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Sense of Agency: Towards Empirically Driven Measures and Understanding 
Fatemeh Mahdinia, Amir Lindor, Pernille Hemmer, & Robrecht van der Wel 

Rutgers University 
 

Abstract 
Sense of Agency (SoA) is a core concept related to our 
experience as intentional agents in our environment. Explicit 
and implicit measures have been used to study SoA. Recent 
findings suggest that the most common implicit measure, 
namely Temporal Binding (TB), may reflect memory 
processes rather than SoA. Here, we implemented two TB 
measures and an explicit measure in a novel goal-directed 
extended action task to better understand SoA measures. 
Participants either watched or produced dot movements to a 
target of choice and then estimated the duration between two 
tones that played either upon movement completion (TB1, akin 
to traditional TB studies) or based on the start and end of 
movements (TB2). Participants reported stronger explicit SoA 
during active than passive movements. Results from neither TB 
version aligned with prediction based on TB-accounts as a 
reflection of SoA. We discuss memory-based and scaling 
accounts as alternative interpretations for our data. 

Keywords: sense of agency; temporal binding; explicit 
measures; memory; metacognition; 

Introduction 
The sense of agency (SoA), i.e., the feeling of control over 
our actions and their associated outcomes, is one of the most 
fundamental aspects of human experience. The actions we 
perform allow us to experience a sense of ownership and 
control over the changes our actions bring about in the 
environment.  For example, if I reach for a glass of water, I 
feel a sense of ownership over my actions as I grasp the glass 
and drink from it. View this in contrast to accidentally 
knocking a glass of water on the floor‒I caused the outcome 
but might not have controlled it. Our ability to veridically 
experience this link between our actions and their outcomes 
is a core aspect of child development and has been linked to 
several clinical disorders, e.g., schizophrenia. SoA is also 
thought to play a role in voluntary movement. Notably, a 
better understanding of SoA has important implications for 
neurorehabilitation and socially cognizant robotics. 

While there is a wealth of research on SoA, it has recently 
come to the fore that the most common implicit measure of 
SoA (temporal binding (TB), see below), may not reflect 
SoA. To address this issue, we introduce and present data on 
a novel approach to understanding common measures of SoA 
(including TB). We do so by introducing a goal-directed 
extended action task paradigm. Before we describe this task, 
we will first provide background of the most common 
theories of SoA. 

Metacognition of Action 
What do we know about SoA as a metacognitive 
phenomenon? SoA consists of several components 
(Gallagher, 2012). It includes both judgments of agency 
(JoA) as well as feelings of agency (FoA). The term judgment 
of agency refers to the notion of being the one who initiated 
an action, whereas the term feeling of agency refers to the 

notion of experiencing control over the action (see Haggard 
& Tsakiris, 2009; Pacherie, 2008; Synofzik et al., 2008). 
These concepts are linked, as people report lower FoA when 
they judge that they did not initiate an action as compared to 
when they did. For a person to judge that they initiated an 
action does not imply that they feel in control over it, 
however. For example, one could imagine walking into a 
classroom and flipping a light switch to turn on the lights. In 
this case, one would probably feel in control over the lights 
turning on, unless someone else happened to simultaneously 
flip another light switch while they entered the classroom 
through another door (Silver et al., 2021). Thus, the link 
between initiating an action and experiencing SoA over its 
effect is sometimes ambiguous. Becoming aware of these 
ambiguities may influence SoA after action completion (i.e., 
postdictively).  

While SoA is a core psychological phenomenon, it is not 
straightforward to understand or measure. Predictive and 
postdictive accounts have been developed for how people 
experience SoA. The predictive account (e.g., Blakemore et 
al., 2002; Haggard, 2005; Tsakiris et al., 2006) postulates that 
SoA arises from the match between the predicted and actual 
sensory consequences of an action. SoA then increases as this 
match gets stronger.  

The postdictive account (e.g., Hoerl et al, 2020) is most 
clearly represented by the theory of apparent mental 
causation. Whereas the predictive account establishes SoA 
dynamically during the action, the postdictive account claims 
that SoA is established after the action is completed by 
evaluating the extent to which three criteria are met – namely 
priority, consistency, and exclusivity. The light switch 
example above forms a straightforward way of illustrating 
these criteria. Priority dictates that a thought needs to precede 
an action (i.e., the thought of turning on the lights). 
Consistency dictates that the thought needs to be consistent 
with the action outcome (i.e., the lights turning on). 
Exclusivity dictates that no alternative causes for the action 
are perceived or known (i.e., realizing whether someone else 
flipped a light switch or not). Any reduction of these criteria 
then lowers SoA. 

There is broad consensus that the predictive and postdictive 
accounts are complementary rather than conflicting in nature. 
In fact, the Cue Integration Theory integrates predictive and 
postdictive aspects of SoA based on Bayesian mechanisms 
(Legaspi & Toyoizumi, 2019; Moore & Fletcher, 2012; 
Synofzik et al., 2013). According to this theory, the 
derivation of SoA arises based on a weighting of multiple 
cues. These cues could be sensorimotor cues or other 
predictive and postdictive cues. 
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Measuring SoA Implicitly: Temporal Binding 
Interestingly, SoA may not just be reactive to the integration 
of predicted and actual signals but may also modulate this 
integration. Evidence for this assertion stems from the 
phenomenon of temporal binding (or action-effect binding). 
Temporal binding (TB) is the most considered implicit 
measure of SoA. TB refers to the observation that one’s own 
actions and action effects are bound together in time, i.e., a 
subjective compression of the time interval between the 
action (e.g., pressing a button) and its effect (e.g., hearing a 
tone; Haggard et al., 2002). To be precise, actions people 
perform are perceived later in time than they objectively 
occur, and action effects are perceived earlier in time than 
they objectively occur. In contrast, passively produced action 
effects as well as action effects produced by others are 
temporally separated from the actions that produced them. To 
emphasize the link to intentionality, TB is sometimes referred 
to as intentional binding (Haggard, 2017).  

TB effects have been widely replicated and are frequently 
conceptualized as an implicit reflection of SoA (Hughes et 
al., 2013; Moore & Obhi, 2012). To date, accounts of TB 
have implicated sensorimotor mechanisms (Haggard et al., 
2002), cognitive-level inferences about causality (Buehner & 
Humphreys, 2009; Hoerl et al., 2020), or a combination of 
these cues (Moore et al., 2009). TB may also be a specific 
example of a more general process of causal binding across 
time and space rather than being specifically indicative of 
intentionality. When seen as a form of Bayesian predictive 
processing, the notion is that time estimates of actions and 
effects are based on a weighted average of all relevant 
sources of information, where the weighting is done by the 
estimated reliability of each information source (e.g., Suzuki 
et al., 2019). In this processing, top-down perceptual 
predictions and bottom-up sensory prediction errors together 
feed into SoA. Considering SoA to arise from this process is 
different from the traditional TB account, as it does not 
require postulations about intentionality. Thus, it is important 
to carefully examine how TB relates to SoA. 

This last point is of critical importance because recent 
findings cast doubt on whether TB forms an implicit 
reflection of SoA, or if so, to what extent it does.  There are 
at least two shortcomings in the work on TB as a measure of 
SoA. One is that TB tasks typically do not involve a clear goal 
or an extended action, such as reaching for and grabbing a 
coffee cup (but see Kumar & Srinivasan, 2014, for an 
alternative task). Instead, they center around the somewhat 
arbitrary production of tones through keypresses. A second 
and more serious concern is that it has recently been shown 
that TB effects may be accounted for through a regression-
to-the-mean pattern commonly observed as an effect of 
memory, rather than SoA (e.g., Saad, Musolino, & Hemmer, 
2022). The TB task is inherently a memory task (recall of 
time intervals after producing them), and the behavioral 
patterns are indistinguishable from performance (specifically 
regression to the mean) in episodic memory. Thus, it is 
possible that TB effects do not reflect sensorimotor 

mechanisms or SoA. This possibility is also consistent with 
Vierordt’s law (Vierordt, 1868). 

Measuring SoA Explicitly: Rating Scales 
While the most common implicit measure for SoA is TB, 
explicit measures of SoA involve conscious reflection and 
self-report. In most studies that use an explicit measure of 
SoA, participants are asked to rate the extent to which they 
felt in control over a preceding action on some continuous 
scale. While explicit rating scales come with inherent 
challenges (such as response biases, etc.), they have been 
shown to be sensitive to objective changes in control across 
different conditions in a way that one would expect. For 
example, van der Wel (2015) showed in a joint action task 
that explicit SoA ratings varied systematically with the 
actor’s role in the action. If explicit ratings and implicit 
measures both measure SoA, then they should provide a 
converging picture of how SoA works. Unfortunately, 
however, it should be noted that explicit ratings and temporal 
binding effect have repeatedly been shown to be dissociable 
(e.g., Barlas & Obhi, 2014; Dewey & Knoblich, 2014; Pfister 
et al., 2021; Saito et al., 2015, but also see Makwana & 
Srinivasan, 2017). This suggests that TB and explicit ratings 
are tracking different cognitive processes, raising the 
question of which measure reflects SoA more clearly. 

A Novel Task 
Here, we aimed to address concerns raised above about 
measures of SoA by implementing TB and explicit measures 
in a novel task. First, we replaced the single button press 
common in TB studies with a goal-directed extended action 
task. The logic here is that more complex actions should be 
more sensitive to differences in SoA. Second, we modified 
the TB task to include two different versions; the first version 
(TB1 in Figure 1) is most like what happens in regular TB 
tasks, except that rather than a single button press we asked 
participants to choose between two possible targets and then 
move a dot displayed on a screen to that target through a 
sequence of button presses (with movement speed varying 
across conditions). Arrival at the target then caused a first 
tone (like the single button press in standard TB tasks), which 
is followed by a second tone at varying time intervals. 
Participants then completed an interval estimation task (i.e., 
they estimated the duration between the tones on a slider 
scale). We included both an active and passive condition. In 
the active condition, participants moved the dot. In the 
passive condition, participants watched the dot move to the 
target. We included these two conditions because they are  

 
Figure 1. Overview of our experimental task. Participants 
first entered the number shown in the target of their choice. 
TB1 and TB2 are our implicit measures, see text. 
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common in standard TB paradigms. Participants also 
provided an explicit SoA rating after each block of 10 trials. 

The second version of the TB task (TB2 in Figure 1) used 
the same task (including experimenter-controlled movement 
speed variations), except that starting the dot movement 
caused the first tone, and arrival at the target caused the 
second tone. Participants then again estimated the interval 
between the two tones. In other words, the time between 
tones was the same as the time it took to move the dot to the 
target. Participants also provided explicit ratings after each 
block of 10 trials. 

This new version (TB2) is arguably much more interesting 
than standard TB tasks, as the interval duration is now under 
the participants’ control. The task itself is an extended goal-
directed action more akin to reaching for a glass of water, 
instead of a single button press resulting in an arbitrary tone. 
While the interval estimation task is still a recall task that 
happens after action completion, the action effect of 
relevance here is directly linked to the specifics of the actions 
(e.g., trajectory length, movement speed, and duration) and 
should be more revealing in terms of SoA. 

Experiment 1 
We provided a broad overview of our task and conditions 
above but provide further experimental detail here. Again, 
our novel experimental paradigm targeted the link between 
TB1, TB2, explicit ratings, and SoA. We tested 21 
participants. Completion of the experiment took 75 minutes. 
Participants first completed a consent form and provided 
basic information such as handedness and neurological 
status. They were then seated behind a standard desktop 
computer (Dell Optiplex 7010 with a 22-inch monitor). We 
ran the practice and experiment through custom-written 
Matlab scripts using PsychToolbox (Brainard, 1997). 

Practice Trials 
Participants first completed 12 practice trials (3 trials for each 
of our four conditions; TB1/TB2 crossed with active/passive 
control of the dot). Each block of three trials within the 
practice portion first showed a screen that provided 
instructions for the specific version of the upcoming task (i.e., 
TB1/TB2 Active/Passive).  

Each trial started with a presentation of two targets that 
varied in their location (targets labeled 1 and 8 in Figure 1 are 
examples). There were four possible target locations, one in 
each quadrant of the screen (i.e., top-left/right and bottom-
left/right). We randomized which target combination was 
presented across trials. We also implemented small variations 
in coordinates along the x and y axes to ensure that 
participants had to adjust their steering slightly across 
different trials with the same target quadrant. The targets 
showed a random number between 1 and 9 in them. Once 
participants saw the two targets for a trial, they first indicated 
which target they would move to by entering the number 
corresponding to the target of their choice on a keyboard. 
After a 1000 ms delay, the trial then started and participants 
either moved (Active condition) or watched (Passive 
condition) the dot move to the target (details below). Once 

the dot reached the target and the two tones had played, 
participants then saw the next screen with a slider scale.  
Participants estimated the duration of the time interval 
between the tones by moving the index on the slider scale. 
Their estimate of milliseconds duration was displayed above 
the slider scale. The scale ranged from 0 to 1000 ms. Once 
they reached the value corresponding to their estimate, they 
submitted the estimate by pressing the spacebar. We ensured 
that the initial position of the index was randomized and 
needed to be changed before participants could submit their 
interval estimate. Participants received feedback on the 
accuracy of their duration estimate and the actual duration 
was shown on the screen after estimate submission (feedback 
was not provided during the experimental trials). After the 12 
practice trials, participants were shown an example screen of 
the explicit rating scale they would complete after each of 10 
experimental trials (details below). They then continued with 
the experimental trials. 

Experimental Trials  
Participants completed four blocks of 90 experimental trials 
per condition (360 trials in total). We counterbalanced the 
order of blocks across participants. 

TB1 Active/Passive 
During TB1 blocks, participants either moved (active) or 
watched movements of (passive) a dot from the start location 
in the center of the screen to their chosen target. In the active 
condition, participants moved the dot by using the direction 
keys on the keyboard. Movements varied with three levels of 
speed, such that there was a slow, medium, and fast condition 
within active and passive blocks (30 trials per speed). For 
active trials, speeds corresponded to 12, 17, and 22 pixels per 
button press. For passive trials, speeds corresponded to 22, 
28, and 34 pixels per unit time. These speeds were based on 
pilot testing to ensure a feeling of control for each speed in 
the active condition and based on approximating movement 
intervals between ~300 and 700 ms in the passive condition. 

Once the dot reached the target, this caused the first tone to 
play immediately (i.e., no temporal delay relative to the end 
of the action). We added this tone to the sensorimotor 
information participants got from ending their action (in 
active trials) and the visual effect of reaching the target on the 
screen to make the active and passive condition as similar as 
possible, except for the difference in actively acting. The first 
tone was followed by one of three intervals (300, 500, or 
700ms, 30 trials each, randomized within a condition block) 
and then another tone. The participant then provided their 
duration estimate for the interval between the two tones using 
the slider scale described above. 

TB2 Active/Passive 
Trials in TB2 blocks were the same as TB1 blocks, except 
that the start of the dot movement caused the first tone (again, 
for the same reason as provided above) and the arrival of the 
dot at the target caused the second tone. This implies, in the 
active condition, that participants controlled the interval 
durations themselves.  
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As a preview of the results, it should be noted that while 
duration estimates in the passive condition were similar to 
TB1 (as the interval was under experimental control), it was 
possible for participants to generate interval durations (i.e., 
for movements to take longer) beyond 1000 ms in the active 
condition. This implies that the slider scale range was 
technically not sufficiently wide for these trials, and that it 
was not a priori possible to design the scale to cover the 
correct width. We planned to address this issue in our 
analyses, by considering the provided responses for these 
trials relative to their absolute duration values, as well as 
relative to the movement speed condition (i.e., slow, medium, 
or fast dot movements).  

Explicit Ratings of SoA 
In each block, participants also provided an explicit SoA 
rating after each 10 trials. They did so by entering on the 
keyboard a numerical response between 1 and 9 to the 
prompt: “To what extent did you feel in control during the 
past 10 trials?” A scale from 1 to 9 was displayed below this 
prompt, with 1 labelled as (“Not at all”) and 9 as 
(“Completely”). 

Results 

Explicit Ratings 
We first analyzed the explicit ratings with a 2 (TB1/TB2) x 2 
(Active/Passive) repeated-measures ANOVA. Figure 2 
shows the results. The results indicated a main effect for 
Active (M = 6.30, SE = 0.29) vs Passive (M = 5.51, SE = 
0.33), F(1,19) = 7.28, p < .05. The results did not show a main 
effect of TB1/TB2, p > .10. While the difference between the 
active and passive condition was numerically greater for TB2 
versus TB1 trials, the interaction between TB1/TB2 and 
Active/Passive did not reach significance, p > .05. A 
Bayesian analysis confirmed that the model with 
Active/Passive as a factor was 4.64 times more likely than the 
null and 2.76 times more likely than a model with TB version 
* Active/Passive. In sum, participants reported a stronger 
SoA when they controlled the dot movements than when they 
watched the dot move. This finding suggests that our 
Active/Passive manipulation meaningfully tapped into 
changes in SoA. 

 
Figure 2. Explicit SoA ratings as a function of condition. 

Implicit TB Measures 
One of our main objectives was to better understand TB 
measures in the context of goal-directed actions that were 
more extended in time than a single button press. We 
incorporated TB1 as a version that is closer to traditional TB 
studies, as arrival at the target (like a single button press) 
started the interval and a second tone (after 300/500/700 ms) 
ended the interval to be estimated. In this version, interval 
duration was under full experimental control for active (TB1 
Active) and passive (TB1 Passive) trials (as the tones did not 
depend on the produced movement). We also included our 
novel TB2 task, in which tones corresponded to the start and 
end of the goal-directed movements. In the passive condition 
(TB2 Passive), interval duration was also under experimental 
control (as we simulated movement trajectories that then 
controlled the dot movement). We controlled movement 
duration by feeding these trajectories with different gains 
(resulting in fast/medium/slow dot movements) to create 
different interval durations. In the active condition (TB2 
Active), we also varied the gain to create fast/medium/slow 
dot movement conditions, but it is important to note that 
interval duration was not under experimental control. Instead, 
it depended on the participants’ movements in that case. For 
this reason, we report our results for each TB version 
separately below. 

TB1: Binding for Tones after Movement Completion  
Our first analysis focused on Bias for TB1 as a function of 
Active/Passive and Interval Duration (300, 500, or 700 ms). 
We started with this analysis because TB1 was most like 
standard TB studies that use button presses. 

To calculate TB, we first calculated a measure of bias for 
each trial. We did so by taking the interval duration estimate 
a participant provided in a trial and subtracting the actual 
duration between the tones from this value. Positive resulting 
values thus indicated overestimation (or repulsion in TB 
terms) of the duration between tones, and negative values 
indicated underestimation (or binding). For each of the 
following analyses, we removed outlier values if Bias fell 
outside of the mean ± 2 STDs for a given participant within a 
given condition (so relative to the 90 trials per condition). We 
applied a Greenhouse-Geisser correction to the degrees of 
freedom for violations of the sphericity assumption. 

 
Figure 3. Bias as a function of Active/Passive and Interval 
Duration for TB1 trials. 
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The 2 (Active/Passive) x 3 (Interval Duration) repeated-
measures ANOVA indicated a main effect for Interval 
Duration (F(1.04, 19.74) = 45.22, p < .001), but not for  
Active/Passive, p > .10. The interaction also did not reach  
significance, p > .10. As can be seen in Figure 3, mean Bias 
was positive for the 300 ms interval (M = 131.75, SE = 
27.66), close to zero for the 500 ms interval (M = 10.79, SE 
= 16.04), and negative for the 700 ms interval (M = -114.83, 
SE = 21.42). A Bayesian analysis indicated that a model with 
just interval duration was 1.56 times more likely than a model 
with interval duration and Active/Passive, and at least five 
times more likely than any other model. 

This result is consistent with previous findings in the TB 
literature – namely a regression effect and both compression 
(at 700ms) and repulsion (at 300ms). However, this result is 
not consistent with predictions from theories of TB which 
would predict compression for all time intervals, and a 
difference in degree of compression between active and 
passive. 

TB2: Binding for Tones during Movement Completion 
For TB2, we calculated Bias in two different ways; First, we 
considered Bias for TB2 Active and Passive relative to the 
minimum possible movement duration based on the 
experimenter-controlled movement speed (i.e., gain). By this, 
we mean that we determined how long it would take to move 
the dot from the start location to the target if there was no 
deviation from the straightest possible path and the 
participants did not pause anywhere along the movement 
trajectory. For TB2 Passive, this was identical to the actual 
interval duration they judged (as the dot movements were 
simulated at different gains and the interval duration was 
therefore under experimental control). 

Figure 4 shows the results relative to the minimum possible 
duration based on dot movement speed. We then analyzed 
Bias for TB2 by conducting a 2 (Active/Passive) x 3 
(Movement Speed: Slow/Medium/Fast) repeated-measures 
ANOVA (which is identical to how we analyzed it for TB1, 
except that we used Movement Speed instead of Interval 
Duration). The results revealed a main effect of Movement 
Speed (F(1.11, 21.12) = 33.12, p < .001), such that the fast 
(M = 65.51, SE = 23.37) and medium (M = 52.92, SE = 19.26) 
movement speed resulted in positive bias, and the low 
movement speed resulted in negative bias (M = -42.64, SE = 
18.46). The results also indicated a main effect (F(1, 19) = 
17.40, p < .001) of Active (M = 77.32, SE = 26.01) versus 
Passive (M = -26.79, SE = 18.25). These effects were 
qualified by a significant interaction between Active/Passive 
and Movement Speed, F(1.383, 26.28) = 12.06, p < .001, 
such that there was more positive bias for active than passive 
trials at fast and medium movement speeds, whereas bias did 
not differ significantly at slow speeds. A Bayesian analysis 
confirmed that a model with interval duration, 
Active/Passive, and their interaction term was over seven-
hundred times more likely than any other model. 

Second, we considered TB2 Active trials on their own. The 
analysis for TB2 we just presented used minimum possible 
movement durations based on movements straight to the  

 
Figure 4. Bias as a function of Active/Passive and Movement 
Speed for TB2 trials. 

target without any temporal delays. However, participants 
often deviated from this path and did not move continuously. 
As a result, the movement durations in TB2 Active could (and 
often did) exceed the maximum range on the slider scale. 

To get a better sense of bias as a function of actual interval 
durations between the tones during TB2 Active, we 
calculated two measures. First, we calculated the proportion 
of cases for which participants generated movement (and thus  
tone interval) duration that exceeded the maximum of 1000 
ms on the slider scale. This was the case for 44.81%, 45.56%, 
and 57.78% of trials for fast, medium, or slow movement 
speeds, respectively. Interestingly, however, we also 
calculated the proportion of cases for which the interval 
estimates participants provided was at the maximum of the 
range of the slider scale (i.e., 1000 ms). If participants 
considered the estimation task in an absolute way, then 1000 
ms would be the most reasonable response when the actual 
interval duration exceeded this value. We observed, however, 
that participants responded with 1000 ms on 26.67%, 7.00%, 
and 3.67% of trials for fast, medium, and slow speeds, 
respectively. As these values are substantially lower than the 
proportion of actual durations exceeding 1000 ms, this 
suggests that participants judged the durations for TB2 
Active in a relative way. They likely did so relative to the 
width of the slider scale rather than in actual movement 
durations.  

Even though movement durations often exceeded the 
maximum value on the slider scale, we could calculate bias 
based on the actual movement durations participants 
accomplished. To do so, it is useful to consider median bias 
(median values better account for outliers and for the non-
normal distributions of movement times here) as a function 
of dot movement speed (as movement durations varied with 
dot movement speed). The median bias for each movement 
speed was strongly negative (Median = -783.43 for fast 
speeds, Median = -683.86 for medium speeds, and Median = 
-749.64 for slow speeds). These values further indicate that 
participants rescaled their responses to the width of the slider 
scale.  

In sum, for TB2 we found the same pattern of regression to 
the mean (with a negative slope) as we found for TB1. 
Although we did find a difference between active and passive 
this should be interpreted with some caution, as the active 
trial movements tended to exceed the response scale, and thus 
result in larger bias. 

2904



Discussion 
Here, we introduced a novel paradigm aimed to address 
several concerns about standard SoA tasks; 1) we used more 
extended actions than a button press, 2) we introduced two 
versions of a TB task, with participants controlling the time 
interval between tones in one (TB2) but not the other (TB1), 
and 3) we obtained explicit ratings for the TB tasks and 
active/passive conditions. 

First, several methodological points should be made about 
our novel task for studying SoA. Our experimental setup 
differed from most TB studies as we included a goal-directed 
action task that was extended in time. By this, we mean that 
most TB studies use a single button press that participants 
press when they feel the urge to do so in the active condition. 
This results in a tone that plays after some interval duration, 
and they then estimate the interval. In passive conditions, 
they typically observe the same task and hear a first tone at 
the time of the button press and another tone some interval 
later (e.g., Saad et al., 2022).  

Our paradigm differs in several important ways. One is that 
participants chose one of two targets rather than pressing a 
single key to generate a tone. They chose the target in our 
passive conditions as well, such that they indicated the target 
and the dot then moved to that target 3 seconds later. Thus, 
participants had some level of control in our passive 
conditions, albeit much reduced and with a substantial delay 
compared to our active conditions. Second, our participants 
did not just hit a key once in the active condition, but 
completed a sequence of button presses in a goal-directed 
manner. As such, our task involved more extensive and 
continuous control than typical TB studies. In addition, 
participants controlled the first tone but not the second tone 
for the TB1 Active condition, and they controlled both tones 
and the interval between them for TB2 Active. In terms of 
task structure, then, one would expect TB2 Active to be more 
reflective of SoA than TB1 would be.  

This is exactly what we found. Our explicit SoA ratings 
showed sensitivity to the objective amount of control over the 
actions, as active conditions resulted in higher SoA ratings 
than passive conditions. This was particularly the case for 
TB2 Active (although the interaction was not significant). 
These results suggest that, indeed, giving participants control 
over the timing of both tones (and the resulting interval 
duration between them) results in a stronger SoA.    

When we considered bias (i.e., the difference between 
estimated and actual interval durations), our results showed 
two important patterns across TB1 and TB2. First, bias did 
not systematically change as a function of active or passive 
control in a trial. This finding is problematic for SoA 
accounts of TB, as they would predict more compression of 
interval durations for active versus passive trials. For 
example, Weller et al. (2020) hypothesized that TB would be 
weaker (less compression) for trials where participants did 
not perform an action (i.e., passive trials) relative to trials 
where they did perform an action (active trials).  

Second, bias changed as a function of interval duration 
(TB1) and movement speed (TB2). While this pattern has 

repeatedly been observed in TB data (see Saad et al., 2022), 
it is not predicted by SoA account of TB. Importantly, 
overestimation (or repulsion between the action and 
outcome) should only occur for non-intentional actions - for 
example a finger twitch caused by transcranial magnetic 
stimulation (Haggard 2002). However, we found over-
estimation (repulsion) for 300ms intervals for both active and 
passive trial for TB1 and overestimation for active trials for 
TB2. It is worth noting that the Weller et al. (2020) data also 
illustrates this pattern of repulsion at shorter intervals. 

How then could one account for these results instead? One 
possibility is that the TB data from interval estimation 
paradigms show regression-to-the-mean. As we indicated in 
the introduction, such an account (e.g., Saad, Musolino, & 
Hemmer, 2023) can successfully simulate TB data, such as 
those by Weller et al. (2020). The core notion for this account 
is that the mean of the range of intervals used induces 
regression-to-the-mean for the short (300 ms) and long (700 
ms) intervals. This then results exactly in the positive bias 
and negative bias observed at those intervals (regardless of 
whether it concerns active or passive trials). It is in our case 
remarkable to see that even our results for TB2 Active show 
some indications of a regression-to-the-mean pattern, despite 
the fact that the actual interval durations in many cases 
exceeded the range of the scale. Thus, participants rescaled 
their responses relative to interval durations across trials and 
relative to the width of the slider scale. This pattern would be 
expected based on a memory account or a scaling account, 
but not based on a SoA account of TB. 

While we believe that our novel goal-directed task is a 
substantial improvement over standard TB button press tasks, 
our TB findings failed to show TB2 to be more reflective of 
SoA than TB1. In fact, our results failed to show any 
systematic relationship between the objective amount of 
control in our task and TB measures. This observation raises 
further doubt in terms of the usefulness of TB as an implicit 
measure of SoA.  
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