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PERSPECTIVE

Experience using conventional compared
to ancestry-based population descriptors
in clinical genomics laboratories

Kathryn E. Hatchell,1,* Sarah R. Poll,1 Emily M. Russell,1 Trevor J. Williams,1 Rachel E. Ellsworth,1

Flavia M. Facio,1 Sienna Aguilar,1 Edward D. Esplin,1 Alice B. Popejoy,2,3 Robert L. Nussbaum,4

and Swaroop Aradhya5,6
Summary
Various scientific and professional groups, including the American Medical Association (AMA), American Society of Human Genetics

(ASHG), American College of Medical Genetics (ACMG), and the National Academies of Sciences, Engineering, and Medicine

(NASEM), have appropriately clarified that certain population descriptors, such as race and ethnicity, are social and cultural constructs

with no basis in genetics. Nevertheless, these conventional population descriptors are routinely collected during the course of clinical

genetic testing and may be used to interpret test results. Experts who have examined the use of population descriptors, both conven-

tional and ancestry based, in human genetics and genomics have offered guidance on using these descriptors in research but not in clin-

ical laboratory settings. This perspective piece is based on a decade of experience in a clinical genomics laboratory and provides insight

into the relevance of conventional and ancestry-based population descriptors for clinical genetic testing, reporting, and clinical research

on aggregated data. As clinicians, laboratory geneticists, genetic counselors, and researchers, we describe real-world experiences collect-

ing conventional population descriptors in the course of clinical genetic testing and expose challenges in ensuring clarity and consis-

tency in the use of population descriptors. Current practices in clinical genomics laboratories that are influenced by population descrip-

tors are identified and discussed through case examples. In relation to this, we describe specific types of clinical research projects in

which population descriptors were used and helped derive useful insights related to practicing and improving genomic medicine.
Introduction

Different group-based descriptors have been devised to

classify humans into population subgroups, which are dy-

namic and context dependent, with major changes

over time. Race and ethnicity (‘‘conventional population

descriptors’’) categories in the United States are often

self-identified or assigned to people based on socially deter-

mined factors, such as physical appearance, language, cul-

tural practices, or family history, and have been in use

for demographic or sociological purposes for hundreds of

years (https://www.census.gov/newsroom/blogs/random-

samplings/2015/11/measuring-race-and-ethnicity-across-

the-decades-1790-2010.html).

More recently, population genetics approaches have

been used to subgroup and stratify populations for

group-based analyses. While most genetic variants are

commonly shared among all human populations and are

not specific to socio-cultural or broad geographic groups,

some variants do have ancestry-derived frequencies. The

frequencies of these polymorphic alleles are more similar

among individuals whose predecessors lived in a particular

geographic region with limited reproductive contact

outside the region.1 Population descriptors named after
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these regions can vary in size and resolution and are typi-

cally based on the geographic location or how local indi-

viduals self-identify.2,3 An individual may be assigned a

particular genetic ancestry (‘‘ancestry-based population

descriptor’’) based on the similarity of their genotypes at

these polymorphic loci to the genotypes characteristic of

various population-based reference data from different

geographic areas.

Debate continues on the use of both conventional and

ancestry-based population descriptors in health research.4

For example, as social constructs, conventional population

descriptors remain useful in evaluating disparities in the

etiology of disease, healthcare delivery, and health out-

comes5; eliminating the use of race/ethnicity may exacer-

bate inequalities in health outcomes.6 These conventional

population descriptors have limitations, including impre-

cise labels that change over time, reinforcing harmful ste-

reotypes and not representing underlying genetic diversity

within categories.7,8 The use of genetic ancestry-based

population descriptors also has advantages and disadvan-

tages. For example, while ancestry-based population de-

scriptors, assigned using genetic markers, are rooted in

biology, the accuracy of ancestry estimates is limited by

available reference sequences. Conclusions based on
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ancestry-based population descriptors alone should be

treated with caution, as they are often confounded by so-

cial determinants of health and could mask contributions

to health differences from other sources, such as structural

racism.9

In 2023, the National Academies of Sciences, Engineer-

ing, and Medicine (NASEM) issued a report entitled

‘‘Using Population Descriptors in Genetics and Genomics

Research,’’10 which evaluated existing methodologies and

explored the benefits, pitfalls, and challenges of using pop-

ulation descriptors associated with concepts of descent in

human genetics and genomics research. In parallel with

or in response to the NASEM report, several prominent sci-

entific professional organizations and journals in human

genetics and medicine provided their own guidance,

describing the appropriate use of conventional population

descriptors, as well as considerations for estimating genetic

ancestry from existing population-labeled reference data-

sets.5,11–13 Together, these efforts strive to reduce inaccu-

rate assumptions about the relationship between genetic

ancestry constructs and subject- or clinician-reported race

and ethnicity categories. Integrating this guidance into

standard practice may reduce inadvertent harm and

improve equity for populations that have historically

been excluded by the scientific community and continue

to be underrepresented in genomics research and reference

datasets.13

Implementation of this new guidance is likely to vary

among the array of research endeavors and data collected

across genomic health programs worldwide. Its relevance

and readiness for implementation in clinical genomics lab-

oratories is even less clear. Clinical genomics laboratories

often serve as a rich source of legacy datasets for down-

stream research studies that shed light on the clinical utility

of genetic testing in individuals with different backgrounds.

Unlike academic research protocols that tend to target spe-

cific populations while engaging appropriate community

members in study design, clinical genomics laboratories

typically serve all comers rather than targeted populations

and therefore may represent unselected populations.

Furthermore, demographic data available to clinical geno-

mics laboratories, including conventional population de-

scriptors, are frequently provided by the ordering clinician

when filling out the test requisition form (TRF). Not all clin-

ical genomics laboratories have the capability to generate

ancestry-based estimates, and how these estimates would

be used for clinical genetic testing and interpretation is

yet undefined. Thus, the incorporation of many of the rec-

ommendations from the NASEM report may not be relevant

or feasible to implement in clinical genomics laboratories.

Strategies are needed to utilize conventional population de-

scriptors from legacy data, such as those generated from

over 5 million subjects who have received genetic testing

through our laboratory, while developing effective proto-

cols to generate ancestry-based population descriptors

from past and future subject samples. This perspective piece

offers insights and examples from over a decade of experi-
482 The American Journal of Human Genetics 112, 481–491, March
ence using both conventional and ancestry-based popula-

tion descriptors in clinical laboratory genetic testing and

associated research.
Collection of conventional population descriptors

in clinical genomics laboratories

In current practice, subject data that are collected, re-

quested, and reported to clinical laboratories for genetic

testing are often limited by a predetermined list of discrete

categories representing population descriptors such as

race, ethnicity, and/or ancestry. The specific population de-

scriptors and associated categories or group labels from

which clinical providers and/or subjects can choose

when ordering a genetic test are typically provided by

the laboratory and may or may not include an open-ended

write-in option.14 For example, the current Invitae (now

part of Labcorp) TRF includes nine discrete population

descriptor categories and an open-ended ‘‘other’’ option.

The lack of standards for the format and content of these

questions in clinical genetic testing has led to vast differ-

ences between laboratories in terms of the data that are

collected and reported, and there are no consensus guide-

lines to help laboratories determine what should be done

moving forward.15

Over the last decade, our laboratory has performed

different types of genetic tests ranging from single-gene

tests to multigene panels to whole-genome sequencing for

>5 million individuals. Test orders were primarily from

the United States (82.3%), and approximately 17.7% were

from >120 other countries. In test orders from the United

States (n ¼ 4,497,419), data for up to ten subject self-identi-

fied or clinician-indicated population descriptors plus an

open-ended ‘‘other’’ option were provided on the TRF,

including six major United States census categories for

race and ethnicity (‘‘American Indian or Alaska Native,’’

‘Asian,’’ ‘Black or African American,’’ ‘‘Hispanic or Latino,’’

‘‘Native Hawaiian or Pacific Islander,’’ and ‘‘White’’), as

well as categories related to ancestry from specific founder

populations: ‘‘Ashkenazi Jewish,’’ ‘‘French Canadian,’’

‘‘Mediterranean,’’ and ‘‘Sephardic Jewish’’ (Figure 1).
Complexities of conventional population descriptors

collected in clinical genomics laboratories

Race and ethnicity categories reported on clinical forms

may be inconsistent over time and often differ depending

on the person providing the information (e.g., clinical pro-

vider or office staff versus subject). Within a subset of

486,584 individuals who underwent multiple tests at our

laboratory between 2014 and 2024, we observed that

15,845 (3.3%) were assigned different racial and ethnic cat-

egories over time (Figure 2). Interestingly, these changes

were not limited to additions or deletions of race and

ethnicity categories, and some changed entirely from one

descriptor to another (e.g., Ashkenazi Jewish only toWhite

only).
6, 2025



Figure 1. Pie chart showing the relative
proportion of self-identified or clinician-
indicated categories from 4,497,419 or-
ders submitted from January 2014 to
August 2024 within the United States
The majority (n¼ 2,579,943; 57.4%) of ge-
netic testing orders came from individuals
identified as non-Hispanic White (which
is consistent with population statistics re-
ported in the 2020 US census16). The re-
maining 42.6% of this sample consisted
of 30.7% who identified with at least one
category other than non-Hispanic White
(6.2% of whom identified with multiple
categories). Within the unknown/other
group (12.0%), 4.6% left it blank, while
2.1% wrote in a custom option and the re-
maining selected ‘‘unknown,’’ an option
only available online. The multiple/mixed
group includes individuals who selected
two check boxes or wrote in multiple
distinct ethnicities in the free-text field.

Institutional review board (IRB) approval for these heretofore unpublished results was granted by the WCG IRB (study number
1167406), and all subjects provided informed consent.
Heterogeneity in the population descriptors reported for

genetic testing subjects is lost during research or other ac-

tivities when restricted to discrete categorical data types,

with a limited number of groups lumped into large

‘‘bins’’ without providing the chance to maintain multiple

categories or an open-ended response option for subjects

or providers to write in a custom description. Among or-

ders with a custom response, 29.6% (n¼ 41,553) contained

free text seen fewer than five times in the laboratory’s

tested population, emphasizing the vast diversity of self-

or clinician-indicated racial and ethnic identities.

To analyze open-ended responses provided in the

‘‘other’’ free-text box, data cleaning was imperative and

nontrivial. There were 59 unique open-ended responses

with>1,000 occurrences among all recorded orders, which

required manual review. Regular expressions17 were used

to identify patterned strings of text while collapsing

similar entries with alternate spellings and punctuation

(Table S1).While 2.1% of all responses could not be aligned

to a structured category, 3.1% of all orders (n ¼ 140,224)

contained free-text data, approximately one-third of

which were grouped into pre-existing categories. Inte-

grating free-text entries into larger categories allows more

granular descriptions of subject demographic groups (and

non-categorical responses) to be included in statistical an-

alyses of large datasets; however, collapsing free-text data

into larger pre-existing categories should only be attemp-

ted alongside careful preservation of the original input

data, as more specific or detailed analyses of subgroups

may be desirable in the future.

Another caveat to using conventional population de-

scriptors in clinical genomics laboratories is that descrip-

tors may have been reported by clinicians rather than their

subjects. In one study of subjects from our lab who self-

identified with demographic categories through an online

portal (n ¼ 4,618), comparisons between categories
The Ameri
selected by subjects and clinician-indicated categories re-

ported on clinical lab TRFs revealed complex trends reflect-

ing differences in the total number of categories reported

for subjects, data collection approaches, and the presence

or absence of an open-ended response field.18 Specifically,

subjects who self-identified with only one category in their

private subject portal had high levels of agreement with

the TRF completed by a healthcare provider (n ¼ 3,686;

�80%). In contrast, subjects who identified with 2–3 cate-

gories in their portal were often assigned only one category

on the clinician-provided form. Importantly, there was an

open-ended field provided on the TRF (which was not

an option in the patient portal) that provided clinicians

an opportunity to add custom descriptions, presumably

through a conversation with their subjects. Providing

only multiple-choice options (including ‘‘other’’ but

without an open-ended response option) led to higher

rates of missed identities for some subjects through the

portal relative to TRFs that included custom entries. It is

possible that subjects may have been reluctant or did not

have the opportunity to share their full self-described iden-

tities with providers. It would be informative for future

studies to offer subjects an open-ended [custom descriptor]

field in addition to multiple-choice categories that match

those on clinical laboratory forms.18 These complex issues

in the reporting of race and ethnicity highlight that relying

solely on self-identified or clinician-reported population

descriptors may reduce the power of certain study designs,

including less precise matching for case-control studies,

greater missingness of data, and reduced statistical power

due to non-systematic misclassification bias.

Determination of ancestry-based population descriptors

in the clinical genomics laboratory

A number of approaches have been developed to infer in-

dividual genetic ancestry from data generated during
can Journal of Human Genetics 112, 481–491, March 6, 2025 483



Figure 2. Changes between tests in race
and/or ethnicity categories reported for
15,845 individuals (3.3% of individuals
with more than 1 order [n ¼ 486,584])
All changes in categories with fewer than 5
individuals (per group) are not shown. All
orders with unknown race/ethnicity re-
ported were removed. Due to the small
size, the Native American, Pacific Islander,
and Sephardic Jewish boxes are not labeled
but are color coded, directly above or
below ‘‘other’’ in that order. IRB approval
for these heretofore unpublished results
was granted by WCG IRB (study number
1167406), and all subjects provided
informed consent.
clinical genetic testing based on genotyping polymorphic

alleles or markers with frequencies that vary across

geographic regions and thus correlate with familial ances-

tral origins.19,20 These inferences may be particularly use-

ful for those whose self-identified ancestral background is

unknown or ambiguous. In order to compare self- or clini-

cian-reported conventional population descriptors to in-

ferred genetic ancestry groupings, our laboratory investi-

gated the relationship between these measures in a

cohort of 3,685 individuals harboring variants associated

with monogenic conditions (unpublished data) using

two different methods for estimating genetic ancestry:

latent Dirichlet allocation followed by k-means clustering

(LDA-KNN [k-nearest neighbor]) and a support vector ma-

chine classifier (SVC). Both LDA-KNN and SVC methods

construct boundaries based on reference data to estimate

per-individual ancestry proportions drawn from a prede-

termined number of reference populations.

For each type of analysis, reference population data from

the 1,000 Genomes Project (phase 3 data release)21 were

used to construct five ancestry groups based on continen-

tal-level sampling. The LDA-KNN and SVC methods were

in agreement with each other for 95.6% of the ancestry es-
484 The American Journal of Human Genetics 112, 481–491, March 6, 2025
timates they produced. There were

158 (4.3%) individuals who were clas-

sified differently between methods,

and 113 (3.1%) individuals who

could not be classified by either

model were excluded from further

analysis, resulting in an analysis

cohort of 3,414 individuals. For

2,486 (72.8%) individuals in this

cohort with available population de-

scriptors (excluding ‘‘unknown’’),

the categories provided were mapped

to five continental groups, defined as

‘‘super-populations’’ in the 1,000 Ge-

nomes Project dataset (e.g., Hispanic

was mapped to admixed Americans

[AMRs]). There was 91.8% overall

concordance between assigned conti-
nental groups based on estimated genetic ancestry and

their most closely mapped self-identified or clinician-re-

ported conventional population descriptors.

Despite the limitations and pitfalls of using broad con-

tinental groupings to infer ancestry (and comparing

these to socio-cultural identities), these efforts allowed

us to estimate genetic ancestry for 27.2% of all individ-

uals who had missing conventional population descrip-

tors (n ¼ 928), enabling the inclusion of these individ-

uals in further downstream research. This has the

double benefit of providing a larger sample size for our

analyses and broadening the representation of our sub-

ject population in research, who would otherwise have

been excluded.

Use of conventional and ancestry-based

population descriptors in enhancing the clinical

validity of genetic testing

The primary goal of clinical genomics laboratories is to

report results that may inform a subject’s diagnosis and/

or guide clinical management. Both conventional and

ancestry-based population descriptors available within



large databases from clinical genomics laboratories have

been used by our laboratory to improve the clinical validity

of the results that are shared with subjects.

Use of conventional population descriptors to improve

variant classification

Clinical genomics laboratories are well positioned to

inform improvements in clinical genetics practice by uti-

lizing large-scale internal data obtained from both affected

and unaffected individuals referred for testing. Our labora-

tory has accumulated data from over 5 million individuals

from countries around the world, the majority of whom

have population descriptors. As an example of the benefits

of using large-scale internal data, recent studies using large

cohort data found that a HOXB13 (MIM: 604607) gene

variant (c.853del [GenBank: NM_006361.6] [p.Ter285Ly-

sextTer?]), which was initially classified by our laboratory

as likely benign, is associated with an increased risk of pros-

tate cancer (MIM: 610997) and is enriched in individuals of

West African genetic ancestry,22 as well as those character-

ized as Black and/or African American.23,24 This variant has

a reported minor-allele frequency of 0.2% in the Genome

Aggregation Database (gnomAD) ‘‘genetic ancestry group:

African/African American,’’25 which is greater than ex-

pected for a pathogenic allele and resulted in its initial clin-

ical classification. However, our laboratory eventually re-

classified it as an increased risk allele associated with a

significant >2-fold increased risk for prostate cancer

compared to non-carriers,22–24 based on an internal associ-

ation study of this variant and prostate cancer that ac-

counted for population structure using subject- or clini-

cian-reported conventional population descriptors.26 This

research effort thus improved the clinical validity of

variant classification for our subject population and may

facilitate the use of targeted therapies in subjects with pros-

tate cancer and/or promote risk-reducing strategies in

currently unaffected family members who are found to

share this variant with the proband.

For research studies examining social determinants of

health (e.g., structural racism) and evaluating healthcare

disparities (e.g., differences in genetic testing referral rates

between subject racial and ethnic groups), conventional

population descriptors such as race and ethnicity are likely

appropriate to use because these descriptors reflect the

same groups subjected to socially constructed notions, pol-

icies, and practices that disadvantage some and advantage

others.10 Research insights based on conventional popula-

tion descriptors can more easily be translated into clinical

practice since medical records and clinicians tend to use

these categories when collecting and reporting the racial

and ethnic backgrounds of subjects. For example, popula-

tion descriptors based on race and ethnicity are required

and relevant for investigating long-standing racial dispar-

ities between Black andWhite subjects in the United States

on the uptake of genetic services. A recent study from our

laboratory illustrated that fewer at-risk relatives of self- or

clinician-reported Black or African American subjects un-
The Ameri
derwent cascade testing following a positive test result in

a proband compared to White subjects.27

Conventional population descriptors are also useful for

clinical studies measuring differences in the rates of uncer-

tain and definitive results from genetic testing across pop-

ulation groups. For example, published data from our lab-

oratory revealed lower rates of variants of uncertain

significance (VUSs) in self-identified White subjects (rela-

tive to all other demographic categories),28–32 consistent

with results from similar studies.33–35 More recently, we

showed that the rate of VUS reclassification is particularly

high among racial and ethnic groups historically underrep-

resented in genetic research.36 In another study, we

demonstrated that individuals of self-identified Ashkenazi

Jewish descent were twice as likely to have unexpected

pathogenic or likely pathogenic germline variants

compared to individuals without this designation when

undergoing cascade testing.37 In a fourth study, we showed

that direct-to-consumer (DTC) genetic testing, which is

often restricted to only a few of the commonly recognized

BRCA1 (MIM: 113705) or BRCA2 (MIM: 600185) patho-

genic or likely pathogenic variants, is expected to miss

>90% of clinically relevant variants in individuals with

no self-identified Ashkenazi Jewish ancestry and �10%

among Ashkenazi Jewish-identified individuals.38

These studies illustrate specific scenarios in which con-

ventional population descriptors may provide useful in-

sights for clinical providers. When goals of research

include measuring healthcare disparities, conventional

population descriptors related to self-identified race and

ethnicity are clearly important. Additionally, data that cli-

nicians may use for genetic and medical counseling

include ancestry categories that are informative for popula-

tions’ genomic background, such as descent-associated de-

scriptors that refer to populations with a history of bottle-

necks such that founder mutations may influence allele

frequencies. There are also important caveats and limita-

tions associated with the types of data gathered in clinical

genomics laboratories, which are mentioned in the studies

we highlighted, consistent with recent guidance.11

In contrast to the above examples, which demonstrate

the utility of conventional population descriptors in

improving variant classification, the use of such descrip-

tors may not be appropriate in the reproductive carrier

screening setting. The use of conventional population de-

scriptors has been standard practice when providing resid-

ual carrier risks in reproductive carrier screening for auto-

somal recessive and X-linked disorders. This type of risk

estimate reflects the probability that an individual with a

negative genetic test result may still be a carrier of the sus-

pected genetic condition based on known frequencies in

population datasets that correspond to an individual’s

self-reported ancestry. However, in most cases, providing

residual risk estimates based on conventional population

descriptors may not be clinically appropriate. The accuracy

of residual risk estimates relies on disease incidence

estimates for the underlying populations, which are
can Journal of Human Genetics 112, 481–491, March 6, 2025 485



notoriously unreliable for populations underrepresented

in genomics research. This may contribute to the risk of

misinterpreting reported results, especially in people with

ancestral origins underrepresented in population data-

bases, unknown family origins, or with diverse ancestral

backgrounds and mixed heritage.39 Additionally, the

ancestral haplotype, or local genomic context of alleles

within and in the proximity of a given disease gene, may

not correspond to genome-wide estimates of ancestry

groupings, which can create confusing ormisleading infor-

mation for clinical genetics providers, whomaymake deci-

sions or interpretations based on assumptions related to

‘‘global’’ ancestry, without this being an appropriate proxy

for the likelihood of a particular variant being found.

This is one clear example where patient ancestry for ge-

netic testing had once been considered relevant but was

subsequently set aside. The recent update to American

College of Medical Genetics (ACMG) guidance on repro-

ductive carrier screening now recommends expanded

screening for carriers of hundreds of genetic disorders by

next-generation sequencing for all individuals (regardless

of background) based on genetic diversity in the general

population and limitations of population descriptor data

as a proxy for genomic background and motivated by a

desire to ensure ‘‘equitable opportunity for patients to

learn their reproductive risks.’’40

Use of ancestry-based population descriptors in

improving variant classification

The allele frequency of a variant observed in a large,

healthy population is one type of evidence used by clinical

genomics laboratories to assess the likelihood that a

variant is benign or pathogenic in the context of Mende-

lian disease.41,42 Clinical genomics laboratories typically

use databases containing genomic sequences from large

numbers of individuals from many ancestral populations

to assess a variant’s frequency. Though most variants that

are relevant in clinical genetic testing for monogenic disor-

ders are present throughout the world’s population and

thus not influenced by ancestry, some clinically relevant

variants are not uniformly distributed and have popula-

tion frequencies that differ by genomic ancestral back-

ground.43 Paying attention to genetic ancestry may, there-

fore, inform the discovery and interpretation of clinically

important genomic regions and variants.

By using data in the Exome Aggregation Consortium

(ExAC) database,44 researchers from our laboratory estab-

lished that, other than the few exceptional pathogenic var-

iants with higher-than-expected allele frequencies that

were already well characterized in the literature, the major-

ity of pathogenic variants were extremely rare globally

(having an allele frequency of <0.01%).26 The underlying

reasons for variability in allele frequencies across popula-

tions with more specific bio-geographic characteristics

are seldom considered during variant classification, which

is an important and consequential oversight. A more

nuanced approach is required to accurately distinguish,
486 The American Journal of Human Genetics 112, 481–491, March
for example, between a benign population-specific poly-

morphism, a disease risk allele with variable penetrance

and expressivity due to gene-environment or gene-gene in-

teractions, and a founder mutation responsible for the

elevated prevalence of a genetic disease in populations

with shared ancestry.

As an example, c.3628�41_3628�17del (GenBank:

NM_000256.3) (‘‘MYBPC3D25bp’’) describes a 25 bp dele-

tion in theMYBPC3 (MIM: 600958) gene that was originally

thought to be associated with hypertrophic cardiomyopa-

thy (MIM: 115197) and was proposed as an explanation

for the disease prevalence in South Asian Indians since it

was observed at a higher frequency in affected individuals

with this ancestral background.45 After further inquiry

into this association, however, this variant was found

to be a marker for a haplotype containing both the

MYBPC3D25bp allele and another variant in an intronic re-

gion of MYBPC3 (c.1224�52G>A [GenBank: NM_000256.

3]),46,47 which has since been validated as one of the most

common pathogenic variants among hypertrophic cardio-

myopathy subjects.48,49 Although c.1224�52G>A is rarer

than MYBPC3D25bp, it is more common in individuals of

South Asian ancestry (0.015%) compared to all individuals

in ExAC’s successor, gnomAD25 (0.005%). Identification of

this population-enriched geneticmodifier allows clinical ge-

nomics laboratories to provide more accurate variant classi-

fications. This example further emphasizes the importance

of paying attention to the diversity of study populations

and including more diverse study participants in large-scale

public genomic databases.

Despite these examples of how ancestry-based popula-

tion descriptors may improve the detection of clinically

valid genetic test results, there are limitations to using ge-

netic ancestry information within clinical genomics labo-

ratories. Many clinical laboratories do not, nor are they ex-

pected to, report genetic ancestry when providing test

results from routine screening or diagnostic genetic

testing, even if the data for imputing genetic ancestry are

available (e.g., with high-resolution SNP microarray,

exome sequencing, or whole-genome sequencing). More-

over, many molecular methods used for diagnostic genetic

testing or screening do not generate the data needed to

infer genetic ancestry, which require comparisons of

genomic variant calls to reference datasets labeled with

population descriptors, often indicating the sampling loca-

tion or ancestral origins of data subjects. Finally, not all

conventional population descriptors with racial and

ethnic categories are informative for ancestry-specific allele

frequencies and indeed may obfuscate trends in genetic di-

versity by collapsing highly diverse populations into broad

groupings, such as entire continents.
Future directions

Professional practice guidelines are needed to directly

address how, in clinical genomics laboratories, population
6, 2025



descriptors such as race, ethnicity, and ancestry are

collected, stored, used, and reported. Guidance is also

needed for how and when genetic ancestry inferences

should be generated or obtained, incorporated into testing

protocols and interpretation of results, and/or described to

subjects and their healthcare providers. Guidelines for

publications issued in parallel with or in response to the

NASEM report state that the use of conventional popula-

tion descriptors may be acceptable for certain types of

research, such as research evaluating social determinants

of health,6 as long as the researchers are transparent about

how the data were obtained, the specific procedures and a

rationale for how the analyses were conducted, and how

the use of these population descriptors may impact the

interpretation of results.11 In that regard, it is useful to

recognize that when using population descriptors in

certain types of analyses (e.g., investigation of variant

classification discrepancies in a diverse population31),

excluding individuals with ‘‘unknown,’’ ‘‘other,’’ or multi-

ple descriptors may unintentionally perpetuate the histor-

ical underrepresentation of individuals with diverse ances-

tral backgrounds and non-European populations. This

would be similar to excluding individuals with imputed

admixed ancestry from genome-wide association study

(GWAS), possibly leading to not only false positive results

but also decreased generalizability and loss of statistical

power.50

As the United States population becomes more diverse

and integrated across ancestral groups, evidenced by a

276% increase in those who selected ‘‘two or more races’’

on the census between 2010 and 2020, categorical data

from population descriptors will likely have decreasing

utility, precision, and accuracy to offer researchers and cli-

nicians alike.51 The same limitation applies to individuals

with identities that are not typically represented among

multiple-choice categories provided in demographic ques-

tions. Data collection efforts may be improved by present-

ing more inclusive and specific categories that reflect ge-

netic ancestry, allowing for multiple-choice selections

and avoiding a single- or best-choice requirement, as well

as providing an open-ended option for respondents to

add custom responses without having to designate oneself

as ‘‘other.’’52

Representing and including more people with diverse

ancestral backgrounds to better characterize global

genomic variation has many benefits, such as improving

variant classification and reducing uncertain results for

groups with historically high rates of VUSs.28,30 Multiple

studies have identified significant differences in the rate

of VUSs and the frequency of pathogenic variants among

different populations, whether stratified by population

descriptors or inferred genetic ancestry groupings;

these differences are likely caused by the unequal represen-

tation of populations within genomic reference data-

bases.29,31–33,43,53 Though not yet routine in clinical geno-

mics laboratories, ancestry-based population descriptors

could be used to inform variant classification and the re-
The Ameri
turn of results, indicating whether a subject’s ancestral

background is sufficiently represented in reference data

and population allele frequency databases. This approach

may improve VUS resolution in underrepresented groups,

which is an achievable goal given the ongoing expansion

of genomic reference databases through large-scale

sequencing in the general population.52,54

Over the last two decades, a single reference genome

(first GRCh37 and now GRCh38) has been heavily used

to inform genetic testing and variant detection. These

genome builds were derived largely (�70%–72%) from a

single anonymous donor whose genomic profile suggested

post facto they were male and had recent ancestry from

both African and European populations. An additional

�23% of the reference sequence was derived from �10

other individuals, and the remaining 7% was contributed

from >50 DNA donors solicited through public outreach

efforts in the northeast United States (https://www.ncbi.

nlm.nih.gov/grc/help/faq/).55,56 Based on these contribu-

tions of DNA from individuals in the United States, the

current reference genomes used by many clinical labs

(build GRCh37 or GRCh38) contain known structural er-

rors and gaps that amount to �8% of the linear genome

reference, leading to biases in variant discovery, detection,

and classification.57,58 These errors have been mitigated

over time by the addition of ‘‘patches’’ and other updates

to the reference genome.

Recent efforts to generate a higher-quality reference

genome that fills in the known gaps and errors (e.g.,

whole-genome, long-read sequencing efforts of the Hu-

man Pangenome Reference and Telomere-to-Telomere

consortia) have eliminated hundreds of thousands of rare

erroneous variants and excess fixed variants (in non-Afri-

can genomes), which has led to improvements in variant

calling using a pangenome reference, T2T-CHM13.59 Hav-

ing access to more complete, accurate, and diverse genome

reference data improves variant calling accuracy in

everyone and boosts confidence in the reported results

for individuals from underrepresented populations. Even-

tually, the adoption of a pangenome reference for variant

calling and classification is expected to improve interpreta-

tion for subjects from any and all combinations of genetic

ancestral backgrounds.60,61
Concluding remarks

As clinical genetic testing increases for individuals with

diverse ancestral backgrounds, laboratories are becoming

increasingly aware of the issues raised by the application

and misuse of various population descriptors, both in

developing diagnostic or screening tests and reporting re-

sults from those tests.

Clinical laboratories recognize that a broadly diverse rep-

resentation of genomes in public databases and the avail-

ability of a pangenome reference are expected to enable

improvements in variant interpretation accuracy and
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reporting that is specifically tailored to the individual un-

dergoing genetic testing. A pangenome reference will

also help reduce uncertainty in the identification and clin-

ical classification of many variants, as sequence reads from

genomes that were not well represented in the linear refer-

ence will now be able to map to the pangenome reference.

Although laboratories today do not typically utilize or

report genetic ancestry information during routine genetic

testing, this could change in the future as exome or

genome sequencing becomes standard practice. Further-

more, the development and adoption of new methods in

clinical genomics laboratories (e.g., clinical variant

modeling using machine learning, pangenome references,

and polygenic risk scores) should be accompanied by

empirical studies to test their validity and utility across

different populations. This should also include validation

of approaches that use population descriptors and meth-

odologies for constructing genetic ancestry estimates to

help inform clinical providers and researchers about the

most relevant and accurate types of information and clas-

sifiers for specific investigative and clinical purposes.

Rather than exclude population descriptors provided by

subjects or their healthcare providers outright, it is impor-

tant to keep in mind the utility of this information for

tracking diversity, equity, and inclusion and an improved

understanding of the etiology of disease, healthcare deliv-

ery, and health outcomes and to consider what would be

lost if these data were no longer available to inform

different types of inquiries into the access and utilization

of genetic services in healthcare.

Many research studies have been reported, and many

more will be conducted in the future, using expansive

accumulated data from clinical genomics laboratories.

Research performed on datasets from these laboratories

and observations drawn from those datasets are powerful

ways to inform clinical decision-making because of the

approximation of such cohorts to real-world populations.

Feero et al.11 encourage researchers to document how pop-

ulation descriptors are collected, how theymight influence

interpretation of results and the conclusions drawn, and

their potential limitations. Since genetic ancestry does

not capture an individual’s sociopolitical, economic,

geographic, or cultural environment, all of which may

play a role in their experience of clinical genetic testing

and subsequent healthcare utilization, it may be important

to continue collecting population descriptors related to so-

cial and cultural identities, such as race and ethnicity. This

will ensure that healthcare utilization metrics, as collected

by health disparities researchers, can continue to track dif-

ferences in access to genetic services as well as the impact

of genetic testing on patient populations. Improved stan-

dards for the collection and use of population descriptors

may also directly enhance inclusivity in genomics research

studies and provide greater insights into the generaliz-

ability of results while providing more precise and relevant

information about participants in ways that are more

respectful of individual identities.
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