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FLAME ADVECTION AND PROPAGATION ALGORITHMS

Alexandre Joel Chorin

ABSTRACT

We present a simple algorithm for approximating the motion
of a thin flame front of arbitrary shape and variable connectivity,
which is advected by a fluid and which moves with respect to the
fluid in the direction of its own normal. As an application, we
examine the wrinkling of a flame front by a periodic array of

vortex structures.



Outline of goal and method

Consider a fluid occupying a domain D with boundary 3D, in t&o
or three dimensional space. The fluid in a subdomain Dl CD is Bufned,‘
the fluid in D2 =D-D1 is unburned, and the boundary 3D1 between Dl
and D2 is transported by the velocify of the fluid and alsé moves with |
a velocity U in the direction of its own normal; Dl is expanding while .

D is contracting. U 1is the flame speed, and may depend on such

2
parameters as the temperature of the fluid, its chemical composition, or
the distance from a solid wall. Dl and D2 are not assumed to be con-
nected or simply connected. The need to represent the motion of the inter-

face between D and D2 arises in a number of combustion problems; for

1
example, in a number of applications one can consider a flame front as a
discontinuity which acts as a source of specific volume, and the induced
velocity field can be computed if the location of the flame can be found
accurately.

By analogy with shock dynamics, one may attempt either to follow
flames explicitly as hydrodynamic diécontinuities, or one may hope to have
a hydrodynamical célculation locate the flames by solVing the apbropriatev
equations without any explicit allowance for the preseﬁce of a fiaﬁe. The
former course runs into difficulty because normgls are difficﬁfg téAfiﬁd
in a manner which is both stable and accurate, and because progrémmiﬁg can .
be overwhelmingly'coﬁplex in situatioﬁs where flames férm poékets, recon-
nect, etc. The latter course runs into difficulty because fléae velocity,

unlike shock velocity, is not determined by the basic conservation laws

(see,e.g., [6],[7]) and its determination as an intrinsic part of a general



program requires an accurate and expensive evaluation of chémiéal-reaétion.
aﬁd_heap transfer rates.

-In the present paper we present an alternative to both of these courses,
through the use of a Huyghens principle. For the sakebof simplicity, we
conéiderAa.sitqation in which U is a constant throughou; the fluid. (The
»easqwof“variable U 1is not essentially different.) Let D1 be the expand-
“ing region containing burned gas. Let vgl’EQ"7€’En be a collec;ion of
Vectorsiiwith‘magnitudes jlﬂil =U, ji =1l,...,n, and whose direétions.are

equidistributed on the unit sphere (or the unit circle in the case of plane

(1) (2)

flow),_AConsider the regions Dl ,D1 ,...,Din) obtained from Dl by
rigid_grgnslations,with translation vectors respectively Elk”EZk’”"’Enk’
SRR o I n N
where . k 1is a time step. The union of the D(Q), U D(R), (D‘Q) =D.)
R : 1 =0 1 L S RS

apprggimgtes,_fbr n large enough, the body obtained from -Dl by having
theggggndafy of Dl

during the time interval k. This construction is an implementation of the

move with velocity U in the direction of its normal
classical Huyghens principle: If one takes points on the boundary df Di,
starts spherical flames expanding with velocity U from each one of the
points, and then constructs the union_of the,volume Dl and the volumes
,cerred,by these spherical flames, the resulting body is ideptical to KJDig).
The constructioq-abovereqpires‘an algorithm for performing rigid body
tranélations and can in facg be baséd on any sdch algorithm. In the appli-
cations we have carried out, we found it convenient to use a tranélation
élgoritﬁm baéed on the siﬁple line inferface advection algorithm (Noh and

Wooﬂwa;d [14])._‘We shall explain this algorithm in the next section. In

the following section we shall use this algorithm to implement the Huyghens



principle and demonstrate that the accuracy of the resulting propagation
algorithm is higher than that of the underlying advection algorithm. In

a final section, we shall apply a combined ad?ection/propagation algorithm
to the analysis'of the effect of intermitteﬁcy on the vélocity of a

wriﬁkled thin flame in a model flow.

A simple line advection algorithm

Consider a grid with mesh length h superposed on a domain D. For
vsimplicity, we assume D is.two dimensional. The centers of the mesh
cells are located at x=1ih, y=jh, 1i,j integers (figure 1). A velocity
field is given on the associated staggered grid (Harlow and Welch [11])§'

the horizontal velocity u, is given'at the centers ([i+%]h,jh) of the

its,
vertical sides of th? cells, and the vertical velocity vi,j+% is given

at the centers (ih,{j+%]h) ‘of the horizontal sides. Each éell in the
grid may contain burned as well as unburﬁed fluid, and thé volume fraction
fij .of burned fluid is given in each cell; 0 < fij < 1. vTo‘clarify the
discussion, we shall call burned fluid "black' and unburned fluid "white".
The task at hand is to transport the black fluid through D with the

given velocity field u = (u,v).  This can be done only if the interface
between black and white volumes can be reconstructed from the given partial
volumes. fij'

The ideas in the simple line interface algorithm (Noh and Woodward

[14]) are as follows: An interface is drawn in each cell on the basis of



aﬁ'inspectﬁon oflfhevpartial volﬁmés"fij in tbeAcell itself and i# its
immédiéte heighbors; the interface-consists of horizohtal and vertical
1ine§ and is madévaélsimple as possible. The velocity at the interface is
then prod;ced'froﬁufhé.giQen velocities by interpolation'(in ouf»program,
by'iineér-interpolation). The black volume is transporte& in t@o fractional
steps, one vertical and one horiantal;'the geometry of the interfaées is
adapted‘to the direction of the flow, and it is ﬁot reduired'thét the inter-
faée constructed for the horizontal half-step coincide with the interface
constructed for the vertical half-step.

.Consider the horizontal half—step; and consider a cell centered. at

(ih;jh)' with,paftial volume fij' We distinguish the following cases:

. I.. (no interface). fij = 0 or fij = 1. This is the simplest and

usually by far the most frequent case. The fluid in the cell moves as a
whole, with the right side moving with velocity Uy i and the left side
- ’ .

witH'velqcity u, , .. With appropriate programming, usually nothing is

. 173, ]
actually computed in this case.
=0,

II. (vertical interface). O<fij<l,f =0 and either f,

i+1,3 i,j+1

0 or f 0. It is reasonable to guess that the

= >
fi,j;;" i, j+1 0’fi,j—l>

interfacevis vertical and located at x = (i—%)hjkfijh “(figure Za). The.

following three cases are identical, except for an interchange of the roles

of right and left and/or the roles of black and white:

‘

. < < = L 1 7 = L= .

a 0 fij 1, fi—l,j 0, fi+1,j >0, with either fi,j+l fi,j—l Q
f, >0, ‘ .
or fi,j+l 0, fi,j—1:>0’

. < = 1 1 s = = .

b Of fij< 1, fi—l,j_ 1, fi+1,j 1, with either fi,j+1 fi,j—l 1
or fi,j+i <1, fi,j—l <1;



. < < = ‘ < i - = . T ==
c. O fij 1, fi—l,j ~l, fi+l,j 1, with either fi,j+l..f1,j-l 1
. < <1.
R A R
ITI. (horizontal interface). 0<f,,<1l, O<f, . <1, O0<f, . <1.
ij ; i+l,j i-1,j

The cell is assumed to contain a horizontal interface located at
y = (j-‘/z)h+fijh (figure 2b).

IV. (cormer). 0 < fij <1, 0K< fi—l <1, fi+1,j =0, fi,j+l = 0,
fi j-1 > 0 (figure 2¢). The black fluid is assumed to lie in a rectangle

b

in the lower left corner of the cell; the horizontal side of the rectangle

has length a, and the vertical side has length b. We must have .

ab = £, .
1,]
We also require
£, .
b _ i3
a £, . 7
1,]

whenever this équation ieads to b<h, a<h. If‘this equation leads to
b>h, we set b=h and a==fij/h; if this equation leads to a>h we set
a=h and b==fij/h. There are seven related cases, three of'Which jield
black rectangles in one of the other three corners, and each of the remain-
ing four leads to a ﬁhité rectaﬁgle in one of the corners. These are
obtained by appropriate interchanges of the roles of tbp and bottom, right

and left, and black and white.

. i i . < < = = . i
v (thin finger) 0 fij 1, fi+l,j fi—l,j 0 The black fluid
is assumed to occupy a thin finger inside the cell (figure 2d). The exact

location of the finger is chosen at random as follows: The black finger



occupies the I;egiori a<‘x<'b,_‘: a= (i-k)h + %(-l-fi:j:)e,' b= a+ fij . w'here% 6
>'isfé member of a sequence equidistributed on [O,l}[IﬁExamples-df éuitable
quidistributed sequences can be found in Lax‘[lB], Chqrin [4], Colella [8]..
Afxeach time haif step, a new 6 is chosen, but for a fixé& fime, thevsame
L .ié used iﬂwéll cé1£é iﬁ_wh£;h‘inS éasé océufs. A rélated casé is found

by exchanging the role of black and white.

_ The conétruétiqns in cases I,.Ii, III were used in Noh and Woodward;[l41.
Their}wqu ébntains additional features designed to deécribe»effectively the
motion of a fluid. system with many components. Case IV is introduced héré_‘
to-iﬁprove the resoiutign of the method. Case V is important beéause'in our
%pplication it écéﬁrs of£en{ vIn [14], the finger is.placed in the middle of
the cell, and as a result the diéplaceﬁent of the fingér is determined by the
Courant number uk/h rathervthan by the velocity u (this remark is due to
C. Fenimore [9]). The rémedy proposed here is based on the Glimm construc-
tion ([10];[4]), and it enshres that on the averagé the motion of the finger
is computed correctly. Fenimore [9] has proposed a more accurate remedy.‘It
is known from'experience with other random choice methods . that the'ﬁumbers
Vel ;éﬁd. 92"uséd in the‘hofizdnﬁalvénd veftical half-steps must be indeﬁend—
enf;z In the calculations to be described, wé follow Colella and use two
independent van der Corput sequences for the 0's.

Tﬁe algorithm is stable whenever the Courant condition (max|u|)k/h <k

is satisfied.
 ._As an example,_consider a rectaﬁgle of black fluid occupying,Zl Cells,‘
transpofféd by a "fluid":uﬁdergoing-rigid body rotation centered at 0. The

distance of the center of the rectangle from 0 is five cells (the problem



can be scaled independently of h). In figure 3 we display on the right
the ofiginal configuration of the black fluid; and on the left the '~
computed configuration obtained after a rotation of 180°. The lines'are
dra&n as they are_intérpretéd by the program. The uncertainty in the
position of an interface is always less than oﬁe mesh length and, as can
be expected, is largest at the c§rners. The accuracy is competitive with

that of other methods for performing advection calculations.

Implementation of the Huyghens principle

Consider a region Dl(ZD in the plane whose boundary is propagéting
with velocity U. At time- f = nk, n integer, Dl is describéd by
an array of partial volumes, f?j' Consider the 8 angles ag = (2—i)ﬂ/4,
£ =1,...,8, and the corresponding translation vectors u, = (U cos Qg»
U sin az).' Use the algorithm described in the previéus section to
translate the area (described by the fij) successively by each one .of"

the velocity fields ug; this results in 8 new areas fig), £ =1,...,8.

Write fgq) = f,., and then write
1] 1]
f?fl =  max f?%) .
1] . 0<<8 1]

This is our implementation of the Huyghens principle.

Note the following facts:



(1)  Each cell' in the grid has 8 neighbors. The amount of mass trans-
ported from=any‘one cell to any one of its neighbors is largest wﬁen'the.
transiation vector points from the center of the given cell to the center.
of the neighboring cell. All such-directions coincide with one of the
directions determined by the azi Any additional directions are reauﬁdaﬁt

and will not affect ff:l

(ii) 1In three dimensional space, 26 directions are needed. The amount
of resulting labor is still modest if care is taken to ensure that the cal-
culations are performed only when they are needed, i.e., when 0 < fij <1

in a cell under consideration or in a neighboring cell.

(i41) In the plane a single pair of '8's in case V is sufficient for
all transiétions during a given time step; a single triplet'is needed :in.

three dimeéensions.

(iv) Alternate strategies for implementing the Huyghens principle, in
which fewet directions are used in conjunction with a samplitig strategy for
the angles, have been tried, but resulted in modest savings in computing

effort with a non-negligible loss in accuracy.

The accuracy of the'propagation algorithm. just described was consist-
entIy.higher than that of the underlying advection algorithm in all cases
we ran. Theré are two explanations: (i) the advection algorithms are most-
accurate when the velocity field is one dimensional, which is the case in

each one of the translations used to implement the Huyghens principle,:and



(ii) 4if the propagation algorithm underestimates or overestimates the
length of the interface, the error is self-correcting to a substantial
extent. As an example, we ignited the fluid in one fluid cell and fol-
léwed the resulting flame.propagation; in figure 4 we display thé flame
front obtained with U=0.2, at t=i.83=70k, h=1/19, Uk/h=.099. The
fractional volumes at the edge of the flames are drawn as they are inter-
preted by tﬁe program. The slight asymmetry reflects the effect of the
6's. The middle square is the square ignited at t=0.

The original area of burnedrfluid is h2, which equals the area of
a circle of radius r, = h/\/m . The area of burned gas should be approx-
imately A = ﬂ(roi-Ut)z. Let Ac be the area of burned gas as computed
by the program, Ac = Zfijhz. In table I we display the area Ac’ the
error A - AC, and the relative error (A - AC)/AC, with the parémeters
‘h, U; Uk/h, as above. Note that for small t=nk, substantial contri-
butions to the value of A - AC are due to the fact that our formula for
A 1is not exact, as well as to the statistical fluctuations in AC due
to the reliance on the 6's. The algorithm'does perfofm well,

If the fiame is advecfed by a fluid while it is propagating, the
advection algorithm and the propagation algorithm can be uséd as succes-
sive fractional steps in the determination of the location of the front.

The propagation algorithm is stable whenever the underlying advection

algorithm is stable. -
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Error in a,circular flame calculatiqﬁ;,'h'=ni/i9 '

.0038
.0049
.0091
.019
.056
.110
.181
269

.386

L4970

.636

~.000039

.000093
.00064
.0011
-00080

-.00028

-.0013

-.0028
- -.0033
-.0038

-.0044

(4 - B/A

%;Qlof
.018
.065

054
.014

-.0025

~.0070

-.0085

" -.0086

-.0077

-.0069
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The effect of intermittency on the velocity of wrinkled flames

We now present an application of the method above to a simplified
problem in flame theory. (An excellent account of fhe subject can be
found in_Wiiliams [171.) Under conditions which are often encountered
in praétice, one believes that a turbulent flame propagates faster than
a laminar flame mainly because a turbulent velocity field wrinkles the
fiame.and increases the area available for burning. Let the velocity of -
the turbulent flame be denoted by U s and let ugééU be the velocity A
of an unwrinkled flame in a fluid of the same temperature and composition.
It has been observed from experiments (Andrews et al. [1]) that in many

situations the ratio ua/u is roughly proportional to the intrinsic

2
Reynoids ﬁumber RA = u'A/v, where u' is the r.m.s. intensity of the
turbulence, A is‘the Taylor microscale (for a definition, see e.g. [15],
[l]),'and Vv 1is the viscosity. According to recent theories, turbulence
can be usefully described as a random array of vortices [see e.g. [4]).
A theory describéd in [3] and experiments described.in [12] lead one to
believe that these vortices are rod—like, and thus a twé—dimensional
calculation, performed in a plane normal to the axes infhese vortices,
should describe their maiq effects. A éalculation preéented by Tennekes
[15] suggests that X 1is the order of magnitude of the aiameter of'these
vortices.

Thus, in order to provide ﬁhe simplest'possiﬁle explanation of the
observation of Andrews et al., we are led to the following éroblem:

Consider a time-independent periodic array of vortical structures in the

plane. At t=0 a plane flame front coincides with the y axis. We
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wish to follow Ehe wrinkling of the flame front and the consequént increase
in'the'velocitj of the flame.

The velocity field is periodic with period L=1 in both x and y

directions. Co_nsider one periodic box, -%<x<k,-%<y<k., Consider the
Velécity field given by u.= (u,v); u-= —Byw, v = wa, where

v =C gxp(—(k%r+y2)/X2); A is the ”micrdSEale". u is not periodic, énd

. although if does satiéfy the equation div u = 0,. it does not satisfy thé.;
discrete,equations  Du = ﬁi+%’j.- ui—%,j + vi,j+%-— Vi;j_%v= 0. Du =0
"'guarantees»that,the-area occﬁpied by burned gas increases Only:due to burn—
ing (ékcept'for.ppssib;e small errors due to- the interpolatioﬂs>used in the’
badvection,algorithm); 'Thé coﬁponent.of u which is periodic an&~satisfies‘

the équaticns Du = 0 is obtained by the projection algorithm described in

[2]5giThe;c0nstaﬁt C. 'is then adjustedvso that

u' = V/ng(u2-+vz)h2 =-1.

ié'figufe 5 we displa§'a typical flow coﬁfiguration in a peribdic box.

At t =0, the fiame coinéided with the left wall of the'box; The front ié
" shown at t=1.53, n=125, with %=0.2," X=o.2, h=1/19. The Partiai
volumes”éfé drawn as they are interpreted in a horizontalisweep, and occa-
sional ambiguitiéSfare'reﬁdved by diagonal lines.
| The.ﬁiscosity Vv doés nét appear explicifiy in our model; indeed, V
governs the fate at which vortical structures appear and disappear, and in
ourhproblem they do neither. |

; Lét .A(t) be thé-portioﬁ of the périodié.bbkhéﬁcupied by burned fluid?

Define u, = dA/dt. Simﬁle scaling arguments show that 'ua/uz can be a
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function of the ratios u'u£==1/u£ and A/L=X only. Thus the analogue

of the law of Andrews et al. is

Ya u' A ' A

u_ = constant X T I = constant X u_

/A ') : L

However, the original law ua/ug"‘u'k/v and the new law ua/ug“’A/ul are
essentially different, since the latter implies that. ua‘“k independently

of This last conclusion is untenable and disappears only if it can be

UQ'.

shown that ua/u is roughly independent of u'/uz. For u' » ugs this

L
last statement is indeed true. In figure 6 we display :ua/uz as a function
of the appropriately scaled time t* = Quz/O.Z for several values of up-
The curves coincide to a large extent, showing that ug does ﬁot affect
greatly the generation of new surface by vortical motion.

It is clear that if ua/u2 is roughly ihdependent of u'/uz, the
generation of new surface is roughly proportional to the scale A of the
vortical structures. In figure 7 we display the variation of ua/u2 with
X as a function of time. It can be seen that for a given t the value
of ua/uz is indeed roughly proportional to A. ua/ug increases when the
vortex meets the flamé, then decreases when the flame.consumes the newly
added flame length. The calculation was stopped when the flame was overflow-

ing the box. Thus, in the narrow confines of our model problem, we have a

reasonable explanation of the observation offered in [1].
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