsmaHome, Ebitcam, YIPC, Vimtag, and

Myannke. We noticed that for all these apps (except for YIPC),

we could use the same credentials—we created via the mipc

app—to login to them. More worrisome, once we logged

in to any of these apps (e.g., Vimtag app), we had access

to our LeFun camera. Further, we found that the MIPC app

works with several other Internet-connected cameras (besides

the LeFun camera) including: ANNKE 720p, EbitCam 1080p,

Vimtag VT-361, and VSmaHome 1080p Wi-Fi video monitor-

ing surveillance security cameras.

Findings Summary. We found that once the user registers

their camera with the mipc app, they can use multiple other

Android apps to access the camera feed and interact with

their camera—since all these apps use the mipc cloud service.

Moreover, there exists multiple IP cameras (other than LeFun

cameras) that use the MIPC app to stream video feed. This

opens doors to other attacks: a security vulnerability found in

the original MIPC app may take longer to be fixed in the other

apps. For example, the mipc app was last updated on July 2018

(at the time of this writing) to fix bugs, implement a new Wi-

Fi configuration scheme, and repair a problem in the login

mechanism. Meanwhile, the Myannke app (which is another

app we found to work with the lefun-cam) had not been

updated since May 2017. Perhaps, the reason for the multiple

apps and cameras is that one company might be designing the

core-functionality for the IoT device and then multiple vendors

re-purposing the devices/apps under different brand names.

VI. CONCLUSION

We have analyzed systematically the Wi-Fi security asso-

ciation, network traffic analysis, and security vulnerabilities

of Internet-connected cameras. Our general analysis can be

applied to other cameras and other IoT devices to assess their

security and privacy guarantees. We found new ways of using

IoT sensing capabilities to transmit Wi-Fi passwords via out

of band channels, and prevent attackers from sniffing them.

We also saw how even if the traffic is encrypted, attackers can

infer activities being captured by the camera. Moreover, we

performed a security review of the cameras and found new

previously unpublished security vulnerabilities. Our findings

are aligned with our previous works on IoT security [18],

[19]. Finally, we recommend that manufacturers add network

traffic “chaff” to prevent inferences (or to make them harder)

and to follow security best practices recommended by the

OWASP foundation such as posting URL web resources with

POST commands rather than GET requests, using http over

TLS, and leveraging basic security mechanisms that application

protocols (i.e., rtsp) provide.

ACKNOWLEDGMENTS

This work was supported by NSF CNS #1929410 and by

the Laboratory of Analytic Sciences. Any opinions, findings,

conclusions, or recommendations expressed are those of the

author(s) and do not necessarily reflect the views of the LAS

and/or any agency or entity of the United States Government.

REFERENCES

[1] LeFun Wireless Camera, Baby Monitor Wi-Fi IP Surveillance Camera
HD 720P. https://www.lefunsmart.com/products/lefun-c2-wifi-camera.

[2] Swann NVW-470 All-in-One SwannSecure: Wi-Fi HD Monitoring Cam-
era. https://www.swann.com/us/swnvw-470cam.

[3] OWASP Testing for Exposed Session Variables (OTG-SESS-004).
https://www.owasp.org/index.php/Testing for Exposed Session
Variables (OTG-SESS-004), 2014.

[4] ONVIF Streaming Specification v17.12 - Standardizing IP connectivity
for Physical Security. ONVIF Network Interface Specifications, 2017.

[5] OWASP Top 10 - 2017: The Ten Most Critical Web Application Security
Risks. https://www.owasp.org/index.php/Category:OWASP Top Ten
Project, 2017.

[6] Katherine Albrecht and Liz Mcintyre. Privacy nightmare: When baby
monitors go bad [opinion]. IEEE Technology and Society Magazine,
34(3):14–19, 2015.

[7] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. Understanding the Mirai Botnet. In
USENIX Security Symposium, pages 1092–1110, 2017.

[8] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A Smart Home
is No Castle: Privacy Vulnerabilities of Encrypted IoT Traffic. arXiv
preprint arXiv:1705.06805, 2017.

[9] B. E. Brodsky and B. S. Darkhovsky. Nonparametric methods in change
point problems, volume 243. Springer Science & Business Media, 2013.

[10] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Mas-
inter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. Technical report, 1999.

[11] John Franks, Phill Hallam-Baker, J. Hostetler, Paul Leach, Ari Luotonen,
E. Sink, and L. Stewart. An Extension to HTTP: Digest Access
Authentication. Technical report, 1996.

[12] David Goldman. Shodan: The scariest search engine. https://money.cnn.
com/2013/04/08/technology/security/shodan/, April 2013.

[13] Craig Heffner. Exploiting network surveillance cameras like a hollywood
hacker, November 2013. https://youtu.be/B8DjTcANBx0.

[14] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and
Jeffrey Voas. DDoS in the IoT: Mirai and other botnets. Computer,
50(7):80–84, 2017.

[15] Henning Schulzrinne, Anup Rao, and Robert Lanphier. Real Time
Streaming Protocol (RTSP). 1998.

[16] Ali Tekeoglu and Ali Saman Tosun. Investigating security and privacy of
a cloud-based wireless IP camera: NetCam. In Proceedings of the 24th
International Conference on Computer Communication and Networks
(ICCCN), pages 1–6. IEEE, 2015.

[17] Junia Valente and Alvaro A. Cardenas. Remote proofs of video freshness
for public spaces. In Proceedings of the 2017 Workshop on Cyber-
Physical Systems Security and Privacy, pages 111–122. ACM, 2017.

[18] Junia Valente and Alvaro A. Cardenas. Security & Privacy in Smart
Toys. In Proceedings of the 2017 Workshop on Internet of Things
Security and Privacy, pages 19–24. ACM, 2017.

[19] Junia Valente and Alvaro A. Cardenas. Understanding Security Threats
in Consumer Drones Through the Lens of the Discovery Quadcopter
Family. In Proceedings of the 2017 Workshop on Internet of Things
Security and Privacy, pages 31–36. ACM, 2017.

[20] Thomas Winkler and Bernhard Rinne. TrustCAM: Security and Privacy-
Protection for an Embedded Smart Camera Based on Trusted Comput-
ing. In Proceedings of the IEEE International Conference on Advanced
Video & Signal Based Surveillance, pages 593–600, 2010.

180

