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Abstract 

New Perspectives in Physics Beyond the Standard Model 

by 

Neal Jonathan Weiner 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Lawrence Hall, Chair 

In 1934 Fermi postulated a theory for weak interactions containing a dimensionful 

coupling with a size of roughly 250Ge V. Only now are we finally exploring this energy 

regime. What arises is an open question: supersymmetry and large extra dimensions are two 

possible scenarios. Meanwhile, other experiments will begin providing definitive information 

into the nature of neutrino masses and CP violation. In this paper, we explore features 

of possible theoretical scenarios, and study the phenomenological implications of various 

models addressing the open questions surrounding these issues. 

Professor Lawrence Hall 
Dissertation Committee Chair 
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Chapter 1 

Introduction 

Particle physics theory has enjoyed a long stretch of tremendous success. Up 

until recently, there was no known experimental deviation from the standard model except 

gravity. Precision measurements have repeatedly confirmed standard model predictions, 

such as measurements of the anomalous magnetic moment of the electron (accurate at one 

part in 108), the muon anomalous magnetic moment (accurate at one part in 105 ), and the 

consistency of Mw, Mz and sin2 Ow, as well as many others. 

Nonetheless, particle theorists generally consider the standard model merely an 

effective theory, valid in the energy regime below some scale A. It leaves open the question 

of the origin of CP violation, has nineteen undetermined parameters, does not include 

neutrino masses or an understanding of their small size, and is unstable against radiative 

corrections. 

All of these things suggest that physics at some scale greater than presently tested 

regimes is responsible for these things. Extensions of the standard model introduce new 
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questions that need answering, and, in answering them, often give new experimental sig-

nals that will, hopefully, allow us to distinguish them in the near future. Moreover, new 

relationships between these issues appear as we look at particular extensions beyond the 

standard model. 

1.1 The Standard Model 

The Standard Model (SM) of particle physics is the SU(2) ® U(l) theory of weak 

and electromagnetic interactions combined with the SU(3) theory of strong interactions 

between quarks. 

The action for the theory is 

(1.1) 

+ 

+ 

+ 

In this expression, i and j are generation indices (u,c,t for up type quarks, d,s,b for down 

type quarks, e, p,, 7 for the charged leptons and lie, lip. and ll7 for the neutrinos). D is the 

gauge covariant derivative, 

D -·a _ · 'YB _ · TSU(2)Ai _. T.su(3)Gi 
p. - p. 't9 J1 29 i p. 't9s l Jl" (1.2) 
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Field SU(3) SU(2) U(1) 

Q 3 2 1/6 

u 3 1 -1/3 

D 3 1 2/3 

L 1 2 -1/2 

E 1 1 1 

H 1 2 -1/2 

Table 1.1: 'Iransformation properties of SM fields under SU(3) ® SU(2) ® U(1). 

The gauge field strength tensor is defined as 

(1.3) 

and the Ti are the generators of the group in question. The representations and charges 

of the fields are shown in table 1.1. fi = iT2su(2
) H* carries the proper gauge numbers for 

Yukawas for up type fermions. 

This action is invariant under local gauge transformations. However, the potential 

for the scalar field </> has a negative mass squared, making it energetically favorable for </> 

to take<on a vacuum expectation value (vev), spontaneously breaking the SU(2) ® U(1)y 

symmetry down to U ( 1) EM. The vev of </> generates masses for three of the four electroweak 

gauge bosons, making their effects much weaker than those of the massless photon or gluons. 

The vev also generates masses for the fermions via the Yukawa terms. 

This action is remarkable in that it contains all known interactions (except gravity) 

and masses for all known particles (except neutrinos). In fact, it is nearly the most general, 
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renormalizeable action that can be written with the given field content 1 This is one of the 

great successes of the Standard Model. Baryon number violating operators are four-fermion 

operators, which are dimension six and nonrenormalizable. Many flavor changing processes 

such as 1-" -t e"( which are not observed correspond to nonrenormalizable operators as well. 

Their experimental absence is a great success of the standard model, but as we shall see, 

it also makes the possible observation of such things a great signal for physics beyond the 

standard model. 

1.2 Effective Field Theories 

For a great while, nonrenormalizable operators were considered a serious defect in 

a theory. In a renormalizable theory, all divergences arising in quantum corrections can be 

absorbed into observed couplings or precisely cancelled by other divergences in the theory. 

Nonrenormalizable terms, by contrast, introduce divergences that cannot be cancelled, even 

by a finite number of new operators, without introducing new divergences. 

Within the context of effective field theories, nonrenormalizable operators are not 

only not considered a defect, they are generally considered to be present unless forbidden 

by some symmetry. Effective theories are only 'considered valid below some energy scale 

A. Since nonrenormalizable operators come with dimemsionful coefficients, these coefficients 

will have a size typically of the order of A to some power, corresponding to the exchange of 

some particles with a mass roughly equal to A. The divergences of the theory will be cut 

off at A when the new particles can be resolved. 

1 An additional GG operator can be written for the SU(3) fields, which can violate CP in the strong 
interactions. 
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a) b) 

Figure 1.1: In l.la we see the low energy effective interaction. At higher energies, we can 
resolve this interaCtion to be the exchange of a W boson. 

Consider as an example the theory of weak interactions. If we restrict our attention 

to processes s < lGeV, our theory will consist of mesons, baryons and light leptons. In 

particular, we will observe the decay n+ --+ e+ve. This process can be understood in terms 

of the four fermion operator urf..taerP.ve, which we show in figure l.la. Such an operator is 

nonrenormalizable and generates divergences, such as through the diagram shown in figure 

1.2. However, we cannot understand the decay through any particle that would be produced 

at the energy scales in question. 

Does this mean that the theory is pathological? Of course not, the given operator 

is just an effective operator, giving the low energy effects of an exchange of a W-boson. 

When integrating over the momenta flowing through the loop in figure 1.2, at a scale of the 

order Ma,, the local four-fermion interaction is resolved to be the interaction in l.lb, and 

the diagram becomes a controlled divergence in a renormalizable theory. 

Thus, the presence of new physics at some energy scale motivates the inclusion of 

nonrenormalizable operators suppressed by the scale of the new physics. If we can motivate 

the need for new physics at some nearby energy scale, then we can generically expect the 
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Figure 1.2: The effective operator generates loop divergences, such as the one shown here. 

presence of nonrenormalizable operators, and thus signals of the new physics. Employing 

. notions of effective theory is will be instrumental in what lies ahead. Sometimes we have a 

clear idea of what the more fundamental theory is, but sometimes we may not even have 

a field theory above the scale, and instead something like string theory. If this is the case, 

effective field theory is all we have to work with. 

1. 3 CP Violation 

C,P and T were thought for a long time to be fundamental symmetries of nature. 

Quite simply, they correspond to exchange of particle and antiparticle (C), inversion of space 

via x. --7 -x {P), and time reversal via t --7 -t (T). It a theorem of local quantum field 

theory that their product, CPT, is a symmetry of the theory. The maximal parity violation 

present in the weak interactions showed that C and P were not fundamental symmetries. 

However, it appeared that the product, CP, remained a good symmetry of the theory. The 

discovery in 1964 of a CP violating decay of KL required the inclusion of CP violation in 



7 

any theory of elementary particles. 

Within the Standard Model, it is possible to include such effects. By allowing the 

Yukawa matrices to be complex, there is generically a phase that cannot be removed by field 

redefinitions. This phase will can explain the observed CP violating processes. However, if 

new physics is present near the weak scale, it could easily contribute to, or be the source of 

the observed signals, at least in principle. 

We are motivated to ask whether the standard model itself must be CP violating. 

Could all CP violation be generated in some new physics, in a so-called "superweak" theory? 

We shall see that recent improvements to the limit of D.MB. imply that pure superweak 

theories, while not excluded, no longer provide a good fit to the data. We will introduce 

class of general superweak theories in which all flavor changing interactions are governed 

by an approximate flavor symmetry which gives a "3 .mechanism". These theories are in 

good agreement with data, and predict low values for ivtdi,IVub/Vcbl, B(K+ ---+ 1r+vv), €1 /E 

and CP asymmetries in B decays, and high values for D.MB. and JB.JBB· An important 

example of such a theory is provided by weak scale supersymmetric theories with soft CP 

violation. The CP violation originates in the squark mass matrix, and, with phases of order 

unity, flavor symmetries can yield a correct prediction for the order of magnitude of EK· 

1.4 Flavor 

One of the most disappointing features of the standard model is the presence of 

nineteen undetermined parameters. Given the similarity in quantum numbers of u and t, 

for example, it seems unnatural that there should be five orders of magnitude difference 



8 

in their Yukawas, and similarly for b and d, r and e. Since the fundamental theory seems 

to distinguish them, it begs us to ask the question: what relates these particles? What 

allows the top to be so much heavier than the up, for instance? Furthermore, the CKM 

angles are generally small. If the yukawas were random matrices, why does the top decay 

predominantly to bottom, charm to strange, etc? 

One of the most appealing ideas is that of flavor symmetries [1]. Suppose that 

there is some global symmetry acting on the different generations. For instance, suppose 

there is a U(1) symmetry for which the heavy generation has charge 0, the intermediate 

generation has charge 1 and the lightest generation has charge 2. Then further assume that 

there is a scalar field¢ with charge -1. We then expect nonrenormalizable operators to be 

generated at some scale M F 

(1.4) 

If further the field ¢takes on a vev E.MF, then we will generate a texture 

(1.5) 

€2 € 1 

where it is understood that there are undetermined coefficients of order unity multiplying 

each entry of the texture. Such a texture then gives both small mixing angles and hierachical 

masses. 

When employing flavor symmetries within the context of an effective theory, we 

have a very powerful tool with which to address possible flavor changing signals. Non-
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renormalizable operators which are absent in the standard model should appear, and flavor 

symmetries will give us an idea of what size we should expect. In extensions of the stan-

dard model, we will see observable consequences of particular symmetries, and the utility 

of non-Abelian flavor symmetries. 

1.5 The Hierachy Problem 

Quantum corrections to parameters in our action are generally expected in a quan-

tum field theory. For instance, in QED, there is a correction to the mass of the electron 

given by 

(1.6) 

There are two interesting features of this expression: first, it is proportional to me. 

This is the result of a chiral symmetry of our theory in which we can, absent mass terms, 

separately transform the right- and left-chiral components of the electron. Secondly, the 

correction to the mass of the electron depends only logarithmically on the cutoff. The end 

result of this is that a small mass for the electron is technically natural: if we input a small 

mass into the theory at tree level, we do not expect quantum corrections to radically alter 

it. 

In contrast, scalar fields have no such chiral symmetry protecting their masses. 

Within the standard model there are quantum corrections to the mass squared of the higgs, 

which are expected to be of the order of the cutoff of the theory (figure 1.3). Thus, if 

we input a weak-scale mass for the higgs, quantum corrections should give a mass of the 
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h h 

W,Z 

h h 

·················· ..•............................................•.......... 

Figure 1.3: Two diagrams which contribute to the quadratically divergent corrections to 
the Higgs mass. 

order of the cutoff of the theory. Alternatively, if the physical mass of the higgs boson. is 

to be of the order of the weak scale, and if we expect the cutoff of the theory to be much 

higher than that, there must be a fine cancellation between the tree-level parameter and 

the quantum corrections. {For a cutoff at the Planck scale, we need a tuning of one part in 

1026 !) Furthermore, it is not sufficient to tune the tree level quantity against the one-loop 

correction, as at each order in perturbation theory we will introduce new divergences which 

will need tuning. 

The naturalness of such a procedure is known as the hierarchy problem, or what 

stabilizes the weak scale against radiative corrections? Generally it is assumed not that 

there is a fine cancellation to be explained, but rather that there is new physics near the 

weak scale that cuts off the divergence. 

The three most popular explanations of this are supersymmetry, technicolor, and 
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large extra dimensions. We will not consider the case of technicolor (for a review, see [2]), 

but will briefly review the other two alternatives. 

1.6 Supersymmetry 

Probably the most popular extension of the standard model is supersymmetry 

(SUSY), in which there is postulated a partner fermion for every boson in the theory, 

and likewise a partner boson for every fermion [3]. This solves the hierarchy problem 

in the following manner: the SM diagrams that generate divergences in the higgs mass 

are cancelled by the new diagrams in which superpartners propagate in the loop. More 

conceptually, supersymmetry relates the mass of the higgs boson to the mass of the higgsino, 

its SUSY partner, which is protected against radiative corrections by an approximate chiral 

symmetry (broken by the Higgsino mass J.L). 

Of course, we do not observe partners to SM fields, so supersymmetry must be 

broken. The cancellation between fermion and boson loops will only occur at a scale higher 

than the splitting of the masses of the SM fields from their spartners. If this splitting is of 

the order of the weak scale, then this naturally solves the hierarchy problem. Of course, 

what remains is the question of what sets the scale of supersymmetry breaking. We will 

explore this question later. 

Furthermore, the presence of new particles introduces many new parameters into 

the theory. Each new particle has SUSY-breaking masses as well as new mixing angles. If 

these quantities appear without any organizing principle, then we would expect a tremen­

dous amount ofFCNC and CP violating processes that have not been observed. There have 
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been many explanations given of why these processes do not occur, including non-Abelian 

flavor symmetries [4], gauge-mediated supersymmetry breaking [5], and others. 

The most convenient formulation of supersymmetry (in particular supersymme-

try with only one fermionic generator, so-called N = 1 supersymmetry) is in terms of 

superfields. (For a review of superfields, see, for instance, [6].) The action of the Minimal 

Supersymmetric Extension of the Standard Model (MSSM) can be written 

s 

+ >..fJLiEiHd + 
16
!

92
Tr(Wa,iWt) + pHuHd) + h.c. 

+ J d4x d29d20(QteVQQ + uteVuu + nteVD D 

+ LteVLL + EteVEE + HjeVnvHv + H!evH,.Hu) 

+ J ~x 1/2m~huh~ + 1/2m~hdhd 

(1.7) 

+ 1/2ml[1lili* + 1/2met1eid* + 1/2mq[1qiqi* + 1/2inut1uiui* + 1/2mdt1~di* 

where i and j are flavor indices, g is a group index, and Vx = T~ va is the gives the group 

action on a field X. 

Of course, the supersymmetry breaking operators are much smaller than the 

Planck scale, which prompts another question: what physics generates this small scale? 

The traditional answer has been dimensional transmutation. Another question is why is 

p, which is a SUSY-conserving parameter, of the order of the SUSY-violating parameters? 

There are a variety of answers to this question. However, in the context of theories in higher 
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dimensions, there is a new alternative which simultaneously answers both these questions. 

We will employ supersymmetric "shining" of free massive chiral superfields in extra 

dimensions from a distant source brane. This can trigger exponentially small supersymme­

try breaking on our brane of order e-2'~~"R, where R is the radius of the extra dimensions. 

This supersymmetry breaking can be transmitted to the superpartners in a number of ways, 

for instance by gravity or via the standard model gauge interactions. The radius R can eas­

ily be stabilized at a size 0(10) larger that the fundamental scale. The models we will see 

are extremely simple, relying only on free, classical bulk dynamics to solve the hierarchy 

problem. 

1. 7 Large Extra Dimensions 

At the heart of the hierarchy problem is the idea that within the standard model, 

there are only two dimensionful parameters: Mw ~ 100 GeV and Mpl ~ 1019 GeV. If we 

take the theory to be valid up to the Planck scale, where quantum gravity effects become 

significant, we expect a correction to the Higgs mass of the order of the Planck scale. This 

pres~pposes that the Planck scale is a fundamental quantity in nature. As first proposed 

in [7], this need not necessarily be the case. 

In all versions of string theory, one universal element is the presence of extra 

dimensions (that is, d > 4). Arkani-Hamed; Dimopolous and Dvali proposed that if the 

size of the extra dimensions (the "bulk") is much larger than the fundamental scale of the 

theory M*, then M* can be much less than gravity. If the bulk is large enough, then M* 

could be of the order of the weak scale. The physics cutting off the Higgs mass divergence 
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could be string theory itself! 

There are many constraints on these theories (which are summarized in [8]), but 

there is no a priori reason to reject them. However, if the cutoff of the theory is O(TeV), we 

need to understand if we can control the potentially harmful flavor changing operators that 

would otherwise be generated. In fact, generating flavor at the Te V scale while avoiding 

flavor-changing difficulties appears prohibitively difficult at first sight. We will see to the 

contrary that having such a large bulk allows us to lower flavor physics close to the Te V scale. 

Small Yukawa couplings can be generated by "shining" badly broken flavor symmetries 

from distant branes, and flavor and CP-violating processes are adequately suppressed by 

these symmetries. We will further see how the extra dimensions avoid four dimensional 

disasters associated with light fields charged under flavor. We construct elegant and realistic 

theories of flavor based on the maximal U(3)5 flavor symmetry which naturally generate the 

simultaneous hierarchy of masses and mixing angles. All of this can be incorporated into 

a new framework for predictive theories of flavor, where our 3-brane is embedded within 

highly symmetrical configurations of higher-dimensional branes. 

In these theories, aside from phenomenological questions, we must understand_why 

the bulk is so much larger than the fundamental scale. We will see that in theories with 

(sets of) two large extra dimensions and supersymmetry in the bulk, the presence of non­

supersymmetric brane defects naturally induces a logarithmic potential for the volume of 

the transverse dimensions. Since the logarithm of the volume rather than the volume itself 

is the natural variable, parameters of 0{10) in the potential can generate an exponentially 

large size for the extra dimensions. This provides a true solution to the hierarchy problem, 
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on the same footing as technicolor or dynamical supersymmetry breaking. The area moduli 

have a Compton wavelength of about a millimeter and mediate Yukawa interactions with 

gravitational strength. We will see a simple explicit example of this idea which generates two 

exponentially large dimensions. In this model, the area modulus mass is in the millimeter 

range ttven for six dimensional Planck scales as high as ~00 TeV. 

1.8 Neutrino Masses 

Aside from gravity, there is only one known deviation from the standard model, 

namely neutrino masses. Within the standard model, there is no right handed neutrino, 

and hence no mass term for the neutrino. 

If neutrinos have a mass, and, like the quarks, their mass eigenstates are not 

aligned with the weak eigenstates, then production of a neutrino results in the production 

of a superposition of these states. Very simple quantum mechanics shows that a neutrino 

which begins as e can convert to J..L, or J..L to T, etc. Experiments showing a deficit in the 

solar neutrino flux have long been interpreted as potentially such a process. Recently, more 

conclusive evidence from Superkamiokande has demonstrated an anomaly in atmospheric 

neutrinos when comparing upward-going neutrinos and downward-going neutrinos. 

It seems simple to input a neutrino mass into the standard model by adding a 

right handed neutrino. However, the mass scale needed for solar and atmospheric neutrino 

experiments is O(lo-1 - w-3eV), several orders of magnitude smaller than the electron, 

the lightest fermion. 

We can understand the smallness of the neutrino mass from the point of view of 
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effective field theory. Although we cannot write a renormalizable, gauge-invariant mass 

term for the neutrino in the standard model, we can write down a dimension five operator 

1/Mx(ia2v*H)tvH, which gives a Majorana mass for the neutrino when the Higgs aquires 

a vev. The smallness of the observed neutrino mass is then understood by the suppression 

v f Mx relative to the weak scale. A significant particular example of this, explaining the 

scale Mx is the seesaw mechanism [9]. 

We will study both solar and atmospheric neutrino fluxes in the context of oscilla­

tions of the three known neutrinos. We will aim at a global view which identifies the various 

possibilities, rather than attempting the most accurate determination of the parameters of 

each scenario. For solar neutrinos we will emphasize the importance of performing a general 

analysis, independent of any particular solar model and we consider the possibility that any 

one of the techniques - chlorine, gallium or water Cerenkov - has a large unknown sys­

tematic error, so that its results should be discarded. The atmospheric neutrino anomaly 

is studied by paying special attention to the ratios of upward and downward going Ve and 

vp. fluxes. Both anomalies can be described in a minimal scheme where the respective os­

cillation frequencies are widely separated or in non-minimal schemes with two comparable 

oscillation frequencies. We discuss explicit forms of neutrino mass matrices in which both 

atmospheric and solar neutrino fluxes are explained. In the minimal scheme we identify 

only two 'zeroth order' textures that can result from unbroken symmetries. 

But what can we say about the structure of neutrino masses? Can we understand 

it together with theories of quark masses, or do we need a radical departure? If we are will 

to consider scenarios with a sterile neutrino, we can make connections with previous work 
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in flavor symmetries. A U(2) flavor symmetry can successfully ~escribe the charged fermion 

masses and mixings [4], and supress SUSY FCNC processes, making it a viable candidate 

for a theory of flavor. We will see that a direct application of this U(2) flavor symmetry 

automatically predicts a mixing of 45° for v11 => v8 , where v8 is a light, right-handed state. 

The introduction of an additional flavor symmetry acting on the right-handed neutrinos 

makes the model phenomenologically viable, explaining the solar neutrino deficit as well as 

the atmospheric neutrino anomaly, while giving a potential hot dark matter candidate and 

retaining the theory's predictivity in the quark sector. 

In quite a different direction, we will study the possibility that no structure is 

necessary for the neutrino mass matrices, so long as it is generated by a seesaw process. 

Such a scenario would be consistent with the observed hierarchy, even with the experimental 

constraints .currently in place. 

1.9 Summary 

In this paper we shall attempt to address some of these questions before us. What 

do we know about neutrino masses and what can we know? Is there a relationship between 

the structure of the masses of the known fermions? What information do we already have 

about CP violation and what limits does it place on the CP violation in new physics? 

More generally, are there consequences of the presence of additional dimensions, 

whether large or small? 

While definitive answers to these questions must wait for the round of experiments 

in progress and in preparation, we will discuss the hints we already have, and the evidence 
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we expect within the context of particular scenarios. 

' I 
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Chapter 2 

Alternative Theories of CP 

Violation 

2.1 CP Violation 

All observed CP violation can be described by the complex parameter f.K, which 

describes an imaginary contribution to the b..S = 2 mixing of the neutral K mesons. Such 

a mixing implies the existence of an effective Hamiltonian 

(2.1) 

where v = 247 GeV, and i,j run over possible gamma matrix structures. The dimensionless 

coefficients Cij are real in a basis where the standard model AS= 1 effective Hamiltonian 

has a real coefficient. In the case that the dominant term is ri = rj = 'YJ.£(1- 'Y5)/2, 

-1o lf.KI 0.75 
eLL = 4(1 ± o.3) . 10 2.3 . 10_3 BK . (2.2) 

The two basic issues of CP violation are 
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• What is the underlying physics which leads to 1£~)=2? Is it a very small effect 

originating at the weak scale, as suggested by the form C / v2 , or is it a larger effect 

generated by physics at higher energies? 

• How can the magnitude C ~ w-9 to w-10 be understood? 

2.2 The CKM Theory of CP Violation 

In the standard model all information about flavor and CP violation originates 

from the Yukawa coupling matrices. After electroweak symmetry breaking, this is man-

ifested in the Cabibbo-Kobayashi-Maskawa (CKM) matrix of the charged current inter-

actions of the W boson [1]. A one loop box diagram with internal top quarks gives the 

dominant contribution to 1£~)=2 via 

2 

CLL,SM = 
3
;1f2 Stim[(vtdvt~)

2] (2.3) 

where St ~ 2.6 is the res~lt of the loop integration, and g is the SU(2) gauge coupling 

constant. For a suitable choice of the CKM matrix elements, Vii, the standard model can 

provide a description of the observed CP violation. The fundamental reason for the size of 

the CP violation observed in nature remains a mystery, however, and must await a theory 

of flavor which can explain the values of lvtdl, lvts I and the CKM phase. If the CKM matrix 

contained no small parameters one would expect CLL,SM to be of order w-2 to w-3 rather 

than the observed value of order w-9 to w-10. 

Of course, measurements of CP conserving observables have shown that I '1/ij I are 

small fori =I j, and, given the measured values of IVusi and IVcbl, it is convenient to use the 



23 

Wolfenstein parameterization[2) of the CKM matrix, in which case (2.3) becomes 

cLL,sM ~ 20 · w-10(1- p)'fJ (2.4) 

If we assume that the CKM matrix does not have any other small parameters, the standard 

model yields a value of EK of the observed order of magnitude. While this is not a prediction, 

it is an important success of the standard model, and has made the CKM theory the leading 

candidate for CP violation. To our knowledge, there is no similar success in any published 

alternative to the CKM theory of CP violation, since in these theories the order of magnitude 

of C can only be fixed by fitting to the measured value of EK. In this letter we present such 

an alternative theory. 

Two further measurements of I Vii I, with i =/= j, would determine both p and 'fJ 

allowing a prediction of CLL,SM and fK. A fit to the two observables IVub/Vcbl and tl.MBd' 

but not EK, is shown in Figure 1. For all numerical work, we use the data and parameters 

listed in Table 1- for a discussion of these, and references, see [3). Unfortunately the large 

uncertainties make this a very weak prediction: 'fJ = 0 is allowed even at the 68% confidence 

level. Hence, from this one cannot claim strong evidence for CKM CP violation. 

Recent observations at LEP have improved the limit on Bs- Bs mixing, so that 

flMBs > 10.2 ps-1 at 95% confidence level [4). The result of a x2 fit in the standard model 

to p and 'fJ using the three observables I Vub /Vcb I, tl.M Bd and tl.M Bs , but not € K, is shown in 

figure 2. ForBs mixing the amplitude method is used [5, 3]. Comparing Figures 1 and 2, it 

is clear that the tl.MB. limit is now very significant. At 68% confidence level the standard 

model is able to predict the value of €K to within a factor of 2; however, at 90% confidence 

level 17 = 0 is allowed, so that at this level there is no prediction, only an upper bound. 
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Figure 2.1: The 68% and 95% C.L. contours fits of IVub/Vcbl and D.Msd in the pffi plane 
in the standard model. The curves correspond to constraints obtained from measurements 
of IVub/Vcbl, D..Msd and D.Ms. (The last constraint is not included in the fit). p = p(1-
>,2 /2), if= '17(1 - >,2 /2). 

While this is an important success of the CKM theory, it is still worth pursuing credible 

alternative theories of C P violation. 

2.3 Pure superweak theories 

A superweak theory [7] is one in which the CKM matrix is real, so 17 = 0, and 

1l~}=2 of eq. (1) originates from physics outside the standard model. We define a pure 

Table 2.1: Values of observables and parameters 

IVub/Vcbl 0.080 ± 0.020 
D..Msd 0.472 ± 0.018 ps-1 

D..Ms. > 10.2ps-1 at 95% C.L. 

fsdvBsd (200 ±50) MeV 

fs • .JBs./fs~~Bsd 1.10 ± 0.07[6] 
A 0.81 ± 0.04 

mt(mt) 168 ± 6 GeV 
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Figure 2.2: The 68% and 95% C.L. contours fits of IVub/Vcbl, D.MBd and D.MB. in the 
p f i7 plane in the standard model. The curves correspond to constraints obtained from 
measurements of IVub/Vcbl, D.MBd and D.MB • . w p = p(l - .A2 /2), i7 = 77(l - ).2 /2). 

superweak theory to be one where all flavor changing phenomena (other than EK) are 

accurately described by the real CKM matrix. Comparing Figures 1 and 2 at low 17, one 

sees that the new limit on B8 mixing has excluded superweak theories with negative p. This 

has important phenomenological consequences for pure superweak theories. 

We have computed x2 (p) in pure superweak theories, using as input the three 

observables IVub/Vcbl, D.MBd and D.MB.· We find that all negative values of pare excluded 

at greater than 99% confidence level. At positive p only the two observables IVub/"Vcbl and 

D.MBd' are relevant, and we find the most probable value of p to be +0.27. However, even 

this value of p corresponds to the pure superweak theory being excluded at 92% confidence 

level. Since the uncertainties are dominated by the theory of fBd ..jl3i3;, we take the view 

that this does not exclude purely superweak theories. In such theories positive values of p 

are 40 times more probable than negative values, and hence laige values for fB.JiJB ~ 250 
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MeV and small values for IVub/Vcbl ~ 0.06 are predicted. A pure superweak description of 

CP violation implies 

+0.20 {0.13) < p < 0.34 ( +0.41) at 68% {95%) confidence level {2.5) 

An important consequence of the new limit on B 8 mixing is the strong preference 

for positive p and the resulting small values for I vtd I ex 1-p. This is numerically significant: 

without the B 8 mixing result the superweak theory can also have negative values of p which 

give lvtdl about a factor of two larger than the positive p case. With the B 8 result, a pure 

superweak theory must have lvtdl at the lower end of the standard model range. Thus in a 

pure superweak theory, b..Mn. ex b..Mnd/lvtdl2 is predicted to be 

14 (10) ps-1 < (b..Mn.)PSW < 26 (32) ps-1 at 68% (95%) confidence level (2.6) 

By comparison, in the standard model 10.5 (9.5) ps-1 < b..Mn. < 15 {19) ps-1 at 68% 

{95%) confidence level. 

In the standard model, the branching ratio B(K+ ~ 1r+vv) is given by (8] 

(2.7) 

where C! = 3.9 X w-n' c2 = 0.4 ± 0.06 and C3 = 1.52 ± 0.07. In pure superweak theories, 

since p is positive and "' = 0, the branching ratio is lowered to 

B(K+ ~ 1r+vv) = (5.0 ± 1.0) · 10-11 .(2.8) 

relative to the standard model prediction of (6.6~U) · 10-11 .* The recent observation of a 

candidate event for this decay [9] is not sufficient to exclude pure superweak theories, but 

further data from this experiment could provide evidence against such theories. 

*This standard model result is smaller than that quoted in the literature because the improved limit on 
Bs mixing increases p even in the standard model. 
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2.4 General superweak theories 

Pure superweak theories are artificial: they do not possess a symmetry which 

allows 1-l~/,=2 of eq. (1), while forbidding similar b.B = 2 operators. If f.K is generated 

by new physics, why does this new physics not contribute to BB mixing? In general it 

would be expected to also contribute to 1:!.8 = 1 and b.B = 1 processes. In the absence of a 

fundamental theory of flavor, the relative sizes of the various flavor changing operators can 

be estimated only by introducing arguments based on approximate flavor symmetries. 

We assume that the underlying theory of flavor possesses a flavor symmetry group, 

G 1, and a mass scale M f. The breaking of G f, whether explicit or spontaneous, is described 

in the low energy effective theory by a set of dimensionless parameters, {f.}, each with a 

well defined G 1 transformation. The low energy effective theory of flavor is taken to be the 

most general operator expansion in powers of 1/ M f allowed by G 1 and {f.}. In the case 

that the CKM matrix can be made real, we call these general superweak theories. The 

phenomenology of such theories depends on G f, M f and {f.} and will typically not coincide 

with the pure superweak phenomenology. The b.B = 2 operators may lead to exotic CP 

violation in neutral B meson decays and may contribute to flMBd, allowing large values of 

lvtdl invalidating (2.6). Similarly the flS = 1 operators may invalidate (2.8), and may give 

an observable contribution to E
1 /f.. 

2.5 The effective Hamiltonian for the "3 mechanism" 

The dominant flavor changing neutral current (FCNC) interactions of the down 

sector of the standard model result from the "3 mechanism": small flavor breaking param-
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eters which mix the light quarks with the heavy third generation quarks, together with a 

large, order unity, breaking of the flavor symmetry that distinguishes the third generation 

from the first two. Hence, beneath the weak scale, the standard model yields an effective 

Hamiltonian with dominant FCNC operators which contain a "factor ~iVti for each flavor 

changing current didj, and a factor G'j,.mfjl61r2 ~ (1/167r2)(1/v2 ) from the loop integra-

tion. The relevant diagrams are alllloop, giving the (l/l61r2 ) factor, and involve the large 

GIM violation of the top quark mass; since there is no small flavor violating parameter, the 

rest of the loop integral has an order of magnitude given by dimensional analysis as (ljv2 ). 

Now consider physics beyond the standard model where the entire flavor structure 

of the theory beneath M 1 is controlled by G 1 and { E} - both the Yukawa matrices of 

the standard model, .X(E), and the non-standard model operators in 1leff(E). Since the 

dominant down sector, FCNC effects from .X( E) are known to arise from the "3 mechanism", 

we assume that G 1 and { E} are chosen so that the dominant such effects from 1leff (E) are 

also from the "3 mechanism". 

The most general parameterization of the "3 mechanism" in the down sector in-

volves four complex parameters: ELi = !ELi lei4>Li and E£4 = kl41ei4>Ri, i = 1, 2, which 

describe the mixing of dLi and d£4 with bL and bR. Assuming all phases to be of order 

unity, we can describe the "3 mechanism" in terms of just four real small parameters !ELi I 

and IERJ We make the additional simplifying assumption that IEL; I = k£41 = Ei, yielding 

the non-standard model interactions t 

- 1 -w 
I 

tit is straightforward to extend this Hamiltonian to the most general case of the "3 mechanism" involving 
four complex parameters. 
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where Ci are co~plex coefficients of order unity, and l is a lepton field.+ A sum on pos-

sible gamma matrix structures is understood for each operator. Since the flavor changing 

interactions from both the standard model and the new physics are governed by the same 

symmetry, we can choose €1 = lvtdl and €2 = IVtsl· Such interactions can arise from many 

choices of G 1 and { €}; the particular choice is unimportant, however, as the phenomenology 

rests only on three assumptions 

• There is an underlying theory of flavor based on symmetry G 1 and breaking param-

eters {€}. 

• The dominant non-standard model FCNC operators of the down sector arise from the 

"3 mechanism". 

• The symmetry breaking parameters of the down sector are left-right symmetric, and 
·• 

have phases of order unity. 

In the standard model, the dominant FCNC of the down sector arises from the "3 

mechanism", so that it is useful to describe the effective theory beneath the weak scale by 

eq. (2.9) with 

1 1 1 
·M2 = 161r2 v2 

f 
(2.10) 

and Ci real. This special case of the "3 mechanism" has a restricted set of gamma structures 

due to the left-handed nature of the weak interaction. 

twe do not consider lepton flavor violation in this letter. 
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2.6 Phenomenology of the "3 mechanism" in superweak the­

ories 

We have argued that pure superweak theories are artificial, and we now study 

superweak theories where FCNC interactions are generated by the "3 mechanism" and 

yield 1-£~~/ of (2.9). Why should such theories have Vii real when Ci are complex? One 

possibility is that a, forces the Yukawa matrices .A( E) to have a sufficiently simple form that 

they can be made real by field redefinitions. Another possibility will be discussed later. 

Since 1-l~~l will be the origin of all C P violati~n, one may wonder if it could 

also account for all of ilM Bd,s. This is not possible - charged current measurements, 

together with the unitarity of V, imply lvtdl and lvtsl are sufficiently large that W exchange 

contributes a significant fraction of ilM Bd,s. 

Given that the FCNC of both the standard model and exotic interactions have 

the for.m of (2.9), it would appear that the exotic interactions must give a large fraction 

of ilMBd,s since they are responsible for all of EK. This is not the case; in the standard 

model the ilS = 2 and tlB = 2 operators have chirality LL, whereas for a generic "3 

mechanism" they will have all chiral structures. It is known that the LR, ilS = 2, operator 

has a matrix element which is enhanced by about an order of magnitude relative to that 

of the LL operator [10], and that there is no similar enhancement in the ilB = 2 case. 

Furthermore, the LR operator is enhanced by QCD radiative corrections in the infrared 

[11]; with the enhancement at 1 GeV about a factor of 3 larger than at 5 GeV. Hence we 

conclude In a generic superweak theory, we expect that 1l~J1 leads to~ 3% contributions to 

ilMBd,s. There is considerable uncertainty in this percentage because of the uncertainty in 

I 
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the overall enhancement of the 6.8 = 2 and 6.B = 2 contributions from the LR operator, 

and because of the unknown order unity Ci coefficients. Given this result, we must evaluate 

how well these generic superweak theories can account for the data, and to what extent 

they lead to predictions. 

Let tl.d,s and 8d,s be the standard model and new physics contributions to 

(2.11) 

First we consider a perturbation around the pure superweak case, where the fractional 

contributions from new physics Fd,s = 8d,s/ tl.MBd,s are small. The central value of p, from 

6.MBd alone, changes by 6.p = 0.5Fd for very small Fd (6.p ~ 0.3Fd for Fd ~ 0.1). For 

positive Fd, this improves the fit of general superweak theories to tl.MBd and IVub/Vcbl· 

For example, Fd = 0.1 gives a central value of p = 0.28 with x2 (p = 0.28) ~ 2.4, which 

corresponds to 68% C. L. Since the allowed range of p is little changed from eq. (5), the 

prediction of smallllltdl persists in these general superweak theories, so that the prediction 

of eq. (7) for low values of B(K+ ~ n+vv) applies. Similarly, since pis little altered, the 

prediction for Bs mixing is 6.MB. = (tl.MBJPsw(1- Fd + F5 ), where the pure superweak 

prediction (tl.MB.)PSW is given in eq. (6). In this case the general superweak theory 

also predicts large values of 6.MB., although for negative F5 , it is not quite so large as 

There is a second class of general superweak theories which is not a perturbation 

about the parameters of the pure superweak theories. In general superweak theories, the 

limit tl.MB. > 10.2 ps-1 can be expressed asp > -0.06 + 0.5(Fd- F5 ). For negative Fd 

and positive F5 , the negative p region could become allowed. For example, Fs = -Fd = 
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0.1 (0.05) gives a theory in which p has a probability 25% (9%) of being negative. This class 

of superweak theories requires values of !Fd,s I which are larger than our expectation, and 

appear somewhat improbable. They have IVidl and B(K+ --t 1r+vv) at the upper end of 

the standard model range. In these theories l:l.M Bs is likely to be low, although it depends 

2. 7 Supersymmetry with a "3 mechanism" 

In general, the alternative theory of CP violation of 1-l~,f from the "3 mechanism" 

is not a strong competitor to the CKM theory of C P violation. The CKM theory, with 

two small measured parameters, IVusl and I"Vcbl, yields the correct order of magnitude for 

EK, while superweak theories with the "3 mechanism" apparently require a new scale Mt ~ 

30v ~ 10 TeV. However, there is the interesting possibility that the new physics generates 

FCNC operators only at 1 loop, as in the standard model. This would give Mt ~ 47rmf, 

with the mass of the new quanta close to the weak scale at m 1 ~ 1 Te V. We therefore take 

the view that the "3 mechanism" generating FCNC operators at 1 loop at the weak scale 

is a credible alternative to the CKM theory of CP violation. While not as minimal as the 

CKM theory, it correctly accounts for the order of magnitude of EK. 

Let .l represent d, s or b, left or right handed. New interactions of the form llH, 

where His some new heavy field, will generate FCNC at tree level, whereas lHH generates 

them at 1 loop. Thus the exotic new heavy particles at the weak scale should possess a 

parity so that they appear only in pairs. 

Weak scale supersymmetry allows a symmetry description of the weak scale, and 

leads to a successful prediction for the weak mixing angle. Furthermore, it incorporates the 

I 
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economical Higgs description of flavor of the standard model. R parity ensures that super-

partners appear pairwise in interactions, so that the dominant supersymmetric contributions 

to FCNC processes occur only at one loop. Supersymmetric theories have several new gen-

eration mixing matrices- in particular WL Rat the gluino interaction (dLt RWL RdL R)§. A 
' ' ' ' 

flavor symmetry, G f, can ensure that the largest contribution from superpartner exchange 

to FCNC occurs via the "3 mechanism" [12, 13]. If the small symmetry breaking parameters 

are left-right syminetric and real, this gives 1-l~~f of (2.9} with 

1 1 1 
M 2 = 16n2 m2 

f 
(2.12} 

where m is the average mass of the colored superpartners in the loop. As the superpartners 

are at the weak scale, m ::::::: v, and comparing with (2.10} one finds that, with weak scale 

supersymmetry, it may well be that €K receives comparable standard model and supersym-

metric contributions.§ 

Here we stress that weak scale supersymmetry can provide an important example 

of the general superweak theories discussed in this letter. The absence of CKM CP violation 

would be guaranteed if CP violation were soft- restricted to operators of dimension two 

and three. The Yukawa matr~.ces would then be real, so that there would be no C P violation 

from diagrams with internal quarks, but the scalar mass matrices would contain phases, so 

that CP violation would arise from diagrams with internal squarks.~ Soft CP violation in 

§Given the order of magnitude enhancement of the matrix element of the LR operator relative to the 
LL, and given the further order of magnitude enhancement of CLR relative to CLL from QCD scaling, one 
generically expects the supersymmetric contribution to be larger. However, these factors may be outweighed 
by colored superpartner masses somewhat larger than v, some degree of degeneracy between the third 
generation scalars and those of the lighter generations, and by Wii somewhat less than Vi;. We note that 
the QCD enhancement of CLR for the D..S = 2 operator[ll] was not included in [12, 13, 14] 

'~This is an alternative view to the one presented in [13], where the specific flavor symmetry forces forms 
for V and W matrices such that even the supersymmetric contribution to f K involves a phase originating 
from the Yukawa couplings. 
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supersymmetric theories, with FCNC operators arising from the "3 mechanism", represents 

a well-motivated and credible alternative to CKM CP violation, and will be explored in 

detail elsewhere. 

2.8 Summary 

Fits ofthe CKM matrix to IVub/Vcbl, !:1Mnd and !:1Mns show that at 68% C.L. the 

standard model correctly predicts f.K to better than a factor of two, while at 90% C.L. not 

even the order of magnitude can be predicted. On one hand the standard model is highly 

successful; on the other, there is still room for an alternative theory of CP violation. 

The recent improvement on the limit on !:1Mns [4) implies that pure superweak 

theories with negative p are excluded, while at positive p they are somewhat disfavored. 

Pure superweak theories allow 0.13 < p < 0.41 at 95% C.L., and predict high values for 

!:1Mns and fnvflJii and low values for IVub/Vcbl, B(K+-+ 1f+vv) and €
1 /€. 

We have argued that pure superweak theories are artificial, and have introduced 

general superweak theories, in which all FCNC are governed by an approximate flavor 

symmetry and the "3 mechanism." In this case the new physics induces other flavor changing 

operators in addition to the b.S = 2 operator responsible for f.Ki in particular, 0{3)% 

contributions to Bd,s mixing are expected. There are two important classes of general 

superweak theories, one with positive p and the other with negative p. The first can be 

viewed as a perturbation about the superweak case, with an improved fit to data, while 

retaining the characteristic predictions mentioned above. The negative p possibility appears 

less likely, and arises only if the new physics contributes more than 10% of !:1Mnd,s. In this 

case future data should show a high value for B(K+ -+ 1f+vv) and low values for b.MBs' 
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!BVBB, IVub/Vcbl, and E
1 
jE. All these superweak theories predict low values for the CP 

asymmetries in B meson decays. 

Weak scale supersymmetric theories with softly broken C P can provide an im­

portant example of general superweak theories. As in the CKM theory, assuming phases 

of order unity yields a correct prediction for the order of magnitude of f.K. In addition 

they have 9 = 0 at tree level, and it is interesting to seek a flavor symmetry which would 

sufficiently protect (}from radiative corrections to solve the strong CP problem. 
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Chapter 3 

Atmospheric and Solar Neutrinos 

3.1 Introduction 

The solar and atmospheric neutrino flux anomalies have both been considerably 

strengthened by recent observations from Super-Kamiokande. The solar neutrino flux is 

measured to be [1] 0.37 ± 0.03 of that expected from the 'BP95' standard solar model [2], 

without including any theoretical error. This is the fifth solar neutrino experiment to report 

results in strong disagreement with the predictions of solar models. Furthermore, using a 

solar model independent analysis, the measured solar fluxes are found to be in conflict 

with each other. For events at SuperKamiokande with visible energies of order a GeV, the 

ratio of 1 ring J.t-like to e-like events is 0.66 ± 0.10 that expected from calculations of the 

flux of neutrinos produced in the atmosphere in cosmic ray showers [3]. Furthermore, the 

distribution in zenith angle of these 1 ring events provides striking evidence for a depletion 

of Vp, which depends on the distance travelled by the neutrinos before reaching the Super­

Kamiokande detector. In particular, the observed up/down ratio of the multi-GeV, J.t-like 

events is 0.52 ± 0.07. This significantly strengthens the evidence that vp, oscillate as they 

traverse the earth. 
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In this paper, we interpret the solar and atmospheric neutrino flux anomalies 

in terms of oscillations of the three known neutrinos ve,p.,T- The lightness of these three 

neutrinos, relative to the charged fermions, can be simply understood as resulting from 

large SU(2)L ® U(l)y invariant masses for the right-handed neutrinos, via the see-saw 

mechanism. We do not consider the possibility of a fourth light neutrino, as it would have 

to be singlet under SU(2)L®U(l)y, and would either require a new mass scale far below the 

weak scale, running counter to the idea of the see-saw mechanism, or a more complicated 

see-saw. 

Theoretical ideas about generation mixing are guided by the quark sector, where 

the mixing angles are all small, indicating a hierarchical breaking of horizontal symmetries 

in nature. A similar hierarchy of horizontal symmetry breaking in the lepton sector is also 

likely to yield small angles, suggesting small probabilities for a neutrino to oscillate from one 

flavour to another. However, the solar and atmospheric neutrino flux measurements both 

require neutrino survival probabilities, Pee and P""' far from unity. Over a decade ago [4), 

it was realised that large angles were not necessary to account for the large suppression 

of solar neutrino fluxes- while Ve have charged current interactions in the solar medium, 

vp.,r do not, allowing a level crossing phenomena where a Ve state produced in the solar 

interior evolves to a vp.,r state as it traverses the sun. This simple picture can reconcile the 

three types of solar neutrino flux measurements with the standard solar model, for a mixing 

angle as small as 0.03 -a significant achievement. Could such resonant oscillations occur 

for atmospheric neutrinos in the earth, again allowing a small vacuum mixing angle? In 

this case, since the earth does not have a continuously varying density, the matter mixing 



40 

angle in the earth is much larger than the vacuum mixing angle only in a small range of 

energies. Hence, an oscillation interpretation of the atmospheric neutrino fluxes requires 

a large mixing angle, and calls into question the frequently stated theoretical prejudice in 

favour of small mixing angles. 

In this paper, we attempt to understand both solar and atmospheric neutrino fluxes 

using 3-generation neutrino oscillations, aiming at a global view which identifies the various 

possibilities, rather than attempting the most accurate determination of the parameters of 

each scenario. When data from chlorine, gallium and water Cerenkov detectors are fitted 

to a standard solar model, standard analyses find very small regions of neutrino mass and 

mixing parameters. For 2-generation mixing, these are known as the "small angle MSW", 
' 

"large angle MSW" and "just so" regions. This analysis has been extended to the case 

of three generations [5], with a single matter resonance in the sun, as suggested by the 

atmospheric neutrino data. The large and small angle MSW areas are found to merge into 

a single MSW volume of parameter space. In subsection 3.2.1, we study how this volume is 

enlarged when a solar model independent analysis of the solar fluxes replaces the use of a 

single solar model. In subsection 3.2.2 we extend our analysis to see what areas of neutrino 

parameter space become allowed if one of the three observational techniques to measure the 

solar fluxes is seriously in error. 

We combine these regions of parameters with those yielding the atmospheric fluxes, 

and find there is still considerable allowed ranges of masses and mixing angles. This is done 

in section 3.3, assuming that the smallest of the two neutrino squared mass differences is too 

small to affect the oscillations of atmospheric neutrinos (minimal scheme). In section 3.4, 
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on the contrary, we allow for the possibility that the two independent neutrino squared mass 

' 
differences are both large enough to affect atmospheric neutrino oscillatio:Qs (non minimal 

schemes). For solar neutrinos, this requires that there is a serious flaw either in at least one 

measurement technique or in solar model analyses. 

The forms of neutrino mass matrices that can lead to a large v/L .=: Vr mixing for 

atmospheric neutrinos are discussed in section 3.5. In section 3.6 only two 'zeroth order' 

textures for neutrinos masses are identified that can account for the atmospheric and solar 

neutrino data in the minimal scheme and can result from unbroken symmetries. 

Our conclusions are drawn in section 3.7. Based on a simple set of alternative hy-

potheses, we discuss how future meaSurements could eventually determine the two neutrino 

mass differences and the three mixing angles. 

3.2 Solar neutrinos: model-independent analysis 

In the flavour eigenstate basis, in which the charged lepton mass matrix is diagonal, 

the neutrino mass matrix is in general non-diagonal. It may be diagonalized by a unitary 

transformation: 

(3.2.1) 

where Vf and Vi are flavour and mass eigenstate fields, respectively. The leptonic analogue 

of the Cabibbo-Kobayashi-Maskawa mixing matrix is vr, since theW boson couples to the 

charged current ViL V/j'YP.eh. In addition to the ~hree Euler angles, V contains physical 

phases: one if the light neutrinos are Dirac, and three if they are Majorana. These flavour 
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and mass eigenstate fields destroy basis states which are related by 

(3.2.2) 

If some process creates a flavour eigenstate, lvt}, at timet= 0, then at a later timet it will 

have evolved to the state lvf, t} = Wf'(t)lvf'} via the matrix Schroedinger equation 

d'l/J m2 

idt = (V 2Evt +Ace+ E)'l/1 (3.2.3) 

where E is the energy of the relativistic neutrino, mv is the diagonal neutrino mass matrix 

with entries mi, E is an irrelevant term proportional to the unit matrix, and Ace represents 

matter effects. For neutrinos propagating in matter with electron number density Ne, Ace 

is a matrix with a single non-zero entry, At~= .../2GFNe. 

The mixing matrix V can be written quite generally as 

1 0 0 1 0 0 

(3.2.4) 

0 0 1 

where ~j ( ()ij) represents a rotation by ()ij in the ij plane. We have chosen a sequence of 

rotations which frequently arises in the diagonalization of simple hierarchical forms for the 

neutrino mass matrix, as illustrated in section 3.6. From equation (3.2.3) we see that the 

phases a and f3 never appear in oscillation phenomena, and hence can be dropped, giving 

(3.2.5) 

. Each ~j must diagonalize a symmetric~ x 2 sub-matrix determining tan 20ij, hence, without 

loss of generality, we may choose 0 5 ()ij ::; 1r /2, while 0 ::; <P < 21r. A more convenient 
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choice is to keep lh2,13 in the first quadrant, while 0 ~ 823,¢ ~ n. We choose to order the 

neutrino mass eigenstates so that ~m~3 > ~m~2 > 0, where ~mfj = mf- m~. Notice that 

with this parametrization Ve3 ~ 1 means 813 close to 0 or to 90°. 

To study solar neutrinos, we are interested only in the electron neutrino survival 

probability, Pee, and hence in the evolution of '1/Je· This evolution does not depend on 823 or 

on ¢ - on substituting (3.2.4) in (3.2.3), R23 and ¢ can be absorbed into redefined states 

tl and r'. Hence, we have shown quite generally that Pee depends only on four neutrino 

:For an oscillation explanation of the atmospheric neutrino fluxes, L1m~3 is suffi-

ciently large that it does not cause a resonance transition in the sun. In the Landau-Zehner 

approximation, the evolution equation (3.2.3) can be solved to give [6] 

1-P p 0 IVeTI
2 

Pee= (IVe1!2, IVe2!2, IVe3!2) p 1-P 0 IVe~l 2 (3.2.6) 

0 0 1 IVeTI
2 

where VeT are the mixing matrix elements in matter, and P is the transition probability 

between the states at resonance: 

E A = ~m~2 cos 2812 
2J2GpiNelo cos2 813 

(3.2.7) 

Here E is the neutrino energy, 0 is the step function, the 1 subscript indicates that Ne and 

its gradient dNe/ dx are evaluated at the resonance point, while the 0 subscript indicates 

the production point. The large mass splitting L1m~3 enters Pee only via the matter mixing 

angles, and decouples from these expressions in the limit that it is much larger than AnE, 

and also in the limit that 813 vanishes. For most of this section we make L1m~3 sufficiently 
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Figure 3.1: Values of (~BJ3, ~'IBe) measured by the Chlorine experiment (continuous lines), 
the Gallium experiment (dashed lines) and by the SuperKamiokande experiment (long 
dashed lines) assuming various neutrino oscillation schemes: • no oscillation in fig. 3.1a; 
• an energy-independent P(ve --+ ve) = 0.85 in fig. 3.lb; • the best-fit point of the small­
angle MSW oscillation in fig. 3.1c; • the best-fit point of the large-angle MSW oscillation 
in fig. 3.1d. 

large that it decouples, and we comment at the end on the effect on the allowed regions of 

parameter space for non-zero 013 and small ~m~3 , where ~m~3 effects may not decouple. 

I 

The signals Si at the three types of solar neutrino experiments are 

Si = J dE ~(E)[cri(E)Pee(E) + crf(E)(l- Pee(E))], i = {SK, Ga, Cl} (3.2.8)· 

where ~(E) is the total flux of solar neutrinos with energy E, and crf'~(E) are the interaction 

cross sections at experiment i for electron-type and non-electron-type neutrinos, respectively 
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(only the water Cerenkov detectors are sensitive to neutral currents, so a~a(E) = a~1 (E) = 

0). We will use the theoretical predictions of the various cross sections found in [7, 8]. 

The flux <i>(E) is broken into components in the standard way by specifying the production 

reaction, giving [7] 

<i>(E) = L <l>afa(E), with fooo fa(E) dE= 1 (3.2.9) 

and a = pp, pep,7Be,13N,150, 1"P, SS, hep. At this point we follow the (nearly) model-

independent treatment of the fluxes described in [9] by making the following assumptions: 

1. The energy dependence fa(E) of the single components of the neutrino fluxes pre-

dieted by solar models ([7, 2] for instance) are correct. In fact the fa(E) do not 

depend on the structure of the sun, and are. the same in any solar model that does 

not introduce non-standard electroweak effects [7]. 

2. The overall <1>01 can differ from their solar models predictions. However there are 

strong physical reasons to believe that the ratios <l>13N /<i>1so and ll>pep/<l>pp can be set 

to their solar SM values [2). Furthermore we neglect entirely hep and 17F neutrinos, 

which we expect to be extremely rare. 

3. The present total luminosity of the sun, K 0 , determines its present total neutrino 

luminosity as 

(3.2.10) 

where Q = 26.73 MeV is the energy released in the reaction 4p + 2e -+ 4ffe + 2ve, 

and K 0 = 8.53 · 1011 MeV cm-2 s-1 is the solar radiative flux at the earth. Using 

(3.2.10) amounts to assuming that the solar energy comes from nuclear reactions that 
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reach completion, and that the sun is essentially static over the 104 years employed 

by photons to random-walk out of the solar interior. 

After the first assumption we have one free parameter <I> 0 for each a; the second then 

reduces the number of free parameters to four, which we can take to be 

<I>7Be and (3.2.11) 

The luminosity constraint allows us to eliminate <I>p, giving 

(3.2.12) 

Since solar models give a stable prediction for <I>cNo/<I>SB = 0.22 [9], we have singled out 

this ratio and we will use its SSM value in our analysis. Variations of even an order of 

magnitude in the ratio affect negligibly our final results, since the two neutrino components 

have similar cross sections in existing detectors. 

3.2.1 Model-independent solar analysis- all experiments 

The signals now depend only on <l>8J3 and <I>7J3e, so that, for any given oscillation 

pattern Pee(E) it is possible to plot the three experimental results* [1, 10, 11, 12] 

(3.2.13a) 

(3.2.13b) 

(3.2.13c) 

as three bands in the ( <I>8J3, <I>7Be) plane. The three bands will in general not meet, giving 

interesting solar model independent restrictions on the oscillations parameters. 

•The SuperKamiokande experimentalists give directly the value of the flux they measure. The other ex­
periments involve more uncertain neutrino cross sections and prefer to give the frequency of events measured 
per target atom in their detector. For simplicity we have omitted this detail in the text, leaving a trivial 
inconsistency between eq. (3.2.13c) and (3.2.8). 
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Figure 3.2: Values of the x-square as 
function of an energy independent 
P(ve -+ ve)· The parameter .>.. is 
defined in eq. (3.2.14). Also shown 
is the x 2 with one experiment dis­
carded and .>.. = 1. 
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We begin the analysis by studying the case of no neutrino oscillations (Pee= 1). 

In this particular case the solar model independent analysis does not give a strong result. 

Surprisingly the three bands perfectly meet [9, 13] as shown in fig. 3.1a, but mainly in the 

unphysical ~?Be < 0 region, with a small area in the physical region lying within 2cr of 

each central value. Since the physical crossing region has a negligible ?se flux, the value of 

~cNo/~7Be becomes completely irrelevant. 

To discuss this case in a quantitative way and to deal with more general cases it 

is useful to introduce the x-square function 
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Figure 3.3: Allowed regions in the plane (sin2 2012, ~mt2 ) for 013 = 0,15° and 30°. The 
plots on the left assume that the BP solar model is correct. The plots on the right are the 
result of the solar model independent analysis described in the text. 
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where D.s:xp is the 1a uncertainty for experiment i, given in (3.2.13), q,SSM is the flux 
l. 

prediction of the solar model [2] and D.<P88M is the corresponding error matrix, taken with 

some generosity. The 1a ranges of <Pss and <P7J3e are represented by the ellipse in fig. 3.1. We 

perforin our analysis with two choi~es for D.<P =).. · ~q,SSM. We call the first choice, D.<P = 

D. q,SSM, "solar SM inspired"). The second choice, D. <P = 8 · D. q,SSM ("model independent") 

has the same shape as the first, but is eight times as large. The part of the analysis done 

using this D.<P is virtually free of solar physics input. The choice)..= 8 (rather than)..= oo) 

avoids unnatural values of <P7J3e· This choice essentially ignores solar physics considerations, 

but the virtue of having a number of independent experimental results is precisely that we 

need no longer rely heavily on solar modelling to gain insight into the underlying particle 

physics. 

Minimizing the x2 in the positive flux region we obtain minx~(Pee = 1) = 8.25. 

The usual criterion for goodness of fit says that a x2 with one degree of freedom larger than 

8.25 is obtained with a very small probability, p ~ 0.4% (a careful Monte Carlo treatment 



50 

of the c'P7Be > 0 constraint gives similar results [13]). We however remark that, if the sun 

really emits the best-fit fluxes, c'P7Be = 0 and cpBB = 2.5 106 fcm2s, there is a 10% probability 

that statistical fluctuations produce the present experimental data. 

We can just as easily investigate the slightly more general case of an energy inde­

pendent Pee· The dependence on the neutrino parameters ~my2 , fh2, and 613 arises through 

Peei if the survival probability is a constant, then we can minimize xl in the positive-flux 

region for any value of Pee to obtain minxl (Pee), which is plotted in fig. 3.2 for A= 1 (SSM 

analysis), A = 8 (SSM independent analysis) and A = oo (completely model independent 

analysis). For Pee,...., 0.85, minx~ drops to 5, but the fluxes required to get relatively small 

x2 values are disfavoured by solar physics considerations- c'PcNo and c'P7Be must be nearly 

made to vanish, as shown in fig 3.1b .. When Pee~ 1/2 the (accidental?) threefold crossing 

no longer occurs, so that this case can be firmly excluded in a solar-model independent 

way [9, 14] (see fig. 3.2). However, as we shall see in subsection 3.2.2, once we allow for 

the possibility that one type of experiment's results should be discarded, it is possible to 

obtain good fits of the data for constant Pee ,...., 1/2 without having to resort to unnatural 

flux values. 

Of course, we are interested in any points in parameter space that fit the data 

well, regardless of whether they lead to constant Pee· For any values of ~my2 , 612, and 613 

we can make plots similar to fig. 3.1a. Fig.s 3.1c and 3.1d show two examples that illustrate 

the familiar 2-generation small and large angle MSW solutions, which evidently fit the data 

well if standard solar model fluxes are used. 

In fig. 3.3 we show how the allowed regions in neutrino paramete~ space change 
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if we let the fluxes vary over an expanded range of values. For each point in (~m~2 , fh2, 

013) space, we minimize x~ and x~ by varying the fluxes within the physical region, and 

then we plot contours of min xi in the (sin2 (2012), ~m~2) plane for various values of 013· 

The results for the "SSM inspired" and "model independent" analyses are shown in fig.s 3.3 

(upperrow and lower row, re~pectively). The contours are for x2 = 3 and x2 = 6. 

For small 013 the "SSM inspired" results show the standard small and large angle 

MSW regions. For larger values of 013, the two MSW regions join, and, as 013 approaches 

1r /4, the solutions with large 0 12 disappear. For 013 = 1r J 4 the region with minx~ < 3 is in 

fact absent entirely. 

The "model independent" results similarly. exhibit a very strong 013 dependence. 

We see that the "model independent" analysis continues to give strong restrictions of the 

oscillation parameters - in particular the ~mi2 values with minx~ < 3 are always in the 

range ,.._, w-(475) eV2 . This will not remain true when we consider the consequences of 

ignoring one experiment's data in subsection 3.2.2. 

If <l>cNo/<I>ss is ten times larger than in SSM there are new allowed regions. How­

ever these possible new regions, ~ith ~m2 = w-(576) e V2 and sin2 2012 ;c, w-2 , are ex­

cluded in a model-independent way by the non observation of a day /night asymmetry at 

SuperKamiokande [1, 15]. The recent data [1] on this asymmetry in fact disfavour as well the 

large angle MSW solution of the SSM-inspired analysis. Moreover, we have not included 

in our x2 analysis the SuperKamiokande measurement of the distortion of the S.S spec­

trum [1, 15], because the present positive 1a signal could be produced by a <I>hep/<I>ss ratio 

15 times larger than the prediction of BP95 [2]. Without a very large hep flux, the present 
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measurement excludes an otherwise allowed region with A.m2 ~ w-4 e V2 and sin2 2912 in 

the range w-4 + w-1 [13, 16]. 

Our model independent analysis allows us to investigate how well present experi­

ments are able to measure the SSM-independent neutrino fluxes <I>sa and <1>7Be· This question 

is answered in fig. 3.4, where we plot the values of the fluxes that can give a good (x~ < 6) 

or very good (x~ < 3) fit for some value of the oscillation parameters A.mi2, 912 and 913· 

We see that the value of <I>sa is currently determined with an error larger than the solar 

model expectation. It will be directly measured in the new on-going SNO experiment. On 

the contrary the value of <1>7Be is at present totally unknown: in fact in the small angle MSW 

solutio1_1 the monochromatic "Be flux can be cpmpletely converted into ft neutrinos, that 

are not detected by existing experiments. Borexino will be able to detect neutral currents 

effects in this range of energies and probably allow a direct determination of <l>7J3e [13]. 

As discussed above we perform our analysis under the assumption that Am~3 is 

large enough that its effects decouple. For any given Am~3 it is straightforward to reproduce 

fig. 3.3 by using the exact expressions for 9f2 and 9~ in equation (3.2.6). In this way we find 

that for small913 ( ~ 15°), our results are insensitive to A.m~3 down to Am~3 = 5·10-4 eV2. 

For large 913, Am~3 effects start to become noticeable when Am~3 drops below 2 X w-3 eV2
; 

for example, for 913 = 40° and Am~3 = 5 · w-4 e V2
, the allowed region in the SM inspired 

analysis is significantly smaller than in the decoupled limit, with the X~in < 6 region never 

reaching sin2(2912) > 0.1. In spite of these changes for small Lim~3 , the essential features 

of fig. 3.3 in any case remain unchanged. 
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Figure 3.5: Fits of the solar data in the plane (sin2 2lh2 , !:l.m~2 f eV2
) for (}13 = 0, 15° and 30° 

assuming that one of the three solar neutrino experiments has a large unknown systematic 
error (SuperKamiokande in the first row, Chlorine in the second and Gallium in the third) 
and is therefore discarded from the analysis. The contours are for x2 = 3 and x2 = 6. 
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3.2.2 Model independent solar analysis - one experiment ignored 

In subsection 3.2.1, the present level of experimental evidence allowed us to omit 

one restriction {the solar model) and still yield interesting results. Likewise, we can choose 

to omit one experiment from the analysis while keeping some solar information and still 

yield interesting results. 

The motivation for this is obvious: neutrino experiments are extremely difficult to 

perform and particular detection schemes may suffer from some systematic error previously 

not considered. We make no judgements here about the errors associated with any particular 

experiment. Instead we consider analyses where we do not include one class of experiment, 

either water-Cerenkov, gallium or chlorine, which we designate Si\ .0f and J;tarespectively. 

However, because we are losing an experiment, it is impossible to analyze the data without 

some level of information regarding the solar model. Consequently, we perform the analysis 

only within the solar SM inspired region. The results for this analysis are shown in figures 3.5 

(upper row: without SuperKamiokande data, middle row: without chlorine data, and lower 

row: without gallium data). 

The sK case largely resembles the complete data set analysis, with some additional 

space allowed in the higher ~mi2 region. In contrast, the other two cases (~ and .01') show 

considerable differences. 

For the ~ case, there is a strong preference for either small ~mi2 or large 012 

I 

and 013. For the¢ case, for both large 612 and 613 we have the presence of large regions 

with large ~mt2 = 10-4 eV2, above the level-crossing threshold, and with small ~mr2 , 

in the non-adiabatic region. In either case, in a large portion of these regions matter 
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enhancements are unimportant. That is, in the absence of one of these two classes of 

experiment, given sufficiently large angles, the solar neutrino problem can be resolved simply 

by vacuum oscillations alone! In such a case, new experiments, such as Borexino, would see 

an absence of energy dependence in the electron neutrino survival probability. 

3.3 Atmospheric and Solar Neutrinos: The Minimal Scheme 

The simplest picture for reconciling both solar and atmospheric neutrino fllixes 

via OSCillations of Ve,p.,r results when there is a hierarchy ~~m~3~ ~ ~~mt2l, and ~mr2 is 

too small to affect oscillations of atmospheric neutrinos. In section 3.2, we showed that 

in this case the solar fluxes depend only on ~m~2 , 812 and 813 t, and below we show that 

the atmospheric fluxes depend only on ~m~3 , 823 and fh3· In the limit that 813 = 0, 

the two phenomena become independent, in the sense that they depend on no common 

parameters: solar oscillations are Ve -+ Vp. at a low frequency, while atmospheric oscillations 

are Vp. -+ v.,. at a much higher frequency. However, solar oscillations are allowed for a wide 

range of parameters with large 813, and the atmospheric data does not require 813 to be very 

small. Hence, in this section we explore this simple picture keeping 813 as a free parameter. 

We comment on the alternative possibility- that ~m~2 is large enough to contribute to 

atmospheric neutrino oscillations - in section 3.4. 

Matter effects in the earth are important only for a relatively small fraction of the 

atmospheric neutrinos, those with high energy, and they are neglected heret. In this case, 

(3.2.3) can be integrated to give oscillation probabilities Pjf'(t) = IAJJ'(t)j2 , where A is 

t Although for non-zero 813, there is a dependence on .6.m~3 if it is small enough. 
:!:For more details see e.g; ref. [17]. 
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given by the matrix equation 

A(t) = ve-iEtvt. (3.3.1) 

Since an overall phase in A is irrelevant toP, and Llmi2 effects are negligible, we may make 

the substitution 

(3.3.2) 

Using the form (3.2.4) for V, we immediately discover that the probabilities are independent 

of fh2 and </J, as well as a and fJ. The probabilities are given by 

or equivalently, by unitarity 

~3 sin2 2lh3 823 

ci3 sin2 2023 823 

Pee - 1 - sin2 2013 823 

Pp,p, - 1 - 4ci3s~3 (1- ci3s~3 ) 823 

PrT = 1- 4ci3~3 (1- ci3~3) 823 

(3.3.3a) 

(3.3.3b) 

(3.3.3c) 

(3.3.3d) 

(3.3.3'e) 

(3.3.3 f) 

where 823 ~ sin2 (Llm~3t/4E). The parameter Llm~3 can be extracted from the data by 

fitting to the zenith angle distribution of the events. Here we concentrate on the determi­

nation of the parameters 613 and 023· These can be extracted, independent of the value 

of Llm~3 , if we assume that the downward going neutrinos have not oscillated, while the 

upward going neutrinos are completely oscillated, so that S23 is averaged to 0.5. In view 

of the reported angular distribution of the multi-GeV data for 1-ring e-like, 1-ring p-like 
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and partially contained (PC) events [3], this assumption appears to be valid, at least for 

angular cone sizes about the vertical which are not too large. For events of class i, which 

are induced by Ve charged current, Vp. charged current and neutral current interactions with 

relative probabilities J:cc' J;cc and Jj.w, the up-down ratio Pi is given by 

NY . · . 1 . 
Pi = -J = f:cc · (Pee + r Pep.) + f~cc · (Pp.p. + -Pep.) + f'Nc· 

~ r 
(3.3.4) 

where we have set 823 = 0.5, and Nl'+ are the number of upward and downward events 

of class i. We are interested in i being 1-ring e-like, 1-ring J.t-like and PC. The overall 

normalization of these event numbers has considerable uncertainties due to the calculation 

of the neutrino fluxes produced in cosmic ray showers, hence we consider three up-down 

ratios 

Pe = 1.23 ± 0.29 (3.3.5a) 

Pp. - 0.62 ± 0.16 (3.3.5b) 

PPC = 0.48 ± 0.12 (3.3.5c) 

and two ratios of downward going fluxes 

3.0±0.6 (3.3.5d) 

1.3 ± 0.3 (3.3.5e) 

where r is the ratio of Vp. to Ve fluxes. The numbers give the Super-Kamiokande data, 

extracted from the figures of Ref. [3], with upward and downward directions defined by the 

azimuthal angle having cos() within 0.4 of the vertical direction. The parameters ~r and e' 

represent the theoretical values for the ratios of (3.3.5d) and (3.3.5e ). These two downward 
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going ratios do not involve oscillations, and the Super-Kamiokande collaboration compute 

Monte Carlo values of 3.1 and 1.0, respectively,· agreeing very well with the data. Since 

these two ratios do not probe oscillations, at least within our assumptions, we do not use 

them for the fits below. We do not use the sub-Ge V data as the poor angular correlation 

between the neutrino and charged lepton directions leads to a smoothing of the up-down 

ratio. From the flux calculations of Honda et al [18], and using the measured momentum 

distributions for the events [3], we estimate r = 4.0 ± 0.5, for this multi-GeV data near the 

vertical direction. A more refined analysis would use a larger value of r for PC events than 

for FC events. 

The results of a fit of the three up/ down ratios to the two free parameters lh3 and 

813 are shown in figure 3.6(a). We have obtained the fractions f!cc,J.LCC,NC from the Monte 

Carlo results of the Super-Kamiokande collaboration [3], and we have used the oscillation 

probabilities of (3.3.3c ). In order to work with Gaussian distributed experimental data, 

we have directly fitted the six measured neutrino numbers NJ't leaving arbitrary the three 

overall fluxes of each type, NJ + Nf. The preferred region of the plot is easy to understand, 

since at the point 823 = 45° and 8 13 = 0, the Ve are unmixed, while there is complete 

vJ.L f-7 vT mixing, so Pe ~ 1 and PJ.L ~ PPC ~ 0.5. It is apparent from Fig. 3.6(a) that this 

minimal scheme is allowed for a large range of angles about this point: 023 = 45° ± 15° and 

()13 = 0-;- 45°. 

If the solar neutrino fluxes, measured by all three techniques, are to agree with 

solar model inspired values, then the results of section 3.2 show that ~m~2 is too small to 

affect atmospheric oscillations, it is either of order 10-4 - 10-5 eV2 or of order 10-10 eV2• 
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In this case, the minimal scheme for atmospheric neutrinos, described in this section, is 

the unique possibility using just the three known neutrinos. This observation enhances the 

importance of the fit of figure 3.6(a); further data will reduce the allowed region, as the three 

up-down ratios of (3.3.5c) have small systematic uncertainties and are statistics limited. 

The solar neutrino fluxes do not put extra constraints on the value of 813 , although it 

becomes correlated with 812, as shown in figure 3.3. If the atmospheric flux, measurements 

require Am~3 > 2 x w-3 eV2 , then the limit on Pee from the CHOOZ experiment [19] 

requires 813 < 13°. 

Recent analyses [20] of SuperKamiokande data that make use of MonteCarlo pre­

dictions for the angular and energy distributions of the atmospheric neutrinos get more 

stringent constraints on the neutrino oscillation parameters. Our fit uses only those data 

- the ratio of upward and downward multi-Ge V neutrinos (the ones in bins 1 and 5 of 

the angular distribution in [3]) .- that do not depend on the spectrum of the atmospheric 

neutrinos nor on the precise value of Am2 , assuming a full averaged oscillation in between. 

Since statistics gives presently the dominant error, we obtain weaker constraints than in [20]. 

If we knew that the neutrino mass difference relevant for atmospheric neutrinos were close 

to the center of the presently allowed region, we could add to the data to be fitted the 

intermediate bins 2 and 4 of [3] (the bins that contain 'oblique' neutrinos). We cannot 

use in any case the multi-GeV data in the intermediate bin 3, that contains 'horizontal' 

neutrinos. Having doubled the statistics, we would find the more stringent contours shown 

in fig. 3.6a', b1', b2'. We remind the reader that our fit does not include matter effects [4]. 
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3.4 Atmospheric and Solar Neutrinos: Non-Minimal Schemes 

In this section, we study atmospheric neutrinos when two conditions apply. 

• The smallest mass splitting is large enough to affect atmospheric neutrino oscillations: 

~mi2 > 3 x 10-4 e V2
• For solar neutrinos, this implies that there is a serious flaw 

either in at least one measurement technique, or in the solar models. 

• The mass splittings are hierarchical ~m~3 ~ ~mi2 • This is a simplification, which we 

relax at the end of the section. It includes the interesting possibility that ~m~3 is large 

enough to induce the apparent oscillations reported by the LSND collaboration [21 ], 

while ~mi2 effects are causing both solar and atmospheric oscillations. 

Using (3.2.5), the Ve survival probability is 

(3.4.1) 

where 8ij = sin2 (~mrjt/4E). The above two conditions imply that ~m~3 > 2 x w-3 eV2
, 

so that, for the CHOOZ experiment, (3.4.1) should be used with 823 = 831 = 0.5. The 

CHOOZ limit, Pee > 0.9, then gives fh3 < 0.23 .. If ~mt2 were also greater than 2 x 10-3 e V2 , 

then for the CHOOZ experiment one also has 8 12 = 0.5, so that fh2 < 0.23. However, in 

this case the survival probability for solar neutrinos is the same as for the anti-neutrinos 

at CHOOZ: Pee > 0.9. Hence, given our two conditions, the observed solar neutrino fluxes 

require ~mi2 < 2 X 10-3 e V2
. 

It is frequently stated that the three known neutrinos cannot explain the LSND, 

. atmospheric and solar neutrino anomalies, as this would require three ~m2 with different 

orders of magnitudes. However, this argument no longer applies in the case that either a 
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solar neutrino measurement technique or solar models are incorrect, when a single l::!..m2 

could give both atmospheric and solar anomalies. Hence, we consider first the case that 

l::!..m~3 is large enough to explain the observations of LSND. The oscillation probabilities 

induced by l::!..m~3 are given by (3.3.3c ). From the limit on Pee from the Bugey reactor, one 

then concludes 

(3.4.2a) 

anP. 

lh3 < 0.1 (3.4.2b) . 

which is significantly stronger than the CHOOZ limit. A second possibility, 813 close to 

90° does not allow any significant oscillations of Ve and is thus not acceptable to explain 

the solar neutrino anomaly at a relatively large frequency. For atmospheric neutrinos, both 

upward going and downward going, one may then use oscillation probabilities with lh3 = o§, 

and with s23 and s13 both averaged to 0.5: 

(3.4.3a) 

(3.4.3b) 

(3.4.3c) 

or equivalently, from unitarity 

(3.4.3d) 

PJ-LJJ. = 1- ! sin2 2023 - c~3 sin2 2812 S12 (3.4.3e) 
--~------------------------

§fu which case the P;j are independent of ¢. 



62 

(3.4.3 f) 

Since in these formulre 813 = 823, 612 enters only via sin2 2012 so that, without loss of gener-

ality, we may reduce the range of 612 to 0 ~ 612 < 1r /4. We again study the up-down ratios 

(3.3.4), as they have small systematic uncertainties. We calculate them approximately, us-

ing (3.3.4) with J:cc = f:cc = Jt8c = 1 and all other !-factors equal to zero. A fraction, 

PJ~ = 1 - sin2 2023/2, of the downward going Vp, oscillate to V-r bef~re detection, so the 

up-down ratios are given by 

Pe ~Pee+ rPep, (3.4.4) 

and 

(3.4,5) 

Hence we find 

1 ~ (pi-£- 1) ~ -- 1 . 3 2 • (Pe- 1). 
r 1 - 2 sm 2023 

(3.4.6) 

For the multi-GeV data, where the angular correlation is best, r is large, and (3.4.6) im-

plies that IPJ.t - 11 < (1/3)IPe- 11, in strong disagreement with data of (3.3.5c). The 

same inequality holds if Pp, is replaced by ppc, when the disagreement with data is even 

stronger., With oscillations of the three known neutrinos, the LSND observation conflicts 

with the atmospheric and solar neutrino anomalies even using a model independent analysis 

of the solar neutrino fluxes or allowing for a systematic error in one of the solar neutrino 

experiments! I. 

~Even ignoring Pe, we find PPc,,_. > 0.61. 
II For B23 = 0, this corresponds to purely v,_. --+ Ve oscillations, which is therefore excluded as an explanation 

of the atmospheric neutrino measurements. 
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Does the atmospheric neutrino data allow other values of ~m~3 ~ ~mi2? The 

limit from the Bugey reactor, (3.4.2b), applies for all ~m~3 > 0.06eV2, and the up-down 

ratio relation, (3.4.6), applies for all ~m~3 > 0.1 eV2. Hence, ~m~3 > 0.1 eV2 is excluded. 

For ~m~~ < 0.1 eV2, the downward going Vp. have not oscillated to V-r when they reach the 

Super-Kamiokande detector, so that (3.4.5) is replaced by 

1 1 . 2 q3( ) 
Pp.::::::: Pp.p. +-Pep.= 1- -

2 
sm 2023-- Pe- 1 . 

r r 
(3.4.7) 

Consistency with the data, (3.3.5c ), is now possible, and requires large 823. As ~m~3 drops 

below 0.06 e V2, the limit from the Bugey reactor on 013 is progressively weakened, so that 

813 terms must be kept in Pij· Furthermore, as ~m~3 drops below 0.01eV2, our hierarchy 

condition is no longer satisfied, so that Pij depend also on 012 . For these cases we have 

·performed a X squared fit of the three up-down ratios (3.3.5c) to 823, 813 and 812, for various 

values of the mass splittings, and have found acceptable regions of parameter space. Results 

are shown in figure 3.6b for the case that all Sij = 0 for downward going neutrinos, while all 

Sij = 0.5 for upward going neutrinos and</>= 0 (no CP violation). An equivalent fit would 

be obtained for </> = 1r and 823 -+ 1r- 023· The (relatively small) asymmetry of fig.s 3.6b 

under 823-+ 1r- 823 shows the dependence on</> of the SuperKamiokande data considered 

here. 

A comparison of figure 3.6b with figures 3.3 and 3.5 shows under what conditions 

this large ~mi2 scheme gives consistency. If all solar measurement techniques are correct, 

then, from figure 3.3, 013 is small and 812 = 10° + 20°. Figure 3.6b then shows that 823 

is centred on 45° ± 25°, the range around 023 = .135° being equivalent for any </> since 813 

is small. Figure 3.5 shows that solar model inspired fits to data from two solar techniques 
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at large ~m~2 allow larger ranges of 812 and 813, and these become correlated with 823 via 

figure 3.6b. 

3.5 Large vJJ.-+ Vr Mixing For Atmospheric Neutrinos 

The pattern of masses and mixings suggested by the previous considerations show 

peculiar features, especially if both the atmospheric and solar neutrino anomalies are ac­

counted for in the minimal scheme of section 3.3. The mass differences are hierarchical. 

However a large mixing (023 ~ 45°) is required between the states with the largest mass 

difference. The mixing angle 812 between the states with the smallest mass splitting may 

be large or small. Finally, if ~mitm 2: 2 · w-3 eV2 , i.e. in the CHOOZ range, the third 

mixing angle must be small, 013 :::; 13°. Therefore it looks ·interesting to see which mass 

matrix could produce this pattern and which flavour symmetries can justify it. 

3.5.1 2 x 2 Matrix Forms 

As stressed in the introduction, an important consequence of the data on atmo­

spheric neutrino fluxes is the need for large mixing angles. Here we study four possible 

forms of the 2 x 2 Majorana mass matrix for vp. and v7 which have a large mixing angle. In 

subsection 3.5.2 we study whether these forms can be incorporated in 3 x 3 mixing schemes 

which also give solar neutrino oscillations, and whether 3 x 3 cases exist which cannot be 

reduced to a 2 x 2 form. In section 3.6 we study whether these forms may be obtained from 

flavour symmetries of abelian type. 

In a basis with a diagonal charged lepton mass matrix, the Majorana neutrino 
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small small order unity D.m2 f(fr )2 

en tires parameters parameters 

(1) Generic none none A,B,C ~1 

(2) Determinant small none none A,B,C = B 2 fA+c ~1 

(3) One diagonal small one diagonal c~c A,E ~1 

(4) Pseudo-Dirac both diagonal A,C~c B ~€ 

Table 3.1: The four possible 2 x 2 matrix forms which give a large mixing angle. 

mass matrix is 

m= v2 (C B). 
M B A 

(3.5.1) 

This is brought into real, diagonal form by the unitary matrix 

(

1 0 )', 
V = R(O) . 

0 eza 

(3.5.2) 

where tan20 = 2Bf(A- C), and the phase a does not affect oscillations. The mass 

difference relevant for oscillations is D.m2 = (A+ C)J(A- C)2 + 4B2 • The coefficient· 

v2 f M is motivated by the see-saw mechanism, with v the electroweak vacuum expectation 

value and M the mass of a heavy right-handed neutrino. 

There are four possible forms of this matrix which give 0 ~ 1, and these are shown 

in Table 1. In cases (1) and (2) the entries are all of order unity; in the generic case they are 

unrelated, while in case (2) they are related in such a way that the determinant is suppressed. 

We discuss how such a suppression can occur naturally via the seesaw mechanism in the 

next section. Case (3) has one of the diagonal entries suppressed, which, however, does not 

follow from a simple symmetry argument. For cases (1..;-3), taking D.m2 = w-3eV2, one 
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finds 

M = (1 + 3) x 1015GeV, (3.5.3) 

close to the scale of gauge coupling unification in supersymmetric theories. 

Finally, case (4) has both diagonal entries small, making v,_, and Vr components 

of a pseudo-Dirac neutrino. This follows from an approximate L,_, - Lr symmetry, and 

implies that (} ~ 45°. This agrees well with data: combing p,_, and ppc of (3.3.5c) gives 

(} = 45° ± 15°. Of the four possible cases with large mixing angle, it is only the pseudo-

Dirac neutrino which allows v,_,,r to be the astrophysical hot dark matter, in which case one 

predicts(}= 45° to high accuracy. · 

From the viewpoint of atmospheric neutrino oscillations alone, the distinction be-

tween cases (1) and (2) is unimportant. Since case (3) does not follow from simple symmetry , 

arguments, one is left with two main 2 x 2 mixing schemes: the generic and pseudo-Dirac 

cases. 

3.5.2 3 x 3 Matrix Forms 

There are many possibilities for 3 x 3 neutrino mixing giving P,_,,_, ~ 0.5, with 

oscillation primarily to Vr. In general two independent frequencies and three Euler angles 

are involved. 

For the case that the oscillation is dominated by a single frequency, the possibilities 

may be divided into two classes: "2 x 2-like" and "inherently 3 x 3." The 2 x 2-like cases 

are just the four discussed in subsection 3.5.1, with 812,13 small. Even though .6m~3 may 

not be the largest .6m2 , it is the only one which causes substantial depletion of v,_,. More 

\ 

interesting are the inherently 3 x 3 cases, for which there is no 2 x 2 reduction. 
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Consider the case 

0 B A 

v2 
m= M B 0 0 (3.5.4) 

A 0 0 

with A, B ~ 1. This is diagonalized by V = R23(823)R12 (lh2 = 45°) giving a Dirac state of 

Ve married to c23Vp, + s23v7 • The mass eigenvalues are (M, M, 0), which, from the viewpoint 

of oscillations are equivalent to (0, 0, M). Hence, one immediately sees that the oscillation 

probabilities are given by (3.3.3c) with 813 = .0: Pp,7 = sin2 2023823 has the form of a 2 x 2 

oscillation, even though the mass matrix has an inherently 3 x 3 form. This arises because 

(3.5.4) is governed by the symmetry Le - Lp, - Ln which allows Vp, ++ Vn but prevents Ve 

from oscillating. 

We claim that (3.5.4) is the only inherently 3 x 3 form for Vp, -+ v7 at a single 

frequency, as we now show. An inherently 3 x 3 form must have large entries outside the 

2 x 2 block in 23 subspace. The three possibilities are 11, 12 and 13 (and their symmetric). 

None of these entries work alone, even coupled to any structure in the 23 block: either 

one gets two comparable frequencies or one does not get vp, -+ v 7 • The same is true for 

11 + 12 or 11 + 13, again possibly together with any 23-block. Since 11 + 12 + 13 leads to 

two comparable frequencies, the only case remaining is 12 + 13, with a relatively negligible 

23 block, i.e, the 3 x 3 form in (3.5.4). Basic to this conclusion is the assumption of no 

special relations among the different neutrino matrix elements other than the symmetry of. 

the matrix itself (for alternatives see [22]). 

/ 
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3.6 Models for both Solar and Atmospheric Neutrinos 

In this section we construct models for the minimal scheme for atmospheric and 

solar neutrino oscillations, discussed in section 3.3. The mass pattern suggested by this 

scheme has the hierarchy .6.m~ = .6.mr2 « .6.mitm = .6.m~3 . We take the form of the 

lepton mass matrices to be determined by flavour symmetries (FS) and assume that all 

small entries in these matrices are governed by small flavour symmetry breaking (FSB) 

parameters. 

The low energy effective mass matrix for the three light left-handed neutrinos can 

be written as the sum of two matrices: mLL = matm + m 0 , where all non-zero entries of 

matm are larger than all entries of m0. The form of matm is such that there is a large mass 

splitting: .6.mitm ~ w-<273) eV2, and a vanishing .6.m2. Furthermore, this matrix must 

give a large depletion of v,.,, and, as discussed in the last section, this could occur if it has 

certain 2 x 2-like or inherently 3 x 3 forms. Of the two 2 x 2-like forms shown in Table 1, 

only case (2) is acceptable: in cases (1) and (3) the two independent .6.m2 are comparable, 

while in case (4) the second independent .6.m2 is larger than .6.mitm· Hence, we arrive at 

the possibility**: 
0 0 0 

2 
2x2 V 0 c B (3.6.1) matm = M 

0 B A 

with A, B ~ 1 and C = B 2 /A. A reason for the vanishing sub-determinant will be given 

shortly. 

In the previous section we have proved that there is a unique form for matm which 

** Ansii.tze of this type for the neutrino mass matrix, up to small corrections, to describe atmospheric and 
solar neutrinos are contained in ref.s [23]. 
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is inherently 3 x 3: 

0 B A 

2 
3x3 V B 0 0 (3.6.2) matm = M 

A 0 0 

with A,B ~ 1. 

The oscillation angles in the leptonic mixing matrix, V, have contributions from 

diagonalization of both the neutrino mass matrix, Oij, and the charged lepton mass matrix, 

Of;: V ( Oi;) = vet ( O{j) vv ( Oij). This requires discussing also the charged lepton mass matrix. 

It is not easy to construct an exhaustive list of the possible symmetries and their breaking 

parameters. This is partly because there are both discrete and continuous symmetries with 

many choices for breaking parameters; but 1s mainly because of a subtlety of the seesaw 

mechanism. Let mRR and mLR be the most general Majorana and Dirac mass matrices 

of the seesaw mechanism allowed by some approximate symmetry. On forming the mass 

matrix for the light states, mLL = mLRmJikmi.R, one discovers that mLL need not be the 

most general matrix allowed by the approximate symmetry. This means that one cannot 

construct an exhaustive list by only studying the symmetry properties of mLL - it is 

necessary to study the full theory containing the right-handed states. 

A casual glance at (3.6.1) and (3.6.2) shows that the flavor symmetry we seek, from 

the viewpoint of !::lL = 2 operators, does not distinguish lp, from ln but does distinguish 

these from le. There are many combinations of the three lepton numbers La, and their 

subgroups, acting on la, which have this property. As representative of this group, we 

choose the combination Le- Lp,- Lr· We find it remarkable that this symmetry group can 

yield both (3.6.1) and (3.6.2), depending on how it is realized. 
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3.6.1 Le- Lp.- Lr realized in the Low Energy Effective Theory 

In the effective theory at the weak scale, we impose an approximate Le - Lp. - Lr 

symmetry, which acts on the weak doublets, le,p.,n and is broken by small FSB parameters, 

c and c' of charge +2 and -2, respectively, giving a neutrino mass matrix: 

c' 1 1 

(3.6.3) 

Hereafter, the various entries of the matrices only indicate the corresponding order of mag-

nitude, allowing for. an independent parameter for each entry. This texture gives 

(3.6.4a) 

(3.6.4b) 

and 

(3.6.4c) 

While the texture gives only the order of magnitude of 923 , it precisely predicts 912 to 

be close to 45°. If the FSB parameters c and c' are taken to be extremely small, this 

" becomes an excellent candidate for the case of "just so" solar neutrino oscillations, with 

the prediction that fh2 = 45°. However, from figure 3.3 it follows that this model cannot 

give matter neutrino oscillations in the sun, which requires sin2fh2 ~ 0.9. There are several 

contributions to the deviation of sin 2912 from unity, but they are all too small to reconcile 

· the discrepancy. A hierarchy in t::..m2 requires c, c' < 0.1, and since sin2 2012 ~ 1- (c-c')2 /8, 

the deviation of sin 2012 from 1 is negligible. After performing the 0!2 rotation, there are 
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small O(c) rotations in the 13 and 2.3 planes necessary to fully diagonalize mLLi these 

are too small to affect our conclusions. The last hope is that there could be a significant 

contribution to 812 from diagonalization of the charged lepton mass matrix. As mentioned 

above, the diagonalization of the charged lepton mass matrix has to be discussed anyhow . 

. Consistently with the symmetry structure of (3.6.3), the most general form for the 

charged lepton mass matriX, with a structure governed by abelian symmetries is 

e' ec' £
1 

1 

1 • 

(3.6.5) 

when left (right) handed leptons are contracted to the left (right), eLmEeR. (1, e, e') are the 

relative FSB parameters of ( TR, J.LR, eR) with respect to some other approximate FS, needed 

to describe the charged lepton mass hierarchies, and >. is the absolute FSB parameter of 

TRTL. Here we ignore the fact that non-abelian symmetries could modify this form, for 

example by requiring some entries to vanish. 

Diagonalization of (3.6.5) leads to 

Therefore, altogether 

Oe ~ t 
13 ~ c' Oe ~ c' 12 ~ ~ 

(3.6.6) 

Since sin2 2812 remains corrected only by quadratic terms inc and/or c', we conclude that 

Le- Lp.- Ln realized as an approximate symmetry of the low energy effective theory, can 

explain both atmospheric and solar neutrino fluxes with a hierarchy of A.m2 , most likely 

only for the case of "just so" vacuum solar oscillations, in which case the scale of new 
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physics, M, is close to the gauge unification scale, and the FSB parameters are extremely 

small: c, £1 ~ w-7 • This result also applies when any approximate FS of the low energy 

effective theory yields (3.6.3). In view of (3.6.4), wit_h ~m~3 ~ ~m~tm ~ w-<2+3) eV2
, 

notice that all three neutrinos are cosmologically irrelevant. Furthermore, the smallness of 

the 11 entry of (3.6.3) makes the search for neutrino-less 2,8-decay uninteresting. 

Comparing the 013 plots of figures 3.3 and 3.5, one finds that, with one experiment 

excluded, the case of 012 = 45° becomes allowed for a large range of ~m~2 , giving another 

application for this i,pherently 3 x 3 form of the mass matrix. 

3.6.2 Le- Lp.- L7 realized via the Seesaw Mechanism 

The seesaw mechanism (24] allows a simple origin for the vanishing of the 2 x 2 

sub-determinant of (3.6.1). Consider a single right-handed neutrino, N, with Maj<;>rana 

mass M and Dirac mass term vN(cos Ov7 + sinOvp.), where 0 ~ 1. Integrating out this 

single heavy state produces a single non-zero eigenvalue in mLL - giving (3.6.1) with 

A = cos2 0, B = cos 0 sin 0 and C = sin2 (}, so that AC = B 2 . 

How could this carry over to a theory with three right-handed neutrinos, Na? As 

long as one of them, N with the above mass terms, is much lighter than the others, then 

it will give the dominant contribution to mLL, which will have (3.6.1) as its leading term. 

Clearly the key is that there be one right-handed neutrino which is lighter than the others, 

and couples comparably to vp. and vT. 

This can be realized using Le - Lp. - Ln with two small FSB parameters c ( +2) 
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and c:' ( -2). The right-handed neutrino mass matrix is 

c:' 1 1 

fflRR =M 1 c c (3.6.7) 

1 c c 

and the Dirac mass matrices of neutrinos and charged leptons are 

r/ c:r/ c:r/ 

and (3.6.8) 

c:' 1 1 1 

where, in analogy with (3.6.5), we have introduced FSB parameters consistent with (3.6.7). 

For ease of exposition, let us first consider the case where all the "1 and e factors 

are set equal to unity. The crucial point is that there is a massless right-handed neutrino in 

the limit c; --+ 0. Hence, taking c; small, and doing a rotation in the 23 plane we have 2 x 2 

sub-matrices 

1 (0 -1 
mRR= M 0 l~J (3.6.9) 

giving 

fflLL = (>.~)2 (1/c 1/c:) 

1/c: 1/c: 
(3.6.10) 

where det mLL = 0 at this order. In a theory with right-handed neutrinos, Le- L!i- L 7 

leads to (3.6.1). 

Extending the analysis to 3 x 3 matrices is straightforward. The inverse of m RR 

c 1 1 

-1 1 
mRR= M 1 c:' c:' (3.6.11) 

1 c:' .!. 
c 
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shows a pseudo-Dirac structure in the 12 subspace, which is preserved in the light neutrino 

mass matrix: 
c 1 1 

(.A'v)2 
1 c:' 0 (3.6.12) fflLL=--

M 

1 0 l 
c 

where we have gone to a basis which diagonalizes the 23 subspace. The parameters relevant 

for neutrino oscillation are 

and 

(}e,v '"" 1 23'"" ,,. (}e,v '"" 
13 '"" c, (3.6.13a) 

1 (A.'v)4 (.A'v)4 · 
.6.m~3 ~ c2 M 2 , .6.m~2 ~ (c + c:') M 2 . (3.6.13b) 

·It is remarkable that Le- LJL- Lr has forced a pseudo-Dirac structure in the 12 subspace 

as in its previous realization, again giving 012 near 45°. The crucial difference is that the 

pseudo-Dirac mass splitting is now a higher power in FSB than before 

(3.6.13c) 

rather than c + c:'. This allows c: and c:' to be considerably larger than before, so sin 2012 < 

0.8 is now possible, allowing large angle MSW solar neutrino oscillations. In this case 

the FSB parameters are not very small c:, c:' ~ 0.3 + 0.5, so that the mass of the right-

handed neutrinos is still quite close to the gauge coupling unification scale. Notice again 

the cosmological irrelevance of the neutrino masses. For neutrino-less 2{3 decay searches 

coincident with the unification scale. 

So far we have only produced models with large 012. However Le- LJL- Lr realize~ 
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with the seesaw mechanism may also lead to small 812, using the FSB suppression factors 

in (3.6.8). Taking r/ «: £
1 and rJ:::::: 1, in an appropriate 23 basis gives 

'f/'2£ rJ' 

(A'v)2 
rJ' c.' fiLL=--

M 

rJ' 0 
~~-. 

so that eq.s (3.6.13b) and (3.6.13c)·remain valid but 

and, most importantly 

which can make 012 small. 

3. 7 Conclusions 

(}e,v ....., 1 23 ....., ' 
lle,v ....., 1 
1713 ....., 'fJ £, 

rJ' 

0 

! 
c: 

lle ....., -=-' 1712 ....., c 

(3.6.14) 

(3.6.15) 

(3.6.16) 

The solar and atmospheric neutrino anomalies, strengthened by the recent Su-

perKamiokande observations, can be interpreted as due to oscillations of the three known 

neutrinos. However there is still considerable allowed ranges of masses and mixing angles 

J 

that can account for all these anomalies, especially if a cautious attitude is taken with regard 

to the theoretical analysis and/or the (difficult) experiments relevant to solar neutrinos. A 

further major element of uncertainty is related to the relatively large range of values for 

the mass splitting that can account for the atmospheric neutrino anomaly. We summarize 

our conclusions by considering a set of alternative hypotheses, related to these dominant 

uncertainties, with an eye to the experimental program that may lead to their resolution 

and eventually to the determination of the full set of neutrino oscillation parameters. 
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A critical value for D.m~3 is around 2 · w-3 eV2 mainly because for larger values 

CHOOZ sets a considerable constraint on the mixing pattern, but also because (1 + 2) · 

w-3 eV2 is frequently discussed as a typical sensitivity limit for various Long-Base-Line 

(LBL) neutrino experiments, like the one from KEK to SK, or the Vr appearance experi­

ments with a high energy beam from CERN to Gran Sasso or from Fermilab to Soudan. 

On the other end, a value of D.mt2 < 2 ·10-4 eV2 , as certainly required by a standard Solar 

Neutrino Analysis (SNA), would make the corresponding oscillation frequency irrelevant 

to the SK experiment on atmospheric neutrinos. On this basis we consider the following 

four possibilities, none of which, we believe, can be firmly excluded at present. They are 

graphically represented in fig. 3.7. 

1. D.m~3 > 2 ·10-3 e V2 and D.mt2 < 2-10-4 e V2• Here a minimal scheme to describe both 

solar and atmospheric neutrinos is required, as discussed in section 3.3, with D.m~3 » 

D.mr2 . Since D.mt2 is too small to affect atmospheric and/or LBL experiments, in 

both cases eqs. 3.3.3 apply. The fit relevant to SK is given in fig. 3.6a, with the 

further constraint, from CHOOZ, that 813 is small, 813 ~ 13°, and therefore 823 = 

45° ± 15°. In turn 812, together with D.mf2 , will have to be determined by solar 

neutrino experiments. In this alternativ~, the neatest confirmation of the SK result 

would come from a Vr appearance LBL experiment. At the same time, a dominant 

vJ.L -+ Vr oscillation should also lead to a signal in the KEK to SK vJ.L disappearance 

experiment, with no "appreciable lie appearance signal. 

2. D.m~3 < 2 ·10-3 eV2 and D.mt2 < 2 · w-4 eV2• The main difference with respect to 

the previous case is that now 813 is not constrained by CHOOZ, and therefore, from 
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fig. 3.6a, it can be as large as 45°. This implies, from eqs. 3.3.3, that the results of both 

atmospheric and LBL experiments, with low enough vJ.! energies to permit exploration 

of flm 2 lower than 2 · w-3 e V2 , may be affected by a significant PJ.!e f. 0. By the 

same token, an experiment with low energy De extending the sensitivity of CHOOZ 

(~.g. Kam-LAND) may show a large signal if lh3 is indeed large. In any event Pwr 

will be significant. Finally, as in case 1., decoupling of solar and atmospheric neutrino 

oscillations implies that 912 can only be determined by solar neutrino experiments, 

with an analysis complicated by 913 being potentially unconstrained (see fig.s 3.3, 

upper row) 

3. /lm~3 > 2 · w-3 eV2 and flmi2 > 2 ·10-4 eV2 • This case is possible only if SSM con­

straints are relaxed (fig. 3.3, lower row) and/or if one of the experimental techniques 

for solar neutrinos is problematic (fig. 3.5). However, as discussed in section 3.4, 

flmi2 must be lower than 2 · w-3 e V2, below the CHOOZ range. Since, on the other 

hand, /lm~tm = /lm~3 is in the CHOOZ range, 813 is small and eq.s 3.4.3 are rele­

vant for atmospheric and LBL experiments. The fit of the present SK results gives 

823 = 45° ± 25° (the range at 823 ::::::J 135° being equivalent since 8 13 is small). There­

fore the main difference with respect to case 1. is the possibility of a S12 contribution 

in eq. (3.4.3). While v7 appearance in LBL experiments must still give a positive 

signal, PJ.!e could significantly deviate from zero at low enough oscillation frequencies 

(relevant to lower energy vJ.! LBL experiments or to reactor experiments such as Kam­

LAND). The finding of such an effect, together with a positive 117 appearance signal, 

would prove, in the three neutrino oscillation picture, the inadequacy of the NSA as 
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it is done now. 

4. ~m~3 < 2 · 10-3 e V2 and ~mt2 > 2 · 10-4 e V2• This is the relatively less constrained 

case (and also the relatively less likely). Here both neutrino squared mass differences 

are outside of the CHOOZ range, so that lh3 is unconstrained. Appropriate values 

of the mixing angles can fit the SuperKamiokande up/down ratios of atmospheric 

neutrinos, as shown in fig. 3.6b. In this case, the two comparable ~m2 might lead to 

sizeable CP-violating effects if all the three mixing angles are large. 

Measurements by SNO and Borexino will increase the number of independent observational 

signals of the solar fluxes, Si, from 3 to 5; so that, from (3.2.12) with <PcNo/<P7Be = 0.22, 

~m~2 , 812 ,813, <P7Be and <Pss can all be determined. This will provide a crucial consistency 

check between the experimental techniques and the solar models. If 813 is found to be 

large, ~m~3 < 2 x 10-3 eV2
, giving a signal at Kam-LAND, but making it harder for LBL 

experiments. 

In the minimal scheme, with a hierarchy amongst the ~m2 , several years of data 

from Super-Kamiokande will allow a fit to ~m~3 , 823 and 813. Combining with fits to 

the solar flux measurements, and to LBL and Kam-LAND experiments, could allow the 

emergence of a consistent picture for the two oscillation frequencies and the three leptonic 

mixing angles. 

The variety of possibilities discussed above makes it uncertain which is the rel­

evant neutrino mass matrix and, a fortiori, which are the flavour symmetries that might 

be responsible for it. Nevertheless, focusing on the minimal scheme for both solar and 

atmospheric neutrinos, the peculiar pattern of masses and mixings renders meaningful the 
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search for an appropriate mass matrix. As discussed in section 3.5 on general grounds, two 

forms of mass matrices emerge as being able to describe the data, eq.s (3.6.1) and (3.6.2). 

Since in the minimal scheme ~m~2 ~ 2 · 1 o-3 e V2, these forms imply that neutrino masses 

will not give rise to an observable neutrinoless double beta decay signal. The combination 

Le- L,_,- Lr of the individual lepton numbers may play a role in yielding both these forms. 

A common feature of the resulting solutions is that the heaviest neutrino mass is determined 

by the oscillation length of the atmospheric neutrinos, (~m;tm) 112 . As such, the neutrino 

masses are irrelevant for present cosmology. Again quite in general, an increasing separation 

between the two ~m2 requires the angle 013 to become increasingly small. 
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Figure 3.6: Mixing angles ()ij that fit the upjdown ratios {3.3.5a,b,c) of atmospheric neu­
trinos, assuming that (a) ~m~2 ~ 10-3 eV2 and any 012 , (b) ~m~2 ~ ~m~3 ~ 10-3 eV2

, 

if> = 0 and (bl) 012 = 20°, (b2) 012 = 45°. Primed figures are as above, but including in 
the asymmetry also the intermediate bins in the angular distribution of [3] (see text). The 
contours are for x2 = 3 and x2 = 6. 
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!Jm2 case 1 case 2 case 3 case4 

2 I0-3 eV2 

Figure 3.7: Different combinations of ranges for .6.m~3 (dark gray) and 6.mr2 (light gray) 
discussed in the text. 
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Chapter 4 

U(2) and Neutrino Physics 

4.1 Introduction 

The pattern and origin of the quark and lepton masses and mixings remains a 

challenging question for particle physics. Although a detailed description of this pattern 

requires a theory of flavor with a certain level of complexity, the gross features may be 

described simply interms of a flavor symmetry and its sequential breaking. 

One simple flavor structure is motivated by four facts about flavor: 

• The quarks and leptons fall into three generations, '¢1,2,3, each of which may eventually 

have a unified description. 

• The top quark is sufficiently heavy, that any flavor symmetry which acts on it non­

trivially must be strongly broken. 

• The masses of the two light generations imply a phenomenological description in terms 

of small dimensionless parameters, { E}. 

• In supersymmetric theories, ·flavor-changing and · C P violating phenomena suggest 

that the squarks and sleptons of the first two generations are highly degnerate. 
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It is attractive to infer that, at least at a phenomenological level, there is a non-Abelian 

flavor symmetry which divides the three generations according to 

2 EB 1: 1/Ja EB 1/Ja, a = 1, 2. (4.1.1) 

The four facts listed above follow immediately from such a structure, with { E} identified 

a.s the small symmetry breaking parameters of the non-Abelian group. These control both 

the small values for quark masses and mixing angles, and also the small fractional non­

degeneracies of the scalars of the first two generations. 

The Super-Kamiokallde collaboration has provided strong evidence for an anomaly 

in the flux of atmospheric neutrinos, which may be interpreted as large angle oscillations of 

Vp, predominantly either to Vr or to v 8 , a singlet neutrino [1]. This observation provides a 

challenge to the non-Abelian 2 EB 1 structure: 

• Vr is expected to have a very different mass from that of ve,p,, and to only weakly mix 

with them. 

• If the atmospheric oscillation is vf.L -t v8 , what is the identity of this new singlet state, 

why is it light, and how could it fit into the 2 EB 1 structure? 

There are a variety of possible reactions to this challenge. One possibility is to drop 

the 2$1 idea; perhaps the C P and flavor violating problems of supersymmetry are solved by 

other means, or perhaps supersymmetry is not relevant to the weak scale. Another option 

is to retain the 2 EB 1 structure for quarks, but not for leptons, where the flavor changing 

constraints are much weaker. 

In this paper we study theories based on the flavor group U(2), which immediately 

yields the structure (4.1.1), giving the 2 EB 1 structure to both quarks and leptons [2]. The 
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masses and mixings of the charged fermions and scalars resulting fron U(2) have been 

studied in detail, and significant successes have been identified [3]. We add a right-handed 

neutrino to each generation, and find that the symmetry structure of the neutrino mass 

matrix automatically chooses v!L to be a pseudo-Dirac state coupled to one of the right­

handed neutrinos, resulting in v!L -+ v8 with a mixing angle close to 45°. 

4.2 U(2) Theories of Quark and Charged Lepton Masses. 

The most general U(2) effective Lagrangian for charged fermion masses, at leading 

order in the U(2) breaking fields, is 

(4~2.2) 

where <Pa is a doublet, sab a symmetric triplet, Aab an antisymnietric singlet of U(2), and 

h are Higgs doublets. Coupling constants have been omitted, and M is a flavor physics 

mass scale. An entire generation is represented by '1/J, so that each operator contains terms 

in up, down and charged lepton sectors, but unification is not assumed. For example, this 

theory follows from a renormalizable Froggatt-Nielsen model on integrating out a single 

heavy vector U(2) doublet of mass M (see the second of [3]). 

The hierarchical pattern of masses and mixings for charged fermions is generated 

by breaking U ( 2) first to U ( 1) with vevs <jJ2, 8 22 ~ EM, and then breaking U ( 1) via the vev 

A 12 ~ €1 M. The symmetry breaking 

U(2) ~ U(1) 4 1 (4.2.3) 
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produces the Yukawa coupling textures 

0 €
1 0 

(4.2.4). 

0 € 1 

4.3 General Effective Theory of Neutrino Masses. 

Without right-handed neutrinos, the most general U(2) effective Lagrangian for 

neutrino masses, linear in U(2) breaking fields, is 

(4.3.5) 

where la, l3 are lepton doublets. The term laAabzbhh vanishes by symmetry; hence the above 

vevs give the neutrino mass texture 

0 0 0 

v2 
(4.3.6) MLL=- 0 € E 

M 

0 E 1 

so that the lightest neutrino is massless.* The mixing angle for Vp, --* Vr oscillations, Op,n 

is of order E - the same order as mixing of the quarks of the two heavier generations, Vcb 

-and is much too small to explain the atmospheric neutrino fluxes. However, in theories 

with flavor symmetries, the .seesaw mechanism typically does not yield the most general 

neutrino mass matrix in the low energy effective theory. This apparent problem requires 

that we look more closely at the full theory, including the right-handed neutrinos. 

"Including operators higher order in the U(2) breaking fields, the lightest neutrino remains massless in 
a supersymmetric theory, but not in the non-supersymmetric case , where operators such as laAab¢!lahh 
occur. 
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4.4 The Seesaw Mechanism: A Single Light vn 

Adding three right-handed neutrinos to the theory, Na + N3, the texture for the 

Majorana mass matrix is: 

0 0 0 

MRR = M 0 f f 

0 f 1 

(4.4.7) 

with the 12 and 21 entries again vanishing by symmetry. In supersymmetric theories the 

zero eigenvalue is not lifted at higher order in the flavor symmetry breaking. This presents 

a problem for the 3 x 3 seesaw mechanism in U(2) theories, since MLL = MLRMR_kM[R 

and MRR cannot be inverted. 

One approach [4] is to allow further flavor symmetry breaking vevs, for example 

q} =/:. 0, so that MRR has no zero eigenvalues. Remarkably, taking q} /M ~ E
1

, the seesaw 

gives (}f.LT ~ 1, as needed for the atmospheric neutrino anomaly. On the other hand, this 

pattern of neutrino masses cannot explain the solar neutrino fluxes, and the additional 

. flavor breaking vevs remove two of the highly successful mass relation predictions of the 

quark sector. 

In this paper we keep the minimal U(2) symmetry breaking vevs and pursue the 

consequences of the light Ne state which results from (4.4.7). The singular nature of MR.k is 

not a problem; it is an indication that Ne cannot be integrated out of the theory. However, 

N 7 and Nf.L do acquire large masses, and when they are integrated out of the theory the low 
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energy 4 x 4 neutrino mass matrix is: 

0 

MLL' E
1v 

M(4) = (4.4.8) 
0 

0 E
1v 0 0 

where MLL is a 3 x 3 matrix in the (va, v3) space, determined from seesawing out the two 

heavy right-handed state~, and has one zero eigenvalue. 

Because the Ne - Zip, mixing is weak scale, while all other couplings to Zip, are 

suppressed, Ne and Zip, are maximally mixed. Thus, we note that a direct application of the 

U(2) theory to the neutrino sector predicts a 45° mixing between Zip, and v8 ! 

There is a significant phenomenological difficulty with this model. The mass of 

the Ne - Zip, pseudo-Dirac state is of order E1v. Using a value for €
1 extracted from an 

analysis of the charged lepton sector, this is of order 1 Ge V, well in excess of the 170 ke V 

limit obtained from direct searches. One simple solution is to restrict the couplings of the 

right-handed neutrinos by an additional U(1)N approximate flavor symmetry. Each N field 

carries N charge +1, while the symmetry is broken by a field with charge -1, leading to 

a small dimensionless breaking parameter EN. The entries in the neutrino mass matrices 

receive further suppressions 

(4.4.9) 

which, for the 4 x 4 light neutrino matrix, simply leads to the replacement E'v =} ENE'v in 
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the Ne- v,_, entry, giving 
f.'2 v2 1 v 2 IV2 

0 7M €M €M 

IV2 v2 v2 
€N€1V 

M(4) = 
€M €M €M 

1 v 2 v2 v2 0 €M €M M 

(4.4.10) 

0 iNf'V 0 0 

It is understood that all entries have unknown 0(1) coefficients. 

Note that MLL is unchanged. There is a simple reason for this. If we modify our 

right-handed couplings by the replacements MLR --+ MLRT, MRR --+ TT MRRT, where T is 

any diagonal matrix, then 

(4.4.11) 

It is interesting that the observed value of 8m~ can give the appearance that right-handed 

neutrinos receive GUT-scale masses, while their masses are in fact much lower. 

If the Ne - v!L entry dominates the mass of v!L, i.e. if €N » ~, this 4 x 4 matrix 

splits approximately into two 2 x 2 matrices, and maximal mixing is preserved. One 2 x 2 

matrix describes the pseudo-Dirac state 

(4.4.12) 

while Ve * V 7 mixing is described by 

( 

€12 1) 2 - € v € 

M €1 1 
(4.4.13) 

The resulting masses and mixings are given in Table 4.1. 

Since € and €' are determined by the charged fermion masses, in the neutrino sector 

there are two free parameters, €N and M, which describe five important observables: 08 , 
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mlight mheavy 8m2 Omix 

( 1) Heavy states 1 v2 1 v2 3 
45° V€N€ - €2M V€N€ + €2M ~€N€€1 

(2) Light states f-'2 v2 v2 (~)2 €1 
f:M M 

Table 4.1: General Theory: the masses, mixings, and splittings of the two sets of neutrinos. 

Oatm, 8m~, 8m~tm and m 11 , the mass of the pseudo-Dirac muon neutrino. However, the 

various predictions of the theory have varying levels of certainty. Because there are a large 

number of order one constants in the original formulation of the theory, we can end up with 

a prediction which has a coefficient of a product of some number of these quantities. To 

assess the level of certainty, we will include a quantity i, which we term the "stability index" 

of the prediction, which is simply the power of unknown order one coefficients appearing in 

the prediction. 

Two of the three resulting predictions are the mixing angles 

• (} I sm 0 ~€ [i = 4] , Oatm = 45° [i = 0]. (4.4.14) 

The postdiction of a maximal mixing angle for atmospheric oscillations is an important 

consequence of the U(2) theory. The value of €1 extracted from the charged fermion sector 

is 0.004, within an order of magnitude of the central value 00 =' 0.037 of the recent BP98 

fit to the solar data, and within a factor of 4 of the minimal acceptable value of 0.016 

[5]. Such a discrepancy is not a great concern, as we gain a comparable contribution from 

the charged lepton matrix. Furthermore, the prediction of 00 involves the fourth power of 

unknown order one coefficients, thus i = 4, and is somewhat uncertain. 
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The relevant mass splitting for the Ve -+ V-r oscillations occuring in the sun is 

(4.4.15) 

While this is not a prediction of the theory, it is intriguing, as has been noticed elsewhere 

in other contexts, that if M is taken close to the scale of coupling constant unification, 

8m~ ~ w-5 e V2, in the right range for either small or large angle MSW oscillations. 

The final free parameter EN is fixed by the observed mass splitting for atmospheric 

oscillations 

(4.4.16) 

giving EN~ w-s- the U(l)N symmetry is broken only very weakly. 

The final prediction is for the mass of the heavy pseudo-Dirac vf-LNe state: 

[i = 4] (4.4.17) 

where the given spread in mass is due to uncertainty in 8m~tm and 8m~. While it is 

temptinp to interpret this as a good candidate for hot dark matter, we will see later that 

KARMEN places stringent limits on the acceptable values of m 11 • 

4.5 A Variant Theory 

A variation on this breaking structure was explored in a particular model (see 

the second of [6]), and it is interesting to explore whether this same approach for neutrino 

masses can work within that model. In this variation, there is no sab field present, and the 

RR and LR masses are given by 
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0 €' 0 0 0 0 

MLR= -€' 0 € MRR= 0 0 € (4.5.18) 

0 € 1 0 € 1 

generating a light 4 x 4 mass matrix 

e'2 v2 1 v 2 
E

1 v 2 
0 f.'I"M EM eM 

tv2 
0 v2 

€N€'V 
M(4) = 

€M EM 

e' v 2 v2 v2 0 eM EM M 

(4.5.19) 

0 ENE
1v 0 0 

This matrix is problematic, because the 2 x 2 submatrix for the atmospheric neu-

trinos does not contain a splitting term. Of course, a splitting would be generated through 

interactions with the other left-handed states, we estimate 

(4.5.20) 

Consequently our atmospheric splitting is 

(4.5.21) 

Since we have (x; )2 =om~, this would predict om~tm <om~, which is unacceptable. One 

simple solution is to allow the appearance of the operators 

(~)2¢a¢blValVbA1GuT 

{ ~ )2¢a¢b lVavbH. 

(4.5.22) 

(4.5.23) 

The inclusion of one or both of these operators in our Lagrangian has the same 

effect on our final mass matrix, inducing M~~ ~ E2 x; and yielding the 2 x 2 submatrix 
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ffilight mheavy 8m2 
(}mix 

( 1) Heavy states V€N€'- €2.!C_ 2M V€N€
1 + €2L 2M ~€N€2€' 45° 

(2) Light states (~)2x; v2 
(x; )2 £. 

M E 

Table 4.2: Without S field: The masses, mixings, and splittings of the two sets of neutrinos. 

(4.5.24) 

describing the pseudo-Dirac state, while Ve => vT mixing is now described by 

(4.5.25) 

The resulting masses and mixings are given in table 4.2. 

The mixing angles in this variation are predicted to be 

[i = 5] , Oatm = 45° [i == 0] (4.5.26) 

As the pseudo-Dirac muon neutrino is still present, the atmospheric angle is unchanged. 

However, the solar angle is changed somewhat. We should note that values for € and €
1 

extracted for a fit of this model are different than for those of the previous model. Using 

values from fits in the charged fermion sector, we have E ~ 0.03 and E' ~ 5 x w-4 or 

E' ~ 2.4 X w-4 {depending on certain signs), yielding (}0 ~ 0(1.5 X w-2). Given the 

number of 0(1) parameters involved, this is again quite consistent with the BP98 small-

angle MSW solution. 
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The solar splitting scale is unchanged, while the atmospheric splitting is further 

surpressed by a factor of E. 

(4.5.27) 

We fit this splitting again with the free parl:}lleter EN.~ 10-6 - 10-7 . The resulting muon 

neutrino mass is then 

8m2 
mv ~ atm ~ 101.7eV- 103·5eV 

€2~ 
[i = 5] (4.5.28) 

Thus, while the explanations of the solar and atmospheric neutrinos remain, the 

neutrino becomes potentially dangerous in its cosmological implications. However, given 

· the large stability index of this prediction, there are large uncertainties in the prediction 

for its mass. 

4.6 KARMEN and LSND 

The presence of an additional sterile state makes it possible that a signal would 

be seen in short baseline lip, -t lie oscillations, such as has been reported at LSND [7]. An 

estimate of the LSND mixing angle from the neutrino sector gives a18m~j8m~tm' a very 

small result. Hence, this mixing originates from the charged lepton sector 

[i = 0]. (4.6.29) 

The precise predictions for 1 - 2 mixing angles in the charged sector is an essential feature 

of the U(2) flavor symmetry. In the quark sector it is highly successful. In the lepton sector, 
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fhsND = ~is only useful if the neutrino mixing is either predicted or small, as in this 

theory. Recently, the KARMEN experiment has placed limits on the allowed region for 

such oscillations, giving a limit mv ~ 0.6 eV [8]. While the prediction for mv has a large 

stability index in both the general theory as well as the variant theory, because the initial 

range for mv is so high in the variant theory, it is disfavored by this bound. 

The general theory is much safer, however. As we discuss in the appendix, the 

uncertainty due to order one coefficients would allow it to satisfy the KARMEN bound. 

Such a result would likely coincide with higher values of 8m~ and lower values of 8m~tm. 

4. 7 Astrophysical and Cosmological Implications 

There are three important cosmological implications of our theory. 

1. We predict a small, but potentially significant amount of neutrino hot dark matter. The 

KARMEN bound limits us to a 0.6 eV neutrino, but because there are two massive states, 

it is still within the interesting region for HDM. 

2. We predict abundances for light nuclei resulting from four light neutrino species. While 

newer data suggest D / H ratios lie in the low end of the range previously thought, and thus 

N v < 4, this is still an open question. 

3. There may be two further singlet neutrino states, dominantly NJL and Nn at or below 

the weak scale. Successful nucleosynthesis requires that they decay before the era of nucle­

osynthesis. Because the mass eigenstates are slightly left-handed, the primary decay mode 

will be through the process shown in figure 4.1. This is similar to muon decay, which we 

use as a benchmark. For the lighter of the two states, we estimate its lifetime to be 
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(4.7.30) 

The mass of this particle is 

(i = 12] (4.7.31) 

for the general theory and 

[i ~ 11- 16] (4.7.32) 

in the variant theory. The stability index is approximate because it involves sums of order 

one coefficients of different powers. Furthermore, i will change depending on which of 

(4.5.23) are included. 

The more dangerous case, the general theory, then has a mass 0(100M eV) and 

thus a lifetime TN~' ~ 103s, which is far too long to be acceptable. However, because the 

lifetime has a fifth power dependence on the mass, and because the prediction for the mass 

has index 12, deviations in the order one quantities could very easily push the lifetime 

down to an acceptable level. As we explore in the appendix, even conservatively we can 

only reasonably estimate the mass of this particle to be in the range ( 17Me V, 40Ge V), which 

means that the lifetime could easily be w-9 s, without even beginning to push the limits of 

the order one quantities. The details are presented in the appendix. 
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Figure 4.1: Principal decay mode for N,_,.. 
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4.8 Models 

The theory described in this paper has a low energy effective Lagrangian of ( 4.2.2) 

for charged fermion masses, while the neutrino masses arise from the U(2) x U(1)N effective 

Lagrangian 

W = : N3hh +:. ( N3<jJalah + l3<jJaNah + Na(Sab + Aab)lbh) 

+~(~~M+~~~M+~~~~ (4.8.33) 

where N3 and Na have U(1)N charges +1, while <PN has U(1)N charged -1. The field <PN 

gets a vev, breaking U(1)N and establishing an overall scale for these coefficients: <1J:;> = 

EN. This effective theory can result from a renormalizable model by integrating out heavy 

states, both singlet and doublet under U(2), in the Froggatt-Nielsen mechanism. 

This symmetry structure on the right-handed singlet sector is far from unique. 

Another possibility is for Nato carry U(1)N charge, while N3 is neutral under U(1)N· This 

has no effect on any of our predictions, since the form of (4.4.10) for the light neutrino mass 

matrix is unchanged. The only change is that N3 has a mass of the order of the unification 

scale M rather than of order EJvM. 

Another possible symmetry structure for the theory is U(2)1/J x U(2)N, where U(2)1/J 

acts as usual on all the matter with non-trivial SU(3) x SU(2) x U(1) quantum numbers, 

while U(2)N acts only on the three right-handed neutrinos, with N3 a singlet and Na a 

doublet. The matrix MRR now has the form of (4.4.7), and arises from the renormalizable 

interactions 
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(4.8.34) 

with vevs for 822 and ¢2 being of order EM and breaking U(2)N -+ U(1)N· The interactions 

for MLR are 

(4.8.35) 

where RaA transforms as a (2,2). The vev for R 22 is also of order EM, since this is the scale 

of breaking of U(2)'1/J x U(2)N -+U(1)'1/J x U(1)N· The breaking scale for U(1)'f/J is E'M, so 

the vev of R 12 takes this value. On the other hand, U(1)N is broken by R21 . We choose 

this scale to be smaller by a factor of EN, < R 21 >::::::: ENE'M, giving 

0 E' 0 

(4.8.36) 

0 f. 1 

Integrating out the heavy states N2 and N3,·which now have masses of order the unification 

scale, this theory now reproduces (4.4.10) for the mass matrix of the four light neutrinos. 

The common features of these models, which are inherent to our scheme, are: 

• There is a U(2) symmetry, which acts on the known matter as 'lj;3 E9 'lj;a, and is broken 

sequentially at scale EM and E1 M. 

• A U(2) symmetry also acts on the three right-handed neutrinos with Na a singlet and 

N 1,2 a doublet. This U(2), together with the symmetry of the Majorana mass, implies 

that N1 does not have a Majorana mass and becomes a fourth light neutrino. 
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• There is an addition to the flavor group, beyond the U(2) which acts on 1/J. At least 

part of this additional flavor symmetry is broken at a scale very much less than M, 

leading to a small Dirac mass coupling of vp.Ne· Such a small symmetry breaking 

scale could be generated by the logarithmic evolution of a scalar m2 term. 

4.9 ··.·Conclusions 

There are several theories with sterile neutrinos [9, 10, 11] some of which have 

4 x 4 textures that split into two 2 x 2 matrices. Such theories provide a simple picture 

for atmospheric OSCillations via 1/p. -7 V8 , and solar OSCillationS via Ve -7 Vr, with Om~.~ 

t ~ 10-5eV2 for M ~ Munif· However, theories of this kind typically do not provide an 

understanding for several key points: 

• Why is the Majorana mass of the singlet state v5 small, allowing v8 in the low energy 

theory? 

• Why does Vs mix with Vp. rather than with Ve or Vr? 

• Why is the v 8 - Vp. state pseudo-Dirac, leading to 45° mixing? 

• How can this extended neutrino sector be combined with the pattern of charged quark 

and lepton masses in a complete theory of flavor? 

• What determines the large number of free parameters in the neutrino sector? 

In the theory presented here, all these questions are answered: the key tool is the 

U(2) flavor symmetry, motivated several years ago by the charged fermion masses and the 

supersymmetric flavor problem. The simplest pattern of U(2) symmetry breaking consistent 
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with the charged fermion masses does not allow a Majorana mass for one of the three right-

handed neutrinos. Furthermore, it is precisely this right-handed state that has a Dirac 

coupling to vp. but not to Ve or V-n guaranteeing that Vp. is pseudo-Dirac with a 45° mixing 

angle. 

Our theory provides a unified description of both charged fermion and neutrino 

masses, in terms of just three small symmetry breaking parameters and a set ,of order unity 
' 

coefficients. Some predictions, such as IVub/Vcbl = Jmu/mc and Oatm = 45° are independent 

of the order unity coeffici~nts and are precise. Other predictions, such as IVcbl ~ m 8 /mb and 

00 ~ ../memp./m~ involve the order unity coefficients and are approximate. In the appendix 

we have introduced the "stability index" which attempts to quantify the uncertainty in such 

predictions according to the power of the unknown order unity coefficients appearing in the 

prediction.· 

There is one further free parameter of the theory-the overall mass scale M setting 

the normalization of the right handed Majorana mass matrix. If M is taken to be the scale 

of coupling constant unification 8m~ ~ 10-5eV2 . 

The value of 8m~tm is not predicted- this is the largest deficiency of the theory. It 

can be described by a very small flavor symmetry breaking parameter. Once this parameter 

is set by the observed value of 8m~tm, it can be used to predict the approximate mass 

range of the pseudo-Dirac vi-' to be in the range 10°·4 - 102eV, with significant additional 

uncertainty due to order one coefficients. This, even with the KARMEN bound, allows 

for a neutrino of cosmological interest with Li mvi ~ 1 e V. Such a neutrino could be 

seen at short baseline experiments, and may have already been seen by LSND. Searching 



105 

Experiment Mode Signal 

Present solar v exp. Ve-+ Vr All data consistent with 2-flavor MSW 

SNO Ve-+ l/T Confirm SK measurement of B8. Measure $No # 1 
co 

Borexinq Ve-+ l/T Consistent with small-angle 2-flavor MSW 

KAMLAND Ve-+ l/T No signal 

LSND,KARMEN l/p,-+ Ve sin2 (2lJ) = 2 X 10-2 

K2K Vp,-+ Ne_ vp, disappearance. No e appearance 

MINOS, ICARUS Vp,-+ Ne Vp, disappearance. NoT appearance. 

Atmospheric v exp. Vp,-+ Ne Confirm 2 flavor vJL-+ v 8 with 45° mixing. 

Table 4.3: Experimental signals. 

for vJL -+ ve, with sin2 (20) = 2 x w-2, below the current limit of 6m2 is a~ important 

experiment for the U(2) theory, since it is this prediction which differentiates· U(2) from 

several other theories with a light singlet neutrino. 

Predictions of the theory for experiments sensitive to neutrino oscillations are . 

listed in table 4.3. We expect a small angle MSW solution to the solar neutrino anomaly, 

through aVe ::::? v 7 oscillation. The atmospheric neutrino anomaly is from vJL ::::? v 5 • This 

will be distinguishable from Vp,::::? v 7 through a number of means: LBL experiments will see 

vJL disappearance, but nove or v 7 appearance. Improved statistics from Super-Kamiokande 

will be useful in distinguishing vJL ::::? v 7 and vJL ::::? v 5 , for example via inclusive studies of 

multi-ring events [12). 
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Chapter 5 

Neutrino Mass Anarchy 

5.1 Introduction 

Neutrinos are the most poorly understood among known elementary particles, and 

have important consequences in particle and nuclear physics, astrophysics and cosmology. 

Special interests are devoted to neutrino oscillations, which, if they exist, imply physics 

beyond the standard model of particle physics, in particular neutrino masses. The Su­

perKamiokande data on the angular dependence of the atmospheric neutrino flux provides 

strong evidence for neutrino oscillations, with vf..£ disappearance via large, near maximal mix­

ing, and ~m~tm ~ 10-3 eV2 [1]. Several measurements of the solar neutrino flux can also be 

interpreted as neutrino oscillations, via Ve disappearance[2]. While a variety of ~m~ and 

mixing angles fit the data, in most cases ~m~ is considerably lower than ~m~tm' and even 

in the case of the large angle MSW solution, the data typically require ~m~ ~ O.l~m~tm[3]. 

The neutrino mass matrix apparently has an ordered, hierarchical form for the eigenvalues, 

even though it has a structure allowing large mixing angles. 

All attempts at explaining atmospheric and solar neutrino fluxes in terms of neu­

trino oscillations have resorted to some form of ordered, highly structured neutrino mass 

I • 
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matrix[4]. These structures take the form M0 + €M1 + ... , where the zeroth order mass 

matrix, Mo, contains the largest non-zero entries, but has many zero entries, while the first 

order correction terms, €M1, have their own definite texture, and are regulated in size by 

a small parameter €. Frequently the pattern of the zeroth order matrix is governed by a 

flavor symmetry, and the hierarchy of mass eigenvalues result from carefully-chosen, small, 

symmetry-breaking parameters, such as €. Such schemes are able to account for both a 

hierarchical pattern of eigenvalues, and order unity, sometimes maximal, mixing. Mass 

matrices have also been proposed where precise numerical ratios of different entries lead to 

the desired hierarchy and mixing. 

In this letter we propose an alternative view. This new view selects the large 

angle MSW solution of the solar neutrino problem, which is preferred by the day to night 

time flux ratio at the 2a level[2]. While the masses and mixings of the charged fermions 

certainly imply regulated, hierarchical mass matrices, we find the necessity for an ordered 

structure in the neutrino sector to be less obvious. Large mixing angles would result from 

a random, structureless matrix, and such large angles could be responsible for solar as well 

as atmospheric oscillations. Furthermore, in this case the hierarchy of l:l.m2 need only be 

an order of magnitude, much less extreme than for the charged fermions. We therefore 

propose that the underlying theory of nature has dynamics which produces a neutrino mass 

matrix which, from the viewpoint of the low energy effective theory, displays anarchy: all 

entries are comparable, no pattern or structure is easily discernable, and there are no special 

precise ratios between any entries. Certainly the form of this mass matrix is not governed 

by approximate flavor symmetries. 
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There are four simple arguments against. such a proposal 

• The neutrino sector exhibits a hierarchy with ~m~ ~ w-5 - w-3eV2 for the large 

mixing angle solution, while ~m~tm ~ w-3 - w-2e V2
' 

• Reactor studies of Ve at the CHOOZ experiment have indicated that mixing of Ve in 

the w-3eV2 channel is small [5], requiring at least one small angle, 

• Even though large mixing would typically be expected from anarchy, maximal or near 

maximal mixing, as preferred by SuperKamiokande data, would be unlikely, 

• ve, v,.,. and vT fall into doublets with eL, J-LL and T£, respectively, whose masses are 

extremely hierarchical (me: mp.: mT ~ w-4: w-l : 1). 

By studying a sample of randomly generated neutrino mass matrices, we demonstrate that 

each of these arguments is weak, and that, even when taken together, the possibility of 

neutrino mass anarchy still appears quite plausible. 

5.2 Analysis 

We have performed an analysis of a sample of random neutrino matrices. We 

investigated three types of neutrino mass matrices: Major ana, Dirac and seesaw. For the 

Majorana type, we considered 3 x 3 symmetric matrices with 6 uncorrelated parameters. 

For the Dirac type, we considered 3 x 3 matrices with 9 uncorrelated parameters. Lastly, for 

the seesaw type, we considered matrices of the form MDM.RkMb[6], where MRR is of the 

former type and MD is of the latter. We ran one million sample matrices with independently 

generated elements, each with a uniform distribution in the interval [-1, 1] for each matrix 

type: Dirac, Majorana and seesaw. 
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To check the robustness of the analysis, we ran smaller sets using a distribution 

with the logarithm base ten uniformly distributed in the interval [-1/2, 1/2] and with 

random sign. We further checked both of these distributions but with a phase uniformly 

distributed in [0, 2n]. Introducing a logarithmic distribution and phases did not significantly 

affect· our results (within a factor of two), and hence we discuss only matrices with a linear 

distribution and real entries. 

We make no claim that our distribution is somehow physical, nor do we make 

strong quantitative claims about the confidence intervals of various parameters. However, 

if the basic prejudices agaii1St anarchy fail in these simple distributions, we see no reason 

to cling to them. 

In each case we generated a random neutrino mass matrix, which we diagonalized 

with a matrix U. We then investigated the following quantities: 

R - b,.m~2 / b,.m~3, (5.2.1) 

sc - 4IUe3l 2(1- 1Ue3l2
), (5.2.2) 

Satm - 4IUtt3l2(1- IUtt312
), (5.2.3) 

s0 - 4IUe2I 2 IUell2, (5.2.4) 

where b,.m~2 is the smallest splitting and b,.m~3 is the next largest splitting. What ranges 

of values for these parameters should we demand from our matrices? We could require they 

lie within the experimentally preferred region. However, as experiments improve and these 

regions contract, the probability that a random matrix will satisfy this goes to zero. Thus 

we are instead interested in mass matrices that satisfy certain qualitative properties. For 

otir. numerical study we select these properties by the specific cuts 
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Dirac no cuts 8atm 80 8atm + 80 

no cuts 1,000,000 671,701 184,128 135,782 
8C 145,000 97,027 66,311 45,810 
R 106,771 78,303 17,538 14,269 
8c+R 12,077 9,067 5,656 4,375 
Majorana no cuts 8atm 80 8atm + 80 

no cuts 1,000,000 709,076 200,987 164,198 
8C 121,129 91,269 70,350 56,391 
R 200,452 149,140 37,238 31,708 
8c+R 21,414 16,507 12,133 10,027 
seesaw no cuts 8atm 80 8atm + 80 

no cuts 1,000,000 594,823 210,727 133,800 
8C 186,684 101,665 86,511 49,787 
R 643,394 390,043 132,649 86,302 
8c+R 115,614 64,558 53,430 31,547 

Table 5.1: Mass matrices satisfying various sets of cuts for the real linear Dirac, Majorana 
and seesaw scenarios. 

• R < 1/10 to achieve a large hierarchy in the D.m2 • 

• 8C < 0.15 to enforce small Ve mixing through this D.m2. 

• 8atm > 0.5 for large atmospheric mixing. 

• 80 > 0.5 for large solar mixing. 

The results of subjecting our 106 sample matrices, of Dirac, Majorana and seesaw types, 

to all possible combinations of these cuts is shown in Table 5.1. First consider making a 

single cut. As expected, for all types of matrices, a large percentage (from 18% to 21%) 

of the random matrices pass the large mixing angle solar cut, and similarly for the large 

mixing angle atmospheric cut (from 59% to 71%). Much more surprising, and contrary 

to conventional wisdom, is the relatively large percentage passing the individual cuts for R 

(from 10% to 64%) and for 8C (from 12% to 18%). The distribution for R is shown in Figure 
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Figure 5.1: The distribution of b..m~/ b..m~tm for Dirac (solid) Majorana (dot-dashed) and 
seesaw (dashed) scenarios. 

5.1. Naively, one might expect that this would peak at R = 1, which is largely the case for 

Dirac matrices, although with a wide peak. In the Majorana case there is an appreciable 

fraction(""' 20%) that have a splitting R ~ 1/10, while in the seesaw scenario the majority 

of cases (""' 64%) have a splitting R ~ 1/10- it is not at all unusual to generate a large 

hierarchy. 

We can understand this simply: first a splitting of a factor of 10 in the b..m2's 

corresponds to only a factor of 3 in the masses themselves if they happen to be hierarchically 

arranged. Secondly, in the seesaw scenario, taking the product of three matrices spreads 

the b..m2 distribution over a wide range. 

While one would expect random matrices to typically give large atmospheric mix-

ing, is it plausible that they would give near-maximal mixing, as required by the Su-

perKamiokande data? In Figure 5.2 we show distributions of Satm, which actually peak 
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Figure 5.2: Plots of the normalized, binned distributions of 8atm for Dirac, Majorana and 
seesaw cases. Contrary to intuition, the distributions actually peak at large 8atm· 

in the 0.95 < 8atm < 1.0 bin. We conclude that it is not necessary to impose a precise order 

on the mass matrix to achieve this near-maximal mixing. Finally, we consider correlations 

between the various cuts. For example, could it be that the cuts on R and 8C selectively 

pass matrices which accidentally have a hierarchical structure, such that 8atm and 80 are 

also small in these cases? From Table 5.1 we see that there is little correlation of 8atm with 

8C or R: the fraction of matrices passing the 8atm cut is relatively insensitive to whether or 

not the 8C orR cuts have been applied. However, there is an important anticorrelation be-

tween 80 and 8c cuts; for example, in the seesaw case roughly half of the matrices satisfying 

the 8C cut satisfy the 8 0 cut, compared with 20% of the original set. This anticorrelation 

is shown in more detail in Figure 5.3, which illustrates how the 8C cut serves to produce a 

peak at large mixing angle in the 8 0 distribution. 
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Figure 5.3: Plots of the normalized, binned distributions of s0 for Dirac (a), Majorana (b), 
and seesaw {c) cases. The distribution after imposing the sc cut (solid) shows a greater 
preference for large s0 compared with the original distribution (dashed). 
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For random matrices we expect the quantity 

(5.2.5) 

to be large, since otherwise Ve would have to be closely aligned with one of the mass 

eigenstates. Hence, when we select matrices where sc happens to be small, we are selecting 

ones where s0 is expected to be large. 

5.3 Right Handed Flavor Symmetries 

We have argued that the neutrino mass matrix may follow from complete anarchy, 

however the electron, muon, tau mass hierarchies imply that the charged fermion mass 

matrix has considerable order and regularity. What is the origin for this difference? The only 

answer which we find plausible is that the lepton doublets, (v1, l)L, appear randomly in mass 

operators, while the lepton singlets, lR, appear in an orderly way, for example, regulated by 

an approximate flavor symmetry. This idea is particularly attractive in SU{5) grand unified 

theories where only the 10-plets of matter feel the approximate flavor symmetry, explaining 

why the mass hierarchy in the up quark sector is roughly the square of that in the down 

quark and charged lepton sectors. Hence we consider a charged lepton mass matrix of the 

form 
Ae 0 0 

Mz = Mz 0 .Ap. 0 (5.3.6) 

0 0 AT 

where Ae,p., 7 are small flavor symmetry breaking parameters of order the corresponding 

Yukawa couplings, while Ml is a matrix with randomly generated entries. We generated 

one million neutrino mass matrices and one million lepton mass matrices, and provide 
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cuts none Satm s0 Satm + s0 
none 1,000,000 537,936 221,785 126,914 
sc 222,389 102,178 99,050 50,277 
R 643,127 345,427 142,789 81,511 
sc+R 143,713 65,875 63,988 32,435 

Table 5.2: Mass matrices satisfying various sets of cuts for the real linear seesaw scenario, 
with -~dditional mixing from the charged lepton sector. 

!.[•,.· 

results for the mixing matrix U = U/U,_,, where U,_, and Ut are the unitary transformations 

on vl and lt which diagonalize the neutrino and charged lepton mass matrices. We find 

that the additional mixing from the charged leptons does not substantially alter any of our 

conclusions - this is illustrated for the case of seesaw matrices in Table 5.2. The mixing of 

charged leptons obviously cannot affect R, but it is surprising that the distributions for the 

mixings Satm,0 ,c are not substantially changed. 

5.4 Conclusions 

All neutrino mass matrices proposed for atmospheric and solar neutrino oscillations 

have a highly ordered form. In contrast, we have proposed that the mass matrix appears 

random, with all entries comparable in size and no precise relations between entries. We 

have shown, especially in the case of seesaw matrices, that not only are large mixing angles 

for solar and atmospheric oscillations expected, but D.m~ ~ 0.1D.m~tm' giving an excellent 

match to the large angle solar MSW oscillations, as preferred at the 2ulevel in the day /night 

flux ratio. In a sample of a million random seesaw matrices, 40% have such mass ratios 

and a large atmospheric mixing. Of these, about 10% also have large solar mixing while 

having small Ve disappearance at reactor experiments. Random neutrino mass matrices 

produce a narrow peak in atmospheric oscillations around the observationally preferred 
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case of maximal mixing. In contrast to flavor symmetry models, there is no reason to 

expect Ue3 is particularly small, and long baseline experiments which probe Am~tm' such 

as K2K and MINOS, will likely see large signals in Ile appearance. If Am~tm is at the lower 

edge of the current Superkamiokande limit, this could be seen at a future extreme long 

baseline experiment with a muon source. Furthermore, in this scheme Am~ is large enough 

to be probed at KamLAND, which will measure large De disappearance. 
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Chapter 6 

Stabilizing Large Extra Dimen\sions 

6.1 Introduction 

It has recently been realized that the fundamental scales of gravitational and string 

physics can be far beneath "' 1018 GeV, in theories where the Standard Model fields live 

on a 3-brane in large-volume extra dimensions (1]. Lowering these fundamental scales close 

to the weak scale provides a novel approach to the hierarchy problem, and implies that the 

structure of quantum gravity may be experimentally accessible in the near future. 

While this prospect is very exciting, two important theoretical issues need to be 

addressed for this scenario to be as compelling as the more "standard" picture with high 

fundamental scale, where the hierarchy is stabilized by SUSY dynamically broken at scales 

far beneath the string scale. First: what generates the large volume of the extra dimensions? 

And second: what about the successful picture of logarithmic gauge coupling unification 

in the supersymmetric standard model? The success is so striking that we do not wish to 

think it is an accident. 

One way of generating a large volume for the extra dimensions involves considering 

a highly curved bulk. Indeed Randall and Sundrum have proposed a scenario where the 
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bulk volume can be exponentially larger than the proper size of a single extra dimension 

[2]. Goldberger (\nd Wise then showed how such a dimension could be stabilized [3]. In 

the original proposal of [1], however, the bulk was taken to be very nearly flat. Previous 

attempts at stabilizing large dimensions in this framework involved the introduction of large 

integer~numbers in the theory, such as large topological charges [4, 5] or large numbers 

of branes [5]. In this paper, we instead demonstrate how to stabilize exponentially large 

dimensions in the framework of [1]. 

The set-up needed to accomplish this meshes nicely with recent discussions of 

how the success of logarithmic gauge coupling unification can be maintained with large 

dimensions and low st~ing scale. In [6, 7, 8, 9, 10] it was argued that logarithmic gauge 

coupling unification may be reproduced in theories with (sets of) two large dimensions. If 

various light fields propagate in effectively two transverse dimensions, then the logarithmic 

Green's functions for these fields can give rise to logarithmic variation of the parameters on 

our brane universe; in cases with sufficient supersymmetries, this logarithmic variation can 

exactly reproduce the logarithmic running of couplings seemingly far above the (now very 

low) string scale. This phenomena is another example of the bulk reproducing the physics 

of the desert, this time with quantitative precision. Of course, for the "infrared running" 

picture to work after SUSY breaking, we must assume that SUSY is not broken in the bulk 

but only directly on branes. This is the analogue of softly breaking SUSY at low energies 

in the usual desert picture. 

It is interesting that these same ingredients: sets of two transverse dimensions 

with SUSY in the bulk, only broken on branes, can also be used to address the issue of 
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large radius stabilization. Indeed, in the SUSY limit, there is no bulk cosmological constant 

and there is no potential for the radii; they can be set at any size. The crucial point is that 

once SUSY is broken on branes with a characteristic scale A 4 , locality guarantees that no 

bulk cosmological constant is induced, and therefore the effective potential for the radius 

moduli does not develop any positive power-law dependence on the volume of the transverse 

dimensions. For . two transverse dimensions, logarithmic variation of light bulk fields can 

then give rise to a logarithmic potential for the size, R, of the extra dimensions: 

(6.1.1) 

where M* is the fundamental scale of the theory. This can arise, for instance, from the 

infrared logarithmic variation of coupling constants on branes where SUSY is broken or 

from inter-brane forces [7, 10, 11]. Since log(R) rather R itself is the natural variable, if the 

potential has parameters of 0(10), a minimum can result at log(R)"' 10, thereby generating 

an exponentially large radius and providing a genuine solution to the hierarchy problem, 

on the same footing as technicolor or dynamical SUSY breaking. 

This idea is appealing and general; relying only on sets of two transverse dimen­

sions (for the logarithmic dependence) and supersymmetry in the bulk (to stably guarantee 

the absence of a bulk constant which would induce power-law corrections to the effective 

potential for the radii). It makes the existence of large extra dimensions seem plausible. 

However, the discussions in [7, 10, 11] have only pointed out this possibility on general 

grounds but have not presented concrete models realizing the idea. In this paper we rem­

edy this situation by presenting an explicit example of a simple theory with two extra 

dimensions, which stabilizes exponentially large dimensions. The interaction of branes with 
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massless bulk scalar fields induces a logarithmic potential for the area A of the transverse 

dimensions of the form 

This potential is minimized for an area 

AM2 _ v2 /w2 

*- e 

( 
I 

(6.1.2) 

(6.1.3) 

and so only a ratio of vjw,...., 6 is needed to generate an area to generate the,...., (mm)2 area 

needed to solve the hierarchy problem with M*,...., TeV. There is a single fine-tuning among 

the parameters v,w and j, which are all of order M*, to set the 4D cosmological constant 

to zero. 

6.2 The Radion Signal 

Since the potential for the radii of the extra dimensions vary only logarithmically, 

one might worry that the mass of the radius modulus about the minimum of the potential 

will be too light. In fact, the mass turns out to be just in the millimeter range, and gives 

an observable deviation from Newton's law at sub-millimeter distances. 

Consider a 6 dimensional spacetime with metric of the form 

(6.2.4) 

where the geometry of g is taken to be fixed at high energy scales; for example by brane 

configurations, as illustrated in the next section. The low energy 4D effective field theory 

involves the 4D graviton together with the radion field, R(x), which feels the potential of 

eq. {1). After a Weyl rescaling of the metric to obtain canonical kinetic terms, the radion 
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is found to have a mass 

(6.2.5) 

Hence, an interesting general consequence of such logarithmic potentials is that the mass of 

the radion is naturally in the millimeter range for supersymmetry breaking and fundamental 

scales A ,....., M* "'TeV. This order of magnitude result is important for mm range gravity 

experiments, because the Weyl rescaling introduces a gravitational strength coupling of 

the radion to the Standard Model fields, so that radion exchange modifies the Newtonian 

potential to 

(6.2.6) 

For a radion which determines the size of an n dimensional bulk, the coefficient of the 

exponential is 4n/(n + 4), so that an observation of a coefficient corresponding to n = 2 

would be a dramatic signal of our mechanism. 

It might be argued that, since M* is larger than 50-100 TeV for n = 2 from 

astrophysics and cosmology ([12, 13]), mR will be sufficiently large that the range of the 

radion-mediated force will be considerably less than than a mm, making an experimental 

discovery extremely difficult. This conclusion is incorrect, for several reasons: 

• The astrophysical and cosmological limits are derived from graviton emission and 

hence constrain the gravitational scale, which may be somewhat larger than the fun-

damental scale, M*. 

• It is the scale of supersymmetry breaking on the branes, A, which determines mR, 

and this may be less than M*, reducing mR and making the range of the Yukawa 

potential larger. 
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• The radion mass may be reduced from the order of magnitude estimate mR ~ A2 /MPl 

by powers of log R, depending on the function f which appears in the potential (1), 

as occurs in the theory described in the next section. 

• Finally, the cosmological and astrophysical limits on the fundamental scale are 

unimportant in the case that the bulk contains more than one 2D subspace, but 

as discussed in section 4, the radions still have masses ,...., mm -l. 

6.3 Explicit model 

In this section we present a specific effective theory that stabilizes two large extra 

dimensions, without relying on input parameters with particularly large(> 10) ratios. The 

framework for our model is as follows. Supersymmetry in the bulk guarantees a vanishing 

bulk cosmological constant. Embedded in the 6D spacetime is a set of parallel three-branes 

that can be regarded as non-supersymmetric defects. Following closely the example of [4], 

the tensions of these three-branes themselves compactify the extra dimensions. We take 

the bulk bosonic degrees of freedom to be those of the supergravity multiplet, namely, the 

graviton 9AB and the anti-self-dual2-form AAB· The 2-form AAB does not couple to any of 

the three-branes and can be set to zero in our case. We can also have a set of massless bulk 

scalars </>i contained in hypermultiplets. The relevant part of the Bosonic action is then 

S = SBulk + SBrane {6.3.7) 

where 

(6.3.8) 
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is the bulk action and 

(6.3.9) 

is the action for the branes [14]. Here the J{ are the brane tensions and Li are Lagrangians 

for fields '1/Ji that may live on the branes, which can also depend on the value of bulk fields 

</>evaluated on the brane <Pia· G is the 6d metric, 9i is the induced metric on the i'th brane, 
< 

and we have set the bulk cosmological constant to zero. 

Note that while SBulk must be accompanied by all the extra fermionic terms to 

have SUSY in the bulk, the brane actions do not have to linearly realize SUSY at all, 

although they may realize SUSY non-linearly. In particular, there need not be any trace 

of superpartners on the brane where the Standard Model fields reside. The only reason we 

need SUSY in the bulk is to protect against the generation of a bulk cosmological constant 

Abulk, which would make a contribution"' AbulkA to the potential for the area modulus and 

spoil our picture with logarithmic potentials. 

Our model has three 3-branes, two of which couple to scalars</> and¢'. The dynam-

ics on the brane impose boundary conditions on the bulk scalar fields. In particular, imagine 

that the the brane defects create brane-localized potentials for ¢, which want </>to take on 

the value vi on one brane and v~ on the other. This will lead to a repulsive contribution to 

the potential for the area. The same two branes will be taken to have equal and opposite 

magnetic charges for the scalar <!>', setting up a vortex-antivortex configuration for <!>' which 

will lead to an attractive potential. The balance between these contributions provides a 

specific realization of how competing dependences on log R can lead to an exponentially 

large radius without very large or small input parameters. 



129 

Figure 6.1: The two transverse dimensions in the presence of a three-brane with tension 
/ 4• The shaded region is excluded, and the two borders of the excluded region are to be 
identified. 

We begin by reviewing how the brane tensions can compactify the two extra di-. 

mensions [14, 15). Suppose we ignore for the time being the branes' couplings to bulk 

scalars, in which case the relevant terms in the action in the low-energy limit are 

S =-I d4
x ~ F9i/i4

- 2M
4 J d4

xd
2
yV-f]R. 

t 

(6.3.10) 

For the case in which only a single brane is present, the static solution to Einstein's equations 

is 

(6.3.11) 

where 9mn is the 2D Euclidean metric everywhere but at the position of the three-brane, 

where it has a conical singularity with deficit angle 

(6.3.12) 

As expected, this is in exact correspondence with the metric around point masses in 2+ 1 

dimensional gravity [15). As shown in Figure 6.1, the spatial dimensions transverse to the 

.. 
brane are represented by the Cartesian plane with a wedge of angle 8 removed. Adding a 

second brane removes a further portion of the Cartesian plane. In fact, if 4{}4 + 4~4 > 27r, 

then the excluded region surrounds the allowed portion, as in Figure 6.2. In this case 

Einstein's equations have a static solution that features a· compact space with spherical 
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Figure 6.2: A compact space can be obtained given three branes whose corresponding deficit 
angles Oi add up to 471". Identifications to be made are indicated by hash marks. Note that 
in contrast to the brane in Figure 6.1, branes 1 and 3 in this figure have tensions larger 
than 471" M 4 . 

topology, provided that a third brane of tension Jt = 167rM4 - J{- fi is placed at the 

intersecting lines of exclusion. In general, a set of three-branes has a static solution with 

spherical topology if 

(6.3.13) 

that is, the deficit angles must add up to 471". 

If a set of branes compactifies the space in this manner, then the 4D effective 

theory is given by including in the action of (6.3.10) the massless excitations about the 

classical metric. Thus we replace 'f/p,v -t "§p,11 (x) and allow gmn(Y) to fluctuate about Omn in 

the bulk. The induced metric on a given brane will differ from gi-L11 (x) by terms involving the 

fields associated with the brane separations, which we temporarily ignore. The curvature 

breaks up into two pieces R(4) and R(2), the Ricci scalars built out of "§p,11 (x) and gmn(y), 



respectively. Then, using the Gauss-Bonnet Theorem for spherical topology, 

I d2yvfQ R(2) = -87!"' 
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(6.3.14) 

along with the fact that R(4) has no y dependence, we can integrate over the extra dimen­

sions to obtain 

(6.3.15) 

In this action it 'is explicit that adjusting the deficit angles to add up to 47r is equivalent to 

tuning the 4D cosmologi<;al constant to zero. 

To develop our specific model we consider the case of three three-branes on a space 

of spherical topology. Then the "shape" of the extra dimensions is fixed by the branes' deficit 

angles, or equivalently, by their tensions. However, the size of the extra dimensions, 

(6.3.16) 

is completely undetermined. Moreover, the scalar associated with fluctuations of A, the 

radion, is massless and mediates phenomenologically unacceptable long-range forces. To 

stabilize the volume of the extra dimensions and give the radion a mass, we couple bulk 

scalar fields to two of the branes, which, for simplicity, we assume have equal tensions f. 

The scalar profiles will generate a potential Vq,(A) that is minimized for a certain value A 

of the volume of the compactified space. Adding the scalar action to (6.3.15) yields a total 

.potential 

V(A) = Vq,(A) + LJl-161rM4
• (6.3.17) 

The effective cosmological constant, 

(6.3.18) 
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2 

2 

Figure 6.3: The boundary conditions on ¢. Identifications to be made are indicated by hash 
marks. 

can then be made to vanish by a single fine tuning of fundamental parameters. The back-

reaction on the spatial geometry that is induced by the scalars is discussed below. 

We work with two massless bulk scalars, ¢ and if/, which induce repulsive and 

attractive forces, respectively. In treating the scalar fields, we will for simplicity ignore 

their back-reaction on the metric and assume that they propagate in the flat background 

with conical singularities set up by the branes. It is easy to see that the effect of back-

reaction can be made parametrically small if the scalar energy scales are somewhat smaller 

than M*, and none of our conclusions are affected. 

Suppose that on branes 1 and 3 of Figure 6.3, ¢ is forced to take on unequal 

values vt and v~, respectively. This can for instance be enforced if the non-SUSY brane 

defects generate a potential for ¢on the branes, analogous to what was considered in [3]. 

Because ¢ is~massless in the bulk, we are free to perform a constant field redefinition and 

take vt = -v~ = v2 . We account for the brane thicknesses by enforcing these values for ¢ 

to hold along arcs of finite radius r* rv 1/M*, and not just at individual points. The field 

configuration in the bulk is then given by solving Laplace's equation with these boundary 

conditions. 
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Figure 6.4: A boundary-value problem that determines <f>. Here e1_ refers to the unit vector 
normal to the relevant boundary, and lines of V </> are shown dashed. The solution for the 
full space of Figure 6.3 is given by first evenly reflecting across the bottom horizontal line, 
and then performing an odd reflection (i..e., </>---+ -</>) across the vertical line where </> = 0. 

Figure 6.5: The simplified boundary-value problem for <f>. 

Keeping in mind the identifications to be made between the various edges of the 

space in Figure 6.3, the symmetry of the problem tells us that the field configuration is 

found by solving the problem depicted in Figure 6.4, and then reflecting that solution 

appropriately. For simplicity we consider instead a slightly different problem which, unlike 

that shown in Figure 6.4, is trivially solved. As indicated in Figure 6.5, we take the boundary 

at which </> = 0 holds to be an arc of radius R, rather than a straight line, so that the solution 

in this region is immediately found to be 

</> = v2 log (R/r) , 
log (R/r*) 

(6.3.19) 

where r measures the distance from the (missing) left vertex of the pie slice. The total 
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energy of this configuration is 

(6.3.20) 

where Oo = 21r - 4{;4 • Thus, </> sets up a 1/ log R repulsive potential. It is not difficult 

to prove using simple variational arguments that the same conclusion is reached when one 

solves the "real" problem involving the triangle rather than the pie slice. 

Now suppose that the same two branes .that couple to</> carry topological charge 

under a derivatively coupled field ¢'. That is, under any closed loop containing a brane we 

have 

J dl · "\1 <!>' = n0ow2
, (6.3.21) 

where w is a fixed parameter with unit mass dimension and n is an integer. Non-zero charge 

n =/= 0 is only possible if we make the identification 

(6.3.22) 

In order to be able to solve Laplace's equation on a compact space, the branes must carry 

equal and opposite charges, which we take to correspond to n = ±1. The configuration 

for </>' is then found by solving Laplace's equation with "\1 </>' = ±~:ell on the branes (the 

gradient runs clockwise on one brane and counterclockwise on the other). This sets up the 

the vortex-antivortex field configuration for <fo' shown in Figure 6. For simplicity, in order 

to calculate the energy in this configuration we once again work on a pie slice (Figure 6. 7) 

rather than a triangle, and it is easily proved that this modification does not affect the 

essential scaling of the energy with the area. With this simplification the solution is 

(6.3.23) 
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Figure 6.6: The configuration of if/. Each brane carries a topological charge, which generates 
an attractive potential. 

' 

2 ' ~ 
V<I>=O \ 

' ' 
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Figure 6.7: The simplified boundary-value problem for if/ . Here e.L and ell are the unit 
vectors normal and parallel, respectively, to the relevant boundary. 
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where (} is the angular coordinate and C is an undetermined, irrelevant constant. The 

energy of the configuration is then found to be 

{6.3.24) 

so we have found an attractive potential that will balance the repulsive contribution of 

{6.3.20). l,From {6.3.20) and {6.3.24), we see that the full potential is 

{6.3.25) 

which is minimized when 

{6.3.26) 

Even a mild ratio vjw "' 6 yields an exponentially large radius R"' 1016r*. The effective 

cosmological constant, 

(6.3.27) 

can be ni.ade to vanish by a single tuning of v, w, and the brane tensions. 

Note that we can now see explicitly that the presence of the non-supersymmetric 

brane defects can not generate a bulk cosmological constant. The presence of the branes 

leads to logarithmic variation for the bulk fields, which does indeed break SUSY and gen-

erate a potential for the area modulus. However, since any constant field configuration 

preserves SUSY, the _SUSY breaking in the bulk must be proportional to the gradient of 

the bulk scalar fields, which drops as 1/r with distance r away from the branes. Therefore, 

it is impossible to induce a cosmological constant, since this would amount to an constant 

amount of SUSY breaking throughout the bulk. In fact, a very simple power-counting 

argument shows that all corrections to the energy are logarithmic functions of the area. 
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Given a specific form for the logarithmic potential (6.3.25), we can work out the 

mass of the area modulus, which is 

(6.3.28) 

Interestiingly, mR is suppressed by (log(R/r*))312 compared to the naive estimate M; jMp1. 

Hence even for v "' M* as large as 100 TeV, the range of the radion-mediated Yukawa 

potential is 0.1 mm- accessible to planned experiments. 

6.4 Four and Six Extra Dimensions 

Since the logarithmic form of the propagator occurs only in two dimensions, one 

may worry that the ideas in this paper are only applicable to the case of two large di-

mensions. This is the case most severely constrained by astrophysical and cosmological 

constraints [1, 12, 13], which demand the 6D Planck scale M* > 50 TeV, seemingly too 

large to truly solve the hierarchy problem. One possibility is that the true Planck scale of 

the ten dimensional theory could be"' O(TeV), and the 6D Planck scale of"' 50 TeV could 

arise if the remaining four dimensions are a reasonable factor 0(10) bigger than a (TeV)-1 . 

But we ,do~'t have to resort to this option. As pointed out in [7, 10], the presence of two-

dimensional subspaces where massless fields can live is sufficient to generate logarithms. 

Take the case of four extra dimensions. Imagine one set of parallel 5-branes filling out the 

12345 directions, and another set filling out the 12367 directions. They will intersect on 

3-dimensional spaces where 3-branes can live. These 3-branes can act as sources for fields 

living on each of the 5-branes, which effectively propagate in two sets of orthogonal 2D 

subspaces. Once again, bulk SUSY can guarantee a vanishing "cosmological constant" for 
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each of the 2D subspaces. The SUSY breaking at the intersections can set up logarith-

mically varying field configurations on the 5-branes that leads to a potential of the form 

V(logAr, logA2) for the areas A1, A2 of the 2D subspaces. Minimizing the potential, each 

radius can be exponentially large, and the ratio of the radii will also be exponential, but the 

value of Mpl will require the largest radius to be very much smaller than a mm. It would 

" 

be interesting to build an explicit model along these lines. 

Even without an explicit model, however, we can see that the scale of the radion 

masses is unchanged. The logarithmic potential still gives mRi ~ A2/MPl ::::::: mm-I, for 

A ::::::: 1 TeV. After Weyl rescaling, each radion couples with gravitational strength to the 

Standard Model and should show up in the sub-millimeter measurements of gravity. 

6.5 Other ideas 

There is an alternative way in which theories with two transverse dimensions can 

generate effectively exponentially large radii. The logarithmic variation of bulk fields can 

force the theory into a strong-coupling region exponentially far away from some branes, 

and interesting physics can happen there. This is the bulk analog of the dimensional trans-

mutation of non-Abelian gauge theories, which generate scales exponentially far beneath 

the fundamental scale and trigger interesting physics, such as e.g. dynamical supersym-

metry breaking [10]. It is tempting to speculate that such strong-coupling behavior might 

effectively compactify the transverse two dimensions. Recently, Cohen and Kaplan have 

found an explicit example realizing this idea [16]. They consider a massless scalar field with 

non-trivial winding in two transverse dimensions: a global cosmic string. Since the total 

energy 9f the string diverges logarithmically with distance away from the core of the vortex, 
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we expect gravity to become strongly coupled at exponentially large distances. Indeed, 

Cohen and Kaplan find that the metric develops a singularity at a finite proper distance 

from the vortex core, but argue that the singularity is mild enough to be rendered harm­

less. What they are left with is a non-compact transverse space, with gravity trapped to 

an exponentially large area 

(6.5.29) 

where f1r is the decay constant of the string. A ratio of M*/ f1r "' 2.5 is all that is needed 

to solve the hierarchy problem in this case. This model is a natural implementation of the 

ideas of [1], to solve the hierarchy problem with large dimensions, together with the idea 

of trapping gravity in non-compact extra dimensions as in [17]. Unlike [2], however, the 

bulk geometry is not highly curved everywhere, but only near the singularity. Thus, gravity 

has essentially been trapped to a flat "box" of area A in the transverse dimensions, and 

the phenomenology of this scenario is essentially the same as that of [1]. An attractive 

aspect of this scenario is that, unlike both our proposal in this paper and those of [2, 3], no 

modulus needs to be stabilized in order to solve the hierarchy problem. This also points to 

a phenomenological difference between our proposal and that of [16]. While both schemes 

generate an exponentially large area for two transverse dimensions, there is no light radion 

mode in [16] whereas we have a light radion with rvmm- 1 mass. 

6.6 Conclusions 

In this paper, we have shown how to stabilize exponentially large compact dimen­

sions, providing a true solution to the hierarchy problem along the lines of [1] which is on 

the same footing as technicolor and dynamical SUSY breaking. Of course, there are many 
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mysteries other than the hierarchy problem, and the conventional picture of beyond the 

Standard Model physics given by SUSY and the great desert had a number of successes. 

So why do we bother pursuing alternatives? Are we to think that the old successes are just 

an accident? 

A remarkable feature of theories with large extra dimensions is that the phenomena 

that used to be understood inside the energy desert can also be interpreted as arising from 

the space in the extra dimensions. Certainly all the qualitative successes of the old desert, 

such as explaining neutrino masses and proton stability, can be exactly reproduced with the 

help of the bulk [1, 19, 20, 18], in such a way that e.g. the success of the see-saw mechanism 

in explaining the scale of neutrino masses is not an accident. As we have mentioned, there 

is even hope that the one quantitative triumph of the supersymmetric desert, logarithmic 

gauge coupling unification, can be exactly reproduced so that the old success is again 

not accidental. We find it encouraging that it is precisely the same sorts of models-with 

two dimensional subspaces, SUSY in the bulk brokenonly on branes- which allows us to 

generate exponentially large dimensions. Hopefully, in the next decade experiment will tell 

us whether any of these ideas are relevant to describing the real world. 
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Chapter 7 

1 '-;:.>€"" 

Te V Theories of Flavor and Large 
Extra Dimensions 

7.1 Introduction 

The extreme weakness of gravity is usually attributed to the fundamental mass 

sca:le of gravity being very much larger than that of the strong and electroweak interactions. 

The standard model provides no understanding of how this enormous difference in scales is 

stabilized against radiative corrections. Despite this gauge hierarchy problem, the need for 

extraordinarily large physical mass scales has been accepted as a central feature in theories 

of physics beyond the standard model. The unification of the gauge coupling constants 

at 1016 GeV strengthens this view. Furthermore, the absence of flavor and CP violating 

phenomena, beyond that explained by the weak interactions, has made it all but impossible 

to construct theories of flavor at accessible energies, and suggests that the fundamental 

mass scale for flavor physics is very far above the Te V scale. 

Over the last two decades, the usual approach to addressing the gauge hierarchy 

problem has been to modify particle physics between the weak and Planck scales. However, 

there is another possibility: gravity can be modified at and beneath the Te V scale, as was 
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realized in [1, 2; 3, 4]. In this scenario, the fundamental mass scale of gravity can be brought 

far beneath the conventional Planck scale, perhaps as low as a TeV, in the presence of sub­

millimeter sized new spatial dimensions serving to dilute the strength of gravity at long 

distances. These dimensions have not been detected since the Standard Model fields are 

localized on a three-dimensional wall, or "3-brane", in the higher dimensional space. Such 

a scenario can naturally be accommodated in string theory [2], where the wall on which the 

SM fields live can be a D-brane. 

Remarkably, despite the profound modifications of physics both at sub-millimeter 

and Te V scales, this scenario is not excluded by any known lab, astrophysical or cosmological 

constraints [3]. This realization opens up the possibility that there may be a number 

of experimentally viable approaches to addressing the hierarchy problem which involve 

the basic ingredients of modifying gravity at or beneath the Te V scale, and localizing 

matter fields to branes in extra dimensions. An interesting modification of gravity has been 

proposed recently [5] where the gravitational metric describing the 4 usual coordinates of 

spacetime depends on the location in the extra dimensions. Such metrics r:esult from solving 

Einstein's equations in the presence of brane configurations, and lead to spatial localization 

of the graviton zero mode in the extra dimensions. Various schemes for solving the hierarchy 

problem have been based on this [5, 6, 7, 8]. All these schemes, and the original scheme 

with large extra dimensions, share a common feature: we live on a 3-brane located in the 

extra dimensions in which gravity propagates. From the viewpoint of our 3-brane, the 

fundamental mass scale is the Te V scale, and this is the scale at which quantum gravity 

gets strong. 
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Lowering the fundamental cutoff close to the TeV scale obliterates the usual ultra-

violet desert in energy scales. On the theoretical side, this seems to destroy the attractive 

picture of gauge coupling unification. More pressingly, there are in principle dangerous 

effects from higher dimension operators now only suppressed by the Te V scale giving e.g. 

disastrously large rates for proton decay. 

However, it has been realized that the space in the extra dimensions replaces the 

old desert as the new arena in which such issues can be addressed. For instance, the old 

picture of logarithmic gauge coupling unification close to the Planck scale may be mimicked 

by the logarithmic variation of classical fields in sets of two large dimensions [9]. * Further-

more, the difficulties associated with higher-dimensional operators can also find a natural 

resolution using higher-dimensional locality. Indeed intrinsically higher-dimensional ways 

of suppressing proton decay were proposed in [3, 1, 11]. t After proton decay, the most seri-

ous issue is that of flavor-changing neutral currents. Dimensional analysis suggests that the 

flavor scale should be above 104 TeV from the KL-Ks mass difference, and greater than 

105 Te V from CP mixing in the neutral kaons. While this naive estimate can be avoided, 

it has proved extraordinarily hard to construct theories at the TeV scale which provide an 

explanation for the small flavor parameters. It is natural to ask whether extra dimensions 

offer any new possibilities for evading these problems. In [13], a higher-dimensional mech-

anism was proposed for generating the fermion mass hierarchy, and preliminary arguments 

were given to suggest that the FCNC problem could also be avoided. It is our purpose in 

*Another approach to gauge coupling unification bases on power-law running of higher-dimensional gauge 
couplings has been discussed in [10]. 

tin a different context, higher-dimensional locality has been used to ameliorate the SUSY flavor problem 
in anomaly-mediated models [12]. 
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this paper to extend and generalize these ideas to realistic and elegant theories of flavor at 

the TeV scale which are safe from FCNC effects. As we will see, it is the physics of extra 

dimensions that allows us 'to naturally bring flavor physics down to the Te V scale. 

In this paper we therefore study effective theories of flavor with a low fundamental 

mass scale A. What do we mean by "effective theories of flavor"? At scale A there is a 

fundamental theory, presumably string theory, which has some low energy effective theory. 

It is conceivable that this is just the standard model; with entries in the Yukawa matrices 

somehow set to the required hierarchical values, and with all higher dimensional operators . 

\ 

absent. We consider this unlikely, but, since we do not know the low energy limit of string 

theory, we must make some assumptions about the form of the low energy effective theory. 

We assume that the effective theory beneath A is based on some symmetry group 

G and has an effective Lagrangian 

""" Ci (cp)n c Leff = ~ AP-40f => A ff H + ··· 
i 

. (7.1.1) 

where i runs over all G invariant operators, Of, p labels the dimension of the operator 

and q are unknown dimensionless couplings of order unity. An example of an operator 

which leads to a small Yukawa coupling for the fermion f to the Higgs H is shown.· This 

assumption implies that the small dimensionless parameters of flavor physics must arise 

spontaneously from (cp) I A, where cp is a field of the low energy theory. We call cp a flavon 

field: the effective theory must explain why it has a vev small compared to the fundamental 

scale. In an effective theory of flavor, given the symmetry group and the field content, and 

in extra dimensions the brane configuration, flavor can be understood in the low energy 

theory itself. 
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In section 2 we discuss several difficulties encountered in building theories of flavor 

at the Te V scale in 4 dimensions. Higher dimension operators lead to flavor-changing and 

CP violating effects which are hard to tame, even with a flavor symmetry. An Abelian 

symmetry cannot prevent enormous KK mixing, and a non-Abelian symmetry results in 

disastrous flavor-changing (pseudQ.,.) Goldstone bosons. Even the maximal flavor symmetry, 

U(3)5 , is not quite sufficient to protect against large electric dipole moments for the electron 

and neutron. Finally, the flavon quanta are themselves very light, and the exchange of these 

particles in the low energy theory also generates disastrous four fermion operators. These 

difficulties are illustratedwith a U(2) flavor symmetry group. 

In section 2.6 we discuss.the minimal U(3)5 flavor structure in 4 dimensions, in 

which the three Yukawa matrices are each promoted to a single flavon field. This structure 

has been used to argue that flavor physics can occur at a low scale [14). We show that 

CP must also be spontaneously broken for the fundamental scale to be under 10 TeV. 

However, as it stands, this minimal U(3)5 structure is not an effective theory of flavor. The 

flavon fields contain a hierarchy of vevs which are simply imposed by hand and not derived 

from the low energy effective theory. This could be remedied by introducing a hierarchy 

of symmetry breakings at a sequence of scales beneath A, as proposed by Froggatt and 

Nielson [15]. However, this would produce flavons at each of these scales, and some would 

be very light indeed, and their exchange would induce disastrous flavor and CP violating 

interactions. This £lavon exchange problem appears generic to effective theories of flavor 

with low A in 4d. 

With extra dimensions, there is a new possible origin for the small flavor param-
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eters: symmetries which are broken strongly on some source brane may be only weakly 

broken on our brane because the source brane is distant from us [13]. This idea is explored 

in section 3. It is most easily implemented by making the flavon field, cp, a bulk field, which 

is coupled to a source on the distant source brane so that it has a small vev on our brane. 

The obstacles to constructing effective theories of flavor encountered in 4d are immediately 

removed: there is now an origin for the small parameters in the flavon vev - we have a real 

theory for the small parameters - and yet this is done without introducing light flavons, 

solving the flavon .exchange problem. Furthermore, with order unity breaking of the discrete 

flavor group on the distant branes, the pseudo-Goldstone masses can be raised to the Te V 

scale. + 

The origin of this success is to understand flavor from a hierarchy of distances in the 

extra dimensions, and not from a hierarchy of mass scales in our 4d world. In section 3 we 

also discuss another phenomenon which is generic in theories of flavor in extra dimensions 

when the bulk £lavon field possesses non-linear interactions. This means that the flavor 

breaking felt on our brane is sensitive to the value of the £lavon field in the bulk, not just to 

its value on our brane. The "sniffing" of flavor breaking in the bulk can lead to interesting 

phenomena. For example, in section 6, we study a U(2)5 theory, which incorporates features 

of the U(2) 4d theory, and in which sniffing plays a crucial role in symmetry breaking. 

In section 4 we construct a complete realistic theory of flavor in extra dimensions 

with A in the region of 5 - 10 TeV. The flavor group is maximal, U(3)5 x CP, and the 

minimal set of flavons propagate in the bulk, taking classical values which result from shining 

tAn alternative way to make the pseudo-Goldstones massive is to gauge the flavor symmetry in the bulk 
[16]. Although there are horizontal gauge bosons, they are less dangerous than usual since they propagate 
in the bulk. 



149 

from just three source branes. Each source brane breaks a discrete subgroup of each U(3) 

using only triplet vevs, and the three source branes may be identical to each other. 

In section 5 we consider a particularly simple brane configuration for realizing this 

U(3)5 theory: our 3-brane and the three source 3-branes are located on a 4-brane, so that 

shining:occurs in 1 dimension. This makes the calculation of the Yukawa matrix, and the 

additional flavor changing effects fro~ the bulk, remarkably simple. 

In section 6 we study the possibility of a smaller non-Abelian flavor symmetry, 

and introduce a variety of bulk flavons in a way motivated by the observed quark spectrum. 

This theory illustrates some of the possibilities opened up for flavor physics in extra dimen­

sions. For example, a new mechanism for suppressing the neutron electric dipole moment 

is proposed. 

Predictive theories of fermion masses can result if the source branes have a sym­

metrical geometrical configuration, as would be expected in a dynamical the0ry of brane 

stabilization. In section 7 we study theories in which the 9 quark masses and mixing angles 

are given quite successfully in terms of just 5 free parameters. These theories are inher­

ently extra-dimensional, with the precise predictions reflecting the geometry of the brane 

configuration, and the location of our three-brane. 

7.2 Challenges to a low flavor scale 

In this section we summarize the major challenges to lowering the scale of flavor 

physics close to the TeV scale in theories with four spacetime dimensions. The difficulties 

are mostly well-known (see e.g. [17]), but it is useful to have them collected in one place. 
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Process 0 Bound on A (TeV) 
€K (dsc)(sdc) 105 

(sa~'-dY 104 

AmK (dsc)(sdc) 104 

(sa~'-d)~ 10;j 

Amn Analogous to above 10;j 

" 5 X 10:.:: 
AmB Analogous to above 5 X 10~ 

" 5 X 10:.:: 

Table 7.1: Bounds on A from AF = 2 processes. 

7.2.1 Dimensional analysis 

The most serious obstacle to lowering the flavor scale A comes from flavor-changing 

neutral currents, most severely from the kaon system. With the coefficients Ci in eqn.(7.1.1) 

taken to be of unit magnitude with large phases, the bounds on A coming from the operators 

contributing to AF = 2 processes (€K and AmK, Amn, f:lmB) are presented in Table 7.1. 

The bounds on A from the left-right operators for f:lmK, !:lmn are enhanced by a factor of 

,...., 3 due to the QCD enhancement in running from A down to the hadronic scale. There are 

also bounds on A, far above the Te V scale, coming from f:l.F = 1 processes such as J.L -+ e1 

7.2.2 Implications for model-building 

While this may suggest that the scale of flavor should be above "" 104 - 105 TeV, 

it is also possible that whatever is responsible for suppressing the Yukawa couplings of the 

light generations also adequately suppresses the flavor-changing operators. For instance, 

if a weakly broken flavor symmetry G F is responsible for the fermion mass hierarchy, the 

same G F could suppress the dangerous operators. 
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It is easy to see that even this idea fails for generic flavor symmetries. The reason 

is that the most dangerous effects arise not directly from operators that violate G F, but 

rather from G F invariant operators which violate flavor when rotated into the mass basis. 

Suppose for instance that G F is Abelian with different charges for the first and second 

generations. Then, the flavor symmetry allows the higher dimension operators 

(7.2.2) 

with a, b ,...., 0(1) whereas operators of the form (Q2DD(Q1.Dc2) will have suppressed co-

effici(mts. Nevertheless, when we rotate the fields to go to the mass eigenstate basis, we 

generate an operator 

(7.2.3) 

where we have assumed that the Cabbibo angle dominantly comes from the down sector. 

Note that unless a = b to high accuracy, this still forces A > 103 - 104 TeV. Having the 

Cabbibo angle come dominantly from the up sector helps, but still requires A > 102 TeV. 

The only way out is for a = b, however an Abelian flavor symmetry is not enough to enforce 

equality. As claimed, we see that the central challenge is to ensure that G F invariant 

operators remain harmless when rotated to the mass eigenstate basis, and this requires G F 

to be non-Abelian. If we ignored this issue, in other words if we assume that for some reason 

these invariant higher-dimensions operators are absent or have their coefficients magically 

tuned to equality, then even Abelian symmetries are enough to adequately suppress FCNC 

effects from "directly" flavor-violating operators [18]. For instance, for any Abelian flavor 

symmetry we expect to have the operator 

(7.2.4) 
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and even assuming maximal phase this requires A > 7 TeV if we take m 8 at the lower end 

of its range, rv 90MeV, as is currently favored from the lattice (19]. Notice, however, that 

in a two-Higgs doublet theory this bound turns into A > 7 tan {j Te V, so we can not tolerate 

large tan {j. 

In the SM, such higher dimension operators are generated by integrating out W' s 

at the weak scale, but enormous FCNC's are not generated. This is because the SM gauge in-

teractions respect the U(3)5 flavor symmetry acting separately on each of the (Q, U, D,L, E) 

fields, explicitly broken only by the Yukawa matrices. In the U(3)5 symmetric limit, all the 

operators. are generated automatically with equal coefficients; this maximal flavor symmetry 

is strong enough to ensure that flavor symmetric operators are harmless when rotated to 

the mass basis. It is then natural to explore the possibility that the true flavor symmetry 

is the maximal one Gp = U(3)5 , and we will consider this possibility both in the context 

of four dimensions and in extra dimensions. We find that while it is difficult to believe in 

a real theory based on U(3) 5 in 4D, it is easy to construct elegant theories based on U(3)5 

in extra dimensions. 

However, there is a strong constraint, even on theories based on a U(3)5 flavor 

symmetry, coming from electric dipole moments of the electron and neutron. Any flavor 

symmetry would allow an operator of the form e.g. 

(7.2.5) 

and if the phase cp is 0(1), this requires A> 40TeV from the neutron edm (21]. A similar 

operator in the lepton sector gives A > 100TeV from the electron edm. While it may be 

possible to lower A below the 104 ~ 105 Te V barrier by imposing powerful enough flavor 
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symmetries, we cannot lower it past 40 Te V without making further assumptions about 

C P violation. We must assume that C P is primordially a good symmetry, and is broken 

by the same fields breaking Gp. This gives a hope that the phases in the mass and edm 

operators are the same and therefore in the mass eigenstate basis there is no phase in the 

edm operator. 

7 .2.3 Flavor-changing goldstone bosons 

We have argued that the flavor group, Gp, cannot be Abelian: controlling fla­

vor changing effects from higher dimension operators points to a large .non-Abelian flavor 

symmetry group. If G F is continuous the spontaneous breaking produces familons - flavor­

changing Goldstone bosons- leading to the very stringent bound A > 1012 GeV. Gauging 

the flavor symmetry allows the familons to be eaten, but the weakness of the breaking 

then tells us that there will be horizontal gauge bosons with masses much smaller than the 

fundamental scale, whose exchange leads to flavor changing problems. The only option is 

to have Gp be a large, discrete, non-Abelian symmetry. However, eve~ this case typically 

is excluded by the accidental occurence of pseudo-Goldstone bosons. At the renormalizable 

level, the potential for the flavon fields only contains a few G F invariant interactions, and 

this typically gives an accidental continuous symmetry, reintroducing Goldstone bosons. 

Higher order operators that respect only the discrete symmetry will give masses to these 

pseudos which are suppressed by ratios offl;tvon VEVs to the fundamental scale. Moreover, 

these ratios will be raised to high powers, given the large size of the discrete group, and 

we are thus left with extremely light pseudo-goldstone bosons that can be produced, for 

instance, in K decays. 
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7 .2.4 The flavon exchange problem 

In the low energy effective theory, beneath the fundamental scale A, the Yukawa 

couplings are generated by operators of the form 

(7.2.6) 

If we set all but one of the cp's and the Higgs to its vev, we have an effective coupling to <p 

( 
(cp}) n-1 (H) J rep,...., mii J-fl?cp 
A A (cp} ~ 1 

(7.2.7) 

Tree-level flavon exchange then generically generates flavor-changing 4-fermion operators 

that are suppressed only by the ftavon mass and not by the scale A. Unless the flavon 

potentials are fine-tuned, we expect th~t the flavon masses m'P are of the same magnitude 

as the vev (cp}, which must be smaller than A in order to produce small Yukawa couplings. 

Using the same interactions which generate the Yukawa couplings, tree-level flavon exchange 

can generate dangerous 4-fermion operators. Of course, if the flavon masses dominantly 

respect the flavor symmetry, the induced operators will be flavor-symmetric, and if the 

flavor symmetry is powerful enough these operators may be harmless. However, since 

the flavon vevs themselves break the flavor symmetry at a scale ,...., (cp} ,...., m'P, we expect 

generically that the flavon masses will have 0(1) flavor breaking. The generated 4-fermi 

operators are clearly most dangerous if the light generation Yukawa couplings are generated 

by a single flavon coupling. For instance, suppose that the 12 element of the down mass 

matrix is produced by the vev of a flavon cp12. then, tree-level flavon exhange can induce 

D.S = 2 operators 

(7.2.8) 
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which forces A back above~ 103 - 104 TeV from !l.mK and f.K· 

7.2.5 An example: Gp = U(2) 

There is a very simple theory, with Gp = U(2) [20], which gives highly successful 

quark mass matrices, and alleviates the FCNC problem in supesymmetric theories. How-

ever, this theory has been studied for the case of very large A- what happens when A is 

reduced towards the TeV scale? 

We study just the two light generations, which transform as U(2) doublets 'lj;a, 

where a = 1, 2. The flavons are in a doublet <{)a and an antisymmetric tensor Aab· The 

structure of the Yukawa matrices follows from 

(7.2.9) 

Whatever triggers a vev for <p and A, we can always choose a basis so that <p <X ( ~ ) and 

Aab ex E' f.ab, yielding the interesting structure 

(7.2.10) 

While placing the first two generations in U(2) doublets goes a long way in erasing 

dangerous flavor-changing effects, there are higher dimension U(2) invariant operators, in 

particular 

1 -//'\ - -Q ncn-caQb 
'-"bad- A2 a b ' (7.2.11) 

:which give disastrously large contributions to !l.mK and Ex, forcing Mp > 105 TeV. This 

suggests that more complex models are needed with more than one U(2) factor. Before 

discussing such possibilities, however, let us proceed by assuming that for some reason this 
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dangerous higher-dimensional operator is not present in the theory §. We now show that, 

even making this assumption, a 4d U(2) theory still requires A> 103 TeV. 

The difficulty for the 4d theory is that there are physical states lighter than Mp 

charged under flavor, the flavons themselves. As an illustration, suppose that we generate 

vevs for cp and A via independent mexican-hat potentials 

(7.2.12) 

Of course, most disastrously, we get goldstone modes from the breaking of the global U(2), 

and K ---+ 1r+ familon would force all the scales above "' 1012 GeV. We should really be 

considering a large discrete subgroup of U(2), and there will be other terms in the potential 

that can lift the fainilon masses. Even if this is done, however, we are still left with light 

flavous of mass "' p, a. The tree-exchange of A in particular generates 

l
h 12H* H(EabQaDg)(Eij(Jijjci) 

2 A2a2 ' 
(7.2.13) 

which contains the dangerous (Q1D~)Q2D~ operator. Note that the mass of A is not 

U(2) violating, and so we have generated a U(2) invariant operator which is nevertheless 

dangerous. The coefficient of the operator is real so there is no contribution to EK, but there 

is a strong constraint from b..mK: to produce the small 12 entries of the Yukawa matrices 

we need 

(7.2.14} 

leading to A> 103 TeV. 

§In a Froggatt-Nielsen theory, for instance, as long as the only coupling between SM fields and the heavy 
Froggatt-Nielsen fields involve flavons, the coefficient of such an operator can be suppressed by many loop 
factors. 
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7.2.6 Minimal U(3)5 in 4D 

As already mentioned, the largest symmetry group of the standard model La-

grangian in the limit of vanishing Yukawa couplings is U(3)Q x U(3)uc x U(3)Dc X U(3)L x 

U(3)Ec· Imposing U(3)5 on the underlying theory therefore gives the strongest possible 

symmetry suppression of flavor violating processes in the effective theory. In the simplest 

realization of U(3)5 (which we illustrate for the quark sector alone), the symmetry is broken 

by the VEVs of a single Xu and a single Xd, transforming as (3 ,3) under U(3)Q x U(3)uc and 

U(3)Q x U(3)Dc, respectively. The effective Lagrangian has the form of equation (7.1.1), 

where the flavor and gauge invariant Of are constructed from :Xu, Xd, and standard model· 

fields. Fermion masses, for example, come from the operators 

··and (7.2.15) 

Having too low a flavor scale A leads to conflict with experiment. Strong bounds 

come from flavor conserving operators such as 

and (7.2.16) 

which give anomalous contributions to the p parameter and to fermion couplings to the Z 

boson, and require A> 6 and 7 TeV, respectively,. Other dimension 6 operators that lead 

to similar precision electroweak limits are listed in [24]. Atomic parity violation experiments 

and direct searches at LEPII for 4-lepton couplings place only slightly milder bounds of A > 

3 TeV. 

Provided these requirements due to flavor conserving phenomena are met, oper-

ators that arise due to flavor breaking are relatively safe. For example, it is impossible 

1Here and below, we set the relevant Ci = 1 to obtain bounds on A. 
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to construct higher dimensional operators that induce K - K mixing using only the VEV 

of Xd, because Xd is diagonal in the down quark mass basisll. One must instead consider 

operators that involve Xu, such as 

t 
~ (Q-J.L Xu Xu Q)2 
A2 a A2 ' 

(7.2.17) 

which in the mass basis contains 

(7.2.18) 

where x; = Diag(.A;, ,\~,.An. This gives the ~S = 2 piece 

; 2 .A£ (Vid Vis )2 (iiaJ.L s )2
, 

. ' 

(7.2.19) 

which leads to bounds from ~mK and EK of A > .5 and 5 TeV, provided the phase of 

c("tdVis)2 is of order one. ~S= 1 processes give weaker bounds. 

As mentioned in section 2.2, the most stringent bound on A arises because, a 

priori, there is no reason to expect any relations between the phases of the Ci that appear 

in equation (7.1.1). The Yukawa interaction 

(7.2.20) 

and the electric dipole moment operator 

(7.2.21) 

can simultaneously be made real and diagonal. However, since these operators' coefficients 

have independent phases, we should expect that the coefficient in front of the EDM operator 
11 This is not exactly true, as equation (7.2.15) gives only the leading order pieces in the Yukawa in­

teractions, and leaves out operators like QxuxtxdDc H, for instance. However, in spite of the large top 
Yukawa coupling, we find that these additional contributions are not dangerous, and we omit them from our 
discussion. 
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will be complex in the mass basis, and generically, we get a contribution to the neutron 

EDM that is too large unless A > 40 Te V. To evade this bound we must require that CP is 

a symmetry of the underlying theory, broken spontaneously by x vevs. Because the same 

flavon, Xd, gives rise to both the Yukawa interaction and the EDM operator, spontaneous 

CP violation guarantees that there is no contribution to the neutron EDM at leading order, 

and the bound on A disappears**. 

Provided that the scale A is larger than roughly 7 Te V, and that CP is broken 

spontaneously, minimal U(3)5 sufficiently suppresses all dangerous operators that arise in 

a spurion analysis. Ideally, though, a flavor symmetry should do more than simply control 

higher dimensional operators; it should also accomodate a simple understanding of fermion 

mass hierarchies and mixing angles. Unfortunately, if we insist on a low flavor scale, ad-

dressing masses and mixings in the context of U(3) 5 becomes problematic. One might 

attempt to explain mass hierarchies by introducing a few sets of x's that acquire VEVs at 

very different scales. However, the U(3) 5 mechanism for suppressing dangerous operators 

requires that only a single Xd and a single Xu exist. If instead there were, say, two of each, 

then a combination 

(7.2.22) 

would appear in the down quark Yukawa interaction, while a different combination 

(7.2.23) 

would appear in the down quark EDM operator. There is no generic reason for the second 

combination to be real in the basis that make makes the first combination real and diagonal 

**More precisely, after taking into account higher order contributions to both Yukawa and EDM interac­
tions, the bound is reduced to A> 500 GeV. 
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(although it is reasonable to assume that corresponding entries of the two combinations are 

of the same order of magnitude), so the EDM bound A> 40 TeV returns. Similarly, the 

operator 

(7.2.24) 

leads to a stringent bound, A >7 TeV, coming from the CP violating parameter f.K. Thus 

we are led to work with only a single set of x's, whose hierarchical VEVs, we might imagine, 

arise due to a sequential breaking of the flavor group at widely separated scales. But by 

adopting this view we encounter the flavon exchange problem problem of section 2.4: one 

expects the masses of the various flavons that compose the x's to be of the same order of 

magnitude as their VEV s, and thus t~!3 masses of the lightest flavons to be much smaller 

than A. Unless A is quite large, these light flavons mediate flavor changing and CP violating 

processes at unacceptable levels. 

7.3 Small parameters from extra dimensions 

What is the origin of the small dimensionless flavor parameters of the standard 

model? All attempts at understanding these numbers have been based on two ideas. One 

idea is that these parameters vanish at tree level and are generated radiatively, and that the 

loop factor is small. In a perturbative theory, with coupling parameters of order unity, the 

loop factor is of order ljl61r2 . The second idea is that the small fermion mass ratios and 

mixing angles arise as a ratio of mass scales of the theory, presumably generated dynamically. 

Such is the situation in Froggatt-Nielsen type theories and in extended technicolor models. 

In theories with extra dimensions, however, another attractive possibility arises. 

Suppose there are flavor symmetries that are primordially exact on our brane, but which 



161 

are strongly broken on a distant brane. If bulk fields charged under these symmetries are 

present, this symmetry breaking is "shined" from the distant branes [13], and there is a 

new origin for the small parameters, namely, ·the large volume in the extra dimensions. 

The fermion mass ratios and mixing angles are small not because of small breaking on the 

distant branes, but rather due to the flavor breaking messenger's propagation over large 

distances across the bulk. Fundamentally, the origin is again one of a ratio of mass scales. 

However, these are set by the distances in the brane configuration, and result in completely 

new physics possibilities different from other scenarios. 

Effects of this shining can be grouped into two categories: spurion effects arising 

from the free classical theory, and classical and quantum "sniffing" effects, arising from 

nonlinearities in the Lagrangian. 

7.3.1 Free, classical shining 

j The basic shining effect can be understood as the classical, free propagation of 

the flavon field through the bulk. From the viewpoint of physics on our brane, the flavor 

breaking is at this level equivalent to classical spurion effects. We assume that there is 

some flavor symmetry group Gp, which acts on the matter fields Qi, Uj, Dk, Lm and En, 

where { i, j, k, m, n} specify the representations under which the fields transform. We further 

assume that G F is broken at order one on some distant brane by a source JH. If J couples 

to some bulk field, then that field can mediate the flavor symmetry breaking to our wall. 

tt1n what follows, we have taken the dimensionality of J to be that of a scalar field living on the symmetry 
breaking brane. Later, for simplicity, we will set J=l. 
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For example, suppose the Lagrangian is tt 

(7.3.25) 

where the symmetry is broken on a (3+m)-brane at location Yo in the extra dimensions, and 

where M* is the fundamental scale . Since the source brane is an extensive object, it acts 

as a point source for a Yukawa potential in n dimensions. This is completely analagous to 

a charged plate in 3 dimensions being described as a point source in 1 dimension. Knowing 

this, it is simple to write down what the profile of the x field is as a function of y (neglecting 

nonlinear interactionS), 

J m n-2 

X= Jb..(mx;Y) = n 4 (-I l)-2 Kn-2(mlyl) 
M*-r (21r)% y 

2 
(7.3.26) 

where IYI is the distance from the source brane to the point in question, Kn is the modified 

Bessel function, and n is the codimension of the source of x in the space in which x 

propagates. For mxiYI « 1, this takes the asymptotic form 

JM* 
X~~ log(mxiYI) (n = 2) (7.3.27) 

J r(n22) 
~ n-4 

411"% M*-r IYin-2 
(n > 2) (7.3.28) 

and for mx IYI ~ 1, 
n-3 

J m-2- e-mxiYI 
. "' X 

X"' 2{27r) n;l M*n-;_4 IYI n;l 
(7.3.29) I 

In this example, the lepton Yu!mwa matrix will be 

_xmn _ 1 mn 
l - M!n+m+2)/2 X (7.3.30) 

~~------------------------
HHere we have allowed that x transform as a reducible multiplet under G F for the sake of generality. In 

an actual model there may be many x fields, each transforming as an irreducible multiplet. 
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The flavor symmetry breaking parameters are then either power or exponentially suppressed 

functions of the distances between branes. If the different elements of x are generated on 

different branes, we can, at least in principle, generate a fully general texture, and likewise 

for the quarks. For example, with Gp = U(3)5 the flavon fields Xu,d,e appear as single 

multiplets on our wall, and yet the various entries can have values which are hierarchical. 

7.3.2 Classical and quantum sniffing 

Flavor breaking from extra dimensions is much more interesting than simply taking 

the values of x and its derivatives on our brane at y = 0 and using them in a spurion analysis. 

Non-linearities in the bulk Lagrangian can induce a wide variety of effects which probe flavor 

breaking at non-zero y. 

The simplest examples of this are classical non-linear effects. One of the most 

significant is the generation of a vev for a bulk field without a direct source brane. Consider 

a situation with two source branes, with sources J}n and J~ and two bulk fields which have 

vevs generated on these branes, xr and x2. If there is, in addition, another bulk field c.pmn 

transforming as a product representation of the 1 and 2 representations, we naturally have 

a term in our Lagrangian c.p~nXT'X2. As a consequence, c.p will also take on a vev in the 

bulk, and hence on our wall as well. 

This is a very familiar situation, even in four dimensions. However, in four dimen­

sions, we typically expect a value c.p ex x1x2 . In extra dimensions, the vev can typically be 

much larger. As shown in Fig. 7.1, the fact that the source for c.p is spread throughout the 

bulk means that the dominant contribution to its shining can come from a region distant 

from our brane, defeating our four-dimensional intuition. 
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Formally, we want to sum the contributions to cp on our wall from every point in 

space. Given the assumed coupling, if we take our wall at y = 0, and the sources for XI and 

X2 at YI and Y2, respectively, we can then calculate 

(7.3.31) 

If the propagators are dominantly exponentials, some small region will dominate this inte­

gral, and we can take 

(7.3.32) 

where y is some representative point within the volume !:::.. V where the integrand is appre­

ciable. In cases where the particles are light, !:::.. V can be very large. Even in cases where 

the particles are heavy, if they are even an order one factor lighter than the fundamental 

scale, the volume will typically be larger than one by a factor 1/m~. 

We illustrate this with the following example: 

Consider a brane configuration with our brane localized at (0, 0, 0) in three extra 

dimensions, while one source brane is at Yl = {10, 0, 0) and the other at Y2 = (10, 3, 0) 

in units where M* = 1. Further, take the masses to be mx1 ~ mx2 ~ mcp ~ 1/3. We 

can calculate the vev of cp numerically, and find on our brane we have XI ~ 2 x w-4
, 

x2 ~ 2 x 10-4 , and cp ~ 3 x 10-6 • We can und~rstand the larger value of cp as also 

being enhanced by a volume factor !:::.. V of (7.3.32) being larger than one, and we show this 

graphically in Fig. 7.2. 

If we further give the fields moderately different masses, mx1 ~ 1/3, mx2 ~ 1/2, 

mcp ~ 1/5, we find XI~ 2 x 10-4 , X2 ~ 5 x 10-5, but cp ~ 10-5 , much larger than the naive 

expectation if all other masses are order the fundamental scale. This is very sensitive to the 
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Figure 7.1: Contributions to the vev of the field c.p. Our brane is designated 0, while the 
source branes for Xl and X2 are 1 and 2, respectively. (a) is supressed by two propagators .; 
while (b) is suppressed by only one .. As a consequence, (b) will typically dominate. If the 
mass of c.p is even an order one factor lighter than either of the other fields, the difference 
can be further amplified. 
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Figure 7.2: We plot here a z = 0 slice of the :first, second and third efolds of the integrand 
of (7.3.31) from its maximum for the given example. Notice that the region contributing to 
the integral is both large ( .6. V > 1) and far from our brane. 
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brane geometry and the masses of the bulk fields, of course, and the predictivity suffers as 

a consequence. However, it illustrates one very important difference between flavor model 

building in extra dimensions versus that in the usual four. 

Once a bulk vev for a field exists, it can act to further regenerate another field that 

may fall off more quickly. In the previous example, if we reach a region where XI<fJ > X2, 

then this region can act as a further source for x 2 , dominating for some regions of y over 

the source braile. This can be understood rather simply: in situations where the vev profile 

is dominantly exponential, (i.e., when mx.2 Y ~ 1), and if further mcp < mx_2 , it can be 

advantageous to exploit the presence of Xb for instance, and propagate as a <p, as we 

illustrate in 7.3(a). Of course, if the regenerated value of x2 is sufficiently large, it can 

again regenerate <p in certain circumstances and the nonlinearities can dominate the entire 

problem. It is important to be aware of this when employing non-linear effects in model 

building. 

All of the effects discussed so far arise from classical field theory in the bulk. 

They could be obtained, in principle, by solving the non-linear classical fields equations.* 

Quantum effects in the bulk may be just as, if not more, important. For example, if 

mcp + mx.1 < mx.2 , it may be advantageous to pay the price of a loop factor and propagate 

as a <p- XI loop, which is shown in the "Tie-Fighter'~ diagram of figure 7.3(b). 

As another example of non-linear bulk interactions changing the physics on our 

brane at y = 0, consider a bulk field <p with a cp4 interaction and a source brane .. at Ys· 

Ignoring the non-linearity, an operator involving cpP on our wall would have classically a 

•There is one remaining classical effect, namely the generation of local operators through bulk non­
linearities, which we will discuss at the conclusion of this section. 
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Figure 7.3: In addition to the standard direct propagation of x2 , there can be other contri­
butions. In the presence of an external field x2 , it can be advantageous to propagate as a 
<p, as shown in (a) . .Even absent such an external field, the propagation through a loop of 
lighter particles may be dominant compared to the direct propagator (b). 

coefficient of ~(m<p; y8 )P. This is illustrated in 7.4(a) for p = 3. However, if m<piYsl » 1, 

there will be a large exponential suppression of this contribution, so that the dominant 

effect may instead come from the loop diagram of 7.4(b), which gives a contribution to 

(7.3.33) 

where Lis a loop factor t. This quantum effect can lead to a very large deviation of <<p(0)3> 

from <<p(0)>3 , since it involves only one power of e-m'l'lYsl. 

For the case of p = 2 and an operator on our brane involving <p2 , in addition to 

the tree contribution there is the 1-loop contribution shown in Fig. 7.5a, equal to 

tActually, the exact expression involves an integration both over 4 and higher dimensional momenta. 
The result can be re-expressed (upon wick rotating to Euclidean space) as 

(7.3.34) 

In our expression in the text, we are overestimating this effect by replacing A( ..Jm~ + k~, y) with A(m10 , y). 
Henceforth, we will often make similar approximations in discussions of sniffing. 
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(a) (b) 

Figure 7.4: Two contributions to the value of <cp>3 on our brane. The contribution in (a) 
is the classical spurion contribution. The contribution in (b) is due to sniffing and can often 
be larger than that of (a). 
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Figure 7.5: Two examples of "sniffed" contributions to an operator on our wall. In (a) a 
quantum loop corrects the value of <x2> on our wall. In (b), a cp field can interact in the 
bulk and generate a local operator. 
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(7.3.35) 

In this case, two propagators traverse the whole space from y = Ys to y = 0 in both tree 

and loop diagrams, so it may appear that the loop correction is small and unimportant. 
j:·c· 

However, in theories of flavor, we will find that the loop . diagram contains flavor breaking 

not present at tree level. For instance, if cp transforms as a multiplet of G p, it may point 

in different directions in flavor space at different y; this is a situation which arises when 

multiple source branes are present. At tree level the only flavor breaking is given by cp(O), 

whereas at the loop level the flavor breaking of cp(y) is also probed. We say that additional 

flavor breaking is "sniffed" in the bulk from points y =/: 0. 

In addition to quantum corrections to <cpP>, there can be classical corrections as 

well. By integrating out a cp field which interacts in the bulk, we generate local operators 

as we illustrate in figure 7.5(b). In this particular example, given operators cp(x1)01 (xl) 

and cp(x2)02(x2), we generate a local operator cp2(x)0102(x). Absent bulk corrections, 

this operator would have a coefficient < cp >2, but sniffing contributions can change this. 

Although both cp-legs on our wall are evaluated at the same point in spacetime, this is not 

a quantum effect and does not receive the same loop suppression as in Fig. 7.5(a). 

7 .3.3 Spatial derivatives of the fl.avon field 

The bulk flavon fields have y dependent profiles, and, .because Lorentz invariance is 

violated in directions perpendicular to our brane, one might imagine that wherever a x field 

appears in the Lagrangian of our brane, we could just as easily write (anOn +amnOmOn + ... )x, 

with no need to contract indices of extra dimensional derivatives [21 ]. Unless the x mass 
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were much smaller than the scale A, the derivative terms would not be strongly suppressed. 

Nor would x and its derivatives necessarily be proportional to each other, since the field 

can have sources on several branes, potentially leading to a variety of troublesome flavor 

changing effects. However, if Lorentz invariance is broken spontaneously (as is the case if 

standard model fields are localized on a D-brane, for instance), only certain derivative terms 

are allowed. In the low energy effective theory, we simply have SM fields localized to our 

brane, the bulk x field, and the goldstones of spontaneously broken translational invariance 

ym, which give the position of our brane in the extra dimensions (22]. Thus, all terms 
' 

involving derivatives of a single power of x must feature either Oix for some integer j, or 

a brane tension-suppressed coupling to the goldstone. For instance, we can have terms like 

or (7.3.36) 

but not something like 

(7.3.37) 

because extra-dimensional derivatives with uncontracted indices amount to explicit breaking 

of Lorentz invariance. 

Of course, the localized fields have finite profiles in the bulk, and we can contract 

derivatives of x with derivatives of wall fields in the full extra-dimensional theory. However, 

the effective field theory argument just given indicates that in our wall's low energy theory 

only terms involving Oi x will be generated. It is straightforward to see how this comes about 

explicitly from a microscopic description. Let us label the ( 4 + n) dimensional spacetime 

coordinates as ( xJ.L, ym), where x~' are the 4D coordinates on our brane, and ym are the 

coordinates of the extra n dimensions. We will use an index K = (p,, m) that runs over all 
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( 4 + n) dimensions. Consider the Lorentz invariant term 

(7.3.38} 

We assign the standard model fields 1jJ(4+n) Gaussian profiles in the extra dimensions, so 

that their relation to the canonically normalized fields in 4D is 

(7.3.39} 

while the x-independent bulk £lavon VEV is given by 

(7.3.40) 

In terms of the canonically normalized fields, (7.3.38) becomes 

(7.3.41) 

where we have neglected factors of 1r and 2. After integration by parts, the piece involving 

x becomes 

(7.3.42} 

This is of the form J d"y f(y)e-alyl
2

, which is equivalent to 

(7.3.43} 

where ](q) is the Fourier transform of f(y). In our case, we have f(y) = x<4>(y)(a + blyl2), 

with a and b real, which satisfies 

00 

e-Ofa(X(4)(a + blyl2)}1y=0 = ~ Cj 0jX(4) ly=O' 
J=O 

(7.3.44} 
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with real coefficients Cj. Although there can be many x derivatives that appear in the 

Yukawa interaction, we see that they are all proportional to Dix for some integer j and 

thus, by the equations of motion, all proportional to x itself. 

In contrast, an operator like 

(7.3.45) 

where OsM is an operator of standard model fields, cannot be brought into a form involving 

only DiXd· The presence of these operators has model dependent effects which we will 

discuss in later sections. 

7 .3.4 Harmless fiavon exchange 

As discussed in section 2.4, breaking flavor symmetries at low A in four dimensions 

generates harmful flavor-changing operators through the exchange of flavons, due to the 

smallness of the flavor-breaking scales relative to the fundamental scale. In sharp contrast, 

there is no reason in extra dimensional theories to expect that the bulk flavon masses are 

closely related to the sizes of the Yukawa couplings, as these small parameters are no longer 

ratios of mass scales. However, even if the bulk fields were very light, the harmful operators 

still receive no subsequent enhancement. This is due to the IR softness of bulk propagators 

in extra dimensions. Returning to the example of section 2.4, let us suppose that rp12 lives 

in p extra dimensions. Then, the coefficient of the induced 4-fermi operator is (working in 

units with M* = 1) 

(7.3.46) 

Note that we integrate over the extra dimensional momenta K, since this momentum is not 

conserved. The important point is that for p > 2, this integral is dominated in the UV and 
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is insensitive to mcp! Therefore, the generated operator is not enhanced by 1/mcp factor. In 

fact, the dominant contribution is' mcp independent and generates a flavor-symmetric oper-

ator suppressed by powers of M* and additional loop factors. Sub-dominant contributions 

need not respect the flavor symmetry, but are small enough; the leading corrections go as 

:f~' .• 

L(p)logm~, p = 2; L(p)m2 p = 4 5 · · · . 'P' ' ' 
(7.3.47) 

where 

L(p)- 1 
- p2P-lrcP/2r(pj2) 

(7.3.48) 

is a loop factor. 

We can also return to the example of our toy U(2) theory discussed in section 2.5. 

The tree-level exchange of a bulk A field produces the operator 

(7.3.49) 

There is no inverse dependence on the A mass at all, and we can therefore tolerate M* ,..., 

1- 10 TeV, roughly three orders of magnitude below the bound on A in the 4D case. 

7.4 A U(3)5 theory in extra dimensions with 3 source branes 

Havi,ng introduced the shining of flavor breaking from distant branes, we now 

discuss the construction of U(3)5 models in extra dimensions. In the models we will describe, 

Xu and Xd (which in this context are bulk fields) will be the only flavorts that couple directly 

to the standard model fields of our 4D universe, just as in minimal U(3)5 in 4D. The authors 

of [13] have applied the shining framework described in section 3 to the case of U(3)5 . In 

their picture, Xu (Xd) couples to nine source fields cpu,ij (cpd,ii). Each of these source fields 
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transforms as Xu (Xd) and is localized on its own distinct brane. The sources acquire VEVs 

of.the form 

< u,ij > < d,ij > A ~i d 
'Pkl rv 'Pkl ,...., 0 k 0 l' (7.4.50) 

that is, each of the nine <pd sources essentially shines a single element of the down quark 

mass matrix, and similarly for the up sector. The magnitude of each source is taken to be 

roughly A, but large fermion mass ratios are still possible by requiring some source branes 

to be closer to our brane than others. This represents a significant improvement over the 

minimal case in 4D: only a single Xd and a single Xu appear in the Yukawa interactions, 

and yet a simple explanation for the hierarchical nature of the fermion masses is achieved. 

This picture is far from complete, however. The most serious deficiency is that no 

understanding is provided of why VcKM "'I. Related to this is the fact that the VEVs of 

(7.4.50) do not comprise a justifiable starting point, as we will now argue. To avoid problems 

with goldstone bosons, we work with a large discrete subgroup of U(3)5 rather than with 

U(3) 5 itself (because the breaking is order unity, we avoid the light pseudo-goldstone bosons 

that appear in the 4D case). The directions of the eighteen <pu and (pd VEV s are thus fixed 

in various directions that do riot depend on bulk dynamics. The important point is that 

there is no reason for the direction of a source on one brane to be related in any particular 

way to the direction of a source on another. This reasoning argues against the arrangement 

of VEVs in (7.4.50), and more generally, it tells us that we should expect order unity CKM 

mixing angles if all. the sources are on separate branes. Suppose, for example, that a cpu 

localized on one nearby brane breaks U(3)q X U(3)uc --+ U(2)q X U(2)uc, while on another 

brane, a <pd independently breaks U(3)q x U{3)dc --+ U{2)q X U(2)dc· We imagine that 
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these branes are the ones nearest us, so that these <p's shine the leading order contributions 

to the quark mass matrices. The U(3)q x U(3)dc symmetry allows us to take 

0 0 0 

<pd = 0 0 0 

0 0 v 

and then, using the U(3)uc symmetry, we can write write 

0 0 0 

<pu = M 0 0 0 

0 0 v' 

(7.4.51) 

(7.4.52) 

where the form of M E U(3) is fixed by the explicit breaking. The point is that there is 

no reason for <pu and cpd to choose the same unbroken U(2)Q, and there is not in general a 

basis in which both <pu and <pd are diagonal, because the U(3)q freedom is used up entirely 

in diagonalizing either one or the other. Generically, we expect the (23) entry of <pu to be 

roughly as large as its (33) entry+, and since the leading order form of Xu( d) on our brane is 

simply proportional to <pu ( <pd), we should expect a large CKM mixing angle, contrary to 

what is observed. 

7.4.1 A complete U(3)5 model 

We now describe a model that" retains the successes of the picture just described, 

but which in addition predicts small mixing angles. The model is remarkably simple. We 

assume the existence of a series of source branes, each of which has localized on it a triplet 

under U(3)Q, a triplet under U{3)uc, and a triplet under U(3)dc. Nothing special distin­

guishes any of the source branes - we will even assume for simplicity that they are identical 

tusing the residual U(2)Q symmetry respected by cpd, the (13) entry can be made to vanish. 
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copies of each other - except that they are located at different distances from our brane. The 

three triplets on each brane acquire VEV s near the fundamental scale and act as sources for 

bulk flavons Xu and Xd· We again regard the true flavor group as a large discrete subgroup of 

U(3)5 to avoid goldstones, so the potential for each triplet features a discrete series, ra~her 

than a continuum, of minima. Each triplet's VEV is stuck at one of these minima, unable 

to tunnel from one to another. Moreover, the directions chosen by the sources on one brane 

are not related in any particular way to the directions chosen on a different brane. What we 

have, effectively, is explicit breaking on each source brane, with the triplets getting fixed, 

complex VEV s that point in uncorrelated directions. 

Let us work out the implications of this simple scenario. On the brane nearest 

ours, the triplet sources acquire VEVs that, if we exploit our U(3)3 freedom, we can write 

as 
0 0 0 

0 0 , and TJ = 0 (7.4.53) 

with VQ, vu, and vd real and not much smaller than M*. In f~ct, these sources could even 

be localized on our brane. The bulk flavons are shined by the triplet sources due to the 

brane interactions§ 

and (7.4.54) 

Consider, for the moment, the extreme case in which this brane is by far the closest one to 

our ours- the cloaest by so much that, on our wall, we can ignore contributions to flavon 

VEV s coming from all other sources. In contrast to the example that led to the alignment 

§If the sources are on our brane, the third generation quarks acquire mass from direct couplings to the 
triplets. 
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problem of equations (7.4.51) and (7.4.52), both Xu and Xd are shined from the same nearby 

brane, and simultaneously take the form 

0 0 0 

Xu,d <X 0 0 0 (7.4.55) 

0 0 Au,d 
Now let us consider the additional contributions to Xu,d that are shined from more distant 

sources. The VEVs of (7.4.53) respect a residual U(2)3 symmetry that can be used to write 

the sources on the second nearest brane as 

0 0 0 

T.2-u- Vu sinOu , and T] = Vd sinOci 

(7.4.56) 

where we assume for simplicity that TtT is the same in the various discrete minima. After 

we include the effects of the shining interactions 

and (7.4.57) 

the fiavon VEV s on our brane take the form 

0 0 0 

Xu,d <X 0 € € (7.4.58) 

0 € A u,d 

with Eu,d ~ Au,d· At this stage, the VEVs in (7.4.53) and (7.4.56) still admit a U(1)3 

symmetry that can be used to write the sources on the third brane as 

S<pQ S<pu 

T 3 . 
' d = Vd 

c<pd cpd ei'Yd 

(7.4.59) 
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Including the effects of this brane, we arrive at the Yukawa texture 

(7.4.60) 

A u,d 

which features both a hierarchy of eigenvalues and small mixing angles. 

This model features a simple symmetry breaking pattern. If we include only the 

nearest brane, its sources break U(3)3 -+ U(2)3 . Bringing the second brane into the picture 

then breaks U(2)3 -+ U(1)3 . Finally, moving the third brane into place breaks U(1)3 -+ 

nothing. Note that this breaking pattern is not put in by hand, but rather follows inevitably 

from the fact that the sources transform as triplets and acquire fixed VEV s pointing in 

random different directions. Note also that we work with three source branes only because 

this is the minimal set required to break U(3) 3 entirely. Given that at least three exist, 

the success of our picture is insensitive to how many branes there are in all. Additional 

branes, being further away, will give small contributions to the Yukawa couplings, leaving 

the texture of equation (7.4.60) unchanged. 

The Yukawa texture suggests the approximate relations IViil "' mdi/mdp which 

work reasonably well for all mixing angles except for Oc. The fact that Oc naively comes 

out to small is not a serious problem, because the entries of (7.4.60) come with unknown 

coefficients of order 1 due to the unknown angles(), <p, etc., that appear in equations (7.4.56) 

and (7.4.59): by taking tan <pd "' l sinpd we obtain the correct size Oc "' 1/4. Somewhat 

surprisingly, the more closely aligned the source triplets on the second and third branes are, 

the larger Oc is. In sections 6 and 7 we consider different models that accomodate Oc more 

easily. 
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It is advantageous to give the flavons slightly different masses, with mxu > mXd' to 

explain why the mass hierarchies are stronger for the up quarks than for the down quarks. 

Doing so makes all the more pressing the question of why mt > mb, given that these masses 

are essentially shined from the same brane. Having two Higgs doublets with large tan {3 

leads ~2 flavor changing problems, as we will see below. A simple alternative that leads to 

no phenomenological difficulties is to have a"' 1/60 suppression of Vd relative to Vu. Even 

irrespective of flavor changing issues, this .approach may be more appealing than a non­

SUSY large tan {3 scenario, because here the different-sized VEV s are given to two fields, 

Tu and Td, that transform entirely differently under the flavor symmetry. In contrast, if we 

have two Higgs doublets, Hd and flu transform identically under the gauge symmetry and 

are both flavor singlets, so it is especially difficult to understand how one is chosen to have 

a much larger VEV than the other. A more interesting approach to understanding mb/mt 

will be described in section 7. The details of how the present U(3)5 model can give realistic 

fermion masses and mixings are important but should not obscure the central point: having 

source triplets with uncorrelated VEV s leads automatically to a CKM matrix with small 

mixing angles. 

Another attractive feature of this model is that it violates CP spontaneously, as 

the VEVs of equations (7.4.56) and (7.4.59) give the off-diagonal elements of>. order unity 

phases. If we impose CP as a symmetry of the underlying theory, this model exhibits the 

same solution to the EDM problem described in section 2.6 in the context of U(3)5 in 4D. 



180 

7 .4.2 Flavor-changing from the bulk 

The only question is whether there are additional challenges in suppressing dan-

gerous operators, now that we are working in extra dimensions. As discussed in section 

3, physics in our 4D universe can be sensitive not only to the values of Xu and Xd on our 

brane, but also to their values away from our brane, due to "sniffing" effects. For instance, 

if we have bulk couplings I d"yTr(xlxuxlxu), and I £fly (Tr(xlxu))2, then in the up quark 

EDM operator we can replace the matrix (xu(Y = O))ij with 

(xl(O))mn J,tn,.· ( · ( ))~2( ) 
167!"2 u. 1J XuimXunj Y Y ' (7.4.61) 

or with 

(7.4.62) 

where we have included loop factors from integrating over 4D momenta. Diagrams repre-

.senting these contributions are shown in Figs. 7.5a and 7.4b, respectively. Because they 

do not have the same flavor structure as Xu, we need to check that these contributions are 

not problematic. The largest contribution to the 1-1 entry comes from the piece of (7.4.61) 

proportional to At, 

At ! . 2 

167!"2 d"y (Xu13Xu31 (y))~ (y). (7.4.63) 

~(y) is largest near our brane (y ,....., 0), but in this region (Xu 13xu3dy)) nearly vanishes in 

the mass diagonal basis. On the other hand,(xu13xu31 (y)) is largest near the third most 

distant brane, located at Y3· Using the short distance form for the propagator to evaluate 

(xu13xu31 (y)} in this region, we get a contribution of roughly 

(7.4.64) 
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where f(mxJ "' (~ )<4-n), Log(mx), and 1 for n = 2 or 3, n = 4, and n > 4 respectively, 
X 

' and where dSn is the surface area of the unit sphere in n dimensions. The potential mild 

enhancement from f(mx) cannot nearly compensate for the extra factor of 1~;2 relative to 

what we have for (Xu(O)}u, so this contribution is harmless. Sniffing contributions to the 

down quark EDM are similarly suppressed. 

Sniffed versions of 

and (7.4.65) 

yield ~S = 2 operators with coefficients of approximate size 

(7.4.66) 

and 

(7.4.67) 

respectively. Again concentrating on the region around y3 , we estimate the integrals as 

roughly (.As8c)2 d1n f(mx)· If the coefficient were simply (.As8c)2 , EK would require A > 7 

Te V. Since these contributions are further suppressed by either a loop factor or by v2 , they 

are safe. 

A different challenge posed by the extra dimensions involves the bulk flavon deriva-

' 

tives described in section 3.3. If we allowed all flavor invariant terms with extra dimensional 

derivatives acting on Xd, then in the basis that diagonalized and made real the down quark 

Yukawa interaction 

(7.4.68) 
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the EDM operator 

(7.4.69) 

would in general be complex, leading to the familiar EDM bound A> 40 TeV. However, as 

discussed in section 3.3, the only drivatives of Xd allowed in equations (7.4.68) and (7.4.69) 

are those of the form Dixd = m 2ixd, provided Lorentz invariance is broken spontaneously. 

In this case derivative terms are harmless as far as EDM's are concerned. On the other 

hand, the operator 

(7.4.70) 

cannot be brought into a form involving only Oi Xd· Because 8mXd is not in general pro-

portional to Xd, the most pessimistic view is then that EK forces us to take A> 7 TeV. (In 

fact, at this point it becomes clear why using large tan {3 to explain mt > mb is disaster-

ous: the .6.S = 2 piece of {7.4.70) has a coefficient that is proportional to tan2 {3). Note, 

however, that the A > 7 Te V interpretation assumes that the derivative terms are entirely 

unsuppressed: if mx = A/ S, for instance, then the bound is reduced by a factor of S. Also, 

it is conceivable that 8aXd is nearly proportional to Xd· For example, if the source branes 

lie along along the same direction from ours, then in the case of three extra dimensions, the 

derivative contributions that are not proportional to Xd are suppressed by factors of 1/{Ari) 

relative to the leading non-derivative contribution, where Ti are the various distances of the 

source branes from our brane. K - K mixing is most sensitive to contributions shined 

from branes responsible for the light quark masses. Taking (mr) "'5 for these branes, and 

m"' A/3, we find that the bound on A is reduced by a factor "' 15. The general point is 

that bounds derived by considering terms involving flavon derivatives are softer than those 
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obtained from operators without derivatives, as they are more sensitive to the flavon mass, 

and to the details of the brane configuration. 

We have seen that U(3)5 xCP models with triplet sources are generically safe for 

A ~ 5 Te V, provided that Lorentz in variance is broken spontaneously. Next we will show 

that specific models can be safe at this scale without qualification. In particular, we present 

what we consider the simplest specific realization of our U(3)5 xCP scenario, and find that 

regardless of how Lorentz invariance is violated, and regardless of whether m:x is suppressed 

relative to A, both flavon derivative and "sniffing" effects are harmless. 

7.5 A concrete realization of U(3)5 

Here, we will consider a concrete arrangement of branes in our U (3)5 scenario. The 

arrangement is very simple and furthermore allows analytic calculation of FCN C effects. 
Ill 

We will see that the potential flavor-changing effects are very suppressed by this particular 

set-up; for instance all x derivatives are exactly aligned with X· 

We imagine that even though there are n ? 2 extra spatial dimensions, flavor is 

associated with only one of them, which we parametrize by y. Our 3-brane and several 

source 3-branes are taken to lie in a 4-brane described by (x, 0 ~ y ~ L), where we 

compactify on an interval [0, L] (rather than a circle) of moderately large size, L"" 10M;1 . 

The 3-branes are spread out roughly evenly in the space available to them an~ are then 

naturally spaced between "" 1 - 10 times M; 1, so that the question of what determines the 

sizes of the inter-brane separations is to some extent obviated. The flavon x is taken to 

propagate only on this 4-brane. 

In one infinite extra dimension, the x propagator is just e-mly-y'l. When the 
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dimension is compactified, the propagator depends on the boundary conditions. We will 

impose the conditions x = 0 at the boundaries of the interval, so that the propagator on 

the strip from Yl to Y2 is 

( 
sinh[m(L - yl)] . sinh(my1] . ) 

~(yl,Y2) = O(yl- Y2) sinh[mL] smh(my2] + O(y2- Yl) sinh[mL] smh[m(L- Y2)] 

(7.5.71) 

Note that this goes to e-mly1 -Y21 when L -+ oo, as it should. The classical profile for x is 

·then 

(7.5.72) 

where 

(7.5.73) 

is the source for x shone from the i'th wall. Suppose that our 3-brane, located at y = y*, 

is positioned to the left of all the other branes on the strip, i.e. y* < Y3 where Y3 is the 

location of the nearest wall. Then, for all y < Y3 the profile of x is 

Xcl(Y) = xsinh(my], (7.5.74) 

where 

__ '""' . sinh[m(L- Yi)] 
X - ~ Xz sinh[mL] · 

1 

(7.5.75) 

Note that the Xcl(Y) at different values of y < y3, are all proportional to the .same matrix, 

and so all derivatives of Xcl evaluated on our wall are diagonal in the same basis as Xcl 

itself. Therefore, even allowing for heavy mx I'V A and explicit Lorentz violation in the extra 
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dimension, there are no problems with derivative terms. In the absence of interactions in 

the bulk, the FCNC analysis is identical to the standard U(3)5 spurion analysis. 

In four dimensions, U(3)5 with minimal flavons leads to exact lepton flavor conser-

vation. As we have discussed, in higher dimensions, derivative operators have the potential 

to induce some level of flavor changing, but in this simple realization of U(3)5 , where 

8mx ex x, one might expect again that flavor changing is absent. This intuition is incorrect, 

as sniffing effects give us sensitivity to the value of x in the bulk, and thus to regions where 

it is not diagonal in the mass basis. However, it is easy to see that these effects are highly 

suppressed. 

We can illustrate this by considering the process J-t -+ 3e, which occurs due to the 

presence of the operator 

(7.5.76) 

In addition to the spurion contribution, which is diagonal in the flavor basis, we have the 

sniffed contribution 

(7.5. 77) 

If we assume a brane geometry where our brane is at y = 0, and the J-t and e branes are 

at positions 0 < YJL < Ye, the sniffed contributions from the region y < YJL will all be 

proportional to X· Thus, the first flavor changing piece comes in the region YJL < y < Ye· 

We calculate the coefficient of the operator to be 

(7.5.78) 

which gives a completely unobservable rate for J-t -+ 3e. Thus, while sniffing does allow for 
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flavor violations even in a U(3)5 theory (where naively lepton flavor is conserved!), they are 

easily small enough to be harmless. 

7.6 Smaller flavor symmetries 

In the previous two sections we developed extra-dimensional models of flavor with 

low A and GF = U(3)5 . One might wonder how difficult it is to work instead with smaller 

flavor groups. For instance, we have already seen that taking the symmetry to be U(2) 

is problematic: the extra dimensions alleviate the flavon exchange problem, but the U(2)-

invariant, non-renormalizable operator of equation {7.2.11) forces A> 105 TeV. Of course, 

we could hope that this operator is simply not generated by the underlying theory, but if one 

wants to assume that all invariant operators are present, then we need a larger symmetry. 

Here we adopt the group U(2)3 and consider the quark sector alone. We again take CP to 

be a symmetry of the underlying theory in hopes of evading the EDM bound. 

With this choice of flavor symmetry both Q3D~H and Q3 uc ii are flavor singlets, so 

to explain mb » mt, we might require two Higgs doublets with large tan/3. Unfortunately, 

as we have already seen, unless a single flavon multiplet is responsible for the elements of 

Ad involving the light generations (which will not be the case for U(2)3), then we expect to 

get the operator 

(7.6.79) 

forcing A > 400 Te V. Thus, we instead use a single Higgs but enlarge the flavor symmetry 

to include an extra U(l) factor under which only D~ is charged. We introduce a bulk flavon 

0, whose charge under this U(l) is opposite that of D~, and take the VEV of() on our wall 

to be ,.... 1/60. 
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Next we introduce another bulk £lavon, <p, a doublet under U(2)Q· We can choose 

a basis in which its VEV on our wall is 

(7.6.80) 

with vreal, and to yield a reasonable Vcb we take v"' 1/30. Our picture for the symmetry 

breaking that gives masses to the light generations is designed to preserve certain features 

of the standard U(2) fermion mass texture, in particular the relation Oc ~ Jmd/m8 • We 

imagine that on a distant brane the subgroup U(2)Q x U(2)dc is broken down to U(2) by a 

source that shines the bulk £lavon Xd, transforming as (2, 2) under this subgroup. Similarly, 

from a different brane we have U(2)Q x U(2)uc -+ U(2) breaking transmitted by Xu, a (2, 2) 

under this subgroup (note that we do not expect the two walls to preserve the same U(2)). 

Finally, we imagine that on our brane both U(2)dc and U(2)uc are broken primordially to 

their SU(2) subgroups. 

What does this assortment ofbreakings say about the Yukawa matrices? The flavor 

symmetry allows us the freedom to choose convenient forms for the Xu and Xd VEVs, but 

because of the primordial breaking on our brane, and because of the freedom already used to 

fix the form of <p, we are only allowed arbitrary SU(2)uc x SU(2)dc x U(1)Q transformations, 

where the U(1)Q acts on Q1 alone. These transformations allow us to take 

and 
(

e-io o) 
Xu= Vu O 

1 
(7.6.81) 

on our wall, with both Vu and vd real. We are stuck with a phase in Xui this is the origin of 

CP violation in the model. The leading order couplings of these flavons to the quarks are 

and Q - L Lmuc LXu If. m, (7.6.82) 
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so that at this stage the Yukawa textures are 

0 Vd 0 0 Vuei5 0 

AD= -Vd 0 (}v and >.u = -Vu 0 v (7.6.83) 

0 0 (} 0 0 1 

To give masses to the charm and strange quarks, we assume the presence of two 

additional bulk fields, eu,d, that transform as 2 X 2 under U(2)Q X U(2)uc,dc ,, However, 

these flavons are not shined from distant branes, but rather have VEVs induced in the bulk 

by the interactions 

L -lM 
£ :J CfJLX tCfJMe · (7~6.84) 

Due to its sensitivity to the flavon masses and to the brane geometry, the size of the sniffed 

e is essentially a free parameter: Note, however, that the orientation and phase of e is 
determined entirely by the orientation and phase of cp and x, so that we have 

eu,d = (

0 0 

) 
0 v~,d ' 

(7.6.85) 

where v~ and v~ are both real. 

Including the leading order coupling of all fl.avons to the quarks yields the textures 

0 0 

and 

0 0 (} 0 

and leads to the approximate relations 

v' u 

0 

v (7.6.86) 

1 

(7.6.87) 

•rt would be problematic to instead introduce doublets under U(2)u• and U(2)d• for this purpose, because 
the relation Be ::::: .Jmd/ms would be spoiled by the Yukawa term QLipQL'Pdlflm nc m- Moreover, the bulk 
coupling cpQXd'Pd would regenerate Xd in the vicinity of our wall, and would also disrupt the texture (we 
might expect, for instance Ad 21 ""Ad22)· 



189 

Vcb "'v. (7.6.88) 

We get reasonable values for all observables by taking v~ "' 3 x 10-4 , v~ "' 3 X 10-3 
. ' 

Vd "' 6 X 10-S, Vu "' 2 X w-4, v "' 1/30, and (} "' 1/60. Note that the CKM matrix is of 

the form 

(7.6.89) 

, so that the unitarity triangle relations for this model will simply be those of standard U ( 2). 

How safe is this model? In the mass basis, we expect to have the operator of 

equation (7.2.11) generated with coefficient"' (.A8 0c)2 , so that the bound from €K is reduced 

to A > 7 TeV. The issue of the neutron EDM is more subtle. Despite the fact that CP is 

broken spontaneously, one might expect this model to have an EDM problem because the 

mass and EDM matrices are produced by several fl.avons, rather than by a single multiplet 

as in U{3)5 . However, an attractive feature of this model is that, in the mass basis, the 

phase 8 appears only in the CKM matrix and not in the leading order EDM matrices. This 

is clear from (7.6.86): rotating U1 --+ e-iaU1 makes the mass and EDM matrices completely 

real, because the 1-2 entry of the up quark EDM matrix started out with precisely the same 

phase as .Au12 . Higher order contributions to these matrices disrupt this cancellation. We 

find that the order of magnitude of the contribution to the neutron EDM is determined by 

the coupling 

Q - L lm- M t: npDc 
LXu z€ Xu m':,dnM€ p· {7.6.90) 

Setting p = L = 1 gives 1-1 entries in both the down quark EDM and mass matrices of 

roughly v;v~ei8 in the flavor basis. In the mass basis, the 1-1 element of EDM matrix has 

2 I 2 

approximate size v~jv~, so the phase of that element will be roughly vu~d "' 10-6 - 10-5 , 
vd 
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suggesting that the bound on A is reduced to well below 1 TeV. 

7. 7 Predictive Theories 

We find the picture for generating flavor of sections 4 and 5, based on the maximal 

U(3)5 flavor group and involving only three identical flavor-breaking branes with triplet 

sources pointing in random directions, to be both elegant and plausible. Nevertheless, it 

does not provide a predictive theory of flavor. Furthermore, there is no explanation of 

the bjt hierarchy. There are two points that need to be addressed in order to build more 

predictive theories based on U(3)5 : 

•The brane geometry must be more constrained. 

•The directions in U(3) 5 space shone by the triplets must be more constrained. 

In this section, we will present some examples of more predictive theories along 

these lines. In order to deal with the second point, we will assume that the dynamics on the 

branes is such that the triplet sources have identical strengths and can only shine in three 

orthogonal directions, which we take to be (0, 0, 1), (0, 1, 0), and (1, 0, 0). If we continue 

to work with just three parallel source branes, as in the previous sections, we would be 

stuck with VcKM = 1. Therefore we consider other brane configurations. In particular, we 

imagine that the triplets Tu, Td, and Tq are all localized on different defects, which we label 

as uc, nc, and Q branes. We take all the Q branes to be parallel and equally spaced, and 

similarly for the uc and nc branes. However, the Q branes intersect at right angles with 

both the uc and nc branes, and at the junctions Xu and Xd have sources. The Yukawa 

matrices are thus shined from the points of intersection on a grid of flavor breaking branes. 
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7. 7.1 Simple grid models 

We will describe three simple and predictive grid models. In the first, the triplet 

sources are localized on three sets ·of three parallel five-branes of infinite extent. Labeling 

the extra dimensions by the numbers 1, 2, ... , n, we take the Q, uc, and Dc branes to fill 

extra dimensions 1 and 2, 2 and 3, and 1 and 3, respectively. At the four-dimensional 

intersection of a Q brane with a uc (Dc) brane, the TQ and Tu (Td) triplets shine the bulk 

flavon Xu (Xd)· We could further imagaine the existence of an additional bulk field Xu,d 

that transforms as (3,3) under U(3)nc x U(3)uc. This flavon would not induce dangerous ,, 

operators on our brane, and would simply make the picture more symmetric. We take the 

masses of the three flavons, as well as the spacings between the Q, uc, and Dc branes, to 

be identical. Until we have a theory that determines the inter-brane separations, we can't 

justify the regularity of the grid, however the symmetry of the system ensures that the 

configuration is at least a local extremum of the potential. In an attempt to understand 

why mt ~ mb, we imagine that our three-brane is located at one of the Q- uc intersections, 

but is not in contact with a Dc brane; Below we will find it necessary to make the offset, 

the shortest distance from our three-brane to the nearest Q- Dc intersection, much smaller 

than the brane spacing. The configuration is represented in Figs. 7.6a and 7.6b. In Fig. 

7.6a we project onto the 1-3 plane passing through our three-brane, so that the Q - uc 

intersections appear as points. In Fig. 7.6b we do the same for the 2-3 plane passing 

through our brane, so that the Q - Dc intersections appear as points. We have placed our 

universe near a corner of the grid, where it is easiest to attain hierarchical quark masses for 

all three generations. 
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a) b) 

' Q Q------,_-----+------+------

Q Q------~-----+------r------

us 
Q Q------~~---+------~~~---

u< u< u< o< o< o< 

Figure 7.6: The brane configuration for the first grid model. We project onto a plane 
parallel to the DC branes for (a), and parallel to the uc branes for (b). 

We stress that the starting point for this theory is a remarkably symmetrical 

configuration of source branes. In the absence of our 3 brane, and of spontaneous breakings, 

the configuration is completely symmetrical with respect to interchanging any pair ,of the 

extra dimensions 1,2 and 3. The labels Q, uc, Dc are just labels of identical sets of branes. 

The lack of symmetry only occurs by virtue of the position of our own 3 brane and the 

gauging on it. Flavor symmetry is built into the large scale structure of the bulk, and is 

explicitly broken only at a point defect. 

Already we can see that the resulting mass matrices will have an interesting struc-

ture. For instance, keeping only the exponential dependence of the x propagators, the up 

mass matrix has the form 

(7.7.91) 

1 

where € rv exp -(mxS) is the suppression factor with S the interbrane spacing. This sort 

of pattern is not expected in 4d theories of flavor, where usually only integer powers of a ' 
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small parameters appear. 

We now proceed to a quantitative analysis. As mentioned above, we take the 

magnitudes of each source VEV to be precisely the same, and allow the triplets to point in 

three orthogonal directions. We can choose a basis where the triplets on the Q, nc,and uc 

branes1lhearest us all point in the 3 direction; for conciseness we label these branes as Q3, 

uc3, and nc3. The Dt3 - Q3 intersection shines the Yukawa coupling 

(7.7.92) 

where ax absorbs the source strengths and their couplings to the bulk flavons (we take 

these to be the same for Xu and X d), and yfa is the distance from our brane to the Dc3-Qc3 

intersection. Note that if there are k extra dimensions, the propagator is given by equation 

(7.3.26) with n = k- 1, because the shining is from the 4D intersection of two five-branes. 

Meanwhile, from the uc3-Q3 intersection we get the Yukawa coupling 

(7.7.93) 

where the second term comes from the direct coupling of the triplet sources to standard 

model.fields, and the propagator has been cutoff at a distance Ycutoff f"o,J 1/ A. Of course, 

with aT, ax, mx, and the offset yfa, we have more than enough freedom to fit the top and 

bottom quark masses; the hope is that these four free parameters plus the brane spacing S 

can be simultaneously chosen to give reasonable CKM mixing angles and mass ratios for the 

other quarks as well. An additional hope is that the parameter values for a successful fit not 

be too far from unity. In this case, the smallness pf mb/'Tnt is not put in by hand by simply 

choosing O:x «aT, but is instead a consequence of our location at a uc-Q intersecion, away 
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from nc branes. Note that even in the limit that we are very near a nc- Q interesection, 

mb/mt is still suppressed by a factor if r(n;-2 )/47rn/2 . 

The model we have described is quite constrained. For a given configuration of 

triplet VEV s, the quantities y£J S and Smx specify all ratios of Yukawa matrix elements 

except those involving .A~3 ; by further fixing axm~-3 , where k is the number of extra 

dimensions, we determine the magnitudes of all Yukawa matrix elements except .Alfa, which 

is given only once we choose aT. Thus there are four free paramaters to predict six masses 

and three mixing anglesll. The predictions turn out to be wrong. A qualitative reason for 

this can be understood by considering only the two nearest Q, uc, and nc branes. We 

must be able to choose the source VEVs on these branes as (Q3, Q2), (Uc3, uc2), and 

(Dc3, Dc2) - if there were a repetition in any of the VEV directions, then three sets of three 

branes would not be sufficient to give masses to all of the quarks**. The size of m 8 /mb is 

approximately the ratio of the contributions to Xd fro.rp. Q2 - Dc2 and Q3 - Dc3 shining. 

The distance from our brane to Q2 - Dc2 is longer than that to Q3 - nc3 by at least S, 

regardless of yfaf S; if we make Smx larger than roughly 2 or 3, then m 8 /mb automatically 

comes outtoo small. Meanwhile the dominant contribution to Vcb comes from the ratio of 

the contributions to Xd from Q2 - Dc3 and Q3 - Dc3 shining. For the moderate values of of 

Smx needed for m 5 /mb, getting Vcb ~ 1 requires the offset yfa to be substantially smaller 

than the spacing S (by roughly a factor of 3 or more). With yfaf S constrained in this 

way, the ratio of the charm mass, which arises dominantly from Q2 - uc2 shining, to the 

bottom mass, comes out too smalltt. Of course, this problem can be avoided if we introduce 

llcp violation is discussed below. 
••we could have (Uc3, uc3), and a massless up quark, but this makes the problem described below only 

more severe. 
tt1n the case of four extra dimensions, for example, if we require .036 < Vcb < .042 and 1/24 < ms/mb < 
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an additional free parameter, for instance by letting Xu and Xd have different masses, by 

allowing the spacing between the uc and De branes to be different, or by giving Xu and Xd 

different couplings to the triplet sources. However, even if adjustments like these are made 

to accomodate mc/mb, we find that it is not possible to simultaneously obtain accurate 

predictions for all other mass ratios and mixing angles. 

A simple modification of the brane grid just described is to eliminate the uc 

branes and place the Tu sources on the same branes as the TQ's. To make the picture more 

symmetric, we could imagine that on the nc branes we have additional triplet sources T Q' 

that transform under yet another U(3), under which all standard model fields are singlets. 

In the original grid model, our brane needed to be located at an intersection of different 

branes to get the additional contribution to .Alf3 from the direct coupling of triplet sources 

to standard model fields; here, the direct coupling is automatic provided only that we reside 

on a Q ;uc brane. Two other important differences distinguish this grid from the previous 

one: first, there are now only thre~ independent sources that shine xu; second, the classical 

profiles for Xu and Xd shining are no longer identical- if the source branes are co-dimension 

l objects, then the Xu profile is determined using equation (7.3.26) with n = l, while for 

the Xd profile one should use n = l + 1 (as the intersections of nc and Q branes have 

co-dimension l + 1). One fortunate effect of the latter difference is to increase mc/mb from 

what the previous grid gave, for given choices of ygj S, S, and mx. 

To determine how well this grid can fit quark masses and mixings, we need to spec­

ify a VEV configuration. For all six quarks to acquire mass, there must not be repetitions 

ofVEV orientations (for example, we need one each of nc3, Dc2, and nc1). Unfortunately, 

1/75, then we obtain mc/mb < 1/23, with the value of mc/mb optimized when y£/S"' .08 and Smx "'.7. 
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QlU 0 3 

Q2U 0 2 

Q3U 0 3 us 

0°2 0°3 

Figure 7.7: The brane configuration for the second grid model. The numbers indicate the 
directions of the triplet source VEV s. 

giving a 3-2-1 pattern to all three sets of triplet VEVs leads automatically to an up quark 

mass that is too large compared to md. In light of this we choose not to make the VEV s 

on the most distant Qjuc brane (Ql, ucl), but instead choose them to be (Q1, uc3), as 

shown in Fig. 7.7 (choosing (Q1, uc2) leads to too large a contribution to Oc coming from 

the up sector). With this VEV configuration, the up quark Yukawa matrix has the texture 

0 0 f.' 

(7.7.94) 

0 0 1 

In particular, we have mu = 0, which is allowed at second order in chiral perturbation 

theory[25]. 

Interestingly, this grid model is slightly less constrained than the previous one: 

becaUse the Xu and Xd sources have different dimensionality, the ratio mc/mb depends on 

mx and S independently, so that there are five free parameters (mx, S, yfs, ax, ar). With 
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these chosen to be (.43, 3.3, .43, .1, "' 1)**, and with source branes of co-dimension two, we 

obtain a mixing matrix with elements of magnitude 

.975 .223 .0040 

VcKM= .223 .974 .037 , . (7.7.95) 

. 0045 .037 .999 

and find masses 

md = 1.9MeV mu=O (7.7.96) 

m 8 = 70MeV me= 1.4GeV (7.7.97) 

mb = 4.2GeV mt = 174GeV, (7.7.98) 

where we have included RGE running. The mass ratios and the magnitudes of the CKM 
\ 

matrix elements are consistent with those inferred from data, except that m 8 /md = 37 is 

too high by "' 50%, and IVub/Vcbl = .11 is too large by "' 10%. Note that we are partially 

successful in understanding the smallness of mb/mt: the dimensionless parameter required 

to fit this mass ratio, ax, is "' 1/10 rather than "' 1/60. The most serious problem with 

the model as presented so far is that there is no CP violation. This is easily remedied: if 

we allow the triplet VEV s to be complex, then we are left with an irremovable phase in the 

CKM matrix, provided the phases of the Tu VEVs on t~e (Q3, uc3) and (Q1, uc3) branes 

are different. 

We find it encouraging that the simple, regular grid shown in Fig. 7. 7 can describe 

quark masses and mixings so well. Perhaps the strangest, least desirable feature of this grid 

is our peculiar location relative to it. This motivates the grid shown in Fig. 7.8, in which 

our brane is located at the precise center. Given that we are in the middle, located on a 

HThe precise value of aT is fixed by fitting the top mass. 
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us 

Figure 7.8: The configuratiop. of branes and source VEVs in the third grid model. 

Q/Uc brane and in between two Dc branes, this construction features the minimum number 

of branes required to give masses to all three down-type quarks. We have eliminated the 

free parameter yfs; in its place we allow the Dc brane spacing to differ from the spacing of 

the Q/Uc branes. With the orientation of source VEVs shown in Fig. 7.8, the up quark 

Yukawa matrix is 
0 0 €

1 

.)..u,..., 0 E 0 (7.7.99) 

€ 0 1 

so that now the up quark obtains a small mass proportional to EE'. If we choose our free 

parameters (mx, Svc, SQ;uc, ax, ar) to be (.23, 2.75, 8, .2,"' 1), then we obtain 

.976 .219 .0057 

VcKM= .219 .975 .039 

.0030 .039 .999 

(7.7.100) 

I 



and 

md = 4.3MeV 

m 8 = 130MeV 

mb = 4.3GeV 

mu = 1.3MeV 

me= 1.3GeV 

mt = 174GeV. 
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(7.7.101) 

(7.7.102) 

(7.7.103) 

All masses and mixings agree with experiment at the 50% level: lvtdl and md/m8 are both 

too small by rv 25%, while IVubi/IVcbl is too large by rv 50%. Again, we find it intriguing 

that the symmetric grid of Fig. 7.8, with our 3 brane at its center, can account rather well 

for the pattern of quark masses and mixings. 

7.8 Conclusions 

The gauge hierarchy problem has motivated several directions for constructing 

theories beyond the standard model. Each of these has presented certain challenges and 

opportunities for making progress on the flavor problem. Constructing realistic theories 

of fermion masses in technicolor theories without fundamental scalars proved to be very 

difficult - especially incorporating the heavy top quark. In the simplest supersymmetric 

theories, the Yukawa couplings of the standard model are simply copied as superpotential 

interactions. As in the standard model there is an economical description which provides 

no understanding of the origin of flavor. The ideas for understanding the origin of small 

dimensionless Yukawa couplings are the same as for theories without supersymmetry: per­

turbative loops or the Froggatt Nielsen mechanism using hierarchies of mass scales. While 

there are new twists on these old ideas - superpartners can be in the loop and the dynamics 

of niany strongly interacting supersymmetric theories are understood - at the end of the 
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day one is tempted to say that supersymmetry did not allow much progress in understand­

ing flavor. In fact, for supersymmetric theories the question has been how to avoid taking 

a· step in the wrong direction: there are severe constraints from flavor-changing and CP 

violating processes on the form of the soft supersymmetry breaking interactions involving 

squarks and sleptons. While the answer motivated some flavor groups, it may be that these 

constraints are telling us more about how supersymmetry is broken than about how flavor 

is broken. 

In contrast, if we live on a three brane at some location in the bulk, with the 

fundamental scale from our viewpoint of order a Te V, then the constraints on theories of 

flavor are radically altered, and a whole new world of flavor models is opened up. At first 

sight it again appears that we are heading in the wrong direction: how could disastrous 

flavor changing effects be avoided from operators generated at such a low scale, from familons 

and from light flavon exchange? We have argued that all three objections are immediately 

removed by having a discrete non-Abelian flavor group spontaneously broken on source 

branes in the bulk. The fundamental scale of flavor breaking on these source branes is 

order unity, but the breaking effects on our 3-brane are small because the source branes are 

distant from us. The origin of the flavor parameters is now a convolution of two effects: 

the geometrical configuration of the source branes in the bulk and our location relative to 

them, and the random relative orientations of the flavor breaking vevs on the various source 

branes. Phenomenology places some constraints on these effects, and energetics suggest that 

the brane configuration will be highly symmetrical. We find that the convolution of these 

two effects has sufficient complexity to lead to the collection of mystifying flavor numbers 
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nature has given ·us, while still originating from a very simple and elegant symmetrical 

structure. An interesting aspect of this picture is that flavor symmetry is a crucial feature 

of the extra dimensions and is important in determining the brane configurations in the 

bulk. On the other hand, our gauge interactions are restricted to our 3-brane, and are 

unimportant from the viewpoint of the bulk. 

It is important to stress that these theories really are new, and cannot be mimicked 

by 4 dimensional theories. For example, the relative size of entries in the Yukawa matrices 

are governed by distances to sources from which flavor breaking is shone. These relative 

distances involve factors, such as V2 and .J5 as shown in eqn. [7.7.91], which are charac­

teristic of the spatial geometry. Furthermore, these theories of flavor can occur whether 

the extra dimensions are large, small or infinite, and whether the background geometry is 

fiat or curved. In addition, there are new ideas for a qualitative explanation of features of 

the fermion mass spectrum. In grid theories a fermion mass hierarchy is inevitable - our 

3-brane must be located closer to some source branes than to others. The uniquely heavy 

top quark is explained by having our 3-brane located on source branes which break flavor 

symmetry in the up sector. The origin of mtf mb may be a brane configuration such as the 

one shown in Figure 8, where our 3-brane lies equidistant between two source branes for 

breaking flavor in the down sector. 

As well as a new structure for flavor, and new ideas for qualitative features of the 

fermion mass spectrum, theories in extra dimension offer a completely new mechanism for 

obtaining precise flavor parameter predictions. It is striking that there have been only a 

few theoretical ideas which lead to relations amongst the flavor observables, such as Oc ~ 
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Jmd/ms and mb ::::: 3mr. Texture zeros, symmetry properties of the Yukawa matrices, and 

grand unified relations between up, down and lepton sectors have been the most important 

tools. Extra dimensions offer a completely new possibility: the Yukawa matrices on our 3-

brane at Yo are given by x(Yo) = :Ei XiA(yo - Yi) where Yi is the location of source i which 

shines the flavor breaking Xi via the propagator A.(yo- Yi)· The positions yi depend only on 

the lattice spacing, and there may be few possible spontaneous choices for the orientation 

of Xi· This basic idea can be implemented in a wide range of models. 

There are clearly very many source brane structures to be considered, even concen­

trating on those with high symmetry, and one may question whether such constructions are 

plausible origins for the quark and lepton mass matrices. We find little reason to prefer the 

alternative picture of multiple Frogatt-Nielsen fields and flavons with masses enormously 

high compared to the Te V scale. Rather than debate the relative merits, it seems worth 

exploring this new class of theories in which there is a spatial geometry of flavor. 
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Chapter 8 

Supersyrnmetry Breaking from 
Extra Dimensions 

8.1 Introduction 

The four forces of nature are each characterized by a mass scale: v1/GN = Mp:::::::: 

1019 GeV for gravity, Aw :::::::: 103 GeV for the weak interaction, AQcD ~ 0.1 GeV for the 

strong interaction and m'Y = 0 for the electromagnetic ~nteraction. What is the origin of 

these diverse scales? Over the last 25 years a single dominant viewpoint has developed: 

the largest scale, that of gravity, is fundamental, and the other scales are generated by 

a quantum effect in gauge theories known as dimensional transmutation. If the coupling 

strengths of the other forces have values ap ~ 1/30 at the fundamental scale, then a 

logarithmic evolution of these coupling strengths with energy leads, in non-Abelian theories, 

to the generation of a new mass scale 

(8.1.1) 

where the interaction becomes non-perturbative. On the other hand, Abelian theories, like 

QED, remain perturbative to arbitrarily low scales. For strong and electromagnetic inter-

actions this viewpoint is immediately successful; but for the weak interaction the success 
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is less clear, since the weak interactions are highly perturbative at the scale Aw. If Aw 

is generated by a dimensional transmutation, it must happen indirectly by some new force 

getting strong and triggering the breakdown of electroweak symmetry. There have been 

different ideas about how this might occur: the simplest idea is technicolor, a scaled up 

version :of the strong force[l]; another possibility has the new strong force first triggering 

supersymmetry breaking which in turn triggers electroweak symmetry breaking[2]. For our 

purposes. the crucial thing about these very different schemes is that they have a common 

mechanism underlying the origin of Aw: a dimensional transmutation, caused by the loga­

rithmic energy evolution of a gauge coupling constant, generates the exponential hierarchy 

of (8.1.1). 

In this letter, we propose an alternative mechanism for generating Aw exponen­

tially smaller than the fundamental scale. Our scheme requires two essential ingredients 

beyond the standard model: supersym:metry, and compact extra dimensions of space. The 

known gauge interactions reside on a 3-brane, and physics of the surrounding bulk plays a 

crucial role in generating an exponentially small scale of supersymmetry breaking. 

Our mechanism is based on the idea of "shining" [3]. A bulk scalar field, <p, of 

mass m, is coupled to a classical source, J, on a brane at location y = 0 in the bulk, thereby 

acquiring an exponential profile <p ex J e-mjyj in all regions of the bulk distant from the 

source, mlyl ~ 1. If our brane is distant from the source, then this small exponential, 

arising from the propagation of the heavy scalar across the bulk, can provide an origin 

for very small dimensionless numbers on our brane, in particular for supersymmetry and 
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electroweak symmetry breaking 

(8.1.2) 

where R is the distance scale of our brane from the source brane, and M* is the funda­

mental scale of the theory. The possibility of such a supersymm.etry-brelli,cing mechanism 

has been noted before qualitatively [3]. If some of the extra dimensions are very large, 

M* can be significantly below Mp, and could even be of order Aw, providing, an alter­

native viewpoint on the mass scales of the four fources of nature [4]. We are concerned 

with the case of M* ~ Aw, although M* need not be as large as Mp. In this letter we 

give an explicit construction of shining which preserves 4-dimensional supersymmetry, but 

triggers an exponentially small amount of supersymmetry breaking due to the presence of 

our brane. A possible worry is that R might run to infinity, thus minimizing the vacuum 

energy and restoring supersymmetry. We exhibit simple mechanisms, based on the same 

supersymmetric shining, which stabilize the extra dimensions with finite radius. 

8.2 Shining of Chiral Superfields 

We begin by constructing a 5d theory, with a source brane shining an exponential 

profile for a bulk scalar, such that the equivalent 4d theory is exactly supersymmetric. 

The 5d theory possesses N=l supersymmetry in a representation containing two scalar 

fields, cp and cpc, together with a four-component spinor W = ( '1/J, ,pc). The equivalent 4d 

theory has two families of chiral superfields q,(y) = cp(y) + 0'1/J(y) + 02F(y) and q,c(y) = 

cpc(y) + 0'1/Jc(y) + 02 Fc(y). In the 4d theory, y can be viewed as a parameter labelling the 

families of chiral superfields. 



Using this 4d chiral superfield notation, we write the bulk action as 

SB =I d4x dy ( I d40(q>tq> + q>ctq>c) 

+ I d20q>c(m + oy)q>) 
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(8.2.3) 

Viewed,: as a 4d theory, we have manifest supersymmetry, with the y integral summing 

over the family of chiral superfields. The form of the superpotential appears somewhat 

unusual; however, on eliminating the auxiliary fields, the action in terms of component 

fields describes a free Dirac fermion and two complex scalar fields in 5d. The 5d Lorentz 

invariance is not manifest in (8.2.3), but this form is useful to us, since it makes the 4d 

supersymmetry manifest. 

Next we locate a 3-brane at y = 0, and require that it provides a source, J, for a 

chiral superfield in a way which preserves 4d supersymmetry: 

Ws =I dy6(y) Jq>c, (8.2.4) 

where we choose units so that the fundamental scale of the theory M* = 1. The condi-

tions that this source shines scalar fields into the bulk such that supersymmetry is not 

spontaneously broken are 
"; ·. 

F(y) - (m- Oy)<pc = 0 (8.2.5) 

Fc(y) - J6(y) + (m + Oy)<p = 0 (8.2.6) 

The first of these does not have any non-trivial solutions that do not blow up at infinity, or 

which are well-defined on a circle. The second, however, has the solution 

<p(y) = -6(y)Je-my, (8.2.7) 
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in infinite flat space and 

-Je-my 
c.p(y) = 1- e-21rmR y E [0, 271-R), (8.2.8) 

on a circle. Thus we see that c.p has taken on a non-zero profile in the bulk, but in a 

way that the energy of the system remains zero and one supersymmetry remains unbroken. 

Interestingly, this is not the profile that occurs with non-supersymmetric shining, but is 

asymmetric, shining in only one direction. One may have thought that the gradient energy 

for any profile of a bulk scalar field would neccessarily break supersymmetry, but our ex-

ample shows this is not the cas!l. The 1Fcl2 contribution to the vacuum energy includes the 

18yc.pl2 + lmc.pl2 terms as expected, but these are cancelled by c.p*oycp terms, and at y = 0 by 

terms which arise because J is coupled to the combination (m + oy)c.p(O). Note that if we 

had written a linear term for <I> instead of <I>c, we would have shined a profile for cpc in the 

opposite direction. Likewise, if we had chosen a negative value for m, we would shine cp in 

the opposite direction, since the 5d theory is invariant under m-+ -m, y-+ -y. 

8.3 Supersymmetry breaking 

Having learned how to shine a chiral superfield from a source brane across the 

bulk, we now investigate whether a probe brane, located far from the source at y = y, can 

sample the small value of cp(y) to break supersymmetry by an exponentially small amount 

on the probe brane. In addition to superfields which contain the standard model fields, the 

probe brane contains a standard model singlet chiral superfield X, and has a superpotential 

Wp = J dy o(y- y)(WMssM + q>X) (8.3.9) 
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where W MSSM is the superpotential of the minimal supersymmetric standard model. This 

superpotential has F-flatness conditions 

Fc(y) - J8(y) + (m + 8y)cp = 0 (8.3.10) 

F(y) - 8(y- Y)x + (m- 8y)cpc (8.3.11) 

'" >·>~;·~;.: 

Fx - cp(Y). (8.3.12) 

The first equation can only be satisfied by having a shined value for cp(Y) =/= 0. Clearly, 

the first and third equations cannot be simultaneously satisfied: we have an O'Raifeartaigh 

theory, and supersymmetry is spontaneously broken. As always in an 0 'Raifeartaigh theory,., 

at tree level there is a flat direction: the value for x is undetermined, and if it is non-zero it 

acts as a source shining cpc. It is simple to understand what is going on. In the presence of 

the source brane, the field cp is shined from the source brane, generating an exponentially 

small linear term for X on the probe brane. After we have integrated out the heavy fields 

cp and cpc we are simply left with the superpotential on the probe brane 

(8.3.13) 

which generates a nonzero Fx rv Je-m'fi. 

This is not a precise equality, as the probe brane resists a non-zero cp(y), and 

provides a back reaction on the bulk. It is simple to show that this effect is qualitatively 

insignificant. 

If the fifth dimension is a circle, then we can imagine that the probe brane is 

stabilized at some location on the circle, or that it will drift such that it is immediately 

next to the source brane where the resulting supersymmetry breaking is smallest, as in 
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figure 8.1. In either case, we generate an exponentially small supersymmetry breaking scale 

Fx. 

Notice that this is not in the same spirit as recent works that use bulk dynamics to 

transmit distantly broken supersymmetry(5]. Rather, in our case, in the absence of either 

source or probe brane, supersymmetry remains unbroken. It is the simultaneous presence of 

both branes that leads to the exponentially smail supersymmetry breaking. A simple option 

for mediating the supersymmetry breaking from Fx to the standard model superpartners 

is to add non~renormalizable operators to the probe brane 

/

4 -j4 1 t t ~Sp = d xdy8(y - y)( d 0( M;X XQ Q + ... ) 

+ J d20(~*xwawa + ... )) (8.3.14) 

where Q is a quarksuperfield and wa a standard model gauge field strength superfield. We 

have inserted M* explicitly, so that the soft masses of the standard model superpartners 

and X are m N Fx/M* rv (JfM*)e-m'Y. Until now we have not specified the values for J 

and m; the most natural values are J ~ M'! and m ~ M*. 

Our entire theory is remarkably simple, and is specified by the bulk action S B of 

(8.2.3), the source brane superpotential Ws of (8.2.4), and the interactions of (8.3.9) and 

(8.3.14) on our brane. 

8.4 Radius Stabilization 

Mechanisms for dynamical supersymmetry breaking by dimensional transmutation(6] 

typically suffer from the "dilaton runaway problem" when embedded in string theory[7]: 

since the coupling constant ap is a dynamical field, the vacuum energy is minimized as 
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Figure 8.1:. The schematic profile of cp in the extra dimension. Whether our brane is stabi­
lized at some position or free to move under the given forces, we can achieve an exponentially 
small value for cp and hence exponentially suppressed supersymmetry breaking. 

ap ---t 0, where the theory becomes free. In our case, it appears there is an analogous 

problem. Taking the supersymmetry-breaking brane to be free to drift, the vacuum energy 

of the theory is 

(8.4.15) 

so it is energetically favorable for the radius to grow to infinity. However, in contrast 

with dynamical supersymmetry breaking scenarios, where one must simply assume that the 

dilaton·vev is somehow prevented from running to infinity, stabilizing R turns out to be 

quite simple. 

Consider adding to the model of the previous section a second bulk multiplet 

(~',~'c); of mass m', with interactions 

(8.4.16) 

where A and J' are constants and X' is a chiral superfield. The terms in this superpotential 
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are nearly identical to those of (8.3.9) and (8.2.4), except for the presence of the constant 

A on the probe brane. We assume that both A and J' are real. In complete analogy with 

the shining of cp, the scalar cp' acquires a profile 

cp1(y) = -J'O(y)e-m'y. (8.4.17) 

Writing y =OR, the F-fl.atness condition for X' becomes 

J' 
m'RO =log A(1- e-211"Rm')' (8.4.18) 

which defines a real function R(O) provided that J' /A > 0. We assume m' is less than m 

(by a factor of roughly 30, for very large M*), so that, for a given value of 0, the radius is 

essentially determined by the condition Fx' = 0, with a small correction .b.l rv ;;:, e-m/m' 

coming from the 1Fxl2 contribution to the potential. However, we have already seen that 

the vacuum energy is minimized when the probe brane drifts completely around the circle. 

The value of R is thus immediately fixed by equation (8.4.18), with (} = 21r. Its precise 

value depends on A and J', but if we take their ratio to be of order unity, then we find 

21rRm' ""' 1. The supersymmetry breaking F-term is then Fx rv Je-211"mR rv Je-m/m', so 

that the higher dimension interactions of (8.3.14) give superpartner masses 

~ -m/m'M .m rv e *" (8.4.19) 

In this model the mass of the radion, the field associated with fluctuations of the size of the 

circle, is mradion rvFxfMp rv 1 TeV (M*fMp). 

Alternatively one can stabilizeR in an entirely supersymmetric fashion. Here we 

describe just one of a number of ways in which this can be done. Imagine supplementing 
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the "clockwise" shining of cp' due toW' with "counterclockwise" shining of a different scalar 

rpc of comparable mass, m, through the added superpotential terms 

(8.4.20) 

Note that because i (rather than ic) couples to the source, the shining is in the opposite 

direction as that of cp'. The F -flatness condition for X, 

mR(2n - 8) = log B _ , 
J(1 _ e-2?TRm) 

(8.4.21) 

and the F-flatness condition for X' independently determineR as a function of(}, and for 

broad ranges of parameters the combined constraints are satisfied by unique values of (} and 

R. This supersymmetric stabilization of the radius yields mradion "'M; jMp, far above the 

TeV scale. 

8.5 Gauge-Mediated Supersymmetry Breaking 

We have presented a complete model in which exponentially small supersymmetry 

breaking is generated as a bulk effect and communicated to the standard model via higher-

dimension operators. It is straightforward to modify the model so that the supersymmetry 

breaking is mediated instead by gauge interactions[8]. 

Consider the O'Raifeartaigh superpotential 

(8.5.22) 

At tree level x is a flat direction, but provided 1-'2 < m 2 /2, radiative effects stabilize x at 

the origin and give m~'""" 1-'2 /16n2 . Supersymmetry is broken by Fx = -J.L2 . Models using 

an 0 'Raifeartaigh superpotential to achieve low-energy supersymmetry breaking have been 
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constructed in the past, but have required a small value for p,2 to be input by hand. Instead, 

we use supersymmetric shining as an origin for the parameters p,2 and m by coupling the 

brane superfields X, Y, and Z to the shone q> according to 

(8.5.23) 

where ).1 and ).2 are both of order unity and >.1 < ).~/2. Next we introduce couplings to 

messenger fields Q and Q transforming under the standard model gauge group* , 

(8.5.24) 

By taking a~ > a1.A1 we ~nsure that the messenger scalars do not acquire vevs. These super-

potentials give Q and Q supersymmetric masses and supersymmetry-breaking mass split-

tings of comparable order, M ""' ..,fF ""' cp(y). The messengers then feed the supersymmetry 

breaking into the standard model in the usual way, yielding soft supersymmetry-breaking 

parameters of order m""' 16~2 cp(y). Fixing the radius R by either of the mechanisms already 

described then leads to m ""' 1tt;2 e-m/m'. Note that this is truly a model of lowMenergy su-

persymmetry breaking, with VF""' 161r2m ""' 100 TeV, allowing for decays of the NLSP 

within a detector lehgth. Moreover, this small value for JF is favored by-cosmology in that 

it suppresses the gravitino energy density[9]. 

While there is typically a severe JL problem in gauge-mediated theories [10], it is 

easily solved with our mechanism by shining JL in the superpotential with a term 

(8.5.25) 

*The superpotentials of {8.5.23) and {8.5.24) are not justified by symmetries. However, it is not difficult 
to modify things, for instance by shining both~ and ~c, in such a way that symmetries select superpotentials 
that give the same essential results. 
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With A "' 1/30, problems of naturalness are much less severe than in theories where su­

persymmetry is broken dynamically. If B JL = 0 at tree level, radiative effects can generate 

a small Bp and large tan/3 [11]. Likewise, in gravity mediated theories, a shined term 

I JlfJip(y)H1H2 can also generate an appropriate value for J.L, while I d4XtXH1H 2 gen­

erates :dJJL. Although <p is related to supersymmetry breaking, this is distinct from the 

Giudice-Masiero mechanism. Absent the superfield X, supersymmetry is preserved, but 

the value of JL is unchanged. 

Depending on whether supersymmetric or supersymmetry breaking stabilization of 

the radius is employed, theradion mass is either mradion "'M'!/Mp or mradion "'..(FjMp"' 

1 eV (M*fMp ). Even the latter case is safe, since the limit on the radion mass is on the 

mm-1 scale, at the limits of experimental probes of gravity at short distances. 

8.6 Conclusions 

Dimensional transmutation, (8.1.1), and shining, (8.1.2), are alternative mecha­

nisms for taking a dimensionless input of order 30 and generating an exponentially small 

mass hierarchy. These mass hierarchies can explain the scales of symmetry breaking, for 

instance of a global flavor symmetry, or of supersymmetry, as we have discussed. While 

dimensional transmutation is a quantum effect requiring an initial coupling which is highly 

perturbative, 1fap ~ 30, shining is classical and requires a bulk distance scale of size 

R ~ 30M;1 . Such a radius can in turn be stabilized in a simple way. We presented two 

standard ways of communicating this exponentially small supersymmetry breaking, through 

higher-dimensional operators or via standard model gauge interactions. It is clearly possible 

to employ other mechanisms, such as those discussed in [5]. Our theories are remarkably 
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simple, using only free classical dynamics in one extra dimension. Extensions to more di­

mensions should be straightforward. While we have concentrated on constructing effective 

theories with exponentially small global supersymmetry breaking, it will be interesting to 

embed these models in a consistent local supergravity. It will also be interesting to explore 

whether any of these mechanisms can be realized in the D-brane construction of non-BPS 

states in string theory. 



219 

Bibliography 

[1] S. Weinberg, Phys. Rev. D19 (1979) 1277; L. Susskind, Phys. Rev. D20 (1979) 2619. 

(2] E. Witten, Nucl. Phys, B188 (1981) 513. 

[3] N. Arkani-Hamed and S. Dimopoulos, hep-ph/9811353. 

[4] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 263 (1998), hep­

ph/9803315; Phys. Rev. D59 086004 (1999), hep-ph/9807344; I. Antoniadis, N. Arkani­

Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 257 (1998), hep-ph/9804398; 

N. Arkani-Hamed, S. Dimopoulos and J. March-Russell, hep-th/9809124. 

[5] L. Randall, R. Sundrum, hep-th/9810155; 

E.A. Mirabelli, M.E. Peskin, Phys. Rev. D58 (1998) 065002, hep-th/9712214; 

D.E. Kaplan, G.D. Kribs, M. Schmaltz, hep-ph/9911293; Z. Chacko, M.A. Luty, 

A.E. Nelson, E. Ponton, hep-ph/9911323. 

[6] I. Affieck, M. Dine and N. Seiberg, Nucl. Phys. B256 (1985) 557; for a review see: E. 

Poppitz and S. Trivedi, hep-th/9803107. 

[7] M. Dine and N. Seiberg, Phys. Lett B162 (1985) 299. 



220 

[8] L. Alvarez-Gaume, M. Claudson, M.B. Wise, Nucl. Phys. B207 {1982) 96; M. Dine, 

A.E. Nelson Y. Nir andY. Shirman, Phys. Rev. D53 (1996) 2658. 

[9] A. de Gouvea, T. Moroi and H. Murayama, Phys. Rev. D56 (1997) 1281. 

[10] G. Dvali, G.F. Giudice, A. Pomarol, Nucl. Phys. B478 (1996) 31-45, hep-ph/9603238. 

[11] R. Rattazzi, U. Sarid, Nucl. Phys. B501 (1997) 297, hep-ph/9612464. 



221 

Chapter 9 

Conclusion 

With the Large Hadron Collider at CERN scheduled to come on line in 2006 or 

2007, we have hope of finally studying fully the energy regime we have known since Fermi 

first wrote down his theory of weak interactions. Likewise, BaBar and Bell will give us 

tremendous data into the nature of CP violation, while SNO, KAMLand, Minos, K2K and 

other will give. us a plethora of data on neutrino masses. 

We have seen that we already have tremendous information on neutrino masses 

and CP violation. We have great hopes for signals from supersymmetry, or the presence 

of extra dimensions, and already have made great strides in preparing for the flood of 

information that these experiments should yield. 

However, given these future data, it is imperative that we do not simple bide our 

time waiting for the results. Given the many possibilities that we have already developed, 

the particular signals, even if within one of the frameworks already thought of, could be 

something we have not considered. We have the hope of understanding better the nature 

of matter, of pushing our understanding of the history of the universe back farther, and of 

answering innumerable questions posed over the last seventy years. In doing so, hopefully, 
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and in all likelihood, we will generate volumes more. 
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Appendix A 

The Stability Index 

A.l ~'Formalism" of the Stability Index 

It is difficult to establish a formalism for the stability index, because it involves ari 

inherently ill-defined quantity, namely, what constitutes ~n order one quantity. However, 

the potential instability of various predictions to variations in these order one parameters 

makes some attempt to quantify this necessary. Such a quantification should be relatively 

insensitive to what precisely constitutes an "order one quantity". 

Therefore, we demand the following quantities of the index: 

• An "order one" quantity should be defined as a quantity x with some probability 

distribution P{x) to occur in an interval about 1. For reasons that will become clear later, 

it will be useful to consider instead the quantity P(y), where x =lOY. 

• This distribution should be "sensible", namely 

1. P(x) should be an even function in Log(x); that is, P(y) is even in y. 

2. P(y) should achieve its maximum value at 0. 
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3. P(y) should have a spread characterized by its variance, 

the variance then quantifying what "order one" is numerically. 

4. A product of two sensible distributions, correlated or uncorrelated, should be 

sensible. 

• The index should have similar implications regardless of P(y), so long as it is sensible. 

• The definition of P(y) should be the only necessary input. 

We shall explore the motivation for these assumptions and will shortly see that 

the presented index nearly meets·the requirements, and with minor modifications can meet 

them enitrely. 

We assume that the expectation value of x, and of any products of x, is unity. It 

follows immediately that P(y) should be even in y. We do not have strong arguments in 

favor of this assumption, and if it were relaxed, ,the formalism could be suitably modified. 

For instance, consider the seemingly sensible distribution 

{ 

3 
B' 

P(x) = 

0, 

if 1 <X< 3· 3- - , 

otherwise. 

which has been normalized to give total probability 1. The expectation value of a product 

of n uncorrelated variables with such a distribution would be 

- I II lO)n < X >= d"'x . P(xi)xi = ( 3 . 
t 

(A.l.l} 

Such a numerical pile-up of the central value of a product of order unity coefficients is 

excluded by our assumption. 
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What constitutes a "sensible" distribution is, of course, a judgement call. Exam-

ples of what we consider sensible distributions would be 

• Flat distributions taking on the value 1/a from -a/2 to a/2 

• Exponential distributions with standard deviation a 

• Linearly decreasing distributions of the form 

_ { (~b)(-*IYI +b), 
P(y) = 

0, 

if -a ::; y ::; a; 

otherwise. 

In fact, it can be shown that the last case it just the product of two uncorrelated quantities 

of the first type. 

In all of these cases, the next moment ( x4 ) is irrelevant in quantifying the likelihood 

of the variable being within a particular region about zero. Requirement 3 is then simply 

a statement that a sensible distribution should simply have one quantity, its variance, to 

determine how confident we are that the variable is within that region. This will then allow 

us to be more confident in deducing the significance of the variance of some product. 

This being stated, we can actually go about constructing some approximation of 

confidence intervals. The ability to describe the distribution of one variable by its variance 

is useful in allowing us to calculate the variances for higher products. We begin by writing 

the formal expression for the probability distribution of n uncorrelated variables Xi = lQYi 

with probability distributions Di P(yi)· We have 

P(z) = J lf1y(U Pi(Yi))o(z-~ Yi) 
z t 

(A.1.2) 

This expression is tedious to calculate for given P(y), particularly for large n. 
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However, its variance is a relatively simply calculation. 

v; = J dzP(z)z2 = Jdz lFy(~Yi)2 (ij Pi(Yi))o(z-~ Yi) 
l t t 

(A.1.3} 

Expanding the squared term we find terms 

fori# j; 
(A.1.4} 

if i = j, 

giving 

2 -~ 2 
Vzuncorr - L...J Vi (A.1.5} 

For n correlated variables, a similar calculations yields 

(A.1.6} 

where v6 is the variance of the original variable. 

Thus, a product of n correlated order one quantities is far more unstable than a 

product of n uncorrelated order one quantities. Simply counting the total number of order 

one coefficients is not sufficient. Thus we will refer to a product of the form 

II n· 
X·' 

t 
(A.1.7} 

as having index (Li ni) of type (n1, n2, ... , nm)· If some of the ni are repeated, we use the 

shorthand of writing ni, if n is repeated j times. We assume all order one quantities have 

the same distribution. A product of type (nb n2, ... , nm}, has variance 

(A.1.8} 
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This works extremely well for products of order one coefficients. However, a sum 

of order one coefficients is not necessarily order one. In these cases, it is usually best to 

perform a Monte Carlo to determine the distribution. 

A.2 Sensible· distributions 

To characterize the probability of a general product to be within a certain region 

about 1, it is necessary to explore the particular forms of various distributions. We consider 

three reasonable distributions to be i) the flat distribution, ii) the Gaussian distribution, 

and iii) the linearly decreasing distribution. 

A product of two equal width flat distributions yields a linear distribution, so we 

need only consider the flat and Gaussian cases. Gaussian distributions are well understood: 

products of variables with Gaussian P(y) functions are again Gaussian, allowing standard 

statistical techniques to be applied. 

Products of flat distributions very quickly become characterized by Gaussian dis­

tributions. We have performed explicit Monte Carlos for n = 1, 2, 3, 5, 7, 9 uncorrelated 

variables. Even by n = 2 the Gaussian approximation is good, and for n ;::: 3 it is very 

good. __ '!'/e thus believe it is reasonable to simply use Gaussian distributions, making a 

statistical interpretation of the variances simple. 

For a standard, we propose using a distribution with variance v = {[;, which 

corresponds to the variance of a flat distribution for -! ::; y ::; !· Changing the width 

of such a distribution from 1 to a would amount to multiplying this variance by a. Such 

generally mild sensitivity of the index to variations in the initial distribution is one its 

desirable qualities. We can then take "1-v" and "2-v" regions with IYI ::; v and IYI ::; 2v, 
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respectively. As should be clear, these should not be interpreted as the precise 67% and 95% 

1 and 2-a regions, because a is not precisely defined. They are simply regions of medium 

and strong confidence, respectively. 

As an example, consider a prediction with an unknown coefficient of order one 

quantities of the form x~x2x3. We say this has index 2 + 1 + 1 = 4 of type (2, 1, 1), which 

we will write in shorthand as (2, 12 ). Assuming the standard variance given above, this 

coefficient has variance v = J22±~~±12 = /f Thus, we can have medium confidence that 

the prediction for x is known within a factor of wv = 5, and strong confidence the the 

prediction is within a factor of 102v = 25. 

We ca~ also see that this reduces to the expected prediction in the case of a variable 

of index 1 of type (1). It will have variance v = fj; which gives medium confidence that 

the prediction is known within a factor of 1.9, and strong confidence it is known within 

a factor of 3.8. This is a good consistency check that the index predicts what we would 

expect in the case of a single order one coefficient. 

A.3 Reassessing the uncertainties in the U(2) neutrino model 

In lieu of the preceding analysis, we address the index type of the predictions 

already presented, and thus assess strong and medium confidence regions of each prediciton. 

We list all uncertainties for the general theory in table A.l. 

In the general theory with the 8-field, the atmospheric mixing angle is completely 

stable, while the solar angle is of approximate type (14) = (1, 1, 1, 1). However, it involves 

a sum of order one coefficients, motivating the use of Monte Carlos. Since a sum is in­

volved, the relative sign of the order one quantities becomes relevant, and we list those 
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quantity type Sign Range ofMed Range of Strong 

(*=approx type) convention Confidence Confidence 

Oatm 0 n/a ~exact exact 

00 4* + (0.002, 0.03) (0.0006, 0.1) 

00 4* - (0.005, 0.012) (0.0001, 0.06) 

''.mv:.; (2, 12 ) none (2, 50)eV (0.4, 250)eV 

fflNL (4, 3, 22 ' 1) none (17MeV,40GeV) (300keV, 1.9TeV) 

fflNH (4,24) none (470MeV, 870GeV) (llMeV, 37TeV) 

Table A.1: General Theory: uncertainties in predicitions. The regions listed here are simply 
for the uncertainty due to order one coefficients. Additional error due to uncertainty in input 
quantities, in particular in mv, can also be significant. 

cases seperately. These Monte Carlos allow us to claim that we have medium confidence 

that 00 1ies within (0.002, 0.03) and strong confidence that it lies within (0.0001, 0.1), giving 

large overlap of the BP98 region. 

The mass of the pseudo-Dirac neutrino has stability index 5 of type (2, 13 ), giving 

a medium confidence to know this within a factor of 5, and strong confidence within a factor 

of 25. Given the uncertainty in 8m~tm and 8m~, which determine the prediction, mv could 

conceivably be as low as 0.1e V. 

The masses of the right-handed states are not known so well. The mass prediction 

is, for the heavier state, of type (4, 24 ), and, for the lighter state, of type (4, 3, 22 , 1). This 

would give medium confidence to know the masses at factors of 43 and 48, and strong 

confidence at factors of 1800 and 2300, respectively. The cosmological implications of these 

neutrinos are very uncertain, given that the lighter could be well over a Te V in mass. 

Without the S field, certain uncertainties change. The precise nature of the changes 
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depends on which splitting operators are included and what sign convention is taken. Be­

cause of the large number of permutations, we list only the basic results. The atmospheric 

angle is, as expected, completely certain. The solar angle becomes slightly more uncertain, 

but still overlaps BP98 well. The heaviest two righthanded masses typically become less 

certain by a factor of roughly 100, but the uncertainty is so large that the phenomenological 

predictions remain the same. The only dramatic difference in the variant theory is that v/J 

has a medium confidence region on its mass of (24eV, 4keV), and a strong confidence region 

of (2eV,48keV). Including the uncertainties in the input quantities, the mass could be as 

low as 0.4eV, which escapes the KARMEN bound, although narrowly. 
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