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Abstract of the Dissertation

Stochastic Systems Far From Equilibrium

by

Christian Vaca

Doctor of Philosophy in Physics

University of California, Los Angeles, 2015

Professor Alexander Jacob Levine, Chair

We discuss some general methodology used to study stochastic systems outside of equi-

librium, be it mechanical or thermal equilibrium via the use of the Master equation

or Langevin-like methods. We apply these methods to the following problems in non-

equilibrium statistical mechanics: The nonlinear dynamics of semiflexible filaments net-

works under load, the position-velocity distribution of an ion trapped in an RF-trap in the

presence of two different buffer gasses at different temperatures, and the response function

of two harmonically coupled particles near a mechanical phase transition interacting with

a non-Gaussian and Gaussian, white noise source. We find that the movement of a tracer

particle in semiflexible networks is governed by single filament crosslinker rupture events.

For the ion trapped in the RF-trap, we find non-Maxwellian probability distributions for

the system far from equilibrium but in a steady state. We find the response function for

the two harmonically coupled particles shows new interactions with the dissipative back-

ground due to the introduction of non-Gaussian noise in a spatially asymmetric fashion

to lowest order in perturbation theory. Finally we discuss extensions of the methods used

to future work.
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CHAPTER 1

Introduction

1.1 Markov Processes

Disordered systems are ubiquitous throughout the study of condensed matter systems.

Given the enormous number of particles that must be taken into account in the study

of physical phenomena at mesoscopic scales1 and larger, it no longer becomes possible

to make definite, quantitative statements about systems at these length scales and one

must resort to statistical statements of the expected behavior of said system due to atomic

fluctuations. The shear complexity of systems with such a large amount of constituents

has been studied in great detail for systems at thermal equilibrium, and a variety of

very powerful theorems have arisen for systems near thermal equlibrium including the

fluctuation-dissipation theorem[48] among many others. However, the search to find

universal theoretical tools to explain statistical mechanical systems outside of thermal

equilibrium has so far eluded even the best of intellectual efforts. There are no analogous

statements to the results of the fluctuation-dissipation theorem for systems far out of

thermal equilibrium to date, though many attempts have been made.

Nevertheless, it is still possible to describe systems outside of thermal equilibrium

by the use of stochastic calculus as well as a detailed understanding of the form of the

physical fluctuations of the system in question. Though no universal laws governing

the behavior of thermodynamics systems outside of equilibrium have been discovered,

we nevertheless seek to describe and characterize some features common among all non-

equilibrium systems and outline some general principles to study these systems.

We will denote a general stochastic process as x(t), where it may stand for the time

evolution of any tensorial object of any rank. A particular subclass of stochastic processes

1Mesoscopic is taken to mean systems greater than the size of small molecules O(Å)

1



that have been ubiquitously studied in physics and chemistry due to their simplicity are

the Markov processes which are defined in terms of the following conditional probability

statement 2

P1|n−1(xn, tn|xn−1, tn−1; ...;x1, t1) = P1|1(xn, tn|xn−1, tn−1); (1.1)

t1 < t2 < ... < tn

where P1|1(xn, tn|xn−1tn−1) denotes the conditional probability of being in the state xn at

time tn given that the system was in the state xn−1 at time tn−1. An analogous definition

holds for P1|n−1 [44],[2]. This conditional probability statement from Eq. (1.1) simply

says that the conditional probability of observing the system at state xn at time tn is

only dependent on the immediate history of the stochastic process and not any of the

times before then i.e. {tn−2, tn−3, . . . , t1}.

These Markov processes are among the most simple set of stochastic processes to

study due to their analytic tractability, however determining whether a physical process

is amenable to a Markov process analysis is dependent on choosing an appropriate time

scale. The condition for a stochastic process to be described by a Markov process is that

we choose a time step ∆t sufficient large [2] to remove any time memory of the stochastic

fluctuations associated with the stochastic process yet short enough to not lose any of the

relevant aspects of the dynamics of the system. How to chose this time scale is dependent

upon the exact phenomenology of the system under study. In practice however, there is

very rarely a physical system where an appropriate ∆t cannot be chosen to model the

system as Markovian.

Assuming that all the processes which we will be studying are of the Markov type

and given Eq. (1.1), we may define all joint probability densities

Pn(x1, t1;x2, t2; . . . , : xn, tn) i.e. the probability of observing the stochastic process x to

have value x1 at time t1, x2 at time t2, etc. using the related conditional probability

distributions of

P3(x1, t1;x2, t2;x3, t3) =P2(x1, t1;x2, t2)P1|2(x3, t3|x1, t1;x2, t2)

=P1(x1, t1)P1|1(x2, t2|x1, t1)P1|1(x3, t3;x2, t2). (1.2)

2We assume the reader is familiar with Bayes’ theorem regarding conditional probabilities

2



it is clear that this process can be iterated for any of the Pn, giving the aforementioned

analytic tractability of the Markov Process. The only distributions that will be needed to

describe any of the joint probabilities will be the P1 and P1|1 distributions. We establish

the next relationship from Eq. (1.1), the Chapman-Kolmogorov equation which is

P2(x1, t1;x3, t3) =P1(x1, t1)

∫
dx2P1|1(x2, t2|x1, t1)P1|1(x3, t3|x2, t2).

Dividing by P1(x1, t1) and using the Markov property of Eq. 1.2 yields

P1|1(x3, t3|x1, t1) =

∫
dx2P1|1(x2, t2|x1, t1)P1|1(x3, t3|x2, t2). (1.3)

This identity must be obeyed by any transition probability of any Markov process, the

type that will be studied in this work.

1.2 Homogenous processes and the Master Equation

Among Markov processes in particular, we are interested in homogenous Markov processes

whose transition probability P1|1 only depends on the time difference between the two

states of interest i.e.

P1|1(x2, t2, |x1, t1) = Tτ (x2|x1) with τ = t2 − t1. (1.4)

We may now rewrite Eq. 1.3 as

Tτ+τ ′(x3|x1) =

∫
dx2 Tτ ′(x3|x2)Tτ (x2|x1). (1.5)

This relationship though simple in its derivation is not very tractable in its application

to study a physical system. We instead appeal to the limit of this equation as the time

intervals of interest go to zero, and write down the differential equation known as the

Master equation.

In order to proceed, we must determine the functional form of Tτ in the limit that

τ → 0 which is

Tτ ′(x2|x1) = (1− a0τ
′)δ(x2 − x1) + τ ′W (x2|x1) +O(τ ′2) (1.6)

where W (x2|x1) is the transition probability per unite time from x1 to x2 and a0(x1) =∫
dx2W (x2|x1), meaning 1− a0τ

′ is the probability that no transition takes place during

3



the time interval τ ′. Hence we may rewrite the Chapman-Kolmogorov Equation by using

this definition for Tτ ′ for small τ ′ and find

Tτ+τ ′(x3|x1) = [1− a0(x3)τ ′]Tτ (x3|x1) + τ ′
∫

dx2W (x3|x2)Tτ (x2|x1) (1.7)

Dividing by and taking the limit as τ ′ goes to zero yields

∂τTτ (x3|x1) =

∫
dx2 {W (x3|x2)Tτ (x2|x1)−W (x2|x3)Tτ (x3|x1)} (1.8)

We rewrite the equation in its more simplified, intuitive form as

∂tP (x, t) =

∫
dx′W (x|x′)P (x′, t)−W (x′|x)P (x, t) (1.9)

where we interpret the first term on the right hand side as all the possible ways one may

arrive at the state x from the states x′ given that we started at some arbitrary state x0

while the second term is all the ways one leaves the state x to go to the states x′ given

that we started at the same arbitrary state x0.

Note that the only assumptions that were made in the derivation of the Master equa-

tion were that we were analyzing a homogeneous, Markov process. No assumptions were

made regarding the size of transitions available to the stochastic process, whether the

process was at thermal equilibrium or not. Hence if one can figure out the form of the

W (x|x′), a stochastic system may be analyzed whether it is in a state of equilibrium or

not.

The Master equation will be our starting point for our analyses of lower dimensional

phase spaces, amenable to exact solutions for a system out of mechanical equilibrium and

a system out of thermal equilibrium which will be studied in Chapters 2 and 3. However

the analysis of higher-dimensional phase spaces becomes analytically and computationally

intractable, hence we need a new approach in order to study these systems. For this we

appeal to a Langevin-like noise approximation, which we outline next.

1.3 Langevin-Like Noise

Although the Master equation is the most ideal point to start a study for a stochastic

system outside of equilibrium due to its generality and exactness, it becomes analytically

and numerically infeasible to solve the equation for large, multidimensional phase spaces
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outside of the thermal equilibrium limit where Maxwell-Boltzmann statistics hold. Hence

we seek a different method in order to study our stochastic system outside the thermal

equilibrium limit. In order to do this we will analyze the equations of motion of two

non-linear harmonic oscillators in Chapter 4 in the presence of a non-Gaussian, white

noise source near a second-order phase transition.

In anticipation of this, we give a simpler version of the problem we wish to analyze

by providing a simple reference system i.e. the motion of a particle in the presence of

damping and random thermal forcing

mv̇ + Γv = f(t) (1.10)

where m is the mass of the particle of interest, Γ is the friction constant, v is the ve-

locity of the particle. When this system is studied in thermal equilibrium, the force

is considered to come from a Gaussian, white-noise probability distribution P [f(t)] =

N exp
[
−(2D)−1

∫
dtf 2(t)

]
where N is an uninteresting normalization constant and D

is the spread of thermal forces which is proportional to the thermal energy scale, kBT .

This means the first two cumulants of f(t) are given by 〈f(t)〉 = 0 and 〈〈f(t)f(t′)〉〉 =

D δ(t − t′). Given that the probability distribution for the force is Gaussian, all higher

order cumulants are zero, hence the velocity-velocity correlation function in frequency

space it can be solved via a simple Fourier transform to yield

〈v(ω)v(ω′)〉 =
2πD δ(ω + ω′)

| − imω + Γ|2 .

This correlation functions along with the correlation functions of various combinations of

the velocity field time derivatives provides a physically realizable quantity to measure to

determine whether the system is at thermal equilibrium or not. If the velocity-velocity

correlation function does not match the spectrum given by the correlation functions in the

presence of Gaussian noise, then a new approach will be necessary in order to understand

the fluctuation spectrum of the system.

The results for the velocity-velocity correlation function are well known for the stochas-

tic statistics of systems at or near thermal equilibrium and can be related to response

function of the system to yield a version of the fluctuation-dissipation theorem. However,

note that these results only hold because we are assuming a Gaussian, white-noise force
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profile. Once these assumptions are eliminated for the noise, there is no guarantee that

the fluctuation-dissipation theorem holds anymore.

We are interested in this type of regime where our noise sources are still white (un-

correlated in time), but do not come from a Gaussian probability distribution and are

interested in how these fluctuations affect a system near a phase transition through its

correlation functions. For these type of systems, correlation functions for systems in the

presence of non-Gaussian, white noise may have terms proportional to the now nontrivial

higher order cumulants such as 〈〈f(t1)f(t2)f(t3)f(t4)〉〉 = Γ4δ(t1 − t2)δ(t1 − t3)δ(t1 − t4)

where Γ4 is a constant associated with the quartic averaging of the forces3. Though terms

like these are irrelevant for the study of the velocity-velocity correlation function of our

overdamped particle, these force averaging terms are important for higher order in power

velocity correlation functions and for non-linear systems, such as the one explored in

Chapter 4.

Nevertheless to illustrate the effect of non-Gaussian white noise, we solve for the four

point function for our simple free particle in an overdamped dynamic to see the effect of

the quartic cumulant of the forces on the four point function i.e. we give

〈v(ω)v(ω′)v(ω′′)v(ω′′′)〉 =
2π

(−imω + Γ)(−imω′ + Γ)(−imω′′ + Γ)(−imω′′′ + Γ)
×(

Γ4δ(ω + ω′ + ω′′ + ω′′′) + 2πΓ2
2 (δ(ω + ω′)δ(ω′′ + ω′′′)

+δ(ω + ω′′)δ(ω′ + ω′′′) + δ(ω + ω′′′)δ(ω′ + ω′′))) . (1.11)

Note the appearance now of the delta function with the sum of the four ω’s having

equal to zero. The effect of this term is visualized easier in the time domain, so we

Fourier transform back and find the four point function in the time space to be assuming

t4 > t3 > t2 > t1 is 〈v(t1)v(t2)v(t3)v(t4)〉 =

Γ4

exp
[
− Γ
m

(t4 − t1)
]

exp
[
− Γ
m

(t3 − t1)
]

exp
[
− Γ
m

(t2 − t1)
]

4 Γm3

+
Γ2

2

4Γ2m2

(
exp

[
− Γ

m
(t4 − t1)

]
exp

[
− Γ

m
(t3 − t2)

])
+

Γ2
2

4Γ2m2

(
exp

[
− Γ

m
(t4 − t2)

]
exp

[
− Γ

m
(t3 − t1)

])
+

Γ2
2

4Γ2m2

(
exp

[
− Γ

m
(t4 − t3)

]
exp

[
− Γ

m
(t2 − t1)

])
. (1.12)

3We only consider symmetric noise sources, meaning all odd powered force cumulants are zero
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We see now that the non-Gaussian noise for our simple, linearized theory of a particle

in an damped medium provides additional corrections to the four point function that

decay exponentially in time and are proportional to Γ4. The effect of non-Gaussian noise

is hence most visible for times shorter than Γ/m and contributes significantly to the four

point function in an underdamped medium i.e. when our decay correlation time, m/Γ, is

small compared to other natural time scales arising in our system. This holds true even

for the non-linear set of equations we will be studying in Chapter 4. We now proceed

to show the effect of the non-Gaussian noise on the conditional probability statements of

our stochastic system.

1.4 Fokker-Planck like equation and the equivalent Master equa-

tion

Typically during the examination systems near thermal equilibrium using a Langevin

approach, a corresponding Fokker-Planck equation is written down as well by looking at

the conditional probability statement of the form

P (v, t|v0, t0) = 〈δ(v − v(t))〉v0,t0 (1.13)

which is the probability of finding the diffusing particle at velocity v at time t given that

it had velocity v0 at time t0. The probability that the particle has velocity v at time

t+ ∆t is given by the sum of all paths through phase space to achieve said velocity i.e.

P (v, t+ ∆t|v0, t0) =

∫
dv′P (v, t+ ∆t|v′, t)P (v′, t|v0, t0) (1.14)

We may write out the conditional probability P (v, t + ∆t|v′, t) =〈δ(v − v(t + ∆t))〉v′,t
using the equation motion and expanding in terms proportional to ∆t

v(t+ ∆t) = v′ − Γ

m
v′∆t+

1

m

∫ t+∆t

t

dt′ f(t′). (1.15)

Typically one only expands to O(f 2(t)) [50] in force terms as these are the only terms

proportional to ∆t in the expansion of the conditional probability evaluated at t + ∆t.

However the introduction of the nontrivial quartic cumulants produces additional terms
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now proportional to ∆t of the form∫ t+∆t

t

dt1

∫ t+∆t

t

dt2

∫ t+∆t

t

dt3

∫ t+∆t

t

dt4〈f(t1)f(t2)f(f3)f(t4)〉 ∝ Γ4∆t+O(∆t2)

(1.16)

Hence when expanding our conditional probability, we find new terms proportional to ∆t

that do not appear for the particle in the presence of Gaussian, white-noise forcing of the

form

〈δ(v − v(t+ ∆t))〉v′,t =δ(v − v′)− 〈∆v〉∂vδ(v − v′) +
〈(∆v)2〉

2!
∂2
vδ(v − v′)+

〈(∆v)4〉
4!

∂4
vδ(v − v′) +O(〈(∆v)6〉). (1.17)

Note that this summation continues ad infinitum in even powers of

∆v = v(t+∆t)−v′, meaning that there is an equivalent Master equation that to match the

Fokker-Planck like equation if one performs the appropriate Kramers-Moyal expansion.

Thus we see that with non-Gaussian, white noise, we may capture the behavior of

a stochastic system which requires a full Master equation description while appealing

only to the equations of motion. This ability to look at the stochastic equations of

motions allows us to explore higher dimensional phase spaces of stochastic systems in an

analatically tractactable way as we will explore in Chapter 4.

1.5 Outline of the text

Our analysis of stochastic systems outside of equilibrium will proceed as follows. In Chap-

ter 2, we will explore the effect of a probe particle under a constant, applied force field

on the stochastic bond-breaking dynamics of a highly cross-linked microtubule network.

This system is out of mechanical equilibrium with its surroundings at a single temper-

ature. We will write down and solve a Master equation for the state of unbinding for a

single filament in the network and relate measurements of the probe particle’s movement

to the underlying microscopic, stochastic unbinding of single cross-linkers from a single

filament.

In Chapter 3, we will explore the dynamics of a single ion trapped in a time-dependent

harmonic potential colliding with two non-interacting buffer gasses at different tempera-

tures. The cause of the stochastic system being out of equilibrium in this particular case
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is the two buffer gasses not being able to equilibrate on a sufficiently fast time scale to

a single temperature due to their small collision cross-section, allowing us to treat the

gasses as noninteracting except for their collisions with the trapped ion. We will write

down and solve the Master equation for the position and velocity distribution of the ion

and discuss some of the striking features associated with the steady-state properties of

the ions’ position-velocity distribution.

Chapter 4 will consist of examining the correlation function of the vibrational modes of

two particles harmonically coupled to each other in the presence of stochastic forces. The

cause of the stochastic system being out of equilibrium here is that there are two types

of stochastic forces acting upon the system, one will be a Gaussian, white noise force,

that at steady state, reproduces Maxwell-Boltzmann statistics. The other type of noise

will be non-Gaussian as described above. We will write down and solve the equations of

motion perturbatively for the vibrational modes of the system in the presence of these two

noise sources and use these solutions to calculate the correlation functions for the system

after an averaging over the noise near a second order phase transition. We will find that

near this second order phase transition that the system responds to the Gaussian and

non-Gaussian contributions to the noise differently, leading to different contributions to

the correlation function that differ by orders in magnitude.

We will conclude with a an overview of the unifying themes surrounding the study of

these stochastic systems. We will discuss a general methodology to study these systems

that should be applicable to nearly all systems outside of equilibrium. Finally we suggest

future systems far from equilibrium for future study.
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CHAPTER 2

Single Filament Dissociation

2.1 Introduction

The first system that we will be studying will involve the dissociation dynamics of a

semi-flexible filament embedded in highly-crosslinked semi-flexible filament network. The

filament is out of mechanical equilibrium with its surroundings due to contact with a probe

particle under a constant force. Given the large separation in time scales between the time

of dissociation of cross-linkers and the relaxation dynamics of the filament after a cross-

linker unbinding, we are able to write down a Master equation for the state of dissociation

of the given filament. We begin our discussion with experimental motivations.

2.1.1 Motivation

Semiflexible networks are materials composed of stiff filaments cross-linked densely on

the scale of their own thermal persistence length. As such, the constituent filaments can

support stress via bending as well as stretching. The study of such semiflexible gels has

been inspired by their importance in cellular mechanics, where the semiflexible network

of the cytoskeleton confers mechanical rigidity and is the source of force generation in

eukaryotic cells. These studies have yielded a rich phenomenology including nonaffine

deformation [39, 81, 79], continuous, zero-temperature phase transitions [11, 27, 78],

complex nonlinear elasticity [70, 54, 46, 10], and the active mechanics of motor-driven

networks [59, 57, 53, 72, 75, 6].

Understanding the collective mechanical response of such networks has implications

for the dynamics [29] and mechanobiology of cells [33, 3, 34], but also offers new insights

into fundamental mechanical properties of this special class of polymer gels – fiber net-

works rather than flexible (Gaussian coil) polymer gels. One feature of these networks re-

10



ceiving renewed attention is the role of cross-linker mechanics in the collective response of

the network. These include exploring the mechanical effect of flexible cross-linkers [9, 43],

cross-linker protein domain unfolding [25, 26], and cross-linker unbinding [54, 55, 40]. The

latter effect is particularly interesting as this allows for structural rearrangements on long

time scales either as the network approaches thermal equilibrium [20] or in the response

to applied loads [83, 61].

Previous work [83] on the motion of a bead (with a radius much larger than the mesh

size of the network) show that there is a regime of creep in which the bead moves with

constant velocity v in response to a constant applied force F . Energy dissipation in the

network results primarily from bond breaking as can be inferred from the observed force-

velocity relation, log(v) ∼ F , consistent with a Bell model for ligand unbinding rates [4].

In spite of this bond breaking, the modulus of the network remains essentially unchanged.

One infers that bond breaking and reformation occur at equal rates in the loaded net-

work. Closer examination of the beads’ trajectories reveals many small stochastic hops

on the scale of tens of nanometers, suggesting that one can indeed resolve individual bond

breaking events within the large-scale drift of the bead under load.

In this chapter, we explore a single filament model for such bond breaking events,

which we use to understand a few fundamental features of the dissipative dynamics in

the constant velocity regime. In order to apply our results to cross-linked microtubule

networks, which is the system of experimental interest, we ignore entropic effects. This

very stiff network is effective a zero temperature system; as such our analysis should apply

equally well to a variety of fiber networks and fiber-reenforced composites. We examine

the spatial distribution of mechanical loading of the many non-covalent cross-linking

bonds between filaments and develop a statistical model for the bond breaking dynamics.

Using this model we reexamine the apparently uniform motion of the bead, which can be

resolved into a series of microscale jumps, and conclude that these dynamics are consistent

with the bond-breaking of just the highly loaded cross-linkers in the immediate vicinity of

the bead. This bond breaking is consistent with a picture of bond breaking occurring on

many different filaments rather than sequential breaking of bonds along a single filament.

The network remodels with many independent events occurring on many filaments rather

than in the peeling away of any one filament in particular. We conclude this chapter with

11



a discussion of further experimental tests of this emerging understanding of the network’s

failure and a few speculations on the appearance of cross-linker unbinding deformation

in such transiently cross-linked fiber networks.

2.2 Single Filament Model

We begin with a single filament model. As shown in Fig. 2.2.1a, the filament in question

(shown as a dashed line) is being deflected by the bead (large sphere); it is also bound

to the network (solid lines) by a random set of cross-linkers (small spheres). In our

single filament analysis we replace the entire network by an array of posts along the ẑ

axis to which the single filament is bound – see Fig. 2.2.1b. The bead is replaced by

point loading at the origin of the coordinate system. Here we control either the load or

the displacement. If the bead filament interaction allows for slip, it may generate only

perpendicular forces; sticky beads may also apply longitudinal forces along the filament

leading to tension. We consider both cases below, but begin with the more simple case

of slip boundary conditions and perpendicular loading of the filament.

We assume that bond breaking, when it occurs, is instantaneous and that the time

between bond breaking events is long compared to the relaxation time of filaments, so

that filament evolves from one static mechanical equilibrium configuration to the next

upon each bond breaking event. To understand the loading of these bonds in static

equilibrium, we must first determine the forces on the cross-linkers for a semiflexible

filament linked to a spatially random set of cross-linkers. We derive the equations of

equilibrium in Appendix 2.4.

Taking the undeformed state of the filament to be straight and ζ(z) to be the per-

pendicular displacement of the filament in response to the applied force F acting at the

origin, we write the elastic free energy F of the filament under uniform tension τ as [49]

F =

∫
Lc

dz
[κ

2

(
∂2
zζ(z)

)2
+
τ

2
(∂zζ(z))2 +

+
V (z)

2
(ζ(z))2 − F δ(z) ζ(z)

]
. (2.1)

Here κ is the bending rigidity of the filament, which is related to the filament’s elastic

moduli and cross sectional geometry in the usual way [49]. The function V (z) represents
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Figure 2.2.1: (a) A single filament of interest (dashed line) embedded in a cross-linked

filament network (solid lines) being deformed by a force F transmitted by the probe

particle (large shaded circle). (b) The deflection ζ(z) of that same filament in a two-

dimensional, single filament model, where the undeformed (straight) filament is bound

to a random array of cross-linkers along the ẑ-axis. x is the position of the nearest

cross-linker to the applied force.
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the harmonic interaction of filament with the cross-linkers and the rest of the network.

We take this to be

V (z) = K
∑
i

δ(z − zi), (2.2)

where the set of linker locations {zi|i = 1, . . . , N} are quenched stochastic variables chosen

so that there is a Poisson distribution of lengths between adjacent linkers – see Ref. [39]

for details – with mean length ¯̀between consecutive cross-linkers. The elastic compliance

K−1 of the linkers is meant to reflect the combined compliance of the linking molecules

and the filament network in which they are embedded. The latter compliance dominates

the former so that K ∼ 6πG0a, where G0 is the plateau modulus of the network and a a

size characteristic of the bond to network connection. Taking a ∼ 10−9m and gel moduli

in the kPa or softer range, we find K ∼ 102pN/µm.

Minimization of Eq. 2.1 with respect to the deflection field yields the condition for

force balance obeyed by the filament in between bond breaking events

κ ∂4
zζ(z)− τ ∂2

zζ(z) + V (z)ζ(z) = F δ(z). (2.3)

From this equation and the mean length between consecutive cross-linkers, one obtains

two fundamental length scales – the potential length `p and the bending length `κ defined

respectively to be

`p =

(
144κ ¯̀

K

)1/4

; `κ =
(κ
τ

)1/2

. (2.4)

The potential length is a measure of how far the deflection field of the filament due to the

applied point force penetrates past the first unbroken cross-linker. As one might expect,

this penetration depth grows with the elastic compliance of linkers K−1 and with the

bending modulus of the filament1.

The bending length measures the relative importance of bending and tension in the

force balance relation. Forces associated with filament bending are related to higher

derivatives of the filament configuration, and thus always dominate at sufficiently short

distances. At distances greater than the bending length `κ, tension rather than bending

plays the dominant role in the force balance relation, Eq. 2.3. At those length scales,

the mechanics of the filament is more analogous to that of a taut string. We will see

1The numerical prefactor 144 is included to simplify later calculations.
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that for distances small compared to the bending length `κ the stiff filament acts like a

lever, leading to an acceleration of the rate of subsequent unbinding events, as described

in Section 2.2.2-see Fig. 2.2.4 inset.

Our analysis proceeds as follows. First we calculate all of the forces on the cross-

linkers by solving Eq. 2.3 for states of mechanical equilibrium either with prescribed

displacement or force at the origin. Using the calculated forces on the cross-linkers, we

calculate the dissociation rates of the cross-linkers. We note that, due to the exponential

dependence of the linker unbinding rate on force and the exponential decrease of the

loading on the cross-linker with distance from the point of force application, it reasonable

to assume that linkers break in sequence – the surviving linker currently nearest the point

of force application is overwhelming most likely to break next. Using this observation, we

make the sequential unbinding approximation and then compute the dynamics of filament

unbinding. We then turn to the experiments. For the reader’s convenience we provide a

complete list of variables used in Table 2.1.

2.2.1 States of mechanical equilibrium

The solution of the mechanical equilibrium of the filament is facilitated by a transfer

matrix approach. In the intervals of length `i+1 = zi+1 − zi between consecutive cross-

linkers, we solve Eq. 2.3 with a shifted independent variable:

yi = z −
i∑

q=0

zq, (2.5)

where we define z0 = 0. In this way the deflection field ζi(yi) between the ith and (i+1)th

linker is simply given by

ζi(z) =ζ
(0)
i + ζ

(1)
i yi + ζ

(2)
i `2

κ

[
cosh

yi
`κ
− 1

]
(2.6)

+ ζ
(3)
i `3

κ

[
sinh

yi
`κ
− yi
`κ

]
, (2.7)

in terms of the (as yet unknown) boundary conditions: ζ
(n)
i , n = 0, . . . , 3 representing

the displacement ζ
(0)
i at the ith linker and its first three derivatives. In the limit of no

tension, Eq. 2.7 becomes

ζi(z) =ζ
(0)
i + ζ

(1)
i yi + ζ

(2)
i

y2
i

2!
+ ζ

(3)
i

y3
i

3!
, (2.8)
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Table 2.1: List of variables. Dimensions: [L] =Length, [t] =time, and [F ] =Force.

Symbol Dimensions Description

z [L] Position along contour length of undeformed filament

zi [L] Position of ith cross-linker down

filament’s undeformed contour length, Lc

`i = zi − zi−1 [L] Distance between ith and (i− 1)th cross-linker

x [L] Distance to nearest unbroken cross-linker

from applied force, F

ζ(z) [L] Deflection field of filament perpendicular to

undeformed configuration

ζi {[L],1,[L]−1,[L]−2} Vector of derivatives of the deflection field at ith cross-linker

κ [F ][L]2 Bending modulus of filament

τ [F ] Applied tension on filament

K−1 [L] [F ]−1 Elastic compliance of cross-linkers

`p [L] Potential length

`κ [L] Bending length

¯̀ [L] Mean distance between cross-linkers

F [F ] Applied force

T (`i) Multiple dimensions Transfer matrix (see appendix for dimensions of elements)

k [t]−1 Bell model dissociation rate (base rate of

cross-linker dissociation)

k0 [t]−1 Base rate of cross-linker dissociation

F0 [F ] Thermal force scale

T [t] Total time of dissociation of a filament

from cross-linker density

Pm(t) 1 Probability that m cross-linkers have dissociated by time t

v⊥(x) [L] [t]−1 Normal velocity of point of loading for a cross-linker at x

PN (n) 1 Probability of n sequential peeling events occurring

over one mean dissociation time τ

on a filament bound to N cross-linkers
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as is clear from taking the appropriate limit of Eq. 2.7. In both cases, the solution is

written in terms of the four unknown parameters.

Since the filament must be continuous and have continuous first and second deriva-

tives, knowing the solution for the filament in the ith segment `i = zi−zi−1 provides these

three boundary conditions for the solution of the filament trajectory in the next segment

`i+1 = zi+1−zi. Integration of Eq. 2.3 across zi yields the discontinuity in ζ ′′′(z), which is

determined by the harmonic force provided by that linker: ζ ′′′i (0)−ζ ′′′i−1(`i) = −K
κ
ζi−1(`i).

Imposing these boundary conditions across the ith cross-linker amounts to solving a

linear system of equations for ζ
(n)
i+1 in terms of the analogous information at the previ-

ous cross-linker ζ
(n)
i . Thus, the effect of the solution of the differential equation for the

filament trajectory between cross-linkers is to propagate that boundary condition infor-

mation forward via a linear transformation, which may be described in terms of a transfer

matrix

ζi+1 = T (`i) ζi, (2.9)

where ζi = {ζ(0)
i , ζ

(1)
i , ζ

(2)
i , ζ

(3)
i }. The full transfer matrix is readily computed from the

solutions given in Eqs. 2.7,2.8 for the cases of finite and zero tension respectively. The

matrix is shown in Appendix A.

Iteration of the transfer matrix on the vector representing the state of the filament

at the point of force application yields the state of the filament at an arbitrary cross-

linker: ζn: ζn = [T (`n)T (`n−1) . . . T (`1)] ζ0. The differential equation solutions then

give the correct form of the filament’s trajectory in force balance in between these site.

However, since our interest is solely in the forces at the linkers, the full filament trajectory

information is unnecessary.

It remains to determine the initial boundary condition vector ζ0 at the site of force

application. We choose to apply a point force F and we require a zero tangent condition:

ζ
(1)
0 = 0, i.e, a “clamped” boundary condition. Of course, there are two other boundary

conditions needed to determine the initial value of the vector ζ0, as is expected for the

fourth order differential equation Eq. 2.3. We must specify these at the other end of

the filament. There are two classes of problems that one may address. For finite length

filaments, we may require the far end to be both force and torque free. For infinite
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length filaments, we will assume that the filament and its local slope both approach zero:

ζ
(0,1)
i → 0 for i→∞. Both cases are discussed further below.

2.2.2 An infinite filament interacting with a lattice of linking sites

The simplest solution is obtained for the case of an infinite filament with an ordered

lattice of binding sites. In this case ¯̀ = zi+1 − zi for all i and the product of transfer

matrices necessary for the solution becomes simply the nth power of one transfer matrix.

This problem is best addressed by working in the eigenbasis of the transfer matrix. There

are four complex eigenvalues λi, which are the roots of the polynomial

λ4
i + 1− (λ3

i + λi)(2 + 2 cosh γ + 144
α

γ2
− 144

α

γ3
sinh γ) (2.10)

+2λ2
i (1 + 2 cosh γ + 144

α

γ2
cosh γ − 144

α

γ3
sinh γ) = 0. (2.11)

These roots are functions of two dimensionless control parameters: α =
(
¯̀/`p

)4
and

γ = ¯̀/`κ. The first measures the (fixed) distance between binding sites in terms of

the potential length. The second compares the same inter-binding site distance to the

bending length.

In Fig. 2.2.2a we plot the logarithm of the modulus of these four eigenvalues λi =

λi(α, γ) as a function of α for fixed γ = 5. This plot shows a number of generic features

that characterize all solutions. Two of the four eigenvalues have a modulus greater than

one and two less than one; this point will be essential when studying the infinite filament

solutions below. For any nonzero value of γ (i.e., for finite tension in the filament) there

are three classes of roots λi = λi(α, γ). For sufficiently small α, one finds the high tension

regime where there are four distinct real eigenvalues, shown in the figure as dashed lines.

The subspace spanned by the eigenvectors with eigenvalues having magnitudes less than

one span the set of all monotonically decaying displacement field solutions. In this limit

where the tension is high and the linker compliance is also large, the relaxation of the

filament back to the axis containing the linkers is generically a double exponential decay.

A typical solution is shown by the dashed line in Fig. 2.2.2b.

For larger α, one encounters the incommensurate regime where the eigenvalues come

in two complex conjugate pairs. These four solutions are represented by the solid lines

in Fig. 2.2.2a (the complex conjugate pairs necessarily have the same modulus). The
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Figure 2.2.2: (Top) The log of the modulus of the four eigenvalues as a function for

α for a tensed filament: γ = 5 showing the high tension, incommensurate, and lock-in

regimes, as described in the text. (Bottom) Typical filament deflections for a filament

of infinite length interacting with a a lattice of linker sites in the high tension (dashed),

incommensurate (solid) and lock-in (dash-dotted) regimes.
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subspace spanned by the decaying solutions (corresponding to eigenvalues with modulus

less than unity) takes the form ζn ∼ exp(−kn) cos(nφ). The filament’s displacement

decays exponentially but overshoots the linkers positions. Since the phase angle φ is

generically not a rational fraction of 2π, the periodicity of the height field at the linkers

is typically incommensurate with the linker lattice – a solution of this type is shown by

the dash-dotted line in Fig. 2.2.2b. For even larger α corresponding to more incompliant

linkers, these incommensurate undulations lock-in with the lattice leading to a form

ζn ∼ exp(−kn) cos(nπ). A typical solution of this form is shown by the solid line in

Fig. 2.2.2b. For zero tension, the transition from incommensurate to commensurate

filament undulations remains, but the high tension region vanishes.

We first consider the case of infinitely long filaments. Finite length effects are ad-

dressed in the next section. The known applied force at the origin and the clamped

(zero slope) boundary condition determine two of the four unknown coefficients ζ0 ={
ζ

(0)
0 , 0, ζ

(2)
0 ,−F/κ

}
. To solve the filament trajectory and, from that, the loading on

each of the linkers for an infinite filament one must work in the subspace spanned by the

eigenvectors w1,2 corresponding to the small modulus (|λ1,2| < 1) eigenvalues in order to

obtain decaying solutions. We expand the solution in terms of two unknown coefficients

ζ0 = b1w1 + b2w2. These are given by

b1 =
F

κ

(λ1 − 1) (λ2 + 1) (λ1 − cosh γ)

(λ1 − λ2) (λ1λ2 + λ1 + λ2 − 2 cosh γ − 1)
(2.12)

b2 =
F

κ

(λ2 − 1) (λ1 + 1) (λ2 − cosh γ)

(λ2 − λ1) (λ1λ2 + λ1 + λ2 − 2 cosh γ − 1)
. (2.13)

Recalling that each linker is a Hookean spring, it is simple to obtain the force on each

linker: the force on the ith linker Fi is simply linear in the deflection at that point and

proportional to the spring constant

Fi = K
(
b1 λ

i
1w

0
1 + b2 λ

i
2w

0
2

)
(2.14)

where w0
i is the first component of the ith eigenvector corresponding to ζ(0), the deflection

field.

In order to follow the dynamics of bond breaking, one needs to know how these

forces are redistributed after each linker dissociation event. Anticipating the sequential
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Figure 2.2.3: Absolute value of the deflection of an infinite semiflexible filament inter-

acting with a lattice of binding sites in the locked-in regime showing oscillations and an

exponential envelope (dashed line).

breaking assumption (to be justified by the exponential decay of forces along the filament)

we focus on the case in which the first p cross-linkers have failed. To take into account

the load redistribution after p cross-linkers have been dissociated, we replace the first

(p + 1) transfer matrices in the product by one with an increased inter-linker distance.

The solution for the filament trajectory at the surviving linker sites n > p + 1 is then

given by ζn with

ζn = T [¯̀]n−(p+1) T
[
(p+ 1) ¯̀

]
ζ0. (2.15)

The analysis now proceeds along the same lines, but the state vector of the filament after

the first unbroken cross-linker must remain in the subspace spanned by the two decaying

modes. Thus, the boundary conditions at the point of force application are chosen to

give T
[
(p+ 1) ¯̀

]
ζ0 = b1w1 + b2w2.

We show in Fig. 2.2.3 the absolute value of the deflection field for an infinite semi-

flexible filament interacting with a lattice linker sites before any bond dissociations. Pa-

rameters are chosen so that the filament is in the locked-in regime – see Fig. 2.2.2b. The

semilog plot demonstrates the exponential decay of the envelope of oscillations the deflec-
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Figure 2.2.4: Force on the first unbroken cross-linker after i cross-linkers have already

broken in the linker lattice. The lever arm effect provides increasing mechanical advantage

for subsequent linker peeling over distances `κ. x is the distance to the nearest cross-

linker to the applied force, F . Inset: Diagram of the “class two” lever where the load

(cross-linker force, Fi) lies between the effort (applied force, F ) and the fulcrum (the

remaining cross-linkers not undergoing dissociation).

tion amplitude (dotted line). As consequence, the cross-linker loading is largest on the

first unbroken linker. In fact, for a total force F , the load on the first linker is typically

greater than the applied force ∼ 2F . This and Bell model for cross-linker disassociation

rates justifies our sequential unbinding approximation for the dynamics – see Sec. 2.3.

Given the sequential breaking assumption, one must determine the load on the first

unbroken linker after the first p linkers have already been broken. This is straightforward

using Eq. 2.15 and the harmonic linker potential to convert the deflection to a force. We

plot the result in Fig. 2.2.4. For τ = 0, there is a linear increase in the force due to a

lever arm effect [37, 5].

The array of unbroken cross-linkers provides the fulcrum of the lever, and the lever

arm is the section of the filament that has already undergone cross-linker dissociation – see

inset. Subsequent breaking events increase the lever arm and the mechanical advantage

of the load, suggesting that peeling dynamics should accelerate. Finite tension τ > 0

cuts off this growth at ∼ `κ.
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2.2.3 Finite length corrections

We now examine the forces on the finite contour length filament for an ordered array

of cross-linkers. We take the end of the filament to be force and torque free, setting

ζN = {ζ(0)
N , ζ

(1)
N , 0, 0} at the end of the filament so that there are two boundary conditions

to be satisfied on each end of the filament. We recapitulate the transfer matrix solution for

the finite filament with p broken linkers using Eq. 2.15 and solving for the four unknown

constants, x = {ζ(0)
0 , ζ

(2)
0 , ζ

(0)
N , ζ

(1)
N }. Solving this linear system of equations can be done

as follows. Writing the matrix M = TN−(p+1)
[
¯̀
]
T
[
(p+ 1)¯̀

]
in terms of the column

vectors (~m1, ~m2, ~m3, ~m4), and introducing unit column vectors in the 1 and 2 directions,

ê1,2 respectively, one may write linear system of equations in the form

ζ
(0)
0 ~m1 + ζ

(2)
0 ~m3 − ζ(0)

N ê1 − ζ(1)
N ê2 = −F

κ
~m4, (2.16)

which may be inverted to obtain the four undetermined coefficients. To briefly summarize,

we find that for ordered arrays of linkers, the effect of finite length becomes significant

only in a region of length ∼ `p near the ends, assuming that the filament is at least of

order `p. For disordered arrays of the linkers, it appears that the infinite length filament

approximation also remains valid for some region at least a few `p away from the ends.

2.2.4 Random arrays of linkers

In a random isotropic network, one expects that the distribution of distances between

consecutive cross-linkers to be random with a Poisson distribution. Specifically, given

a mean distance ¯̀ between cross-linkers, the probability of finding a distance between

consecutive linkers between z and z + dz is P (z)dz = exp
[
−z/¯̀

]
/¯̀ dz. This implies

that there will be exponentially rare long gaps, i.e., much larger than the mean spacing,

between cross-linkers. Understanding the effect of such quenched random linker positions

on the unpeeling process is important for assessing the implications of the simple lattice

model for more physical random filament networks.

To explore this issue, we generated an ensemble randomly pinned filaments using

products of transfer matrices ΠN
i=1T (`i), with the distance between the cross-linkers, `i,

selected from a Poisson distribution in place of the simple product of identical transfer

matrices used in Eq. 2.15. For all simulations discussed below, the following values of
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Figure 2.2.5: Distribution of loading on the first unbroken linker for Poisson distributed

cross-linkers on a single filament. The equivalent loading for a regular linker array with

the same inter-linker mean spacing is shown as the dashed line. Inset: Schematic of

sequential peeling showing filament after zero (a), one (b), and two (c) linker rupture

events.

material parameters of the semiflexible filament were used: (when applicable) τ = 5 pN

and K = 100 pN/µm. The results are summarized in Fig. 2.2.5, where we see that the

distribution of loading on the first unbroken cross-linker in the disordered case (solid line)

lies mostly to the left of that force for the linker lattice having the same mean spacing as

the disordered array. The preponderance of these lower forces leads to generically slower

peeling dynamics in disordered linker arrays as compared to regular ones at the same

mean linker density. We directly observe this effect in the calculation of the dynamics –

see Fig. 2.3.2.

2.3 Peeling dynamics

Having examined the problem of mechanical equilibrium, we turn to the question of

forced peeling dynamics of a single filament from an array of linkers. The disassociation

of non-covalent bonds are generally well-understood in terms of the Bell model [4], which

postulates that the unbinding rate k is exponentially sensitive to force applied to that
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bond

k(F ) = k0e
F/F0 , (2.17)

where both the zero force off-rate and the force scale F0 depend on microscopic parameters

specific to the linker in question. For biotin avidin bonds the force scale is F0 ∼ 30 pN [83]

Subsequently, much work has been done on the effect of the loading rate on the mean

force [28] of rupture in force-ramp experiments. We expect that loading to be rapid

compared to the

mean time to failure for a bond, and neglect the dependence on loading rate. The

stochastic nature of the unbinding process implies that, although the linker loading is

deterministic, the peeling dynamics are always stochastic. It is essential to distinguish

between the two different types of random variables in this problem: the stochastic

dynamics associated with the unbinding of a given linker and the quenched random

distribution of linker positions along a filament.

Based on the exponential dependence of the unbinding rate upon load – see Eq. 2.17

– and exponential decay of the bond loading on subsequent linkers moving down the

filament from the point of loading – see Fig. 2.2.3 – the first unbroken linker is always

significantly more likely to break than any of the others. Based on this, we introduce

the sequential unbinding approximation in which we consider a special (but dramatically

more probably) sequence of breaking events in which only first unbroken linker fails.

This limits our analysis to a particular subclass of stochastic trajectories of the filament

under loading and greatly simplifies the analysis. A schematic of the allowed unpeeling

trajectories is shown in in the inset of Fig. 2.2.5 in which we define v⊥, the velocity of

the point of loading normal to the initial direction of the undeformed filament.

Given the force-dependent bond rupture rate, it is a simple matter to write the bond

survival probability [67, 45] at time t after having been loaded with force F at t = 0:

p(t) = exp [−k(F ) t]. To study the stochastic dynamics of the unpeeling process, we need

to calculate the probability that the mth cross-linker breaks in an infinitesimal interval

of time dt at time t after initially loading the filament at the origin.

To determine this we must integrate over all allowed (i.e., sequential) breaking tra-

jectories. In other words, each of the N bonds ruptures in turn, causing the filament
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T k0

Figure 2.3.1: T as a function of filament length Lc for a regular lattice (triangles) and

Poisson distribution (circle) of cross-linkers-see Eq. 2.22. Distances are measured in mean

linker spacings ¯̀. In the tensionless cases (filled symbols) the lever-arm effect accelerates

peeling. In all cases, disorder slows the mean peeling rate, due to “trapping regions”

having anomalously high linker density.

to redistribute the load on the surviving bonds. From this series of stochastic events,

one may define the survival probability of the mth bond at a time t after the filament is

initially loaded at the origin, Pm(t). This may be written as a integral over all intervals

of time tk between the rupture of bonds k − 1 and k for the first k = 1, . . .m− 1 bonds.

These bonds must break before the mth bond, which is next to break (assuming sequential

breaking). The sum of these intervals and time that the mth bond has survived as the

next to break must add to the total time t. The integral is given by

Pm(t) =

∫ t

0

dtm

∫ tm

0

dtm−1 . . .

∫ t2

0

dt1 exp [−k1 t1]k1×

exp [−k2(t2 − t1)]k2 . . . km exp [−km+1(t− tm)],

(2.18)

where the breaking rates k1, . . . , km+1 are determined by the solution of the mechanics

problems previously discussed. The evaluation of those rates lies at the heart of the

calculation.

Assuming those rates are known, the evaluation of the integral is straightforward:

Pm(t) = (−1)m
(

m∏
i=1

ki

)(
m+1∑
q=1

exp [−kq t]
Y (q,m)

)
;
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where

Y (q,m) =

j≤m+1∏
j 6=q

(kq − kj). (2.19)

Taking the time derivative of Pm(t) in Eq. 2.18, one may obtain a recursive set of dif-

ferential equations for the various bond-breaking probabilities. These have a simple

interpretation, which is discussed in appendix B.

The probability for bond m to break is the negative derivative that bond’s survival

probability [45]

fm(t) = − d

dt

(
m∑
q=0

Pq(t)

)
= km+1Pm(t). (2.20)

From this we compute the quantity of primary interest: the mean time for the rupture

of the mth linker along the filament. This mean τm, which is the first moment of the

distribution fm(t) given by Eq. 2.20 is equal to the product of the m breaking rates of

that bond and the earlier bonds

τm =

∫ ∞
0

dtfm(t) t =
m∑
q=1

1

kq
. (2.21)

Setting m = N and using Eq. 2.17, we obtain the total time for filament peeling

T = k−1
0

N∑
i=1

e−Fi/F0 , (2.22)

where Fi is the force on the first unbroken bond after bonds 1, . . . , i−1 have broken. The

result is proportional to the fundamental rupture time scale 1/k0, specific to the linkers

in question.

2.3.1 Asymptotic peeling rates for long filaments

From this linker-breaking scenario for the dissipative dynamics of the network, one must

associate the loading time sufficient to cause plastic deformation with the time required

for a typically filament to be peeled off of its original links to the network. Thus the

mean time for rupturing a significant fraction of linkers from a very long filament gives

a prediction of the model for the loading time required for plastic deformation as a

function of applied force. Calculating the mean peeling time remains a complex problem

for disordered linker arrays and even for ordered linker lattices since the loading on the

ith linker generically has a nontrivial dependence on linker number i.
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Figure 2.3.2: (Left) Distribution of the logarithm of the perpendicular velocities with τ =

0 showing the predicted peeling acceleration due to the lever arm effect holds in a random

array of linkers. Dashed line corresponds to the velocity for an ordered array of cross-

linkers. (Right) the same distribution for τ = 5 pN, but on a linear scale (right). Here

the peeling velocity approaches a constant as predicted based on the lattice calculations.

For peeling a very long filament, however, the asymptotic peeling dynamics reached

after many bond ruptures is more easily analyzed. Examining Fig. 2.2.4, we note that in

the tension free case, the linker loading increases linearly with linker number: Fi = Ξ i

due to the lever arm effect. For the case of tensed filaments, the loading plateaus after a

finite number of linker ruptures: Fi = Ξ′, independent of i. Using these approximations

for all of the rupture events contributing to the mean peeling time, one may simply

perform the sum in Eq. 2.22 to find for the tension-free case with accelerating peeling

T k0 =
e−Ξ/F0 − e−Ξ(N+1)/F0

1− e−Ξ/F0
. (2.23)

Due to the unbounded acceleration of the peeling, an infinite number of linkers N →∞
may be broken in finite time. This unphysical outcome results from our neglect of inertia

in the problem, but the high peeling velocity case is not of physical interest as larger

displacements of the filament associated with the massive lever arm effect necessarily

generate tension. Turning to the case with with tension, leading to constant velocity

peeling, we find the simple result

T k0 = Ne−Ξ′/F0 . (2.24)

We tested these approximate solutions to the problem of average peeling dynamics

for both ordered and disorder linker arrays using respectively analytic solutions and
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numerical simulations. In all cases, mean peeling time scaled with load F as predicted by

the above results and the best fit was obtained using Ξ′/F = 1.92 and Ξ/F = 0.25 (using

the values from Fig. 2.3.1). The first result demonstrates the force overshoot leading to

a linker loading almost twice that of the applied force; the second shows that, without

tension, the loading on sucessive linkers during the peeling grows by one quarter of the

total applied force. We now turn to the peeling dynamics simulations in disordered linker

arrays.

2.3.2 Peeling dynamics in disordered linker arrays

To explore the single-filament peeling dynamics numerically, we constructed an ensemble

of linker distributions for filaments in which the distance to the first linker is from 1 to 60

¯̀. Each filament had a total of 40 linkers, so 39 linkers were distributed beyond the first

one. We consider both ordered linker arrays and disordered ones in which the interlinker

spacing is selected from a Poisson distribution [39]. The stochastic peeling dynamics

were simulated by computing the loading on the first unbroken linker and then selecting

a waiting time for rupture using the Bell model. The results are plotted in Fig. 2.3.1. The

spatial disorder increases the total time of peeling relative to the linker lattice when the

mean linker separation in the disordered case is chosen to be equal to the lattice constant

in the ordered one. For each simulated unpeeling event, we compute the normal velocity

of the point of loading v⊥,

v⊥(x)

v0

=
∆ζ

(0)
0 (x) k(x)

¯̀k0

, (2.25)

defined by the product of the jump in the normal displacement of the filament at the

point of loading ∆ζ
(0)
0 upon a bond rupture at point x down the filament and the rate of

bond breaking of that linker k(x). This velocity is nondimensionalized by the product of

the mean interlinker distance and the zero force bond breaking rate ¯̀k0 = v0 Thus each

jump of the filament at the point of loading due to a discrete rupture event contributes

to the time-averaged velocity of the point of loading. These velocities are then, in turn,

averaged over 1.5× 105 realizations of the disordered linker positions along the filament

(beyond the broken linker in question). Assuming the motion of the tracer particle in

experiments depends solely on the unpeeling of one filament, this quantity reflects the

bead’s observed velocity; we address the validity of this assumption later in our discussion
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of the experiments – see Sec. 2.4.

We plot the probability distributions for v⊥/v0 in Fig. 2.3.2 for tensed (right) and

untensed (left) filaments. The most probable peeling velocities as a function of the

position of the first unbroken linker x reflect the lattice calculation. The lever-arm effect

in the untensed case (left) leads to a high probability of accelerated peeling of the filament

even from a disordered array of linkers. Rare “trapping region” configurations of many

close linkers produce trapping states that lead to a lower mean velocity of the peeling

resulting from a tail of low velocity states in the probability distribution – see the bottom

right corner of Fig.7 left. The same feature applies to the tensed case; we see that the

highest probability trajectories mimic the predictions of the lattice model. The disordered

array of linkers, however, provides new tight-binding regions leading to a significant

probability of observing slower peeling dynamics in any realization of the disordered

pinning array when compared to the ordered one.

Given the stochastic nature of the peeling dynamics, one expects to observe “ripping

events” in which multiple linker rupture in succession over a time short compared to the

mean time between such linker ruptures. To look at such ripping events, we calculate the

probability of n sequential peeling events occurring over one mean dissociation time τ̄ on

a filament bound to N cross-linkers, PN(n). Specifically, an n-linker rip occurs when a

sequence of consecutive linkers rupture with the sum of their waiting times is less than

mean time between ruptures: τi + . . . + τi+n−1 ≤ τ̄ . We allow the same τi to be part of

multiple dissociation types i.e. if τ1 ≤ τ̄ and τ1 + τ2 ≤ τ̄ , then τ1 contributes to the count

of a single dissociation event as well as a sequential 2 cross-linker dissociation event. The

high-n tail of this distribution then reflects the expected rarity of such multiple linker

rips. These should be observable in experiment as sudden large-scale jumps of the tracer

bead under constant load. We discuss this further in Sec 2.4.

To compute PN(n), we created an ensemble of filaments (1.5 × 105 filaments) each

with N = 40 cross-linkers having a mean spacing, ¯̀, of one micron. We looked for ripping

events, as defined above, for two different loadings: F = {30 pN, 120 pN} on filaments

with and and without applied tension. The results are plotted in Fig. 2.3.3.

As expected, the frequency and size of rips both increase with the force for tensed

and untensed filaments. The upper set of histograms in Fig. 2.3.3 show the frequency
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Figure 2.3.3: Distribution of multiple linker rupture events PN(n). Top: With tension

uncorrelated rupture events are selected from the same Poisson distribution as the loading

plateaus. Bottom: Without tension, the lever arm effect accelerates peeling, leading to a

higher frequency of fast ruptures or ripping events. K = 100 pN/µm.
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of ripping events of various size for tensed filaments. For small forces, the likelihood

of n-linker rip decays exponentially with n, consistent with the waiting times between

sequential ruptures being uncorrelated and being selected from the same distribution.

This can be understood in terms of our mechanics calculation. Once the rip passes down

the filament farther than `κ, the lever-arm effect is suppressed and the loading on first

unbroken linker consequently plateaus. Now the Bell model dissociation rate is fixed for

all subsequent ruptures. Waiting times for these ruptures are the selected from a fixed

Poisson distribution with no correlations between events. This result holds even in the

presence of the quenched linker disorder on the filament. It is the bending modulus and

the applied tension down the length of the filament that controls the peeling dynamics.

The lower set of histograms in Fig. 2.3.3 show the frequency of ripping events of various

sizes for untensed filaments. Without tension `κ → ∞, the lever arm effect applies for

all distances producing an unbounded acceleration of the peeling, which in our currently

analysis, appears as a high probability of observing large n ripping events. We observe

that the probability of observing large n rips decays more slowly than exponentially for

large n (in fact, essentially linearly). Without tension, large ripping events become the

norm rather than the exception.

2.4 Comparison to experiment

There are really two classes of experiments to which our theory should apply. Single

filament manipulation of biopolymers such as F-actin or microtubules should provide

the most direct test of the theory. One may imagine a single filament being pulled

from a regular or disordered array of sticky sites on a substrate (generated perhaps by

micro-contact printing techniques [51]). Given that the Bell model parameters are known

with reasonable precision for a number of biologically ubiquitous noncovalent bonds (e.g.,

biotin avidin binding) and that the elastic properties of the semiflexible filaments are well

characterized, such single filament measurements provide the most stringent test of the

model, one with no fitting parameters.

As discussed in the introduction, the original inspiration for the theoretical work,

however, is found in the many filament experiments in which a large bead (i.e., much
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Figure 2.3.4: Representative experimental probe trajectory resolving multiple ∼ 10nm

scale jumps within the constant velocity regime to the right of the vertical dashed line.

(b) Geometric model of the spherical probe of radius R in the semiflexible gel with mesh

size ¯̀ = 0.25µm. After linker × breaks, the probe moves a distance h before contacting

the filaments + in the network. For R� ¯̀, h ∼ 10nm.

bigger than the mesh size of the gel) is moved through the network. This sort of test of

the single filament model is necessarily less direct, but we believe that the present single-

filament calculation provides at least two key insights into the more complex problem of

the gel’s dynamics.

First and most generally, the calculations show that the loading of cross-linkers is

strongest near the point of force application. In the experiment, there are only a small

number (order ten) of filaments in direct contact with the bead. Based on the single

filament calculations presented here, we see that the total applied force appears essentially

on the first cross-linker away from the bead; the small number of filaments in contact

with the bead then divide that load over just a few cross-linkers. This assumption was

previously made in order to explain the observed linker-breaking rates as a function of

force [83]. The present calculation justifies this assumption.

Our present calculation allows us to address a second and more subtle issue of the
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Figure 2.4.1: Dashed Line: Probability distribution of jump sizes for a probe particle

under an applied force of 150 pN in a microtubule gel with mesh size∼ 0.25µm. Solid

Line: Prediction of jump size distribution for first linker rupture from a disordered linker

array with ¯̀= 0.25µm for an untensed filament. κ = 20 pN(µm)2, K = 100 pN/µm, and

F = 5 pN

observed bead dynamics. Within the apparently constant velocity drift of the bead under

load, one observes a spectrum of essentially discontinuous (i.e., more rapid than the data

acquisition rate of 60 Hz) jumps of the bead’s position, typically on the scale of tens of

nanometers. A typical bead trajectory is shown in Fig. 2.3.4 by the solid (blue) line.

The initial elastic jump and relaxation of the network occur to the left of the dashed

vertical line (t < 5s); the set of small jumps making up the ”constant velocity” drift of

the bead occurs for larger times. From these data at larger times, we plot in Fig. 2.4.1

the observed distribution of such jumps using a dashed line. Given our predictions for the

relative probability of larger ripping events along a single filament, we may ask whether

the observed distribution of jumps is consistent with large n rips – coordinated ruptures

of many linkers along one filament – or simply the result of individual linker ruptures

happening independently on different filaments.
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To explore the latter hypothesis, we show the expected distribution of bead displace-

ments associated with single rupture events on a filament having a Poisson distribution

of inter-linker spacing consistent with the experimental gel’s mesh size of 0.25µm. This

prediction, shown by the solid line in Fig. 2.4.1, is consistent with the observed jump dis-

tribution once the applied force on that filament is adjusted to 5pN. This suggests that

∼ 30 filaments are involved in supporting the full 150pN load on the bead. That estimate

is predicted on using a stiff linker spring constant of 100pN/µm. If this is reduced, one

finds the same jump distribution at a larger applied force implying that fewer filaments

are engaged. If we were to attempt the to fit the experimental jump frequency data

assuming that these jumps are occurring due to multiple sequential rupture evens on one

filament, the model would predict larger jumps with too high a frequency to fit the data.

Ripping along one filament is inconsistent with these jump frequency data. The picture

emerges that the bead’s motion is the result of many individual linker ruptures occurring

on different filaments in an uncorrelated manner.

Finally, we note that there is a distinct lack of jumps larger than 10nm found in the

data. To understand this, consider a simple geometric model of the gel as shown in the

inset of Fig. 2.3.4. Here the bead is shown as a circular arc while filaments (heading into

the page) are shown as crosses +, separated by the mesh size `. To calculate the largest

expected jump, we assume that when one linker ruptures, that filament no longer is able

to support the applied load. The filament with the broken linker is shown as × in the

inset. Upon the rupture, the bead moves forward a distance h until it impinges upon new

filaments in the network. This simple geometric argument leads to an upper limit on bead

jumps h ∼ 10nm, again consistent with the data. These two lines of evidence support

the picture that, in the network, bead motion results from the uncorrelated rupture of

linkers on one of the few filaments in direct contact with the bead. We conclude that

there are no catastrophic ripping events at least for these loads. In other words, there is

nothing like crack propagation as a failure mode.

The single filament peeling dynamics in our single filament model are dominated

by the interplay between bending and tension, as demonstrated by the role of `κ in

controlling the lever arm effect. Calculations based on the stochastic peeling dynamics

of the filament from a regular array of linkers provides a useful and broadly accurate
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understanding of the more complex problem of peeling a filament from a disordered

array of linkers with two caveats: (1) linker disorder generically slows the peeling rate

relative to that of the lattice with same mean inter-linker spacing; and (2) there is broad

tail of the peeling velocity distribution towards slow peeling rates associated with rare

“tight-binding” regions consisting of many closely spaced linkers. The analysis of multi-

linker rips and the comparison to experiment points to a picture of dissipative dynamics

in the gel associated with the uncorrelated rupture of individual linkers on the various

filaments in contact with the probe particle. All rupture events should occur essentially

at the nearest cross-link to the probe, i.e., within one mesh size from it. We expect this

single-filament work to serve as a foundation for more complex multifilament models of

linker rupture and dissipative dynamics in a broad class of semiflexible gels.
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Appendix

2.A Equations of Equilibrium

Taking the undeformed state of the single filament to be straight, we derive the equations

of equilibrium for a filament below a la Landau[49] where the filaments position in space

is given by the vector ~r(l). We first consider a single element along the arc-length of the

filament dl and derive the force and moment balance equations for this filament. As seen

in Figure 2.A.1, there are the internal forces and moments on the filament, ~F and ~M as

well as an external force per unit length ~K. The sum of all forces and moments acting

upon the filament arc-length dl yields the following force and moment balance equations

from the simple geometry of the figure to lowest order in dl

d ~F

dl
= − ~K;

d ~M

dl
= ~F × ~t. (2.26)

Assuming that the unit tangent vector is essentially parallel to the undeformed axis of

the filament ẑ and taking the derivative of the moment balance equation, we arrive at

d2 ~M

dl2
= t̂× ~K + ~F × dt̂

dl
. (2.27)

The moments in the {x̂, ŷ} directions are given approximately by the product of the

Young’s Modulus, E, and moment of inertia, I, and the component of the rotation

vector, ~Ω i.e. Mx = EIξΩξ ≈ −EIx∂2
zY (z) and My = EIηΩη ≈ EIy∂

2
zX(z) where

~r(l) = {X(z), Y (z), z} and ~Ω = t̂× dt̂
dl

+ t̂Ωζ . {X(z), Y (z)} are the deflection fields in the

directions perpendicular to the undeformed filaments contour length Using the derivative

of the moment equation, we find equations of equilibrium of the form Eq. 2.3 given in

the text.

2.B Transfer matrix

The transfer matrix necessary for the solution of the mechanics problem discussed in

Eq. 2.9 is given by T (`i) =
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Figure 2.A.1: A small length of a semi-flexible filament dl showing the various forces and

moments being applied on said segment. ~F and ~M are the forces and moments being

applied at the ends of the filament segment, dl. ~K is the external force per unit length

on the filament



1 `i `2
κ [cosh `i/`κ − 1] `3

κ [sinh `i/`κ − `i/`κ]
0 1 `κ sinh `i/`κ `2

κ [cosh `i/`κ − 1]

0 0 cosh `i/`κ `κ sinh `i/`κ

−K
κ
−K

κ
`i ( sinh `i/`κ − A [cosh `i/`κ − 1]) /`κ cosh `i/`κ − A [sinh `i/`κ − `i/`κ] ,


(2.28)

where A = (K/τ)`κ. Thus the transfer matrix depends on the bending length `κ,

the distance between consecutive cross-linkers `i, and the spring constant K of the linker

(though the dimensionless parameter A, defined above). In the limit of zero tension,
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`κ →∞ the transfer matrix goes to simpler limiting form:

T (`i) =



1 `i `2
i /2! `3

i /3!

0 1 `i `2
i /2!

0 0 1 `i

−K
κ
−`i Kκ − K

2!κ
`2
i 1− K

3!κ
`3
i


(2.29)

In either case, for a fixed array of binding sites, the product of transfer matrices

becomes a product of random matrices depending on the quenched random variables

`i. For a regular array of binding sites, this matrix product is easily performed in the

diagonal basis. This approach returns us to the discussion of the four eigenvalues of the

transfer matrix found in the main text.

2.C Master equation for linker rupture

The integral formulation of the probability of the mth bond rupture at time t given by

Eq. 2.19 is a complete solution to the problem of the stochastic dynamics of peeling along

any one distribution of linkers; that distribution sets the values of ki in the integral. The

result, however, is more transparent if one takes the time derivative. In that case, due to

the sequential breaking approximation, one may write the time derivative of Pm solely in

terms of itself and the breakage probability of the last broken cross-linker Pm−1:

Ṗm(t) = km Pm−1(t)− km+1 Pm(t), (2.30)

for all but the first cross-linker, i.e., for m > 0. The first term represents the increase

in breakage probability due to the loss of the m − 1 cross-linker, making cross-linker m

the next to break. The second term represents the breakage of that cross-linker. These

equations are supplemented by two more specific to the first

Ṗ0(t) = −k1 P0(t), (2.31)

and last

ṖN(t) = kNPN−1(t) (2.32)
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cross-linker, where clearly only one of these two processes are operative. Finally, one needs

the initial conditions Pm(t = 0) = δm0, indicating that no linkers are broken initially. At

long times, PN(t→∞) = 1; any finite filament eventually becomes completely unbound.
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CHAPTER 3

The Ion Trap Problem

3.1 Introduction

In this chapter we explore the stochastic dynamics of an ion trapped in a time varying

harmonic potential suffering collisions with two nonintectating species of gasses held at

different temperatures. We will find that the addition of a second temperature bath for

the particle to interact with leads to drastic deviations from the results expected from

thermodynamics, statistical mechanics, and the fluctuation-dissipation theorem. We will

begin by showing how the typical methods to study such systems fails to produce the

correct probability distributions for the position and velocity distributions of the particle

in steady state. We will proceed to show that a Master equation approach is the correct

way to study such systems. Finally we discuss possible experiments to explain such

phenomena. We begin by outlining our motivations to study such problems.

3.2 Motivation

A wide variety of natural processes occur far from equilibrium. Their complex phe-

nomenology is, in many cases poorly understood, but has wide-ranging implications from

heart dynamics [64] to climate modeling [68]. These systems may exhibit elaborate spa-

tiotemporal patterns, such as in Rayleigh-Benard convection [19], oscillatory chemical

reactions [77], or in swarms of active swimmers [12]. Some theorems [60, 41] have been

put forward regarding their (typically large) fluctuations [22]. The number, however, of

well-characterized nonequilibrium steady-states is limited. To date, soft matter systems

such as active gels [59], colloids [62], or fluids [31, 32] have been considered as prototypi-

cal models. Developing even simpler model systems amenable to precise control of their

nonequilibrium state is essential for further progress in the field.
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We investigate such a prototypical nonequilibrium system consisting of a single ion

immersed in two non-interacting ideal gases, which can be realized in a recently developed

hybrid atom-ion trap [66, 38, 65, 84, 82, 35]. There, the single ion, held in a radio-

frequency (rf) trap, interacts with either two-independent laser-cooled buffer gases or

one laser-cooled buffer gas and a low pressure background gas. Because the neutral-ion

collision cross section is orders of magnitudes larger than neutral-neutral collision cross

sections, the interaction of the buffer gases with one another can be neglected, so that

the buffer gas species may have large temperature differences, driving the system out of

equilibrium. The rf trap also generates micro-motion [52], further driving the ion out

of equilibrium [23, 17]. In our theoretical analysis, we distinguish these two effects by

considering both the experimental rf trap and a hypothetical static one.

We show here that an ion in either trap with a two-temperature buffer gas should

exhibit striking nonequilibrium features. We focus on three in particular. We demonstrate

(i) large departures from a Maxwellian velocity distribution and (ii) the non-factorizability

of the joint position–velocity probability distribution. This factorizibility is a hallmark of

classical equilibrium statistical mechanics. In the nonequilibrium state, the ion exhibits

position-velocity sorting wherein ionic high velocity states are overpopulated in regions

of high potential energy relative to regions of low potential energy. This property allows

one to construct, in principle, a heat engine, even in the static trap, using the edges and

center of the trap as heat sources and sinks, respectively. We also demonstrate (iii) the

breakdown of the fluctuation-dissipation theorem from a comparison of ionic mobility and

diffusion. There will be interesting nonequilibrium effects in ionic transport. These three

features demonstrate that this system is a rich playground for exploring nonequilibrium

physics in a precise and controllable manner. We conclude by suggesting experiments to

observe these features and propose future research directions.

We begin with a one-dimensional model of a trapped ion of mass M interacting with

two non-interacting ideal gases of masses mh and mc at differing temperatures – see the

inset of Fig. 1 for a schematic representation of the ion (green) in a potential interact-

ing with hot (red) and cold (blue) atoms. The time-dependent probability distribution

P (x, v, t) of the ion velocity v and position x obeys the master equation
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P(v)

Figure 3.2.1: Steady-state ionic velocity distribution P(v) for a two-temperature buffer

with Tc = 1(m/s)2 = 0.01Th with no trap. mc/mh = 20, mc/M = 40/173. The distri-

bution is shown for a Langevin ion-atom cross section (purple, solid) and a geometric

cross section (red,dashed-dotted). The power-law velocity tails agree with a Monte Carlo

simulation of the velocity transitions (open squares), and are distinct from the Gaussian

MB distribution of the cold atoms (blue dashed line). Time-averaged P(v) in a rf trap

with Ω = 2πs−1 and a spring constant k = 100 s−2 and using the Langevin collision cross

section is shown by the (green) dotted line.

(
∂t + v ∂x +

F (x, t)

M
∂v

)
P (x, v, t) =

∫
dv′W (v|v′)P (x, v′, t)−

∫
dv′W (v′|v)P (x, v, t).

(3.1)

The left side of Eq. 3.1 contains the time derivative of the probability density and two

streaming terms representing the advection of probability in position space due to the

ion velocity v and the advection of probability in velocity space due to the acceleration of

the ion in response to the trapping force F (x, t). The terms on the right side of Eq. 3.1

represent the effect of collisions between the ions and the buffer gases. These collisions

generate ion velocity transitions from v1 to v2 with probability per unit time W (v2|v1)dv2.

We assume that the two buffer gases are themselves in equilibrium states with Maxwell-

Boltzmann (MB) velocity distributions corresponding to temperatures Th > Tc and num-

ber densities ch, cc respectively. The buffer gases constitute large enough thermal reser-
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voirs to maintain their temperatures in spite of the exchange of energy with the ion, and

are decoupled from the external force F (x, t), which acts solely on the ion.

This master equation was studied by Alkemade and van Kampen [1], where it was

assumed that the ionic mass M was sufficiently large compared to those of the buffer gas

atoms that one may expand W for small momentum transfer. This allowed the replace-

ment of the above integro-differential equation with a differential equation containing

a small expansion parameter related to the ratio of the buffer gas mass to the tracer

particle mass. In order to account for hot and heavy buffer gasses we avoid this Kramers-

Moyal expansion. Nevertheless, it will be of interest to compare and contrast the results

associated with a Kramers-Moyal expansion in our study of this system.

3.3 Calculation of Velocity Distribution using Kramers-Moyal

Expansion

3.3.1 Velocity Difference Moments for two Temperature System

Here we expand the Master equation using a Kramers-Moyal expansion a la [1] in the

parameter ε = M−1/2 for the ion embedded in a two temperature buffer gas system

and show how various approaches using a Focker-Planck and Langevin approach fail to

explain the ion/two buffer gasses at drastically different temperature systems.

In order to calculate the probability distribution for the ion’s velocity v as described

in [1], P(v, t), we must derive the probability per unit time, W (v′|v), that the ion goes

from a velocity v to a velocity v′+ dv′ arbitrary buffer gasses with temperature Ti due to

elastic collisions, (Eqns. (13a) and (13b) of [1])

W (v′|v) =
∑
l

(
M +ml

2ml

)2

(v′ − v)fl

(
M +ml

2ml

v′ − M −ml

2ml

v

)
for v′ > v (3.3)

=
∑
r

(
M +mr

2mr

)2

(v − v′)fr
(
M +mr

2mr

v′ − M −mr

2mr

v

)
for v′ < v (3.4)

where the summation over the indices l and r extends over all particle species to the
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left (right) side of the ion with masses ml (mr) and

fi(v) = ci

(
mi

2πkBTi

) 1
2

exp

[
− miv

2

2kBTi

]
(3.5)

is the one-dimensional Maxwell velocity distribution for particle species i with concen-

tration ci, mass mi, on its respective side with temperature Ti.

Given the forms of Eq. (3.3) and (3.4), we recalculate the derivatives of the velocity

difference moments α
(p)
n given in [1] using these modified Maxwell distributions of the

left and right buffer gasses and find that

α(p)
n =

∑
l

(
1 +ml/M

2ml

)2 ∫ ∞
0

dq qn+1f
(p)
l

(
1 +ml/M

2ml

q

)
− (3.6)

∑
r

(
1 +mr/M

2mr

)2 ∫ 0

−∞
dq qn+1f (p)

r

(
1 +mr/M

2mr

q

)
(3.7)

where like in [1], f
(p)
i denotes the pth derivative of fi(v) evaluated at ((1 +mi/M)/2mi) q

respectively.

The evaluation of Eq. (3.7) follows identically to the calculation in the appendix of [1]

only with small modifications to the terms related to the temperatures of the two sides

of the ion yielding the following general expressions for α
(p)
n :

α(p)
n =

(−1)
1
2

(p+n+2)

√
π

2n−
1
2 (n+ 1)! (p− n− 3)!!×∑

i

(±i)n+pcim
1
2

(n+p−1)

i (kBTi)
− 1

2
(p−n−1) (1 +mi/M)−n p > n+ 1; p− n even (3.9)

= 0 for p > n+ 1; p− n odd (3.10)

=
(−1)p√

π
2

1
2

(3n−p−1) (n+ 1)!

(n+ 1− p)!Γ
[

1

2
(n− p) + 1

]
×∑

i

(±i)n+pcim
1
2

(n+p−1)

i (kBTi)
1
2

(n−p+1) (1 +mi/M)−n for p ≤ n+ 1 (3.11)

where the index i denotes the sum over the left and right sides and (±i) is (+1) for the

ith gas species in the left chamber and (−1) for the ith species in the right chamber.

The only differences that now arise in the calculation of the P(v, t) to arbitrary order

in ε calculated in [1] versus those of the two temperature problem found here are the

redefinitions of the α
(p)
n in Eqns. (3.9), (3.10), and (3.11). All other formulas are identical

to those found in [1].
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3.3.2 Velocity Difference Moments for Langevin Collsion Cross-Section

As we are interested in modeling the effect of two noninteracting buffer gasses interacting

with an ion, we take into account the appropriate Langevin collision cross-section and

rederive the velocity difference moments for neutral particles colliding with an ion as well.

We make the ansatz, using the work of [21] and [16] for the collision cross-section

of a neutral atom with an ion, and modify our velocity transition rates for an elastic

cross-section by taking W (v′|v)→ W (v′|v)σL where σL = π g
√

4C4/|v′ − v|2µi, where g

has units of m−2 to correct for the 1-D nature of our collisions, µi is the reduced mass for

the collision for the appropriate buffer gas with the ion, and C4 is a constant related to

the polarizability of the neutral atoms. We take g = 2 mi

mi+M
m−2 in our calculations for

both gasses to match the collision rates of [16]. We may now expand the master equation

using these modified velocity transition rates i.e.

∂tP (x, t) =

∫
dqΦ(εx− ε4q; q)P (x− ε3q, t)

− Φ(εx; q)P (x, t) (3.12)

where M = ε−2, q = M2 = (v′ − v), εx = v, and

Φ(V ; q) =
∑
l

(
1 +ml/M

2ml

)3/2

π g
√

8C4,lfl

(
v + q

(
1/M +ml/M

2

2ml

))
; for q > 0

∑
r

(
1 +mr/M

2mr

)3/2

π g
√

8C4,rfr

(
v + q

(
1/M +mr/M

2

2mr

))
; for q < 0

(3.13)

Performing the Kramers-Moyal expansion yields

∂t =
∞∑
n=1

(−1)n
ε3n

n!
∂nx (αn(εx)P (x, t)) (3.14)

means we must now evaluate the following velocity difference moments of

αn =

∫
dq qnΦ(εx; q) (3.15)

We expand the αn and find

αn =
∞∑
p=0

α(p)
n

(εx)p

p!
(3.16)
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where now the full master equation may be written as

∂tP (x, t) =
∞∑
n=1

(−1)n

n!

∞∑
p=0

ε3n+p

p!
α(p)
n ∂nx (xP (x, t)) (3.17)

. The calculation of the α
(p)
n amounts to evaluating integrals of the following form:

α(p)
n =

∑
l

(
1 +ml/M

2ml

)3/2

π g
√

8C4,l

∫ ∞
0

dq qnf
(p)
l

(
q

(
1/M +ml/M

2

2ml

))
+

∑
r

(
1 +mr/M

2mr

)3/2

π g
√

8C4,r

∫ 0

−∞
dq qnf (p)

r

(
q

(
1/M +mr/M

2

2mr

))
. (3.18)

We rescale q and find the new integral may be written as

α(p)
n =

∑
i

(±)n+p

(
1 +mi/M

2mi

)3/2(
2mi

1/M +mi/M2

)n+1

π g
√

8C4,i

∫ ∞
0

dv vnf
(p)
i (v)

(3.19)

where the +(−) sign corresponds to particles to the left (right) of the ion. First we

consider the limit that p > n; then by integration by parts we arrive at

α(p)
n =(−1)nn!

∑
i

(±)n+p

(
1 +mi/M

2mi

)3/2(
2mi

1/M +mi/M2

)n+1

π g
√

8C4,i×∫ ∞
0

dv f (p−n)(v) (3.20)

where the integral equals −f (p−n−1)(0) which vanishes for p − n even and for p − n odd

equals

(−1)
1
2

(p−n+1)ci

(
m

2 π kBTi

) 1
2
(

m

kBTi

) 1
2

(p−n−1)

(p− n− 2)!!. (3.21)

For p ≤ n we arrive at

α(p)
n =(−1)p

n!

(n− p)!
∑
i

(±)n+p

(
1 +mi/M

2mi

)3/2(
2mi

1/M +mi/M2

)n+1

π g
√

8C4,i×∫ ∞
0

dv vn−p fi(v) (3.22)

where the integral evaluates to

2
1
2

(n−p−2)

√
π

Γ

[
1

2
(n− p+ 1)

]
ci

(
mi

kBTi

) 1
2

(p−n)

(3.23)
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Thus α
(p)
n in general evaluates to

α(p)
n =2n+2(−1)

1
2

(n+p+1)n!(p− n− 2)!!Mn+1
√
π
∑
i

(±)n+pg ci
√
C4,i×

m
1
2

(p+n+2)

i (kBTi)
1
2

(n−p)(1 +mi/M)−n+ 1
2 ;

p > n. p− n odd.

=0; p > n. p− n even.

=2
1
2

(3n−p+1)(−1)p
n!

(n− p)!Γ
[

1

2
(n− p+ 1)

]
Mn+1

√
π
∑
i

(±)n+pg ci
√
C4,i

m
1
2

(p+n)

i (kBTi)
1
2

(n−p)(1 +mi/M)−n+ 1
2 (3.24)

3.3.3 Kramers-Moyal Expansion

Using the redefinitions of the α
(p)
n , let us re-derive some of the relationships of the O(ε2)

relationships between the α
(p)
n in the two temperature bath limit for particles with an

elastic collision cross-section1. Proceeding from Eqn. (20a) of [1], let us prove the pres-

sures on both sides of the ion are equal at equilibrium to O(ε2) i.e. we calculate the time

rate of change of the velocity of the ion for a sub-ensemble of systems with velocity v0 at

t = 0

d

dt
〈v〉sub =

〈dv〉sub
dt

=

〈
lim

∆t→0

v − v0

∆t

〉
sub

=

〈
lim

∆t→0

∆v

∆t

〉
sub

=
α1(v0)

M
(3.25)

where we used v = v0 + ∆v and the definition of αn found in Eqn. (9) of [1]. Taking an

overall ensemble average at equilibrium, we find that

d

dt
〈v〉eq = 〈α1(v)〉eq = 0. (3.26)

Expanding Eq. (3.26) to O(ε2), we find that 〈α1(V )〉eq =
〈
α

(0)
1 (0)

〉
= O(ε2) ≈ 0, which

implies that the pressures, pl and pr, on both sides are equal (much like in [1]’s one

temperature system) i.e.
∑

l kBTlcl −
∑

r kBTrcr = pl − pr = 0 after dropping all higher

order terms in ε. Knowing now that α
(0)
1 = 0 (to O(ε2)), we may now proceed to write

1The calculations are nearly identical for the Langevin collision cross-section with the appropriate
substitutions of terms
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out the Master Equation expanded in the small parameter ε (using [1]’s redefinition of v

i.e. v →M1/2v) of [1] to O(ε2) i.e.

∂tP(v, t) =− ε ∂v
(
εα

(1)
1 vP(v, t)

)
+
ε2

2
α

(0)
2 ∂2

vP(v, t) (3.27)

We may use Eqn. (3.27) to calculate the time rate of change of the average velocity 〈v(t)〉
which is

d

dt
〈v(t)〉 = ε2 α

(1)
1 〈v(t)〉 (3.28)

Note that the boundary condition of 〈v〉eq = 0 from equilibrium considerations is already

built into our solution as sgnα
(1)
1 = −1, and our previous arguments in Eqn. (3.26)

allowed us to drop the α
(0)
1 term. We arrive at the following solution for Eqn. (3.28) of

〈v(t)〉 = 〈v(0)〉 exp

[
α

(1)
1

M
t

]
(3.29)

thereby indicating that had we started from a phenomenological theory of the movement

of the ion, one would have identified α
(1)
1 as the damping constant −Γ. This fact will be

exploited in our Langevin approach in the next subsection.

In addition to allowing us to solve for the average velocity, Eqn. (3.27) allows us

to solve for the equilibrium distribution of velocities for the ion (which we expect to

be Maxwellian) if we wish. Rewriting Eqn. (3.27) for the equilibrium distribution we

find −∂v
(
α

(1)
1 vPeq(v)

)
+
(
α

(0)
2 /2

)
∂2
vPeq(v) = 0. We integrate once and solve the in-

homogenous first-order differential equation in v, impose the boundary conditions that∫
dvPeq(v) = 1 and 〈v〉eq = 0 to find

Peq(v) =

(
M

2πkBTP

) 1
2

exp

[
− Mv2

2kBTP

]
; (3.30)

TP =

∑
l T

3/2
l m

1/2
l cl +

∑
r T

3/2
r m

1/2
r cr∑

l T
1/2
l m

1/2
l cl +

∑
r T

1/2
r m

1/2
r cr

, (3.31)

where TP is the effective temperature of the ion using the Kramers-Moyal expansion to

second order in ε, noting that the pressure condition must hold true for this equilibrium

distribution to hold, thereby restricting the values the temperatures and concentrations

the gasses can take.
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Repeating the equilibrium arguments of Eqn. (20a) in [1], independent of our calcu-

lation of Peq(v), we find TP again and through some trivial algebra (to order O(ε2)) it is

easy to prove that

α
(0)
2 + 2α

(1)
1 kBTP = 0 (3.32)

Similarly, we may perform such an expansion then the gasses have a Langevin collsion

cross-section with the ion. Rewriting the expanded Master equation using the velocity

variable, v, we find that we may describe the velocity distribution of the ion to lowest

order in ε as

∂tP (v, t) = −α(1)
1 ∂v(v P (v, t)) +

α
(0)
2

2M
∂2
vP (v, t) (3.33)

where α
(1)
1 = −23/2π

∑
i

√
C4,ig mi ci and α

(0)
2 = 25/2π

∑
i

√
C4,ig mi cikBTi which clearly

satisfies the necessary fluctuation-dissipation theorem relationship between the friction

and the thermal fluctuations much like the elastic collision cross section. To show

that these results are identical to those expected from a linear approximation, we use

a Langevin noise approach to study the system next.

3.3.4 Langevin Approach

Let us write down a stochastic differential equation for the ion’s velocity subject to two

random thermal forces, fl(t) and fr(t) (white thermal noise) and solve for the correspond-

ing probability distribution, P(v, t) using standard methods such as those found in [14]

i.e.

M
d

dt
v(t) = −(Γl + Γr) v(t) + fl(t) + fr(t)

〈fl(t)〉 = pl; 〈∆fl(t)∆fl(t′)〉 = 2ΓlkBTlδ(t− t′) (3.35)

〈fr(t)〉 = −pr; 〈∆fr(t)∆fr(t′)〉 = 2ΓrkBTrδ(t− t′) (3.36)

where ∆fi(t) = fi(t)− 〈fi(t)〉 {i = l, r} and Γ = Γl + Γr = −α(1)
1 .

Let us rewrite Eqn. (3.35) in the ω space using the ∆fi(ω) =
∫
dt exp (iωt)∆fi(t)

v(ω) =
∆fl(ω) + ∆fr(ω)

(−i ωM + Γ)
+

2π(pl − pr)δ(ω)

(−i ωM + Γ)
(3.37)
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which now allows us to calculate the velocity-velocity correlation function Cvv(ω) =

〈v(ω)v(−ω)〉 averaged over the thermal noises

Cvv(ω) =
2kBTlΓl + 2kBTrΓr

|−iωM + Γ|2
+

4π2(pl − pr)2δ(ω)

|−iωM + Γ|2
. (3.38)

Let us transform Cvv(ω) back to the time domain and solve for the equal time velocity-

velocity correlation function in order to figure out what Teq of the ion must be subject to

these two thermal forces and using the equipartition theorem2 i.e.

〈
v2(t)

〉
eq

=
kBTeq
M

=

∫
dω

2π
Cvv(ω) =

2kBTlΓl + 2kBTrΓr
2M Γ

. (3.39)

A quick glance of Eqn. (3.39) immediately reveals that Teq is nothing more than

Teq =
Tl Γl + Tr Γr

Γl + Γr
= TP (3.40)

or the average of the temperatures, weighted by their associated damping coefficient, a

much more insightful way of expressing Eqn. (3.31). Having now recovered the same

equilibrium temperature as our small parameter expansion Master equation approach

from the Fluctuation-Dissipation theorem, we should expect to recover the same Focker-

Planck equation for the probability distribution, P(v, t) to O(ε2). We do this below.

Given that the conditional probability of the ion to go from a state with velocity v0

at t0 to a state of velocity V at t is P(v, t|v0, t0) = 〈δ(v − v(t))〉v0,t0 , we may find the

probability that a ion is in a state with velocity v at time t+ ∆t from

P(v, t+ ∆t|v0, t0) =

∫
dv1P(v, t+ ∆t|v1, t)P(v1, t|v0, t0) (3.41)

We may expand the conditional probability P(v, t+ ∆t|v1, t) = 〈δ (v − v(t+ ∆t))〉v1,t in

orders of ∆v = v(t+ ∆t)− v(t)

〈δ(v − v(t+ ∆t))〉v1,t = δ(v − v1)− 〈∆v〉v1,t ∂v1δ(v − v1) +

〈
(∆v)2〉

v1,t

2
∂2
v1
δ(v − v1)

(3.42)

and using the integrated form of the equation of motion of the ion from t to t+∆t, we

may solve for the moments of ∆v averaged over the thermal noise i.e. taking the average

2The astute reader will complain that we have thrown away the (pl−pr) term of Eqn. (3.38), however
using equilibrium considerations, we will find it to be zero in the derivation of the probability distribution
P(v, t) using the Langevin approach.
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of

∆v = − Γ

M
v1∆t+

1

M

∫ t+∆t

t

dt′ (fl(t
′) + fr(t

′)) . (3.43)

The two most important moments in calculating the conditional probability,

P(v, t+ ∆t|v0, t0), to first order in ∆t are 〈∆v〉v1,t and
〈
(∆v)2〉

v1,t
which are respectively

〈∆v〉v1,t = − Γ

M
v1∆t+

1

M
(pl − pr) ∆t (3.45)〈

(∆v)2〉
v1,t

=
2 Γ kB Tp
M2

∆t. (3.46)

Now having the moments of ∆v, we may perform the appropriate integrations by parts

on Eqn. (3.41) and expansion to O(∆t) to recover the following Focker-Planck equation

∂tP(v, t|v0, t0) =− 1

M
∂v [(pl − pr − Γ v)P(v, t|v0, t0)] +

Γ kB Tp
M2

∂2
vP(v, t|v0, t0). (3.47)

Solving for the equilibrium distribution of Eqn. (3.47) and imposing the equilibrium

condition of 〈v〉eq = 0 yields Peq(v) of Eqn. (3.30) and pl = pr as before. Two separate

approaches to solving for the probability distribution have yielded to same results to

O(ε2). In the next section, we proceed on with our Kramers-Moyal expansion to O(ε4)

in the presence of a spatially dependent force field.

3.3.5 Particle in a Harmonic Trap

We generalize our master equation approach to include interactions with a spatial and

time-dependent force field F (x, t) = −∂xU(x, t) + F0(t) where U(x, t) is the potential

energy of the ion at position x and time t, and F0(t) is some active forcing term. This

means that the energy of the ion in the absence of the ideal gas buffers may be written

as

E(x, v, t) =
1

2
M v2 + U(x, t)− xF0(t) (3.48)

In order to derive the master equation of the now spatially dependent probability

distribution, P (x, v, t), we must derive the transition probability rates from a state with

velocity and position {x, v} to a state with velocity and position {x′, v′}, i.e.in the ab-

sence of a collision with the buffer gases and in the presence of a collision with the
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buffer gases. The total transition rate from the initial to final states may be written as

Wtotal(x
′, v′|x, v) = Wfree(x

′, v′|x, v) +Wcollision(x′, v′|x, v). The transition probability rate

during a time interval dt in the absence and presence of collisions may be written as

Wfree(x
′, v′|x, v) =

1

dt
δ(v′ − (v +

F (x, t)

M
dt))δ(x′ − (x+ v dt)) (3.49)

Wcollision(x′, v′|x, v) = (Eqn. (3.3) θ(v′ − v) + Eqn. (3.4) θ(v − v′)) δ(x′ − (x+ v dt))

(3.50)

where we have dropped terms of O(dt) in Eqns. (3.3) and (3.4). Expanding to order dt

yields Eq. 3.1

3.4 Solution to the Position Dependent Master Equation to

O(ε2) in a Time-Dependent Force Field

We seek solutions to O(ε2) for the Master equation, in the presence of the arbitrary

time-dependent force field of the form F (x, t) = −xF1(t) + F0(t) is:

∂tP (x, v, t) = − 1

M
(−xF1(t) + F0(t)) ∂vP (x, v, t)− v ∂xP (x, v, t)− (3.51)

α
(1)
1

M
∂v ( v P (x, v, t)) +

α
(0)
2

2M2
∂2
v (P (x, v, t)) . (3.52)

This equation may be written in a more suggestive form a la [44] as

∂tP = −Ci(t)∂xiP − Aij(t)∂xi (xj P ) +
1

2
Bij∂

2
xixj

P (3.53)

where P = P (~x, t), x1 = x, x2 = v, and

Ci(t) =

 0

F0(t)/M

 ;

Aij(t) =

 0 1

−F1(t)/M α
(1)
1 /M

 ;

Bij(t) =

0 0

0 α
(0)
2 /M2

 . (3.54)

Making the substitution of xi = yi+ui(t) where ui(t) is the solution to u̇ = A(t)u+C(t),

the transformed expanded Master equation may now be written as

∂tP = −Aij(t)∂yi (yjP ) +
1

2
Bij∂

2
xixj

P. (3.55)
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The solution to such equations is well known in the literature [15] (and can be derived

explicitly by a method of characteristics for the characteristic function of P (~x, t), G(~k, t))

to be a Gaussian distribution with the following mean and covariance matrix

〈y〉t =Y (t)y0; (3.56a)

Ξ(t) =

∫ t

0

dt′Y (t)Y −1(t′)B(t′)(Y T )−1(t′)Y T (t) (3.56b)

where the matrix Y (t) is known as the propagator and is the solution to the following

differential equation

Ẏ (t) = A(t)Y (t); Y (0) = 1 (3.57)

and y0 is the value of y at t = 0.

Therefore the full probability distribution for P requires solving for u(t), Y (t) in

Eqn. (3.57) for the appropriate F0(t) and F1(t) of interest, and then evaluating the integral

in Eqn. (3.56b) to have a full expression for the covariance matrix. The full solution may

be written as

P (~y = ~x− ~u(t), t) = (2π)−1 (det Ξ(t))−1/2 exp

[
−1

2
(y − 〈y〉t)T Ξ−1 (y − 〈y〉t)

]
. (3.58)

From here, we can compare the time-dependent force field solutions using a Kramers-

Moyal expansion as opposed to our exact Master equation approach for the deviations

from the Gaussian theory. We now proceed to continue our expansion of the Master

equation and study the nature of higher order corrects in ε to see whether they can

satisfy the necessary conditions for Maxwell-Boltzmann statistics to hold for the two

noninteracting gasses at different temperatures.
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3.5 O(ε4) calculation of P(v, t) in the two bath system

Expanding the Master equation to fourth order in ε4 yields (once again using v →M1/2v

as in [1])

∂tP(v, t) =− ε ∂v
(
α

(0)
1 P(v, t) + ε α

(1)
1 vP(v, t) +

ε2

2!
α

(2)
1 v2P(v, t) +

ε3

3!
α

(3)
1 v3P(v, t)

)
+

ε2

2!
∂2
v

(
α

(0)
2 P(v, t) + ε α

(1)
2 vP(v, t) +

ε2

2!
α

(2)
2 v2P(v, t)

)
−

ε3

3!
∂3
v

(
α

(0)
3 P(v, t) + ε α

(1)
3 vP(v, t))

)
ε4

4!
∂4
v

(
α

(0)
4 P(v, t)

)
. (3.59)

We repeat the calculation of [36] for our two gas system and calculate the conditions

necessary among the α
(p)
n in order for Peq(v) to be the Maxwellian distribution to fourth

order in ε. After some lengthy calculations using arguments of microscopic reversibility

as well as ensuring that the ε4 terms cancel appropriately for the equilibrium solution of

Eqn. (3.59), we can verify and restate the same relationships of [36]:

O(ε2) = 2 kBTeqα
(1)
3 + α

(0)
4 (3.60)

O(ε2) =
1

ε2

(
kBTeq α

(1)
1 +

α
(0)
2

2

)
− kBTeq

2
α

(2)
2 + (3.61)

1

8 kbTeq
α

(0)
4

O(ε2) = α
(3)
1 +

3

2 kBTeq
α

(2)
2 −

1

4 (kBTeq)3
α

(0)
4 (3.62)

These relationships come with a caveat. They only hold true if all temperatures of the

system (including those of the working gas mixtures) are equal to kBTeq (This was the

limit examined in [36]).

If the temperatures of the working gas mixtures are not all equal to the final equilib-

rium temperature of the ion, then the Maxwell distribution is not an equilibrium solution

to Eqn. (3.59) as the relationships between the α
(p)
n to fourth order in ε do not hold for

any temperature Teq. The ε3 relationships are trivially satisfied in the limit of symmetric

left and right hand chambers. This result means that there must be another equilibrium

distribution.

There is another problem however with Eqn. (3.59). As pointed out in [44] and [63],

it is not possible to have a probability distribution that can be both normalized and be
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Figure 3.5.1: W (v′|v)h −W (v′|v)c for a two buffer temperature buffer gas system where

Th = 100Tc for W (v′|v)h and Th = Tc for W (v′|v)c. The broad, positive set of transition

rate differences corresponds to the hot gas allowing a great range of velocity transitions

to happen. The narrow, negative set of transition rate differences corresponds to the fact

that a single, cold temperature system favors a much narrower band of velocity transition

rates.

nonnegative for all values of v that comes from an equation of the form of Eqn. (3.59).

Hence if one wishes to calculate the probability distribution, one must treat terms of

O(ε3) and above as a perturbation to the Master Equation of O(ε2). This is acceptable if

there is only one temperature in the system. However, even this procedure breaks down

in the presence of two separate buffer gas temperatures separated by a large temperature

difference. This can be explained by examining Fig. 3.5.1. As one can see from Fig. 3.5.1,

in the presence of two temperatures of buffer gasses, there are two scales by which the

velocity transitions must be described, that set by the hot collisions and that set by the

collisions. The broad, positive set of transition rate differences corresponds to the hot

gas allowing a great range of velocity transitions to happen. The narrow, negative set of

transition rate differences corresponds to the fact that a single, cold temperature system

favors a much narrower band of velocity transition rates.
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The α
(p)
n and their differential operators no longer serve as appropriate approximations

to the original master equation in the two temperature limit. This can be easily seen by

plugging in kT1 = 1 and kT2 = 100 in the appropriate units into the α
(p)
n of Eqn. (3.59)

and find that the coefficient of the ∂4
v operator is of the same order of magnitude as the

∂2
v operator, which contradicts the original assumption of the Kramers-Moyal expansion

of higher order terms being smaller than their predecessors in the expansion series.

Hence the correct equation to analyze in order to find the probability distribution

for the ion in the presence of two buffer gasses at different temperatures is the original

Master Equation of Eq. 3.1.

This also implies that the fluctuation-dissipation relationships such as those derived

in Eqn. (3.62) to order to orders ε2 and ε4 no longer hold for the two temperature system.

This can be easily explained by noting that the hot gas of the two buffer gasses must be

pumping energy into the system in order to maintain its given temperature, meaning the

ion-buffer gas system is out of thermal equilibrium.

3.6 Numerical Solution to Equations of Motion

We have now justified the need to solve the full Master equation in order to properly

describe the statistics of the ion colliding with the two buffer gasses at different temper-

atures. However, this equation is analytically intractable unless the two temperatures

of the gasses are equal hence we are forced to solve Eq. 3.1 numerically using semi-

Lagrangian and quadrature methods [7] as described below.

3.6.1 Steady-State Distribution Calculation

In order to solve for the steady state distrbution of the two temperature buffer gas system,

we must solve the full master equation. Given the difficulty of singular intergral equations,

we are forced to make a numerical approximation to the solution. First we rewrite the

Master equation using an integration factor i.e.

∂t (P (v, t) exp(W(v) t)) = f(v, t) exp (W(v) t) (3.63)
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where

f(v, t) =

∫
dv′W (v|v′)P (v′, t) ;

W(v) =

∫
dv′W (v′|v) (3.64)

and W(v) can be evaluated exactly for both the elastic and Langevin collisions cross-

sections to yield respectively

W(v) =
∑
i

ci
v

2

(
1 + erf

(√
mi

2 kBTi
v

)
− erfc

(√
mi

2 kBTi
v

))
+ ci

√
2kBTi
πmi

exp
(
−mi v

2/2 kBTi
)

(3.65)

and the form of σL with W (v′|v) now modifies W(v) for the Langevin cross-section to

WL = 2π ci g

√
C4

µ
. (3.66)

Note that WL is now velocity independent, meaning the rates of collision from the two

gasses are constant and independent of one another. We use these collisions rates in our

collision simulations to reproduce the velocity distribution calculated from the Master

Equation.

The integration factor ensures a rapid convergence of our solution to the steady-state

distribution (a generalization of [24] for a continuum of states). Integration of Eqn. (3.63)

for a small time step ∆t and making the assumption f(v, t) is constant over this time

interval yields

P (v, t+ ∆t) ≈ exp (−W(v)∆t)P (v, t)+

(1− exp (−W(v)∆t))
f(v, t)

W(v)
. (3.67)

We use Eqn. (3.67) to find our steady state probability distribution Peq(v) such that

f(v)−W(v)Peq(v) ≈ 0. We plot such a time evolution in Figure 3.6.1

3.6.2 Semi-Lagrangian Advection Method

We solve the full time-dependent integro-differential Master equation using a Semi-

Langrangian advection method using a three time step level algorithm as seen in [8].
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Figure 3.6.1: Time Evolution of the probability distribution of an ion experiencing elastic

collisions with a hot and cold buffer gasses. Initial distribution is ∝ exp [−Mv2/2kBTc].

Time is measured in units τ−1
h = ch

√
kBTh/mh.

We merely restate the main results. We rewrite Eqn. 3.1 as

D

Dt
P (x, v, t) = f(x, v, t)−W(v)P (x, v, t) (3.68)

where

f(x, v, t) =

∫
dv′W (v|v′)P (x, v′, t) ;

D

Dt
= ∂t + v ∂x +

F (x, t)

M
∂v = ∂t + ~u · ~∇ (3.69)

The solution to the probability distribution at time t+dt is found by solving the following

system of equations

P+ − P−
2 τ

+
1

2

(
W+P+ +W−P−

)
= f 0 ;

P+ = P (x, v, tn + τ);

P 0 = P (x− αx, v − αv, tn);

P− = P (x− 2αx, v − 2αv, t
n − τ);

αj = τuj (xj − αj, tn) (3.70)

where τ is the size of the time step, ~u is the advection velocity in the {x, v} space, and

~α is the distance moved by a probability density point during the time step τ .
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We plot the time-evolution of a ion in a steady state with a cold buffer gas solution in

Fig. 3.6.1 where at t = 0 we introduce a hot buffer gas and allow the system to achieve

a new steady-state. We use the elastic cross-section. As one can see there is a reduction

in the low velocity states due to collisions with the hot buffer gas as well as an increase

in the high velocity states, again due to collisions with the hot buffer gas.

3.6.3 Discussion of Results

Now that we have a method to arrive at solutions to Eq. 3.1,. We consider two forcing

terms: (i) a simple harmonic trap F = −k x, and (ii) a simple model of the rf trap in

one-dimension F = −k x cos(Ωt).

In Fig. 3.2.1 we show the steady-state ionic velocity distributions for the various

collision cross sections and forcings. These are calculated by evolving from an equilib-

rium distribution at Tc = (1/2)v2 = 1 (m/s)2. We work in units where kB = 1 and

amu = 1. After the hot buffer gas (Th = 100Tc) is introduced, the initial ionic MB

velocity distribution consistent with temperature Tc (blue, dashed line) broadens. After

a few mean collision times with the hot buffer gas, it reaches the new steady-state non-

MB velocity distribution (purple, solid line) having power-law high-velocity tails, which

are significantly enhanced as compared to the Tc-MB distribution. The nonequilibrium

steady-state velocity distribution agrees with Monte Carlo simulations (open squares) of

the system. The appearance of the power-law tails occurs in all cases including the rf

trap with a Langevin ion-atom cross section (purple, solid line) or in a static trap with a

simple geometric scattering cross section (red,dash-dotted line).

Such power-law tails were also reported [23] for an ion interacting with a single-

temperature neutral buffer in an rf trap. Multiplicative noise associated with the stochas-

tic (with respect to the rf phase) interruption of ionic micromotion alone can account for

these [43]. Indeed, the high-velocity power-law tails that we observe in the absence of

micromotion are strongly enhanced in our model of the rf trap (dotted, green line), so a

variety of nonequilibrium forcing methods generate this particular feature.
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Figure 3.6.2: Top: Steady state probability distribution P (x, v) in the same two-

temperature buffer gas – Fig. 1 – and in a static harmonic potential, with spring constant

k0 = 100 s−2. Bottom: Comparison of the velocity distributions at different positions

(shown by the solid and dashed lines in the top figure), showing position-velocity sorting.
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3.6.4 Failure of Maxwell-Boltzmann Statistics

One of the foundational principles of classical statistical mechanics is that the joint

probability distribution of the position and momentum degrees of freedom factorizes:

P (x, v) = P(v;T )P(x;T ) – e.g., an isothermal gas in a gravitational field has the same

MB velocity distribution at each height even though its density decreases with height.

This factorizibility does not survive in the nonequilibrium system of current interest.

In Fig. 3.6.2 (upper panel) we plot the ionic steady-state joint probability distribution

P (x, v) in a static harmonic trap [13], with spring constant k0 = 100 s−2. In the lower

panel, we consider two normalized velocity distributions at different positions: x1 = 0

(blue, dashed) and x2 = 0.78 m (red, line) in the static trap, and see that the high-

velocity states are over represented at higher potential energy (red, line) relative to those

at zero potential energy at x1. This demonstrates that the joint probability distribution is

non-factorizible – a feature we term position-velocity sorting. Conversely, integrating over

all velocities at a given x to obtain the spatial distribution, one finds that the potential

energy microstates are not populated according a Boltzmann relation ∼ exp[−U(x)]. We

speculate that position-velocity sorting arises from the fact that rare hot atom collisions

with the ion typically drive it simultaneously to high velocity states and out of the center

of the trap, leading to a nonequilibrium correlation between fast states and high potential

energy ones.

The nonequilibrium ionic spatial probability distribution in an rf trap, shown in

Fig. 3.6.3, is similar to that predicted for the static trap – see Fig. 2. In both cases

the high potential energy states are overrepresented in the form of power-law tails. The

one-dimensional calculation (solid, black line) based on Eq. 1 provides a good fit to the

distribution of the ion’s z coordinate as computed from a molecular dynamics simulation

of a three-dimensional rf trap with the two-temperature buffer, using experimental real-

izable parameters from the full three-dimensional molecular dynamics simulation of the

trapped ion [17], which has been verified against the experimental system. To compare the

one-dimensional theory to three dimensional simulation, we adjusted the one-dimensional

buffer concentrations in the calculation as a single fitting parameter.
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Figure 3.6.3: (a) Ionic vertical position distribution P (z) in an rf trap computed from a 3D

molecular dynamics simulation (blue, dashed) and from the 1D master equation (black,

solid) using the same simulation parameters for the trap and collision cross section. 1D

buffer concentrations were adjusted as a free parameter but the ratio ch/cc = 10−2 was

fixed by simulation parameters. (b) Schematic Carnot engine used to extract work from

the position-velocity sorted state.
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3.6.5 Extraction of work from the system

Because of position-velocity sorting, it is, in principle, possible to extract free energy from

the system to run a heat engine. For this to happen one needs a nonequilibrium system

that also breaks a spatial symmetry to generate the directional movement necessary to

do work on its surroundings. An example is a molecular motor [42] in which the chemical

potential difference between ATP and ADP can generate work only if the motor interacts

with a directional track (e.g. F-actin) breaking inversion symmetry. We find that, for

an ion in the two-temperature buffer, both the static and rf harmonic traps provide the

necessary symmetry breaking to generate work via position-velocity sorting.

In Fig. 3.6.3 (b) we show a schematic representation of a Carnot engine (CE) extract-

ing energy out of the trapped ion system to generate work. No equilibrium system, such

as the thermal reservoirs of the CE, can come into equilibrium with the nonequilibrium

steady-state of the ion. Rather, we imagine two thin wires coming from the hot and cold

thermal reservoirs of the CE allowing energy and momentum exchange with an ensemble

of ions at the edge and the center of the static trap, respectively. Momentum transfers

between the wire and ion are balanced by the wires’ elastic deformation, represented by

springs. The temperatures of two reservoirs are adjusted so that the net energy transfer

vanishes between them and the ensemble of ions. If these were two equilibrium systems,

such a balance would imply equal temperatures and pressures, but neither thermody-

namic variable is meaningful for the ion. Nevertheless, the vanishing net energy flow

between the two thermal reservoirs and the ionic ensemble allows us to assign nominal

temperatures to both of them. When computed this way, the temperature of the hot

reservoir in thermal contact with the edge of the trap is greater than that of the cold

reservoir in thermal contact at the trap center. It is then possible to generate work in

the usual way. For the buffer gas parameters used in Fig. 2 (cold reservoir at x = 0 m;

hot reservoir at x = 0.39 m) we find a thermodynamic efficiency of 0.166.

3.6.6 Violations of the fluctuation-dissipation theorem

Another robust feature of equilibrium systems is the relation between their fluctuations

and linear response, known as the fluctuation-dissipation theorem (FDT) [14]. In some
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Figure 3.6.4: Comparison of the ion diffusivities and mobilities in a two-temperature

buffer for a geometric (e) and Langevin (`) atom-ion cross sections. We drive the system

from equilibrium by controlling Th/Tc. Diffusivities and mobilities are normalized by

their equilibrium values: Dc,i and µc,i respectively, i = e, `.

active matter systems of biological interest, the breakdown of the FDT is used as an

indicator of nonequilibrium physics associated with endogenous molecular motor activ-

ity [59, 56]. Unlike in that system, however, the two-temperature buffer gas provides a

simple and independent control on the nonequilibrium nature of the system – the tem-

perature of the hot gas. As Th is reduced to Tc, the system must return to equilibrium.

The FDT implies a relation between the mean ionic velocity in the presence of a

static electric field and its diffusion in the absence of one. We test this Einstein relation

by applying a constant force U = −F0 x and determining the mean ionic velocity in

steady-state. By examining the the ratio of that ionic mean velocity to the applied

force in the linear response regime, one extracts the ionic mobility µ. Alternatively,

by placing the ion at a given initial location and examining the spread of its spatial

probability distribution without an applied force, one obtains the ionic diffusion constant

from D = limt→∞〈x2〉/2 t.

Figure 3.6.4 shows µ and D as a function of the buffer gas temperature ratio Th/Tc,
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used to control the nonequilibrium steady-state. Both µ and D separately normalized by

their equilibrium values, computed by setting the buffer gas temperatures to be equal:

Th → Tc. As the temperature of the hot buffer gas is increased to drive the system from

equilibrium, the ionic diffusivity D increases roughly linearly. We attribute this to the

higher occupation probabilities of high velocity states. Though rare, collisions with the

hot atoms enhance ionic diffusion relative to its equilibrium value at Th = Tc. For the

geometric collision cross section µ decreases since the ion’s collision rate with the buffer

gas increases with relative velocity. For the Langevin cross section, µ is constant because

the collision rate is independent of the relative velocities of the ion and the buffer atoms.

The Einstein relation breakdown due to the presence of even a low concentration of a

hot buffer gas makes the analysis of charge transport in cold plasmas [18] more difficult,

requiring one to independently consider diffusivity and mobility.

3.7 Experimental Suggestions

We have shown that, due to the combination interactions with a hot and cold neutral

buffer gas, the ionic joint probability distribution for position and velocity in a trap

shows a number of striking nonequilibrium features that can be quantitatively controlled

by the temperature difference between the two buffers. In addition, ionic conductivity and

diffusion should demonstrate marked departures from the FDT. Experimental observation

of these effects is, in principle, straightforward. A single ion can be prepared at the center

of a linear quadrupole trap with weak axial confinement by strong laser cooling. The ion

can be released by extinguishing the laser cooling, allowing the ion to interact with the

buffer gases and thereby explore the system phase space. After an evolution time, the ion’s

position can be measured using radial ejection [69, 76] from the ion trap onto an imaging

micro-channel plate (MCP). By repeating the experiment, the probability distribution of

the ion’s position and analogs of the diffusion constant can be measured, as well as their

dependence on the experimental parameters, such as buffer gas temperature and density,

explored. Further, it may be possible to use a retarding potential in front of the MCP,

or a variation of velocity map ion imaging [80], to measure the ion’s kinetic energy as

a function of trap position to explore position-velocity sorting. It may also be possible
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to build up the ion position distribution by stroboscopic laser imaging, as long as the

duty cycle is low enough to not significantly affect ion dynamics. Finally, using the same

system, the laser cooling can be adjusted to prepare the ion with a displacement from the

trap minimum. By monitoring the transport of the ion in response to the axial trapping

force analogs of the ion mobility can be measured.
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CHAPTER 4

2 Harmonically Coupled Particles in Non-Gaussian

White Noise

4.1 Introduction

The study of the effect of multiple white noise sources on a stochastic system was explored

in the first part of Chapter 3, however we found there that this method of describing

stochastic fluctuations was inaccurate to describe the system in the presence of two

fluctuation sources when the two noise sources have large differences between the size

of transitions they may induce upon the stochastic system, in the case of Chapter 3,

the velocity and position transitions of an ion in a time-varying harmonic trap. Instead,

we were able to study the ions’ velocity and position distribution exactly using a Master

equation approach by solving the Master equation numerically, circumventing the analytic

difficulty of a closed, algebraic solution.

However the study of phase spaces corresponding to the stochastic dynamics of multi-

ple particles becomes even numerically untameable to solve as the number of dimensions

in the phase spaces grows as N , where N is the number of particles in the system. For

example, to achieve the same numerical resolution as the probability density calculations

of Chapter 3 for a two dimensional system consisting of two particles, one would have to

do an order of 1018 calculations per time step to solve the joint position-velocity distri-

bution for the two particles. Only the fastest computers on the planet at the moment

could handle such calculations. in a reasonable frame of time.

Hence as discussed in Chapter 1, we seek a different method to describe transitions in

stochastic systems with non-Gaussian, white noise. The non-Gaussian part of the noise

allows us to describe a much more broad class of transitions that cannot be approximated

by a simple Fokker-Planck equation, but rather requires an infinite set of terms for the
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time-dependent partial differential equation describing the time evolution of the condi-

tional probability as demonstrated in Chapter 1. The system we choose to study is a two

particle system as shown in Figure 4.1.1 that consists of the two particles being harmon-

ically coupled to each other as well as being coupled to two walls which can compress

the system on either side of the particles by a distance b, with a harmonic restoring force

in the ŷ direction whose magnitude in response is independent of the x̂ position of the

particles

This system is interesting as it exhibits a second-order, mechanically induced phase

transition in the deflection field of the particles in the absence of thermal fluctuations.

For small compression of the walls, i.e. small b, the deflection field of the particles is a

symmetric compression along the x̂ directions. However, as the compression from the

walls increases, rather than continue to deflect only along the x̂ direction, the system

seeks a global minimum in the potential energy by allowing anti-symmetric deflections in

the ŷ direction as shown in Figure 4.1.1. We are interested in how this mechanical system

responds to both Gaussian and non-Gaussian noise near this mechanical transition, and

whether one type of noises effect is amplified near this transition as opposed to another.

We study this two particle system as it is experimentally realizable given the recent

advancements in Penning trap experiments such as those found in [74], which allow for the

formation of Coulombic crystals, a system analogous to the one explored here. We will

begin this chapter by first simplifying the equations of motion in the small deflection limit,

near the equilibrium configuration of the particles in the absence of fluctuations. We will

then outline in detail the functional form of the non-Gaussian, white noise fluctuations

of interest, as well as their physical interpretation. Finally we solve the equations of

motion in a perturbative, diagrammatic manner, and calculate the two-point function to

one-loop order for the system, discussing the diffierences between terms in the correlation

function arising from Gaussian and non-Gaussian fluctuations.

4.2 The Model

We begin our study of the effect of non-Gaussian, white noise on the two particles har-

monically coupled to each other and to two walls. The Hamiltonian for the system is
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Figure 4.1.1: Schematic of the System to be studied in the presence of non-Gaussian

white noise

given by

H =
1
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m~̇x 2

1 +
1

2
m~̇x 2

2 +
1

2
ky
(
y2

1 + y2
2

)
+

1

2
kx

(
(|~x2 − ~x1| − a)2 + (|~x1 −~b1| − a)2 + (|~x2 −~b2| − a)2

)
(4.1)

where ~xi = {xi, yi} is the two-dimensional position vector of the ith particle, a is the rest

spacing between the particles, ~b1, the locations of the walls on both sides of the particles,

m is the mass of the particles, and kx/y are spring constants characterizing the strength

of the potential in which the particles are embedded in.

First we examine the Hamiltonian in the absence of the Non-Gaussian white noise in

order to have an idea of where to expand the potential energy about to study the motion of

the system in the presence of the non-Gaussian white noise. Note that the Hamiltonian is

nonlinear in the positions of the particle, and intractable to solve analytically, hence why

an expansion of the equations of motion is necessary. Using physical intuition, one can

convince themselves that the equilibrium position of the two particles must go through

two separate mechanical phases depending on how much the walls have been compressed

on both sides of the particles. The first phase consists simply of the two particles being

compressed along the x̂ direction with no deflection in the ~y direction. The equilibrium
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positions for the particles in this limit are ~x1 = {−a/2+b/3, 0} and ~x2 = {a/2−b/3, 0} as

can be easily seen by solving for the appropriate minimum of the potential energy of the

system. The second mechanical phase happens for much larger compressions of the walls

b, and leads to an antisymmetric mode with equal in magnitude and opposite direction

deflection for the ~x and ~y positions of the particles. This soft mode phase cannot be solved

for using standard analytic methods, but has been verified using numerical minimization

procedures.

Given that we are interested in examining the two particle system near this transition

point in the presence of non-Gaussian fluctuations, we choose to expand the potential

about the first set of equilibrium positions and examine the equations of motion for each

of particle coordinates the presence of an isotropic damping 2 Γ. The equations of motion

for the two particle’s x and y coordinates are

mẍ1 + 2 Γẋ1 =− kx

(3 a
2
− b+ x1)(−a+

√
(3 a

2
− b+ x1)2 + y2

1 )√
(3 a

2
− b+ x1)2 + y2

1

−(x2 − x1)(−a+
√

(x2 − x1)2 + (y2 − y1)2)√
(x2 − x1)2 + (y2 − y1)2

)

mẍ2 + 2 Γẋ2 =− kx

−(3 a
2
− b− x2)(−a+

√
(3 a

2
− b− x2)2 + y2

2 )√
(3 a

2
− b− x2)2 + y2

2

+
(x2 − x1)(−a+

√
(x2 − x1)2 + (y2 − y1)2)√

(x2 − x1)2 + (y2 − y1)2

)

m ÿ1 + 2 Γẏ1 =− ky y1 − kx

y1(−a+
√

(3 a
2
− b+ x1)2 + y2

1√
(3 a

2
− b+ x1)2 + y2

1 )

−(y2 − y1)(−a+
√

(x2 − x1)2 + (y2 − y1)2)√
(x2 − x1)2 + (y2 − y1)2

)

m ÿ2 + 2 Γẏ2 =− ky y2 − kx

y2(−a+
√

(3 a
2
− b+ x1)2 + y2

2√
(3 a

2
− b+ x1)2 + y2

1 )

+
(y2 − y1)(−a+

√
(x2 − x1)2 + (y2 − y1)2)√

(x2 − x1)2 + (y2 − y1)2

)
.

The x coordinates of the two particles near the soft-mode/strictly x̂ compressional phase

may be written in terms of their small deflections about the x̂ compressional phase as

x1(t) = −a/2 + b/3 + ε1(t) and x2(t) = a/2− b/3 + ε2(t). The ŷ deflections are small in
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this limit as well. Hence we may do an expansion of the equations of motion assuming

εi(t) and yi(t) are both small. In addition this, a great simplification to the equations of

motions happens when we go from the actual coordinates of the particles to the symmetric

and antisymmetric modes of the x̂ and ŷ deflections. These modes may be written as

sx(t) = (ε1(t)+ε2(t))/2 for the symmetric x̂ mode, asx(t) = (ε1(t)−ε2(t))/2 and similarly

for sy(t) and asy(t). The new equations of motion from the potential written in the limit

of a small deflection fields in the presence of the non-Gaussian white noise are

m s̈x + 2 Γṡx + kxsx =fsx −
9 a kx

4(3a− 2b)2
2 asy sy

− 27 a kx
4(3a− 2b)3

(
− as2

y sx − 2 asx asy sy

− sx s2
y

)
mäsx + 2 Γȧsx + 3 kx asx =fax −

9 a kx
4(3a− 2b)2

(−3as2
y + s2

y)

− 27 a kx
4(3a− 2b)3

(−2 asy sx sy

−asx(9 as2
y + s2

y)
)

m s̈y + 2 Γṡy +

(
ky −

2 kx b

3a− 2b

)
sy =fsy −

9 a kx
4(3a− 2b)2

(2asysx + 2asxsy)

− 27 a kx
4(3a− 2b)3

(
−2 asy sx asx − as2

xsy

+
3

2
as2

ysy − s2
xsy +

1

2
s3
y

)
mäsy + 2 Γȧsy +

(
ky −

6 kx b

3a− 2b

)
asy =fay −

9 a kx
4(3a− 2b)2

(−6asxasy + 2sysx)

− 27 a kx
4(3a− 2b)3

(
−9 asy as

2
x − s2

xasy

+
9

2
as3

y − 2asxsxsy +
3

2
asys

2
y

)
(4.2)

where fsx = f1x + f2x and fax = f1x − f2x are the components of the non-Gaussian noise

acting on the individual particles in the x̂ directions. Similar expressions hold for the fsy

and fay forcing terms.

Immediate inspection of Eq. 4.2 for the sy and asy mode reveals that our physical intu-

ition regarding the equilibrium positions was correct. For a critical amount of compression

from the walls, b, we find that the effective spring constant in the ŷ direction goes from

having a positive to negative value. This is the origin of the soft mode due to compression
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and has a larger effect on the asy mode as opposed to the sy as expected. The critical

value for b for which the asy spring constant goes to zero is bc = 3 a ky/(2(3 kx + ky)) for

the linearized theory of the two particles. We analyze the equations of motion near this

level of wall compression below.

4.3 Non-Gaussian, White Noise

Before solving the equations of motion, we must first specify the exact nature of our white

noise terms in our problem. We define our Langevin forces at the different sites to be

composed of two separate terms i.e. ~f1 = ~f1g + ~f1d ,where 1 refers to the noise at particle

1, g refers to the Gaussian part of the noise spectrum that follows the typical statistics1

and d refers to the non-Gaussian part of the white noise. We take this part of the noise

to have a Dirac Delta function probability density for its magnitude in its jumps and to

be isotropic in the {x, y} directions.

The probability distribution for ~fd does not have the simple properties of averaging

that Gaussian, white noise sources have for higher order cumulants and hence will lead

to different averaging statistics for the solutions of Eq. 4.2 than those normally studied

for white, Gaussian noise. We take the moments for this type of noise to come from

a compound Poisson processes a la Snyder[71] where they can be described via their

integrated process i.e. we describe the probability distribution of the following quantity:

~Z(t) =

∫ t

0

dt′ ~fd(t
′). (4.3)

Since ~fd(t) is temporally uncorrelated, this means that the increments of ~Z i.e. ~z =

~Z(t2)− ~Z(t1) i.e. the momentum influxes into the two particle system, are independent

of one another, and hence, we must simply describe the probability distributions of these

increments to describe the non-Gaussian part of the noise.

The distribution for z consisting of n of increments in an interval τ is Poissonian with

average ρ τ where ρ is a constant density of increments on the time axis. The increment

~z is the sum of these n jumps, with ~Z jumping by an amount ~z with a probability

1P [~f1g(t)] = N e−
1

2D

∫
dt~f1g(t)

2

where N is a normalization constant for the functional probability
distribution
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distribution w(~z). Hence the distribution of ~z is

Tτ (~z ) =
∞∑
n=0

ρ τ

n!
exp [−ρ τ ]w(~z ) ∗ w(~z )... ∗ w(~z ) (4.4)

where the product is the convolution of n factors of w and Tτ (z) has the same meaning

as it did in Chapter 1. The characteristic function of Tτ (z) is hence given by∫
d~z ei

~k·~zTτ (~z ) = exp

[
ρτ

∫
d~z (ei

~k·~z − 1)w(~z )

]
(4.5)

which in turn yields the moments of the distribution of

Γm = ρ

∫
d~z ~z mw(~z ) (4.6)

where the Γm are symmetric tensorial objects with m indices. The cumulants of ~fd can

now be calculated in a straightforward manner in both the time and frequency domain

as

〈〈~fd(t1)~fd(t2) · · · ~fd(tm)〉〉 = Γmδ(t1 − t2)δ(t1 − t3) · · · δ(t1 − tm) (4.7)

by definition of a white noise process.

The probability distribution w(~z ) as described above is δ(|~z| − z0). Here we give the

most important averages over the noise in the frequency space for the four noise terms

in Eq. 4.2:

〈fsx(ω)fsy(ω
′)〉 =0

〈fsx(ω)fsx(ω
′)〉 =〈(f1x(ω) + f2x(ω))(f1x(ω

′) + f2x(ω
′))〉

=〈(f1x(ω)f1x(ω
′) + f2x(ω)f2x(ω

′))〉

=〈(f1xg(ω)f1xg(ω
′) + f1xd(ω)f1xd(ω

′)+

f2xg(ω)f2xg(ω
′) + f2xd(ω)f2xd(ω

′))〉

=4πδ(ω + ω′)(D + Γ2)

〈fsx(ω)fsx(ω
′)fsy(ω

′′′)fsy(ω
′′′′)〉 =〈fsx(ω)fsx(ω

′)〉〈fsy(ω′′′)fsy(ω′′′′)〉

〈fsx(ω)fsx(ω
′)fsx(ω

′′′)fsx(ω
′′′′)〉 =4πΓ4δ(ω + ω′ + ω′′ + ω′′′)+

((4π)(D + Γ2))2 (δ(ω + ω′)δ(ω′′ + ω′′′)+

δ(ω + ω′′)δ(ω′ + ω′′′) + δ(ω + ω′′′)δ(ω′ + ω′′)). (4.8)
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where Γ2 = z2
0/2 and Γ4 = 3z4

0/8. Identical quadratic and quartic averages exist for

the other forces of the modes and combinations of the modes. We point out the newest

feature of our averaging different than white, Gaussian noise is the term proportional to

Γ4, which will lead to novel loop integrals that those associated with white, Gaussian noise

in our diagrammatic analysis. These moments of the forces will become important when

calculating solutions to the equations of motion and correlation functions to one-loop

order, which we explore next.

4.4 Fourier Transform of the Equations of Motion and Feynman

Diagrams

In order to study the solutions to the equations of motion, we proceed via a perturbative

analysis. We justify this perturbative expansion by examining the coefficients of the terms

that are quadratic and cubic in the deflection fields in the equations of motion. Since

we are primarily interested in the regime between the symmetric x̂-compression mode

and the antisymmetric ŷ mode due to the compression from the walls, we set b = bc.

In this limit, the coefficient of the quadratic and cubic terms in the equations of motion

respectively are (3 kx +ky)
2/36 a kx and (3 kx +ky)

3/108 a2 k2
x which both have prefactors

less than 1 in magnitude. Hence, a perturbative expansion is indeed justified near the

mechanical transition, meaning we may expand the non-linear solutions to the equations

of motion in terms of the solutions of the equations of motion to linear order.

We Fourier transform the equations from the time to frequency space2 and solve the

equations of motion in the frequency space. For the sake of space, we rewrite only the

equation of motion for the asx(ω) function, as all other deflection fields follow in a similar

2We use the following normalization for our Fourier transforms: f(ω) =
∫

dt eiωtf(t) and f(t) =∫
dω
2π e−iωtf(ω)
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fashion:

asx(ω) =Gax(ω)fax

− λ1Gax(ω)

∫
dω′

2π
2πδ (ω − (ω′ + ω′′)) (−3asy(ω

′)asy(ω
′′) + sy(ω

′)sy(ω
′′))

− λ2Gax(ω)

∫
dω′

2π

dω′′

2π

dω′′′

2π
2πδ (ω − (ω′ + ω′′ + ω′′′)) (−2 asy(ω

′)sx(ω
′′)sy(ω

′′′)

−asx(ω′)(9 asy(ω′′)asy(ω′′′) + sy(ω
′′)sy(ω

′′′))) (4.9)

whereGax = (−mω2 − 2 i ω Γ + 3 kx)
−1

, λ1 = 9 a kx/(4(3a−2b)2), and λ2 = 27 a kx/(4(3a−
2b)3). It becomes apparent that there are repetitive elements to the solutions to the

equations of motion if a perturbative expansion is done, making them amenable to a

diagrammatic analysis [30, 58].

In Fig. 4.4.1, we represent the equation of motion for the sx mode in Fourier space

using said diagrammatic representation. The rules to interpret the diagrams are the

following:
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• Double lines signify a complete solution to the equations of motion for the labeled

field.

• Single lines represent the Gi for the appropriate i, in the case of Fig. 4.4.1, sx.

• An × signifies the appropriate force for the attached single line, in this case fsx.

• Arrows pointing to the right signify a positive frequency; to the left, a negative

frequency. There are delta functions in frequency at the vertices.

• A vertex with a backslash pattern means λ1

∫
dω′

2π
dω′′

2π
2πδ(ω − (ω′ + ω′′)).

• A vertex with a hash pattern means λ2

∫
dω′

2π
dω′′

2π
dω′′′

2π
2πδ(ω − (ω′ + ω′′ + ω′′′)).

Diagrams can be made for all the equations of motion using these rules, meaning a

perturbative expansion of the solutions to the equations of motion amounts to nothing

more than an exercise in algebra and some straightforward calculus and complex analysis

to evaluate the convolution integrals associated with the vertices and force averaging,

which we proceed to evaluate next.

4.4.1 Correlation Functions

We seek to calculate the correlation functions between the modes of our system using

solutions from the equations of motion. Given that the force terms for the different modes

are uncorrelated, the correlation functions between different modes average to zero i.e.

2-point correlation functions of the form 〈ui(ω)uj(ω
′)〉 with i 6= j where the u stands

for the symmetric and antisymmetric {x̂, ŷ} modes, and the angled brackets stand for

averaging over the noise. Hence the four correlation functions that yield nontrivial results

to one loop order are 〈asy(ω)asy(ω
′)〉, 〈sy(ω)sy(ω

′)〉, 〈asx(ω)asx(ω
′)〉, 〈sx(ω)sx(ω

′)〉..

As described above, the calculation of these diagrams amounts to writing out the

appropriate force averages and performing the appropriate loop integrals. We show the

calculation of the 〈asy(ω)asy(ω
′)〉 as all correlation functions proceed analogously to this

calculation. In addition to this, the lowest order corrections to this correlation function

show the influence of the non-Gaussian part of the noise. Representative diagrams as-

sociated with the one-loop order corrections to 〈asy(ω)asy(ω
′)〉 are given in Fig. 4.4.2.
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Figure 4.4.1: Diagrammatic representation of the equations of motion for the two-particle

system. Rules for interpreting the diagrams are given in the text. Linear theory solution

consists of the first diagram on the top.
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Figure 4.4.2: Diagrams representative of the types of corrections seen at one loop order

to the 〈asy(ω)asy(ω
′)〉 function

The first type of terms involve a simple averaging of two identical force terms with

different frequencies. The new feature that would not exist in the presence of the non-

Gaussian, white noise is the averaging over four identical force terms. Here we must take

into account that the quartic cumulant over the forces does not yield zero, but rather

yields new terms. We ascribe more rules for the diagrams in order to take into account

the force averaging:

• Averages over two identical force terms are denoted with a circle with the roman

numeral II and are given by the appropriate term in 4.8.

• Averages over four identical force terms are denoted with a cirlce with the roman

numeral IV and are given by the appropriate term in 4.8.
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• Averages that involve any forces raised to some odd power yield zero.

Obviously these rules can be generalized to include high order moments, but it will be

unnecessary for our lowest order corrections. Using these new rules for our Feynman

diagrams, we give the results of the integrations for the four types of terms shown in

Fig. 4.4.2 in order from top to bottom

(a) =4πGay(ω)Gay(ω
′)δ(ω + ω′)(D + Γ2)

(b) =2πλ2
ksx
Γ

(D + Γ2)2|Gay(ω
′)|2Gay(ω)δ(ω + ω′)

(c) =24π
λ2

m3
Γ4Gay(ω)Gay(ω

′)δ(ω + ω′)×
1(

ω′ − 3(iΓ−
√
kaym−Γ2)

m

)(
ω′ − 3(iΓ+

√
kaym−Γ2)

m

)×
1(

ω′ − 3iΓ−
√
kaym−Γ2

m

)(
ω′ − 3iΓ+

√
kaym−Γ2

m

)
(d) =λ2

1(4(D + Γ2)2)Gay(ω)Gay(ω
′)g(ω, kax, kay)δ(ω + ω′) (4.10)

where g(ω, ki, kj) =

(
−2m2ω2

(
m
(
−6kikj + k2

j + k2
i

)
− 10Γ2(kj + ki)

)
− k2

im
2kj+

m4ω4(kj + ki)− kim2k2
j + 64Γ4kj +m2k3

j + 16Γ2mk2
j + k3

im
2+

16Γ2k2
im+ 64Γ4ki

)
/
(
2Γkikj

(
2m2ω4

(
m2
(
2kikj + 3k2

j + 3k2
i

)
−16Γ2m(kj + ki) + 72Γ4

)
− 4ω2

(
2Γ2m2

(
−18kikj + k2

j + k2
i

)
+

m3(ki − kj)2(kj + ki) + 16Γ4m(kj + ki)− 64Γ6
)
−

4m4ω6
(
m(kj + ki)− 6Γ2

)
+
(
8Γ2(kj + ki) +m(kj − kj)2

)2
+m6ω8

))
(4.11)

The results for diagrams having different types of propagator lines can be easily calculated

by simple replacements of the results above with the appropriate effective spring constants

associated with said propagator lines.

It is worth mentioning now that there is a difference in the type of corrections seen for

the correlation functions to order λ2
1. The correlation functions for the x̂ modes do not

have any contributions from the non-Gaussian part of the noise related to the Γ4 moments,

while the sy and asy mode autocorrelation functions in fact do have contributions from
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these cumulants. This inherent asymmetry between the modes with regard to the effect

of the non-Gaussian part of the noise is not obvious, but provides an interesting insight

that would be of use to study this system experimentally and determine whether there is

a source of non-Gaussian noise or not.

The reasoning goes as follows: One can estimate all the system parameters of interest

except for those associate with the noise fluctuations i.e. {D,Γ,Γ2,Γ4, }. In order to

make an estimate of Γ, one could measure the sx correlation function in time and look at

the characteristic time scale of decay of the fluctuations. Once one has an estimate of Γ,

then one could make an estimate of the sum of D + Γ2 based on this value. This value

could then be used to fit the {asy, sy} correlation functions of interest. As demonstrated

below, if there is a source of non-Gaussian noise near the mechanical phase transition,

there will be drastic deviations from the predicted correlation function from the estimated

parameters of associated with the noise. If these differences exist, one can them make an

estimate of Γ4 by looking at the differences between the measured correlation function

for the asy mode and the predicted asy correlation function from a Gaussian theory.

Knowing now the nature of the calculations, we use the results of Eq. 4.10,and write
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out 〈asy(ω)asy(ω
′)〉 as

〈asy(ω)asy(ω
′)〉 =4πGay(ω)Gay(ω

′)δ(ω + ω′)(D + Γ2)+

9

(
2π
kax
Γ

(D + Γ2)2λ2|Gay(ω)|2(Gay(ω) +Gay(ω
′))δ(ω + ω′)

)
+

(
2π
ksx
Γ

(D + Γ2)2λ2|Gay(ω)|2(Gay(ω) +Gay(ω
′))δ(ω + ω′)

)
+

3

2

(
2π
ksy
Γ

(D + Γ2)2λ2|Gay(ω)|2(Gay(ω) +Gay(ω
′))δ(ω + ω′)

)
+

27

2

(
2π
kay
Γ

(D + Γ2)2λ2|Gay(ω)|2(Gay(ω) +Gay(ω
′))δ(ω + ω′)

)
+ 144λ2

1(D + Γ2)2Gay(ω)Gay(ω
′)g(ω, kax, kay)δ(ω + ω′)

+ 16λ2
1(D + Γ2)2Gay(ω)Gay(ω

′)g(ω, ksx, ksy)δ(ω + ω′)

− 108π
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Γ4Gay(ω)Gay(ω

′)δ(ω + ω′) (
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ω′ − 3(iΓ−

√
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)(
ω′ − 3(iΓ+

√
kaym−Γ2)
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ω′ − 3iΓ−
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)(
ω′ − 3iΓ+

√
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1(
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+O(λ2

2) (4.12)

Though daunting, Eq. 4.12 contains the new feature that would not be encountered in

the presence of strictly Gaussian noise sources, a term ∝ Γ4. The magnitude of this part

of the correlation function will be examined next.

4.4.2 Analysis of the correlation functions near the critical compression

As stated before, the correlation functions for the x̂ modes are fundamentally different

in nature than the correlations in the ŷ modes due to the presence of Γ4 terms to order

λ2
1. Given that we are interested in seeing how non-Gaussian fluctuations look like in the

presence of a second order phase transition, we examine the correlation function of asy

mode given in Eq. 4.12 near the critical compression bc. Doing an expansion in δb = b−bc
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Figure 4.4.3: Comparison of the absolute value of the correlation function in the presence

of (yellow) and absence of (blue) non-Gaussian, white noise for the following set of param-

eters kx = ky = 1 N/m, Γ = 10−2 N s/m, a = 1 m, m = 1 kg, D = 1 N2 s, z0 = 10 N s1/2,

and δb = −5.9×10−4 m. Note that the introduction of the non-Gaussian noise causes the

correlation function to drop significantly in magnitude near the frequencies associated

with the poles of the Γ4 proportional terms in the correlation function i.e. the dip near

ω ≈ 0.25 s−1.

yields even more unruly expressions than those seen in Eq. 4.12. These functional forms

yield little insight. What is more fruitful to examine is the magnitude of the correlation

functions near the critical compression and to see whether the Γ4 correction is of the

same order of magnitude or larger than its Gaussian noise counterparts. We examine

such a regime in Fig. 4.4.3. The figure illustrates the drastic effect of the addition of the

non-Gaussian corrections to the O(λ2
1).

At low frequencies in comparison to the inverse of the friction time scale, ωf = Γ/m,

where the f stands for friction, the terms proportional to Γ4 are orders of magnitude larger

than those expected from a strictly Gaussian noise profile. The same holds true for the

correlation function of sy. These order of magnitude differences should be experimentally

observable for a a set of particles trapped in a potential analogous to the one provided in

Eq. 4.1. The fact that there is an asymmetry in the effect of the noise between the two

different sets of coordinates is also striking.

This result shows that white noise fluctuations with different probability distributions

are amplified differently near phase differences for a given system. As expected from our
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Chapter 1, if we are examining the correlation for short times in comparison to the time

scale set by the friction m/Γ, we expected to see the contributions from the non-Gaussian

noise to be largest. An underdamped system is thus ideal to study the fluctuation system

with non-Gaussian noise. Given our procedure above to discern between a system with

strictly Gaussian noise versus non-Gaussian noise, this model system should serve well

to explore the effects in experimental settings.

In particular, by examining the pole structure of the terms ∝ Γ4 we see the source of

these new found differences in the correlation function. These new poles cause sign shifts

in the corresponding terms in the correlation functions and lead to the new peak seen in

the correlation function as given in Fig. 4.4.3. Hence, much like in Chapter 1, our non-

Gaussian noise adds new features to our correlation function for time scales of order of

the decay correlation time, m/Γ Hence we now have two ways to determine the presence

of non-Gaussian noise in the system. Either measure the peak in the correlation function

associated with the non-Gaussian noise, or do the comparison of the experimentally

measured correlation function to the predicted correlation function in the presence of

only Gaussian, white noise.

4.5 Discussion of Results

We have solved the equations of motion for two particles harmonically coupled to each

other and their environment. We have shown that the Hamiltonian of Eq. 4.1 near its

second order phase transition due to compression from the walls exhibits a drastically

different correlation function behavior near its critical point in the presence of Gaussian

and non-Gaussian, white noise. We have shown that non-Gaussian contributions domi-

nate in the underdamped regime and short time scales. Finally we have given a method

to measure these effects in an experimental setting by either doing a comparison of the

expected correlation function in the presence of Gaussian and non-Gaussian white noise,

or searching for the correlation function peak in frequency space corresponding to the

contributions from the non-Gaussian noise. We expect that this system will be useful

in the study in the effects of non-Gaussian noise in and lead to fundamental new under-

standings in the field of non-equilibrium statistical mechanics as it is amenable to studies
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highly tunable atomic trapping experiments.
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CHAPTER 5

Future Work and Outlook

5.1 Future work

A natural extension of the problems solved within this text would be to consider the

problem of a particle escaping a potential well [47] a la Fig. 5.1.1. In future work, we

will examine how the introduction of two non-interacting ideal gas buffers at different

temperatures colliding with the escaping particle affect the mean escape time from one

side of the well to another, along with other quantities of interest. This problem is of

interest in non-equilibrium thermodynamics in general as it serves as a model for many

two state systems that experience transitions from state to another which are ubiquitous

throughout many branches of physics. Knowing how these transition rates change in

nonequilibrium settings will be essential to making accurate predictions for much more

difficult systems.

In particular, this system shown can be constructed using the type of atomic trapping

experiments discussed in Chapter 3 and 4, making it an ideal system to explore the

modified Kramers’ escape rate problem. The methodology used to study the system in

Chapter 3 also allows it to yield immediate theoretical results, and we are currently in

the process of finishing these.

5.2 Summary of Results and Outlook

We found that lower dimensional systems are amenable to an exact analysis by using

a Master equation approach to study the conditional probability as a function of time.

Higher dimensional systems are easier studied using a Langevin-like approach. We learned

that both of these approaches can model an exact master equation in Chapter 1. Hence
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x

E(x)

Figure 5.1.1: Schematic of the Kramers’ Escape rate problem to be studied in the presence

of two temperature baths. A particle resides in the left hand side minimum of the

potential. One would be interested in studying the mean time of escape to the right hand

side minimum of the potential.

the best way to approach any problem out of thermal equilibrium is to write down

mathematical expression specific to the phenomena of interest that captures all of the

details of the non-Gaussian noise.

We found that white, Gaussian noise in only appropriate in the study of systems

at or near equilibrium. Though simple and useful in describing a multitude of physical

phenomena, it lacks the complexity necessary to describe phenomena far out of equilib-

rium where contributions from rare events may lead to drastically different responses to

the system which cannot be ignored. Though the collisions with hot atoms were rare

with our trapped ion problem in Chapter 3, these rare events completely changed the

probability distribution from the expected normal distribution to one with drastically

different moments than a Gaussian distribution encountered in equilibrium physics. New

phenomenology occurred where the intuition built from studying the equilibrium versions

of the system failed.

We found that non-Gaussian noise introduces changes to the response function for

shorter time scales that can lead to drastically different responses from the system near

a phase transition, including spatial anisotropies in the response of the system. Though
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a Langevin-like approach requires a perturbative expansion in a non-linear system to

yield significant results, it can still model non-trivial effects in the averaged response of

a system.

Though all of the types of systems studied in this work are drastically different in

both their methodology of study and physical phenomena that they described, they

were all systems that were out of equilibrium with their surroundings. We found that

by having a thorough understanding of the phenomena, we were able to write down an

appropriate stochastic theory to study the system and make testable predictions of various

physical quantities of interest. Hence the best tool a theorist has when dealing with non-

equilibrium systems is to have a good physical intuition for what is driving their system

out of equilibrium. Though non-equilibrium systems do not share the robust theoretical

framework that their equilibrium counterparts have, one must simply focus on the details

of the system components to come up with a correct description and an answer, however

difficult, will come.
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APPENDIX A

Code for Ion Trap Experiments

Here we give a pseudo MATLAB code, representative of the code used to solve for the

probability density in the Ion Trap experiment probability distribution. For full details

of the Semi-Lagrangian advection method employed here see Boyd[8], Staniforth and

Cote[73].

1 % Semi-Lagrangian Advection Method for Solving 1-D Master Eqn.

2 % author: Christian Vaca

3 %Set the Physical Parameters of the system.

4 %Working in units where Boltzmann Constant=amu=1;

5 M=173;%Mass of Ion.

6 coldgas=buffergaslangevin(40,1,10^-1,10);%Constructor for object

7 % holding all parameters/methods associated with cold gas.

8 %(mass,temperature,concentration,polarizability constant);

9 hotgas=buffergaslangevin(2,100,10^-3,1);

10 %Hot gas constructor.

11 potential=rftrap(1,0,1);%Constructor for object

12 %holding all parameters/methods associated with

13 %potential. (k_0,k_1,t_0). k_0=Static Spring Constant;

14 %k_1=RF Spring Constant;

15 %t_0=RF Trap Period;

16 %Time Steps

17 NOTS=100;%Number of Time Steps
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18 tmax=10;%Max time

19 t=linspace(0,tmax,NOTS);%Time Vector

20 dt=diff(t(1:2));%Time increment

21

22 % Size of grid in velocity and position, Units of velocity in m/s;

23 %Position is in m.

24 GridDimension=2^8;

25 v=linspace(-1,1,GridDimension);%Velocity vector array

26 x=linspace(-2,2,GridDimension);%Position vector array

27 [X,V]=meshgrid[x,v];%2-D arrays of position and velocity

28 %coordinates.

29

30 %Initial State; Delta Function Approximation

31 a=0.025;%As a->0, PZero becomes a Dirac Delta Function.

32 PZero=1/a/sqrt(pi)*exp(-(X.^2)/a^2)*1/a/sqrt(pi).*exp(-(V.^2)/a^2);

33 Pt=zeros(GridDimension,GridDimension,length(t));%Initialize

34 % each of the time slices

35 Pt(:,:,1)=PZero; clear PZero%Set the initial Condition

36

37 %Preallocation for variables

38 alpha=zeros(GridDimension,GridDimension,2);%Alpha is the distance

39 %traveled due to advection in the phase space.

40 rV=zeros(GridDimension,GridDimension);%The integral of the

41 %probability distribution with the transition rates.

42 wV=zeroes(1,length(v));%Integral over the transition rates only

43 wV=wVcreatorlangevin(coldgas,M)+wVcreatorlangevin(hotgas,M);

44 %wVcreator creates the integrated transition rates for the

45 %appropriate collision cross-section.

46 Pminus=zeroes(GridDimension,GridDimension);
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47 %For loop to evolve probability density in time

48 for i=1:NOTS

49 alpha=alphatrap(X,V,rftrap,M,t(i),dt); %Calculation of advenction

50 %distance

51 rV=rVcreatorlangevin(X,V,alpha,coldgas,hotgas,Pt(:,:,i),M);

52 %Calculation of integral with transition rates and probability

53 %distribution. Clenshaw-Curtis Quadrature method used.

54 if iterator==1

55 Pminus=interp2(X,V,Pt(:,:,iterator),X-alpha(:,:,1),...

56 V-alpha(:,:,2),’linear’,0);

57 %Calculation of Pminus a distance alpha back necessary

58 %for First Order Semi-Lagrangian advection method;

59 Pt(:,:,i+1)=(1-dt*wV/2).*Pminus./(1+dt*wV/2)+dt*rV./(1+dt*wV/2);

60 %Evaluation of time step.

61 else

62 Pminus=interp2(X,V,Pt(:,:,iterator),X-2*alpha(:,:,1),...

63 V-2*alpha(:,:,2),’linear’,0);

64 Pt(:,:,i+1)=(1-dt*wV).*Pminus./(1+dt*wV)+2*dt*rV./(1+dt*wV);

65 %Evaluation of time step for Second Order Semi-Lagrangian

66 %advection method

67 end

68 end
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[42] F. Jülicher, A. Ajdari, and J. Prost. Rev. Mod. Phys., 69:1269, 1997.

[43] E. H. K. Chen, S.T. Sullivan. PRL, 112(143009), 2014.

[44] N. V. Kampen. Stochastic Processes in Physics and Chemistry. North-Holland,
2007.

[45] N. V. Kampen. Stochastic Processes in Physics and Chemistry. North-Holland,
2007.

[46] H. Kang, Q. Wen, P. A. Janmey, J. X. Tang, E. Conti, and F. C. MacKintosh.
Nonlinear Elasticity of Stiff Filament Networks: Strain Stiffening, Negative Normal
Stress, and Filament Alignment in Fibrin Gels . J. Phys. Chem. B, 113(12):3799–
3805, Mar. 2009.

[47] H. Kramers. Physica, 7:284, 1940.

[48] R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II: Nonequilibrium Sta-
tistical Mechanics. Springer, 2003.

[49] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Pergamon Press, 1986.

[50] A. Lau and T. Lubensky. State-dependent diffusion: Thermodynamic consistency
and its path integral formulation. Phys. Rev. E, 76(1):011123, July 2007.

[51] L. Lauer, C. Klein, and A. Offenhäusser. Spot compliant neuronal networks by
structure optimized micro-contact printing. Biomaterials, 22(13):1925–1932, July
2001.

[52] D. Leibfried et al. Rev. Mod. Phys., 75:281, 2003.

[53] A. J. Levine and F. C. MacKintosh. The Mechanics and Fluctuation Spectrum of
Active Gels . J. Phys. Chem. B, 113(12):3820–3830, Mar. 2009.

94



[54] O. Lieleg and A. Bausch. Cross-Linker Unbinding and Self-Similarity in Bundled
Cytoskeletal Networks. Phys. Rev. Lett., 99(15):158105, Oct. 2007.

[55] O. Lieleg, M. M. A. E. Claessens, and A. R. Bausch. Structure and dynamics of
cross-linked actin networks. Soft Matter, 6(2):218–225, 2010.

[56] F. MacKintosh and A. Levine. Phys. Rev. Lett., 100:018104, 2008.

[57] F. MacKintosh and A. Levine. Nonequilibrium Mechanics and Dynamics of Motor-
Activated Gels. Phys. Rev. Lett., 100(1):018104, Jan. 2008.

[58] R. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem. Dover
Publications, Inc, 1992.

[59] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh. Nonequilibrium
Mechanics of Active Cytoskeletal Networks. Science, 315(5810):370–373, Jan. 2007.

[60] S. Morris, E. Bodenschatz, D. Cannell, and G. Ahlers. Spiral defect chaos in large
aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett., 71(13):2026–2029, Sept.
1993.

[61] K. W. Müller, R. F. Bruinsma, O. Lieleg, A. R. Bausch, W. A. Wall, and A. J.
Levine. Rheology of Semiflexible Bundle Networks with Transient Linkers. Phys.
Rev. Lett., 112(23):238102, June 2014.

[62] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin. Living
Crystals of Light-Activated Colloidal Surfers. Science, 339(6122):936–940, Feb. 2013.

[63] R. Pawula. Approximation of the Linear Boltzmann Equation by the Fokker-Planck
Equation. Phys. Rev., 162(1):186–188, Oct. 1967.

[64] C. K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Gold-
berger. Fractal mechanisms and heart rate dynamics. Journal of Electrocardiology,
28:59–65, Jan. 1995.

[65] W. Rellergert et al. Phys. Rev. Lett., 107(243201), 2011.

[66] W. Rellergert et al. Nature, 495:490, 2013.

[67] J. Rudnick and G. Gaspari. Elements of the Random Walk: An introduction for
Advanced Students and Researchers. Cambridge University Press, 2004.

[68] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos,
H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara. Early-warning signals for
critical transitions. Nature, 461(7260):53–59, Sept. 2009.

[69] C. Schneider et al. Phys. Rev. Applied, 2:034013, 2014.

[70] C. Semmrich, T. Storz, J. Glaser, R. Merkel, A. R. Bausch, and K. Kroy. Glass tran-
sition and rheological redundancy in F-actin solutions. Proceedings of the National
Academy of Sciences, 104(51):20199–20203, Dec. 2007.

[71] D. Snyder. Random Point Processes. Wiley-Interscience, 1975.

95



[72] M. Soares e Silva, M. Depken, B. Stuhrmann, M. Korsten, F. C. MacKintosh, and
G. H. Koenderink. Active multistage coarsening of actin networks driven by myosin
motors. Proceedings of the National Academy of Sciences, 108(23):9408–9413, June
2011.
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