Lawrence Berkeley National Laboratory
Recent Work

Title
New perspectives in physics beyond the standard model

Permalink
https://escholarship.org/uc/item/0xk388xm|

Author
Weiner, Neal J.

Publication Date
2000-09-09

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0xk388xm
https://escholarship.org
http://www.cdlib.org/

~
frroeer I
;;;;;;;;E\\_

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

LBNL-45782

New Perspectives in Physics
Beyond the Standard Model

Neal J. Weiner
Physics Division

September 2000

Ph.D. Thesis
- _ N
o - . e é
. ~ T 29
WA ) AN - )
' - PN ST g
A ¢
Cee are :
j/ . . R - .
. +
- Tt e .
- Rkl . -
} T id
el b o
S i y
s - )
pE j
. ~
‘ { .
t/ "
= e
L4

AJO1EJIOgRT [BUOLIEN AD[3}I2G DOUBUMET

-394 - Adeuqil @s "6pLe

aje(nouty |

10N saoq
| AdOD 3ONIY¥I43Y |

|

1 Ado)

28.LSP-ING1



DISCLAIMER

‘This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor any
of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions -of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the
University of California.

Ernest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBNL-45782

New Pei'spectives in Physics Beyond the Standard Model

Neal Jonathan Weiner
Ph.D. Thesis

Department of Physics
University of California, Berkeley

and

Physics Division
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

September 2000

This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics,
Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098,
and by National Science Foundation Grant No. PHY-95-14797.



LBNL~45782

‘New Perspectives in Physics Beyond the Standard Model
by

Neal Jonathan Weiner
B.A. (Carleton College) 1996

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
. Physics
in the

GRADUATE DIVISION
of the (
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Lawrence Hall, Chair
Professor Hitoshi Murayama
Professor Nicolai Reshetikhin

2000



New Perspectives in Physics Beyond the Standard Model

Copyright © 2000
by

* Neal Jonathan Weiner

The U.S. Department of Energy has the right to use this document
for any purpose whatsoever including the right to reproduce
all or any part thereof.



Abstract

New Perspectives in Physics Beyond the Standard Model
by

Neal Jonathan Weiner

Doctor of Philosophy in Physics
University of California at Berkeley

Professor Lawrence Hall, Chair

In 1934 Fermi postulated a theory for weak interactions cqntaining a dimensionful
coupling with a size of roughly 250GeV. Only now are we finally exploring this energy
regime. Whé,t arises is an open question: supersymmetry and large extra dimensions are two
possible scenarios. Meanwhile, other experiments will begin providing definitive information
into the nature of neutrino masses and CP violation. In this paper, we explore features
of possible theoretical scenarios, and study the phenomenological implications of various

models addressing the open questions surrounding these issues.

Professor Lawrence Hall
Dissertation Committee Chair
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Chapter 1

Introduction

Particle physics theory has enjoyed a long stretch of tremendous success. Up
until recently, there was no known e){perimental deviation from the standard model except
gravity. Precision measurements have repeatedly confirmed standard model predictions,
such as mea.sureménts of the anomalous magnetic moment of the electroﬁ (accurate at one
part in 10%), the muon anomalous magnetic moment (accurate at one part in 10%), and the

consistency of My, Mz and sin® 6y, as well as many others.

Nonetheless, particle theorists generally consider the standard model merely an
effective theory, valid in the energy regime below some scale A. It leaves open the question
of the origin of CP violation, has nineteen undetermined parameters, does not include
neutrino maéses or an understanding of their small size, and is unstable against radiative

corrections.

All of these things suggest that physics at some scale greater than presently tested

regimes is responsible for these things. Extensions of the standard model introduce new



questions that need answering, and, in answering them, often give new experimental sig-
nals that will, hopefully, allow us to distinguish them in the near future. Moreover, new
relationships between these issues appear as we look at particular extensions beyond the

standard model.

1.1 The Standard Model

The Standard Model (SM) of particle physics is the SU(2) ® U(1) theory of weak
and electromagnetic interactions combined with the SU(3) theory of strong interactions

between quarks.

The action for the theory is

S = / d*c T'A"D,L; + B 'y*D,E¢ . 04D, Q: (1.1)
+ U'4*D,U¢ +D°'+*D,Df
+  NLQUCTH + MNiD'QIH + ML E*H
+  (D"$)*Dué + p’¢*¢ — A" )

1 .
- Z(qu)g,m

In this expression, 7 and j are generation indices (u,c,t for up type quarks, d,s,b for down
type quarks, e, u, 7 for the charged leptons and v, v, and v, for the neutrinos). D is the

gauge covariant derivative,

D,=8,-igYB, —igT " @ Al —ig, 17" (1.2)



Field || SU@G) | sU©2) | vQ)

3 2 1/6
U 3 1 -1/3
D 3 1 2/3
L. |1 2 1/2
E 1 1 1
H 1 2 1/2

~ Table 1.1: Transformation properties of SM fields under SU(3) ® SU(2) ® U(1).

The gauge field strength tensor is defined as
[Dy, D] = —gF}, T, (13)

and the T* are the generators of the group in question. The represehtations and charges
of the fields are shown in table 1.1. H = z'T2S U@ fr* carries the proper gauge numbers for

Yukawas for up type fermions.

This action is invariant under local gauge transformations. However, the potential
for the scalar field ¢ has a negative mass squared, making it energetically favorable for ¢
to take’on a vacuum expectation value (vev), spontaneously breaking the S U(2j ®U(1)y
symmetry down to U(1)gam. The vev of ¢ generates masses for three of the four electroweak
gauge bosoné, making their effects much weaker than those of the massless photon or gluons.

The vev also generé,tes masses for the fermions via the Yukawa terms.

This action is remarkable in that it contains all known interactions (except gravity)

and masses for all known particles (except neutrinos). In fact, it is nearly the most general,



renormalizeable action that can be written with the given field content! This is one of the
great successes of the Standard Model. Baryon number violating operators are four-fermion
operators, which are dimension six and nonrenormalizable. Many flavor cha.nging.processes
such as ¢ — ey which are not observed correspond to nonrenormalizable operators as well.
Their experimental absence is a great success of the standard model, but as we shall see,
it also makes the possible observation of such things a great signal for physics beyond the

standard model.

1.2 Effective Field Theories

For a great whilé, nonrenormalizable operators were considered a serious defect in
a theory. In a renormalizable theory, all divergences arising in quantum correctiéns can be
absorbed into observed couplings or precisely cancelled by other divergences in the theory.
Nonrenormalizable terms, by contrast, introduce divergences tha.t cannot be cancelled, even
by a finite number of new operators, without introducing new divergences.

Within the cqntext of effective field theories, nonrenormalizable operators are not
only nét considered a defect, they are generally considered to be present unless forbidden
by some symmetry. Effective theories are only ‘considered valid below some energy scale
A. Since nonrenormalizable operators come with dimensionful coefficients, these coefficients
will have a size typiéally of the order of A to some power, correspondigg to the exchange of
some particles v;rith a mass roughly equa.i to A. The divergences of the theory will be cut

off at A when the new particles can be resolved.

!An additional GG operator can be written for the SU (3) fields, which can violate CP in the strong
interactions.



a)

JFigure 1.1: In 1.1a we see the low energy effective interaction. At higher energies, we can
resolve this interaction to be the exchange of a W boson. :

Consider as an example the theory of weak interactions. If we restrict our attention
to processes s < 1GeV, our theory will consist of mesons, baryons and light leptons. In
particular, we will observe -the decay m* — etv,. This process can be understood in terms
of the four ‘fermion opéra,tor ﬂ'yudéfy“'ue,- which we show in figure 1.1a. Such an operator is
nonrenormélizable and generates divergences, such as through the diagram shown in figure
1.2. However, we cannot understand the decay through any particle that would be produced
at the energy scales in question.

Doesvthis mean that the theory is pathblogical? Of course not, the given operator
is just an-eﬁective operator, giving the low energy effects of an exchange of a W-boson.
When integrating over the momenta flowing through the loop in figure 1.2, at a scale of the
order MZ,, the local four-fermion interaction is resolved to be the interaction in 1.1b, and
the diagraxﬁ becomes a controlled divergence in a renormalizable theory.

Thus, the presence of new physics at some energy scale motivates the inclusion of

nonrermormalizable operators suppressed by the scale of the new physics. If we can motivate

the need for new physics at some nearby energy scale, then we can generically expect the



Figure 1.2: The effective operator generates loop divergences, such as the one shown here.

presence of nonrenormalizable operators, and thus signals of the new physics. Employing
‘notions of effective theory is will be instrumental in what lies ahead. Sometimes we have a
clear idea of what the more fundamental theory is, but sometimes we may not even have
a field theory abové the scale, and instead something like string theory. If this is the case,

effective field theory is all we have to work with.

1.3  CP Violation

C,P and T were thought for a long time to be fundamental symmetrieé of nature.
Quite simply, they correspond to exchange of particle and antiparticle (C), inversion of space
via £ = —z (P), and time reversal via t - —t (T). It a theorem of local quantum ﬁeld‘
theory that their prbduct, QPT, isa symmetry of the theory. The maximal parity violation
present in the weé,k_ interactions showed. that C and P were not fundamental symmetries.
However, it appeared that the product, CP, remained a good symmetry of the theory. The

discovery in 1964 of a CP violating decay of K|, required the inclusion of CP violation in



any theory of elementary particles.

Within the Standard Model, if is possible to inqlude such effects. By allowing the
Yukawa matrices to be complex, there is generically a phase that cannot be removed by field ’
redeﬁnitions. This phase will can explain the observed CP violating processes. However, if
new physics is present near the weak scale, it could ea,sily contribute to, or be the source of
the observed signals, at least in principle.

We are motivated to ask whether the standard model itself must be CP violating.
Could all CP violation be genera,ted in some ﬁew physics, in a so-called “superweak” theory?
We shall see that recent improvements to the limit of AM B, imply that pure superweak
theories, while not excluded, no longer provide a good fit to the data. We will introduce
class of general superweak theories in which all flavor changing inte;actions are governed
by an approximate flavor symmetry which gives a “3 mechanism”. These theories are in
good agreement with data, and predict low valﬁes for [Vigl, [Vus/ V|, B(K+ — ntin), €' [e
and CP asymmetries in B decays, and high values for AMp, and fg+/Bg. An important
example of such a theory is provided by weak scale supersymmetric theories with soft CP
violation. The CP violation originates in the squark mass matrix, and, with phases of order

unity, flavor symmetries can yield a correct prediction for the order of magnitude of €.

1.4 Flavor

One of the most disappointing features of the standard model is the presence of
nineteen undetermined parameters. Given the similarity in quantum numbers of u and ¢,

for example, it seems unnatural that there should be five orders of magnitude difference



in their Yukawas, and similarly for b and d, 7 and e. Since the fundamental theory seems
to distinguish them, it begs us to ask the question: what relates these particles? What
allows the top to be so much heavier than the up, for instance? Furthermore, the CKM
va,ngles are generally small. If the yukawas were random matrices, why does the top decay
predominantly to bottom, charm to strange, etc?

One of the most appealing ideas is -that of flavor symmetries [1]. Suppose that
there is some global symmetry acting on the different generations. For instance, suppose
there is a U(1) symmetry for which the heavy generation has charge 0, the intermediate
generétion has charge 1 and the lightest generation has charge 2. Then further assume that
there is a scalar field ¢ with charge —1. We then expect nonrenormalizable operators to be

generated at some scale M

(M7 ¢(t°gah + c°q3h) + Mz 242 (t°q1h + uqsh + c°gah) + .. . (1.4)

If further the field ¢ takes on a vev e Mp, then we will generate a texture

e & &
N~ e 2 e | (1.5)
e e 1

where it is understood that there are undetermined coefficients of order unity multiplying
each entry of the textﬁre. Such a texture then gives both small mixing‘ angles and hierachical
masses. |

When employing flavor symmetries within the context of an effective theory, we

have a very powerful tool with which to address possible flavor changing signals. Non-



renormalizable operators which are absent in the standard model should appear, and flavor
symmetries will give us an idea of what size we should expect. In extensions of the stan-
dard model, we will see observable consequences of pa.ri:icula.r symmetries, and the utility

of non-Abelian flavor symmetries.

1.5 The Hierachy Problem

Quantum corrections to parameters in our action are generally expected in a quan-
tum field theory. For instance, in QED, there is a correction to the mass of the electron

given by

e 3o A? ’
dme = —m,log (;—nﬁ) (1.6)

47 <

There are two interesting fea,turles of this expression: first, it is proportional to m,.
This is the result of a chiral symmetry of our tileory in which we can, absent mass terms,
separately transform the right- and left-chiral components of the electron. Secondly, the
corrgction to the mass of the electron depends only logarithmically on the cutoff. The end
result of this is that a small mass for the electron is technically ‘natura,l: if we input a small
mass into the theory at tree level, we do not expect quantum corrections to radically alter
it.

In c;)ntrast, scalar fields have no such chiral symmétry protecting their masses.
Within the standard model there are quantum corrections to the mass squared of the higgs,
which are expected to be of the order of the cutoff of the theory (figure 1.3). Thus, if

we input a weak-scale mass for the higgs, quantum corrections should give a mass of the
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w.,Z

Figure 1.3: Two diagrams which contribute to the quadratically divergent corrections to
the Higgs mass.

ofder of the cutoff of the theory. Alternatively, if the physical mass of the higgs boson is
to be of the order of the weak scale, and if we expect the cutoff of the theory to be much
higher than that, there must be a fine cancellation between the tree-level parameter and
the quantum corrections. (For a cutoff at the Planck scale, we need a tuning of one part in
10%61) Furthermore, itv is not sufficient to tune the tree level quantity against the one-loop
correction, as at each order in perturbat:,ion theory we will intfoduce new ‘divergences which
will need tuning.

The naturalness of such a procedure is known as the hierarchy problem, or what
stabilizes the weak scale against radiative corrections? Generally it is assumed not that
there is a fine ca,nc_ellation to be explained, but rather that thére is new physics near the

weak scale that cuts off the divergence.

The three most popular explanations of this are supersymmetry, technicolor, and
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large extra dimensions. We will not consider the case of technicolor (for a review, see [2]),

but will briefly review the other two alternatives.

1.6 Supersymmetry

Probably the most popular extension of the standard model is supersyrhmetry
(SUSY), in which there is postulated a partner fermion for every vbosoni in the theory,
and likewise a partner boson for every fermion [3]. This solves the hierarchy problem
- in the following manner: the SM diagrams that genera,te divergences in the higgs mass
are cancelled by the new diagrams in which superpartners propagate in the loop. More
conceptually, supersymmetry relates the mass of the higgs boson to the mass of the higgsino,
ifcs SUSY partner, Whiéh is protected against radiative corrections by an approximate chiral
symmetry (broken by the Higgsino mass u).

Of course, we do not observe partners to SM fields, so supersymmetry must be
broken. The cancellation between fermion and boson loops will only occﬁr‘ at a scale higher
than the splitting of the masses of the SM fields from their spartners. If this splitting is of
the order of the weak scale, then this naturally solves the hierarchy problem. Of course,
what remains is the question of what sets the scale of supersymmetry breaking. We will
explore this question later.

Furthermore, the presence of new particles introduces many new parameters into
the theory. Each new particle haé SUSY-breaking masses as well as new mixing angles. If
these quantities appear without any organizing principle, then we would expect a tremen-

dous amount of FCNC and CP violating processes that have not been observed. There have
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been many explanations given of why these processes do not occur, including non-Abelian
flavor syminetries [4], gauge-mediated supersymmetry breaking [5], and others.

The most convenient formulation of supersymmetry (in particular supersymme-
try with only one fermioﬁic generator, so-called N = 1. supersymmetry) is in terms of
superfields. (For a review of superfields, see, for instance, [6].) The action of the Minimal

Supersymmetric Extension of the Standard Model (MSSM) can be written

S = / d*z d*0(\EQIUIH, + M5Q DI Hy (1.7)

+ XGL'E Hy+ Tr(Wa W) + pHyHy) + h.c.

1
167 g2
* / d*z &0d*0(Q1e"2Q + UTe"W U + Dte" D
+ LieiL+ EleVEE + H(IeVHD Hp + HleVHu H,)
+ /d4:v 1/2m2hyhl + 1/2m2hah}

+ 1/2mi%0* + 1/2mefjeiej* +1/2mglq'd* + 1/2muluiu’™ + 1/2md; d*d*

+ (uBhyhg + ALguIhY + ALGdIR® + ALlEIR? 4 h.c.) + mRoAS

where i and j are flavor indices, g is a group index, and Vx = TV is the gives the group
action on a field X.

Of course, the supersymmetry breaking operators are much smaller than the
Planck scale, which prompts another question: what physics generates this small scale?
The traditional answer has been dimensional transmutation. Another question is why is
p, which is a SUSY-conserving parameter, of the order of the SUSY-violating parameters?

There are a variety of answers to this question. However, in the context of theories in higher
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dimensions, there is a new alternative which simultaneously answers both these questions.

We will employ supersymmetric “shining” of free massive chiral sup_erﬁélds in extra
dimensions from a distant source brane. This can trigger exponentially small supersymme-

—27R where R is the radius of the extra dimensions.

try breaking on our brane of order e
This supersymmetry breaking can be transmitted to the superpartners in a number of ways,
for instance by gravity or via the standard model gauge interactions. The radius R can eas-
ily be stabilized at a size O(10) larger that the fundamental scale. The models we will see

are extremely simple, relying only on free, classical bulk dynamics to solve the hierarchy

problem.

1.7 Large Extra Dimensions

At the heart of the hierarchy problem is the idea that within the standard model,
th_ere are only two dimensionful parameters: My, =~ 100 GeV and My =~ 10'% GeV. If we
take the theory to be valid up to the Planck scale, where quantum gravity effects become
significant, we expect a correction to the Higgs mass of the order of the Planck scale. This
presupposés that the Planck scale is a fundamental quantity in nature. As first proposed
in [7], this need not necessarily be the case.

In all versions of string theory, one universal element is the presence of extra
dimensions (that is, d > 4). Arkani-Hamed,; Dimopolous and Dvali proposed that if the
size of the extra dimensions (the “bulk”) ié much larger than the fundamental scale of the
theory M,, then M, can‘be much leés than gravity. If the bulk is large enough, then M,

could be of the order of the weak scale. The physics cutting off the Higgs mass divergence
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could be string theory itself!

There are many constraints on these theories (which are summarized in [8]), but
there isno a pfiori reason to reject them. However, if the cutoff of the theory is O(TeV), we |
need to understand if we can control the potentially harmful flavor changing operators that
would otherwise be generated. In fact, generating flavor at the TeV scale while avoiding
flavor-changing difficulties appears prohibitively difficult at first sight. We will see to the
contrary that having such a large bulk allows us to lower flavor physics close to the TeV scale.
Small Yukawa couplings can be generated by “shining” badly broken flavor symmetries
from distant branes, and flavor and CP-yiola,ting processes are adequately suppressed by
these symmetries. We will further see how the extra dimensions avoid four dimensional
disasters associated with light fields charged under flavor. We construct elegant and realistic
theories of flavor bésed on the maximal U(3)° flavor symmetry which naturally generate the
simultaneous hierarchy of masses and mixing angles. All of this can be incorporated into
a new framework for predictive theories of ﬂ.a,vor,' where our 3-brane is embedded within

highly symmetrical conﬁgufations of higher-dimensional branes.

In these theories, aside from phenomenological questions, we must understand why

. the bulk is so much larger than the fundamental scale. We will see that in theories with
(sets of) two large extra dimensions and supersymmetry in the bulk, the presence of non-

supersymmetric brane defects naturally induces a logarithmic potential for the volume of

the transverse dimensions. Since the logarithm of the volume rather than the volume itself

is the natural variable, pa.ra.méters of O(10) in the potential can generate an exponentially

large size for the extra dimensions. This provides a true solution to the hierarchy problem,
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on the same footing as technicolor or dynamical supersymmetry breaking. The area moduli
have a Compton wavelength of about a millimeter and mediate Yukawa interactions with
gravitational strength. We will see a simple explicit example of this idea which generates two
exponentially large dimensions. In this model, the area modulus mass is in the millimeter

range even for six dimensional Planck scales as high as 100 TeV.

1.8 Neutririo Masses

Aside from gravity, there is only one known deviation from the sta,nda,fd model,
namely neutrin6 masses. Within the standard model, there is no right handed neutrino,
and hence no mass term for the neutriﬁo.

If _geutrinos have a mass, and, like the qua,rks; their mass eigenstates are not
aligned with the weak eigenstates, then production of a neutrinoy .resuits in the production
of a superposition of these states. Very simple quantum mechanics shows that a neutrino
which begins as e can convert to p,, or u to T, etc. Experimeﬁts showing a deficit in the
solar neutrino flux have long been interpreted as potentially such a process. Recently, more
conclusive evidence from Superkamiokande has demonstrated an anomaly in atmospheric
neutrinds when comparing upward-going neutrinos and downwafd—going neutrinos.

It seems simple to input a neutrino mass into the standard model by adding a
right handed neutrino. However, the mass scale needed for solar and atmospheric neutriﬁo
experiments is O(10~! — 1073eV'), several orders of magnitude smaller than the electron,

the lightest fermion.

We can understand the smallness of the neutrino mass from the point of view of
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effective field theory. Although we cannot write a renormalizable, gauge-invariant mass
term for the neutrino in the standard model, we can write down a dimension five operator
1/M_(ioov*H)vH, which gives a Majorana mass for the neutrino when the Higgs aquires
a vev. The smallness of the observed neutrino mass is then understood by the suppression
v/M, relative to the weak scale. A significant particular example of this, explaining the

scale M, is the seesaw mechanism [9].

We will study both solar and atmospheric neutrino fluxes in the context of oscilla-
tions of the three known neutrinos.. We will aim at a global view which identifies the valrioﬁs
possibilities, rather than attempting the most accurate determination of the parameters of
~ each scena.rio.I For solar neutrinos we will emphasize the importance of performing a ger;eral
analysis, independent of any particular solar model and we consider the possibility that any
one of the techniqués — chlorine, gallium or water Cerenkov — has a large unknown sys-
tematic error, so that its results should be discarded. The atmospheric neutrino anomaly
is studied by paying special attention to the ratios of upward a,nd‘downward going v, and
v, fluxes. Both anomalies can be described in a minimal scheme where the respective os-
cillation frequencies are widely separated or in non-minimal schemes with two comparable
oscillation frequencies. We discuss explicit forms of neufrino mass matrices in which both
atmospheric and solar neutrino fluxes are explz?mined. In the minimal scheme we identify

only two ‘zeroth order’ textures that can result from unbroken symmetries.

But what can we say about the structure of neutrino masses? Can we understand
it together with theories of quark masses, or do we need a radical departure? If we are will

to consider scenarios with a sterile neutrino, we can make connections with previous work
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in flavor symmetries. A U(2) flavor symmetry can successfully describe the charged fermion
masses and mixings [4], and supress SUSY FCNC processes, making it a viable candidate
for a theory of flavor. We will see that a direct application of this U(2) flavor symmetry
automatically predicts a mixing of 45° for v, = v;, where v, is a light, right-handed state.
The introduction of an additional flavor symmetry acting on the right-handed neutrinos
makes the model phenomenologically viable, explaining the solar neutrino deﬁcit as well as
the atmospheric neutrino anomaly, while giving a potential hot dark matter candidate and
retaining the theory’s predictivity in thg quark sector.

In quite a different direction, we will study the possibility that no structure is
necessary for the neutrino mass matrices, :so long as it is generated by a seesaw process.
Such a scenario would be consistent with the observed hierarchy, even with the experimental

constraints currently in place.

1.9 Summary

- In this paper we shall attempt to address some of these questions before us. What
do Wé know about neutrino masses and what can welknow? Is there a relationship between
the structure of the masses of the known fermions? What information do we already have
about CP violation and what limits does it place on the CP violation in new i)hysics?

More generally, are there consequences of the presence of additional dimensions,
whether large or .sma.ll?
While definitive answers to these questions must wait for the round of experiments

in progress and in preparation, we will discuss the hints we already have, and the evidence
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we expect within the context of particular scenarios.
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Chapter 2

Alternative Theories of CP
Violation

2.1 CP Violation

All observed CP violation can be described by the complex parameter ¢ k, which
describes an imaginary contribution to the AS = 2 mixing of the neutral K mesons. Such
a mixing implies the existence of an effective Hamiltonian

I |
HAS=2 = > > " iC;;(5Td) (5T;d) (2.1)
ij - :
where v = 247 GeV, and %, § run over possible gamma matrix structures. The dimensionless
coefficients Cj; are real in a basis where the standard model AS = 1 effective Hamiltonian

has a real coefficient. In the case that the dominant term is I; = Tj=q*(1-)/2,

lex| 0.75

—————, 2.2
2.3:1073 Bk (22

Crr =4(1£0.3)-1071°

The two basic issues of CP violation are
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e What is the underlying physics which leads to 7{3‘?:2? Is it a very small effect
originating at the weak scale, as suggested by the form C/v?, or is it a larger effect

generated by physics at higher energies?

¢ How can the magnitude C =~ 10~ to 1071 be understood?

2.2 The CKM Theory of CP Violation

In the standard model all information about ﬂalvor and CP violation originates
from the Yukawa coﬁpling matrices. Affer electroweak symmetry breé,king, this is man-
ifested 'in the Cabibbo-Kobayashi-Maskawa (CKM) matrix of the charged current inter-
actions of the W boson [1]. A one loop box diagram with internal top quarks gives the

dominant contribution to ’}-L?ff,ﬂ via

2
CrL,sMm = gg-ﬂ-gstfm[(‘/td"}:)z] (2.3)

where S; ~ 2.6 is the result of the loop integration, and g is the SU(2) gauge coupling
constant. For a suitable choice of the CKM matrix elements, ‘/;:j., the standard model can
provide a description of the observed CP violation. The fundamental reason for the size of
the CP violation observed in nature remains a mystery, however, and must await a theory
of flavor which can explain the values of |V;4], IVtsl.a.nd the CKM phase. If the CKM matrix
contained no small parameters one would expect Crr sm to be of order 10~2 to 1073 rather
than the observed vaiue of order 10~° to 10__10.

Of course, measurements of CP conserving observables have shown that |V;;| are

small for ¢ # 7, and, given the measured values of |V,| and |V,3|, it is convenient to use the
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Wolfenstein parameterization[2] of the CKM matrix, in which case (2.3) becomes
Crr,sm ~=20-1071(1 - p)n (2.4)

If we assume that the CKM matrix does not have any other small parameters, the standard
model yields a value of ex of the observed order of magnitude. While this is not a prediction,
it is an important success of the standard model, and has made the CKM theory the leading
candidate for CP violation. To our knoﬁvledge, there is no similar success in any published
alternative to the CKM theory of CP violation, since in these theories the order of magnitude
of C can only be fixed by fitting fo the measured value of ex. Iﬁ this letter we present such
an alternative theory.

Two further measurements of |V,J|, with 7 # j, would determine both p and 7
allowing a prediction éf CrLrsm ar;d-e k- A fit to the two 0bse¥‘va.b1es {Vus/Ves| and AMp,,
but not ek, is shown in Figure 1. For all numerical work, we use the data and parameters
listed in Table 1 — for a discussion of these, and references, see [3]. Unfortunately the large
uncertainties make' this a very weak prediction: n = 0 is allowed even at the 68% confidence
level. Hence, from this one cannot claim strong evidence for CKM CP violation.

Recent observations at LEP have improved the limit on B; — B mixing, so that
AMg, > 10.2 ps~! at 95% confidence level [4]. The result of a x? fit in the standard model
to p and 7 using the three observables {Vy/Vep|, AMp, and AMp,, but not ek, is shown in

‘figure 2. For B; mixing the amplitude method is used {5, 3]. Comparing Figures 1 and 2, it
is clear that the AMp, limit is now very signiﬁcé.nt. At 68% confidence level the standard
model is able to predict the value of ex to within a factor of 2; however, at 90% confidence

level n = 0 is allowed, so that at this level there is no prediction, only an upper bound.
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Figure 2.1: The 68% and 95% C.L. contours fits of [Vis/Ve| and AMp, in the 5/7j plane
in the standard model. The curves correspond to constraints obtained from measurements
of |Vip/Ves|, AMp, and AMp, (The last constraint is not included in the fit). g = p(1 —

- X%[2),7 = (1 - X?/2).

While this is an important success of the CKM theory, it is still worth pursuing credible

alternativé theories of CP violation.

2.3 Pure superweak theories

A superweak theory (7] is one in which the CKM matrix is real, so n = 0, and

Hé;s}zz of eq. (1) originates from physics outside the standard model. We define a pure

Table 2.1: Values of observables and parameters

|Vaus/ Ve 0.080 == 0.020
AMg, 0.472 +0.018 ps~!
AMp, > 10.2ps! at 95% C.L.
‘ de \/BBd (200 + 50) MeV
fB,A/BB,/fB.A/BB, 1.10 £ 0.07[6]
A 0.81 £ 0.04
me(mg) 168 £ 6 GeV
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Figure 2.2: The 68% and. 95% C.L. contours fits of |Vys/Vis|, AMp, and AMp, in the
p/7 plane in the standard model. The curves correspond to constraints obtained from
measurements of |Vy/Ves|, AMp, and AMp,.w p= p(1 — X2/2),7 = n(1 — A?/2).

superweak theory to be one where all flavor changing phenoména, (other than eg) are
accurately described by the real CKM matrix. Comparing Figures 1 and 2 at low 7, one

sees that the new limit on B; mixing has excluded superweak theories with negative p. This

has important phenomenological consequences for pure superweak theories.

We have computed x%(p) in pure superweak theories, using as input the three
observables |V /Ves|, AMp, and AMp,. We find that all negative values of p are excluded
at greater than 99% confidence level. At positive p only the two observables |V,,;/ VQ,| and
AMp,, are releva.r‘lt, and we find the most probable value of p to be +0.27. However, even
this value of p corresponds to the pure superweak theory being excluded at 92% confidence
level. Since the uncertainties are dominated by the theory of fp, \/Fg_d , we take the view
that this does not exclude purely superweak theories. In such theories positive values of p

are 40 times more probable than negative values, and hence large values for fg+/Bp =~ 250
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MeV and small values for |V,;;/Ves| = 0.06 are predicted. A pure superweak description of

CP violation implies .
+0.20 (0.13) < p < 0.34 (+0.41) at 68% (95%) confidence level  (2.5)

An important consequence of the new limit on B; mixing is the strong preference
for positive p and the resulting small values for |V;4| < 1 — p. This is numerically significant:
without tﬁe B; mixing result the superweak theory can also have negative values of p which
give |Vi4| about a factor of two larger than the positive p case. With the B, result, a pure
superweak theory must have |V;4| at the lower end of the standard model range. Thus in a

pure sﬁperwea,k theory, AMp, x AMp,/ |Via|? is predicted to be
14 (10) ps™! < (AMB,)psw < 26 (32) ps~! at 68% (95%) confidence level (2.6)

By comparison, in the standard model 10.5 (9.5) ps~! < AMp, < 15 (19) ps! at 68%
(95%) confidence level.
In the standard model, the branching ratio B(K+ — ntvp) is givenby (8]

B(K* — 7tvp) = ¢1 ((c2 + e3A%(1 — p))% + (e3A%n)?) (2.7)

where ¢; = 3.9 x 10711, ¢y = 0.4 £ 0.06 and ¢3 = 1.52 & 0.07. In pure superweak theories,

since p is positive and n = 0, the branching ratio is lowered to

B(K* — 7tvp) = (5.0 £ 1.0) - 1071 (28)

relative to the standard model prediction of (6.671) - 1071.* The recent observation of a
candidate event for this decay [9] is not sufficient to exclude pure superweak theories, but

further data from this experiment could provide evidence against such theories.

*This standard model result is smaller than that quoted in the literature because the improved limit on
B, mixing increases p even in the standard model.
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2.4 General superweak theories

Pure superwéak theories are artificial: they do not possess a symmetry which
allows ’Hffs}zz of eq. (1), while forbidding similar AB = 2 operators. If ex is generated
by new physics, why does this new physics not contribute to BB mixing? In general it
wolﬂ(‘lube expécted to also contribute to AS = 1and AB =1 processes. In the absence of a
fundamental theory of flavor, the relative sizes of the various flavor changing operators can
be estimated only by introducing arguments based on approxima,té flavor symmetries.

We assume that the underlying theory of flavor pbssessés a ﬁavor symmetry group,
Gy, and a mass scale M. The brea.king of Gy, whether explicit or spontaneous, is described
in the‘low energy eﬁ'ectivé .theory by a set of dimensionless parameters, {€}, each with a
well \deﬁned Gy transformation. The low energy effective theory of flavor is taken to be the
most generai operator expansion in powers of 1/M; allowed by G and {¢}. In the case
that the CKM matrix can be made real, we call these general superweak theories. The
phenomenology of such theories depends on Gy, My and {€} and will typically not coincide
with the pure superweak phenomeﬁology. The AB = 2 o;;erators may lead to exotic CP
-violation in neutral B meson decays and may contribute to AMp,, allowing large values of
|Vi4| invalidating (2.6). Similarly the AS = 1 operators may invalidate (2.8), and may give

an observable contribution to €/e.

2.5 The effective Hamiltonian for the “3 mechanism”

The dominant flavor changing neutral current (FCNC) interactions of the down

sector of the standard model result from the “3 mechanism”: small flavor breaking param-
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eters which mix the light quarks with the heavy third generation qua.rks, together with a
large, order unity, breaking of the flavor symmetry that distinguishes the third generation
from the first two. Hence, beneath the weak scale, the standard model yields én effective
Hamiltonian with dominant FCNC operators which contain a factor V;:V;; for each flavor
changing current d;d;, and a factor G%m?/167% = (1/1672)(1/v?) from the loop integra-
;cion. The rélevdnt diagrams are all 1 loop, giving the (1/167?) factor, and invollve the large
GIM violation of the top quark mass; since there is no small flavor violating parameter, the
rest of the loop integral has an order of magnitude given by dimensional analysis as (1/v?).

Now consider physics beyond thé standard model where the entire flavor structure
of the theory beneath My is controlled by G5 and {e} — .both the Yukawa matrices of
the standard model, A(e), and the non-standard model 6perators in Hesp(e). Since the
dominant ddwn sector, FCNC effects from A(e) are knoWn to arise from the “3 mechanism”,
we assume that Gy and {e} are chosen so that the dominant such effects from Hess(e) are
also from the “3 mechanism”.

The most general parameterization of the “3 mechanism” in the down sector in-
volves four complex parameters: er, = ler,|e®Li and er, = |er,|€®®s, i = 1,2, which
describe the mixing of d;, and dg, with b;, and bg. Assuming all phases to be of order
unity, we can describe the “3 mechanism” in terms of just four real small parameters |er,|
and |eg,|- We make the additional simplifying assumption that lez,| = |er;| = €;, yielding
the non-standard model interactions!

Hg})f - Ml}z [C1 (e162)? (5d)% + Cy €2 (3b)2 + C3 €2 (bd)?

1t is straightforWa.rd to extend this Hamiltonian to the most general case of the “3 mechanism” involving
four complex parameters.
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+Cy e1€2 (§d)(il) + Cy €2 (§b)(l-l) +Csex (Ed)(il) +...] (2.9)

where C; are coniplex coefficients of order unity, and ! is a lepton field.} A sum on pos-
sible gamma mét;rix structures is understood for each operator. Since the flavor changing
interactions from both the standard model and the new physics are governed by the sé.me
symmetry, we can choose €; = |Vi4| and €3 = |V;;5|. Such interactions can arise from many
choices of G5 and {¢}; the particular choice is unimportant, however, as the phenomenology

rests only on three assumptions

e There is an underlying theory of flavor based on symmetry G s and breaking param-

eters {e}.

e The dominant non-standard model FCNC operators of the down sector arise from the

“3 mechanism”.

e The symmetry breaking parameters of the down sector are left-right symmetric, and
¥

s
@

have phases of order unity.

In the standard model, the dominant FCNC of the down sector arises from the “3
mechanism”, so that it is useful to_deséribe the effective theory beneath the weak scale by

eq. (2.9) with

1 1 1

€1 = ‘/td o €y = ‘[t: Y Tﬁ?i'u_z_ (210)
I .

and C; real. This special case of the “3 mechanism” has a restricted set of gamma structures

due to the left-handed nature of the weak interaction.

*We do not consider lepton flavor violation in this letter.
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2.6 Phenomenology of the “3 mechanism” in superweak the-

ories

We have argued that pure superweak theories are artificial, and we now study
superweak theories where FCNC interactions are generated by the “3 mechanism” and
yield ’H?})f of (29) Why should such theories have V;; real when C; are complex? One
possibility is that G s forces the Yukawa matrices A(e) té have a sufficiently simple form that

they can be made real by field redefinitions. Another possibility will be discussed later.

Since ’Hg?f will be the origin of all CP violation, one may wonder if it could
also account for all of AMp,,. This is not possible — charged current measurements,
' tdgether with the unitarity of V, imply |V;4| and |Vis| are sufficiently large that W exchange

contributes a significant fraction of AMp, ,.

Given that the FCNC of both the standard model and exotic interactions .have
the form of (2.9), it 'would appear that the exotic interactions must give a large fraction
of AMp,, since they are responsible for all of ex. This is not the case; in the standard
model the AS = 2 and AB = 2 operators have chirality LL, whereas for a generic “3
mechanism” they will have all chiral structures. It is known that the LR, A.S = 2, operator
has a matrix element which is enhanced by about an order of magnitude relative to that
of the LL operator [10], and that there is 1o similar enhancement in the AB = 2 case.
Furthermore, the LR operator is enhanced by QCD radiative corrections in the infrared
[11]; with the enhancement at 1 GeV about a factor of 3 la.rgef than at 5 GeV. Hence we
conclude In a generic superweak theory, we expect that ’Hf})f leads to.~ 3% contributions to

AMp, . There is considerable uncertainty in this percentage because of the uncertainty in
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the overall enhancement (;f the AS =2 and AB = 2 (;,ontributions from the LR operator,
and because of the unknown order unity C; coefficients. Given this result, we must evaluate
how well these generic superweak theories can ac;:ount for the data, and to what extent
they lead to predictions.

Let Ags and dg,5 be the standard model and new physics contributions to
AMp,, = Ads + 8a,s (2.11)

First we consider a perturbation around the pure superweak case, where the fractional
contributions from new physics Fd,s = 04,5/ AM By, are small. The central value of p, from
AMp, alone, changes by Ap = 0.5F for very small Fy (Ap ~ 0.3Fy for F; ~ 0.1). For
positive Fy, this improves the fit of general superweak theories to AMp, and |Vyp/Vel-
For example, Fg = 0.1 gives a centrai value of p = 0.28 with. x2%(p = 0.28) ~ 2.4, which
corresponds to 68% C. L. Since the allowed range of p is little changed from eq. (5), the
prediction of small |V;4| persists in these general superweak theories, so that the prediction
of eq. (7) for low va,lu(.es of B(K* — ntvp) applies. Similarly, since p is little altered, the
prediction for Bs mixing is AMp, = (AMp,)psw(l — F4 + F;), where the pure superweak
prediction (AMp,)psw is given in eq. (6). In this case the general superweak theory
also predicts large values of AMp,, althougil for negative Fg, it is not quite so large as
(AMp,)psw-

There is a second class of general superweak theories which is not a perturbation
about the parameters of the pure superweak theories. In general superweak theories, thé
limit AMp, > 10.2 ps~! can be expressed as p > —0.06 + 0.5(Fy — Fs). For negative Fy

and positive F;, the negative p region could become allowed. For example, Fy = —Fy =
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0.1 (0.05) gives a theory in which p has a probability 25% (9%) of b;aing negative. This class
of superweak theories requires values of |Fys| which are larger than our expectation, and
appear somewhat improbable. They have |V;4| and B(Kt — «tvi) at the upper end of
the standard model range. In these theories AMp, is likely to be low, although it depends

on Fg .

2.7 Supersymmetry with a “3 mechanism”

In general, the alternative theory of CP violation of HS’)f from the “3 mechanism”

is not a strong competitor to the CKM theory of CP violation. The 'CKM theory, with
Itwo small measured parameters, |V,s| and |V, yields th(? correct order of magnitude for
€x, while superweak theories with the “3 mechanism” apparently require a new scale My ~
30v = 10 TeV. However, there is the interesting possibility that the new physics generates
FCNC operators only at 1 loop, as in the standard model. This Would give My = 4mwmy,
with the mass of the new quanta close to the weak scale at m; ~ 1 TeV. We therefore take
the view that the “3 mechanism” generating FCNC operators at 1 loop at the weak scale
is a credible alternative to the CKM théory of CP violation. While not as minimal as the
CKM theory, it correctly accounts for the order of magnitude of ex.

Let I represent d,s or b, left or right handed. New interactions of the form Il H,
where H is some new heavy field, will generate FCNC at tree level, whereas [HH generates
them at 1 loop. Thué the exotic new heavy particles ai; the weak scale should possess a
parity so that they appear only in pairs.

Weak scale supersymmetry allows a symmetry description of the weak scale, and

leads to a successful prediction for the weak mixing angle. Furthermore, it incorporates the

_ .
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economical Higgs description of flavor of the standard model. R parity ensures that super-
pa.rtnefs appear pairwise in interactions, so that the dominant supersymmetric contributions
to FCNC processes occur only at one loop. Supersymmetric theories havé several new gen-
eration mixing matrices — in particular WL, R at the gluino interaction (J}J, RWL‘, rAL R)J. A
flavor symmetry, Gy, can ensure that the lafgest contribution from superpartner exchqnge
to FCNC occurs via the “3 mechanism"’ [12, 13]. If the small symmetry breaking parameters

are left-right symmetric and real, this gives ’Hg?f of (2.9) with

L1 1
Mf2—167r27h2

IWLry, | = €1 = |Vad] WLk, | = €2 = |Vis| (2.12)

where m is the average mass of the colored superpartners in the loop. As the superpartners
are at the weak scale, i =~ v, and comparing with (2.10) one finds that, with wéa,k scale
supersymmetry, it may well be that ex receives comparable sté,ndard model and supersym-
metric contributions.$ |

Here we stress that weak scale supersymmetry can provide an important example
of the general superweak theories diécussed in this lefter. The absence of CKM CP violation
would be guaranteed if C P violation were soft — restric-téd to operators of dimension two
and three. The Yukawa matrices §vould then be real, so that there would be no CP violation
from diagrams with internal quarks, but the scalar mass matrices would contain phases, so

that CP violation would arise from diagrams with internal squarks.¥ Soft CP violation in

$Given the order of magnitude enhancement of the matrix element of the LR operator relative to the
LL, and given the further order of magnitude enhancement of Crr relative to Cr1 from QCD scaling, one
generically expects the supersymmetric contribution to be larger. However, these factors may be outweighed
by colored superpartner masses somewhat larger than v, some degree of degeneracy between the third
generation scalars and those of the lighter generations, and by W;; somewhat less than V;;. We note that
the QCD enhancement of CLg for the AS = 2 operator[11] was not included in [12, 13, 14]

9This is an alternative view to the one presented in [13], where the specific flavor symmetry forces forms
for V and W matrices such that even the supersymmetric contribution to e¢x involves a phase originating
from the Yukawa couplings. '
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supersymmetric theories, with FCNC operators arising from the “3 mechanism”, represents
a well-motivated and credible alternative to CKM CP violation, and will be explored in

detail elsewhere.

2.8 Summary

Fits of the CKM matrix to |Vys/Ves|, AMp, and AMp, show that at 68% C.L. the
standard model correctly predicts ex to better than a factor of two, while at 90% C.L. not -
even the order of magnitude can be predicted. On one hand the standard model is highly
successful; oﬁ the other, there is still roém for an alternative theory of CP violation.

Th'e recent improvement on the limit on AMp,[4] implies that pure superweak
theories with negative p are excluded, While at positive p they are somewhat disfavored.
Pure superweak theories allow 0.13 < p < 0.41 at 95% C.L., and predict high values for
AMp, and fﬁ\/B_g and low values for |V, /Vep|, B(K+ — 7tvD) and € [e.

We have argued that pure superweak theories are artificial, and have introduced
general superweak theories, in which all FCNC are governed by an approximate flavor
symmetry and the “3 mechanism.” In this case the new physics induces other flavor changing
operators in addition to the AS = 2 operator responsible for ex; in particular, 0(3)%
contributions to By, mixing are expected. There are two important classes of general
superweak theories, one with positive p and the other with negative p. The first can be
viewed as a perturbation about the superweak case, with an improved fit to data, while
retaining the characteristic predictions mentioned above. The negative p possibility appears
less likely, and arises only if the new physics contributes more than 10% of AMp, ,. In this

case future data should show a high value for B(K* — ntvv) and low values for AMp,,
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f8VBB, |Vus/Ve|, and €'/e. All these superweak theories predict low values for the CP"
asymmetries in B meson decays.

Weak scale supersymmetric theories with softly broken C’Pb can provide an im-

portant example of general superweak theories. As in the.CKM theory, assuming phases

‘ of order unity yields a correct prediction for the order of magnitude of ex. In addition

they have 8 = 0 at tree level, and it is intereéting to seek a flavor symmetry which would

sufficiently protect @ from radiative corrections to solve the strong CP problem.
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Chapter 3

Atmospheric and Solar Neutrinos

3.1 Introduction

The solar and atmospheric neutrino flux anomalies have both been considerably
strengthened by recent observations from Super;Kamiokande. The solar neutrino flux is -
measured to be [1] 0.37 & 0.03 of that expected from the ‘BP95’ standard solar model [2],
without including any theoretical error. This is the fifth solar neutrino experiment to repbrt
results in strong disagreement with the predictions of solar models. Furthermore, using a
solar modei independent analysis, the measured solar fluxes are found to be in conflict
with each other. For events at SuperKamiokande with visible energies of order a GeV, the
ratio of 1 ring p-like to e-like events is 0.66 + 0.10 that expected from calculations of the
flux of neutrinos produced in the atmosphere in cosmic ray showers [3]. Furthermore, the
distribution in zenith angle of these 1 ring events provides striking evidence for a depletion
of v, which depends ‘on the distance travelled by the neutrinos before reaching the Super-
Kamiokande detector. In particular, the observed up/down ratio of the multi-GeV, p-like
events is 0.52 & 0.07. This significantly strengthens the evidence that v, oscillate as they

traverse the earth.
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In this paper, we interpret the solar and atmospheric neutl_rino flux anomalies
in terms of oscillations of the three known neutrinos v, , ;. The lightness of these three
neutrinos, relative to the charged fermions, can be simply understood as resulting from
large SU(2). ® U(l)y invariant masses for the right-handed neutrinos, via the see-saw
mechanism. We do not consider the possibility ‘of a fourth light heutrino, as it would have
to be singlet under SU(2), ® U(1)y, and would either require a new mass scale far below the
weak scale, running counter to the idea of the see-saw mechanism, or a more complicated

see-saw.

Theoretical ideas about generation mixing are guided by the quark sector, where
the mixing angles are all small, indicating a hierarchical bre’a,king. of horizontal symmetries
in nature. A similar hierarchy of horizontal symmetry breaking in the lepton sector is also
likely to yield small angles, suggesting small probabilities for a neutrino to oscillate from one
flavour to another. Howéve;, the solar and atmospheric neutrino flux measurements both
require neutrino survival probabilities, P, and P,,, far from unity. Over a decade a;go [4],
it was realised that large angles were not necessary to account for the large suppression
of solar neutrino fluxes — while 7, have charged current interactions in the solar medium,
v, do not, allowing a level crossing phenomena where a v, state produced in the solar
interior evolves to a v, ; state as it traverses the sun. This simple picture can reconcile the
three types of solar neutrino flux measurements with the standard solar model, for a mixing
angle as small as 0.03 — a significant achievement. Could such resonant oscillations occur
for atmospheric neutrinos in the earth, again allowing a small vacuum mixing angle? In

this case, since the earth does not have a continuously varying density, the matter mixing
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angle in the earth is much larger than the vacuum mixing angle only in a small range of
energies. Hence, an oscillation interpretation of the atmospheric neutrino fluxes requires
a large mixing angle, and calls into question the frequently stated theoretical prejudice in

favour of small mixing angles.

In this paper, we attempt to understand both solar and atmospheric neutrino fluxes
using 3-generation neutrino oscillations, aiming at a global view which identifies the various
possibilities, rather than attempting the most accurate determination of the parameters of
each scenario. VWhen data from chloriné, gallium and water Cerenk(;v detectors are fitted
to a standard solar model, standard analyses find very small regions of neutrino mass and
mixihg parameters. For 2-generation mixing, these are knqwn as the “small angle MSW?,
“large angle MSW’_’ and “just so” regions. This anaiysis has been extended fo the case
of three generations [5], with a single matter resonance in the sun, as suggested by the
atmospheric neutrino data. The large and small angle MSW areas are found to merge into
a single MSW volume of parameter space. In subsection 3.2.1, we study how this volume is
enlarged when a solar model independent analysis of the solar fluxes replaces the use of a
singlei solar model. In subsection 3.2.2 we extend our analysis to see what areas of neutrino
parameter space become allowed if one of thé three observational techniques to measure the

solar fluxes is seriously in error.

We combine these regions of parameters with those yielding the atmospheric fluxes,
and find there is still considerable allowed ranges of masses and mixing angles. This is done
in section 3.3, assuming that the smallest of the two neutrino squared mass differences is too

small to affect the oscillations of atmospheric neutrinos (minimal scheme). In section 3.4,
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on the contrary, we allow for the possibility that the two independent neutrino squared mass
differences are both large enough to affect atmospheric neutrino oscillations (non minimal
schemes). For solar neutrinos, this requires that there is a serious flaw either in at least one

measurement technique or in solar model analyses.

The forms of neutrino mass matrices that can lead to a large v, = v, mixing for
atmospheric neutrinos are discussed in section 3.5. In section 3.6 only two ‘zeroth order’
textures for neutrinos masses are identified that can account for the atmospheric and solar

neutrino data in the minimal scheme and can result from unbroken symmetries.

Our conclusions are drawn in section 3.7. Based on a simple set of alternative hy-
potheses, we discuss how future measurements could eventually determine the two neutrino

mass differences and the three mixing angles.

3.2 Solar neutrinos: model-independent analysis

In the flavour eigenstate basis, in which the charged lepton mass matrix is diagonal,
the neutrino mass matrix is in general non-diagonal. It may be diagonalized by a unitary

transformation:

i = Vi (3.2.1)

where v and v; are flavour and mass eigenstate fields, respectively. The leptonic analogue
of the Cabibbo-Kobayashi-Maskawa mixing matrix is V7, since the W boson couples to the
cha.rged current 7;, V;F}C'y“e 7.- In addition to the three Euler angles, V contains physical

phases: one if the light neutrinos are Dirac, and three if they are Majorana. These flavour
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and mass eigenstate fields destroy basis states which are related by
lvg) = Viilwi) (3.2.2)

If some process creates a flavour eigenstate, |vy), at time ¢ = 0, then at a later time ¢ it will

have evolved to the state |v¢,t) = 9 (¢)|vy) via the matrix Schroedinger equation

Ui (V§—EV + Acc + Ey ‘ (3.2.3)

where F is the energy of the relativistic neutrino, m, is the diagonal neutrino mass matrix
with entries m;, £ is an irrelevant term proportional to the unit matrix, and Acc represents
matter effects. For neutrinos propagating in matter with electron number density N, Acc
is a matrix with a single non-zero entry, AL, = v2GpN,.

The mixing matrix V can be written quite generally as

1 0 0\. 1 0 0
V =Ry3(023) | 0 €% 0 | Ris(613)Ria(012) | 0 €= 0 | (3.2.4)
0 0 1 0 0 €b

where R;;(0;;) represents a rotation by 6;; in the ij plane. We have chosen a sequence of
rotations which frequently arises in the diagonalization of simple hierarchical forms for the
neutrino mass matrix, as illustrated in section 3.6. From equation (3.2.3) we see that the

phases o and B never appear in oscillation phenomena, and hence can be dropped, giving

€12€13 ' €13512 513
V = | —co3s12€" — 12513523 Ci12c3€™® — 512513593 13523 | - (3.2.5)
- id _ — i _
523512€ C12€23513 €12523€ €23512813 C13C23

.Each R;; must diagonalize a symmetric 2x 2 sub-matrix determining tan 26;;, hence, without

loss of generality, we may choose 0 < 6;; < 7/2, while 0 < ¢ < 27. A more convenient
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choice is to keep 61213 in the first quadrant, while 0 < 633, ¢ < m. We choose to order the
neutrino mass eigenstates so that AmZ; > Am?, > 0, where AmZ; = m} —m2. Notice that
with this parametrization V.3 < 1 means 6,3 close to 0 or to 90°.

To study solar neutrinos, we are interested only in the electron neutrino survival
probability, P,., and hence in the evolution of 9.. This evolution does not depend on 893 or
on ¢ — oﬁ substituting (3.2.4) in (3.2.3), Ra3 and ¢ can be absorbed into redefined étates
p' and 7. Hence, we have shown quite generally that P.. depends only on four neutrino
parameters: Am3,, Am2,, 612 and 6:3. |

For an oscillation explanation of the atmospheric neutrino fluxes, AmZ2; is suffi-
ciently large that it does not cause a resonance transition in the sun. In the Landau-Zehner

approximation, the evolution equation (3.2.3) can be solved to give [6]

1-P P 0 Va2
Pee=(Val% IVel%Ves?)| P 1-P 0]} VB2 (3.2.6)

0 0 1 |V.E|?2

where V.1 are the mixing matrix elements in matter, and P is the transition probability

between the states at resonance:

2 ain? \ 2 29
p— e‘ENA/EG(E B, Bxp = W?’I’Z\ll? sin®(2612) ’ Ep = Ami, cos 2619
4lﬁ$'ﬁ|1 cos(26:2) 2v/2GF|Nelo cos? 6,3
(3.2.7)

Here FE is the neutrino energy, 6 is the step function, the 1 subscript indicates that N, and
its gradient dN,/dz are evaluated at the resonance point, while the 0 subscript indicates
the production boint. The large mass splitting Am§3 enters P, dnly via the matter mixing
angles, and decouples ﬁom these expressions in the limit that it is much larger than Ay E,

and also in the limit that 63 vanishes. For most of this section we make AmZ; sufficiently
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Figure 3.1: Values of (®sg, P7g,) measured by the Chlorine experiment (continuous lines),
the Gallium experiment (dashed lines) and by the SuperKamiokande experiment (long
dashed lines) assuming various neutrino oscillation schemes: e no oscillation in fig. 3.1a;
e an energy-independent P(v, — v) = 0.85 in fig. 3.1b; e the best-fit point of the small-

angle MSW oscillation in fig. 3.1c; e the best-fit point of the large-angle MSW oscillation
in fig. 3.1d. :

large that it decouples, and we comment at the end on the effect on the allowed regions of
parameter space for non-zero 613 and small Am3,, where Am32, effects may not decouple.

The signals S; at thé three types of solar neutrino experiments are
Si = / dE ®(E)[0f(E)Pee(E) + 0 £ (E)(1 — Pe(E))], i={SK,Ga,Cl} (3.2.8)

where ®(F) is the total flux of solar neutrinos with energy F, and af’¢ (P) are the interaction

cross sections at experiment ¢ for electron-type and non-electron-type neutrinos, respectively
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(only the water Cerenkov detectors are sensitive to neutral currents, so aéa(E) = aél(E) =
0). We will use the theoretical predictions of the various cross sections found in [7, 8].
The flux ®(E) is broken into components in the standard way by specifying the production

reaction, giving [7]
®(E) =) ®afo(E),  with / > fulB)dE =1 (3.2.9)
Py 0

and o = pp, pep,’Be,'3N,'50,17F, 8B, hep. At this point we follow the (nearly) model-

independent treatment of the fluxes described in [9] by making the following assumptions:

1. The energy dependence f,(E) of the single components of the neutrino fluxes pre-
dicted by solar models ([7, 2] for instance) are correct. In fact the fa(E) do not
depend on the structure of the sun, and are the same in any solar model that does

not introduce non-standard electroweak effects [7].

2. The overall ®, can differ from their solar models predictions. However there are
strong physical reasons to believe that the ratios ®isy /@150 and P®pep/Ppp can be set
to their solar SM values [2]. Furthermore we neglect entirely hep and ''F neutrinos,

which we expect to be extremely rare.

3. The present total luminosity of the sun, K, determines its present total neutrino

luminosity as

Ko=) (% - (Eya)> Do ~ %Z Do, (3.2.10)

where Q = 26.73 MeV is the energy released in the reaction 4p + 2e — “He + 2v,
and Kg = 8.53 - 10! MeV cm™2 s7! is the solar radiative flux at the earth. Using

(3.2.10) amounts to assuming that the solar energy comes from nuclear reactions that
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reach completion, and that the sun is essentially static over the 10* years employed

by photons to random-walk out of the solar interior.

After the first assumption we have one free parameter ®, for each «; the second then

reduces the number of free parameters to four, which we can take to be
@, = Dpp + Ppep,s ®cono = Pusy + Pisg, - Prge and Dsp. (3.2.11)
The luminosity constraint allows us to eliminate @, giving

_ @
Si = Si(Ami,, 012, 013; e, P, E)%s_o_)' (3.2.12)
' : e

Since solar models give a stable prediction for ®cno/Psg = 0.22 [9], we have singled out
this ratio and we will use its SSM value in our analysis. Variations of even an order of
magnitude in the ratio affect negligibly our final results, since the two neutrino components

have similar cross sections in existing detectors.

3.2.1 Model-independent solar analysis — all experiments

The signals now depend only on ®sg and ®+g,, so that, for any given oscillation

pattern P..(F) it is possible to plot the three experimental results* [1, 10, 11, 12]

SaP = (2.54£0.20) 1073571 (3.2.13a)
SEP = (7547) 10736s7! | (3.2.13b)
Se = (2.51£0.16) - 10°cm™2s7! | (3.2.13¢)

as three bands in the (®sg, ®7g.) plane. The three bands will in general not meet, giving

interesting solar model independent restrictions on the oscillations parameters.

*The SuperKamiokande experimentalists give directly the value of the flux they measure. The other ex-
periments involve more uncertain neutrino cross sections and prefer to give the frequency of events measured
per target atom in their detector. For simplicity we have omitted this detail in the text, leaving a trivial
inconsistency between eq. (3.2.13¢) and (3.2.8).
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Figure 3.2: Values of the x-square as

function of an energy independent

P(ve — v.). The parameter ) is
~ defined in eq. (3.2.14). Also shown

is the x? with one experiment dis- '
-carded and A = 1.

We begin the analysis by studying the case of no neutrino oscillations (Pee = 1).
In this particular case the solar model independent analysis does nqt give a strong result.
Surprisingly the three bands perfectly meet [9, 13] as shown in fig. 3.1a, but mainly in the
unphysical &, < 0 region, with a small area in the physical region lying within 20 of
each central value. Since the physical crossing regiqn has a negligible Be ﬁﬁ:_{, the value of
®cno/Ppe becomes completely irrelevant.

To discuss this case in a quantitative way and to deal with more general cases it

is useful to introduce the x-square function

Si = 57%)* (@; - 235M) (@5 — BFM)
ASsxp ) Z 22 A‘I)2~kSSM
J

(3.2.14)

XS (Pec(Am3, iz, 015), @, Prpe) = (
z ik
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Figure 3.3: Allowed regions in the plane (sin? 2612, Am?,) for 613 = 0,15° and 30°. The
plots on the left assume that the BP solar model is correct. The plots on the right are the
result of the solar model independent analysis described in the text.
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Figure 3.4: Isoplot of x2, minimized in the mixing parameters.

where ‘ASfxb is tile lo uncertainty for experimegf; i, given in (3213), @?SM isvthe ﬁux
predic‘tion of the ‘sohr model [2] and A§SSM is the corresponding erl;oi‘ matrix, taken Wifh
some generosity.. Thelldr‘ar.lges of @sB’and ‘i’7Be are represented»by the ellipse in fig. 31 We
perferm ou? analysis with two choices for A® = X - AGSM, We call the first choice, A® =
APSSM ‘fsolar SM inspiréd”): The second choice, A(I>v= 8- A®SSM (“model independent”) |
has the same shape as the first, buf is eight times as large. .'The part of the analysis done
using this AQ is virtually free of solar physics i;lpllt. The choice A = 8 (rather than A = o00)
avoids unnaturai vﬁlues of ®m.. This choice essentially ignores soiar physics considerations,
but the_\;irtue of having a number of independent ex.perimenta,l results is precisely that we
need ne lenger rely heavily on solar modeliing to gain insigh’t into the underlying particle

physics.

Minimizing the x? in the positive flux region we obtain min x%(Pee = 1) = 8.25. .
The usual criterion for goodness of fit says that a x? with one degree of freedom larger than

8.25 is obtained with a very small probability, p ~ 0.4% (a careful Monte Carlo treatment
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of the @75, > 0 constraint gives similar results [13]). We however remark that, if the sun
really emits the best-fit fluxes, ®rg, = 0 and Psg = 2.5 106 /cm?s, there is a 10% probability

that statistical fluctuations produce the present experimental data.

We can just as eaSily investigate the slightly more general case of an energy inde-
pendent P,.. The dependence on the neutrino parameters Am%z, 012, and 913 arises through
P,,; if the survival proba,bility is a cbnstant, then we can minimize xi in the positive-flux
region for any value of P, to obtain min X3 (Pee), which is plotted in fig. 3.2 for A = 1 (SSM
analysis), A = 8 (SSM independent a.nalysis) and A = co (completely model independent
é,nalysis). For P, ~ 0.85, mir_l X2 drops to 5, but the fluxes required to get relatively small
X.2 values are ciisfavoured by solar physics considerations — @CNOI and ®rg, must be nearly
made fo vanish, as shown in ﬁg 3.1b. When Pee.s., 1/2 the (accidental?) threefold crossing
no longer occurs, so that this case can be firmly excluded in a solar-model indepéhdent
way [9, 14] (see fig. 3.2). vHowever, as we shall see in subsection 3.2.2, once we allow fOI.‘
the possibility that one type of experiment’s results should be discarded, it is possible to
obtain good fits of the data for constant P,, ~ 1/2 without having to resort to unnatural

. flux values.

Of course, we are interested in any points in parameter space that fit the data
well, regardless of whether they lead to constant P,.. For any values of Am2,, 612, and 613
we can make plots similar to fig. 3.1a. Fig.s 3.1c and 3.1d show two examples that illustrate
the familiar 2-generation small and large angle MSW solutions, which evidently fit the data

well if standard solar model fluxes are used.

In fig. 3.3 we show how the allowed regions in neutrino parameter space change
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if we let the fluxes vary over an expanded range of values. For each point in (Am32,, 612,
613) space, we minimize x? and xg by varying the fluxes within the physical region, and
then we plot contours of minx? in the (sin?(2012), Am?,) plane for various values of 6;3.
The results for the “SSM inspired” and “model independent” analyses are shown in fig.s 3.3

(upper row and lower row, respectively). The contours are for x2 = 3 and x2 = 6.

For small 3 the “SSM inspired” results show the standard small and large angle
MSW regions. For la,fgér values of 6,3, the two MSW regions join, and, as ;3 approaches
7 /4, the solutions with large 6,2 disappear. For 613 = 7/4 the region with minx? < 3 is in

fact absent entirely.

The “model independent” results similarly exhibit a very strong 6,3 dependence.
We see that the “model iﬁdependéﬁt” analysis continues to give strong restrictions of the
oscillatioh i)a,rameters — in particular the Am2, values with min x2 < 3 are always in the
range ~ 10~(4%5) ¢V2, This will ;10t remain true when we consider the consequences of

ignoring one experiment’s data in subsection 3.2.2.

If ®cno/Psp is ten times 1arger than in SSM there are new allowed regions. How-
ever these possible new regions, with Am2 = 10-(*6) V2 and sin®26;, 2 10~2, are ex-
cluded in a model-independent way by the non observation of a day/night asymmetry at
SuperKamiokande [1, 15]. The recent data [1] on this asymmetry invfact disfavour as well the
large angle MSW solution of the SSM-inspired analysis. Moreover, we have not included
in our x? analysis the SuperKamiokande measurement of the distortion of the ®B spec-
trum (1, 15], .be(_:ause the present positive 1o signal could be produced by a ®y,.p/Psp ratio

15 times larger than the prediction of BP95 [2]. Without a very large hep flux, the present
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measurement excludes an otherwise allowed region with Am? ~ 10~*eV? and sin? 26,5 in

the range 10~* + 10~ [13, 16].

- Our model indepe'ndent analysis allows us to investigate how well present experi-
ments are able to measure the SSM-independent neutrino fluxes ®sg and $rp,. This question
is answered in fig. 3.4, where we plot the values of the fluxes that can give a good (x3 <‘6)
or very good (xg < 3) fit for some value of the oscilla.tion parameters Am%z, 012 and 6;3.
We see that the value of ®sz is currently determined with an error larger than the solar
model expectation. It will be directly ﬁaeasured in the new on-going SNO experiment. On
the contrary the value of ®+, is at present totally unknov;rn: in fact in the small angle MSW
solution the monochromatic ‘Be flux can be completely converted into £ neutri;loé,. that
are not detected by existing experiments. Borexino will be able to detect neutral ;:urrents

effects in this range of energies and probably allow a direct determination of O, [13].

As discussed above we perform our analysis under the assumption that Ami, is
large enough that its effects decouple. For any given AmZ, it is straightforward to reproduce
fig. 3.3 by using the exact expressions for 673 and 67} in equation (3.2..6). In this way we find
ithat for small ;3 (< 15°), our results are insensitive to Am3, down to Am2; = 5-10"%eV2.
For large 613, AmZ; effects start to become noticeable when Am2, drops below 2x 1073 eV?;
for example, for 6;3 = 40° and Am%s =5.10"%eV?, the allowed region in the SM inspired
analysis is significantly smaller than in the decoupled limit, with the x2; < 6 region never

reaching sin?(26;5) > 0.1. In spite of these changes for small AmZ,, the essential features

of ﬁg.- 3.3 in any case remain unchanged.
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Figure 3.5: Fits of the solar data in the plane (sin? 2615, Am2,/eV?) for 6,5 = 0, 15° and 30°
assuming that one of the three solar neutrino experiments has a large unknown systematic
error (SuperKamiokande in the first row, Chlorine in the second and Gallium in the third)
and is therefore discarded from the analysis. The contours are for x* = 3 and x% = 6.
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3.2.2 Model independent solar analysis — one experiment ignored

In subsection 3.2.1, the present level of experimental evidence allowed us to omit
one restriction (the solar model) and still yield interesting results. Likewise, we can choose
to omit one experiment from the analysis while keeping some solar information and still

yield interesting results.

The motivation for this is obvious: neutrino experiments are extremely difficult to
perform and particular detection schemes may suffer from some systematic error ;;reviously
not considered. We make no judgements here about the errori;.s associated with any partiéular
experiment. Instead we considexj analyses v;lhere we do not include one class of experiment,
either watéf-Cerenkqv, gallium or chlc;rine, which we designate S’K ¢l and ,G/a.respectively.
However, because we are losing aﬁ experiment, it is impossible to analyze the data without
some level of information regarding the solar model. Consequently, we perform the analysis
only within the solar SM inspired region. The results for this analysis are shown in figures 3.5
(upper row: without SuperKamiokande data, middle iow: without chlorine data, and lower

row: without gallium data).

The SK case largely resembles the complete data set analysis, with some additional
space allowed in the higher AmZ, region. In contrast, the other two cases (@a and 1) show

considerable differences.

For the Q/a case, there is a strong preference for either small Am%z or large 6,9
‘ j
and 6;3. For the Qf case, for both large 612 and 0,3 we have the presence of large regions

with large Am}, = 107*eV?, above the level-crossing threshold, and with small Am2,,

in the non-adiabatic region. In either case, in a large portion of these regions matter
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enhancements are unimportant. That is, in the absence of one of these two classes of
experiment, given sufficiently large angles, the solar neutrino problem can be resolved simply
by vacuum oscillations alone! In such a case, new experiments, such as Borexino, would see

an absence of energy dependence in the electron neutrino survival probability.

3.3 Atmospheric and Solar Neutrinos: The Minimal Scheme

The simplest picture for reconciling both soiar and atmospheric neutrino fluxes
via oscillations of ve,, , results when there is a hierarchy |Am3;| > |Am3,|, and Am, is
too small to affect oscillations of atmospheric ngutrinos. In section 3.2, we showed that
in this case the solar fluxes depend only on Am%z, 612 and 6137, and below we show that
the atmospheric fluxes depend only on Am§3,023 and 6;3. In the limit that 6,3 = 0,
the two phénomena become independent, in the sense that they depend on no common
parameters: sdlar oscillations are v, — v, at a low frequency, while atmospheric oscillations
are v, — v, at a much higher frequency. However, solar oscillations are allowed for a wide
range of parameters with large 6,3, and the atmospheric data does not require ;3 to be very
small. Hence, in this section we explore this simple picture keeping 6;3 as a free parameter.
We comment on the alternative possibility — that Am%2 is large enough to contribute to

atmospheric neutrino oscillations — in section 3.4.
Matter effects in the earth are important only for a relatively small fraction of the
‘atmospheric neutrinos, those with high energy, and they are neglected here!. In this case,

(3.2.3) can be integrated to give oscillation probabilities Pss(t) = |Asp(t)]%, where A is

t Although for non-zero 63, there is a dependence on Am3; if it is small enough.
#For more details see e.g: ref. [17).



56

given by the matrix equation

A(t) = Ve Bty (3.3.1)

Since an overall phase in A is irrelevant to P, and Am%2 effects are negligible, we may make
the substitution

e~ Bt — diag (1,1, e~iAmh!/2E) (3.3.2)

Using the form (3.2.4) for V, we immediately discover that the probabilities are independent

of 015 and ¢, as well as o and 8. The probabilities are given by

AN

P, = s2;sin®20;3 Sps  (3.3.3a)
'Pe'r = c%3sin22013 523 » : (3.3.3b)
P, = c}35in?26053 So3 (3.3.3¢)

Pee = 1- Sin2 2013 523 (3.3.3(1)
P, = 1—4c3s2,(1 — 24533) Sos ' (3.3.3¢)
P = 1= 4¢33c25 (1 — c23c33) Soa (3.3.31)

where Sp3 = sin?(Am2,t/4F). The parameter Am2; can be extracted from the data by
fitting to the zenith angle distribution of phe events. Here we concentrate on the deterini;
nation of the parameters 613 and 623. These can be gxtracted, independept of the value
of AmZ,, if we assume that the downward going neutrinos have not oscillated, while the
upward going neutrinos are completely oscillated, so that So3 is averaged to 0.5. In view

of the reported angular distribution of the multi—GeV data for l-ring e-like, 1-ring u-like
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and partially contained (PC) events [3], this assumption appears to be valid, at least for
angular cone sizes about the vertical which are not too large. For events of class ¢, which
are induced by v, charged current, v, charged current and neutral current interactions with
relative probabilities fic, fice and fi, the up-down ratio p; is given by

NT , ' ) 1 )
P = ']\fj = f;CC ' (Pee + TPe;t) + f;CC : (Pp.u + ;Peu) =+ f]zVC (3-3-4)
i .

where we have set Sz = 0.5, and Nz-T + are the number of upward and downward events
of class i. We are interested in i being 1-ring e-like, 1-ring p-like and PC. The overall
" normalization of these event numbers has considerable uncertainties due to the calculation
of the neutrino fluxes produced in cosmic ray showers, hence we consider three up-down

ratios

pe = 1.2340.29 (3.3.5a)
pp = 0.62+0.16 (3.3.5b)
ppc = 0.48+0.12 (3.3.5¢)
and two ratios of downward going fluxes
N} + N}
—“—+—1——P—C- =¢r = 3.0+0.6 (3.3.5d)
N¢

1
iVP—f =¢ = 13403 (3.3.5¢)

Ni

where r is the ratio of v, to v, fluxes. The numbers give the Super-Kamiokande data,
extracted from the figures of Ref. [3], with upward and downward directions defined by the
azimuthal angle having cos § within 0.4 of the vertical direction. The parameters £r and ¢’

represent the theoretical values for the ratios of (3.3.5d) and (3.3.5¢). These two downward
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going ratios do not involve oscillations, and the Super-Kamiokande collaboration compute
Monte Carlo values of 3.1 and 1.0, respectively, agreeing very well with the data. Since
these two ratios do not probe oscillations, at least within our assumptions, we do not use
them for the fits below. We do not use the sub-GeV data as the boor angular correlation
between the neutrino and charged lepton directions leads to a smoothing of the up-down
ratio. From the flux calculations of Honda et al [18], and using the measured momentum
distributions for the events [3], we estimate 7 = 4.0 % 0.5, for this multi-GeV data near the
vertical direction. A more refined analysis would use a larger value of r for PC events than

fbr FC events.

The results of a fit of the three up/down ratios to the two free parameters 653 and
0,3 are shbwn in figure 3.6(a). We have obtained the fraétions fgCC,uCC', ~nc from the Monte
Caxlo results of the Super—Kamiokande collaboration [3}, and we have used the oscillation
probabilities of (3.3.3¢c). In order to work with Gaussian distributed experimental data,
we have directly fitted the six measured neutrino numbers NiT o+ leaving arbitrary the three
overall fluxes of each type, NiT +Nz¢ . The preferred region of the plot is easy to undefstand,
since at the point 023 = 45° and 6,3 = 0, the v, are unmixgd, while there is complete
Yy ¢ vy mixing, so pe ~ 1 and p, =~ ppc ~ 0.5. It is apparent from Fig. 3.6(a) tha.t this
minimal scheme is allowed for a large range of angles about this point: 623 = 45° +15° and

613 = 0 = 45°.

If the solar neutrino fluxes, measured by all three techniques, are to agree with
solar model inspired values, then the results of section 3.2 show that Am?, is too small to

affect atmospheric oscillations, it is either of order 1074 — 1073 eV? or of order 10~ eV2,



99

~ In this case, the minimal scheme fdr. atmoépheric neutrinos, described in this section; is
the unique possibility using just the three known neutrinos. This observation enhé,nces the
importance of the fit of figure 3.6(a); further data will reduce the allowed region, as the three
up-down ratios of (3.3.5¢) have small systematic uncertainties and are statistics limited.
The solar neutrino fluxes do not put extra constraints on the value of 63, although it
becomes correlated with 612, as shown in figure 3.3. If the atmosphefic flux measurements
require Am2, > 2 x 1072eV?, then the limit on P., from the CHOOZ experiment [19]

requires 613 < 13°.

Recent analyses [20] of SuperKamiokande data that make use of MonteCarlo pre-
dictions for the angular and energy distributions of the atmospheric neutrinos get more
stringent constraints on the neutrino oscillation parameters. Our fit uses only those data
— the ratio of upward and downward multi-GeV neutrinos (the ones in bins 1 and 5 of
the angular distribution in [3]) — that do not depend on the spectrum of the atmospheric
neutrinos nor on the precise value of Am?, assuming a full averaged oscillation in between.
Since statistics gives presently the dominant error, we obtaiﬁ weaker constraints than in [20].
If we knew that the neutrino mass difference relevant for atmospheric neutrinos were close
to the center of the presently allowed region, we could add to the data to be fitted the
iﬂtermediate bins 2 and 4 of [3] (the bins that contain ‘oblique’ neutrinos). We cannot
use in any case the multi-GeV data in the intermediate bin 3, that contains ‘horizontal’
neutrinos. Having doubled the statistics, we would find the more stringent contours shown

in fig. 3.6a’,b1’,b2’. We remind the reader that our fit does not include matter effects [4].
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~ 34 Atmospheric and Solar Neutrinos: Non-Minimal Schemes

In this section, we study atmospheric neutrinos when two conditions apply.

e The smallest mass splitting is large enough to affect atmospheric neutrino oscillations:
Am3y > 3 x 1074 eV2. For solar neutrinos, this implies that there is a serious flaw

either in at least one measurement technique, or in the solar models.

e The mass splittings are hierarchical Am3; > Am2,. This is a simplification, which we
relax at the end of the section. It includes the interesting possibility that AmZ, is large
enough to induce the apparent oscillations reported by the LSND collaboration [21],

while Am?, effects are causing both solar and atmospheric oscillations.
Using (3.2.5), the v, survival probability is
Pee =1- 6%3 Sin2 2912 512 - 3%2 sin2 2013 .5'23 b 6%2 sin2 2913 S31 (3.4.1)

-where S;; .= sin?(AmZ;t/AE). The’above two conditions imply that Am2; > 2 x 1073 eV?,
50 that, for the CHOOZ experiment, (3.4.1) should be used with Ss3 = S31 = 0.5. The
CHOOZ limit, P.e > 0.9, then gives 613 < 0.23. If AmZ, were also greater than 2x 103 eV?,
then for the CHOOZ experiment one also haé Si2 = 0.5, so that 612 < 0.23. However, in
this case .the survival probability for solar neutrinos is thev same as for the anti-neutrinos
at CHOOZ: P.. > 0.9. Hence, given our two conditions, the observed solar neutrino fluxes
require Am3, < 2 x 1073 eV2.

It is frequently stated that the three known neutrinos cannot explain the LSND,
'a.tmospheric and solar neutrino anomalies, as this would require three Am?2 with different

orders of magnitudes. However, this argument no longer applies in the case that either a
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solar neutrino measurement technique or solar models are incorrect, when a single Am?
could givé both atmospheric and solar anomalies. Hence, we consider first the case that
AmZ, is la.rgé enough to explain the observations of LSND. The oscillation probabilities
induced by AmZ, are given by (3.3.3¢c). From the limit on P, from the Bugey reactor, one

then concludes

Am2; > 0.2eV2 (3.4.2a)

and

13 < 0.1 (3.4.2b)

which is significantly stronger than the CHOOZ limit. A second possibility, 813 close to
90° does not allow any significant oscillations of v, and is thus not acceptable to explain
the solar neutrino anomaly at a relatively large frequency. For atmospheric neutrinos, both
upward going and downward going, one may then use oscillation probabilities with 613 = 08,

and with Ss3 and Sp5 both averaged to 0.5:

Pe# = C§3 Sil:l2 2012 512 v (3433,)
P, = s253sin%20;5 Sio _ (3.4.3b)
PI“' = —;11- Sill2 2923 sin2 2012 312 + % SiIl2 2923~ (3.4.3C)

or equivalently, from unita.rity

P, =. 1-—sin%20;5 Sio (3.4.3d)

P, = 1-—1sin?2653 — cj;sin®202 Sia (3.4.3¢)

$In which case the P;; are independent of ¢.
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Py, = 1- Lsin?2053 — sk, sin?20;5 Sio. (3.4.31)

Since in these formulae S13 = Sa3, 6,2 enters only via sin 260;, so that, without loss of gener- |
ality, we may reduce the range of 613 to 0 < 6y < w/4. We again study the up-down ratios
(3.3.4), as they have small systematic uncertainties. We calculate them approximately, us-
ing (3.3.4) with f¢,, = f"fCC = ffgc =1 and all éther f-factors équa,l to zero. A fraction,

P‘(Lg) = 1 — sin® 2093 /2, of the downward going v, oscillate to v, before detection, so the

up-down ratios are given by

pe = Pog + TPy, , (3.4.4)

and

B + P/r

pu - (3.4.5)
Py

Hence we find

1 c3; v
(pp—1) = TrT- Lsin?20y (pe — 1). _ (3.4.6)
For the multi-GeV data, where the angular correlation is best, r is large, and (3.4.6) im-
plies that |p, — 1| < (1/3)|pe — 1|, in strong disagreement with data of (3.3.5c). The
same inequality holds if p, is replaced by ppc, when the disagreement with data is even
stronger.Y With oscz'llatz'oﬁs of the three known neutrinos, the LSND observation conflicts
with the atmospheric and solar neutrino anomalies even using a model independent analysis

of the solar neutrino fluzes or allowing for a systematic error in one of the solar neutrino

expem‘ments” .

YEven ignoring pe, we find ppc,, > 0.61.
If¥or 853 = 0, this corresponds to purely v, — ve oscillations, which is therefore excluded as an explanation
of the atmospheric neutrino measurements.
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Does the atmospheric neutrino data allow other values of Am2; > Am2,? The
limif from the Bugey reactor, (3.4.2b), applies for all Am3, > 0.06 V2, and the up-down
ratio relation, (3.4.6), applies for-all Am2, > 0.1eV2. Hence, Am2; > 0.1eV? is excluded.
For Am%3 < 0.1eV2, the downward going v, have not oscillated to v, when they reach the

Super-Kamiokande detector, so that (3.4.5) is replaced by

1

1 2
Pu ™ Py o+ —Poy = 1= sin 205 — B(p, — 1), (3.4.7)

Consistency with the data, (3.3.5¢), is now possible, and requires large 623. As Am2, drops
below 0.06eV?2, the limit from tile Bugey reactor on ;3 is progressively weakened, so that
013 terms must be kept in P;j. Furthermore, as Am2; drops below 0.01 eV2, our .hierarchyv
condition is no longér satisfied, so that P;; depend also on §5. For these cases we have
-performed a x squared fit of the three up-down ratios (3.3.5¢) fo O3, 013 and 85, for various
values of the mass splittings, and have found acceptable pegions of pafameter space. Results
are shown in figure 3.6b for the case that all S;; = 0 for downward going neutrinos, while all
Sij = 0.5 for upward going neutrinos and ¢ =0 (no' CP violation). An equivalent fit would
be obtained for ¢ = 7 and 033 — 7 — O93. The (relatively small) asymmetry of fig.s 3.6b
under 033 —> ™ — f53 shows .the dependence on ¢ of the SuperKamiokande data considered
here.

A compdrison of figure 3..6b with figures 3.3 and 3.5 shows under what conditions
this large Am?2, scheme gives consistency. If all solar measurement techniques are correct,
then, from figure 3.3, 03 is small and 612 = 10° + 20°. Figure 3.6b then shows that 6.3
is centred on 45° + 25°, the range around 23 = 135° being equivalent for any ¢ since 613

is small. Figure 3.5 shows that solar model inspired fits to data from two solar techniques
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at large Am%z allow larger ranges of 6;2 and 6,3, and these become correlated with 653 via

. figure 3.6b.

3.5 Large v, — v, Mixing For Atmospheric Neutrinos

The pattern of masses and mixings suggested by the previous considerations show
peculiar features, especially if both the atmospheric and solar neutrino anomalies are ac-
counted for in the minimal scheme of section 3.3. The mass differences are hierarchical.
However a large mixing (A3 =~ 45°) is required between the states with the largest mass
diﬂ"erence. The mixing angle 615 between the states with the smallest mass splitting may
be large or small. Finally, if Am?Z, 2'2 -1073eV?, ie. in the CHOOZ range, the third
mixing angle must be small, ;3 < 13°. Therefore it looks 'inte.resting to see which mass

matrix could produce this pattern and which flavour symmetries can justify it.

3.56.1 2 x 2 Matrix Forms

As stressed in the introduction, an important consequence of the data on atmo-
spheric neutrino fluxes is the need for large mixing angles. Here we study four possible
forms of the 2 x 2 Majorana mass matrix for v, and v, which have a large mixing angle. In
subsection 3.5.2 we study whether these forms can be incorporated in 3 x 3 mixing schemes
which also give solar neutrino oscillations, and whether 3 x 3 cases exist which cannot be
reduced to a 2 x 2 form. In section 3.6 we study whether these forms may be obtained from

flavour symmetries of abelian type.

In a basis with a diagonal charged lepton mass matrix, the Majorana neutrino
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small small order unity Am?/ (%)2
entires parameters | parameters
(1) Generic none none A,B,C ~1
(2) Determinant small none none A,B,C=B%/A+¢|~1
(3) One diagonal small | one diagonal ~e A B ~1
(4) Pseudo-Dirac both diagonal | A,C=e | B RE

Table 3.1: The four possible 2 x 2 matrix forms which give a large mixing angle.

mass maitrix 1s

M

m= - . (3.5.1)
- M\B 4

This is brought into real, diagonal form by the unitary matrix

. 1 0\
V = R(6) ) (3.5.2)

0 eia

where tan20 = 2B/(A — C), and the phase o does not affect oscillations. The mass

difference relevant for oscillations is Am? = (A + C)\/(A — C)2 +4B2. The coefﬁciént-
v%/M is motivated by the see-saw mechanism, with v the electroweak vacuum expectation
value and M the mass of a heavy right-handed neutrino.

‘ Thére are four bossible forms of this matrix which give 8 =~ 1, and thése are shown
in Table 1. In cases (1) and (2) the entries are all of order unity; in the generic case they are
unrelated, while in case (2) they are related in such a way that the determinant is suppressed.
We discuss how such a suppression can occur naturally via the seesaw mechanism in the
next section. Case (3) has one of the diagonal entries suppressed, which, however, does not

follow from a simple symmetry argument. For cases (1+3), taking Am? = 10~%eV?, one
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finds

M = (1+3) x 10¥GeV, (3.5.3)

close to the scale of gauge coupling unification in supersymmetric theories.

Finally, case (4) has Loth diagonal entries small, making v, and v, components
of a pseudo-Dirac neutrino. This follows from an approximate L, — L, symmetry, and
implies that 6 ~ 45°. This agrees well with data: combing p,; and ppc of (3.3.5¢) gives.
0 = 45° = 15°. Of the four possible cases with large mixing angle, it is only the pseudo-
Dirac neutrino which allows v, ; to be the astrophysical hot dark mat.ter, in which case one
predicts 8 = 45° to high accuracy.- ‘

From the viewpoint of atmospheric neutrino oscillations alone, the distinction be-
tween cases (1) and (2) is unimportant. Since case (3) does not follow from simple symmetry .

arguments, one is left with two main 2 x 2 mixing schemes: the generic and pseudo-Dirac

cases.

3.‘5.2 3 x 3 Matrix Forms

There are many péssibilities for 3 x 3 neutrino mixing giving P, = 0.5, with
oscillation primarily to v,. In general two independent frequencies and three Euler angles
are involved.

For the éase that the oscillation is dominated by a single frequency, the possibilities
may be divided into two classes: “2 x 2-like” and “inherently 3 x 3.” The 2 x 2-like cases
are just the four discussed in subsection 3.5.1, with 012,i3 small. Even though Am2; may
not be the largest Am2, it is the only one whicﬁ causes substantial depletion of v,. More

/interesting are the inherently 3 x 3 cas\es, for which there is no 2 x 2 reduction.
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Consider the case

0 B A
’02 .
m==:|B 0 0 | (3.5.4)
A0 0

with A, B =~ 1. This is diagonalized by V = Ra3(023) R12(612 = 45°) giving a Dirac state of
Ve married to ca3vy + s23vr. The mass eigenvalues are (M, M,0), which, from the viewpoint
of oscillations are equiva.lem; to (0,0, M). Hence, one immediately sees that the oscillation
probabilities are given by (3.3.3c) with 613 =0: P,, = sin® 203 S23 has the form of a 2 x 2
oscillation, even though the mass matrix hés an inherently 3 x 3 form. This arises because"
(3.5.4) is governed by the symmétry L. — L, — L,, which allows v, > v, but prevents v,

from oscillating.

We claim that (3.5.4) is the only inherently 3 x 3 form for v, — v, at a single
frequency, as we now show. An inherently 3 x 3 form must have large enﬁries outside the
2 x 2 block in 23 subspace. The three possibilities are 11, 12 and 13 (and their symmetric).
None of these entries work alone, even coupled to any structure in the 23 block: either
one gets two comparable frequencies or one cioes not get v, — vr. The same is true for
11 +12 or 11 + 13, again possibly together with any 23-block. Sihce 11 + 12 + 13 leads to
two comparable frequencies, the only case remaining is 12 + 13, with a relatively negligible
23 block, ie. the 3 x 3_ form in (3.5.4). Basic to this éonclusion is the assumption of no
special relations among the different neutrino matrix elements other than the symmetry of

the matrix itself (for alternatives see [22]).
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3.6 Models for both Solar and Atmospheric Neutrinos

In this section we construct models for the minimal scheme for atmospheric and
solar neutrino oscillations, discussed in section 3.3. The mass pattern suggested by this
scheme has the hierarch}" Amd = Am?, < Am2,, = AmZ;. We take the form of the
Iépton mass matrices to be determined by flavour éymmetries (FS) and assume that all
small entries in these matrices are governed by small flavour symmetry breaking (FSB)
parameters.

The low energy effective mass ma.trix.for the three light left-handed neutrinos can
be written as the sum of two matriqes: MLL = Mam + My, where all non-zero entries of
Matm are larger than all entries of mgo. The form of myy is such that there is a large mass
splitting: Am2,, ~ 10~(2%3) ¢V2 and a vanishing Am?. Furthermore, this matrix must
give a large depletibn of v, aﬁd, as discussed in the last section, this could occur if it has
certain 2 x 2-like or i;lherently 3 x 3 forms. Of the two 2 x 2-like forms shown in Table 1,
only case (2) is acceptable: in cases (1) and (3) the two independent Am? are comparable,
‘while in case (4) the second independent Am? is larger than Am2,,. Hence, we arrive at

the possibility**:

00 0
v? '
mgg;,%:M- 0 C B (3.6.1)
0 B A

with A,B =~ 1 and C = B2/A. A reason for the vanishing sub-determinant will be given
shortly.

In the previbus section we have proved that there is a unique form for may which

** Ansétze of this type for the neutrino mass matrix, up to small corrections, to describe atmospheric and
solar neutrinos are contained in ref.s [23].
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is inherently 3 x 3:

0 B A
ax3 _ U o
Mam =737 | B 0 0 (3.6.2)
A 0 O

with A, B = 1.

The oscillation angles in the leptonic mixing matrix, V, have contributions from
diagonalization of both the neutrino mass matrix, 6;;, and the charged lepton mass matrix,
072 V(0;5) = vet (65;)V¥(0;;). This requires discussing also the charged lepton mass matrix.
It is not easy to construct an exha.ustive list of the possible symmetries and their breaking
parameters. This is partly because there are both discrete and continuous symmetries with
many choices for breaking parameters; but is mainly because of a subtlety of the seesaw
mechanism. Let mggr and mpr be the most general Majorana and Dirac mass matrices
of the seesaw mechanism allowed by some approximate symmetry. On formiﬁg the mass
matrix for the light states, mry = my, Rmﬁ;{m%R, one discovers that my, need not be the:
most general matrix allowed by the approximate symmetry. This means that one cannot

construct an exhaustive list by only studying the symmetry properties of mp; — it is

necessary to study the full theory containing the right-handed states.

A casual glance at (3.6.1) and (3.6.2) shows that the flavor symmetry we seek, from
the viewpoint of AL = 2 operators, does not distinguish [,, from -iT, but does distinguish
these from lo. There are many combinations of the three lepton numbers L,, and their
subgroups, acting on l;, which have this property. As representative of this group, we
choose the combination Le— L, — L,. We find it remarkable that this symmetry group can

yield both (3.6.1) and (3.6.2), depending on how it is realized.
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3.6.1 L.—L,— L, realized in the Low Energy Effective Theory

In the effective theory at the weak scaile, we impose an approximate L, — L, — L,
symmetry, which acts on the weak doubléts, leu,7, and is broken by small FSB parameters,

¢ and &' of charge +2 and -2, respectively, giving a neutrino mass matrix:

g 11
w2
mrr = Vi 1l e ¢ (3.6.3)
1 ¢ ¢

Hereafter, the various entries of the matrices only indicate the corresponding order of mag-

nitude, allowing for an independent parameter for each entry. This texture gives

v? v* ’
MmN My R Am2, ~ W(e +¢€') (3.6.4a)
v? ‘ v4.
mg = e Am3, = il (3.6.4b)
and
0y ~ 1 03 ~e 67y =45° (3.6.4c)

While the texture gives only the order of magnitude of 653, it precisely predicts 0%, to
be close t6 45°. If the FSB parameters € and ¢' are taken to be extremely small, this
becomés an excellent candidate for the case of “just so” solajr neutrino oscillations, with
the prediction that 6,2 = 45°. However, from figure 3.3 it follows that this model cannotv
give matter i;eutrino oscillations in the sun, which requires sin 2012 < 0.9. There are several
contribiltions to the deviation of sin 26,5 from unity, but they are all too small to reconcile
-the discrepancy. A hierarchy in Am? requires ¢, ¢’ < 0.1, and since sin? 26%, ~ 1 —(e—€")2/8,

the deviation of sin 207, from 1 is negligible. After performing the 8}, rotation, there are
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small O(e) rotations in the 13 and 23 planes necessary to fully diagonalize myy; these
are too small to affect our conclusions. The last hope is that there could be a significant
contribution to 612 from diagonalization of the charged lepton mass matrix. As mentioned
above, the diagonalization of the charged lepton mass matrix has to be discussed anyhow.

. Consistently with the symmetry structure of (3.6.3), the most general form for the

charged lepton mass matrikx, with a structure governed by abelian symmetries is

{I fE’ E’
mg=X|¢te & 1 (3.6.5)
e € 1 .

when left (right) handed leptons are contracted to the left (right), ezmgeg. (1,&,¢') are the
relative FSB parameters of (g, ur, eg) with respect to some other approximate FS, needed
to describe the charged lepton mass hieraréhies, and ) is the absolute FSB parameter of
TRTL. Hereb .we ignore the fact that non-abelian éymmetries could modify this form, for
example by requiring some entries to vanish.

Diagonalization of (3.6.5) leads to

053 ~ 1, 013 ~ €, 1y = ¢
Therefore, altogether
023 ~ 1, 012 ~e+ E', 012 = 45°, (366)

Since sin® 20, remains corrected only by quadratic terms in ¢ and/or €', we conclude that ’
L, — L, — L;, realized as an approximate symmetry of the low energy effective theory, can
explain both atmospheric and solar neutrino fluxes with a hierarchy of Am?2, most likely

only for the case of “just so” vacuum solar oscillations, in which case the scale of new
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physics, M , i8 close to the gauge unification scale, and the FSB parameters are extremely
small: £,& ~ 1077. This result also applies when any approximate FS of the low energy
effective theory yields (3.6.3). In view of (3.6.4), with Am3; ~ Am2,, =~ 107(#3)eV?,
notice that all three neutrinos are cosmologically irrelevant. Furthermore, the smallness of

the 11 entry of (3.6.3) makes the search for neutrino-less 26-decay uninteresting.

Comparing the 6;3 plots of figures 3.3 and 3.5, one finds that, with one experiment
excluded, the case of 612 = 45° becomes allowed for a large range of Am?,, giving another

application for this inherently 3 x 3 form of the mass matrix.

36.2 L.-L, — L, realized via the Seesaw Mechanism

The seesaw mechanism [24] allows a simple origin for the vahishing of the 2 x 2
sub-determinant of (3.6.1). Consider a single right-handed neutrino, N, with Majorana
mass M and Dirac mass term vN(cosfv, + sinfv,), where § ~ 1. Integrating out this
single heavy state produces a single non-zero eigenvalue in mp; — giving (3.6.1) with

A =cos?0,B = cosfsinf and C = sin? 0, so that AC = B2

How could this carry over to a theory with three right-handed neutrinos, N,7 As
long as one of them, N with the above mass terms, is much lighter than the others, then
it will‘ give the dominant contribution to m LL, which will have (3.6.1) as its leading term.
Clearly the key is th;a,t there be one right-handed neutrino which is lighter than the others,

and couples comparably to v, and v..

This can be realized using Le — L, — L., with two small FSB parameters ¢ (+2)



73

and €’ (—2). The right-handed neutrino mass matrix is

e 1 1
mrr=M} 1 € ¢ (3.6.7)
1 € ¢

and the Dirac mass matrices of neutrinos and charged leptons are

n en en | gn' el e
mr=ANv|en n 19 and mp=M]|¢ten €& 7 (3.6.8)
¢ 1 1 | g £ 1

where, in analogy with (3.6.5), we have introduced FSB parameters consistent with (3.6.7).
For ease of exposition, let us first consider the case where all the 5 and ¢ factors
are set equal to unity. The crucial point is that there is a massless right-handed neutrino in

the limit ¢ — 0. Hence, taking € small, and doing a rotation in the 23 plane we have 2 x 2

0 0 11
MpR = —1\12 , mpr = Nv (3.6.9)
0 1/e 1 1,

/ 1/e 1/
mrr = (X'v)” 6) (3.6.10)
M 1/e 1/e

sub-matrices

giving

where det m rr = 0 at this order. In a theory with right-handed neutrinos, Le — L, — L,

leads to (3.6.1).

| Extending the analysis to 3 x 3 matrices is straightforward. The inverse of mgr
e 1 1

1Lty oo :  (3.6.11)

—t
L]

~

|
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shows a pseudo-Dirac structure in the 12 subspace, which is preserved in the light neutrino

mass matrix:

e 1 1
1,,\2
mLL:()‘AZ) 1 ¢ 0 (3.6.12)
1 o0 1

[
where we have gone to a basis which diagonalizes the 23 subspace. The parameters relevant

for neutrino oscillation are

05 =1, 6y =e, vy=45°, O =~e (3.6.13a)
and
1 (Nv)t ' Aol
Am3y =~ g—————( M2) , Am2, ~ (e + e')(M2) - (3.6.13b)

"It is remarkable that L, — L,, — L, has forced a pseudo-Dirac structure in the 12 subspace
as in its previous realization, zigain giving 01 near 45°. The crucial difference is that the

pseudo-Dirac mass splitting is now a higher power in FSB than before

—12 ne2(e+€) (3.6.13¢)

_rather than ¢ + ¢’. This allows € and £’ to be considerably larger than before, so sin26,9 <
- 0.8 is now ‘p(;ssible, allowing large ‘angle MSW solar neutrino oscillatiohs. In this case
the FSB parameters are not very small €,&' = 0.3 = 0.5, so that the mass of the right-
handed neutrinos is still quite close to the gauge coupling unification scale. Notice again
the cosmoiogica,l irrelevance of the neutrino masses. For neutrino-less 28 decay searches
(mpp) = 63(Am§3)l/2 < 1072eV2. Finally, € ~ 0.1 and X' = 1 can make M exactly

coinéident'with the unification scale.

So far we have only produced models with large 6,2. However L, — L, — L, realized
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with the seesaw mechanism may also lead to small 69, using the FSB suppression factors

in (3.6.8). Taking n' < ¢’ and 5 = 1, in an appropriate 23 basis gives

12 ] !

VAR
)\I 2
mrr = (I\Z) n ¢ 0 (3.6.14)
7 0 ¢

so that eq.s (3.6.13b) and (3.6.13¢c) remain valid but

oy = 1, 055 ~ e, 05y ~ ¢ ' (3.6.15)

and, most importantly

04, ~ '€ - (3.6.16)
which can make 62 small.

3.7 Conclusions

The solar and atmospheric neutrino anomalies, strengthened by the recent Su-
perKamiokande observations, can be interpreted as due to oscillations of the three known
neutrinos. However there is still considera‘ble allowed ranges of masses and mixing angies
that can account for all these anomalies, espécially if a cautious attitude is taken with regard
to the theoretical analysis and/or the (difficult) experiments relevant to solar neutrinos. A
further major element of uncertainty is related to the relatively large range of values for
the mass splitting that can account for the atmospheric neutrino anomaly. We summarize
our conclusions by cdnsidering a set of alternative hypotheses, related to these dominant
uncertainties, with an eye to the experimental program that may lead to their resolution

and eventually to the determination of the full set of neutrino oscillation parameters.
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A critical value for Am2, is around 2 - 1073 eV? mainly because for larger values
CHOOZ sets a considerable constraint on the mixing pattern, but also because (1 = 2) -
103 eV? is frequently discussed as a typical sensitivity limit for various Long-Base-Line
(LBL) neutrino experiments, like the one from KEK to SK, or the v, appearance experi-
ments with a high energy beam from CERN to G¥an Sasso or from Fermilab to Soudan.
On the other end, a value of Am?, < 2-1074 eV?, as certainly required by a standard Solar
Neutrino Analysis (SNA), Would make the corresponding oscillé,tion frequency irrelevant
to the SK experiment on atmospherip neutrinos. On this basis we cpnsider the following
four possibilities, none of which, we believe, can be firmly excluded' at present. They are

graphically represented in fig. 3.7.

1. Am3; > 2-1073eV? and Am?, < 2-10~*eV?2. Here a minimal scheme to describe both
S(.)la;r and atrﬁéspheric neutrinos is required, as discussed in section 3.3, with Am%;; >
Am2,. Since Am?, is too small to affect atmospheric and/or LBL experiments, in
both cases egs. 3.3.3 apply. The fit relevant to SK is given in .ﬁg. 3.6a, with the
further constraint, from CHOOZ, that 63 is small, 613 < 13°, and therefore 855 =
45° + 15°. (In turn 6,9, together with Am?,, will have to be determined by solar
neutrino experiments. In this alternative, the neatest confirmation of the SK result
would come from a v, appearance LBL experiment.. At the same time, a dominant
vy — vy oscillation shoqld also lead to a signal in the KEK to SK v, disappearance

experiment, with no ‘appreciable v, appearance signal.

2. Am2; < 2-1073eV? and Am?, < 2-10"%eV2 The main difference with respect to

the previous case is that now 6;3 is not constrained by CHOOZ, and therefore, from
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fig. 3.6a, it can be as large as 45°. This implies, from eqgs. 3.3.3, that the results of both
atmospheric and LBL experiments, with low enough v, energies to permit exploration
of Am? lower tﬁan 2 .1073eV2, may be affected by a significant P,. # 0. By the
same token, an experiment with low energy 7. extending the sensitivity of CHOOZ
(eg Kam-LAND) may show a large signal if 6,3 is indeed large. In any event P,
will be significant. Finally, as in case 1., decoupling of solar and atmospheric neutrino
oscillations implies that 612 can only be determined by solar neutrino experiments,
with an ana,ly.sis complicated by 013 being potentially unconstrained (see fig.s 3.3,

upper row)

. AmZ; > 2-1073eV? and Am2, > 2-107%eV2. This case is possible only if SSM con-
straints are relaxed (fig. 3.3, lower row) and/or if one of the experimental techniques
for solar neutrinos is problematic (fig. 3.5). However, as discussed in section 3.4,
Am?, must be lower than 2-1073eV?, below the CHOOZ range. Since, on the other
hand, Am2,,, = Am3; is in the CHOOZ range, 613 is small and eq.s 3.4.3 are rele-
vant for atmospheric and LBL experiments. The fit of the bresent SK results gives
623 = 45° % 25° (the range at 3 ~ 135° being equivalent since 6,3 is small). There-
fore the main difference with respect to case 1. is the possibility of a S;5 contribution
in eq. (3.4.3). While v, appearance in LBL experiments must still give a positive
éignal, P, could significantly deviate from zero at low enough oscillation frequencies
(relevant to lower energy v, LBL experiments or to reactor experiments such as Kam-
LAND). The finding of such an effect, together with a positive v, appearance signal,

would prove, in the three neutrino oscillation picture, the inadequacy of the NSA as
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it is done now.

4. Am2; < 2-1073eV?2 and Am?2, > 2-10"*eV2. This is the relatively less constrained
case (and also the relatively less likely). Here both neutrino squared mass differences
are outside of the CHOOZ range, so that ;3 is unconstrained. Appropriate values
of the mixing angles can fit the SuperKamiokande up/down ratios of atmospheric
neutrinos, as shown in fig. 3.6b. In this case, the two comparable Afm;2 might lead to

sizeable CP-violating effects if all the three mixing angles are large.

Measurements by SNO and Borexino wiil increase the number of indepéndent observational
signais of the sola.r fluxes, S;, from 3 to 5; so that, from (3.2.12) with ®cno/Prge = 0.22,
Am?2,, 015,613, &g, and Psg can a_H be determined. This‘will provide a crucial conéistency'
check between the __ experimental techniques and the solar models. If 63 is found to be
large, Am2; < 2 x 1073 eV?, giving a signal at Kam-LAND, but;, making it harder for LBL
experiments.

In the minimal scheme, with a hierarchy amongst the Am?, several years of data‘
from Super—Kamiokande will allow a fit to AmZ;, 023 and 613. Combining with fits to
the solar flux measurements, and to LBL and Kam-LAND experiments, could allow the
emergence of a consistent picture for the two oscillation frequencies and the t};ree leptonic
mixing angles.

The variety of possibilities discussed above makes it uncertain which is the rel-
evant neutrino mass matrix and, a fortiori, which are the flavour symmetriés that might
be responsible for it. Nevertheless, focusing on the minimal scheme for both solar and

atmospheric neutrinos, the peculiar pattern of masses and mixings renders meaningful the
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search for an appropriate mass matrix. As discussed in section 3.5 on génera.l grounds, two
forms of mass matrices emerge as being able to describe the data, eq.s (3.6.1) and (3.6.2).
Since in the minimal scheme Am2, < 2-1073eV?, these forms imply that neutrino masses
will not give rise to an observable neutrinoless double beta decay signal. The combination
L¢— Ly, — L; of the individual lepton numbers may play a roie in yielding both these forms.
A common feature of the resulting solutions is that the heaviest neutrino mass is determined
by the oscillation length of the atmospheric neutrinos, (Am2,,)"/2. As such, the neutrino
masses are irrelevant for present ;:osmology. Again quite in general, an increasing separation

between the two Am? requires the angle 613 to become increasingly small.
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a) 0 a’)
90

bl) O3 b1?)
o & % 15 1w 0 45 90 135 180

b2) 815 b2?)

0 45 90 135 180 0 45 90 135 180

Figure 3.6: Mixing angles ;; that fit the up/down ratios (3.3.5a,b,c) of atmospheric neu-
trinos, assuming that (a) Am?, < 107%3eV? and any 6y, (b) Am?, =~ AmZ; ~ 1073eV?,
¢ = 0 and (bl) 612 = 20°, (b2) 612 = 45°. Primed figures are as above, but including in
the asymmetry also the intermediate bins in the angular distribution of [3] (see text). The
contours are for x2 = 3 and x? = 6.
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Am? case 1 case 2 case 3 case 4

2103 eV2

2104 eV?2

Figure 3.7: Dlﬁerent combinations of ranges for Am2, (dark gray) and Am?, (light gray)
discussed in the text.
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Chapter 4

U(2) and Neutrino Physics

4.1 Introduction

The pattern and origin 6f the quark and lepton masses and mixings remains a
challenging question for particle physics. Although a detailed description of this pattern
requires a theory of flavor with a certain level of complexity, the gross features may be
described simply in terms of a flavor symmetry and its sequential breaking.

One simple flavor structure is motivated by four facts about flavor:

e The quarks and leptons fall into three generations, 1, 3 3, each of which may eventually

have a unified description.

e The top quark is sufficiently heavy, that any flavor symmetry which acts on it non-

trivially must be strongly broken.

e The masses of the two light generations imply a phenomenological description in terms

of small dimensionless parameters, {e}.

e In supersymmetric theories, flavor-changing and CP violating phenomena suggest

that the squarks and sleptons of the first two generations are highly degnerate.
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It is attractive to infer that, at least at a phenomenological level, there is a non-Abelian

flavor symmetry which divides the three generations according to
2@1: VYo ®YP3, a=1,2. (4.1.1)

The four facts listed above follow immediateiy.from such a structure, with {e} identified
as the small symmetry breaking parameters of the non-Abelian group. These control both
the small values for quark masses and mixing angles, and also the small fractional non-
degeneracies of the scalars of the first two genefations.

The Super-Kamiokande collaboration has provided strong evidence for an anomaly
in the flux of atmbspheric neutrinos, which may be interpreted as large angle oscillations of 7
v, predominantly cither to vy or to vs, a singlet neutriﬁo [1]. This observation provides a

challenge to the non-Abelian 2 @ 1 structure:

e v, is expected to have a very different mass from that of v, ,, and to only weakly mix

with them.

e If the atmospheric oscillation is V,; — vy, what is the identity of this new singlet state,

why is it light, and how could it fit into the 2 & 1 structure?

B There are a variety of possible reactions to this challenge. One possibility is to drop
the 261 idea; perhaps the C'P and flavor violating problems of supersymimetry are solved by
other means, or perhaps supersymmetry is not relevant to the weak scale. Another option
is to retain the 2 @ 1 structure for quarks, but not for leptons, where the flavor cha.nging
constraints ére much weaker.

In this paper we study theories based on the flavor group U (2), which immediately

yields the structure (4.1.1), giving the 2 @ 1 structure to both quarks and leptons [2]. The
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masses and mixings of the charged fermions and scalars resulting fron U(2) have been
studied in detail, and significant successes have been identified [3]. We add a right-handed
neutrino to each generation, and find that the symmetry structure of the neutrino mass
matrix automatically chooses v, to bve a pseudo-Dirac state coupled to one of the right-

handed neutrinos, resulting in v, — v; with a mixing angle close to 45°.

4.2 U(2) Theories of Quark and Charged Lepton Masses.

The most general U (2) effective Lagrangian for charged fermion masses, at leading

order in the U(2) breaking fields, is

1

£ = patpsh + = ( Ys6Wah + $a (S + A)pyh) (4.2.2)

where ¢° is a doublet, S%° a symmetric triplet, A% an antisymmetric singlet of U(2), and
h are Higgs doublets. Coupling constants have been omitted, and M is a flavor physics
mass scale. An entire generation is represented by v, so that each operator contains terms
in up, down and charged lepton sectors, but unification is not assumed. For example, this
theory follows from a ren(_)rmalizabie f‘roggatt-Nielsen model on integrating out a single

heavy vector U(2) doublet of mass M (see the second of {3]).

The hierarchical pattern of masses and mixings for charged fermions is generated
by breaking U(2) first to U(1) with vevs ¢2, S22 = eM, and then breaking U(1) via the vev

A'?2 ~ ¢ M. The symmetry breaking

U@ SU@1)S1 (4.2.3)
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produces the Yukawa coupling textures

0 € 0
Mip=v| —€¢ € €]. (4.2.4)
0 ¢ 1

4.3 General Effective Theory of Neutrino Masses.

Without right-handed neutrinos, the most general U(2) effective Lagrangian for

neutrino masses, linear in U(2) breaking fields, is

L, 1 1 | |
Ly = 3rlalahh+ 2 (l3¢“lahh + l,,,S“blbh_h) . (4.3.5)

where Iy, I3 are lepton doublets. The term [, A%?lyhh vanishes by symmetry; hence the above

vevs give the neutrino mass texture

0 00
v2
ML_L:]TJ_ 0 € €}. (4.3.6)
0 ¢ 1

so that the lightest neutrino is massless.* The mixing angle for v, — v, oscillations, 8,
is of order € — the same order as mixing of the quarks of the two heavier generé;tions, Vcb
— and 1s much too small to explain the atmospheric neutrino fluxes. However, in theories
with flavor symmetries, the seesaw mechanism typically does not yield the most general
neutrino mass matrix in the low energy effective theory. This apparent problem requires

that we look more closely at the full theory, including the right-handed neutrinos.

*Including operators higher order in the U(2) breaking fields, the lightest neutrino remains massless in
a supersymmetric theory, but not in the non-supersymmetric case , where operators such as [, A“bd)Zlahh
occur.
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4.4 The Seesaw Mechanism: A Single Light' VR

Adding three right-handed neutrinos to the theory, N, + Nj, the texture for the

Majorana mass matrix is:

000
Mpr=M |0 ¢ €]. (4.4.7)
0 € 1

with the 12 and 21 entries again vanishing by symmetry. In supersymmetric theories the
zero eigenvalue is not lifted at higher 'order in the flavor symmetry breaking. This presents
a problem for the 3 x 3 seesaw mechanism in U(2) theories, since My = MprMpiM]g

and Mpgg cannot be inverted.

One approach [4] is to allow further flavor symmetry breaking vevs, for example
@' # 0, so that Mg has no zero eigenvalues. Remarkably, taking ¢'/M = €, the seesaw
gives 6,; =~ 1, as needed for the atmospheric neutrino anomaly. On the other hand, this
pattern of neutrino masses cannot explain the solar neutrino fluxes, and the additional
flavor breaking vevs remove two of the highly successful mass relation predictions of the

quark sector.

In this paper we keep the minimal U(2) symmetry breaking vevs and pursue the
consequences of the light N, state which results from (4.4.7). The singular nature of Mg}z is
not a problem; it is an indication that N, cannot be integrated out of the theory. However,

N; and N, do acquire large masses, and when they are integrated out of the theory the low
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energy 4 X 4 neutrino mass matrix is:

( ")
My . e'v

M® = | | (4.4.8)
. |

\O v 0 0}

where My, is a 3 X 3 matrix in the (va, v3) space, determined from seesawing out the two

heavy right-handed states, and has one zero eigenvalue.

Because the N, — v, mixing is weak scale, while all other couplings to v, are
suppressed, IV, and v, are maximally mixed. Thus, we note that a direct application of the

U(2) theory to the neutrino sector predicts a 45° mizing between v,, and vg!
n

There is a significant phenomenological diﬂicult& rwith this model, The mass of
the N — v, pseudo—Dir‘ac state is of order €'v. Using a value for € extracted from an
analysis of the charged lepton sector, this is of order 1 GeV, well in excess of the 170 keV
limit obtained from direct searches. One simple solution is to restrict the couplings of the
right-handed neutrinos by an additional U(1) 5y approximate flavor symmetry. Each N field
carries N charge +1, while the symmetry is broken by a field with charge -1, leading to
a small dimensionless breaking parameter ¢y. Thé entries in the neutrino mass matrices

receive further suppressions
Mip = enMrrp Mgr = G%VMRR (4.4.9)

which, for the 4 x 4 light neutrino matrix, simply leads to the replacement €v = eye'v in
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the N, — v, entry, giving

22 12 1v2
Su % w0 )
"Uz 'Uz 'U2 !
” €37 € €3 ENEV
M® = (4.4.10)
. R
€M M M

\ 0 enéev 0 0 /

It is understood that all entries have unknown O(1) coefficients.
Note that My is unchanged. There is a simple reason for this. If we modify our
right-handed couplings by the replacements Mrr — MLrT, Mrr — TT MgraT, where T is

any diagonal matrix, then

M1 = MLRT(TTMRRT)_I(MLRT)T =Myyr. ' (4.4.11)

It is interesting that the observed value of 577% can give the appearance that right-handed
neutrinos receive GUT-scale masses, while theif masses a,ré in fa.ct. much lower.

If the N, — v, entry dominates the mass of v, i.e. if ey > 7, this 4 x 4 matrix
splits approximately into two 2 x 2 matrices, and maximal mixing is preserved. One 2 X 2

matrix describes the pseudo-Dirac state

§

;2
v !
eM ENEV

(4.4.12)
ene'v 0
while v, = v, mixing is described by
2 (7 ary
M € 1 B

The resulting masses and mixings are givén in Table 4.1.
Since € and €' are determined by the charged fermion masses, in the neutrino sector

there are two free parameters, ¢y and M, which describe five important observables: 6,
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2

Miight Mheavy om Ormiz

2 2 3
(1) Heavy states | vene' — egi; vene +eg5p | Jrenvee’  45°

2
? ¢

&l%

. 12 2
(2) Light states | 37

€

Table 4.1: General Theory: the masses, mixings, and splittings of the two sets of neutrinos.

Batm, Om2, m2,,, and m,, the mass of the pseudo-Dirac muon neutrino. However, the
varioué predictions of the theory have varying levels of certainty. Because there are a large
number of order one constants in the original formulation of the theory, we can end up with
a prediction which has a coefﬁcient of a product of some number of these quantities. To
assess the level of certainty, we will include a quantity i, which we term the “stability index”
of the prediction, which is simply Fhe power of unknown order one coeflicients appearing in

the prediction.

Two of the three resulting predictions are the mixing angles
sinfg =~ € [t =4], Oum =45° [t=0]. (4.4.14)

The postdiction of a maximal mixing angle for atmospheric oscillations is an important
consequence of the U(2) theory. The value of € extracted from the charged fermion sector
is 0.004, within an order of magnitude of the central vaiue 05 = 0.037 of the recent BP98
fit to the solar data, and within a factor of 4 of the minimal acceptable value of 0.016
[5]. Such a discrepancy is not a great concern, as we gain a comparable contribution from
the charged lepton matrix.v Furthermore, the prediction of 8¢ involves the fourth power of

unknown order one coefficients, thus ¢ = 4, and is somewhat uncertain.
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The relevant mass splitting for the v, — v, oscillations occuring in the sun is

v?\? ' |
omd) =~ (KI) : | (4.4.15)
While this is not a prediction of the theory, it is intriguing, as has been noticed elsewhere
in other contexts, that if M is taken close to the scale of coupling constant unification,
6m2® ~ 107> eV?, in the right range for either small or large angle MSW oscillations.
The final free parameter ey is fixed by the observed mass splitting for atmospheric

oscillations
| 2 oV 2
dmiy,, = €€ eNp N e envy/omg, (4.4.16)

" giving ey ~ 1078 — the U(1)y symmetry is broken only very weakly.
The final p;ediction is for the mass of the heavy pseudo-Dirac v, N, state:

' M2 0.4 2 . A
my, = €env & —2 =~ 10%%eV — 10%eV, [t =4] (4.4.17)

where the given spread in mass is due to uncertainty in m2,, and dm?. While it is
tempting to interpret this as a good candidate for hot dark matter, we will see later that

KARMEN places stringent limits on the acceptable values of m,,.
4.5 A Variant Theory

A variation on this breaking structure was explored in a particular model (see
the second of [6]), and it is interesting to explore whether this same approach for neutrino
masses can work within that model. In this variation, there is no S field present, and the

RR and LR masses are given by
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00 ¢ 0 0 0O
Mip=] -€ 0 € Mrr=10 0 e} (4.5.18)
0 € 1 0 ¢ 1

generating a light 4 x 4 mass matrix

€2 y? 1v2 e v?
(@ €u T 0 )
2 2
ey 0 €L  ene'v
(4) M M
MW = L , , (4.5.19)
o4 B0
e M

K 0 enév O 0 )
This matrix is problematic, because the 2 x 2 submatrix for the atmospheric neu-

trinos does not contain a splitting term. Of course, a splitting would be generated through

interactions with the other left-handed statés, we estimate .

MO~ 2 L (D 4.5.20
e € (M) ( ne )
14
Consequently our atmospheric splitting is .
52, ~ ()2 4521
matm"“e(M)' ( )

Since we have (2-)? = §m2, this would predict 6m2, . < m2, which is unacceptable. One
M © atmn o]
simple solution is to allow the appearance of the operat.ors
1
(_M‘)2¢a¢bNaNbMGUT (4.5.22)
1
(M)2¢"’¢6NaubH. : (4.5.23)

The inclusion of one or both of these operators in our Lagrangian has the same

effect on our final mass matrix, inducing M,S‘,l) = 523’M3 and yielding the 2 x 2 submatrix



96

2

Miight Mheavy om Omiz

' 2 2 ' 2 y? 23 2.4 0
(1) Heavy states | vene' — €*55r  vene + e 3 | Jpene’ed 45

(2) Light states | (£)2% v IR RCA <

e¢/ M M €

Table 4.2: Without S field: The masses, mixings, and splittings of the two sets of neutrinos.

2

€ % eN€v
(4.5.24)
ene'v 0
describing the pseudo-Dirac state, while v => v, mixing is now described by
v (5 - 45.25
17 . | (4.5.25)
< 1
The resulting masses and mixings are given in table 4.2.
The mixing angles in this variation are predicted to be
6I
sin(fg) =~ = [t =5], Oum = 45° [i = 0] (4.5.26)

'As the pseudo-Dirac muon neutrino is still present, the atmospheric angle is unchanged.
However, the solar angle is changed somewhat. We should note that values for € and €
extracted for a fit of this model are different than for those of the previous model. Using
values from fits in the charged fernﬁon sector, we have ¢ =~ 0.03 and ¢ =~ 5 x 1074 or
€ =~ 2.4 x 1074 (depending on certain signs), yielding 65 ~ O(1.5 x 1072). Given the
number of O(1) parameters involved, this is again quite consistent with the BP98 small-

angle MSW solution.
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The solar splitting scale is unchanged, while the atmospheric splitting is further

surpressed by a factor of e.

dm2,, = eenve®y/om) (4.5.27)
We fit this splitting again with the free parameter ey ~ 1076 — 10~7. The resulting muon
neutrino mass is then

2 -
m, = _OMaym_ ~ 1017V — 103%V  [i = 5] (4.5.28)

€2 6m%

Thus, while the explanations of the solar and atmospheric neutrinos remain, the
neutrino becomes potentially dangerous in its cosmological implications. However, given
“the large stability index of this prediction, there are large uncertainties in the prediction

for its mass.

4.6 KARMEN and LSND

The presence of an additional sterile state makes it possible that a signal would
be seen in short baseline v, — v, oscillations, such as has been reported at LSND {7]. An
estimate of the LSND mixing angle from the neutrino sector gives 66’577% / J_m?,tm, a very
small result. Hence, this mixing originates from the charged lepton sector

Me

OLsnp = o [i=0]. (4.6.29)
m 4

The precise predictions for 1 — 2 mixing angles in the charged sector is an essential feature

of the U(2) flavor symmetry. In the quark sector it is highly successful. In the lepton sector,
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0rsND = \/% is only useful if the neutrino mixing is either predicted or smail, as in this
theory. Recently,v the KARMEN experiment has placed limits on the allowed region for
such oscillations, giving a limit m, < 0.6 eV [8]. While the prediction for m, has a large
stability index in botl_l the general theory as well as the variant theory, because the initial
range for m, .is so high in the variant theory; it is disfavored by this bound.

The general theory is much safer, hc.>wever. As we discuss in the appendix, the

uncertainty due to order one coefficients would allow it to satisfy the KARMEN bound.

Such a result would likely coincide with higher values of ém? and lower values of ngtm.

4.7 Astrophysical and Cosmological Implications

There are three important cosmological implications of our theory.

1. We predict a small, but potentially significant amount of neutrino hot dark matter. The
KARMEN bound limits us to a 0.6 eV neutrino, but because there are two massive states,
it is still witfxin the interesting region for HDM.

2. We predict abundances for light nuclei resulting from four light neutrino species. While
ne;wer data suggest D/H ratios lie in the low end of the range previously thought, and thus
N, < 4, this is still an open question.

3. There may be two further singlet neutrino states, dominantly N, and N;, at or below
the weak scale. Successful nucleosynthesis requires that they decay before the era of nucle- .
osynthesis. Because the mass eigenstates are slightly left-handed, the primary decay mode
will be through the process shown in figure 4.1. This is similar to muon decay, which we

use as a benchmark. For the lighter of the two states, we estimate its lifetime to be
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~ 12 é 2t 2 [l ®
o e mam) (m ) T 4.7.30
Np, ~ . (5 %) N“ 173 ( )

The mass of this particle is

~ 1 (él"ngtm)2

for the general theory and

~ _1_ (‘Slm'tzztm)2

MmN, X = (6m2 )72 [i = 11 - 16] (4.7.32)

in the variant theory. The stability index is approximate because it involves sums of order
one coefficients of different powers. Furthermore, 7 will change depending on which of

(4.5.23) are included.

The more dangerous case, the general theory, then has a mass O(100MeV) and
thus a lifetime 7y, =~ 103s, which is far too long to be acceptable. However, because the
lifetimebhas a fifth power dependence on the mass, and because the prediction for the mass
has index 12, deviations in the order one quantities could vei'y easily push the lifetime
down to an acceptable level. As we explore in the appendix, even conservatively we can
only reasonably estimate the mass of this particle to be in the range (17MeV,40GeV), which
‘means that the lifetime could easily be 1075, without even beginning to push the limits of _

the order one quantities. The details are presented in the appendix.
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Figure 4.1: Principal decay mode for N,,.
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4.8 Models

The theory described in this paper has a low energy effective Lagrangian of (4.2.2)
for charged fermion masses, while the neutrino masses arise from the U(2) x U(1)y effective

Lagrangian

W= %V—N3l3h + %-"2- ( N3¢ala@ +13¢°Nyh + No(S% + A“b)lbh)

2 .

+9](4—1‘g (N3N3M + N3N,¢°M + NaNbS“”M) (4.8.33)

where N3 and N, have U(1)x charges +1, while ¢n has U(1)n charged —1. The field ¢n
gets a vev, breaking U(1)y and establishing an overall scale for these coefficients: SQM’!Z =
en. This effective theory can result from a renormalizable model by integrating out heavy
states, both singlet and doublet under U(2), in the Froggatt-Nielsen mechanism.

This symmetry structure on the right-handed singlet sector is far from unique.
Another possibility is for N, to carry U(1)y charge, while N3 ié neutral under U(1)y. This
has no effect on any of our predictions, since the form of (4.4.10) for the light neutrino mass
matrix is unchanged. The only change is that N3 has a mass of the order of the unification
scale M rather than of order exM.

Another possible symmetry structure for the theory is U(2)y XU (2) v, where U(2)y
acts as usual on all the matter with non-trivial SU(3) x SU(2) x U(1) quantum numbers,
while U(2)y acts only on the ti]ree right-handed neutrinos, with N3 a singlet and N, a
doublet. The matrix Mpg now has the form of (4.4.7), and arises from the renormalizable

interactions
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Wgrr = MN3N3 + N3¢ Ny + NySABNg - (4.8.34)

with vevs for $?2 and ¢? being of order eM and breaking U(2)y — U(1)n. The interactions

for MLR are

Wir = lsNsh + Kli (1a0* Nsh + lspANah + lLR*AN4h) (4.8.35)

where R4 transforms as a (2,2). The vev for R?? is also of order eM, since this is the scale
of breaking of U(2)y x U(2)ny = U(1)y x U(1)n. The breaking scale for U(1), is € M, so
the vev of R!2 takes this value. On the other hand, U(1)x is broken by R?'. We choose

this scale to be smaller by a factor of en, < R%! >~ ene'M, giving

0 € 0
Mir=v| ey € ¢ (4.8.36)
0 €1

Integrating out the heavy states N2 and N3, which now have masses of order the unification
scale, this theory now reproduces (4.4.10) for the mass matrix of the four light neutrinos.

The common features of these models, which are inherent to our scheme, are:

e There is a U(2) symmetry, which acts on the known matter as 13 @ 1,, and is broken

sequentially at scale eM and ¢ M.

e A U(2) symmetry also acts on the three right-handed neutrinos with N3 a singlet and
Nj 2 a doublet. This U(2), together with the symmetry of the Majorana mass, implies

that Ny does not have a Majorana mass and becomes a fourth light neutrino.



103

e There is an addition to the flavor group, beyond the U(2) which acts on ?. At least
part of this additional flavor symmetry is broken at a scale very much less than M,
leading to a small Dirac mass coupling of v, N.. Such a small symmetry breaking

scale could be generated by the logarithmic evolution of a scalar m? term.

4.9 .Conclusions

There éxe several theories with sterile neutrinos [9, 10, 11] some of which have
4 x 4 textures that split into two 2 x 2 matrices. Such theories provide a simple picture
for atmospherié oscillations vié i/,L — vs, and solar oscillations via v, — v, with 6m6z
%43 ~ 107%V? for M ~ qui 7- However, theories of this kind typically do not provide an

understanding for several key points:

Why is the Majorana mass of the singlet state v; small, allowing v, in the low energy

theory?

Why does v; mix with v, rather than with v, or v;?

Why is the v; — v, state pseudo-Dirac, leading to 45° mixing?

How can this extended neutrino sector be combined with the pattern of charged quark

and lepton masses in a complete theory of flavor?

What determines the large number of free parameters in the neutrino sector?

In the theory presented here, all these questions are answered: the key tool is the
U(2) flavor symmetry, motivated several years ago by the charged fermion masses and the

supersymmetric flavor problem. The simplest pattern of U(2) symmetry breaking consistent
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with the charged fermion masses does not allow a Majorana mass for one of the three right-
handed neutrinos. Furthel"more_, it is precisely this right-handed state that has a Dirac
coupling to v, but not to v, or v;, guaranteeing that v, is pseudo-Dirac with a 45° mixing

angle.

Our theory provides a unified description of both charged fermion and neutrino
masses, in terms of just three small symmetry breaking parameters and a set ;.of order unity
coefficients. Some predictions, such as |V/Ve| = \/WT/m: and 0utm = 45° are independent
of the order unity coeflicients and are precise. Othér predictions, such as |V| &~ ms/my and
Op = W involve the ordef unity coefficients and are a,pproximate.v In the appendix
we have introduced the “stability index” whicil atterﬁpﬁs to quantify the uncertainty in su;:h
predictions according to the power of the unknown order unity coefficients appearing in the

- prediction.-

There is one further free parameter of the theory—the overall mass scale M setting
the normalization of the right handed Majorana mass matrix. If M is taken to be the scale

of coupling constant unification dm2 =~ 10~%eV2.

The value of dm?2,,, is not predicted— this is the largest deficiency of the theory. It
can be described by a véry small flavor symmetfy breaking parameter. Once this parameter
is set by the observed value of ém2,,,, it can be used to predict the approximate mass
tange of the pseudo-Dirac v, to be in the range 10° — 10%eV, with significant additional
uncertainty due to order one coefficients. T-his, even with the KARMEN bound, allows
for a neutrino of cosmological interest with Zi my, = 1eV. Such a neutrino could be

seen at short baseline experiments, and may have already been seen by LSND. Searching
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Experiment Mode Signal

Present solar v exp. | v = v, | All data consistent with 2-flavor MSW

SNO v, = vy | Confirm SK measurement of B8. Measure %—CQ #1
Borexino ve — v, | Consistent with small-angle 2-flavor MSW
KAMLAND v = vy | No signal |
LSND,KARMEN | v, = v, | sin?(20) =2 x 102

K2K v, = Ne | v, disappearance. No e appearance

MINOS, ICARUS v, — Ne | v, disappearance. No 7 appearance.

Atmospheric v éxp. vy = Ne | Confirm 2 flavor v, — v, with 45° mixing.

. Table 4.3: Experimental signals.

for v, — Ve, with sin?(20) = 2 x 1072, below the current limit of ém? is an important

experiment for the U(2) theory, since it is this prediction which differentiates U(2) from

several other theories with a light singlet neutrino.

Predictions of the theory for experiments sensitive to neutrino oscillations are -

listed in table 4.3. We expect a small angle MSW solution to the solar neutrino anomaly,

through a v, = v; oscillation. The atmospheric neutrino anomaly is from v, = v;. This

" will be distinguishable from vy, = vy through a number of means: LBL experiments will see

v, disappearance, but no v, or v, appearance. Improved statistics from Super-Kamiokande

will be useful in distinguishing v, = v, and v, = v;, for example via inclusive studies of

multi-ring events [12].
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Chapter 5

Neutrino Mass Anarchy

5.1 Imtroduction

Neutrinos are the most poorly understood among known elementary particles, and
have important consequences in particle and nuclear physics, astrophysics and cosmology.
Special interests are devoted to neutrino oscillations, which, if they exist, imply physics
beyond the standard ‘model of particle physics, in particular neutrino masses. The Su-
perKamiokande data on the angular dependence of the atmospheric neutrino flux provides
strong eyidence for neutrino oscillations, with v,, disappearance via large, near maximal mix-
ing, and Am2,,, ~ 1073 eV?[1]. Several measurements of the solar neutrino flux can also be
interpreted as neutrino oscillations, via v, disappearance[2]. While a variety of Am2® and
mixing angles fit the data, in most cases Am2® is considerably lower than Am2,,,, and even
in the case of the lé.rge angle MSW solution, the data typically require Am2) ~ 0.1Am2,,,[3].
The neutrino mass matrix apparenﬂy has an ordered, hierarchical form for the eigenvalues,

even though it has a structure allowing large mixing angles.

All attempts at explaining atmospheric and solar neutrino fluxes in terms of neu-

trino oscillations have resorted to some form of ordered, highly structured neutrino mass
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matrix[4]. These structures take the fqrm My + eMy + ..., where the zeroth order mass
matrix, My, contains the largest non-zero entries, but has many zero entries, while the first
order correction termé, €M, have their own definite texture, and are regulated in size by
a small parameter ¢. Frequently thé pattern of the zeroth order matrix is governed by a
flavor symmetry, and the hierarchy of mass eigenvalues result from carefully-chosen, small,
symmetry-breaking parameters, such as e. Such schemes are able to account for both a
hierarchical pattefn of eigenvalues, and order unity, sometimes maximal, mixing. Ma,és
matrices have also been proposed where precise numerical ratios of different entries lead to

the desired hierarchy and mixing,.

In this letter we propose an alternative view. This new view selects the large
angle MSW solution of the séla.r neutrino problém, which is preferred by the day to night -
time flux ratio at the 20 level[2]. While the masses and mixings of the charged fermions
certainly imply regulated, hierarchical mass matrices, we find the necessity for an ordered
structure in the neutrino sector to be less obvious. Large mixing angles would result from
a random, structureless matrix, and such large angles could be responsible for solar as well
as atmospheric oscillations. Furthermore, in this case the bhierarchy of Am? need only be
an order of magnitude, much less extreme than for fhe charged fermions. We therefore
propose that the 'underlying theory of nature has dynamics which produces a neutrino mass
matrix which, from the viewpoint of the low energy effective theory, displays enarchy: all
entries are comparable, no pattern or structure is easily discernable, and there are no special
precise ratios between any entries. Certainly the form of this mass matrix is not governed

by approximate flavor symmetries.
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There are four simple arguments aga.ins‘t.suchaa, proposal

e The neutrino sector exhibits a hierarchy with Am2 ~ 107° — 1073eV? for the large

mixing angle solution, while Am2,,, ~ 1073 — 10~2eV?,

e Reactor studies of 7, at the CHOOZ experiment have indicated that mixing of v, in

the 10~3eV? channel is small [5], requiring at least one small angle,

e Even though large mixing would typically be expected from anarchy, mazimal or near

maximal mixing, as preferred by SuperKamiokande data, would be unlikely,

® Ve,V and v, fall into doublets with er, pr, and 71, respectively, whose masses are

extremely hierarchical (m, : m, : m, ~ 1074 : 1071 : 1).

By studying a sample of randomly generated neutrino mass matrices, we demonstrate that
each of these arguments is weak, and that, even when taken together, the possibility of

neutrino mass anarchy still appears quite plausible.

5.2 Analysis

We have performed an analysis of a sample of random neutrino matrices. We
investigated three types of neutrino mass matrices: Majorana, Dirac and seesaw. For the
Majorana type, we considered 3 x 3 symmetric matrices with 6 uncorrelated parameters.
For the Dirac type, we considered 3 x 3 matrices with 9 uncorrelated parameters. .La,stly, for
the seesaw type, we considered matrices of the form M DM};}ng[G], where Mgp is of the
former type and Mp is of the l_atter. We ran one million sample matrices with independentiy
generated elements, each with a uniform distribution in the interval [—1, 1] for each matrix

type: Dirac, Majorana and seesaw.
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To check the robustness of the analysis, we ran smaller sets using a distribution
with the logarithm base ten uniformly distribute(i in the interval [—1/2,1/2] and with
random sign. We further checked 5oth of these distributions but with a phase uniformly
distributgd in [0, 27r]. Introducing a logarithmic distribution and phases did not significantly
affect our results (within a factor of two), and hence we discuss only matrices with a linear
distril.).u.tion and real entries.

We make no claim that our distribution is somehow physical, nor do we make
strong quantitative claims about the confidence intervals of vva,rious parameters. However,
if the basic prejudices against anarchy fail in these simple distributions, we see no reason
to cling to them.

In each case we generated a random neutrino mass matrix, which we dia,gona.lizéd

with a matrix U. We then investigated the following quantities:

"R = Ami,/AmZ;, ‘ (5.2.1)

s¢c = 4|Ue3|2(1-—-|Ue3|2)7 : (5'2'2)

Satm = 4IU”3|2(1—IUM3|2), ‘ (523)
— 2 2

so = AYUe|*|Ual® (5.2.4)

where Am?2, is the smallest splitting and Amgg is the next largest splitting. What ranges
of values for these parameters should we demand from our matrices? We could requiré they
lie within the experimenta.lly preferred region. However, as expériments improve and these
regions contract, the probability tha,tl a random matrix will satisfy this goes to zero. Thus
we are instead interested in mass matrices that satisfy certain gqualitative properties. For

our numerical study we select these properties by the specific cuts
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Dirac no cuts Satm 80 | Satm + S0
no cuts 1,000,000 | 671,701 | 184,128 135,782
sc 145,000 | 97,027 | 66,311 45,810
R 106,771 | 78,303 | 17,538 14,269
sc+ R 12,077 9,067 5,656 4,375
Majorana no cuts Satm 3@ | Satm + So
no cuts 1,000,000 | 709,076 | 200,987 164,198
sc 121,129 | 91,269 | 70,350 56,391
R 200,452 | 149,140 | 37,238 31,708
sc+ R 21,414 | 16,507 | 12,133 10,027
seesaw no cuts Satm S@ | Satm + So
no cuts 1,000,000 | 594,823 | 210,727 133,800
sc ' 186,684 | 101,665 | 86,511 49,787
R 643,394 | 390,043 | 132,649 86,302
sc+ R 115,614 | 64,558 | 53,430 31,547

Table 5.1: Mass matrices satisfying various sets of cuts for the real linear Dirac, Majorana
and seesaw scenarios.

"o R < 1/10 to achieve a large hierarchy in thé Am2.
e s¢ < 0.15 to enforce small v, mixing through this Am?2.
® Sgpm > 0.5 for large atmospheric mixing.
® 5o > 0.5 for large solar mixing.

The results of subjecting our 10® sample matrices, of Dirac, Majorana and seesaw types,
to all possible combinations of these cuts is shown in Table 5.1. First consider making a
single cut. As expected, for all types of matrices, a large percentage (from 18% to 21%)
of the random matrices pass the large mixing angle solar cut, and similarly for the large
mixing angle atmospheric cut (from 59% to 71%). Much more surprising, and contrary
to conventional wisdom, is the relatively large percentage passing the individual cuts for R

(from 10% to 64%) and for s¢ (from 12% to 18%). The distribution for R is shown in Figure
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Figure 5.1: The distribution of Am2/Am?2,,, for Dirac (solid) Majorana (dot-dashed) and
seesaw (dashed) scenarios.

5.1. Naively, one might expeét that this w;)uld peak at R = 1, which is largely the case for
Dirac matrices, although with a wide peak. In the Majorana case there is an appreciable
fraction (~ 20%) that have a splitting R < 1/10, while in the seesaw scenario the majority
of cases (~ 64%) have a splitting R < 1/10 — it is not at all unusual to generate a large
hierarchy.

We can understand this simply: first a splitting of a factor of 10 in the Am?’s
corresponds to only a factor of 3 in the ma;sses themselves if they happen to be hierarchically
arranged. Secondly, in the seesaw scenario, taking the product of three matrices spreads
the Am? distribution over a wide range.

While one would expect random matrices to typically give la.rge atmospheric mix-
ing, is it plausible that they would give neax-maximal mixing, as required by the Su-

perKamiokande data? In Figure 5.2 we show distributions of s,tr,, which actually peak
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Figure 5.2: Plots of the normalized, binned distributions of sg¢, for Dirac, Majorana and
seesaw cases. Contrary to intuition, the distributions actually peak at large sqim.

in the.0.95 <‘ Sgtm < 1.0 bin. We conclude that it is not necessary to impose a precise order
on the mass matrix to achieve this near-maximal mixing. Finally, we consider correlations
between the various cuts. For example, could it be that the cuts on R and s¢ selectively
pass matrices which accidentally have a hiera;réhical structure, such that sqs, and sg are
also small in these cases? From Table 5.1 we see that there is little correlation of sg¢m with
sc or R: the fraction of matrices passing the s, cut is relatively insensitive to whether or
not the s¢ or R cuts have been applied. However, there is an important anticorrelation be-
tween sg and s¢ cuts; for example, in the seesaw case roughly half of the matrices satisfying
the s¢ cut satisfy the sg cut, compared with 20% of the original set. This anticorrelation
is showﬁ in more detail in Figure 5.3, which illustrates how the s¢ cut serves to produce a

peak at large mixing' angle in the sg distribution.
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Figure 5.3: Plots of the normalized, binned distributions of sg for Dirac (a), Majorana (b),
and seesaw (c) cases. The distribution after imposing the s¢ cut (solid) shows a greater
preference for large sg compared with the original distribution (dashed).
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For random matrices we expect the quantity
sc + 8o = 4(|Ueer2|2 + |Ue1Ue3|2 + IUerealz) (5.2.5)

to be large, since otherwise v, would have to be closely aligned with one of the mass
eigenstates. Hence, when we select matrices where s¢ happens to be small, we are selecting

ones where sg is expected to be large.
5.3 Right Handed Flavor Symmetries

~ We have argued that the neutriho mass matrix may fqllow from complete anarchy,
however the electron, muon, tau mass hierarchies imply that the charggd fermion mé.ss
matrix has considerable order and regulz;;'ity. What is the origin for this diﬁ'erencv;e? The only
answer which we find plausible is that.t'he lepton doublets, (1/1_, l)1, appear randomly in mass
operators, while the lepton singlets, g, appear in an orderly way, for example, regulated by
an approximate flavor symmetry. This idea is partiéularly attractive in SU(5) grand unified
theories where only the 10-plets of matter feel the approximate flavor symmetry, explaining
why the mass hierarchy in the up quark sector is rouAghly the square of that in ‘the down

quark and charged lepton sectors. Hence we consider a charged lepton mass matrix of the

form ‘
de 0 O
My=M| 0 X 0 (5.3.6)
0 0 X

where A, r are small flavor symmetry breaking parameters of order the corresponding
Yukawa couplings, while M; is a matrix with randomly generated entries. We generated

one million neutrino mass matrices and one million lepton mass matrices, and provide
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cuts none Satm S® | Satm + So
none 1,000,000 | 537,936 | 221,785 126,914
sc 222,389 | 102,178 | 99,050 50,277
R 643,127 | 345,427 | 142,789 81,511
sc+R 143,713 | 65,875 | 63,988 32,435

Table 5.2: Mass matrices satisfying various sets of cuts for the real linear seesaw scenario,
with additional mixing from the charged lepton sector.

results for the mixing matrix U = UlT Uy, where U, and U; are the unitary transformations
on v and [ which diagonalize the neutrino and che,rged lepton mass matrices. We find
that the additional mixing from the charged leptons dees not substantially alter any of our
conclusions — this is illustrated for the case of seesaw matrices in Table 5.2. The mixing of
cha,rged leptons obviously cannot affect R, but it is surprising that the distributions for the

mixings Sqm,e,c are not substantially changed.

5.4 Conclusions

‘All neutrino mass matrices proposed for atmospheric and solar neutrino oscillations
. have a highly ordered form. In contrast, we have proposed that the mass matrix appears
random, with all entries comparable in size and no precise relations between entries. We
have shown, especially in the case of seesaw matrices, that not only are large mixing angles
for solar and atmospherie oscillations expected, but Am2 ~ 0.1Am?2, , giving an excellent
match to the large angle solar MSW oscillations, as preferred at the 2o level in the day/night
flux fe.tio. In a sample of a million random seesaw matrices, 40% have such mass ratios
and a large atmospheric mixing. Of these, about 10% also have large solar mixing while
having small v, disappearance at reactor experiments. Random neutrino mass matrices

produce a narrow peak in atmospheric oscillations around the observationally preferred
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case of maximal mixing. In contrast to flavor symmetry models, there is no reason to
expect Ues is particularly small, and long baseline experiments which probe Am2, ., such
as K2K and MINOS, will likely see large signals in 7, appearance. If Am2, . is at the lower
edge of the current Superkamiokande limit, this could be seen at a future extreme long

baseline experiment with a muon source. Furthermore, in this scheme Am2@ is large enough

to be probéd at KamLAND, which will measure large 7, disappearance.
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Chapter"6
Stabilizing Large Extra Dimensions

6.1 Introduction

It hés recently been realized that the fundamental scales of gravitational and string
physics can be far beneath ~ 108 GeV, in theories where the Standard Model fields live
on a 3-brane in large-volume extra dimensions {1]. Lowering these fundamental scales close
to the weak scale provides a novel approach to the hierarcﬂy problem, and implies that the

structure of quantum gravity may be experimentally accessible in the near future.

While this prospect is very exciting, two important theoretical issues need to be
addressed for this scenario to be as compelling as the more “standard” picture with high
fundamental scale, where the hierarchy is stabilized by SUSY dynamically broken at scales
far beneath the string scale. First: what generates the large volume of the ex£ra dimensions?
And second: what about the successful picture of logarithmic gauge coupling unification
in the supersymmetric standard model? The success is so striking that we do not wish to

think it is an accident.

One way of generating a large volume for the extra dimensions involves considering

a highly curved bulk. Indeed Randall and Sundrum have proposed a scenario where the
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bulk volume can be exponentially larger than the prope-r size of a single extra dimension
[2]. Goldberger and Wise then showed how such a dimension could be stabilized 3] In
the original proposal of [1], however, the bulk was taken to be vei'y nearly flat. Previous
attempts at stabilizing large dimensions in this framework involved the introduction of large
integer mumbers in the theory, such as large topologicai charges [4, 5] or large numbers
_of branes [5]. In this paper, we instead demonstrate how to stabilize ezponentially large

dimensions in the framework of [1].

The set-up needed to accomplish this meshes nicely with recent discussions of
how the success of logarithmic gauge coupling uniﬁcaﬁion can be maintained with large
~ dimensions and low string scale. In [6, 7, 8, 9, 10] it was argued that logarithmic gauge
coupling unification may be reproduced in theories with (sets of) two large dimensions. If
various lightg fields propagate in effectively two transverse dimensions, then the logarithmic
Green’s functions for these fields can give rise to logarithmic variation of the parameters on
our brane universe; in cases with sufficient supersymmetries, this logarithmic variation can
exactly reproduce the logarithmic running of couplings seemingly far above the (now very
low) string scale. This phenomena is another example of the bulk reproducing the ph);sics
of the désért, this time with quantitative precision. Of course, for the “infrared running”
picture to work after SUSY breaking, we must assu;rle that SUSY is not broken in the bulk
but only directly on branes. This is the analogue of softly breaking SUSY at low energies

in the usual desert picture.

It is interesting that these same ingredients: sets of two transverse dimensions

with SUSY in the bulk, only broken on branes, can also be used to address the issue of
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' large radius stabilization. Indeed, in the SUSY limit, there is no bulk cosmologica,l constant
and there is no potential for the radii; they can be set at any size. The crucial point is that
once SUSY is broken on branes with a characteristic scale A%, locality guarantees that no
bulk cosmological constant is induced, and therefore the effective potential for the radius
moduli does not develop any positive power-law dependence on the volume of the transverse
dimensions. For two transverse dimensions, logarithmic variation of light bulk fields can

then give rise to a logarithmic potential for the size, R, of the extra dimensions:
V(R) ~ A*f(log(RM,)) (6.1.1)

where M, is the fundamental scale of the theory. This can arise, for instance, from the
infrared logarithmic variation of -coupling constants on branes where SUSY is broken or

from inter-brane forces {7, 10, 11]. Since log(R) rather R itself is the natural véria.ble, if the
potential has parameters of O(10), a minimum can result at log(R) ~ 10, thereby generating
an exponentially large radius and providing a genuine solution to the hierarchy problem,
on the same footing as technicolor or dynamical SUSY breaking.

This idea is appealing and general; relying only on sets of two transverse dimen-
sions (for the logarithmic dependence) and supersymmetry in the bulk (to stably guarantee
the absence of a bulk constant which would induce power-law correction; to the effective
potential for the radii). It makes the ?xistence of large extra dimensions seem plausible.
However, the discussions in [7, 10, 11] have only pointed out this possibility on géneral
grounds but have not presented concrete models realizing the idea. In this paper we rem-
edy this situation by presenting an explicit example of a simple theory with two éxtra

dimensions, which stabilizes exponentially largé dimensions. The interaction of branes with
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massless bulk scalar fields induces a logarithmic potential for the area A of the transverse

dimensions of the form

V(A) = —f1 + wilog(AM?2). (6.1.2)

v
 Tog(AMD)

This potential is minimized for an area
AM2 = ' lv? (6.1.3)

- and so only a ratio of v/w ~ 6 is needed to generate an area to generate the ~ (mm)? area
needed to solve the hierarchy problem with M, ~ TeV. There is a single ﬁne—tuhing among
the parameters v,w and f, which are all of order M,, to set the 4D cosmological constant

to zero.

6.2 The Radion Signal

Since the potential for the radii of the extra dimensions vary only logarithmically,
one ﬁlight worry that the mass of the radius modulus about the minimum of the potential
will be too light. In fact, the mass turns out to be just in the millimeter range, and gives
an observable deviation from Newton’s law at sub-millimeter distances.

Consider a 6 dimensional spacetime with metric of the form
ds® = gy (@)dz*dz” + R*(2)§(y)mndy™ dy™, (6.2.4)

.where the geometry of g is taken to be fixed at high energy scales; for example by brane
configurations, as illustrated in the next section. The low energy 4D effective field theory
involves the 4D graviton together with the radion field, R(z), which feels the potential of

eq. (1). After a Weyl rescaling of the metric to obtain canonical kinetic terms, the radion
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is found to have a mass

R2V"(R), A4 Tev?\ 2 _
2] Pl P

Hence, an interesting general cdnsequence of such logarithmic potentials-is that the mass of
the radion is naturally in the millimeter range for supersymmetry breaking and fundamental
- scales A ~ M, ~TeV. This order of magnitude result is important for mm range gravity
- experiments, because thg Weyl rescaling introduces a gravitational strength coupling of
the radion to the Standard Model fields, so that radion exchange modifies the Newtonian
potential to

_GNmme (4 ggmmary (6.2.6)

V(r) =

For a radion which determineé the size of an n dimensional bulk, the coefficient of the

exponeﬁtia,l is 4n/(n + 4), so that an observation of a coefficient corresponding to n = 2
would be a dramaﬁic 'sig_nal of oﬁr mechanism.

It might be argued that, since M, is larger than 50-100 TeV for n = 2 froﬁl

astrophysics and cosmology ([12, 13]), m r will be sufficiently large that the range of the

radion-mediated force will be considerably less than than a mm, mé.king an experimental

discovery extremely difficult. This conclusion is incorrect, for several reasons:

e The astrophysical and cosmological limits are derived from graviton emission and
hence constrain the gravitational scale, which may be somewhat larger than the fun-

damental scale, M,.

e It is the scale of supersymmetry breaking on the branes, A, which determines mpg,
and this may be less than M,, reducing mgr and making the range of the Yukawa

potential laIger".
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e The radion mass may be reduced from the order of magnitude estimate mg ~ A% /Mp,
by powers of log R, depending on the function f which appears in the potential (1),

as occurs in the theory described in the next section.

e Finally, the cosmological and astrophysical limits on the fundamental scale are

unimportant in the case that the bulk contains more than one 2D subspace, but

as discussed in section 4, the radions still have masses ~ mm™1.

6.3 Explicit model

In this section we present a specific effective theory that stabilizes two large extra
dimensions, without relying on input pardmeters ;;vith particularly large (> 10) ratios. The
framework for our model 1s as follows. Supersymmetry in the bulk guarantees a vanishing
bulk cosmc;ldgica,l coﬁstant. Embedded in the 6D spacetime is a set of parallel three-branes
that can be regarded as non-supersymmetric defects. Following closely the example of 4],
the tensions of these three-branes themselves compactify the extra dimensions. We take
the bulk bosonic degrees of freedom to be those of the supergravify multiplet, namely, the
graviton g4p and the anti-self-dual 2-form Aap. The 2-form Asp does not couple to any of
the thréé—branes and can be set to zero in our case. We can also have a set of massless bulk

scalars ¢; contained in hypermultiplets. The relevant part of the Bosonic action is then
S= SBulk + SBrane (6-3-7)

where

| SBulk = /d4:1:d2y\/——G (——2M4R + Z(ad)i)z .+ .. ) (6.3.8)
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is the bulk action and

SBranes = / d'z) V=g (—-f;‘ + 3 La(ta, Pla) + -+ > (6.3.9)

is the action for the branes [14]. Here the f; are the brane tensions and £; are Lagrangians
for fields 1; that may live on the blfa,nes, which can also depend on the value of bulk fields
¢ eya.luated on the brane ¢|,. G is the 6d metric, g; is the induced metric on the i’th bra,ne,
and we have set the bulk cosmological constant to zero.

Note that while Sp,x must be accompanied by all the extra fermionic terms to
have SUSY in the bulk, the brane actions do not have to linearly realize SUSY at all,
a,lthough they may realize SUSY non-linearly. In particular, there need not .be any trace
of superpartners on the brane where the Standard Model fields reside. The only rea.éon we
need SUSY in the bulk is to protect Against the generation of a bulk cosmological constant
Apuik, which would make a cohtribution ~ AprA to the potenﬁal for the area modulus and
spoil our picture with logarithmic potentials.

Our model has three 3-branes, two of which couple to scalars ¢ and ¢'. The dynam-
ics on the brane impose boﬁnda.ry conditions on the bulk scalar fields. In particula,r, imagine
that the the brane defects create brane-localized potentials for ¢, which want ¢ to take on
the value v2 on one brane and v2 on the other. This will lead to a repulsive contribution to
the potential for the area. The same two branes will be taken to have equal and opposite
magnetic charges for the scalar ¢’, setting up a vortex-antivortex configuration for ¢’ which
will lead to an attractive potential. The balance between these contributions .pr'ovides a
specific realization of how competing dependences on log R can lead to an exponentially

large radius without very large or small input parameters.
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[

Figure 6.1: The two transverse dimensions in the presence of a three-brane with tension
f%. The shaded region is excluded, and the two borders of the excluded region are to be
identified.

We begin by reviewing how the brane tensions can compactify the two extra di-.
mensions [14, 15]. Suppose we ignore for the time being the branes’ couplings to bulk

scalars, in which case the relevant terms in the action in the low-energy limit are
S =- / d*z ) v=gifi* - 2M* / d*zd’*yv—GR. (6.3.10)
. i

For the case in which only a single brane is present, the static solution to Einstein’s equations
is

ds? = 0, dz*dz” + Gun (y)dy™dy™, (6.3.11)
where Gy is the 2D Euclidean metric everywhere but at the position of the three-brane,

where it has a conical singularity with deficit angle

f4
6= (6.3.12)

As expected, this is in exact correspondence with the metric around point masses in 2+1
dimensional gravity [15]. As shown in Figﬁre 6.1, the spatial dimensions transverse to the
brane are represented by the Cartesian plane with a wedge of angle & Temoved. Adding a
second bra.né removes a further portion of the Cartesian plane. In fact, if ZIA;JT + 4—’;‘% > 27,
then the excluded region surrounds the allowed portion, as in Figure 6.2. In this case

Einstein’s equations have a static solution that features a compact space with spherical
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Figure 6.2: A compact space can be obtained given three branes whose corresponding deficit
angles ; add up to 4. Identifications to be made are indicated by hash marks. Note that
in contrast to the brane in Figure 6.1, branes 1 and 3 in this figure have tensions larger
than 47 M4, '

topology, provided that a third brane of tension f; = 16xM* — f{ — f3 is placed at the
intersecting lines of exclusion. In general, a set of three-branes has a static solution with

spherical topology if

4
> i = 4m (6.3.13)
i

that is, the deficit angles must add up to 4~.

If a set of branes compactifies the space in this manner, then the 4D effective
theory is given by including in the action of (6.3.10) the massless excitations about the
classical metric. Thus we replace 7, — g, () and allow Gmyn(y) to fluctuate about &,y in
the bulk. The induced metric on a given brane will differ from g, (z) by terms involving the
fields associated with the brane separations, which we temporarily ignore. The curvature

breaks up into two pieces R(Y) and R(?), the Ricci scalars built out of G (z) and Gmn(y),
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respectively. Then, using the Gauss-Bonnet Theorem for spherical topology,
/ d?y/GR® = —8r, (6.3.14)

along with the fact that R® has no y dependence, we can integrate over the extra dimen-

sions to obtain

§=- / d*z\/~3 (Z fE—16mM* +2( / d2y\/§)M4R<4)) : (6.3.15)
. i
In this action it is explicit that adjusting the deficit angles to add up to 4 is equivalent to
tuning the 4D cosmological constant to zero.
To develop our specific model we consider the case of three three-branes on a space
of spherical topology. Then the “shape” of the extra dimensions is fixed by the branés’ deficit

angles, or equivalently, by their tensions. However, the size of the extra dimensions,
A= / d?y VG, (6.3.16)

is completely undetermined. Moreover, the scalar associated with fluctuations of A, the
radion, is massless and mediates phenomenologically unacceptable long-range forces. To
stabilize the volume of the extra dimensions and give the radion a mass, we couple bulk
scalar fields to two of the branes, which, for simplicity, we assume have equal tensions f.
The scalar profiles will generate a potential Vj;(A) that is minimized for a certain value A
of the volume of the compa,ctiﬁed.spa.ce. Adding the scalar action to (6.3.15) yields a total
.potential

V(4) = Vg(A) + > fi —16m M. (6.3.17)
The effective cosmological constant,

Aesy = V(A), (6.3.18)
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Figure 6.3: The boundary conditions on ¢. Idéntiﬁca,tions to be made are indicated by hash
marks. '

can then be made to vanish by a single fine tuning of fundamental parameters. The baék—
reaction on the spatial geometry that ié induced by fhe scalars is discussed below.

We work with two massless bulk scalars, ¢ and ¢', which induce repulsive and
attractive forces, respectively. In treating the scalar fields, we will for simplicity ignore
their back-reaction on the metric and assume that they propagate in the flat background
with conical singularities set up by the branes. It is easy to see that the effect of back-
reaction can be made parametrically small if the scalar energy scales are somewhat smaller
than M,, and none of our conclusions are affected.

Suppose that on branes 1 and 3 of Figure 6.3, ¢ is forced to take on unequal
values v? and v3, respectively. This can for instance be enforced if the non-SUSY brane
defects generate a potential for ¢ on the branes, analogous to what was considered in [3].
Because ¢ is*massless in the bulk, we a.re. free to perforxﬁ a constant field redefinition and
take v? = —v? = 02, We( account for the brane thicknesses by enforcing these values for ¢
to hold along arcs of finite radius r, ~ 1/M,, and not just at individual points. The field
configuration in the bulk is then given by solving Laplace’s equation with these bounda.ry

conditions.
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Figure 6.4: A boundary-value problem that determines ¢. Here e refers to the unit vector
normal to the relevant boundary, and lines of V¢ are shown dashed. The solution for the
full space of Figure 6.3 is given by first evenly reflecting across the bottom horizontal line,
and then performing an odd reflection (i.e.,  — —¢) across the vertical line where ¢ = 0.

Figure 6.5: The simplified boundary-value problem for ¢.

Keeping in mind the identifications to be made between the various edges of the

space in Figure 6.3, the symmetry of the problem. tells us that the field configuration is
fouﬁd by solving the problem depicted in Figure 6.4, and then reflecting that solution
appropriately. For simplicity we consider instead a slightly different problem which, unlike
that shown in Figure 6‘.4, is trivially solved. As indicated in Figure 6.5, we take the boundary
at which ¢ = 0 holds to be an arc of radius R, rather than a straight line, so that the solution
in this region is immediately found to be

— g2 log (R/r)

¢ = log (R/r)’

(6.3.19)

where r measures the distance from the (missing) left vertex of the pie slice. The total
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energy of this configuration is

R (V¢)2 _ ’04
4 / do /T * drr=— = 0010g L (6.3.20)

where 0y = 27w — Zﬁ‘f‘ Thus, ¢ sets up a 1/log R repulsive potential. It is not diﬂiculﬁ
to prove using simple variational arguments that the same conclusion is reached when one
solves the “real” problem involving the triangle rather than the pie slice.

Now suppose that the same two branes that couple to ¢ carry topological charge
under a derivatively coupled field ¢’. That is, under any closed loop containing a brane we
have

/dl V¢ = nbow?, (6.3.21)

where w is a fixed parameter with unit mass dimension and n is an integer. Non-zero charge

n # 0 is only possible if we make the identification
¢ ~ ¢+ Bow?. , (6.3.22)

In order to be able to solve Laplace’s equation on a compact space, the branes must carry
equal and opposite charges, which we také to correspond to n = £1. The configuration
for ¢’ is then found by solving Laplace’s equation with V¢’ = :l:’;’—je” on the branes (the
gradient runs clockwise on one brane and counterclockwise on the other). This sets up the
the vortex-antivortex field configuration for ¢’ shown in Figure 6. For simplicity, in order
to calculate the energy in this configuration we once again work on a pie slice (Figure 6.7)
rather than a triangle, and it is easily proved that this modification does not affect the

essential scaling of the energy with the area. With this simplification the solution is

¢ = w20+ C, (6.3.23)
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Vq)I =—(wr.) é

Figure 6.6: The configuration of ¢’. Each brane carries a topological charge, which generates
an attractive potential.

V- e=0

V(l)' =(wr)e, F .
' Vq)" =0

Figure 6.7: The simplified boundary-value problem for ¢' . Here e, and e are the unit
vectors normal and parallel, respectively, to the relevant boundary.
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where 6 is the angular coordinate and C is an undetermined, irrelevant constant. The

energy of the configuration is then found to be
R AV
4 / d0/ drrg;é)— = Ogwlog(R/r+). (6.3.24)
T

so we have found an attractive potential that will balance the repulsive contribution of

(6.3.20). ;From (6.3.20) and (6.3.24), we see that the full potential is

V(R) = 6o + Bow* log(R/r) + »  fif — 16mM*, (6.3.25)

v
log(R/74)
which is minimized when

R=R=re"v. (6.3.26)

Even a mild ratio v/w ~ 6 yields an exponentially large radius R ~ 10*6r,. The effective

cosmological constant,
Aejs =V(R) =) fi — 16mM* + 20pv*w?, (6.3.27)
i :

can be made to vanish by a single tuning of v, W, and the brane tensions.

Note that we can now see explicitly that the presence of the non-supersymmetric
brane defects can not generate a bulk cosmological constant. The presence of the branes
leads to logarithmic variation for the bulk fields, which does indeed break SUSY and gen-
erate a potential for the area modulus. However, since any constant field configuration
preserves SUSY, the SUSY breaking in the bulk must be prqportional to the gradient of
the bulk scalar fields, which drops as 1/r with distance r away from the branes. Therefore,
it is impossible to induce a cosmological constant, since this would amount to an constant
amount of SUSY breaking throughout the bulk. In fact, a very simple power-counting

argument shows that all corrections to the energy are logarithmic functions of the area.
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Given a specific form for the logarithmic potential (6.3.25), we can work out the

mass of the area modulus, which is

R2Vn( R) ‘ ’04
BUOOMy o MBlogd(R/ry)

(6.3.28)

Interestingly, mp is suppressed by (log(R/7.))?/? compared to the naive estimate M2/Mp;.
Hence even for v ~ M, as large as 100 TeV, the range of the radion-mediated Yukawa

potential is 0.1 mm — accessible to planned experiments.
6.4 Four and Six Extra Dimensions

Since the logarithmic form of the propagator occurs only in two dimensions, one
may worry that the ideas in this paper are only applicable to the case of ‘two large di-
mensions. This is the case most severely constrained by astrc;physical and cosmological
constraints [1, 12, 13}, which demand the 6D Planck scale M, > 50 TeV, seemingly too
large to truly solve the hierarchy problem. One possibility is that the true Planck scale of
the ten dimensional theory could be ~ O(TeV), and thé 6D Planck scale of ~ 50 TeV could
arise if the remaining four dimensions are a reasonable factor O(10) bigger than a (TeV)~1.
But we-don’t have to resort to this option. As pointed out in {7, 10], the presence of two-
dimensional subspaces where massless fields can live is sufficient to generate logarithms.
Take the case of four extra dimensions. Imagine one set of parallel 5-branes filling out the
12345 directions, and another set filling out the 12367 directions. They will intersect on
3-dimensional spaces where 3-branes can live. These 3-branes can act as sources for fields
living on each of the 5-branes, which effectively propagate in two sets of orthogonal 2D

subspaces. Once again, bulk SUSY can guarantee a vanishing “cosmological constant” for
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each of the 2D subspaces. The SUSY breaking at the intersections can set up logarith-
mically varying field configurations on the 5-branes that leads to a potential of the form
V(logAj,logAy) for the areas A;, Az of the 2D subspaces. Minimizing the potential, each
radius can be exponentially large, and the ratio of the radii will also be exponential, but the
value of M, py will require the largest radius to be very much smaller than a mm. It would
be interesting to build an explicit model along these lines.

Even without an explicit model, however, we can see that the scale of the radion
masses is unchanged. The logarithmic potential still gives mp; ~ A2 /Mp; = mm™!, for
A = 1 TeV. After Weyl rescaling, each radion couples with gravitational strength to the

Standard Model .and should show up in the sub-millimeter measurements of gravity.
6.5 Other ideas

There is an alternative way in which theories with two transverse dimensions can
generate effectively exponentially large radii. The logarithmic variation of bulk fields can
force the theory into a strong-coupling region exponentially far away from some branes,
and interesting physics can happen there. This is the bulk analog of the dimensional trans-
mutation of non-Abelian gauge theories, which generate scales exponentially far beneath
the fundamental scale and trigger interesting physics, such as e.g. dynamical supersym-
metry breaking [10]. It is tempting to speculate that such strong-coupling behavior might
effectively compactify the transverse two dimensions. Recently, Cohen and Kaplan have
found an explicit example realizing this idea [16] .‘ They consider a massless scalar field with
non-trivial winding in two transverse dimensions: a global cosmic string. Since the total

energy of the string diverges logarithmically with distance away from the core of the vortex,
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we expect gravity to become strongly coupled at exponentially large distances. Indeed,
Cohen and Kaplan find that the métric develops a singularity at a finite proper distance
from the vortex core, but argue ‘tha,t; the singularity is mild enough to be rendered harm-
less. What they are left with is a non-compact transverse space, with gravity trapped to
an exponentially large area

AM? = eMi/ iz (6.5.29)

where f; is the debay constant of the string. A ratio of M, /fr ~ 2.5 is all thatl is needed
to solve the hierarchy problem in this case. This model is a natural implementation of the
ideas of [1], fo solve the hiera.rchy problem with large dimensions, together with the idea
of trapping éra,vity in non;compact extra dimensions as in [17]. Unlike [2], however, the
buik geometry is not highly curved everywhere, but only near the singularity. Thus, gravity
has essgntially been trapped to a flat “box” of a,fea A in the transverse dimensions, and
the phenomenology of this scenario is essentially the same as that of [1]. An attractive
aspect of this scenario is that, unlike both our proposal in this paper and those of {2, 3], no
modulus needs to be stabilized in order to solve the hierarchy problem. This also points to
a phenomenological difference between our proposal and that of [16]. While both schemes
generate an exponentially la;rge area for two transverse dimensions, there is no light radion

1

mode in [16] whereas we have a light radion with ~mm™! mass.

6.6 Conclusions

In this paper, we have shown how to stabilize exponentially large compact dimen-
sions, providing a true solution to the hierarchy problem along the lines of [1] which is on

the same footing as technicolor and dynamical SUSY breaking. Of course, there are many
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mysteries other than the hierarchy problem, and the conventional picture of beyond the
Standard Model physics given by SUSY and the great desert had a number of successes.
So why do we bother pursuing alternatives? Are we to think that the old successes are just
an accident?

A remarkable feature of theories with large extra dimensions is that the phenomena
that used to be understood inside the energy desert can also be interpreted as arising from
the space in the extra dimensions. Certainly all the qualitative successes of the old desert,
such as explaining neutrino masses and proton stability, can be exactly reproduced with the
help of the bulk [1, 19, 20, 18], in such a way that e.g. the success of the see-saw mechanism
in explaining the scale of neutrino masses is not an accident. As we have mentioned, there
' .is even hope that the one quantitative triumph of the supersymmetric desert, logarithmic
gauge coupling unification, can be éxactly reproduced so that the old success is again
not accidental. We find it encouraging that it is precisely the same sorts of models—with '
two dimensional subspaces, SUSY in the bulk broken only on branes- which allows us to
generate exponentially large dimensions. Hopefully, in the next decade experiment will tell

us whether any of these ideas are relevant to describing the real world.
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Chapter 7

TeV Theories of Flavor and Large
Extra Dimensions

7.1 Introduction

The extreme wéakness of gravity is usually attributed to the fundamental mass
scale of grayity being very muéh larger than that of the strong and electroweak interactions.
The standard model provides no understanding of how this enormous difference in. scales is
stabilized against radiative corrections. Despite this gaugé hierarchy problem, the need for
extraordinarily large physicai mass scales has been accepted as a,__centra,l feature in theories
of physics. beyond the standard model. The unification of the gauge coupling constants
at 10'® GeV strengthens this view. Furthermore, the absence of flavor and CP violating
phenomena, beyond that explained by the weak interactions, has made it all but impossible
to construct theories of flavor at accessible energies, and suggests that the fundamental v

mass scale for flavor physics is very far above the TeV scale.

Over the last two decades, the usual approach to addressing the gauge hierarchy
problem has been to modify particle physics between the weak and Planck scales. However,

there is another possibility: gravity can be modified at and beneath the TeV scale, as was
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realized in [1, 2, 3, 4]. In this scenario, the fundamental mass scale of gravity can be brought
far beneath the conventional Planck scale, perhaps as low as a TeV, in the presence of sub-
millimeter sized new spatial dimensions serving to dilute the strength of gravity at long
distances. These dimensions have not been detected since the Standard Mod(;l fields are
localized on a three-dimensional wall, or “3-brane”, in the higher dimensional space. Such
a scenario can naturally be accommodated in string theory [2], where the wall on which the

SM fields live can be a D-brane.

Remarkably, despite the profoﬁnd modifications of physics béth at sub-millimeter
and TeV scales, this scenario is not excluded by any known la,b; astrophysical or cosmological
constraints [3]. This realization opens up the possibility that there may be a number
of experimentally viable approaches to addressing the hierarchy f)roblem which invol've
the basic ingredients of modifying gravity at or beneath the TeV scale, and localizing
matter fields to branes in extra dimensions. An interesting modiﬁcatioﬁ of gravity has been
proposed recently [5] where the gravitational metric describing the 4 usual coordiﬁates of
spacetime depends on the location in the extra dimensions. Such metrics result from solving
Einstein’s equations in the presence of brané configurations, and lead to spatial localization
of the graviton zero mode in the extra dimensions. Various schemes for solving the hierarchy
problem have been based on this [5, 6, 7, 8]. All these schemes, and the original scheme
with large extra dimensions, share a common feature: we live on a 3-brane located in the
extra dimensions in which gravity propagates. From the viewpoint of our 3-brane, the
_ fundamental mass scale is the TeV scale, and this is the scale at which quantum gravity

gets strong.
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Lowering the fundamental cutoff close to the TeV scale obliterates the usual ultra-
violet desert in energy scales. On the theofetica.l side, this seems to destroy the attractive
picture of gauge coupling unification. More pressingly, there are in principle dangerous
effects from higher dimension opérators now only suppressed by the TeV scale giving e.g.

disastrously large rates for proton decay.

HoWever, it has been realized that the space in the extra dimensions replaces the
old desert as the new arena in which such issues can be addressed. For iﬁstance, the old
picture of logarithmic gauge coupling unification close to the Planck scale may be mimicked
by the logarithmic variation of classical fields in sets of two large dimensions [9]. * Further-
more, the difficulties associated with higher-dimensional operators can also find a natural
resolution using higher—dimensic;nal locality. Indeed intrinsically higher-dimensional ways
~ of suppressing proton decay were proposed in 3, 1, 11]. t After proton decay, the moét seri-
ous issue is that of ﬂa,vor'—changing neutral currents. Dimensional analysis suggests that the
flavor scale should be above 10‘4 TeV from the K;—Kg mass difference, and greater than
10° TeV from CP mixing in the neutral kaons. While this naive estimate can be avoided,
it has proved extraordinarily hard to construct theories at the TeV scale which provide an
explanation for the small flavor parameters. It is natural to ask whether extra dimensions
offer any new possibilities fo; evading these problems. In [13], a higher-dimensional mech-

anism was proposed for generating the fermion mass hierarchy, and preliminary arguments

were given to suggest that the FCNC problem could also be avoided. It is our purpose in

* Another approach to gauge coupling unification bases on power-law running of higher-dimensional gauge
_couplings has been discussed in [10].

In a different context, higher-dimensional locality has been used to ameliorate the SUSY flavor problem
in anomaly-mediated models [12].
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this paper to exten(i and generalize these ideas to realistic and elegant theories of flavor at
the TeV scale which are safe from FCNC effects. As we will see, it is the physics of extra
dimensions that allows us to naturally bring flavor physics down to the TeV scale.

In this paper we therefore study effective theories of flavor with a low fundamental
mass scale A. What do we mean by “effective theories of flavor”? At scale A there is a
fundamental theory, presumably string theory, which has some low energy effective theory.
It is conceivable that this is just the standard model; with entries in the Yukawa matrices
somehow set to the required hierarchical_ values, and with all higher dimensional operators |
absent. We consider this unlikely, bu\t, since we do not know the low energy limit of string
theory, we must make some assumptions about the form of the low energy effective theory.

We assume that the effective theory beneath A is based on some symmetry group

G and has an effective Lagré,ngian
C; PO\ )
Les=) 7m50F > (X) 50 +.. (7.L.1)
T

where 7 runs over all G invariant operators, OF, p labels the dimensioﬁ of the operator
and ¢; are unknown dimensionless couplings of order ﬁnity. | An example of an operator
which leads to a small Yukawa coupling for the fermion f to the Higgs H is shown. This
assumption implies that the small dimensionless parameters of flavor physics must arise
spontaneously from () /A, where ¢ is a field of the low energy theory. We call ¢ a flavon
field: the effective theory must explain why it has a vev small compared to the fundamental
scale. In an effective theory of flavor, given the symmetry group and the field content, and
in extra dimensions the brane configuration, flavor can be understood in the low energy

theory itself.
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In section 2 we discuss several difficulties encountered in building theories of flavor
at the TeV scale in 4 dimensions. Higher dimension operators lead to flavor-changing and
CP violating effects which are hard to tame, even with a flavor symmetry. An Abelian
symmetry cannot prevent enormous K K mixing, and a non-Abelian symmetry results in -
disastrous flavor-changing (pseudo-) Goldstone bosons. Even the maximal flavor symmetry,
rU(3)5, is not quite sufficient to protect against large electric dipole moments for the electron
and neutron. Finally, the flavon quanta are themselves very light, and the exchange of these

particles in the low energy theory also generates disastrous four fermion operators. These

difficulties are illustrated with a U(2) flavor symmetry group.

In section 2.6 we discuss .the minimal U(3)® flavor structure in 4 difnensions, in
which the three Yukawa matrices are each promoted to a single flavon field. This structure
has been ﬁsed to argue that flavor physics can occ‘ur at a low scale [14]. We show that
CP must also be spontaneously broken for the fundamental scale to bé under 10 TeV..
However, as it stands, this minimal U(3)° structure is not an effective theory of flavor. The
flavon fields contain a hierarchy of vevs which are simply imposed by hand and not derived
from the low energy effective theory. This could be remedied by' introducing a hierarchy
of symr;;etry breakings at a sequence of scales beneath A, as proposed by Froggatt and
Nielson [15]. However, this would produce flavons at each of these scales, and some would
be very light indeed, and their exchange would induce disastrous flavor and CP violating
interactions. This flavon gxchange problem appears generic to effective theories of flavor

with low A in 4d.

With extra dimensions, there is a new possible origin for the small flavor param-
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eters: symmetries which are broken strongly on some source brane may be only weakly
broken on our brane because the source brane is distant from us [13]. This idea is explored
in section 3. It is most easily implemented by making the flavon field, ¢, a bulk field, which
is coupled to a source on the distant source brane so that it has a small vev on our brane.
The obstacles to constructing effective theories of flavor encountered in 4d are immediately
‘removed: there is now an origin for the small parameters in the flavon vev — we have a real
theory for the small parameters — and yet this is done without introducing light flavons,
solving the flavon exchange problem. Furthermore, with order unity breaking of the discrete
flavor group on the distant branes, the bseudo—Goldstone masses can be raised to the TeV
scale.. ¥

The origin of this suécess is to understand flavor from a hierarchy of distances in the
extra dimensions, and not from a hieré,rchy of mass scales in our 4d woﬂd. In section 3 we
also discuss another phenomenon which is generic in theories of flavor in extra dimensions
when the bulk flavon field possesses non-linear interactions. This means that the flavor
breaking felt on our brane is sensitive to the value of the flavon field in the bulk, not just to
its value on our brane. The “sniffing” of flavor breaking in the bulk can lead to interesting
phenomena. For example, in section 6, we study a U(2)° theory, which incorporates features

of the U(2) 4d theory, and in which sniffing plays a crucial role in symmetry breaking.

In section 4 we construct a complete realistic theory of flavor in extra dimensions
with A in the region of 5 — 10 TeV. The flavor group is maximal, U(3)®> x CP, and the

minimal set of flavons propagate in the bulk, taking classical values which result from shining

*An alternative way to make the pseudo-Goldstones massive is to gauge the flavor symmetry in the bulk
[16]. Although there are horizontal gauge bosons, they are less dangerous than usual since they propagate
in the bulk. :
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from just three source branes. Each source brane breaks a discrete subgroup of each U(3)

using only triplet vevs, and the three source branes may be identical to each other.

In section 5 we consider a particularly simple brane configuration for realizing this
U(3)® theory: our 3-brane and the three source 3-branes are located on a 4-brane, so that
shining'occurs in 1 dimension. This makes the calculation of the Yukawa matrix, and the

additional flavor changing effects from the bulk, remarkably simple.

In section 6 we study the pqssibility of a smaller non-Abelian flavor symmetry,
and introduce a variety of bulk flavons in a way motivated by the observed quark spectrum.
This theory illustrates some of the possibilities opened up for flavor physics in extra dimen-
sions. For example, a néw mechanism foy suppressing the neutron electric dipole moment
is proposed.

Predictive theories of fermion masses can result if the source branes have a sym-
metrical geometrical configuration, as would be expected in a dynamical theory of brane
stabilization. In section 7 we study theories in which the 9 quark masses and mixing angles
are given quite successfully in terms of just 5 free parameters. These theories are inher-
ently extra-dimensional, with the precise predictions reflecting the geometry of the brane

configuration, and the location of our three-brane.

7.2 Challenges to a low flavor scale

In this section we summarize the major challenges to lowering the scale of flavor
physics close to the TeV scale in theories with four spacetime dimensions. The difficulties

are mostly well-known (see e.g. [17]), but it is useful to have them collected in one place.
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Process 0 ‘Bound on A (TeV)

€K (ds®)(3d°) 10°
(sa+#d)* 10%
Amg (ds®)(3d¢) 10*
(sotd)* 10°

Amp | Analogous to above 10%

” % 102

Amp | Analogous to above 5 x 10°

» 5 x 102

Table 7.1: Bounds on A from AF = 2 processes.

7.2.1 Dimensional analysis

The most serious obstacle to lowering the flavor scale A comes from flavor-changing
neutral currents, most severely ﬁom the kaon system. With the coefficients ¢; in eqn..(7.1.1)
taken to be of unit magnitude with large phases, the bounds on A coming from the operators
contributing to AF =2 processes (ex and Amg, Amp, Amp) are presented in Table 7.1.
The bounds on A from the left-right operators for Amg, Amp are enh@nced by a factor of
~ 3 due to the QCD enhancement in running from A down to the hadronic scale. There are |

also bounds on A, far above the TeV scale, coming from AF = 1 processes such as y — ey

and K; — pe.

7.2.2 TImplications for model-building

While this may suggest that the scale of flavor should be above ~ 10* — 10° TeV,
it is also possible that whatever is responsible for suppressing the Yukawa couplings of the
light generations also adequately suppresses the flavor-changing operators. »For instance,
if a weakly broken flavor symmetry G is responsible for the fermion mass hierarchy, the

same G could suppress the dangerous operators.
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. It is easy to see that even this idea fails for generic flavor syn}metries. The reason
is that the most dangerous effects arise not directly from operators that violate Gp, but
rather from G invariant operators which violate flavor When rotated into the mass basis.
Suppose for instance that Gp is Abelian with different charges for the first and second

generations. Then, the flavor symmetry allows the higher dimension operators
a = = b = =
F(QlDf)(lecl) + K‘Z‘(szg)(Qchz) (7.2.2)

with a,b ~ O(1) whereas operators of the form (Q2D°)( 1D° ) will have suppressed co-
- efficients. Nevertheless, when we rotate the fields to go to the mass eigenstate basis, we
generate an operator

~ e h (QzDC)(QlDCz) (7.2.3)

where we have assumed that the Cabblbo angle dominantly comes from the down sector.
Note that ﬁﬁless a = b to high accuracy, this still forces A > 10% — 10* TeV. Having the
Cabbibo angle come dominantly from the up sector helps, but still requires A > 10% TeV.
The only Way out is for .a = b, however an Abelian flavor symmetry is not enough to enforce
equality. As claimed, we see that the central cha.llenge. is to ensure that G invariant
operators remain harmless when rotated to the mass eigenstate basis, and this requires Gr -
to be n;;l-Abelian. If we ignored this issue, in other words if we assuﬁe that for some reason
these invariant higher-dimensions operators are absent or have their coefficients magically
tuned to equality, then even Abelian symmetries are enough to adequately suppress FCNC
effects from “directly” flavor-violating operators [18]. For instance, for any Abelian flavor

symmetry we expect to have the opera.tor

(s 9c)2

(Q2D5)(Q1D%), ' (7.2.4)



152

and even assuming maximal phase this requires A > 7TeV if we take m at the lower end
of its range, ~ 90 MeV, as is currently favored from the lattice [19]. Notice, however, that
in a two-Higgs doublet theory this bound turns into A > 7tan 8 TeV, so we can not tolerate
large tan S.

In the SM, such higher dimension operators are generated by integrating out W's
at the weak scale, but enormous FCNC'’s are not génera,ted. This is because the SM gauge in-
teractions respect the U(3)° flavor symmetry acting separat‘ely on each of the (Q,U, D, L, E)
fields, explicitly broken only by the Yukawa mé,trices. In the U(3)% symmetric limit, all the
operators. are generated automatically with equal coefficients; this maximal flavor symmetry
is strong enough to ensure that flavor symmetﬁc operators are harmless when rotated to
the mass basis. It is then na.fural to explore the possibility that the true flavor symmetry
is thé maximal one Gr = U(3)%, and we will consider this possibility both in the context
of four dimensions and in extra dimensions. We find that while it is difficult to believe in
a real theory based on U(3)® in 4D, it is easy to construct elegant theories based on U(3)°
in extra dimensions.

However, there is a strong constraint, even on theories based on a U(3)° flavor
symmetry, comiﬁg from electric dipole moments of the electron and neutron. Any flavor

symmetry would allow an operator of the form e.g.

ei‘PAd
Sz (QuH)o*" Dy, (7.2.5)
and if the phase ¢ is O(1), this requires A > 40 TeV from the neutron edm [21]. A similar
operator in the lepton sector gives A > 100 TeV from the electron edm. While it may be

possible to lower A below the 10* — 10° TeV barrier by imposing powerful enough flavor



153

symmetries, we cannot lower it past 40 TeV without making further assumptions about
'CP violation. We must assume that CP is primordially a good symmetry, and is broken
by the same fields breaking Gp. This gives a hope that the phases in the mass and edm
operators are the same and therefore in the mass eigenstate basis there is no phase in the

edm operator.

7.2.3 Flavor-changihg goldstone bosons

We have argued that the flavor group, Gp, cannot be Abelian: controlling fla-
vor changing effects from higher dimension operators points to a large non-Abelian flavor
synimetry group. If G is continuous the spontaneous breaking produces familons — flavor-
changing Goldstone bosons — leading to the very stringent bound A > .1012 GeV. Gauging
the flavor symmetry allows the familons to be eaten, but the weakness .of the breaking
then tells us that there will be horizontal gauge bosons with masses much smaller than the
fundamental scale, whose exchange leads to flavor changing problems. The only option is
to have GF be a large, discrete, non-Abelian symmetry. iHowever, even this case typically
is excluded by the accidental occurence of pseudo-Goldstone bosons. At the renormalizable
level, the potential for the flavon fields only contains a few G invariant interactions, and
this typically gives an accidental continuous symmetry, réintroducing Goldstone bosons.
Higher order operatdrs that respect only the discrete symmetry will give masses to these
pseudos which are suppressed by ratios of flavon VEVSs to the fundamental scale. Moreover,
these ratios will be raised to high powers, given the large size of the discrete group, and
we are thus left with extremely light pseudo-goldstone bosons that can be produced, for

instance, in K decays.
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7.2.4 The flavon exchange problem

In the low energy effective theory, beneath the fundamental scale A, the Yukawa

couplings are generated by operators of the form
~ (2)" 55 | |
c (A) FfeH (7.2.6)

~ If we set all but one of the ¢’s and the Higgs to its vev, we have an effective coupling to ¢

n—1 . '
((—?) %I—)ffctp ~ %fif;‘/’ (7.2.7)

Tree-level flavon exchange then generically generates ﬂavor-changing 4-fermion operators
that are suppressed only by the flavon mass and not by the scale A. Unless the flavon
potentials are fine-tuned, we expect that the flavon masses m, are of the same magnitude
as the vev (p), which must be sniallef than A in order to produce small Yukawa couplings.
Using the same interz;ctions which generate the Yukawa couplings, tree-level flavon exchange
can generate dangerous 4-fermion operators. Of course, if the flavon masses dominantly
respect the flavor symmetry, the induced operators will be flavor-symmetric, apd if the
ﬂavor. symmetry is powerful enough these operators may be harmless. However, since
the flavon vevs themselves break the flavor symmetry at a scale ~ (p) ~ m,,, we expect
generically that the flavon masses will have O(1) flavor breaking. The generated 4-fermi
operators are clearly most dangerous if the light generation Yukawa couplings are generated
by a single flavon coupling. For instance, suppose that the 12 element of the down mass
matrix is produced by the vev of a flavon (5. then, tree-level flavon exhange can induce
AS = 2 operators

1 .
Aoy Q2D (QLDZH f (7.2.8)
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which forces A back above ~ 10% — 10 TeV from Amg and ek.

7.2.5 An example: Gr = U(2)

There is a very simple theory, with Gr = U(2) [20], which gives highly successful
quark mass matrices, and alleviates the FCNC problem in supesymmetric theories. How-
ever, thls theory has been studied for the case of very large A — what happens when A is
reduced towards the TeV scale?

We study just the two light generations, which transform as U (2) doublets ¢,
where a = 1,2. The ﬂa&ons are in a doublet ¢, and an antisymmetric tensor Azp. The

structure of the Yukawa matrices follows from

Ly e ~ h19appp®P H + ho Ay H. (7.2.9)

. 0
Whatever triggers a vev for ¢ and A, we can always choose a basis so that ¢ « and
NG
- Agp ox € €gp, yielding the interesting structure '
0 ¢
A~ . : (7.2.10)
—€ €

While placing the first two generations in U(2) doublets goes a long way in erasing
da,ngeroﬁs flavor-changing effects, there are higher dimension U(2) invariant operators, in

particular

1 o =
_Obad = FQaDEDC“Q", (7-2-11)

‘which give disastrously large contributions to Amg and ek, forcing Mr > 10° TeV. This
suggests that more complex models are needed with more than one U(2) factor. Before

discussing such possibilities, however, let us proceed by assuming that for some reason this
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dangerous higher-dimensional operator is not present in the théory §. We now show that,
even making this assumption, a 4d U(2) theory still requires A > 10 TeV.

The difficulty for the 4d theory is that there are physical states lighter than Mp
charged under flavor, the flavons themselves. As an illustration, suppose that we generate

vevs for ¢ and A via independent mexican-hat potentials
V(p, A) ~ lo*o — P’ + |A*A - &%, (7.2.12)

Of course, most disastrously, we get goldstone modes from the breaking of the global U(2),
and K — 7w+ familon would force all the scales above ~ 10'2 GeV. We should really be
considering a large discrete subgroup of U(2), and there will be other terms in the potential
that can lift the familon masses. Even if this is done, however, we are still left with light

flavons of mass ~ p,a. The tree-exchange of A in particular generates

H*H(e®*Q,Dg)(e;; QDY)

2
|hal A2q2 ’

(7.2.13)

which contains the dangeroué (Q1D§)§2ﬁ§ operator. Note tﬁat the mass of A is not
U(2) violating, and so we have generated a U(2) invariant operator which is nevertheless
dangerous. The éoefﬁcient of the operator is real so there is no contribution to ex, but there
is a strong constraint from Amg: to produce the small 12 entries of the Yukawa matrices

we need

% ~ AgBe, (7.2.14)

leading to A > 10% TeV.

$In a Froggatt-Nielsen theory, for instance, as long as the only coupling between SM fields and the heavy
Froggatt-Nielsen fields involve flavons, the coefficient of such an operator can be suppressed by many loop
factors. ' '
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7.2.6 Minimal U(3)° in 4D

As already mentioned, the largest symmetry group of the standard model La-
grangian in the limit of vanishing Yukawa couplings is U(3)g x U(3)ye x U(3)pe X U(3)y, %
U(3) ge. Imposing U(3)® on the underlying theory therefore gives the strongest possible
symmetry suppression of flavor violating processes in the effective vtheory. In the simplest
realization of U(3)5 (which we illustrate for the quark sector alone), thé symmetry is broken
by the VEVs of a single x,, and a single x4, transforming as (3 ,3) under U(3)q x U(3)ye and
U(3)g x U(3)pe, respectively. The effective Lagrangian has the form of equation (7.1.1),
where the flavor and gauge invariant O are constructed from Xy, X4, and standard model’

fields. Fermion masses, for example, come from the operators
1 ~ 1
KquUcH and KQdecH. _ (7.2.15)

Having too low a flavor scale A leads to conflict with experiment. Strong bounds

come from flavor conserving operators such as .

|H'D, HJ? and (H'D,H)Qy*Q, - (7.2.16)

1

which give anomalous contributions to the p parameter and to fermion couplings to» the Z
boson, and require A > 6 and 7 TeV, respectively Y. Other dimension 6 operators that lead
to similar precision electroweak limits are listed in [24]. Atomic parity violation experiments
and direct searches at LEPII for 4-lepton couplings pléce only slightly milder bounds of A >
3 TeV.

Provided these requirements due to flavor conserving phenomena are met, oper-

ators that arise due to flavor breaking are relatively safe. For example, it is impossible

THere and below, we set the relevant ¢; = 1 to obtain bounds on A.
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to construct higher dimensional operators that induce K — K mixing using only the VEV
of x4, because x4 is diagonal in the down quark mass basisll. One must instead consider

operators that involve x,,, such as

: t
c Y- -
P(QE“,XX);U Q)% (7.2.17)
which in the mass basis contains
C Pauyt 2 2
22 Do*VerpruVeruD)*, (7.2.18)

where Xy = Diag(A2, A2, \2). This gives the AS = 2 piece
c . - .
FA#(KQdWS)z(dE"s)2, » (7.2.19)

which leads tb bounds frdm Ampg and eg of A > .5 and 5 TeV, provided the phase of
c(V5Vis)? is of ordgr one. AS= 1 processes give weaker bqunds. _

As mentioned in section 2.2, the most stringent bound on A arises because, a
priori, there is no reason to expect any relations between the phases of the ¢; that appear

in equation (7.1.1). The Yukawa interaction

Q%DCH (7.2.20)

and the electric dipole moment operator

1

pFu,Q’%aﬂ"DCH o (7.2.21)

can simultaneously be made real and diagonal. However, since these operators’ coefficients

have independent phases, we should expect that the coefficient in front of the EDM operator

IThis is not exactly true, as equation (7.2.15) gives only the leading order pieces in the Yukawa in-
teractions, and leaves out operators like QxuxlixsD°H, for instance. However, in spite of the large top
Yukawa coupling, we find that these additional contributions are not dangerous, and we omit them from our
discussion.
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will be complex in the mass basis, énd generically, we get a contribution to the neutron
EDM that is too large unless A > 40 TeV. To evade this bound we must require that CP is
a symmetry of the underlying theory, broken spontaneously by x vevs. Because the same
flavon, x4, gives rise to both the Yukawa interaction and the EDM operator, spontaneous
Cp viq}ation guarantees that there is no cont;ibution to the ﬁeutron EDM at leading order,
and th;a bound on A disappears**.

Provided that the scale A is larger than roughly 7 TeV, and that CP is broken
spontaneously, minimal U(3)® sufficiently suppresses all danggrdus operators £hat arise in
a spurion analysis. Ideally, though, a flavor symmetry should do more than simply control
higher dimensional operators; it should also accomodate a simple understanding of fermion
mass hierarchies and mixing anglés. Unfortunately, if we insist on a low flavor scale, ad-
dressing masses and mixings in the context of U(3)% becomes problematic. One might
attempt to éxpla,in mass hierarchies by introduting a fe\(v‘ sets of x’s that acquire VEVs at
very different scales. However, the U(3)5 mechanism for suppfessing dangerous operators
requires that only a single x4 and a single x,, exist. If instead there were, say, two of each,
then a combination

a1xg + 02X3 | (7.2.22)
would appear in the down quark Yukawa interaction, while a different combination

bix; + bax2 | (7.2.23)

would appear in the down quark EDM operator. There is no generic reason for the second

combination to be real in the basis that make makes the first combination real and diagonal

**More precisely, after taking into account higher order contributions to both Yukawa and EDM interac-
tions, the bound is reduced to A > 500 GeV.
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(although it is reasonable to assume that corresponding entries of the two combinations are
of the same order of magnitude), so the EDM bound A > 40 TeV returns. Similarly, the

operator
% (Qerx} + c2x3)D°) (QUfrxh + fax3) DY)’ (7.2.24)

leads to a stringent bound, A >7 TeV,b coming from the CP violating parameter ex. Thus
we are led to work with only a siﬁgle set of x’s, whose hierarchical VEVs, we might imagine,
arise due to a sequential bréaking of the flavor group at widely separated scales. But by
adopting this view we encounter the flavon exchange problem problem of section 2.4: one
expects the masses of the various flavons that compose the x’s to be of the same ordgr of
magnitude as their VEVs, and thus the masses of the lightest flavons to be much smaller
than A. Unless A is quite large, these light flavons mediate flavor changing and CP violating

processes at unacceptable levels.

7.3 Small parameters from extra dimensions

What is the origin of the small dimensionless flavor parameters of the standard
model? All attempts at understanding these numbers have been based on two ideas. One
idea is that thesé parameters vanish at tree level and are generated radiatively, and that the
loop factor is small. In a perturbative theory, with coupling parameters of order unity, the
loop factor is of order 1/167w2. The second idea is that the small fermion mass ratios and
mixing angles arise as a ratio of mass scales of the theory, presumably generated dynamically.
Such is the situation in Froggatt-Nielsen type theories and in extended technicolor models.

In theories with extra dimensions, however, another attractive possibility arises.

Suppose there are flavor symmetries that are primordially exact on our brane, but which
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are strongly broken on a distant brane. If bulk fields charged under these symmetries are
present, this symmetry breaking is “shined” from the distant branes {13], and there is a
new origin for the small parameters, namely, the large volume in the extra dimensions.
The fermion mass ratios and mixing angles are small not because of small breaking on the
distant 'bra;nes, but rather due to the flavor breaking messenger’s propagation over la,rgé
distances across the bulk. Fundamentally, the origin is aga.in one of a ratio of mass scales.
However, these are set by the distances in the brane conﬁgﬁation, and result in completely

new physics possibilities different from other scenarios.

Effects of this shining can be grouped into two categories: spurion effects arising
from the free classical theory, and classical and quantum “sniffing” effects, arising from

nonlinearities in the Lagrangian.

7.3.1 Free, classical shining

The basic shining effect can be understood as the 6lassi(;al, free propagation of
the flavon field through the bulk. From the viewpoint of physics on our brane, the flavor
breaking is at this level equivalent to classiéa,l spurion effects. We assume that there is
some flavor symmetry group Gjr, which acts on the matter fields Qi,Uj, Dy, Ly, and E,,
where {1, j, k, m, n} specify the representations under which the fields transform. We further
assume that G is broken at order one on some distant brane by a source Jit. If J couples

to some bulk field, then that field can mediate the flavor symmetry breaking to our wall.

tt1n what follows, we have taken the dimensionality of J to be that of a scalar field living on the symmetry
breaking brane. Later, for simplicity, we will set J=1.
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For example, suppose the Lagrangian is H

Kl Kl
LD / d*z dyﬁ‘dyﬁ%&"(yl —y0) + / diz dymtn—X___ I = LB HO™ " (y), (7.3.25)
M* 2 M*

where the symmetry is broken on a (3+m)-brane at location yg in the extra dimensions, and
where M, is the fundamental scale . Since the source brane 1s an exfensive object, it acts
as a point source for a Yukawa potential in n dimensions. This is completely analagous to
a charged plate in 3 dimensions being described as a point source in 1 dimension. Knox;ving
this, it is simple to write down what the profile of the y field is as a function of y (neglecting
nonlinear interactions),
x = TA(my;) = —gm—— ()5 Koca (mi) (7.3.26)
M, % (27)% lyl ?
where |y| is the distance from the séurcé brane to the point in queétion, K, is the modified

Bessel function, and n is the codimension of the source of X in the space in which x

propagates. For m,|y| <« 1, this takes the asymptotic form

x~ 20 log(mylyl)  (n=2) (1327)

Y
JT(%5%)

~ n R4
Az M, ? |y|m2

(n>2) (7.3.28)

and for m,|y| > 1,

n—3 )
_ Jm.Z e~ ™xll
X R X (7.3.29)
2(2m)* M, 2 |yl 2
In this example, the lepton Yukawa matrix will be
A = 1 mn : (7.3.30)
vT ey X . : o
* *

HHere we have allowed that x transform as a reducible uiultiplet under Gr for the sake of generality. In
an actual model there may be many yx fields, each transforming as an irreducible multiplet.
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The ﬂé,vor symmetry breaking pa.raméters are then either power or exponentially suppressed
functions of the distances bétween branes. If the different elements of x are generated on
different branes, we can, at least in principle, generate a fully general texture, and likewise
for the quarks. For example, with Gp = U(3)5 the flavon fields xy g a.pp.ea,r as single

multiplets on our wall, and yet the various entries can have values which are hierarchical.
7.3.2 Classical and quantum sniffing

Flavor breaking from extra dimensions is much more interesting than simply taking
the values of x and its derivatives on our brane at y = 0 and using them in a sp;n'ion analysis.
Non-linearities in the bulk Lagrangian can induce a wide variety of effects which probe flavor
breaking at non-zero y.

The simplest examples of this are classical non—lineér effects. One of the most
significant is the generation of a vev for a bulk field without a direct source brane. Consider
a situation with two source branes, with sources JJ, and JZ2 and two bulk fields which have
vevs generated on these branés, x7* and x5. If there is, in addition, another bulk field ¢™"
transforming as a product representatioﬁ of the 1 and 2 representations, we naturally have
~ a term in our Lagrangian ¢, X7"X53- As a consequence, ¢ will also take on a vev in the
bulk, and hence on our wall as well.'_ |

This is a very fgmiliar situation, even in four dimensions. However, in four dimen-
sions, we typically expect a value ¢  x1x2- In extra dimensions, the vev‘ca,n' typically be
rhuch larger. As shown in Fig. 7.1, the fact that the séurce for ¢ is spread throughout the
bulk means that the dominant contribution to its shining can come from a region distant

from our brane, defeating our four-dimensional intuition.
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Formally, we want to sum the contributions to ¢ on our wall from every point in
space. Given the assumed coupling, if we take our wall at y = 0, and the sources for y; and

X2 at y; and ys, respectively, we can then calculate

o(0) = [ ymgi D W)xalo). (7.331)

If the propagators are dominantly exponentials, some small region will dominate this inte-

gral, and we can take
¢(0) = AV A(my; [7])x1(F)x2(7), (7.3.32)

where 7 is some representative point within_the volume AV where the integrand is appre-
ciable. In .cases where the particles are light, AV can be very large. Even in cases where
the particles are heavy, if they -a,re even an ofder one factor lighter than the fundamental
scale, the volume will typically be larger than one by a factor 1/m7.

We illustrate this with the following example:

Consider a brane configuration with our brane localized at (0,0,0) in three extré
dimensions, while one source brane is at y; = (10,0,0) and the other at yo = (10, 3,0)
in units where M, = 1. Further, take the masses to be m,, = m,, = m, = 1/3. We
can calculate the vev of (pvnumerically, and find on our brane we have x; ~ 2 x 1074,
x2 =~ 2x 1074, and ¢ ~ 3 x 1075. We can understand the larger value of ¢ as also
being enhanced by a volume factor AV of (7.3.32) being larger than one, and we show this
graphically in Fig. 7.2.

If we further give the fields moderately different massés, my, = 1/3, my, = 1/2,
my = 1/5, we find x3 &~ 2x 107%, x2 ~ 5 x 107%, but ¢ ~ 1073 , much larger than the naive

expectation if all other masses are order the fundamental scale. This is very sensitive to the
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(b)

Figure 7.1: Contributions to the vev of the field ¢. Our brane is designated 0, while the
source branes for x; and x2 are 1 and 2, respectively. (a) is supressed by two propagators
while (b) is suppressed by only one. As a consequence, (b) will typically dominate. If the
mass of ¢ is even an order one factor: lighter than elther of the other fields, the dlfference
can be further amphﬁed : :

\

souwe branes

-2

0 2 4 6 8" 10 12

Figure 7.2: We plot here a z = 0 slice of the first, second and third efolds of the integrand
of (7.3.31) from its maximum for the given example. Notice that the region contrlbutmg to
‘the integral is both large (AV > 1) and fa.r from our brane. :
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brane geometry and the masses of the bulk fields, of course, and the predictivity suffers as
a consequence. However, it illustrates one very important difference between flavor model

building in extra dimensions versus that in the usual four.

Once a bulk vev for a field exists, it can act to further regenerate another field that
may fall off more quickly. In the previous exarﬁple, if we reach a region where x1¢ > X2,
» then this region can act as a further source for xs, domina%:ing for some regions of y over

the source brane. This can be understood rather simpiy: in situations where the vev profile
is domiﬁa.ntly exponential, (i.e., when my,y > 1), and if fur@her my < My,, it can be
advantageous to exploit the presence of x;, for instance, and propagate as a p, as we
illustrate in 7.3(a). Of course, if the regenerated value of x» is sufficiently large, it can
| again regenerate ¢ in certain circumstances aﬁd the nonlinearities can dominate the entire
problem. It is important to be aware of this when employing non-linear effects in model
building,.

All of the effects discussed so far arise from classical field theory in the bulk.
They could be obtained, in principle, by solving the non-linear classical fields equations.*
Quantum effects in .the bulk may be just as, if not more, imporf,a.nt. For example, if

My + My, < My,, it may be advantageous to pay the price of a loop factor and propogate

as a ¢ — x1 loop, which is shown in the “Tie-Fighter” diagram of figure 7.3(b).

As another example of non-linear bulk interactions changing the physics on our
brane at y = 0, consider a bulk field ¢ with a ¢?* interaction and a source branesat y;.

Ignoring the non-linearity, an operator involving ¢? on our wall would have classically a

*There is one remaining classical effect, namely the generation of local operators through bulk non-
linearities, which we will discuss at the conclusion of this section.
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(b)

Figure 7.3: In addition to the standard direct propagation of x2, there can be other contri-
butions. In the presence of an external field y2, it can be advantageous to propagate as a
¢, as shown in (a). Even absent such an external field, the propagation through a loop of
lighter particles may be dominant compared to the direct propagator (b).

coefficient of A(my;y,)?P. This is illustrated in 7.4(a) for p = 3. However, if mylys| > 1,
there will be a large exponential suppression of this contribution, so that the dominant
effect may instead come from the loop diagram of 7.4(b), which gives a contribution to

<p(0)3> of

2 [eyawtee), . (73.33)

where L is a loop factor f. This quantum effect can lead to a very large deviation of <¢(0)3>
from <(0)>3, since it involves only one power of e~ Vs,
For the case of p = 2 and an operator on our brane involving ¢?, in addition to

the tree contribution there is the 1-loop contribution shown in Fig. 7.5a, equal to

TActually, the exact expression involves an integration both over 4 and higher dimensional momenta.
The result can be re-expressed (upon wick rotating to Euclidean space) as

d*ks d'Fs

G 2o / d*yA(/m2 + k2, y)AG m2 + Ei, y)A(y/m2 + (ks + Fa)2, 9)e(y) (7.3.34)

In our expression in the text, we are overestimating this effect by replacing A(y/m2 + k3, y) with A(my, y).
Henceforth, we will often make similar approximations in discussions of sniffing.
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Figure 7.4: Two contributions to the value of <¢>3 on our brane. The contribution in (a)
is the classical spurion contribution. The contribution in (b) is due to sniffing and can often
be larger than that of (a).

(@)

Figure 7.5: Two examples of “sniffed” contributions to an operator on our wall. In (a) a
quantum loop corrects the value of <x*> on our wall. In (b), a ¢ field can interact in the
bulk and generate a local operator.
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L[ @y awPew?. | (1338

In this case, two propagators traverse the wht;le space from y = ys to y = 0 in both tree
and loop diagrams, so it may appear that the loop correction is small and unimportant.
Howe\jé‘f, in theories of flavor, we will find that the loop diagram contains flavor breaking
not present at trge level. For instapce, if ¢ transforms as a multiplet of G, it mé,y point
in different directions in flavor space at different y; this is a éituation which arises when
multiple source branes are present. At tree level the only flavor breaking is given by ¢(0),
whereas at the loop level the flavor breaking of ¢(y) is also probed. We say that additional
flavor breaking is “‘sniffed” in the bulk from éoints y #0.

In addition to quantum corrections to <@P>, there can be cla.séical corrections as
well. By integra,ting out a ¢ field which interacts in the bulk, we generate local operators
as we illustrate in figure 7.5(b). In this particular example, given operators ¢(z1)O; (:cl)
and @(z2)O02(z2), we generate a local operator p?(z)0;02(z). Absent bulk corrections,
this operator would have a coefficient <¢>2, but sniffing contributions can change this.

Although both ¢-legs on our wall are evaluated at the same point in spacetime, this is not

a quantum effect and does not receive the same loop suppression as in Fig. 7.5(a).

7.3.3 Spatial derivatives of the flavon field

" The bulk flavon fields have y dependent profiles, and, because Lorentz invariance is
violated in directions perpendicular to our brane, one might imagine that wherever a x field
appears in the Lagrangian of our brane, we could just as easily write (@0, +amnOm0On+...) X,

with no need to contract indices of extra dimensional derivatives [21]. Unless the x mass
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were much smaller than the scale A, the derivative terms would not be strongly suppressed.
Nor would x and its derivatives necessarily be proportional to each other, since the field
can have sources on several branes, potentially leading to a variety of troublesome flavor
changing effects. However, if Lorentz invariance is broken spontaneously (as is the case if
. standard model fields are localized on a D-brane, for instance), dnly certain derivative terms
are allowed. In the low energy effective theory, we simply h;ave SM fields localized to our
brane, the bulk x field, and the goldstones of spontaneoﬁsly broken translational invariance
Y™, which give the position of our brane in the extra dimensions [22]. Thus, all terms
involving derivatives of a single power of x must feature either (¥ for some integer j, or

a brane tension-suppressed coupling to the goldstone. For instance, we can have terms like
Y ™(Qmxo"Q) or  QUxD°H, (7.3.36)

but not something like

Q &mx D°H, , (7.3.37)

because extra.—dimensionél derivatives with uncontracted indicgs amount to ezplicit breaking
of Lorentz invariance.

Of course, the localized fields have finite profiles in the bulk, and we can contract
derivatives of x with derivatives of wall fields in the full extra-dimensional theory. However,
the effective field theory argument just given indicates that in our wa,ll’s. low energy theory
only terms involving (I x will be generated. It is straightforward to see how this comes about
explicitly from a microscopic description. Let us label the (4 + n) dimensjonal spacetime
coordinates as (z*,y™), where z* are the 4D coordinates on our brane, and y™ are the

coordinates of the extra n dimensions. We will use an index K = (i, m) that runs over all
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(4 + n) dimensions. Consider the Lorentz invariant term

. / dhe / dny (aKQ(4+n))(aK (++n)) pea+n) pra+n), (7.3.38)

We assign the standard model fields 941" Gaussian profiles in the extra dimensions, so

that their relation to the ca,nom'célly normalized fields in 4D is

) (z,y) = (%f_)n/‘l 1/,(;1) (z)e—A2|yl2’ (7.3.39)
whilg the z-independent bulk ﬂavon VEV is given by
X (z,9) = AW (). a4
In terms of the canonically normalized ﬁeids, (7.3.38) be(?omes

-t [ 2 g(a) ( [ayesnintym am (y)) DW(@)HO(z),  (7341)

where we have neglected factors of = and 2. After integration by parts, the piece involving

X becomes

/ &y (6A2]y|2 — n)x® (y)e 30017, | (7.3.42)

This is of the form [d™ f (y)eel¥* | which is equivalent to

y=0

/ &g f(ge e = e Olep)| (7.3.43)

where f (q) is the Fourier transform of f(y). In our case, we have f(y) = x*)(y)(a + bly|?),

with a and b real, which satisfies

—Ofe(, (4) 2 3 4(4)
e (x** (a + bly} ))ly Zc Px ly—O (7.3.44)
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with real coefficients c;. Although there can be many x derivatives that appear in the
Yukawa, interaction, we see that they are all proportional to [y for some integer j and
thus, by the equations of motion, all proportional to x itself.

In contrast, an operator like
Omx0™xOspm(x), (7.3.45)

where Og)y is an operator of standard model fields, cannot be brought into a form involving
only [¥x4. The presence of these operators has model dependent effects which we will

discuss in later sections.

7.3.4 Harmless flavon exchange

As discussed in section 2.4, breaking flavor symmetries at low A in four dimensions
generates harmful flavor-changing operators through the exchange of flavons, dué to the
smallness of the ﬂé,vor-breaking scales relative to the fundamental scale. In sharp contrast,
there is_ no reason in extra dimensional theories to expéct that the bulk flavon masses are
closely related to the sizes of the Yukawa couplings, as theée small parameters are no longer
ratios of mass scales. However, even if the bulk fields were very light, the harmful operators
still receive no subsequent enhancement. This is due to the IR softness of bulk propagators
in extra dimensions. Returning to the example_: of éection 2.4, let us suppose that ;9 lives
in p extra dimensions. Then, the coefficient of the induced 4-fermi operator is (working in

units with M, = 1)
v? / LI S - © (7.3.46)

(2m)? k2 + 'm?p ’
Note that we integrate over the extra dimensional momenta & since this momentum is not

conservéd. The important point is that for p > 2, this integral is dominated in the UV and
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is insensitive to m,! Therefore, the generated operator is not enhanced by 1/m,, factor. In
fact, the dominant contribution is m,, independent and generates a flavor-symmetric oper-
ator suppressed by powers of M, and a.ddifiona,l'loop factors. Sub-dominant contributions

need not respect the flavor symmetry, but are small enough; the leading corrections go as
L(p) log mi) b= 2; L(p)m<p7 p= 3; L(p)m?pa b= 4, 57 e (7347)
where ‘
L(p) = o
 p2r1aP/20(p/2) -

(7.3.48)

is a loop factor.
We can also return to the example of our toy U(2) theory discussed in section 2.5.

The tree-level exchange of a bulk A field produces the operator

H*H(QaD§)(@*D%)

i (7.3.49)

L(n).

There is no inverse dependence on the A mass at all, and we can therefore tolerate M, ~

1 — 10 TeV, roughly three orders of magnitude below the bound on A in the 4D case.

7.4 A U(3)° theory in extra dimensions with 3 source branes

Having introduced' the shining of flavor br;eaking from distant branes, we now
discuss the construction of U (3) models in extra dimensions. In the models we will describe,
Xu and xg4 (which in this context are bulk fields) will be the only flavons that couple directly
to the standard model fields of our 4D universe, just as in minimal U (3)% in 4D. The authors
of [13] have applied the shining framework describeci in section 3 to the case of U(3)°. In

their picture, x, (Xq) couples to nine source fields p*% (p®%¥). Each of these source fields
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transforms as x, (xq) and is localized on its own distinct brane. The sources acquire VEVs

of the form

< > o > AL, (7.4.50)

that is, each of the nine % sources essentially shines a single element of the down quark
mass matrix, and similarly for the up sector. The magnitudé of each source is taken to be
roughly A,‘but large fermion mass ratios are still possible by requiring some soﬁrce branes
to be closer to our brane than others. This represents a significant improvement over the
minimal case in 4D: only a single x4 and a single Xﬁ appear in the Yukawa interactions,

and yet a simple explanation for the hierarchical nature of the fermion masses is achieved.

This picture is far from complete, however. The most serious deficiency is that no
understanding is pr_ovided of why Voxar ~ I. Related to this is the fact that the VEVs of
(7.4.50) do not comprise a justifiable starting point, as we will now argue. To avoid problems
with goldstone bosons, we work with a large discrete subgroup of U(3)° rather than with
U(3)? itself (because the breaking is order unity, we avoid the light pseudo-goldstone bosons
that appear in the 4D case). The directions of the eighteen ¢* and % VEVs are thus fixed
. in various directions that do not depend on bulk dynamics. The important pdint is that
there is no reason for the direction of a source on one brane to be related in any particular
way to the direction of a source on another. This reasoning argues against the arrangement
of VEVs in '(7.4.50), and more generally, it tells us that wershouldb expect order unity CKM
mixing angles if all the sources are on separate bra,r;es. Suppose, for example, that a ¢
localized on one nearby brane breaks U (3)Q X U(3)ue = U(2)g X U(2)ye, while on another

brane, a ¢? independently breaks U(3)g x U(3)ae — U(2)g X U(2)4e. We imagine that
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these branes are the ones nearest us, so that these ¢’s shine the leading order contributions

to the quark mass matrices. The U(3)g x U(3)4c symmetry allows us to take

0 0O

=10 0 0}, ' - (7.4.51)

and then, using the U(3),c symmetry, we can write write

0 0 0O
=M[0 0 o[, (7.4.52)
0 0

where the form of M € U(3) is fixed by the explicit breaking. The point is that there is
no reason for p* and ¢ to choose the same unbroken U (2)@, and there is not in general a
basis in which both ¢ é,nd ? ”a.re diagonal, because the U(3)g freedom is used up entirely
in diagonalizing either one or the other. Generically, we expect the (23) entry of ¢* to be
roughly as large as its (33) entry!, and since the leading order form of Xu(d) On our brane is
simply proportional to p* (¢?), we should expect a large CKM mixing angle, contrary to

what is observed.

7.4.1 A complete U(3)° model

We now describe a model that' rgta.ins the successes of the picture just described,
but which in addition predicts small mixing angles. The model is remarkably simple. We
assume the existence of a series of source branés, each of which has localized on it a tripiet
under U(3)q, a triplet under U(3)ye, and a triplet under U(3)4e. Nothing special distin-

guishes any of the source branes - we will even assume for simplicity that they are identical

1Using the residual U(2)q symmetry respected by ¢¢, the (13) entry can be made to vanish.
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copies of each other - exéept that they are located at different distances from our brane. The
three triplets on each brane a:cquire VEVs near the fundamental scale and act as sources for
bulk flavons x, and x4. We again regard the true flavor group as a large discrete subgroup of
U(3)° to avoid goldstones, so the potential for each triplet features a discrete séries, rather
than a continuum, of minima. Each triplet’s VEV is stuck at one of these minima, unable
to tunnel from one to another. Moreover, the directions chosén by the sources on one brane
are not related in any particular way to the directions chosen on a different brane. What we
'ha,vq, effectively, is explicit breaking on each source brane, with the triplets getting. fixed,
complex VEVs that point in uncorrelated directions.

Let us work out the implications of this simple scenario. On the bra_ne nearest

ours, the triplet sources acquire VEVs that, if we exploit our U(3)3 freedom, we can write

as
0 . 0 0
To=| 0], Ti=]|0}, and Ty=] 0 |, (7.4.53)

with vg, vy, and vg real and not much smaller than M,. In fact, these sources could even
be localized on our brane. The bulk flavons are shined by the triplet sources due to the

brane interactions’

ToxTy  and  THxaTy- (7.4.54)

Consider, for the moment, the extreme case in which this brane is by far the closest one to
our ours - the closest by so much that, on our wall, we can ignore contributions to flavon

VEVs coming from all other sources. In contrast to the example that led to the alignment

$1f the sources are on our brane, the third generation quarks acquire mass from direct couplings to the
triplets.
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problem of equations (7.4.51) and (7.4.52), both x, and x4 are shined from the same nearby

brane, and simultaneously take the form

0 0 O
Xudx {0 0 O . (7.4.55)
0 0 A,q4

Now let us consider the additional contributions to x, 4 that are shined from more distant
sources. The VEVs of (7.4.53) respect a residual U(2)3 symmetry that can be used to write

~ the sources on the second nearest brane as

0 -0 0
Té = 2Q sinfg ' , Tf = Uy sin @, , and Tg = vyg sin 04 )
cos fgeta@ ' cos 0, et ' cos O e'%d

56)
where we assume for simplicity that 77T is the same in the various discrete minima. After

we include the effects of the shining interactions
T3x T2  and  T3xaTs, (7.4.57)

the flavon VEVs on our brane take the form

0 0 0
XudX |0 € ¢ , (7.4.58)
0 ¢ A),a

with €, 4 < Ayg. At this stage, the VEVs in (7.4.53) and (7.4.56) still admit a U(1)3

symmetry that can be used to write the sources on the third brane as
59Q 8Py $¢d

Tg =vg | cogspge®e |, T3 =wvy, | couspueP |, T3 =v4| cpgspgePs

cpQ cpQ €72 Cpucpu €™ ) cpgcpg e

59)
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Including the effects of this brane, we arrive at the Yukawa texture
Mag~]|€ € € , (7.4.60)

which features both a hierarchy of eigenvalues and small mixing angles.

This model features a simple symmetry breaking pé,ttern. If we include only the
nearest brane, its sources break U(3)3 — U(2)3. Bringing the second brane into the picture
then breaks U(2)3 — U(1)3. Finally, moving the third brane into ;;lace breaks U(1)3 —
nothing. Nl)té tha;t this breaking pattern is not put in by hand, but rather follows inevitably
from the fact that the sources transform as triplets and acquire fixed VEVs pointing in
random different directions. ‘Note also that we work with three source branes only because
this is the minimal set required to break U(3)? entirely. Given i;hat at least three exist,
the success of our picture is insensitive to how many branes there are in all. Additional
branes, being further away, will give small contributions to the Yukawa couplings, leaving
the texture of equation (7.4.60) unchanged.

The Yukawa texture suggests the approximate relations |Vi;| ~ mg;/mg;, Wwhich
work reasonably well for all mixing angles except fo; 0.. The fact that 6. naively comes
out to small is not a serious problem, because the entries of (7.4.60) come with unknown
coefficients of order 1 due to the unknown angles 6, ¢, etc., that appear in equations (7.4.56)
and (7.4.59): by taking tanpg ~ %sin pa we obtain the correct size f, ~ 1/4. Somewhat
surprisingly, the more closely aligned the source triplets on the second and third branes are,
the larger 0, is. In sections 6 and 7 we consider different models that accomodate 6. more

easily.
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It is advantageous to give the flavons slightly different masses, with m,, > m,,, to
explain why the mass hierarchies are stronger for the up quarks than for the down quarks.
Doing so makes all the more pressing the question of why m¢ > m;, given that these masses
are essentially shined from the same brane. Having two Higgs doublets with large tan g3
leads to flavor changing problems, as we will see below. .A simple alternative that leads to
no phenomenological difficulties is to have a ~ 1/60 éuppression of vq relative to v,. Even
irrespective of flavor changing issues, this approach may be more appealing than a non-
SUSY large tan 8 scenario, because here the different-sized VEVS are given to two fields,
T. and Ty, that transform entirely differently under the flavor symmetry. In contrast, if we
have two >Higgs doublets, H; and H, trans_form identically under the gauge symmetry and
are both flavor singlets, so it is especia.lly difficult to understand how one is chosen to have -
‘a much larger VEV than the other. A more interesting approach to understanding m;/m;
will be described in section 7. Thé details of how the present U(3)% model can give realistic
fermion masses and mixings are important but should not obscure the central point: having
source triplets with uncorrelated VEVs leads' automatically to a CKM matrix with small

mixing angles.

Another attractive feature of this model is that it violates CP spontaneously, as
the VEVs of equations (7.4.56) and (7.4.59) give the off-diagonal elements of A order unity
phases. If we impose CP as a symmetry of the underlying theory, this model exhibits the

same solution to the EDM problem described in section 2.6 in the context of U(3)% in 4D.
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7.4.2 Flavor-changing from the bulk

The only question is whether there are additional challenges in suppressing dan-
gerous operators, now that we are working in extra dimensions. As discussed in section
3, physics in our 4D universe can be sensitive not only to the values of x, and x4 on our
brane, but aIS(; to their values away from our brane, due to “sniffing” effects. For instance,
if we have bulk couplings [d™ Tr(xhxuxixu), and fdy (Tr(xlxu))2, then in the up quark

EDM operator we can replace the matrix (x,(y = 0));; with

Xul(é),,lmn / 4"y (XuimXun; (©)) A2 (), (7.4.61)
or with
(1671r2)2 / 4y (x@))iA%), (7.4.62)

: wheré we have iﬁcluded loop factors from integrating over 4D momenta. Diagrams repre-
senting these contributions are shown in Figs. 7.5a and 7.4b, respectively. Because they
do not have the same flavor structure as y,, we need to check that these contributions are
not problematic. The largest contribution to the 1-1 entry comes from the piece of (7.4.61)

proportional to A4,

(¥)A%(y). (7.4.63)

t

1672
A(y) is largest near our brane (y ~ 0), but in this region (xu;3Xu31(y)) nearly vanishes in
the mass diagonal basis. On the other hand,{x413Xu31(y)) is largest near the third most
distant brane, located at y3. Using ﬁhe short distance form for the propagator to evaluate

{Xu13Xwu31(¥)) in this region, we get a contribution of roughly

A
Tea s —=F(my), (7.4.64)
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where f(m,) ~ (,—,%;)(4‘""), Log(my), and 1 for n = 2 or 3, n = 4, and n > 4 respectively,
and where dS, is the surface area of the unit sphere in n dimensions. The potential mild
enhancement from f(m,) cannot nearly compensate for the extra factor of 1—3‘—;‘; relative to
what we hé,ve for (xu(0))11, so this contribution is harmless. Sniffing contributions to the
down qﬁa.rk EDM are similarly suppressed.

Sniffed versions of

(@xaD%)(@QxaD)  and  (QuaDH)(QxaDH)' (7.4.65)

yield AS = 2 operators with coefficients of approximate size

o7 [ T e 0))A%), (7.466)

and

o2 / "y (Xaroxah (1) D2 (), (7.4.67)

réspe’ctively. Again concentrating on the region around y3, we estimate the integrals as
roughly (Asec)zﬁ f(my). If the coefficient were simply (As0.)2, ex would require A > 7
TeV. Since these contributions are further suppressed by either a loop factor or by v2, they
are safe. |

A different challenge posed by the extra dimensions involves the bulk flavon deriva-
tives described in section 3.3. If we allowed all flavor invariant terms with extra dimensional
derivatives acting on x4, then in the basis that dié.gonalized and made real the down quark

Yukawa interaction

Q ((1 + 0n0n + GmnOm0On + --')Xd) D°H, (7.4.68)
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the EDM operator

would in general be complex, leading to the familiar EDM bound A > 40 TeV. However, as
discussed in section 3.3, the only drivatives of x4 allowed in equations (7.4.68) and (7.4.69)
are those of the form [y = m? x4, provided Lorentz invariance is broken spontaneously.
In this case derivative terms are harmless as far as EDM’s are concerned. On the other

hand, the operator

1 OKXd e Fxa 2\ ‘
F(Q 2 D) (Q____A2 D | (7.4.70)

cannot be brought into a form involving only [3¥y4. Because 8,,X4 is not in general pro-

portional to x4, the most pessimistic view is then that ex forces us to take A > 7 TeV. (In
fact, at this point it becomes clear why using large tan 8 to explain m; > my is disaster-
ous: the AS = 2 piece of (7.4.70) has a coefficient that is proportional to tan? 8). Note,
however, that the A > 7 TeV interpretation assumes that the derivative terms are entirely
unsuppressed: if m,, = A/S, for instance, then the Bound is reduced by a factor of S. Also,
it is conceivable thgt; Oaxd ts nearly proportional to x4. For example, if the source branes
lie along along the sa.ms direction from ours, then in the case of three extra dimensions, the
derivative contributions that are not proportional to x4 are suppressed by factors of 1/(Ar;)
relative to the leading non-derivative contribution, where r; are the various distances of the
source branes from our brane. K — K mixing is most sensitive to contributions shined
from branes responsible for the light quark masses. Taking (mr) ~ 5 for these bra.nes, and
m ~ A/3, we find that the bound on A is reduced by a factor ~ 15. The general point is

that bounds derived by considering terms involving flavon derivatives are softer than those
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obtained from operators without derivatives, as they are more sensitive to the flavon mass,
and to the details of the brane configuration.

We have seen that U (3)®xCP models with triplet soﬁrces are generically safe for
A = 5 TeV, provided that Lorentz invariance is broken spontaneously. Next we will show
that specific models can be safe at this scale without qualification. In particular, we present
what wé consider the simplest specific realization of 6ur U (3)® x CP scenario, and find that
regardless of how Lorentz invariance is violated, and regardless of whether m,, is suppressed

relative to A, both flavon derivative and “sniffing” effects are harmless.
7.5 A concrete realization of U(3)°

Here, we will consider a concrete aIrangement of branes in our U(3)? scenario. The

arrangement is very simple and furthermore allows analytic calculation of FCNC effects.

® .

We will see that the potential flavor-changing effects are very suppressed by this particular
set-up; for instaﬁce all x derivatives are exactly aligned with x.

We imagine th.a,t even though there are n > 2 extra spatial dimensioné, flavor is
associated with only one of them, which we parametrize by y. Our 3-brane and several
source 3-branes are taken to lie in a 4-brane described by (z, 0 < y < L), where we
compactify on an interval [0, L] (rather than a circle) of moderately large size, L ~ 10M; 1.
The 3-branes are spread out roughly evenly in the space available to them and are then
naturally spaced between ~ 1 — 10 times M}, so that the question of what determines the
sizes of the inter-brane separations is to some extenﬁ obviated. The flavon x is taken to

propogate only on this 4-brane.

In one infinite extra dimension, the x propagator is just e ™¥~¥'l. When the
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dimension is compactified, the propagator depends on the boundary conditions. We will
impose the conditions xy = 0 at the boundaries of the interval, so that the propagator on

the strip from y; to yo is

sinh{m(L — y1)]
sinh[mL]

sinh[my; ]
sinh[m L]

A(y1,y2) = (0(y1 — ¥2) sinh[mys] + 0(y2 — y1) sinh[m(L — yz)])
(7.5.71)
~ Note that this goes to e”™¥1~¥%2l when L — o0, as it should. The classical profile for x is

“then
Xa(®) =D xirwi,y), (7.5.72)
)

where

Xi(aa) = TLiaTRia (7.5.73)

is the source for x shone from the i’th wall. Suppose that our 3-brane, located at y = y.,
is positioned to the left of all the other branes on the strip, i.e. y. < y3 where y3 is the

location of the nearest wall. Then, for all y < y3 the profile of x is

xei(y) = x sinhlmy], | (7.5.74)
where ,
SRES 519

Note that the xci(y) at different values of y < y3, are all proportional to the same matrix,
and so all derivatives of x. evaluated on our wall are diagonal in the same basis as x

itself. Therefore, even allowing for heavy m, ~ A and explicit Lorentz violation in the extra
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dimension, there are no problems with derivative terms. In the absence of interactions in
the bulk, the FCNC analysis is identical to the standard U(3)® spurion analysis.

In four dimensions, U(3)® with minimal flavons leads tb exact lepton flavor conser-
vation. As we have discussed, in higher dimensions, derivative operators have the potential
to indiice some level of flavor changing, but in this simple realization of U(3)%, where
OmX o X, one might expect again that flavor changing is absenf. This intuition is incorrect,
as sniffing effects give us sensitivity to the value of x in the bulk, and thus to regions where
it is not diagonal in the mass basis. However, it is easy to see that these effects are highly
suppressed.

We can illustrate this by considering the process y — 3e, which occurs due to the
presence of the operator

Egxx) E°TESE"". (7.5.76)

In addition to the spurion contribution, which is diagonal in the flavor basis, we have the

sniffed contribution

<xx'>= / dyd*zxax),(v) Ay, )2, (7.5.77)

If we assume a brane geometry where our brane is at y = 0, and the u and e branes are
at positions 0 < y, < ye, the sniffed contributions from the region y < y, will all be
proportional to x. Thus, the first flavor changing piece comes in the region y, < y < ve.

We calculate the coefficient of the operator to be

AeA,m3

P12 o Teti T 10718 7.5.78
ZFC 32n2(LogA,)? 0= ( )

< XX

which gives a completely unobservable rate for 4 — 3e. Thus, while sniffing does allow for
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flavor violations even in a U(3)® theory (where naively lepton flavor is conserved!), they are

easily small enough to be harmless.

7.6 Smaller flavor symmetries(

" In the previous two sections we developed extra-dimensional models of flavor with
low A and GF = U(3)%. One might wonder how difficult it is to work instead with smaller
flavor groups. For instance, we have already seen that ‘ta.king the symmetry to be U(2)
is problematic: the extra dimensions alleviate the flavon exchange problem, but the U(2)-
invariant, non-renormalizable operator of equatio.n‘ (7.2.11) forces A > 10° TeV. Of course,
we cpuld hope that this operator is simply not generated by the underlying theory, but if one
wants to a,ssﬁme that all invariant opérators are present, then we need a larger sythetry'.
Here we adopt the group U(2)® and consider the quark sector alone. We again take CP to
be a symmetry of the underlying theory in hopes of evading the EDM bound.

With this choice of flavor S);mmetry both Q3 D§H and Q3 U°H are flavor singlets, so
‘to explain my > my, we might require two Higgs doublets with large tan 8. Unfortunately,
as we have already seen, unless a single flavon multiplet is responsible for the elements of
\¢ involving the light generations (which will not be the case for U (2)%), then we expect to
get the operator

2 _
e D) QoD@ D5), (7.6.79)

forcing A > 400 TeV. Thus, we instead use a single Higgs but enlarge the flavor symmetry
to include an extra U(1) factor under which only Df is charged. We introduce a bulk flavon
0, whose charge under this U(1) is opposite that of D§, and take the VEV of 6 on our wall

to be ~ 1/60.
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Next we introduce another bulk flavon, ¢, a doublet under U(2)g. We can choose

a basis in which its VEV on our wall is

Q= , (7.6.80)
v

with v real, .a,nd to yield a reasonable V,; we take v ~ 1 /30. Our picture for the symmetry
breaking that gives masses to the light generations is ‘designed to preserve certain features
of the staﬁdard U(2) fermion mass texture, in particular the relation 6, ~ \/m_d/—m—s. We
imagine that on a distant brane the subgroup U(2)g x U(2)4 is broken down to U(2) by a
source that shines the bulk flavon x4, transforming as' (2, 2) under this subgroup. Similarly,
from a different brane we have U (2)QI X U(2)ye = U(2) breaking transmitted by xu, a (2, 2) ‘v |
under this subgroup (nofe that we do not expect the two walls to preserve the same U(2)).
Finally, we.im.agine that on oﬁr brane both U(2)4c and U(2)yc are broken primordially to
their SU(2) subgrdups.

What does this assortment of bfeakings say about the Yukawa matrices? The flavor
symmetry allows us the freedom to choose convenient forms for the x, and x4 VEVs, but
because Qf ‘the primordial breaking on our brane, and because of the freedom already used to
fix the form of ¢, we are only allowed arbitrary SU(2)ye x SU(2)4 x U(1)q transformations,
where the U(1)g acts on Q; alone. These transformations allow us to take

(1 0\ e 0 ‘
Xd = Vd ~ and Xu=vy [ (7.6.81)

01 0 1

on our wall, with both v, and vg real. We are stuck with a phase in x,; this is the origin of

CP violation in the model. The leading order couplings of these flavons to the quarks are

Qrxq" ™Dy and Qrx, i e™Un, | (7.6.82)
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so that at this stage the Yukawa textures are

0 wvg O 0 wue® 0
Ap=]| —vg 0 O6v and =] —-v, 0 wovi|. (7.6.83)
0 0 6 | 0o o0 1

To give masses to the charm and strange quarks, we assume the presence of two
ad(iitional bulk fields, ¢, 4, that transform as 2 x 2 under U(2)g X U(2)ye ac¥. However,
these flavons are not shined from distant branes, but rather have VEVs induced in the bulk
by the interactions

_ —IM
LD orxtiemE . (7.6.84)

Due to its sensitivity to the flavon masses and to the brane geometry, the size of the sniffed
¢ is essentially a free parameter. Note, however, that the orientation and phase of £ is

determined entirely by the orientation and phase of ¢ and x, so that we have

0 O
Eud = , (7.6.85)
0 'v;’ d

where v;, and v} are both real.

Including the leading order coupling of all flavons to the quarks yields the textures

0 wg O 0 wue® 0
Ap=| —vqg v 6Ov and w=\|-v. v, v|{, (7.6.86)

0 0 6 0 o0 1

and leads to the approximate relations

6.~ , [T Y |Y}£~ My Yu (7.6.87)
e ms v’ Ve me v’ e

91t would be problematic to instead introduce doublets under U(2),c and U(2)4- for this purpose, because
the relation 6. = y/ma/m, would be spoiled by the Yukawa term QL¢QL wa;€™ D .. Moreover, the bulk
coupling Pgxapa would regenerate x4 in the vicinity of our wall, and would also disrupt the texture (we
might expect, for instance Agp; ~ Adaa).
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Ms Y% Me o Vip ~ v. (7.6.88)
mp 0 My

We get reasonable values for all observables by taking v) ~ 3 x 1074, v}, ~ 3 x 1073,
vg ~ 6 X 1073, v, ~ 2 x 1074, v ~ 1/30, and 6 ~ 1/60. Note that the CKM matrix is of
the form

Ry, el R‘112

Vexm = | , (7.6.89)
1 Ros 1

.so that the unitarity triangle relations for this model will simply be those vof standard U(2).

How safe is this model? In the mass basis, we expect to have the operator of
equation (7.2.11) generated with coefficient ~ (As0.)2, so that the bound from e is reduced
to A > 7 TeV. The issue of the neutron EDM is more subtle. Despite the fact that CP is
broken spontaneously, 6né might éxpect this model fo have an EDM problem bécause the
mass and EDM matrices are produc'ed.by several flavons, rather than by a singie multiplet
as in U(3)5.‘ However, an attractive feature of this model is that, in the mass basis, the
phase § appears only in the CKM matrix and not in the leading order EDM matrices. This
is clear from (7.6.86): rotating U; — e~ *@U; makes the mass and EDM matrices completely
real, because the 1-2 entry of the up quark EDM matrix started out with precisely the same
phase as A\yy5. Higher order contributions to these matrices disrupt this cancellation. We
find ’thét the order of magnitude of the contribution to the neutron EDM is determined by
the coupling

QX" 1€ %M manp €™ D% (7.6.90)

Setting p = L = 1 gives 1-1 entries in both the down quark EDM and mass matrices of
roughly vﬁv&ew_ in the flavor basis. In the mass basis, the 1-1 element of EDM matrix has

2,02
approximate size 'vg /vy, so the phase of that element will be roughly 9‘%‘— ~ 1076 - 1075,
d
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suggesting that the bound on A is reduced to well below 1 TeV.

7.7 Predictive Theories

We find the picture for generating flavor of sections 4 and 5, based on the maximal
U(3)® flavor group and involying only three identical flavor-breaking branes with triplet
sources pointing in random directions, to be both elegant and plausible. Nevertheless, it
does not provide a predictive theory of flavor. Furthermore,I there is no explanation of
the b/t hierarchy. There are two points that need to be addressed in order to build more

predictive theories based on U(3)%:

eThe brane geometry must be more constrained.

eThe directions in U(3)® space shone by the triplets must be more constrained.

In this section, we will pfesent some examples of more predictive theories along
these lines. In order to deal with thé second point, we will assume that the dynamics on the
branes is such that the triplet sources have identical strengths and can only shine in three
orthogoﬁal directions,bwhich we take to be (0,0, 1), (0, 1,0), and (1,0,0). If we continue
to work with just three parallel source branes, as in the previous sections, we would be
stuck vwi.th Vorxum = 1. Therefore we consider other brane configurations. In particular, we
imagine that the triplets T, Ty, and Tg are a,llvlocalized on different defects, which we label
as U, D¢ and @ branes. We take all the Q bfanes to be parallel and e(iually spaced, and
simﬂarly for the U° and D¢ branes. However, the @ branes intersect at right angles with
both the U® and D¢ branes, and at the junctions x, and x4 have sources. The Yﬁkawa

matrices are thus shined from the points of intersection on a grid of flavor breaking branes.
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7.7.1 Simple grid models

We will describe three simple and predictive grid models. In the first, the triplet
sources are localized on three sets of three parallel five-branes of infinite extent. Labeling
the extra dimensions By the numbers 1,2,...,n, we take the @, U, and D° branes to fill
extra dimensions 1 and 2, 2 and 3, and 1 and 3, réspectively. At the four-dimensional
intersection of a @) brane with a U¢ (D°) brane, ghe Tg and T, (Ty) triplets shine the bulk
flavon xu (xq)- We could further imagaine the existence of an additional bulk field x4
that transforms as (3,3) under U(3)pe x U(3)ye. This ﬂavén would nof induce dangerous
operators on our brane, and v‘vould_ simply make the picture more symmetric. We take the
masses of the three flavons, as well as the spacings between the Q, U¢, and D* branes, to
be identical. Until we have a theory that de’;ermines the inter-brane separations, we can’t
justify the regularity of the grid, however the symmetry of the system ensures that the
configuration is at least a local extremum of the potential. In an atteﬁlpt to understand
why m; > m;, we imagine that our three-brane is located at one of the ) - U° intersections,
but is not in contact with a D¢ brane: Below we will find it necessary to make the offset,
the shortest distance from our three-brane to the nearest iQ - D¢ intersection, much smaller
than the brane spacing. The configuration is represented in Figs. 7.6a and 7.6b. In Fig.
7.6a we project onto the 1-3 plane passing through our three-brane, so that the Q - U°
intersections appear as points. In Fig. 7.6b we do tile same for the 2-3 plane passing
through our brane, so that the () - D€ intersections appear as points. We have placed our
uniyerse near a corner of the grid, where it is easiest to attain hierarchical quark masses for

all three generations.
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a) : b)

Q - Q

Q Q

Q - Q =
ue U e e De e

Figure 7.6: The brane configuration for the first grid model. We project onto a plane
parallel to the D¢ branes for (a), and parallel to the U¢ branes for (b).

We stress that the starting poinﬁ for this theory is a remarkably symmetrical
configuration of source branes. In the absence of our 3 brane, and of spontaneous breakings,
the conﬁguratidn is completely symmetrical with respect to interchanging any pair of the
extra dimensions 1,2 and 3. The labels Q,U¢, D¢ are just labels of identical sets of branes.
The lack of symmetry only occurs by virtue of the position of our own 3 brane and the
gauging on it. Flavolr symmetry is built into the large scale structure of the bulk, and is
explicitly broken only at a point defect.

Already we can see that the resulting mass matrices will have an interesting struc-

ture. For instance, keeping only the exponential dependence of the x propagators, the up

mass matrix has the form 2 2
Wl eh 2 ¢ (7.7.91)
€2 e 1

where € ~ exp —(m,S) is the suppression factor with S the interbrane spacing. This sort

of pattern is not expected in 4d theories of flavor, where usually only integer powers of a
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small parameters appear.

We now proceed to a quantitative analysis. As mentioned above, we take the
magnitudes of each source VEV to be precisely the same, and allow the triplets to point in
t;hree orthogonal directions. We can choose a basis where the triplets on the @, D¢and U*®
branes’nearest us all point in the 3 direction; for conciseness we label these branes as QS,

U€3, and D3. The Dc3-- Q3 intersection shines the Yukawa coupling
A = oy Almy; ), (7.7.92)

where a, absorbs the source strengths and their couplings to the bulk flavons (we take
these to be the ‘same for x,, and x4), and y:,g is the distance from our brane to the D¢3-Q°3 |
intersection. Note that if there are k extra dimensions, the propa,ga.tor'is,giv.en by equation
(7.3.26) withn =k — 1, because the shining is from the 4D intersection of two five-branes.

Meanwhile, from the U°3-Q3 intersection we get the Yukawa coupling
>‘Il3j3 = ay A(my; Yeutof§) + ar, (7.7.93)

where the second term comes from the direct coupling of the triplet sources to standard
model fields, and the propagator has been cutoff at a distance ycutors ~ 1/A. Of course,
with ar, a,, m,, and the offset y:%, we have more than enough freedom to fit the top and
bottom quark masses; the hope is that these four free parameters plus the brane spacing S
can be simultaneously chosen to give reasonable CKM mixing angles and mass ratios for the
other quarks as well. An additional hope is that the parameter values for a successful fit not
~ be too far from unity. In this case, the smallness of m;/my is not put in by hand by simply

choosing o, < ar, but is instead a consequence of our location at a U°-Q intersecion, away



194

from D¢ branes. Note that even in the limit that we are very near a D° — () interesection,
myp/m; is still suppressed by a factor if I(252)/4x"/2.

The model we have described is quite constrained. For a given configuration of

triplet VEVs, the quantities yf,, /S and Sm, specify all ratios of Yukawa matrix elements

k-3

v, where k is the number of extra

except those involving A\Y;; by further fixing om
dimensions, we determine the magnitudes of all Yukawa mafrix elements except A5, which
is given only once we choose a. Thus there are four free paramaters to predict six masses
and three mixing angles!l. The predictions turn out to be wrong. A qualitative réason for
this can be understood by considering only the two nearest Q, U¢, and D¢ branes. We
must be able to choose the source VEVs on these branes as (Q3, Q2), (U3, U°2), and
(D°3, D¢2) - if there were a repei';ition in any of the VEV directions, theﬁ three sets of three
branes would not be sufficient to give ma,sses't‘o all of the quarks™*. The size of ms/my is
approximately the ratio of the contributions to xg4 from Q2 - D2 and Q3 - D3 shining.
The distance from our brane to Q2 - D2 is longer than.that to Q3 - D°3 by at least S,
regardless of y2/S; if we make Sm,, larger than roughly 2 or 3, then me /my automatically
comes out too small. Meanwhile the dominant contribution to V, comes from the ratio of
the contributiogs to xq from Q2 - D3 and Q3 - D°3 shining. For the moderate values of of
Sm, needed for m/my, getting V < 1 requires the offset y2 to be substantially smaller
than the spacing S (by roughly a factor of 3 or more). With y2/S constrained in this

way, the ratio of the charm mass, which arises dominantly from Q2 - Ue2 shining, to the

bottom mass, comes out too smalltt. Of course, this problem can be avoided if we introduce

ICP violation is discussed below.
**We could have (U3, U°3), and a massless up quark, but this makes the problem described below only
more severe.
HIn the case of four extra dimensions, for example, if we require .036 < V.5 < .042 and 1/24 < m,/ms <
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an additional free parameter, for instance by letting x, and x4 have different masses, by
allowing the spacing between the U¢ and D€ branes to be diﬁérent, or by giving x, and x4
different couplings to the triplet sources. However, even if adjustments like these are made
to accomodate m./mp, we find that it is not possible to simultaneously obtain accurate
predictions for all other mass ratios and mixing angles. |

A simple modification of the brane grid jﬁst described is to eliminate the U°
branes and place the T, sources on the same branes as the T’s. To make the picture more
symmetric, we could imagine that on the D° branes we have additional triplet sources T¢y
that transform under yet another U(3), under which all st.a,nda,rd model fields are singlets.
In the original grid model, our brane negded to be located at an intersection of different
branes to get the additional contribution to )\% from the direct coupling of triplet sources
to standard model fields; here, the direcf coupling is automaﬁic provided only that we reside
ona Q/U* brane. Two other important differences distinguish this grid from the previoﬁs
one: first, there are now only three independent sources that shine x,; second, the classical
profiles for x; and xg4 shining are no longer identical - if the source branes are co-dimension
1 objects, then the y, profile is determined using.bequa.tion (7.3.26) with n = [, while for
the xg profile one should use n = [ + 1 (as the intersections of D¢ and @ branes have
co-dimension ! + 1). One fortunate effect of the latter difference is to increase m./m; from
what the previous grid gave, for given choices of y} /5, S, and m,.

To determine how well this grid can fit quark masses and mixings, we need to spec—>
ify a VEV configuration. For all six quarks to acquire mass, there must not be repetitions

of VEV orientations (for example, we need one each of D¢3, D2, and D°1). Unfortunately,

1/75, then we obtain m./m, < 1/23, with the value of m./m; optimized when y$/S ~ .08 and Sm, ~ .7.
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Qlu°3

QU°2

Q3u°3

us

D€l D°2 - D€3

Figure 7.7: The brane configuration for the second grid model. The numbers indicate the
directions of the triplet source VEVs.

giving a 3-2-1 pattern to all three sets of triplet VEVs leads automatically to an up quark
" mass that is too large compared to mgy. In light of this Wé choose not to méxke the VEVs
on the most distant Q/U° brane (Q1,U°1), but instead choose them to be (Q1,U°3), as
shown in Fig. 7.7 (choosing (Q1, U°2) leads to too largé a contribution to 6, coming from

the up sector). With this VEV configuration, the up quark Yukawa matrix has the texture

0 0 ¢
Walo e o], (1.7.94)
00 1

In particular, we have m, = 0, v;rhich is allowed at second order in chiral perturbation
theory[25].

Interestingly, this grid model is slightly less constrained than the previous one:
because the x, and x4 sources have different dimensior;ality, the ratio m./m; depends on

m,, and S independently, so that there are five free parameters (my, S, Y, ay, ar). With
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these chosen to be (.43, 3.3, .43, .1, ~ 1)}, and with source branes of co-dimension ‘two, we

obtain a mixing matrix with elements of magnitude

975 223 0040
Verm = | 223 974 037 |, (7.7.95)
0045 037 .999

and find masses

mg =1.9MeV my =0  (7.7.96)

mg = 70 MeV ‘ me = 1.4GeV (7.7.97)
my = 4.2 GeV my = 174 GeV, (7.7.98)

where we have included RGE running. The mass ratios and the magnitudes of the CI?M
matrix elements are consistent with those inferred from data, except that m [/mg = 37 is
too High by ~ 50%, and |Vyp/Vep| = .11 is too large by ~ 10%. Note that we are partially
successful in understanding the smallness of my/m;: the dimensionless parameter required
to fit this mass ratio, oy, is ~ 1/10 rather than ~ 1/60. The most serious problem with
the model as presented so far is that there is no CP violation. This is easily remedied: if
we allow the triplet VEVs to be complex, then we are left with an irremovable phase in the
CKM matrix, provided the phases of the T, VEVs on the (Q3,U°3) and (Q1, Uc3) branes
are different.

We find it encouraging that the simple, regular grid shown in Fig. 7.7 can describe
quark masses e,nd mixings so well. Perhaps the strangest, least desirable feature of this grid

is our peculiar location relative to it. This motivates the grid shown in Fig. 7.8, in which

our brane is located at the precise center. Given that we are in the middle, located on a

HThe precise value of ar is fixed by fitting the top mass.
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Q1U®3

Q3U°1

Q3U*®3 ’ .

Q2U°2

QIU®3

Dt D2 D3 D3 D2 D°1

Figure 7.8: The configuration of branes and source VEVs in the third grid model.

Q/U* brane and in between two D€ branes, this construc-tion fea.turesi the rhinimum number
of branes required to give masses to all three down-type quarks. We have eliminated the
free parameter y3; in its place we allow the D¢ brane spacing to differ from the spacing of
the Q/U* branes. With the orientation of source VEVs shown in Fig. 7.8, the up quark

Yukawa matrix is

0 0 ¢
AValo e 0], (7.7.99)
e 0 1

so that now the up quark obtains a sma.l] mass proportional to ee’. If we choose our free
parameters (m,, Spe, SQ)UC, ay, o) to be (.23, 2.75, 8, .2, ~ 1), then we obtain
976 .219 .0057 |
Vekm =\ 219 975 .039 |, (7.7.100)

.0030 .039 .999
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and

mg = 4.3 MeV my = 1.3MeV (7.7.101)
- mg = 130 MeV me = 1.3GeV (7.7.102)
mp = 4.3 GeV my = 174 GeV. (7.7.103)

All masses and mixings agree with experiment at the 50% level: |Vi4| and mg4/m, are both
too small by ~ 25%, while |V,;3|/|Ve| is too large by ~ 50%. Again, we find it intriguing
that the symmetric grid of Fig. 7.8, with our 3 brane at its center, can account rather well

for the pattern of quark masses and mixings.

7.8 Conclusions

The gauge hierarchy problem has motivated several directions for constructing
theories beyond the standard model. Each of these has presented certain challenges and
opportunities for mé,king progress on the flavor problem. Constructing realistic theories
of fermion masses in technicolor theories without fundamental scalars proved to be very
difficult - especially incorporating the heavy top quark. In the simplest supersymmetric
theories, the Yukawa couplings of the standard model are simply copied as superpotential
interactions. As in the standard model there is an economical description which provides
no understanding of the origin of flavor. The ideas for understanding the origin of small
dimensionless Yukawa couplings are the same as for theories without suﬁersymmetry: per-
turbative loops or the Froggatt Nielsen mechanism using hierarchies of mass scales. | While
there are new twist.s on these old ideas — superpartners can be in the loop and the dynamics

of many strongly interacting supersymmetric theories are understood — at the end of the
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day one is tempted to say that supersymmetry did not allow much progress in understand-
ing flavor. In fact, for supersymmetric theories the question has been how to avoid taking
a step in the wrong direction: there are severe constraints from flavor-changing and CP
. violating processes on the form of the soft supersymmetry bréaking interactions involving
squarks and sleptons. While the answer motivated some flavor groups, it may be that these
constraints are telling us more about how supersymmetry is broken than about how flavor

is broken.

In contrast, if we live on a three brane at some location in the bulk, with the
fundamental scale from our viewpoint of order a TeV, then the constraints on thepries of
flavor are radically altered, and 'a whole new world of flavor models is>opened up. At first
sight it again appears that we are heading in the wrong\ direction: how could disastrous
flavor changing effects be avoided from operators generated at such a low scale, from familons
and frqm light flavon exchange? We have argued that all three objections are immediately
removed by having a discrete non-Abelian flavor group spontaneously broken on source
branes in the bulk. The fundamental scale of flavor breaking on these source branes is
order unity, but the breaking eﬁ'écts on our 3-brane are small because the source branes are
distant from us. The origin of the flavor parameters is now é, convolution of two effects:
the geometrical configuration of the source branes in the bulk and our location relative to
them, and the random relative orientations of the flavor breaking vevs on the various source
branes. Phenomenology places some constraints on these effects, and energetics suggest that
the brane configuration will be highly symmetrical. We find that the convolution of these

two effects has sufficient complexity to lead to the collection of mystifying flavor numbers
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nature has given us, while still originating from a very simple and elegant symmetrical
structure. An interesting aspect of tilis picture is that flavor symmetry is a crucial feature
of the extra dimensions and is important in determining the brane configurations in the
bulk. On the other hand, our gauge interactions are restricted to our 3-brane, and are

unimportant from the viewpoint of the bulk.

It is important to stress that these theories really are new, and cannot be mimicked
by 4 dimensional theories. For example, the relative size of entries in the Yukawa matrices
are governed by dista,nces:to sources from which flavor breaking is shone. These relative
distances involve factors, such as v/2 and v/5 as shown in eqn. [7.7.91], which are charac-
teristic of the spatial geometry. fﬁrthermore, these theories ;)f flavor can occur whether
the extra di.mensions are large, small of infinite, and whether the background geometry is
flat or curved. In addition, the_1je are new ideas for a qualitative explanation of features of
the fermion mass spectrum. In grid theories a fermion mass hierarchy is inevitable — our
3-brane must be located closer to some source branes than to others. The uniquely heavy
top quark is explained by having our 3-brane located on source branes which break flavor
symmetry in the up sector. The origin of m;/m; may be a brane configuration such as the
one shown in Figure 8, where our 3—bréne lies equidistant between two source branes for

breaking flavor in the down sector.

As well as a new structure for flavor, and new ideas for qualitative features of the
fermion mass spectrum, theories in extra dimension offer a completely new mechanism for
obtaining precise flavor parameter predictions. It is striking that there have been only a

few theoretical ideas which lead to relations amongst the flavor observables, such as 0, =~
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\/;nm and my = 3m,. Texture zeros, symmetry properties of the Yukawa matrices, and
grand unified relations between up, down and lepton sectors have been the most important
tools. Extra dimensions offer a completely new possibility: the Yukawa matrices on our 3-
brane at yo are given by x(yo) = )_; xsA(yo — yi) where y; is the location of source ¢ which
shines the flavor breaking x; via the propagator A(yo— ;). The positions y; depend only on
the lattice spacing, and there may be few possibie spontaneéus choices f01j the orientation
of x;. This basic idea can be implemented in a wide range of models.

There are clearly very many source brane structures to be considered, even concen-
trating on those with high symmetry, and one may question whether such. constructions are
plausible origins for the quark and lepton maés matrices. AWe find little reason to prefer the
alternative picture of multiple Frogatt-Nielsen fields and flavons with masses enormously
high'compa,red to the TeV scale. Rather than debate the relative merits, it seems worth

exploring this new class of theories in which there is a spatial geometry of flavor.
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Chapter 8

Supersymmetry Breaking from
Extra Dimensions

8.1 Introduction

| The four for<‘:es.of naturg are each cha,;acterized by a mass scale: \/m = Mp =
10'® GeV for gravity, Aw =~ 10° GeV for the weak interaction, Agcp ~ 0.1 GeV for the
strong interaction and m, = 0 for the electrorﬁagnetic interaction. What is the origin of
" these diverlse scales? Over the last 25 years a single dominant viewpoint has developed:
the largest scale, that of gravity, is fundamental, and the other scales are generated by
a quantum effect in gauge theories known as dimensional transmutation. If the coupling
' strengths of the other forces have values ap = 1/30 at the fundamental scale, then a
logarithmic evolution of these coupling strengths with energy leads, in non-Abelian theories,

to the generation of a new mass scale
A~ Mp e~ VP (8.1.1)

where the interaction becomes non-perturbative. On the other hand, Abelian theories, like
QED, remain perturbative to arbitrarily low scales. For strong and electromagnetic inter-

actions this viewpoint is immediately successful; but for the weak interaction the success
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is less clear, since the weak interactions are highly perturbative at the scale Aw. If Aw
is generated by a dimensional transmutation, it must happen indirectly by some new force
getting strong and triggering the breakdown of electroweak symmetry. There have been
different ideas about how this might occur: the simplest idea is technicolor, a scaled up
version ‘of the strong force{l]; another possibility has the new strong force first triggering
supefsymmetry breaking which in turn triggers electroﬁrea.k symmetry breaking(2]. For our
purposes the crucial thing about these very différent schemes is that they have a ;:ommon
mechanism underlying the origin of Ay: a dimensional transmutation, caused by the loga-
rithmic energy evolution of a gauge coupling constant, generates the exponential hierarchy

of (8.1.1).

In this letter, we propose an alternative mechanism for generating Aw exponen-
tially smaller than the fundamental scale. Our scheme requires two essential ingredients
beyond the standard model: supersymmetry, and coﬁpact extra dimensions of space. The
known gauge intéractions reside on a 3-brane, and physics of the surrounding bulk plays a

crucial role in generating an exponentially small scale of supersymmetry breaking.

Our mechanism is. based on the idea of “shining” [3]. A bulk scalar field, ¢, of
mass m, is coupled to a classical source, J, on a brane at location y = 0 in the bulk, thereby
acquiring an exponential profile ¢ o Je~™¥l in all regions of the bulk distant ﬁom the
source, m|y| > 1. If our brane is distant from the source, then this small exponential, .
- arising from the propagation of the heavy scalar across the bulk, can provide én origin

for very small dimensionless numbers on our brane, in particular for supersymmetry and
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electroweak symmetry breaking

Aw « M, e ™R (8.1.2)

where R is the distance scale of our brane from the source brane, and M, is _the funda-
mental scale of the theory. The possibility of such a supersymmetry-breaking mechanism
has béen noted before qualitatively [3]. If some of the extra dimensions are very ila.rge,
M, can be significantly below Mp, and could even be of order Aw, providing an alter- -
native viewpoint on the mass scales of the four fourées of nature [4]. We are concerned
with the case of M, > Aw, although M, need not be as large as Mp. In this letter we
give an explicit construction of shining which preserves 4-dimensional supersymrhetry, but
triggers an exponentially small amount of supersymmetry breaking due to the.presence of
our brane. A possible worry is that R might run to infinity, thus minimizing the vacuum
energy and restoring supersymmetry. We exhibit simple mechanisms, based oﬁ the same

supersymmetric shining, which stabilize the extra dimensions with finite radius.

8.2 Shining of Chiral Superﬁelds

We begin by constructing Ia 5d theofy, with a éource brane shining an exponential
profile for a bulk scalar, such that the equivalent 4d theory is exactly supersymmetric.
The 5d theory possesses N=1 supersymmetry in a representation containing two scalar
fields, ¢ and ¢, together with a four-component spinor ¥ = (%,9°). The equivalent 4d
theory has two families of chiral superfields ®(y) = (y) + 0v(y) + 62F(y) and &°(y) =
©°(y) + 0v°(y) + 8*°F(y). In the 4d theory; y can be viewed as a parameter labelling the

families of chiral superfields.
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Using this 4d chiral superﬁeld notation, we write the bulk action as

sB=/ﬁ%@,( /&m¢@+¢d@3

+ / d209%(m + 8,)®) (8.2.3)

Viewed.as a 4d theory, we have manifest supersymmetry, with the y integr;dl summing
over the family of chiral superfields. The form of the superpotential appears somewhat
unusual; however, on eliminating the auxiliary fields, the action in terms of componenf
fields describes a free Dirac fermion and two complex scalar fields in 5d. The 5d Lorentz
invariance is not manifest in (8.2.3), but this form is useful to us, since it makes the 4dv
supersyrhmetry manifest.

Next we locate a 3-brane at y = 0, and require that it provides a source, J, for a

chiral superfield in a way which preserves 4d s_upersymmetry;

Ws = /dyé(y) Jo°, : (8.2.4)

where we choose units so that the fundamental scale of the theory M, = 1. The condi-
" tions that this source shines scalar fields into the bulk such that supersymmetry is not

spontaneously broken are

Fy) = (m—08,)¢"=0 . (8.25)

Fey) = Jo@)+(m+)p=0 (8.2.6)

The first of these does not have any non-trivial solutions that do not blow up at infinity, or

which are well-defined on a circle. The second, however, has the solution

p(y) = —0(y)Je™™, (8.2.7)
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in infinite flat space and

' ~Je ™
p(y) = _1——_;:2?";}2— Yy € [0, 27 R), (8.2.8)

on a circle. Thus we see that ¢ has taken on a non-zero profile in the bulk, but in a
way that the energy of the system remains zero and one supersymmetry remains unbroken.
Interestingly, this is not the profile that occurs with non-supersymmetric shinjng, but is
asymmetric, shining in ohly one direction. One may have thought that the gradient energy
for any profile of a bulk scalar field would neccessarily bfea.k supersymmetry, but our ex-
ample shows this is not the césp. ‘The | F€|? contribution to the vacuum energy includes the
|3y¢|2 + |mp|? terms as expected, but these are cancelled by ¢*8,¢ terms, and at y = 0 by
terms which arise because J is coupled to the combination (m + 8,)¢(0). Note that if we
had written a linear term for @ instead of ®°, we would have shined a profile for ¢° in the
opposite direction. Likewise, if we had chosen a negative value for m, we would shine ¢ in

the opposite direction, since the 5d theory is invariant under m — —m, y — —y.
8.3 Supersymmetry breaking

Having learned how to shine a chiral superfield from a source brane across the
bulk, we now investigate whether a probe brane, located far from the source at y = ¥, can
sample the small value of ¢(7) to break supersymmetry by an exponentially small amount
on the probe brane. In addition to superfields which contain the standard model fields, the

probe brane contains a standard model singlet chiral superfield X, and has a superpotential

Wp = / dy 5(y — 5)(Warssu + 8X) . (83.9)
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where Wisss M is the superpotential of the minimal supersynimetric standard model. This

‘superpotential has F-flatness conditions

Fo(y) = Jo(y)+(m+38)p=0 . (8.3.10)
Fly) = dly-7z+(m-08y)e° (8.3.11)
Fx = o). : (8.3.12)

The first equatidn can only be satisﬁed by having a shined value for ©(7) # 0. Clearly,
the first and third equations cannot be simultaneously satisfied: we have an O’Raifeartaigh
thedry, and supersymmetry is spontaneously broken. As always in an O’Raifeartaigh theory,
at tree level there is a flat direction: the value for zis ﬁhdetermined, and if it is non-zero 1t
acts as a source shining ¢°. It is simple to understand what is going on. In the presence of
the source brane, the field ¢ is shined from the source brane, generating an exponentially
small linear term for X on the probe brane. After we have integrated out the heavy fields.

@ and ¢° we are simply left with the superpotential on the probe brane
Wp ~ Je ™ X, | (8.3.13)

which generates a nonzéero Fx ~ Je ™,

N MThis is not a precise equality, as the probe brane resists a non-zero (%), and
provides a back reaction on the bulk. It is simple to show that this effect is qualitatively
insignificant.

If the fifth dimension is a circle, then we can imagine that the probe brang is
stabilized at some location on the circle, or that it will drift such that it is immediately

next to the source brane where the resulting supersymmetry breaking is smallest, as in
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figure 8.1. In either case, we generate an exponentially small supersymmetry breaking scale
Fx.

Notice that this is not in the same spirit as recent works that use bulk dynamics to -
transmit distantly broken supersymmetry[5]. Rather, in our case, in the absence of either
source or probe brane, supersymmetry remains unbroken. It is the simultaneous presence’ of
both branes that leads to the exponentially small supersymmétry breaking. A simple option
for mediating the supersymmetry breaking from Fx to the standard mpdel superpartners

is to add non-renormalizable operators to the probe brane

ASp = / dizdysly - 7)( / d4e(-N1[—2XTXQTQ+;’..)

N / 429(—]&:XW°‘W&+.N)) o ~ (8314)

where Q) is a quark superfield and W* a standard model gauge field strength superfield. We
have inserted M, explicitly, so that the soft masses of the standard model superpartners
and z are m ~ Fx /M* ~ (J/M,)e~™. Until now we have not specified the \‘ralues for J
and m; the most natural values are J ~ M2 and m =~ M,.

Our entire theory is remarkably simple, and is specified by the bulk action Sp of
| (8.2.3), the source brane superpotential Wg of (8.2.4), and the interactions of (8.3.9) and

(8.3.14) on our brane.

8.4 Radius Stabilization

Mechanisms for dynamical supersymmetry breaking by dimensional transmutation[6]
typically suffer from the “dilaton runaway problem” when embedded in string theory(7):

since the coupling constant ap is a dynamical field, the vacuum energy is minimized as
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/source brane

~
probe brane ~ de -
(stabilized) ——™

Figure 8.1: The schematic profile of ¢ in the extra dimension. Whether our brane is stabi-

lized at some position or free to move under the given forces, we can achieve an exponentially
small value for ¢ and hence exponentially suppressed supersymmetry breaking.

ap — 0, where the theory becomes free. In our case, it appears there is an analogous
problem. Taking the supersymmetry-breaking brane to be free to drift, the vacuum energy
of the theory is

E ~ JleinRm (8.4.15)

so it is energetically favorable for the radius to grow to infinity. However, in contrast
with dynamical supersymmetry breaking scenarios, where one must simply assume that the
dilaton"vev is somehow prevented from running to infinity, stabilizing R turns out to be
quite simple.

Consider adding to the model of the previous section a second bulk multiplet

(@', @€, of mass m', with interactions
W = / dy [5(y)J' 8" + 8(y — 7)X' (&' + A)] (8.4.16)

where A and J’ are constants and X' is a chiral superfield. The terms in this superpotential
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are nearly identical to those of (8.3.9) and (8.2.4), except for the presence of the constant
A on the probe brane. We assume that both A and J' are real. In complete analogy with

the shining of ¢, the scalar ¢’ acquires a profile
o' (y) = —J'0(y)e™". (8.4.17)
Writing 7 = @R, the F-flatness condition for X’ becomes

. JI
log A(l — g—2nRmvy

m'R6 = (8.4.18)

which defines a real function R(6) provided that J'/A > 0. We assume m' is less than m
‘(by a factor of roughly 30, for very lé,rge M,), so that, for a given value of 6, the radius is
essentially détermined by the condition Fx: = 0, with a small correction —ARﬁ ~ —T%e“"‘/ m'_
coming from the |Fx|? contribution to the potential. However, we have already seen that
the vacuum energy is minimized when the probe brane drifts completely around the circle.
The value of R is thus immediately fixed by equation (8.4.18), with 8 = 2x. Its precise
value depends on A and J ', but if we take their ratio to be of order unity, then we find

2nRm' ~ 1. The supersymmetry breaking F-term is then Fy ~ Je 2™mE o je~—m/m’ g4

that the higher dimension interactions of (8.3.14) give superpartner masses
o~ e ™™ M, (8.4.19)

In this model the mass of the radion, the field associated with fluctuations of the size of the
circle, is Myggion ~ Fx/Mp ~ 1 TeV (M, /Mp).
Alternatively one can stabilize R in an entirely supersymmetric fashion. Here we

describe just one of a number of ways in which this can be done. Imagine supplementing
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the “clockwise” shining of ¢’ due to W’ with “counterclockwise” shining of a different scalar

@° of comparable mass, m, through the added superpotential terms
W= / dy [66)73 + 8y - D)X (¥ + B)]. (8.4.20)

Note that because @ (rather than 5”) couples to the source, the shining is in the opposite

direction as that of ¢'. The F-flatness condition for X,

mR(2mw — ) = log =< B —,
J(l — e—27rRm)

(8.4.21)

and the F-flatness condition for X’ independently determine R as a function of @, and for
broad ranges of parameters the combined constraints are satisfied by unique values of § and ’
R. This supersymmetric stabilization of the radius yields m,qgion, ~ M2/Mp, far above the

" TeV scale.

8.5 Gauge-Mediated Supersymmetry Breaking

We have presented a complete model in which exponentially small supersymmetry
breaking is generated as a bulk effect and communicated to the standard model via higher-
dimension operators. It is straightforward to modify the médel so that the supersymmetry
breaking is mediated instead by gauge interactions[8].

Consider the O’Raifeartaigh superpotential
W = X(Y? - u2) + mZY. : (8.5.22)

At tree level z is a flat direction, but provided u? < m?/2, radiative effects stabilize z at
the origin and give m2 ~ p?/16m%. Supersymmetry is broken by Fx = —u2. Models using

an O’Raifeartaigh superpotential to achieve low-energy supersymmetry breaking have been
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constructed in the past, but have required a small value for ;2 to be input by hand. Instead,
we use supersymmetric shining as an origin for the parameters u? and m by coupling the

brane superfields X, Y, and Z to the shone & according to
Whidden = MX (Y2 — ©(3)%) + 122 (9)2Y, (8.5.23)

where \; and )y are both of order unity and \; < A2 5/2. Next we introduce couphngs to

messenger fields Q and Q transforming under the standard model gauge group* ,
Wmessenge'r = alXQG + az‘b('g)Q_Q— V (8.5.24)

By taking a% > a3\ we ensure that the messenger scalars do eot acquire vevs. Tilese super-
potentials give Q and Q supersymmetric masses and supersymmetry-brea.king mass split-
tings of comparable order, M ~ VF ~ y) The messengers then feed the supersymmetry
breaking into the standard model in the usual way, yielding soft supersymmetry-breaking'
parameters of order m ~ ——;(p(y) Fixing the radius R by either of the mechanisms already
described then leads to m ~ g—;ge“m/ ™' Note that this is truly a model of low-energy su-
persymmetry breaking, with VF ~ 1672m ~ 100 TeV, allowing for decays of the NLSP
within a detector length. Moreover, this small value for VF is favored by cosmology in that
it suppresses the gravitino energy density[9].

While there is typically a severe p problem in ga,uge-medieted theories (10], it is

easily solved with our mechanism by shining u in the superpotential with a term

W D Ao(y)H Hs. (8.5.25)

*The superpotentials of (8.5.23) and (8.5.24) are not justified by symmetries. However, it is not difficult
to modify things, for instance by shining both ® and ®°, in such a way that symmetries select superpotentials
that give the same essential results.
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With A ~ 1/30, problems of né,tura.lness are much less severe than in theories where su-
persymmetry is broken dynamically. If By = 0 at trée level, radiative effects can generate
a small By and large tan B [11]. Likewise, in 'gravity mediated theories, a shined term
J d?0®(g)H1H; can also generate 'a,n appropriate value for u, while [d*X'XH; H, gen-
erates.zBu. .Although <p»is related to supersymmetry breaking, this is distinct from the
Giudice-Masiero mechénism. Absent the superﬁgld X, supers&mmetry is preserved, but
the value of p is unchanged.

Depending on whether supersymmetric or supersymmetry breaking stabilization of
the radius is employed, the radion mass is either m,qgion ~ M2/Mp OF Myagion ~ VF [Mp ~
1 eV. (M, /Mp). Even the latter case is safe, since the limit on the radion mass is on thé

mm~?! scale, at the limits of experimental probes of gravity at short distances.
8.6 Conclusions

Dimensional transmutation, (8.1.1), and shining, (8.1.2), are alternative mecha-
nisms for taking a dimensionless input of order 30 and generating an exponentially small
mass hierarchy. These mass hierarchies can explain the scales of symmetry breaking, for
instance of a global ﬂavop symmetry, or of supersymmetry, as we have discussed. While
dimensional transmutation is a quantum effect requiring an initial coupling which is highly
perﬁurbative, 1/ap = 30, shining is classical and requires a bulk distance scale of size
R ~ 30M;'. Such a radius can in _turn be stabilized in-a simple way. We presented two
standard ways of communicating this exponentially small sﬁpersymmetfy breaking, through
higher-dimensional operators or via standard model gauge interactions. It is clearly possible

to employ other mechanisms, such as those discussed in [5]. Our theories are remarkably
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simple, using only free classical dynamics in one extra dimension. Extensions to more di-
mensions should be straightforward. While we have concentrated on constructing effective
theories with exponentially small global supersymmetry breaking, it will be interesting to
embed these models in a consistent local supergravity. It will also be interesting to explore
whether any of these mechanisms can be realized in the D-brane construction of non-BPS

states in string theory.
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Chapter 9

Conclusion

With the Large Hadron Collider af CERN scheduled to come on line in 2006 or
2007, we ha&e hope of finally studying fully the energy regime we have known since Fermi
first wrote down his theory of we>a.k interactions. Likewise, BaBar and Bell will give us »
tremendoﬁs data into the nature of CP violation, while SNO, KAMLand, Minos, K2K and

other will give us a plethora of data on neutrino masses.

We have seen that we already have tremendous information on neutrino masses
and CP violation. We have great hopes for signals from supersymmetry, or the presence
of extra dimensions, and already have made great strides in preparing for the flood of

information that these experiments should yield.

However, given these future data, it is imperative that we do not simple bide our
time waiting for the results. Given the many possibilities that we have already developed, -
the particula,r signals, even if within one of the frameworks already thought of, could be
something we have not ﬁonsidered. ‘We have the hope of understanding better the nature
of matter, of pushing our understanding of the history of the universe back farther, and of

answering innumerable questions posed over the last seventy years. In doing so, hopefully,
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and in all likelihood, we will generate volumes more.
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Appendix A

The Stability Index

A.1 “Formalism” of the Stability Index

It is difficult to establish a formalism for the stability index, because it involves an
inherently ill-defined quantity, naﬁlely, what constitutes an order one quantity. However,
the potential instability of various predictions to variations in these order one parameters
makes some attempt to quantify this necessary. Such a quantification should be relatively

insensitive to what precisely constitutes an “order one quantity”.
Therefore, we demand the following quantities of the index:

‘e An “order one” quantity should be defined as a quantity x with some probability
distribution P(z) to occur in an interval about 1. For reasons that will become clear later,
it. will be useful to consider instead the quantity P(y), where z = 109.

.o This distribution should be “sensible”, namely

1. P(d:) should be an even function in Log(z); that is, P(y) is even in y.

2. P(y) should achieve its maximum value at 0.
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3. P(y) should have a spread characterized by its variance,

v® = / " B

—00
the variance then quantifying what “order one” is numerically.

4. A product of two sensible distributions, correlated or uncorrelated, should be

sensible.

e The index should have similar implications regardless of P(y), so long as it is sensible.
e The definition of P(y) should be the only necessary input.

‘We shall explore the motivation for these assumptions and will shortly see that
the presented index nearly meets: the requirements, and with minor mddiﬁcatioﬁs can meet
them enitrely.l

We assume that the expectation value of z, and of any products of z, is unity. It
follows immediately that P(y) should be even in y. We do not have strong .a.rguments in
favor of this assumption, and if it were relaxed, the formalism could be suitably modified.

For instance, consider the seemingly sensible distribution
2, f <z <3

P)={ "

0, otherwise.

which has been normalized to give total probability 1. The expectation value of a product

of n uncorrelated variables with such a distribution would be °
<X >= /d"’(L‘HP(m,)mz = (lg)n (A.l.l)
y 3

Such a numerical pile-up of the central value of a product of order unity coefficients is

excluded by our assumption.
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What constitutes a “sensible” distribution is, of course, a judgement call. Exam-

ples of what we consider sensible distributions would be
e Flat distributions taking on the value 1/a from —a/2 to a/2
e Exponential distributions with standard deviation o

o Linearly decreasing distributions of the form
()(-Llyl+b), f-a<y<aq; |
0, | v otherwise.
In fact, it can be shown that the last case it just the product of two uncorrelated quantities’
of the first type.
| In all of these cases, the next moment (:1:4) ié irrelevant in quantifying the likelihood ‘
of the variable being within a particular region about zero. Requirement 3 is then simply
a statement that a sensible distribution should simply have one quantity, its variance, to -
determine how confident we are that the variable is within that region. This will then allow -
us to be more confident in deducing the significance of the variance of some product.
This being stated, we can actually go about constructing some approximation of '
confidence intervals. The ability to describe the distribution of one variable By its variance
is useful in allowing us to calculate the variances for higher products. We begin by writing

the formal expression for the probability distribution of n uncorrelated variables z; = 10%

with probability distributions []; P(y;). We have
Pl = [ ey Piwoe - X w) (A12)
i i

This expression is tedious to calculate for given P(y), particularly for large n.
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However, its variance is a relatively simply calculation.

2= [ 6P = [ @ ary(C P [ Pwoc - S w)

Expanding the squared term we find terms
0, fori # j;
/dz @y iy ([ [ Piwi))o(z =) _w) = '
t g vi2 , ifi=4,

giving

2 — E : 2
Vzuncorr = Y;
1

For n correlated variables, a similar calculations yields

2 2,2

Vzeorr = TV0 .

where v? is the variance of the original variable.

(A.1.3)

(A.1.4)

(A.1.5)

(A.1.6)

Thus, a product of n correlated order one quantities is far more unstable than a

product of n uncorrelated order one quantities. Simply counting the total number of order

one coefficients is not sufficient. Thus we will refer to a product of the form

4
i

(A.1.7)

as having index (3, n;) of type (n1,n2,...,ny). If some of the n; are repeated, we use the

shorthand of writing n/, if n is repeated j times. We assume all order one quantities have

the same distribution. A product of type (n1,ng,...,nmy), has variance

2 — 2 2
Ulni) = ”Ozni
1

(A.1.8)
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This works extremely well for products of order one coefficients. However, a sum
of order one coefficients is not necessarily order one. In these cases, it is usually best to

perform a Monte Carlo to determine the distribution.
A.2 Sensible distributions

To characterize the probability of a general product to be within a certain region
about 1, it is necessary to explore the particular forms of various distributions. We consider
three reasonable distributions to be i) the flat distribution, ii) the Gaussian distribution,
and iii) the linearly decreasing distribution.

A product of two equal width flat distributions yields a linear distribution, so we
need only consider tﬁe flat and Gaussian cases. Gaussian distributions are well understood:
prodqcts of yariables with Ga.ussian _ﬁ(y) functions are again Gaussian, allowing standard
statistical techniques to be a,pplied.

Products of flat distributions very quickly vbecome characterized by Gaussian dis-
tributions. We have performed explicit Monte Carlos for n = 1,2,3,5,7,9 uncorrelated
.variables. Even by n = 2 the Gaussian a.pproximation is good, and for n > 3 it is very
good. We thus believe it is reasonable to sjmply use Gaussian distributions, making a
statistical interpretation of the variances simple.

For a standard, we propose using a distribution with variance v = 1—12—, which
corresponds to the variance of a flat distribution for —% <y< % Changing the width
of sﬁch a distribution from 1 to a would amount to multiplying this variance by a. Such
generally mild sensitivity of the index to variations in the initial distribution is one its

desirable qualities. We can then take “l1-v” and “2-v” regions with |y| < v and |y| < 2v,
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respectively. As s.hould be clear, these should not be interpreted 'as the precise 67% and 95%
1 and 2-o regions, because o is not precisely defined. They are simply regions of medium
and strong cﬁnﬁdence, respectively.

As an example, consider a prediction with an unknown coefficient of order one
quantities of the form z2z573. We say this has index 2 +1 + 1 = 4 of type (2,1,1), which
we will write in shofthand as (2,12). Assuming the standa;fd variance given above, this
coefficient has variance v = \/ Z‘lii;_-tﬁ = \/g . Thus, we can h;,ve medium confidence that
the prediction for z is known within a factor of 10’ = 5, and strong confidence the the
prediction is within a factor of 102’.’ = 25.

We can also see that this reduces to the expected prediction in the case of a variable
of index 1 of type (1). It will have variance v = \/%- which gives medium confidence that
the prediction is known within a factor of 1.9, and strong confidence it is known within
a factor of 38 This is a good consistency check that the index predicts what we would

expect in the case of a single order one coefficient.
A.3 Reassessing the uncertainties in the U(2) neutrino model

In lieu of the preceding analysis; we address the index type of the predictions
already presented, and thus assess strbng and medium confidence regions of each prediciton.
We list all uncertainties for the general theory in ta;ble Al

In the general theory with the S-field, the atmospheric mixing angle is completely
stable, while the solar angle is of approximate type (14) = (1,1,1,1). However, it involves
a sum of order one coefficients, motivating the use of Monte Carlos. Since a sum is in-

volved, the relative sign of the order one quantities becomes relevant, and we list those
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quantity | type : Sign = | Range of Med Range of Strong
(*=approx type) convention | Confidence Confidence

Outm 0 n/a 2 exact exact

0o 4* + (0.002,0.03) (0.0006,0.1)

0o 4* - (0.005,0.012) (0.0001, 0.06)
2y ; (2,12) none (2,50)eV (0.4,250)eV

MmNy, (4,3,22,1) none (17MeV,40GeV) (300keV,1.9TeV)

MmNy (4,2%) none (470MeV,870GeV) (11MeV,37TeV)

Table A.1: General Theory: uncertainties in predicitions. The regions listed here are simply
for the uncertainty due to order one coefficients. Additional error due to uncertainty in input
quantities, in particular in m,,, can also be significant.

cases seperately. These Monte Carlos allow us to claim that we have medium confidence

that 6lies within (0.002,0.03) and strong confidence that it lies within (0.0001, 0.1), giving

large overlap of the BP98 region.

The mass of the pseudo-Dirac neutrino has stability index 5 of type (2,13), giving
a medium confidence to know this within a factor of 5, and strong confidence within a factor
of 25. Given the uncertainty in m2,,, and 6m?9, which determine the prediction, m, could

conceivably be as low as 0.1eV.

The masses of the right-handed states a,re;, not known so well. The mass prediction
is, for the heavier state, of type (4,2%), and, for the lighter state, of type (4; 3,2%2,1). This
would give medium confidence to know the masses at factors of 43 and 48, and strong
confidence at factors of 1800 and 2300, respectively. The cosmological implications of these

neutrinos are very uncertain, given that the lighter could be well over a TeV in mass.

Without the S field, certain uncertainties change. The precise nature of the changes
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depends on which splitting operators are included and what sign convention is taken. Be-
cause of the large number of permutations, we list only the basic results. The atmospheric
angle is, as expected, completely certain. The solar angle becr;mes slightly more uncertain,
but still overlaps BP98 well. The heaviest two righthanded masses typically become less
certain by a factor of roughly 100, but the uncertainty is so large that the phenomenological
predictions réma,in the same. The only dramatic difference in the variant theory is that v,
has a medium confidence region on its mass of (24eV, 4keV), and a strong confidence region
of (2eV,48keV). Including the uncertainties in the input quantities, the mass could be as

low as 0.4eV, which escapes the KARMEN bound, although narrowly.
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