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This dissertation is a computational investigation of the task of locating and recognizing

objects in unconstrained images in real-time, and learning to do so with minimal supervi-

sion. We take a probabilistic generative modeling approach, which involves formulating

analytical models of several real-world vision problems, studying how optimal inference

would proceed under such models, developing techniques for learning parameters under

these models, and evaluating the performance of the optimal inference algorithms in

realistic data.

We begin by developing a novel generative model of images under which an im-

age is a collection of sets of pixels which are generated by different object categories.

This provides a novel definition of “object” as a set of pixels that are co-dependent,

but conditionally independent of the other sets of pixels in the image. We then develop

an algorithm for optimal inference (i.e., detection of objects) and maximum likelihood

learning when the segmentation of training images is known. We point out a computa-

tional tradeoff between robustness of object detection and precision of localization, and

propose context dependent detectors as a way to solve the problem. These techniques are

used to develop a state-of-the-art, real-time head, eye, and blink detector. We predict

that similar context-dependent detectors may be found in the brain.

We develop an algorithm for optimal inference and maximum likelihood learning

when the segmentation of training images is unknown. We test this on image datasets

labeled with the identity but not the location of objects, and achieve state-of-the-art

performance in discovery of object categories. We then test the algorithm in a fully
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unsupervised context, in which a real-time person detector is learned from just a few

minutes of visual information self-labeled through multi-modal contingency detection.

This suggests that early face (and other) preferences in humans infants may be evidence

for rapid statistical learning rather than innate biases. We develop software for learning

robust, real-time object detectors from both labeled and unlabeled examples, including

a real-time head, eye, and blink detector available to the public.
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Introduction

Trying to understand perception by studying only neurons is like trying
to understand bird flight by studying only feathers: it just cannot be done.
In order to understand bird flight, we have to understand aerodynamics, only
then the structure of the feathers and the different shapes of birds’ wings make
sense.

–David Marr, Vision, 1982

Sensory input is continuous. Light arrives on our retina in an unbroken stream.

Yet much of our understanding of the world relies on the perception that the world is

divided into objects. The concept of object is such an integral part of so many perceptual

skills that it is easy to take it for granted. However, designing a machine that can

segregate pixels from a camera into different objects is a nontrivial task. Indeed, the

general problem of segregating and recognizing objects with a computer program in

unconstrained, real-world environments is completely unsolved.

This dissertation is a computational investigation of the task of locating and

recognizing objects in unconstrained images in real-time. To better understand this

task, we develop systems that learn to detect the presence or absence of an object

from example images that are labeled only as containing or not containing an object of

interest. Learning about objects from such non-specific labels is more challenging than

standard, supervised learning approaches to object detection. In supervised approaches,

humans must first develop a training set of images and indicate by hand precisely which

pixels in the images contain the object of interest. This labeling process, which must

be performed on thousands, if not tens of thousands of images, is labor intensive; as

such, until now reliable object detectors have only been developed for a few carefully

chosen object categories such as faces, pedestrians, and cars [Sung and Poggio, 1998;

1
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Rowley et al., 1998; Schneiderman, 2000; Jones and Viola, 2003; Dalai and Triggs, 2005].

Being able to learn robust, real-time object detectors without the need for such specific

hand labels would represent a significant advance in machine perception, allowing the

development of a wide variety of applications.

A computational study of both how to detect objects and how we might learn to

do so is also an important part of neuroscience. As David Marr emphasizes, a critical

part of understanding how the brain works is to carefully study the problems it solves.

Attempting to build machines that solve specific, real-world problems can lead to a

deeper understanding of the computational requirements faced by the brain, and can

suggest ideas about how the brain may solve them [Edelman and Vaina, 2001].

In this dissertation our primary analytical tool is probability theory, in particular

probabilistic generative models. Generative models are a mathematical description of

how hidden causes (random variable H) generate observed data (random variable X).

Provided a generation model, we can then ask the question: “according to my model

of how observable patterns are generated, what hidden causes could have produced the

data I observed?”

A probabilistic model provides an explicit probability distribution p(h), called the

prior distribution, over the possible values of the hidden variable. In addition, it provides

a model of how data are generated when their causes are known, p(x|h). Together,

these provide a model of the joint distribution of the hidden and observed variables:

p(x, h) = p(x|h)p(h). We can then use Bayes’ rule to produce the inverse model, the

posterior distribution p(h|x), which represents the probabilities that each of the various

causes h could have produced the observed data x:

p(h|x) =
p(x|h)p(h)

p(x)
. (1.1)

It is useful to divide H into two components: a component λ, called the model

parameters, that underlies all of our observations, and a component Y , which may be

different between each observation. In the Bayesian approach, given the set of exam-

ples (or training data) x and a new independent sample x, inference about y involves

marginalizing over all possible parameters, i.e.,

p(y|x,x) =
∑
λ

p(y, λ|x,x) (1.2)

=
∑
λ

p(λ|x,x)p(y|x,x, λ). (1.3)
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Instead of computing this sum over all possible values of λ, a common approach, and

the one taken in this dissertation, is to find the most probable λ given the training data,

i.e.,

λ̂ = argmax
λ

p(λ|x). (1.4)

This “best estimate” λ̂ is then taken to summarize all the relevant information about

the training data necessary to infer the hidden causes for new data, so we do not need

to consider x once we have λ̂, i.e.,

p(y|x,x) ≈ p(y|x, λ̂). (1.5)

There are therefore two separate inference processes. First, given the example data,

the learning process involves finding the value λ̂ that best explains the training data.

Second, given a new example and λ̂, the inference process involves using p(y|x, λ̂) to

answer: “what is the probability that each of the various causes y caused this new

example x?”

The generative modeling approach can be a fruitful way to investigate real-world

problems. It forces us to state our underlying assumptions explicitly, and enables for-

mal consideration of these two inference processes and how these inference processes

might change if our assumptions are changed. The methodological stance referred to as

probabilistic functionalism [Movellan and Nelson, 2001] argues that using this approach

to solve real problems faced by organisms, in unconstrained environments and realistic

(biologically relevant) time-scales, is an essential tool to learn about the problems faced

by the brain.

In Chapter 2 we apply the approach of probabilistic functionalism to understand-

ing the specific tasks of face, eye and blink detection. While we focus on this specific task,

our goal is to learn about the more general problem of detecting objects and their parts.

We begin by formulating a probabilistic generative model of scenes as a set of patches of

pixels, each of which is generated either by a foreground or by a background appearance

distribution. The pixels within each patch are co-dependent, but are independent of the

other pixels in the image. The optimal inference algorithm for detecting objects requires

we compute probability ratios for every candidate set of pixels in the scene – namely, the

conditional probability of the set of pixels given that their underlying cause was object,

divided by the the conditional probability of the set of pixels given that their underlying

cause was not the object.
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We then propose a hierarchical scheme in which objects are located by applying

a chain of context dependent likelihood ratio estimates. Learning involves choosing

parameters for these likelihood ratio estimates which maximize the probability of a set

of example images which have been labeled by a human for head and eye, and eyelid-

openness. Optimal inference (i.e., detection) involves finding the maximum probability

hypothesis given a new image and fixed model parameters. We illustrate the approach

by building a state-of-the art, real-time head, eye, and blink detector.

The approach used in Chapter 2 requires that training images come with labels in

which the position of objects was fully specified. In Chapter 3, we turn to the problem of

learning these parameters when such labels are not available. Instead, all that is required

are a set of images labeled as containing or not containing the object of interest. We

take a Bayesian approach to learning the likelihood ratios needed for optimal inference.

Surprisingly, we show that it is possible to avoid a potentially costly marginalization

over all possible image segmentations needed to compute the true likelihood of the data

given parameters. We test this system on a variety of image datasets and find that

our approach yields state-of-the-art performance in classification accuracy. Moreover, at

runtime our system is able to perform detection several orders of magnitude faster than

previous systems while still providing precise localization information.

Chapter 3 required that a human provide information about whether or not an

object was present. In Chapter 4, we illustrate how weak cues from one sensory domain

can be used to bootstrap learning in the visual domain, to learn robust object detectors

in a fully unsupervised manner. We created a system that uses auditory contingency to

self-generate labels of the presence or absence of people in a continuous stream of visual

data. We find that using only a few hundred images, representing just six minutes of

visual experience, the system is capable of learning a robust, real-time person detector.

The results of this study have important implications for our understanding of human

learning and development. First, it supports the hypothesis that auditory contingency

is a useful multi-modal cue that could be used by the infant brain to learn about people.

Second, we show that although the system only had experience with images of humans in

a real, three-dimensional environment, it developed preferences to iconic sketches of faces

similar to the preferences found in forty minute old infants [Johnson et al., 1991]. This

represents the first computationally plausible alternative to the hypothesis that infants

are born with an innate face preference, suggesting instead that early face (and other)
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preferences may be evidence for rapid statistical learning rather than innate knowledge

about the appearance of faces.

Contributions of the dissertation

1. We developed a novel generative model under which an image is as a collection

of sets of pixels which are generated by different object categories. This provides

a novel definition of “object” as a set of pixels that are co-dependent, but condi-

tionally independent of the other sets of pixels in the image. This notion can be

generalized to modalities other than vision.

2. We developed an algorithm for optimal inference (i.e., detection of objects) and

maximum likelihood learning when the segmentation of training images is known.

3. We pointed out a computational tradeoff between robustness of object detection

and precision of localization, and propose context dependent detectors as a way

to solve the problem. We predict that such context-dependent detectors may be

found in the brain.

4. We developed an algorithm for optimal inference and maximum likelihood learning

when the segmentation of training images is unknown.

5. We showed that with this algorithm it is possible to learn to localize human be-

ings in real-time from a very small number of training examples and multi-modal

contingency detection. This suggests that early face (and other) preferences in

humans infants may be evidence for rapid statistical learning rather than innate

biases.

6. We developed software for learning robust, real-time object detectors from both
labeled and unlabeled examples, including a real-time face, eyes, and blink detector.
The software is being made available for free – interested parties should contact the
author, however portions of the code are already available (under a BSD license)
from http://mplab.ucsd.edu under the title “Machine Perception Toolbox”.
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A Generative Framework for Real

Time Object Detection

The study of face perception has been revitalized thanks to recent progress in

cognitive neuroscience. The advent of modern neuro-imaging is revolutionizing the study

of the mind and presenting a picture of the human brain far different from a general

purpose computing machine. Single neuron recording and imaging studies are showing

specific neural systems that play a crucial role in the perception of faces, facial features,

and facial expressions. These include the fusiform face area, superior temporal sulcus,

orbital frontal cortex, frontal operculum, right somatosensory cortex, and the amygdala

[Kawashima et al., 1999; George et al., 2001].

Face perception has been a traditional area of research in developmental psychol-

ogy, a discipline that studies how the human mind develops from infancy to adulthood.

Face processing in general and eye detection in particular is deemed so important in this

field that some of its most influential researchers have postulated the need for innate

eye detection and gaze processing modules. These ideas are still controversial but recent

experiments have shown that from birth human infants are exceptionally sensitive to

the eye and to mutual gaze engagement [Farroni et al., 2002; Johnson, 2001]. These

systems may help tune the newborn infant towards interaction with their caregivers

[Baron-Cohen, 1995].

In recent years there has been an emerging community of machine perception

scientists focused on automatic detection of faces and facial behavior. The special im-

portance of the eyes is becoming quite clear within this community. There are at least

6
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Table 2.1: FACS codes involving eyes, from http://www.cs.cmu.edu/face/facs.htm

Code Descriptor Muscles Involved Example

AU5 Upper Lid Raiser Levator Palpebrae Superioris

AU6 Cheek Raiser Orbicularis Oculi, Pars Orbitalis

AU7 Lid Tightener Orbicularis Oculi, Pars Palebralis

AU41 Lid Droop Relaxation of Levator Palpebrae Superioris

AU42 Slit Orbicularis Oculi

AU43 Eyes Closed Relaxation of Levator Palpebrae Superioris; Orbicularis Oculi, pars Palpebralis

AU44 Squint Orbicularis Oculi, pars Palpebralis

AU45 Blink Relaxation of Levator Palpebrae Superioris; Orbicularis Oculi, pars Palpebralis

AU46 Wink Relaxation of Levator Palpebrae Superioris; Orbicularis Oculi, pars Palpebralis

AU61 Eyes Turn Left Lateral and Medial Rectus

AU62 Eyes Turn right Lateral and Medial Rectus

AU63 Eyes Up Superior Rectus

AU64 Eyes Down Inferious Rectus

AU65 Walleye Lateral Rectus

AU66 Crosseye Medial Rectus

two reasons for this: (1) Proper registration. In a recent evaluation of state of the art face

recognition system it was proposed that a large proportion of the failures of these system

was due to poor alignment and registration of facial features, particularly in outdoors

conditions. Good eye detection in realistic environments may thus have a tremendous

impact on the accuracy of face perception technologies [Phillips, 2003]. (2) Information

value. Eyes and eye movements are a particularly important source of information in

human interaction. Indeed, the Facial Action Coding System of Ekman and Friesen

[1978], arguably the most comprehensive standard for coding facial behavior, devotes 15

categories to describe eye behavior (see Table 2). Only the mouth surpasses the eyes

in the number of categories assigned to it. This reflects the fact that eye behavior is

extremely rich and particularly informative about the state of human beings.

Current work on eye detection divides into approaches based on visible spectrum

cameras and approaches based on near-infra-red (NIR) cameras. In indoor and relatively

controlled conditions the spectral properties of the pupil under NIR illumination provide

a very clean signal that can be processed very fast and accurately [Haro et al., 2000; Ji

and Yang, 2001, 2002]. While NIR based methods are practical and worth pursuing, it
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is also important to pursue visual spectrum methods for the following reasons: (1) NIR

based methods tend to produce a large number of false positives when used in relatively

uncontrolled illumination conditions; (2) NIR based methods do little to further our

understanding about the perceptual problem the brain solves when processing faces in

natural conditions.

Of all the eye related behaviors, perhaps the most important is blinks, action unit

45 in the Facial Actions Coding System. This is due to its relevance in several fields,

including neurology, physiology, and psychology. For example, blink rate is known to

vary with physiological and emotional arousal, cognitive effort, anxiety, fatigue, and

deceit [Holland and Tarlow, 1972; Ekman, 1985; Karson, 1988; Van-Orden et al., 2000;

Ji and Yang, 2001]. Ji and Yang [2002] presents a state of the art method to detect blinks

in real time using NIR imaging. Approaches based on visual spectrum images also exist.

Bartlett, Braathen, Littlewort, Smith, and Movellan [2003] present an approach to detect

blinks in indoors environment using Support Vector Machines. Cohn, Xiao, Moriyama,

Ambada, and Kanade [in press] describe an approach that uses hand-coded eye-blink

detectors. They report results comparable to those of Bartlett et al. [2003] on the same

testing data set. Both systems handled out-of-plane rotations of the head by fitting a

3D deformable model of the head and then re-rendering the image into a frontal view.

2.1 A Generative Model for Images

In this section we frame the problem of finding faces and facial features as a

Bayesian inference problem: We formulate a model of how images are generated and

then derive an algorithm for making optimal inferences under this model. One advan-

tage of generative models is that probability estimates of the categories of interest are

computed explicitly, facilitating integration with other potential sources of information

not necessarily considered at design time. In addition generative models force us to make

our assumptions explicit, facilitating progress towards more effective algorithms.

Unless otherwise stated, capital letters will represent random variables and small

letters specific values taken by those variables. When possible we use informal shorthand

notation and identify probability functions by their arguments. For example, p(y) is

shorthand for the probability (or probability density) that the random matrix Y takes

the specific value y.

We model the image as a collage of rectangular patches of arbitrary size and loca-
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Figure 2.1: The hidden variable H determines which image patches will render the
background (−1) which patches will render the object of interest (1) and which patches
will not be rendered (0). The set of rendered patches determine the observed image.

tion, some patches rendering the object of interest, the others rendering the background.

Given an image our goal is to discover the patches that rendered the object. Let Y be a

random matrix representing an image with a fixed number of pixels. Let y be a specific

sample from Y . Let A = (a1, a2, . . . , an) be an enumeration of all possible rectangular

image patches, e.g. ai determines the position and geometry of a rectangle in the image

plane. Let yai be a matrix whose elements are the values of y for the pixels in the rect-

angle ai. Let H = (H1, . . . ,Hn) be a random vector that assigns each of the n patches

to one of three categories: Hi takes the value 1 when the patch ai renders the object of

interest, it takes value −1 when it renders the background, and value 0 when it is not

rendered (see Figures 2.1 and 2.2). We refer to a value h as a segmentation of an image.

The image generation process proceeds as follows (see Figure 2.1). First a seg-

mentation h is chosen with probability p(h). Then for each patch ai if Hi = 1 then an

image of size ai is chosen from the object distribution q(· | ai, 1) independently of all the

other patches. If Hi = −1 then a background image yai is chosen from the background

distribution q(· | ai,−1). If Hi = 0 then ai is not rendered. The observed image y is the

collection of the rendered patches.

The model is specified by the prior probabilities p(h) and by the object and

background rendering distributions q. The prior is specified by the marginal probabilities

{P (Hi = 1) : i = 1, . . . , n}, with the constraint that values of h that do not partition
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the image plane have zero probability (i.e., each pixel must be rendered by exactly one

object or background element), and by one of the two following constraints: (I) For cases

in which we know there is one and only one object of interest in the image plane, only

values of h with a single 1 are allowed. (II) For cases in which there may be an arbitrary

number of objects of interest we assume the location of a rendered object does not inform

us about the location of other objects, except for the fact that each pixel can only be

rendered by a single object or background element. More formally, for i = 1, . . . , n, the

random variables {Hj : j 6= i} are independent of Hi when conditioning on the event

{Hi 6= 0}. For a given image y our goal is to detect patches rendered by the object.

There are two cases of interest: (I) We know there is one and only one patch rendered

by the object ; (II) There is an unknown and arbitrary number of patches rendered by

the object model.

2.1.1 Case I: Single Object

Suppose we know there is one and only one patch in the image plane that rendered

the object of interest. Then our goal is to find the most probable patch k̂ ∈ {1, . . . , n}
given the image y, i.e,

k̂ = argmax
i

P (Hi = 1 | y) (2.1)

Using the law of total probability we have that

P (Hi = 1 | y) =
∑

h P (Hi = 1)p(h |Hi = 1)p(y | h,Hi = 1)
p(y)

(2.2)

Note that p(h |Hi = 1) is zero if the segmentation h does not contain the patch ai and

one otherwise. Moreover, for any h that includes ai we have that

p(y | h,Hi = 1) =
q(yai ; ai, 1)
q(yai ; ai,−1)

Z(h, y) (2.3)

where

Z(h, y) =
∏
i:hi 6=0

q(yai ; ai,−1) (2.4)

The term Z(h, y) describes how well the image y can be explained by the segmentation

h with all the patches rendering background, no objects. Thus

P (Hi = 1 | y) = P (Hi = 1)
q(yai ; ai, 1)
q(yai ; ai,−1)

∑
h p(h |Hi = 1)Z(h, y)

p(y)

= P (Hi = 1)
q(yai ; ai, 1)
q(yai ; ai,−1)

E(Z(H, y) |Hi = 1)
p(y)

(2.5)
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The term E(Z(H, y) | Hi = 1) represents how well the image y can be explained as a

mosaic of background patches, provided one of those patches is ai. If the background

distribution model q(· |ak,−1) includes wrongly shifted and scaled versions of the object

of interest then E(Z(H, y) |Hi = 1) should be small for the patch that actually rendered

the object, and large otherwise. This is due to the fact that the patch that includes the

object will be hard to explain by the background model (see Figure 2.2). More formally

if E(Z(H, y) |Hk̂ = 1) ≤ E(Z(H, y) |Hi = 1) for i = 1, . . . , n then

k̂ = argmax
i

P (Hi = 1 | y)

= argmax
i

P (Hi = 1)
q(yai ; ai, 1)
q(yai ; ai,−1)

= argmax
i

logP (Hi = 1) + log
q(yai ; ai, 1)
q(yai ; ai,−1)

(2.6)

The optimal inference algorithm prescribes scoring all possible patches in terms of a

function that includes the prior probability that the patch is generated by an object and

a likelihood ratio term. The patch that maximizes this score is then chosen.

Figure 2.2: The segmentation on the left contains the patch that generated the object
of interest (i.e. the face). It will be hard for this segmentation to explain the image as
a collection of background patches. The segmentation on the right does not contain the
object patch. Since the background model includes wrongly shifted versions of faces it
will be easy to explain the image as a collection of background patches.

2.1.2 Case II: Multiple Objects

This case applies, for example, in face detection problems for which we do not

know a priori how many faces may appear in the image plane. To formalize the prob-

lem we define a function Φ measuring the degree of match between any two arbitrary
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segmentations h and h′

Φ(h, h′) =
n∑
i=1

ρ(hi, h′i) (2.7)

ρ(hi, h′i) = (δ(hi, 1) + δ(hi,−1)) δ(hi, h′i) (2.8)

where δ is the Kroenecker delta function. ρ counts the number of patches for which both

h and h′ assign the same “object” or “background” label and ignores all the patches

that are not rendered by h. Our goal is to find a partition ĥ that optimizes the expected

match

ĥ = argmax
h′

E(Φ(H,h′) | y) = argmax
h′

∑
h

p(h | y)Φ(h, h′) (2.9)

The optimal assignment follows

ĥi =

1 if p(Hi = 1 | y) > p(Hi = −1 | y)

−1 else
(2.10)

Thus, to find the optimal assignment we need to scan all possible image patches a1, . . . , an,

compute the log posterior probability ratio

log
P (Hi = 1 | y)
P (Hi = −1 | y)

(2.11)

and assign “object” labels to the patches for which this ratio is larger than 0.

Using the law of total probability we have that

P (Hi = 1 | y) =
∑
h

P (Hi = 1)p(h |Hi = 1)p(y | h,Hi = 1) (2.12)

where p(h |Hi = 1) is zero if the segmentation h does not contain the patch ai, and

p(y | h,Hi = 1) = q(yai ; ai, 1)
∏

{j:hj=−1}

q(yaj ; aj ,−1) (2.13)

Thus for k = −1, 1 we have that

P (Hi = k | y) = P (Hi = k)q(yai ; ai, k)
∑
h

p(h |Hi = k)
∏

{j:hj=−1}

q(yaj ; aj ,−1) (2.14)

and due to the fact that {Hj : j 6= i} are independent of Hi given {Hi 6= 0} it follows

that

log
P (Hi = 1 | y)
P (Hi = −1 | y)

= log
P (Hi = 1)
P (Hi = −1)

+ log
q(yai ; ai, 1)
q(yai ; ai,−1)

(2.15)

In order to make optimal inferences all we need is a model for the prior probability of

object locations and a model for the log-likelihood ratios of image patches of arbitrary

geometry. In Section 2.2 we will see how these models can be learned using boosting

methods.
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2.2 Learning Likelihood Ratios using GentleBoost

The inference algorithm presented above requires a likelihood ratio model. Given

an arbitrary image patch y we need an estimate for the ratio between the probability of

such a patch being generated by the object class vs. the background class. In this paper

we learn these likelihood ratios using GentleBoost, a boosting algorithm developed by

Friedman et al. [1998]. Boosting [Freund and Schapire, 1996b, 1999] refers to a family of

machine learning algorithms for learning classifiers by sequential accumulation of experts

that focus on the mistakes made by previous experts. Friedman et al. [1998] showed that

boosting methods can be reinterpreted from the point of view of sequential statistical

estimation, an interpretation that makes it possible to use it in the generative framework

proposed here.

The goal is to learn a model for the log-likelihood ratio of arbitrary image patches.

During training we are given a set of examples { (yi, zi) : i = i, . . . ,m}, where yi is an

image patch, and zi ∈ {−1,+1} its category label, i.e., object or background. The model

used in GentleBoost is of the following form:

p(y) =
1

1 + e−2
P

j fj(y)
(2.16)

where p(y) is the probability that image patch y belongs to one of the two categories of

interest, and fi(y) is the opinion of the ith expert, as defined in Figure 2.3. GentleBoost

can be seen as an application of the Newton-Raphson optimization algorithm to the

problem of minimizing the following chi-square error [Friedman et al., 1998]:

ρ =
∑
i

ti − p(yi)√
p(yi)(1− p(yi))

(2.17)

where ti = 0.5(zi + 1) ∈ {0, 1} is the category label for the ith training input yi. Since

p(yi) is the probability of a Bernoulli random variable with mean p(yi) and standard

deviation
√
p(yi)(1− p(yi)), then ρ can be seen as a the number of standard deviations

between the observed label and the average label value. As the number of examples in the

training set increases, minimizing the chi-square error becomes identical to maximizing

the likelihood. However when the number of samples is small, chi-square estimators can

be more efficient than maximum likelihood estimators.
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2.2.1 Selecting Wavelets and Tuning Curves

GentleBoost chooses a set of experts f1, f2, . . . in a sequential manner. Each

Newton-Raphson step results in the selection of the expert that maximally reduces the

current chi-square error given the already selected set of experts. In practice this can be

done in a variety of ways. We use the following approach:

We start with a large pool of wavelets {w1, . . . , wn}, about 170,000 in our case

(see Section 2.4), and define an expert as the combination of a wavelet w and a tuning

curve h to be defined below. By iteration t of the Newton-Raphson method, we have

already selected t− 1 experts. At this point we go over each wavelet w in our pool and

for each wavelet we estimate the tuning function h : R → [−1, 1] that minimizes ρ given

the outputs of the wavelet w and the information provided by the t− 1 experts already

selected. This function can be shown to have the following form

h(w(y)) = EPt [Z | w(y)] (2.18)

where Z ∈ {−1, 1} is the category label, and the expectation is taken with respect to

the distribution induced by the weights assigned by GentleBoost to the different training

data (see Figure 2.3). We estimate the function h using the Nadaraya-Watson kernel

regression method for density estimation [Silverman, 1986]. The training examples used

in this regression method are the set of triplets {(w(yi), zi, Pt(i)) : i = 1, . . . ,m}, where

w(yi) is the regressor variable, zi the label we wish to predict, and Pt(i), the weight of

example yi, zi).

We call the function h the tuning curve for the wavelet w. After we find the

optimal tuning curves for all the wavelets in the original pool, we choose the wavelet ŵ

and corresponding tuning-curve ĥ that minimize ρ. This pair defines the expert selected

for iteration t, i.e.,

ft(y) = ĥ(ŵ(y)) (2.19)

The process is iterated, each time adding a new wavelet and tuning curve, until ρ no

longer decreases. This procedure is illustrated in Figures 2.5 and 2.3.

By the end of training we have a model for the posterior probability of the object class

given arbitrary image patches y

p(y) =
1

1 + e−2
Pt

τ=1 fτ (wτ (y))
(2.20)
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• Let { (yi, zi) : i = i, . . . ,m}, be a set of training examples, where yi

is the an image patch, and zi ∈ {−1,+1} its category label.

• Let Pt(i) represent the weight assigned to the ith example at the

beginning of iteration t of the GentleBoost algorithm.

• Let the initial distribution be as follows: P0(i) = 1/m, for i =

1, . . . ,m, i.e., each training example is weighted equally.

• For time t = 1, . . .

– For wavelet w = 1, . . . , n

∗ Use kernel-regression to find the tuning curve h that best

fits the set of triplets {(w(yi), zi, Pt(i)) : i = 1, . . . ,m}.

– Choose (ŵ, f̂) the wavelet and tuning curve that minimize the

error function ρ. They define the expert selected at iteration t

ft(y) = ĥ(ŵ(y))

– Update the distribution over training elements

Pt+1(i) = Pt(i)
e−ft(yi)zi

Zt

where Zt is a normalization factor

Zt =
∑
i

Pt(i)e−ft(yi)zi

– Update the posterior probability model

p(y) =
1

1 + e−2
Pt

τ=1 fτ (y)

Figure 2.3: The GentleBoost approach used in this paper

This posterior probability estimate reflects the particular proportion π of examples of

each class used during training. The inference algorithm in (2.22) requires log-likelihood
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ratios, not log-posteriors. These can be easily derived from (2.20) using Bayes rule

log
q(yai ; ai, 1)
q(yai ; ai,−1)

= log
(

1− π

π

)
+ log

(
p(Hk = 1 | yai)
p(Hk = −1 | yai)

)
(2.21)

= log
(

1− π

π

)
+ 2f(x)

Combining and (2.6) and (2.20) we get

k̂ = max
i
p(Hi = 1 | y) = max

i
log p(Hi = 1) + 2f(yai) (2.22)

2.3 Situation Based Inference

One common approach to eye detection is based on the operation of a set of

independent feature detectors [Huang and Wechsler, 1999; Fasel et al., 2000]. The output

of these detectors (e.g., a detector for the left eye, a detector for the right eye, a detector

for the tip of the nose, etc.) is integrated by looking for configurations that match

the distribution of inter-feature distances typical of the human face [Wiskott et al.,

1997; Leung et al., 1995; Kothari and Mitchell, 1996]. Unfortunately this method scales

exponentially with the number of false alarms of each feature detector. Suppose our

goal is to find the center of an eye with 1 pixel accuracy. This requires for background

models to include examples of eyes shifted by 1 pixel from the center position. In

practice, a detector efficient at distinguishing eyes slightly shifted from center is also

likely to produce a large number of false positives when scanning general backgrounds

that do not include faces, creating an insurmountable problem for methods that rely on

feature detection.

The approach we propose here is based on the idea of a bank of situational or

context dependent experts operating at different levels of specificity. For example, since

the eyes occur in the context of faces, it may be easier to detect eyes using a very large

context that include the entire face and then formulate feature detectors specifically

designed to work well under such context. While we may think of these as face detectors,

we can also think of them as eye detectors that happen to have very large receptive fields.

This form of eye detection works under very general context conditions, avoiding the

proliferation of false alarms, but may provide poor information about the precise location

of the eyes. These eye detectors are therefore complemented by context-specific eye

detectors that provide very precise information about the position of the eyes provided

the context is known.
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More formally, let y represent an observed image, S represent a contextual sit-

uation (e.g., the location and scale of a face in the image plane), and O represent the

location of the left eye of that face in the image. Using the law of total probability we

have that

p(o | y) =
∫
p(s | y)p(o | s, y) ds (2.23)

Here p(s | y) works as a situation detector. Its role is to find regions in the image plane

that are likely to contain eyes due to the fact that they contain faces. The p(o |s, y) term

is a situation specific eye detector. For example it may work when the location and scale

of the face in the image plane is known. In this example p(s | y) partitions the image

pixels into those belonging to the face, yf , and those belonging to the background, yb.

Once the position and scale of the face are known, the background provides no additional

information about the position of the eye, i.e.,

p(o | yf , yb, s) = p(o | yf , s) (2.24)

The situational approach proposed here can be iterated, where one first detects a general

context, followed by detection of a context within a context, each time achieving higher

levels of precision and specificity allowed by the fact that the context becomes smaller

and smaller on each iteration.

2.4 Real-time system architecture

In the next sections we describe and evaluate an algorithm that performs optimal

inference under the assumptions of the generative model described above. The current

system utilizes two types of eye detectors. The first type, which can be thought of as

a face detector, starts with complete uncertainty about the possible location of eyes in

the image plane. Its role is to narrow down the uncertainty about the location of the

eyes while operating in a very wide variety of illumination and background conditions.

The second type of detector operates on the output of the first detector. As such it can

assume a restricted context and achieve high location accuracy. Once the most likely eye

locations are chosen, the image patch surrounding the eyes is passed to a blink detection

system for further analysis. The flowchart for this procedure is shown in Figure 2.4.

While the system described here operates on video images in real time, it currently

treats each frame as independent of the previous frames, making it equally useful for

static images as for video. Treating each video frame independently allows the system
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to simultaneously code eye location and behavior for multiple faces that may come in

and out of the scene at random times.

(B) Scan within face for 
eyes at multiple scales

(A) Scan entire image for 
face at multiple scales

(D) Classify eye 
openness

(C) Crop and rotate 
best eye region

O: +0.9

Figure 2.4: Flowchart for face, eye, and blink detection

2.4.1 Stage I: Eye detection in general background conditions

As described above the first component of the inference process locates regions

of the image plane that contain faces, and thus eyes. This module operates under very

general background and illumination conditions and greatly narrows down the plausible

locations of eyes on the image plane. It makes no prior assumptions about the location

of the face.

The general procedure for the image search is similar to the multiscale search of

Rowley et al. [1998], who trained a single binary classifier to classify face vs. . nonface

for patches of fixed size (20× 20 pixels), then used that classifier to classify all possible

patches in the image. Faces larger than the original size were found by repeating the

search in copies of the image scaled to smaller sizes (thus, a 20× 20 pixel face in a 1/4

size copy of the image corresponds to an 80× 80 pixel face in the corresponding location

in the original).

We use a very similar scheme, however rather than a binary classifier, we de-

veloped a likelihood-ratio model using a data set of Web images provided by Compaq

Research Laboratories. This data set contains 5000 images containing frontal upright

faces taken under a variety of illumination conditions, facial expressions, facial hair, eye-

glasses, hats, etc., of widely varying image quality. Faces were cropped and scaled to

24 × 24 pixels square. The negative examples were sampled from a data set of 8000

images collected from the Web and known not to contain faces. Similarly, these images
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contained a wide variety of natural indoor and outdoor scenes, text, illustrations, posed

images of objects, etc., with varying image quality. The advantage of this Web data set

is that it includes far more variability than most other closed databases.

Due to the multi-scale search, about 1 billion total patches are possible in these

8000 images. For the initial negative examples for training, 10,000 square patches, of

arbitrary size and at arbitrary locations in the images, were sampled from this data set.

Patches were then scaled down to 24 × 24 pixels. The set of negative samples changes

during training thanks to the bootstrap round (described below), so ultimately all 1

billion possible patches were used at some time during training.

The likelihood-ratio model was trained using the GentleBoost method described

in Section 2.2. GentleBoost sequentially chooses wavelets from a large pool and combines

them to minimize a chi-square error function. The pool of wavelets we choose from was

based on Viola and Jones [2001] and consists of Haar-like wavelets. The main reason for

their use is that their output can be computed quickly by taking the sum of pixels in

two, three, or four equal-sized, adjacent rectangles and taking differences of these sums.

To this original set we add center-surround type wavelets and mirror image wavelets that

are sensitive to patches symmetric about vertical axis (see Figure 2.7).

The GentleBoost approach described in Section 2.2.1 requires computing tuning

curves on each of the wavelet candidates. It is very computationally expensive to perform

an exhaustive search over all these wavelets– in a 24 × 24 pixel window, there are over

170,000 possible wavelets of this type. To speed up training, we break the wavelet

selection step into two stages (see Figure 2.5). First, at each round of boosting, we take

a random sample of 5% of the possible wavelets. For each wavelet we find the tuning

curve that minimizes the loss function ρ if that particular wavelet were added to the

pool of already chosen wavelets. In step two, we refine the selection by finding the best

performing single-wavelet classifier from a new set of wavelets generated by shifting and

scaling the best wavelet by two pixels in each direction, as well as composite wavelets

made by reflecting each shifted and scaled wavelet horizontally about the center and

superimposing it on the original. Using the chosen classifier as the weak learner for

this round of boosting, the weights over the examples are then adjusted using to the

GentleBoost rule. This wavelet selection process is then repeated with the new weights,

and the boosting procedure continues until the performance of the system on a validation

set no longer decreases.
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Figure 2.5: Flowchart for one iteration of the feature selection procedure

The inference algorithm calls for likelihood ratio models at multiple scales. Like-

lihood ratios for larger image patches are obtained by linearly scaling the patches down

to 24× 24 pixels and then applying the likelihood ratio model trained on that particular

scale. Thanks to the choice of Haar-like wavelets for the higher level image representa-

tion, this interpolation step can accomplished in constant time regardless of scale (see

Viola and Jones [2001]; Jones and Viola [2003] for a more detailed explanation).

Following Viola and Jones [2001], rather than training a “monolithic” classifier

which evaluates all its wavelets before it makes a decision, we divided the classifier

into a sequence of smaller classifiers which can make an early decision to abort further

processing on a patch if its likelihood-ratio falls below a minimum threshold. We can

think of this as a situational cascade where each level of the cascade is trained only on

patches that were not rejected by previous levels. After each element of the cascaded

is trained, a boot-strap round (à la Sung and Poggio [1998]) is performed, in which

the full system up to that point is scanned across a database of non-face images, and

false alarms are collected and used as the non-faces for training the subsequent strong

classifier in the sequence. Training the current face-detector took about ten days on a

1.1GHz Athlon-based PC. Figure 2.12 shows the first two wavelet chosen by the system
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along with the tuning curves for those wavelets.

(x,y)

A B

C D
x4

x1

x3

x2

a) b)

Figure 2.6: The Integral Image: (a) The value of the pixel at (x, y) is the sum of all the
pixels above and to the left. (b) The sum of the pixels within rectangle D in the original
image can be computed from points in the integral image by x4 − x2 − x3 + x1.

a)

b)

Figure 2.7: Each wavelet is computed by taking the difference of the sums of the pixels
in the white boxes and grey boxes. (a) Wavelet types include those in Viola and Jones
[2001], plus a center-surround type wavelet. (b) In the refinement step, the same wavelet
types superimposed on their reflection about the Y axis are also possible.

At recognition time the inference algorithm calls for scanning the entire image

plane and looking for square patches of arbitrary scale and location with large likelihood-

ratios. In practice we start scanning patches of size 24×24, the minimum scale of interest

and shift one pixel at a time until all possible patches of this size are scanned. Each

larger scale is chosen to be 1.2 times the previous scale, and the corresponding offsets

are scaled by the same proportion, for an additional (n − 24s) × (m − 24s)/s2 patches

per scale. For a 640× 480 pixel image, this produces over 400, 000 total patches.

Because the early layers in the cascade need very few wavelets to achieve good

performance (the first stage can reject 60% of the non-faces using only 2 wavelets, using
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only 20 simple operations), the average number of wavelets that need to be evaluated for

each window is very small, making the overall system very fast while still maintaining

high accuracy. The current system is capable of achieving 30fps on images of 320× 240

on a 3 GHz Intel Pentium 4-based desktop PC, with a minimum face size of about

24 × 24 pixels. Performance on the CMU-MIT data set (a standard, public data set

for benchmarking frontal face detection systems) is comparable to other state-of-the art

systems. For the experiments in this paper, the parameters for the face detector were

chosen to yield a 91% hit rate with 10 false alarms when tested against all the images

in the CMU-MIT data set. While CMU-MIT contains wide variability in images due

to illumination, occlusions, shadows, and differences in image quality, the performance

in controlled environments, such as in the BioID data set (used later in this study),

containing faces that are frontal, focused and well lit, with simple background, is often

close to 100% hit rate or frontal faces with few, if any, false alarms. While performance

falls off as the face deviates from frontal (see Section 2.5.2), there are a wide variety of

applications, in particular those in which the subject is watching a screen or driving on

a road for example, for which frontal-view accuracy is sufficient. We discuss the ways

to overcome this limitation in Section 2.6. Source code for this stage is available at

http://mplab.ucsd.edu.

Figure 2.8: Examples of faces and nonfaces used in training the face detector

2.4.2 Stage II: Eye Detection in the Context of Faces

The first stage in the eye detection system specialized in finding general regions of

the image plane that are highly likely to contain eyes. The output of the system is very

resistant to false alarms but does not specify well the precise location of the eyes. The

second stage specializes in achieving high accuracy provided it operates on the regions

selected by the previous stage. This stage uses the same searching techniques as the

previous stage: all patches at multiple scales, within a sub-region of the face restricted
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f1(y) = ĥ(ŵ(y)) f3(y) = ĥ(ŵ(y))

Figure 2.9: The first two wavelets (left) and their respective tuning curves (right) for
face detection. Each wavelet is shown over the average face. The tuning curves show the
evidence for face (high) vs. . non-face (low), as a function of the output of the wavelet,
shown increasing from left to right. The first tuning curve shows that a dark horizontal
region over a bright horizontal region in the center of the window is evidence for an eye,
and for non-eye otherwise. The second tuning curve is bimodal, with high contrast at
the sides of the window evidence for a face, and low contrast evidence for nonface.

in both location and scale, are submitted to a function (trained via GentleBoost) which

returns the eye versus non-eye log-likelihood ratio. This log-likelihood ratio is then

combined with the prior for probability of eye given location and size with respect to the

face detection window to produce a final log posterior ratio of eye versus non-eye.

The data used for training was from the CMU-MIT face database and the Compaq

face database used for training the face detection system. These images varied widely

in image quality, lighting condition, background, facial expression, head size and orien-

tation, head size (with respect to the image), and image quality, and contain faces with

eyes closed as well as open. Positive examples were selected by cropping patches from

each image such that they contain eyes at a canonical scale and location with respect to

their face (described below), then scaling the patch to 24× 24 pixels. Non-eye examples

were taken from the same images at multiple non-eye locations and scales within the

faces, with constraints described below. This resulted in 4826 positive eye examples and

10000 non-eye examples.

There are many possible ways to crop and center the eye patches for training. We

present experimental results of several different choices of cropping and centering. We

can parameterize the choice by introducing variables d: the distance between the eyes,

r: the ratio of the distance between the center of the eye and the left and upper edges

of the face cropping window, t: an offset parameter, and q: a scale parameter. Positive

training samples were then prepared by cropping example images such that r = q(d+ td)
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and scaling them to 24 × 24 pixels. In other words, the size of the window was chosen

to be proportional to the distance between the eyes, and could be off center by some

fixed amount. Thus, a small q results in a small receptive field with high resolution and

a large q results in a large receptive field with relatively low resolution, while t shifts the

location of the eye with respect to the center of the patch.

From the situational inference approach, one might expect that pixels which are

generated by background contain relatively little additional information about eye lo-

cation once the location of the face is known, thus we should choose a t and q that

maximizes the number of pixels in the positive example patches that are generated by

face – i.e., about the size of the face and centered on the center of the face (i.e., the eye is

off-center slightly), so that very few background pixels enter into the window. However,

given a fixed input size of 24 × 24, it is possible that smaller values of q, such as one

that just covers the eye (resulting in higher resolution examples with less surrounding

context) allow us to maximally benefit from the information in pixels generated by the

eye only. We present results on varying these parameters experimentally to find the best

choice of offset parameter t and scale parameter q in section 2.5.

The situational inference approach also allows us to constrain how we choose

non-eye examples: We model our prior belief about the eye location π as a normal dis-

tribution, with parameters for the mean and standard deviation of the true eye position

and scale with respect to the window chosen by the face detector, as measured against

the training set. In figure 2.10, we show the locations of eyes with respect to the size

of the face detection window for some example data. Down on the vertical axis shows

increasing ratio of the size of the face detection window to the distance between the eyes.

When the face detector selects a small window relative to the true face size, resulting in

a small detection width to eye distance ratio, the eyes tend to be far apart with respect

to the detection window. When the face detector selects a large window compared to the

distance between the eyes, the eyes tend to be located closer together, near the center

of the detection window.

Using these statistics about the true eye positions with respect to the estimated

face location, we can restrict the set of patches for searching – and thus for training –

to a maximum Mahalanobis distance M from the mean location and scale of each eye.

Choosing M = 16.27 gives a 99.9% confidence interval for one of the patches containing

the eye (see Appendix 2.A).
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Figure 2.10: The face detection window can vary from closely cropping the face (nega-
tive z-axis) to loosely cropping the face (positive z-axis). The points show typical eye
locations relative to the face detection window over a sample database of face images.
We model this variability with a three-dimensional Gaussian, where the x- and y-axes
are space, and the z-axis is scale, i.e., ratio of distance between eyes to size of the face-
detector window. We use this to model the prior probability of a location containing an
eye given the face detection window.

Using these criteria, for each example face, we created two positive training exam-

ples (one for each eye), and six negative training examples, where the negative examples

were selected randomly from the set of patches satisfying the maximum distance from

the mean eye patch size and location criterion. To make best use of our data, we flipped

the positive and negative examples from the right eye about the vertical axis and com-

bined them with the left eye examples to train a single left eye detector. Then this left

eye detector was flipped about the vertical axis to get a right eye detector. Examples of

eyes and non-eyes used in training is shown in Figure 2.11.

Once we have collected a set of positive and negative examples, we train this stage

of the situational inference cascade with GentleBoost as described above. We found that

it is possible to achieve excellent performance with only 50-100 wavelets without over-

fitting, as tested on a validation set. Since this already allows the system to operate

in real-time with high accuracy, we did not use the attentional-cascade and boot-strap

techniques needed for training the context-free face detector. Figure 2.9 shows example

wavelets and their corresponding tuning curves for the best eye-detector.

While Stage I of our system (face detection) makes no assumptions about the

number of faces in the image plane, the second Stage (precise location of the eyes)
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a)

b)

c)

Figure 2.11: Examples of positive (left) and negative (right) example patches used for
training three different eye detectors. Each patch is 24×24 pixels. (a) For this detector,
positive examples were chosen centered on the eye (t = 0), with scaling factor q = 1.
(b) This detector uses the same scaling factor in (a), but with offset parameter t chosen
such that the eye is off center to maximize pixels generated by face. (c) With a smaller
value of q = .22, the eye fills the window.

assumes that there is one patch rendering the left eye and one patch rendering the

right eye. If the goal is to maximize the probability of choosing the correct rendering

patch optimal inference requires choosing the patch that maximizes the log posterior

ratio (2.21). However if the goal is to minimize the expected squared distance from

the eye, optimal inference asks for computing the mean of the posterior distribution.

Both approaches can be seen as examples of a more general algorithm that chooses the

N patches with highest log posterior ratios and producing a weighted average of the

opinions of those patches about the location of the feature of interest. In Section 2.5 we

present accuracy results using different values of N .

2.4.3 Stage III: Blink Detection

Like face detection and eye detection, blink detection is done with a boosted

classifier. In this case, the task is a binary classification task over a single patch per

image, thus there is no need to perform a search across multiple patches. Instead, we

use estimates of the eye locations to create a 44 × 22 pixel patch containing the eyes,

doing scaling and rotation with simple linear interpolation. Training data was collected

from 120 eye-open images and 120 eye-closed images collected from the Web by using the

eye detector to label the eye locations, then cropping and rotating the region around the

eyes to an upright frontal view. The data set is available at http://mplab.ucsd.edu.

Figure 2.13 shows examples of the training data collected this way. GentleBoost is then

used to select wavelets and tuning curves for this discrimination task. Figure 2.14 shows

example wavelets and their corresponding tuning curves for the best blink detector.
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Figure 2.12: The first, third, and sixth wavelets (top) and their respective tuning curves
(bottom) for the left eye detector centered on the eye with scale factor q = 1. Each
wavelet is shown over the average positive (eye) example. The tuning curves show
the evidence for eye (high) vs. . non-eye (low) as the wavelet output increases (shown
increasing from left to right). The first tuning curve shows that a dark vertical region
over a bright vertical region in the center of the window is evidence for an eye, and
for non-eye otherwise. The middle tuning curve looks for a horizontal band that goes
dark-light-dark towards the left of the window as evidence for an eye, which appears to
be testing for the bridge of the nose. The rightmost wavelet also can be interpreted as a
bridge of the nose detector, however it also indicates that too much difference between
the left and right parts of the wavelet are evidence against eye.
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Figure 2.13: Example open eyes (left) and closed eyes (right) used to train the blink
detector. About 120 images of each type were taken from the web to include a wide
variety of lighting conditions, facial types, glasses, and image quality. The eye detection
system was used to automatically crop, scale and rotate the image patches to an upright
frontal view.
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Figure 2.14: Features superimposed on the average open eye image (top) and their
respective tuning curves (bottom) for the blink detector.

2.5 Experimental Results

2.5.1 Testing Data Sets

We tested the performance of the eye detector on three different types of data

sets. The first data set was the BioID data set [Frischholz and Dieckmann, 2000; Je-

sorsky et al., 2001], a freely available collection of face images with eyes labeled. This

data set contains 1521 images with good lighting conditions and frontal faces, and most

subjects had their eyes open. This was to make it easier to compare our results with

other eye-detection systems. The second data set was more challenging, consisting of 400

images collected from the Web and digital cameras. We are making this data set avail-

able at http://mplab.ucsd.edu. These images varied widely in image quality, lighting

condition, background, facial expression, head orientation, head size (with respect to the
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image), and image quality, and contained 200 eyes-open and 200 eyes-closed examples.

Measuring performance on this data set allows us to compare how different parameter

choices affect the quality of the system in unconstrained situations. We believe that if

one can achieve good performance in this highly unconstrained data set, then one can

expect very good performance in better controlled situations. None of the images in this

testing data set were used during training.

The third data set consisted of ten different heads in 153 different poses each,

artificially generated from the USF Human ID 3-D database [Blanz and Vetter, 1999].

Each head in the database, obtained using a laser scanner, contains structure (3D coordi-

nates) and texture (24-bit RGB color) information for each point on the surface, suitable

for rendering a high-quality still of the face at any position. Each of the ten randomly

chosen heads we used for our experiments was positioned from −40 to 40 degrees in

elevation and 0 to 40 degrees in azimuth, in increments of 5 degrees, then rendered. This

data set was used to provide an estimate of the performance of the face detection and

eye detection components of the system as the pose was varied.

2.5.2 Eye Detection Experiments
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Figure 2.15: Median distance from center of labeled eye positions on the Web data-set
as the scale parameter q and offset parameter t are varied. The graphs show the result
using only the log likelihood ratio (left) and the log posterior ratio, which combines the
prior and likelihood (right). The conditions, described in Section 6.2, are (1) q = .11,
eye centered, (2) q = .22, eye-centered, (3) q = .5, eye-centered, (4) q = 1, eye-centered,
(5) q = 1, face-centered, (6) q = 1.5, eye-centered, (7) q = 1.5, face-centered, (8) q = 2.5,
eye-centered.

We tested the effect of the size and location of the receptive field used for eye
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detection. The receptive field size was expressed as the ratio q of the distance between

the eyes. Location was expressed as “face-centered” or “eye-centered”. Varying patch

size from small enough to cover just the iris (q = .11) to large enough to cover an

area four times the size of the head (q = 2.5) results in a U-shaped curve, with the

best performance coming from the patch with size q = 1, which covers about 80% of

the face. The best centering condition was eye-centered. The median accuracy of the

best eye-detector under these conditions is 1/5 of an iris on the BioID data set and 1/3

of an iris on the difficult data set from the Web. Tables 2.2 and 2.3 show the results

for each patch condition using different decision methods. These include choosing the

maximum likelihood patch, taking the weighted average of the 10 most likely patches,

taking the maximum posterior patch, and taking the weighted average of the 10 patches

with the largest posterior. The fourth technique yielded the best results. Figure 2.17

shows examples of this system at work.

The fact that the detector trained to consider pixels covering much of the head

performs much better than the detector trained to focus on the eye-area only suggests

that the detailed structure of the appearance of the eye (which at the larger resolution

is mostly blurred out) is not as important as having access to the surrounding features

(nose, eyebrows, corners of eyes, etc). This may be because for the larger receptive field,

dark shadows, closed versus open eyes, or specularities from glasses have less impact on

the overall visual appearance of the pixels under consideration than for the detector that

only focuses only on the pixels generated by the eyeball and eyelid. On the other hand, a

receptive field that is much larger than the face seems to lose the ability to discriminate

much detail in the face, and may be confused by many background pixels which actually

have no information about the location of the eye within the face.

The performance on the data set generated from the 3-D database illuminates

how performance changes as head-pose changes. As seen in figure 2.16, the face detector

achieves about 92% for fully frontal faces (comparable to its performance on CMU-MIT),

and falls off smoothly as the head deviates from frontal view. However, provided the

head is detected in the first place, accuracy on eye-detection is not strongly degraded

from 1/3 of an iris width as pose changes from frontal. Indeed, if elevation and azimuth

is kept between ±20 degrees, median distance from the center of the labeled eye position

remains nearly constant.
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Table 2.2: Results on the BioID data set of eye detection under different choices of patch
size, offset and post-processing (mean or max of log-likelihood or log-posterior ratio).
Each cell displays the mean distance, in irises, from the true center of the eye to the
estimated center of the eye. The ± terms indicate standard error of the mean. The post-
processing is explained in Section 5.2. The patch conditions are described in Section
6.2.

post q = .11 q = .22 q = .5 q = 1 q = 1 q = 1.5 q = 1.5 q = 2.5

processing eye-centered eye-centered eye-centered eye-centered face-centered eye-centered face-centered eye-centered

max log-

lik ratio

4.66± 0.19 2.25± 0.14 0.30± 0.03 0.27± 0.01 0.41± 0.02 0.35± 0.02 0.59± 0.05 1.33± 0.06

mean log-

lik ratio

3.40± 0.23 2.07± 0.16 0.24± 0.04 0.21± 0.02 0.33± 0.02 0.31± 0.03 0.65± 0.04 1.26± 0.06

max log-

post ratio

10.43± 0.34 2.68± 0.11 0.29± 0.02 0.26± 0.01 0.41± 0.02 0.36± 0.01 0.55± 0.02 0.96± 0.03

mean log-

post ratio

9.47± 0.45 2.81± 0.16 0.24± 0.03 0.21± 0.01 0.31± 0.02 0.28± 0.02 0.55± 0.02 0.89± 0.04

Table 2.3: Results on the Web data set of eye detection under the same conditions as
Table 2.2

post q = .11 q = .22 q = .5 q = 1 q = 1 q = 1.5 q = 1.5 q = 2.5

processing eye-centered eye-centered eye-centered eye-centered face-centered eye-centered face-centered eye-centered

max log-

lik ratio

4.64± 0.38 2.13± 0.19 0.38± 0.04 0.37± 0.03 0.48± 0.05 0.52± 0.05 0.67± 0.06 1.35± 0.10

mean log-

lik ratio

4.01± 0.46 1.82± 0.24 0.34± 0.05 0.33± 0.03 0.40± 0.05 0.47± 0.06 0.69± 0.06 1.38± 0.10

max log-

post ratio

6.28± 0.75 2.81± 0.23 0.38± 0.05 0.36± 0.03 0.43± 0.03 0.50± 0.04 0.60± 0.04 1.00± 0.07

mean log-

post ratio

5.78± 0.71 2.73± 0.22 0.32± 0.04 0.31± 0.02 0.36± 0.03 0.42± 0.04 0.57± 0.03 0.94± 0.06
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Figure 2.16: Performance for face detection and eye detection as pose changes. Each
curve shows performance for heads at a fixed azimuth as the elevation is varied from -40
to 40 degrees. (Left) Face detection rate falls off as pose deviates from frontal. (Right)
Median distance from the true eye label remains nearly constant for heads between ±20
degrees from frontal.
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2.5.3 Blink detection

The best performing eye detection, with scale parameter q = 1 and zero offset

from the center of the eye, was used to automatically crop, scale and rotate 120 examples

of closed eyes and open eyes. These examples were used to train a blink detector. We

stopped training after 500 wavelets and tuning curves had been chosen. The resulting

classifier was then used to classify an additional 120 eyes-open and eyes-closed faces

taken from the web and labeled by hand.

To assess the effects of precise localization of the eyes we compared systems that

found the eyes based on the output of Stage I alone (face detection) and systems that

located the eyes using Stage I and II. The effects were dramatic: adding stage II increased

performance from 56.53%± 8% to 83.48%± 6%.

2.6 Conclusions

The study of the representations that sustain face perception in humans has re-

cently become a subject of interest in cognitive science [Cottrell et al., 2003]. One heated

debate centers on whether these representations are holistic in nature or whether they

are are feature based [Farah et al., 1988]. In line with the methodological stand of

probabilistic functionalism [Movellan and Nelson, 2001] instead of positioning ourselves

in this debate we focus on understanding the nature of the problem of detecting faces

and facial features. To do so we developed an image generation model and derived its

corresponding optimal inference algorithm. The algorithm was implemented and tested

with an emphasis on robustness under natural conditions. We learned several important

lessons:

(1) We found that it is difficult to analyze facial behavior (e.g., blinks) without

explicitly localizing the eyes. Based on our previous work on expression recognition we

think eye localization with precision on the order of 1/4 of an iris width may be necessary

for reliable recognition of facial expressions. Thus it seems reasonable to expect that the

brain may allocate resources to precisely locate facial features, including the eyes.

(2) We found that it is difficult to develop detectors that are both robust (i.e.,

work in very general conditions) and spatially accurate. There seems to be a trade-off

between robustness and accuracy. Eye detectors that localize the eyes precisely within

the face exhibit unacceptable false-alarm rates when operating outside the face. Eye
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detectors that avoid false-alarm rates in cluttered environments, are not sufficiently

precise about the location of the eyes. We explored a solution to this tradeoff, based

on a cascade of detectors that operate at different levels in the robustness/localization

trade-off. Some of these detectors capture the general context in which one may find

eyes. By doing so they minimize false alarms at the cost of precise position information.

Precise spatial localization is achieved by detectors that operate in specific contexts. If

this is the strategy adopted by the brain, one would expect to find at least two types of

neurons. The first type would respond to large contextual regions (e.g., faces). Neurons

of this type are expected to be robust to changes in illumination but also to provide poor

spatial resolution. We also expect to find a second type of neurons specialized on precise

spatial localization of features in specific contexts. For example, neurons of this type

may be maximally excited by eyes precisely aligned and maximally inhibited by small

deviations from alignment. This second type of neurons may exhibit a large number of

false alarms when operating out of context, making it very difficult for neuroscientists

to ascertain what they respond to.

(3) In this paper we developed the necessary likelihood-ratio and prior models

using supervised learning methods. It would be of interest to investigate whether such

models can be learned using unsupervised learning methods. Another possibility is that

evolution took care of developing such models. Provided a set of useful wavelets is

available, our face detector would require in the order of 50 Kbytes to be encoded by the

genome. It takes an additional 2 KBytes to encode eye detectors within faces.

(4) We focused on a system specialized on detection of eyes in a particular pose:

upright frontal. In many cases (e.g., detection of fatigue in car drivers) analysis of

upright-frontal views is all that is needed since frontal orientations are nominal and de-

viations from such orientation typically indicate fatigue or lack of attention [Ji and Yang,

2002]. In-plane rotation invariance can be easily achieved by scanning across rotations,

in the same way we scan across scales and in-plane locations. There are several ways one

could generalize the system to work under rotations in depth. One approach we exper-

imented with in the past fits 3D morphable models and warps them into frontal views

[Bartlett et al., 2003]. While this method is very effective under controlled illumination

conditions, it is expensive computationally and brittle when exposed to outdoor condi-

tions. Another approach we are pursuing is a mixture of experts architecture, where

each expert specializes on specific face views. Indeed there is experimental evidence for
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the existence of view specific face detection neurons in infero-temporal cortex (IT) in

monkeys [Logothetis and Poggio, 1994]. Due to rotational symmetry of the face, pose

invariance can be achieved by covering an octant of the sphere of possible face orienta-

tions, i.e., π/2 steradians. Assuming each pose expert can handle ±5◦, as is the case

for the system presented here, it would take approximately 1/(2tan(5)) ≈ 6 experts to

cover an octant. This is certainly not an unreasonable number of experts, thus making

mixtures of pose experts a very attractive architecture for future systems. Develop-

ment of systems specialized in non-frontal views is currently difficult due to the lack of

labeled data sets that include sufficient number of images in multiple poses and illumi-

nation conditions. Collecting such databases is critical to accelerate progress in this field.

The text of this chapter, in part, is a reprint of the material as it appears in Com-

puter Vision and Image Understanding, Ian Fasel, Bret Fortenberry, Javier Movellan,

2005, vol.1. Ian Fasel was the primary author and the second co-author listed in this

publication directed and supervised the research which forms the basis for this chapter.
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Figure 2.17: Examples of the eye detector results
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2.A Gaussian Confidence Regions

Let Z be n-d Gaussian, zero mean with covariance In. Let σ a covariance matrix,

with eigenvectors p and eigenvalues λ, i.e. σ = pλpT . Let µ ∈ Rn. Let Y = p(λ)1/2Z+µ.

Thus Y is Gaussian with covariance Σ and mean µ.

For a given α > 0 We want the probability that (Y −µ)TΣ−1(Y −µ) takes values

smaller or equal to α. Now note

(Y − µ)TΣ−1(Y − µ) = ZTZ =
n∑
i=1

Z2
i (A-1)

which is a chi-square random variable with n degrees of freedom. This is the key to

obtaining confidence intervals.

2.A.1 Example

Suppose n = 3, Y is Gaussian with mean µ and covariance σ, and we want to

calculate the value α such that

P ((Y − µ)Tσ−1(Y − µ) < α) = 0.001,

i.e., we want a volume that captures 99.9 % of the probability. First we go to the chi-

square distribution with 3 degrees of freedom and find that the critical value for 1/1000

is 16.27. Thus

P ((Y − µ)Tσ−1(Y − µ) < 16.27) = P (ZTZ < 16.27) = 1/1000. (A-2)

Thus the 99.9 % confidence region for Y is given by the set of values y such that

(y − µ)Tσ−1(y − µ) ≤ 16.27. (A-3)
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Weakly Supervised Robust

Real-Time Object Detection

3.1 Introduction

In Chapter 2, we described a method for learning real-time object detectors using

a set of example images in which a human had labeled the locations of the objects in

each image. In this chapter, our goal is to develop a system which learns to detect

the presence and location of objects in real-time using example images labeled only as

containing or not containing the object of interest. This problem has been referred to as

an “unsupervised” learning problem [Weber et al., 2000; Fergus et al., 2003] to contrast it

with supervised learning approaches in which the location of objects in training examples

must be known. Because there is some label information present during training we

instead refer to this as a “weakly-supervised” learning task.

Most principled approaches to unsupervised or weakly-supervised learning are

based on probabilistic generative models. Unfortunately, the complexity of such models

can quickly become intractable as the size of problems grow, thus in practice underlying

model distributions are typically restricted to e.g., mixtures of Gaussian distributions (for

continuous variables) or Dirichlet distributions (for discrete variables, e.g., Weber et al.

[2000]; Barnard et al. [2003]; Sudderth et al. [2005]), and it is often necessary to resort to

approximate techniques such as variational EM [Ghahramani and Beal, 2000] or loopy

belief propagation [Pearl, 1988; Weiss, 1997] to perform learning and inference [Agosta,

1988; Fei-Fei et al., 2004; Jojic and Frey, 2001; Winn and Jojic, 2005]. These issues

37



38

greatly limit the application of fully generative techniques in many realistic computer

vision problems.

Discriminative methods such as SVMs [Vapnik, 1995] or AdaBoost [Freund and

Schapire, 1996a] are a useful alternative to generative approaches as they are explicitly

designed to solve classification tasks without the simplifying assumptions needed by gen-

erative models. Discriminative approaches have been used very successfully to develop

highly-accurate, real-time performance in problems such as face and car detection [Sung

and Poggio, 1998; Rowley et al., 1998; Schneiderman, 2000; Jones and Viola, 2003; Dalai

and Triggs, 2005]. The drawback of these methods is that to be successful large amounts

of labeled data must be provided, which may be very costly or impossible to obtain.

Due to this fact only a few high-quality systems capable of deployment in relatively

unconstrained environments have been developed for a handful of very specific vision

problems.

In this chapter, we explore a way to use discriminative approaches within a gen-

erative framework. We refine the model presented in Chapter 2 and show how it can

be used for learning in a weakly-supervised manner. Under the model, scenes consist

of sets of pixels each of which are generated by a different object category. The scene

generation consists of a random partitioning of the image into segments, assignment of

object categories to each segment, and independent rendering of each segment given the

assigned object categories. This rendering is controlled by a family of parameterized dis-

tributions which, following the Bayesian approach, are also treated as random variables.

This process is illustrated in Figure 3.1.

Inference consists of discovering the causes underlying an observed collection of

images. Within the Bayesian framework this simply requires application of Bayes rule

p(causes | observed image) ∝ p(causes)p(observed image | causes) (3.1)

where p(causes) represent beliefs about the distribution of causes prior to the observation

of the data, p(causes | observed image) is the re-evaluation of those beliefs after the

image has been observed, and p(observed image | causes) is given by the generative

model. There are two types of inference problems of interest:

• Discovery of the underlying distribution parameters. This is typically referred to as

the learning problem. In this case we are typically given a large collection of images

and our goal is to find the most probable distribution parameters, marginalizing
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over all the other causal variables. Because this process typically operates on large

image data sets, it is seen as operating at a long time scale (e.g., minutes to days).

• Image classification and segmentation. In this case we are typically given an image

and a fixed set of parameters and our goal is to infer how the image was generated.

The classification task requires deciding whether or not the image contains an

object of a given category. The segmentation task requires deciding where the

objects are located and what type of objects they are. Under this model, the

segmentation problem consists of finding collections of dependent pixels which are

independent of all the other pixels. This abstract definition of the segmentation

task contrasts with other approaches that rely on concepts such as edges, texture,

connected-components, etc., and is easy to generalize to non-visual domains. e.g.,

audition, olfaction, touch, or proprioception.

3.2 Formalization of the Scene Generation Model

Notational Conventions: Unless otherwise stated, capital Roman letters rep-

resent random variables and lower-case Roman letters represent specific values taken by

those variables. When possible, we use informal shorthand notation to suppress explicit

reference to the probability space on which random variables and probability densities are

defined. We indicate the domain of random variables using the “∈” symbol, for instance,

X ∈ R means the function X : Ω → R for an outcome space Ω. When unambiguous,

we also identify probability functions by their arguments, for example, p(y) is shorthand

for the probability (or probability density) that the random variable Y takes the specific

value y, i.e., p(y) def= P (Y = y) def= P ({Ω : Y (ω) = y}).

Let an image X be a collection of np ∈ Z+ pixel intensities

X = (X1, X2, ..., Xnp), X ∈ Rnp

+ (3.2)

Let si be a partition of {1, ..., np}. We will refer to each partition as a segmentation. Let

S = {s1, ..., snk
}, nk ∈ Z+ (3.3)

be a collection of possible segmentations. The elements of each segmentation si are sets
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Figure 3.1: The scene generation process. First a set of objects are chosen and ar-
ranged with respect to the camera, inducing a segmentation. Then, pixel intensities are
chosen by drawing from a distribution conditioned on the segment category and shape.
The definition of an image segment is thus a set of pixels that are dependent, but are
independent of the rest of the pixels in the image.

of pixel indexes, which we call segments (See Figure 3.2). Let

A = {a1, ..., ans} =
nk⋃
i=1

si. (3.4)

be the collection of all the different segments used by all of the segmentations in S, thus

each ai is a segment. (Note that ns ≤ 2np , since at most A could be the power set of

{1, ..., np}). Let |ai| be the number of elements in ai. Let

Xi = {Xj : j ∈ ai}, Xi ∈ R|ai| (3.5)

be the set of pixels in X indexed by ai. We will refer to Xi as an image segment to

distinguish it from the segment ai, which is a collection of pixel indexes, however when

the context makes it clear we may simply use the term segment. Note under our notation

Xi is not a scalar but a vector with as many pixels as elements in the segment ai. Let

nc ≥ 2 be an integer number of object categories, and let

O = (O1, ..., Ons), O ∈ {0, ..., nc}ns (3.6)

represent object assignments. The object assignments identify which object category is

responsible for rendering each image segment. If Oi = c 6= 0, then the segment ai is

rendered by object category c. If Oi = 0, we say that the segment ai is not rendered

(See Figure 3.3).

To simplify presentation, we will hereafter focus on the case of nc = 2, and refer

to object category 1 as the foreground and object category 2 as the background. Gen-
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...

S A

Figure 3.2: (Left) The set S consists of partitions of the pixel indexes {1, ..., np}, i.e,
segmentations of the image. (Right) The set A is the collection of all the different
segments in all segmentations in S.

eralization to more than 2 categories is straightforward but obfuscates the presentation.

Define the pixel assignments as

Y = (Y1, ..., Ynp), Y ∈ {1, ..., nc}np (3.7)

If Yi = c, then pixel Xi is rendered by an object of category c. Note that Yi cannot equal

0 because every pixel must be rendered by exactly one object (under the model objects

are not transparent).

Let F represent parameters of the foreground rendering model, and let B represent

parameters of the background rendering model. We treat each as a random variable

which take values f and b on parameterized families of functions F and B respectively.

Together f and b determine the probability distribution of pixel intensities given image

segments and object category assignments. These are described in section 3.3.4. We are

now ready to formalize the image generation process.

1. Choose a foreground rendering function f with uniform probability from the set

of allowable rendering functions F , and a background rendering function b with

uniform probability from the set of allowable rendering functions B.

2. Choose a segmentation s ∈ S with probability p(s). Unless otherwise stated, let

p(s) =
1
|S|

(3.8)

where |S| is the number of segmentations. In other words, all segmentations have

equal prior probability.
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Figure 3.3: To create a scene, first a segmentation s is drawn from S, then object
assignment o is chosen given s. The object assignment is zero for any segment that is
not part of the segmentation, while the nonzero entries indicate from which conditional
distribution the pixel intensities in that segment are drawn. For this illustration we let
nc = 5, however for the remainder of this document we will restrict nc = 2, i.e., Oi can
only take on values 0, 1 or 2.

3. Choose an object assignment o with probability p(o|s), where

p(Oj = oj |s) =


1 if oj = 0 and aj /∈ s,
1
|s| if oj = 1 and aj ∈ s,

1− 1
|s| if oj = 2 and aj ∈ s

(3.9)

where |s| is the number of segments in s. In other words, all segments which are

part of the segmentation s have equal prior probability of containing the foreground

object.

4. Given object assignments, pixel category assignments are determined by

Yj =
ns∑
k=1

Iak
(j) Ok (3.10)

where Iak
(j) is an indicator function, i.e.,

Iak
(j) def=

1 if j ∈ ak,

0 otherwise,
(3.11)
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5. For all aj , if aj ∈ s, draw the image segment xj from p(xj |oj , f, b) as defined in

Section 3.3.1.

We used uninformative priors for the segmentation and object locations in order to

simplify the presentation, however generalizing to other priors is straightforward.

3.3 Likelihood function for entire images

Within a Bayesian framework, learning is simply a form of probabilistic infer-

ence. The goal of learning is to discover some model parameters f and b based on a

set of example images. Critical to this process is finding an expression for p(x | f, b),
the likelihood of image x given the rendering functions f and b. Arguably the main

contribution of our work is the specification of the form that this function takes under

the proposed generative model. This allows us to use standard probabilistic methods to

solve what nowadays are considered difficult computer vision problems. We will derive

the likelihood function in several steps, first formulating image likelihoods given known

object assignments, then marginalizing over object assignments given segmentations, and

finally marginalizing over segmentations and object assignments.

3.3.1 Known segmentation, known object category assignments

Knowing the object category assignment o entails knowledge of the image seg-

mentation s and the specific object category rendering each segment. Thus, under the

model,

p(x|o, s, f, b) = p(x|o, f, b) =
∏

{j:oj 6=0}

p(xj |oj , f, b) (3.12)

=
∏

{j:oj=1}

p(xj |Oj = 1, f, b)
∏

{j:oj=2}

p(xj |Oj = 2, b) (3.13)

That is, for each segment xj , multiply by p(xj |Oj = 1, f, b) if the segment is rendered by

foreground and multiply by p(xj |Oj = 2, b) if the segment is rendered by background.

Note that in this model pixels are not independent – only sets of pixels corresponding

to different segments are independent.
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3.3.2 One foreground object, known segmentation, unknown object

category assignments

In this case we know the segmentation s, and we know that exactly one of the

segments is rendered by the foreground object, and the remaining segments are rendered

by the background. However we do not know which specific segment is rendered by the

object. Then

p(x|s, f, b) =
∑

{j:aj∈s}

P (Oj = 1, x|s, f, b) (3.14)

=
∑

{j:aj∈s}

P (Oj = 1|s)p(x|Oj = 1, s, f, b) (3.15)

=
1
|s|

∑
{j:aj∈s}

p(xj |Oj = 1, f, b)
∏

{k:ak∈s,k 6=j}

p(xk|Ok = 2, b) (3.16)

where we used the fact that under the model the object can appear in all segments with

equal probability, i.e., P (Oj = 1|s, f, b) = 1/|s|, where |s| is the number of segments in

the segmentation s. Provided p(xj |Oj = 1, f) is absolutely continuous with respect to

p(xj |Oj = 2, b), we can multiply by p(xj |Oj = 2, b)/p(xj |Oj = 2, b) to get

p(x|s, f) =
1
|s|

∑
{j:aj∈s}

p(xj |Oj = 1, f, b)
p(xj |Oj = 2, b)

∏
{k:ak∈s}

p(xk|Ok = 2, b) (3.17)

=
1
|s|

∑
{j:aj∈s}

l(x|aj , f, b)K(s)(b) (3.18)

where

K(s)(b) =
1
|s|

∏
k:ak∈s

p(xk |Ok = 2, b) ≥ 0 (3.19)

is the probability of the image given segmentation s and no foreground objects, and

l(x|aj , f, b) =
p(xj |Oj = 1, f, b)
p(xj |Oj = 2, b)

(3.20)

is the likelihood ratio under the models f and b of image segment xj .

3.3.3 One foreground object, unknown segmentation, unknown object

category assignments

In this case we need to marginalize p(x | s, f, b) over all possible segmentations

p(x|f, b) =
∑
s

p(s)p(x|s, f, b) (3.21)
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Thus, using (3.18) for p(x|s, f, b), we have

p(x|f, b) =
1
|S|
∑
s

K(s)(b)
∑

{j:aj∈s}

l(x|aj , f, b) (3.22)

=
1
|S|
∑
s

K(s)(b)
ns∑
j=1

l(x|aj , f, b)Is(aj) (3.23)

=
1
|S|

ns∑
j=1

l(x|aj , f, b)
∑
s

K(s)(b)Is(aj) (3.24)

=
ns∑
j=1

l(x|aj , f, b)Kj(b) (3.25)

where Is is an indicator function,

Is(aj)
def=

1 if aj ∈ s,

0 otherwise,
(3.26)

and

Kj(b) =
1
|S|
∑
s

K(s)(b)Is(aj) ≥ 0 (3.27)

describes how well the image can be explained assuming that it contains no objects and

that the segment aj is rendered.

3.3.4 Likelihood ratio model

As described in Section 3.2, the image generation model requires specifying for

each function f ∈ F and b ∈ B a family of probability distributions, one for each possible

combination of segment and object categories:

{ p(· | oj , aj , f, b) : j = 1, · · · , ns; oj = 1, 2 } (3.28)

Given a family of background distributions

{ p(· |Oj = 2, aj , b) : j = 1, · · · , ns; } (3.29)

we then derive the corresponding background distribution via likelihood ratio models.

To do so let H be a family of functions h : Rr → R, which we call feature detectors.

These functions take as input a patch of pixels of size r, and output a real number. Each

function f in F has the form

f(x) =
n∑
i=1

αihi(φ(x)), for x ∈ D (3.30)
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where h1, · · · , hn ∈ H, D = {Rr
⋃

Rr+1 · · ·
⋃

Rnp}, i.e., the set of all real valued vectors

of any length from r = minj |aj | to np = maxj |aj |, and φ : D → Rr is a function that

scales image segments of any size to patches of size r. Thus, each function f ∈ F is

defined by an integer n, a set of feature detectors {h1, · · · , hn} and a vector of scalars

α1, · · · , αn. Then for any aj ∈ A and x ∈ R|ai| we let

l(x|aj , f, b) =
p(xj |Oj = 1, f, b)
p(xj |Oj = 2, b)

∝ ef(xj) (3.31)

and therefore

l(x|aj , f, b) =
ef(xj)

Z(aj , f, b)
(3.32)

Z(aj , f, b) =
∑
xj

p(xj |Oj = 2, b) ef(xj), xj ∈ R|aj | (3.33)

where Z(aj , f, b) ∈ R is a partition function which ensures that p(xj |Oj = 1, f, b) sums

to one.

3.3.5 Modeling translation and scale invariance

Here we describe how we define the image generative model so as to achieve

translation and scale invariance. First we define the family of background distributions

via a seed distribution b for a reference size r, and a collection of distributions for

generating patches of size s given patches of size r. Patches y of size s > r are generated

by sampling patches x of size r with probability b(x) and then sampling patches y of size

s with probability p(y | x), where

p(y | x) def= δ(φ(y), x) g(y, x), for x ∈ Rr, yRs (3.34)

where the function g is any function such that∑
y

p(y | x) =
∑
y

δ(φ(y), x) g(y, x) = 1 (3.35)

In other words, given a “seed” patch x of size r we put the constraint that a patch y of

size s > r can only be derived from x if the scaled down version of y looks like x. In

Appendix 3.A, we show that under this model, the partition function Z(aj , f, b) is shift

and scale invariant, i.e., constant with respect to aj , and independent of the function

g. Hereafter we will assume translation and scale invariant models as described in this

section and thus drop the argument aj from Z, i.e.,

l(x|aj , f, b) =
ef(xj)

Z(f, b)
, for aj ∈ A (3.36)
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3.4 Learning model parameters from examples

We treat learning as a Bayesian inference problem. We want to optimally up-

date our beliefs about the distribution of the model parameters f and b by using all the

available information in a dataset of training images. Ideally this would involve comput-

ing the posterior distributions of f and b given the dataset. Since this is not tractable

computationally, we instead require choosing a single value for f , and a single value for

b. A minimum error strategy calls for choosing the peak of the posterior probability

distribution of f and b given the dataset. We use a uniform prior distribution over f and

b, in which case the problem reduces to finding values of f and b that locally maximize

the function p(x | f, b). This is the focus of this section.

To begin with, suppose we are given a sample of n image segments {x̃1, · · · x̃n} of

size r drawn from the background distribution. The log probability of the sample is

log p(x̃1 · · · , x̃n | f, b) =
n∑
i=1

log p(x̃i |Oi = 2, b) (3.37)

With no additional constraints on b, the maximum likelihood estimate of b is simply the

empirical distribution of the background sample. Thus

p(x | aj , Oj = 2, b̂) =
1
m

m∑
i=1

δ(φ(xj), φ(x̃i)) (3.38)

Hereafter, since {x̃1, · · · x̃n} is fixed during learning, we hold b̂ fixed and use it as a

reference measure for the corresponding foreground distribution f .

Suppose we are now given a single image x which we know contains a foreground

object, but we do not know where the object is located. Our goal is to maximize the

probability of the observed images with respect to f , holding b̂ fixed. The log probability

of the training data is

log p(x, x̃1 · · · , x̃n | f, b̂) = log p(x | f, b̂) +
n∑
i=1

log p(x̃i |Oi = 2, b̂) (3.39)

Since the background distribution is fixed and treated as a reference measure, we just

need to focus on the likelihood of the image with a foreground object

log p(x|f, b̂) = log
ns∑
j=1

l(xj | f)Kj(b̂) (3.40)

= log
ns∑
j=1

ef(xj)Kj(b̂)− logZ(f, b̂) (3.41)
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where

Z(f, b̂) =
1
n

n∑
k=1

ef(x̃k) (3.42)

Thus the log likelihood of the foreground image takes the following form

L(x|f, b̂) = log
ns∑
j=1

ef(xj)Kj(b̂)− log
n∑
k=1

ef(x̃k) + log(n) (3.43)

It is convenient to express this function in terms of “weights” assigned to image segment

values. This can be done by rearranging terms, then collecting common terms into

summary variables. Let z = {z1, ..., zξ} be the set of ξ unique values of all observed

image segments (i.e., the union of all example image segments). Now let u and v, and w

be 1× ξ vectors, with elements defined as:

uj(x, f) def=
ns∑
k=1

ef(zk)δ(xk, zj) (3.44)

vj(f) def=
n∑
k=1

ef(zk)δ(x̃k, zj) (3.45)

wj(x, b̂)
def=

ns∑
k=1

Kk(b̂)δ(xk, zj) (3.46)

Thus u and v are weighted histograms – each entry uj is the count of how often segments

in image x take on the value zj , multiplied by ef(zj). Similarly, each entry vj is the count

of how often an image segment in the background sample takes on the value zj , multiplied

by ef(zj). Now we can write the log-likelihood as

L(x|f, b̂) = log
ξ∑
j=1

uj(x, f) wj(x, b̂)− log
ξ∑

k=1

vk(f) + log n (3.47)

We will try to find a local maximum of L by taking the gradient with respect to the

function f and choosing a function that has a positive inner product with the gradient,

a method which we will refer to as functional gradient ascent.

3.4.1 Functional gradient ascent

We use an iterative procedure for inferring f from data. At time t− 1 we have a

rendering function ft−1 with t− 1 feature detectors

ft−1 =
t−1∑
τ=1

ατhτ (3.48)
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Our goal is to find a feature detector ht and constant αt that improves the log-likelihood

of the data, i.e. we want

ft = ft−1 + αht (3.49)

such that

L(x | ft, b̂) > L(x | ft−1, b̂) (3.50)

To do so we apply a functional gradient ascent approach [Friedman, 1999; Mason

et al., 2000]. Functional gradient ascent generalizes the idea of gradients to functions of

functions. We define the zk component of the gradient of L(x | f, b̂) with respect to f as

follows

Gf (zk)
def=

∂L(f + εδ(zk, ·), b̂)
∂ε

∣∣∣∣∣
ε=0

(3.51)

=
∂

∂ε

log
ξ∑
i=1

ui(x, f) wi(x, b̂)eεδ(zi,zk) − log
ξ∑
j=1

vj(f)eεδ(zj ,zk)

∣∣∣∣∣∣
ε=0

(3.52)

=
uk(x, f) wk(x, b̂)∑ξ
i=1 ui(x, f) wi(x, b̂)

− vk(f)∑ξ
j=1 vj(f)

, for zk ∈ z (3.53)

Gf (y) = 0, for y ∈ D, y /∈ z (3.54)

This can be viewed as taking the difference between the weighted histograms of fore-

ground and background segments.

If instead of a single foreground image we have a collection of m independently

drawn images x = (x(1), ..., x(m)) known to contain an object, then joint log probability

of the collection is

log p(x|f, b̂) =
m∑
i=1

log p(x(s)|f, b̂) (3.55)

and the functional gradient is

Gf (zk) =
m∑
l=1

[
uk(x

(l), f)wk(x(l), b̂)∑ξ
i=1 ui(x(l), f)wi(x(l), b̂)

− vk(f)∑ξ
j=1 vj(f)

]
(3.56)

This can be written more concisely if we define µ = (µ1, ..., µξ), ν = (ν1, ..., νξ) as:

µk(f) def=
m∑
j=1

u(x(j)
k , f)wk(x(j), b̂)∑ξ

i=1 ui(x(j), f)wi(x(j), b̂)
(3.57)

νk(f) def= m
vk(f)∑ξ
j=1 vj(f)

(3.58)
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Then we can write

Gf (zk) = µk(f)− νk(f), for zk ∈ z (3.59)

Gf (y) = 0, for y ∈ D, y /∈ z (3.60)

The functional gradient ascent approach requires finding a function f with a positive

inner product with the gradient. This is justified by the fact that to first order,

L(x|f + εh, b̂) = L(x|f, b̂) + ε < Gf , h > (3.61)

Note however that we cannot compute the gradient because we do not know the w

terms. Fortunately, these terms are positive and constant with respect to f . In addition

if the sets of foreground segments and background segments are disjoint, we can find a

function which has the same sign as the gradient for all its terms. We call this function

the pseudogradient G′
f and define it as follows

G′
f (zk) = µ′k(f)− νk(f), for y ∈ z (3.62)

G′
f (y) = 0, for y ∈ D, y /∈ z (3.63)

where µ′(f) = (µ′1(f), ..., µ′ξ(f)) is defined as

µ′(f) def=
m∑
l

uk(x(l), f)∑ξ
i=1 ui(x(l), f)

(3.64)

Note for a segment zk from the foreground images

Gf (zk) = µk (3.65)

G′
f (zk) = µ′k (3.66)

which have the same sign. For a segment zk from the background images

Gf (zk) = −νk (3.67)

G′
f (zk) = −νk (3.68)

which are equal and thus have the same sign. And for any other segment, both the

gradient and pseudogradient take value zero. Thus the following theorem follows:
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Theorem: PseudoGradient If the set of segments from background images and from

foreground images are disjoint, then each component of the pseudogradient has the same

sign as the corresponding component of the gradient.

The theorem guarantees that there is a constant ε such that if the inner product

between h and G′ is positive and greater than ε then the inner product between h and G

is also positive. We can use this to find functions h ∈ H that can be used to incrementally

improve L(x|f, b̂) in a gradient ascent procedure. We describe such a procedure for a

specific family of functions H in Section 3.4.3.

3.4.2 Absolute continuity

The absolute continuity assumption in Section 3.3.2 means that any segment

which appears in the foreground images must have a nonzero probability of appearing

in the background. However quite often the empirical probabilities from the training

sample violate the absolute continuity assumption. This can lead to degenerate solutions

during learning, because L(x|f, b̂) can be trivially increased by simply by finding feature

detectors for which αtht(zk) is very large for any zk that appears only in foreground

examples.

We can avoid degenerate solutions by adopting a background model in which

the foreground segments from the training set have a small but non-zero probability of

occurrence, i.e.,

pβ(x |aj , Oj = 2, b̂) = (1−β)
1
n

n∑
i=1

δ(φ(x), φ(x̂i))+(1−β)
m∑
i=1

ns∑
j=1

δ(φ(x), φ(x(i)
j )) (3.69)

where 0 ≤ β ≤ 1 is the foreground contamination parameter. Then

Ẑ(f, b̂, β) = (1− β)Z(f, b̂) + β
1

nsm

m∑
i=1

ns∑
j=1

ef(x
(i)
j ) (3.70)

v̂j(f, β) def= (1− β)vj(f) +
β

m

m∑
i=1

uj(x(i), f) (3.71)

ν̂j(f, β) def= m
v̂j(f, β)∑ξ
k=1 v̂k(f, β)

(3.72)

Ĝf (zk, β) = µk(f)− ν̂k(f, β) (3.73)

Ĝ′
f (zk, β) = µ′k(f)− ν̂k(f, β) (3.74)
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Note that while β > 0 guarantees absolute continuity between the foreground and back-

ground models, it also breaks the orthogonality condition needed for the PseudoGradient

Theorem. However given a fixed training set, it is always possible to find a value of β > 0

which guarantees absolute continuity, and such that all the components of the Gradient

and PseudoGradients have the same sign. While we may not know what that value is,

in practice, simply fixing β = 0.0001 was effective in all of our experiments.

3.4.3 Feature Selection

We now describe some details of the gradient ascent procedure for a specific family

of functions H. Let ψi be a partition of Rr into nb ∈ Z+ subsets, i.e.,

ψi = {ψi1, ..., ψinb
} (3.75)

We will refer to each partition as a feature. Let

Ψ = {ψ1, ..., ψnf } (3.76)

be a collection of nf features. Let hi ∈ H, h : D → R have the form

hi(z) def=
nb∑
j=1

ηij Iψi
j
(φ(z)), z ∈ D (3.77)

where ηi = (ηi1, ..., η
i
nb

) ∈ Rnb , φ is the scaling function, and

Iψi
j
(x) =

1 if x ∈ ψij ,

0 otherwise.
(3.78)

We refer to ηi as a tuning curve. Thus hi takes an image patch, scales it to size r, and

outputs a number based on the feature ψi and tuning curve ηi.

For any particular hi, the inner product with the pseudogradient is

< G′
f , h

i > =
ξ∑

k=1

G′
f (zk)h

i(zk) (3.79)

=
ξ∑

k=1

G′
f (zk)

nb∑
j=1

ηij Iψi
j
(zk) (3.80)

=
nb∑
j=1

ηij

ξ∑
k=1

G′
f (zk) Iψi

j
(zk) (3.81)

=
nb∑
j=1

ηijλ
i
j(f) (3.82)
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where

λij(f) =
ξ∑

k=1

G′
f (zk) Iψi

j
(zk) (3.83)

We want to minimize the angle between hi and G′
f , therefore we find the values of

ηi where < G′
f , h

i > takes a maximum subject to a normalization constraint on ηi, i.e.,∑nb
j=1 η

i
j
2 = 1. Let γ be a Lagrange multiplier, then taking the derivative with respect

to each ηij and setting it to zero,

0 =
∂ < G′

f , h >

∂ηij
=

∂

∂ηij

[
nb∑
k=1

ηik λk(f) + γ

(
1−

nb∑
l=1

ηil
2

)]
(3.84)

= λj(f)− 2γηij (3.85)

The maximum of < G′
f , h

i > occurs at

ηij =
λj(f)√∑nb
k=1 λ

2
k(f)

(3.86)

3.4.4 Lower bound on the likelihood

Gradient ascent methods typically require either taking a small, fixed step size

α, or optimizing α to give a maximum improvement in the objective function. Taking

the latter approach, the procedure would be: for each feature ψi, pick ηi to maximize

< G′
f , h

i > subject to a norm on ηi, then pick α to maximize L(x|ft−1 + αh(i), b̂).

Because we do not have access to the w terms, we cannot directly optimize

L(x|ft−1 + αh(i), b̂). Instead, we will optimize a lower bound on the log-likelihood. Let

L(x|f, b̂) =
m∑
i=1

log
ξ∑
j=1

uj(x(i), f) wj(x(i), b̂)− log
ξ∑

k=1

vk(f) + log n (3.87)

≥
m∑
i=1

log
ξ∑
j=1

uj(x(i), f)ŵ(i) − log
ξ∑

k=1

vk(f) + log n (3.88)

where

ŵ(i) = min
j∈{1,..,ξ}

wj(x(i), b̂) (3.89)
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is a constant with respect to f . Then

L(x|f, b̂) ≥
m∑
i=1

log
ξ∑
j=1

uj(x(i), f)− log
ξ∑

k=1

vk(f) + log n+
m∑
l=1

log ŵ(l) (3.90)

=
m∑
i=1

log
ξ∑
j=1

uj(x(i), f)− log
ξ∑

k=1

vk(f) + C = L′(x|f, b̂) (3.91)

Where C is constant and L′(x|f, b̂) is the pseudo log-likelihood

L′(x|f, b̂) =
m∑
i=1

log
ξ∑
j=1

uj(x(i), f)− log
ξ∑

k=1

vk(f) (3.92)

We can now specify a gradient ascent procedure which maximizes a lower bound on the

log-likelihood of the data:

• For a given function ft−1 compute the pseudogradient G′
ft−1

• For each ψi ∈ Ψ,

– Set tuning curve η̂i using (3.86), i.e.,

λij(ft−1) =
ξ∑

k=1

G′
ft−1

(zk) Iψi
j
(zk) (3.93)

η̂ij =
λj(ft−1)√∑nb
k=1 λ

2
k(ft−1)

(3.94)

– Set ĥi to use feature ψi and tuning curve η̂i

– Find step size αi to maximize a lower bound on the log likelihood, i.e.,

αi = argmax
α∈R

L′(x|ft−1 + αĥi, b̂) (3.95)

gi = max
α∈R

L′(x|ft−1 + αĥi, b̂) (3.96)

• Choose j = argmax
i

gi

• Choose feature ht = ĥj and step size αt = αj , then update f :

ft = ft−1 + αtht (3.97)

To decide when to stop updating f , we test performance on inference on a validation set

of images after each update of f .



55

3.5 Inference on images given model parameters

In the previous section we studied the problem of making inferences about the

model parameters f and b given a training set of images. In this section we assume model

parameters have been learned and our goal is to make inferences about the unobserved

causes of an image, e.g., whether or not an object of interest is present and, if so, where

the object is located.

3.5.1 Inferring pixel category assignments

Given a new image x and models f and b, our goal is to infer the probability that

a particular pixel i renders a foreground object. First we analyze the case in which the

segmentation is known and we know there is only one foreground segment. In this case

p(y|x, s, f, b) =
∑
o

p(o|x, s, f, b)p(y|o, x, s, f, b) =
∑
o

p(o|x, s, f, b)p(y|o, s, f, b) (3.98)

because Y is conditionally independent of X given O. To find p(o|x, s, f), we find

p(x|s, f, b) using equation (3.18), then using Bayes’ rule we can find:

P (Oi = 1|x, s, f, b) =
P (Oi = 1|s, f, b)p(x|Oi = 1, s, f, b)∑

o p(x|o, s, f, b)
(3.99)

=
K(s)(b)l(x|ai, f, b)

K(s)(b)
∑

{aj∈s} l(x|aj , f, b)
(3.100)

=
l(x|ai, f, b)∑

{aj∈s} l(x|aj , f, b)
(3.101)

Finally, because the pixel assignments are fully determined by the segments’ object

category assignments, we can simplify (3.98) as

P (Yi = 1|x, s, f, b) =
∑

{k:k∈ak}

P (Ok = 1|x, s, f, b) (3.102)

P (Yi = 2|x, s, f, b) = 1− P (Yi = 1|x, s, f, b) (3.103)

A pixel-wise posterior probability “image” can now be rendered by setting correspond-

ing pixels in a raster to these pixel category assignment probabilities. This image can

be interpreted intuitively as an object-specific “saliency map”. If the segmentation is
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unknown, then

p(Yi = 1|x, f, b) =
∑
s

p(s)p(Yi = 1|x, s, f, b) =
∑
s

p(s)
∑
k:k∈ak

l(x|aj , f, b)∑
{ak∈s} l(x|aj , f, b)

(3.104)

=
∑

{k:i∈ak}

∑
s

p(s)l(x|aj , f, b)∑
{ak∈s} l(x|aj , f, b)

(3.105)

=
1
|S|

∑
{k:i∈ak}

l(x|ak, f, b)
∑
s

Is(ak)∑
{aj∈s} l(x|aj , f, b)

(3.106)

=
∑

{k:i∈ak}

l(x|ak, f, b)Qk (3.107)

where Is(·) is the indicator function defined in (3.26) and

Qk =
1
|S|

∑
{s:ak∈s}

1∑
{aj∈s} l(x|aj , f, b)

(3.108)

Unfortunately there is no simple way to compute this term, therefore in practice we esti-

mate Qk as constant with respect to k, and refer to the resulting value as an approximate

posterior probability. In practice the resulting approximate posterior probability maps

do look like “saliency maps” with respect to the object of interest. We are currently

developing methods for getting better estimates of Qk.

3.5.2 Inferring presence versus absence of objects

If we know the segmentation and models f and b, the likelihood-ratio of an image

containing one versus no foreground objects is simply

p(x|s, f, b, one foreground object)
p(x|s, f, b,no foreground objects)

=
∑

{aj∈s}

l(x|aj , f, b) (3.109)

We can then choose a threshold τ ∈ R to minimize classification error over the set of

training images if we predict “object present” only if the sum of likelihood ratios exceeds

it.

When the segmentation is unknown, the likelihood ratio of an image given one

object present versus no objects present cannot be computed exactly due to the Qk

terms which depend on being able to . However, it is straightforward to apply a simple

discriminative technique to classify images as containing or not containing the object of

interest using the learned model f . First, compute f for every segment in the image.
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Then sort the outputs in descending order into a vector v = (v1, ..., vns). Finally, use the

labels in the training images to choose a number nl and a threshold τ which minimizes

the total classification error across all training images, when prediction Hfinal(xi) is given

by

Hfinal(xi) =

present if
∑nl

i=1 Vi > τ

absent otherwise
(3.110)

3.5.3 Inferring object location

We define the best inference for the object location as the one which minimizes the

probability of misclassifying the image pixels. For a given hypothesis foreground region,

the pixel misclassification probability is proportional to the sum of the probability that

each pixel inside the region belongs to background, plus the sum of the probability

that each pixel outside the region belongs to foreground. Therefore, we want to choose

classification region R from the allowed segmentation regions in A as follows:

R = argmin
aj

∑
j∈ai

P (Yj = 2|x, f, b) +
∑
j /∈ai

P (Yj = 1|x, f, b) (3.111)

= argmin
aj

∑
j∈ai

(1− P (Yj = 1|x, f, b)) +
k∑
i=1

P (Yj = 1|x, f, b)−
∑
j∈ai

P (Yj = 1|x, f, b)

(3.112)

= argmin
aj

|aj | − 2
∑
j∈ai

P (Yj = 1|x, f, b) +
k∑
i=1

P (Yj = 1|x, f, b) (3.113)

= argmin
aj

|aj | − 2
∑
j∈ai

P (Yj = 1|x, f, b) (3.114)

where k is the total number of pixels in the raster, and |aj | is the number of pixels in the

region. If the regions are sufficiently restricted, e.g., to rectangles, this can be computed

efficiently using summed area tables. Finally note if a segment of size zero gives the

minimum pixel classification error, then it is possible to interpret this as a “no object

present” hypothesis.

3.6 Neural Network interpretation

At runtime, the object classification, localization, and posterior probability map

can be implemented as a three hidden layer convolutional neural network with lateral
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inhibition. To do so, the set of feature detectors and their linear combination (via the

α terms) are first replicated, once for each overlapping window in the input image. The

replicated feature detectors can be viewed as a first hidden layer, and the combination

of feature detectors for each segment is then a second hidden layer. The term “convolu-

tional” refers to the fact that the feature detectors and their weighted sum are applied

to all segments of the image at multiple scales in parallel.

The transfer function for the second hidden layer units is the exponential function,

to convert them from log-likelihood ratios to likelihood ratios. These outputs are then

normalized so that they sum to one (which can be implemented via lateral inhibitory

connections), and these outputs are fed into a third hidden layer, the posterior probability

map, which has the same number of units as the number of input pixels. Each second

hidden layer node output is added to each third-hidden layer node corresponding to a

pixel in the input region for that segment. The sum of the posterior probability map

values over all candidate hypothesis windows is performed by an output layer, and the

maximum of this output layer can be taken as the target location decision. Finally,

an additional output unit which takes the second hidden layer as input can be used to

compute the final presence vs. absence decision.

Feature
Detectors

Likelihood
Ratios

Input
Layer

Image
pixels

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3
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Figure 3.4: Implementation as a convolutional neural network. For images of size 640×
480 pixels and learning ten feature detectors, this system can be implemented using 5
million neurons.
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An illustration of the system implementation as a convolutional neural network is

shown in figure 3.4. The number of units required depends on the resolution of the input

image and the number of features learned. For a 640×480 image with a base window size

of 24× 24 and increasing window scale factor of 1.2 per scale (rounded up to the nearest

integer), this gives 400,000 windows. For a model requiring 10 features, this results in 4

million nodes in the first hidden layer, 400,000 units in the second hidden layer, about

300,000 units in the third layer, and finally 400,000 units in the output layer, for a total

of about 5 million units.

3.7 Implementation Details

3.7.1 Weighted feature histograms

For efficiency reasons, it is useful to introduce a set of intermediate variables

during feature selection. Given m foreground images x = (x(1), ..., x(m)), a sample of

n background patches x̃ = (x̃1, ..., x̃n), a pool of nf features Ψ = {ψ1, ..., ψnf }, and a

background corruption constant β, let ũ, ṽ, and λ̃ be defined as

ũik(x
(j), f) def=

ns∑
l=1

ef(zl)Iψi
k
(x(j)
l ) (3.115)

ṽik(f, β) def=
1− β

n

n∑
j=1

ef(zk)Iψi
k
(x̃j) +

β

nsm

m∑
l=1

ũik(x
(l), f) (3.116)

λ̃ik(f, β) def=
m∑
j=1

ũik(x
(j), f)∑nb

l=1 ũ
i
l(x

(j),f)
−m

ṽik(f, β)∑nb
s=1 ṽ

i
s(f, β)

(3.117)

Now (3.93) can be written as

η̂ij =
λ̃ij(ft−1, β)∑nb

k=1 (λ̃ik(ft−1, β))2
(3.118)

and the pseudo-log likelihood (3.92) becomes

L′(x|ft−1 + αĥi, b̂, β) =
m∑
j=1

log
nb∑
k=1

ũik(x
(j), ft−1)eαη̃

i
k −m log

nb∑
l=1

ṽil(ft−1, β)eαη̃
i
l (3.119)

When nb is much smaller than ξ, this function is significantly faster than (3.92) to

evaluate. This speedup is critical to make the optimization of α in equation (3.95)

practical.
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This also provides an intuitive interpretation of what each feature detector is

doing. We can interpret ũi(x(j), f) = (ũi1(x
(i), f), ..., ũinb

(x(i), f)) as a weighted his-

togram of the feature ψi over all segments in the jth foreground image, and ṽi(f, β) =

(ṽi1(f, β), ..., ṽinb
(f, β)) as a weighted histogram of the feature ψi over all segments in the

background sample (with some corruption from the foreground). Average the foreground

histograms across images, and the tuning curve is then the difference between foreground

and background weighted histograms, times a constant.

3.7.2 Kernel smoothing

To prevent the tuning curves used by feature detectors in f from overfitting the

example data, we use the Naradaya-Watson kernel regression technique to smooth the

tuning curves. Let ϕσ(j, k) be a kernel weighting function with bandwidth σ, where∑K
j=1 ϕσ(j, k) =

∑K
k=1 ϕσ(j, k) = 1. Given a tuning curve η, if we now set

η̃k =
nb∑
j=1

ϕσ(j, k)ηj (3.120)

then we obtain a smoothed tuning curve. For a Gaussian kernel, let

ϕσ(j, k) =
e(j−k)

2/(2σ)∑nb
i=1 e

(i−k)2/(2σ)
(3.121)

It is possible to interpret this probabilistically – if we assume Gaussian additive noise has

corrupted the pixels, and the features are discretized linear filters, then with the right

choice of σ this method yields an improved estimate of the likelihood for uncorrupted

data. However even without this probabilistic interpretation, this kernel regression tech-

nique is a useful method for limiting the “effective degrees of freedom” of h [Hastie et al.,

2001], which often helps generalization in practice. The trade-off is that there is now a

free parameter σ.

3.7.3 Computational complexity

During feature selection, if there are nt total training segments, then for each

feature ψi, the cost of computing the histograms in (3.115) and (3.116) is O(nt). The

cost of computing the tuning curve η̂i and αi is negligible if nt is much larger than nb.

Therefore the time to add one feature to the model is linear in the number of training

segments. Since the whole process is repeated for nf features, the total cost for one

round of inference is O(nf · nt).
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In most of our experiments on real images, we set the number of training patches

nt = 200, 000, number of histogram bins nb = 128, and number of features nf =

1, 000, 000. During learning, most of the computation involved in evaluating all fea-

tures on all image segments can be computed once and stored in memory – for each

segment, we must store several integral image representations (due to the choice of fea-

tures described below), bringing the memory requirement to about 4GB. Also, because

nf was large, we employed an additional gradient ascent step in the parameter-space of

features to avoid having to calculate all candidate features at each step.

With this approach, it takes about 11 minutes to select one feature on a 2GHz

PowerMac G5 using a combined Matlab and C++ implementation. This actually places

our algorithm among the fastest for this problem – much faster than Fergus et al. [2003]

who require 36 hours to learn 6 features, about the same speed as our eye detector

from Chapter 2, and also about the same as the generative system in Ulusoy and Bishop

[2005], which had some strongly labeled training data. On the negative side, the memory

requirements are enormous, requiring us to create a special 64-bit process that communi-

cates with the primary implementation in Matlab (which is 32-bit) using shared memory.

We are currently developing a technique to reduce these memory requirements by using

sampling techniques for estimating the histograms used in the model updates.

3.7.4 Choosing candidate segments A

For all images the set of candidate segments A is derived from the multi-scale

sliding-window approach described in 2.4.1. It includes many locations and many sizes.

First, a base size of k = 24 is chosen. At scale s = 1, each k × k pixel segment is

considered a candidate segment. We increase the scale by multiplying the previous scale

s by 1.2, and rounding up to the closest integer. Now each k · s× k · s segment is chosen,

spaced apart by s pixels – i.e., for scale s = 3, the segments are of size 72 × 72 pixels,

and each neighboring segment is shifted by 3 pixels. This process is repeated until the

segment size does not fit within the image bounds. For a 640 × 480 pixel image, this

produces over 400, 000 total patches.

3.7.5 Image Features

In order to make the sliding window approach efficient and capable of real-time

performance, we use fast features that are known to be effective for learning object detec-
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tors in the supervised learning scenario. We use two types of features: contrast features,

and dominant orientation features, illustrated in Figure 3.7.5. The contrast features,

based on [Viola and Jones, 2001], are described in Chapter 2. The dominant orientation

features are from [Levi and Weiss, 2004], with minor modifications, and described below.

In [Levi and Weiss, 2004], these features were used in a supervised context to train a

state-of-the-art face detector using only a few hundred training examples.

Contrast Features 

Gradient Features 

45◦ 90◦ 135◦0◦

Figure 3.5: Features used for natural images. (Top:) Haar wavelet-like contrast features
adapted from Viola and Jones [2001]. For each feature, the sum of the pixels in the black
regions are subtracted from the sum of the pixels in the white regions. (Bottom:) The
gradient orientation features adapted from Levi and Weiss [2004]. For each feature, an
orientation range is chosen, and the sum is taken of the magnitude of the gradient for
every pixel whose gradient orientation falls in this range. This sum is then divided by
the total gradient in the same region (an example of the total gradient image is shown
on right).

A dominant orientation feature estimates the proportion of the gradient energy

within a sub-region of the detection window that occurs in a particular range of orien-

tations. The features are computed quickly as follows. First, the gradients at pixel j in

an image x are computed by convolving 3× 3 Söbel masks with the image, resulting in

two horizontal and vertical edge images:

Gh = Sobelh ∗ x (3.122)

Gv = Sobelv ∗ x (3.123)
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where Sobelh and Sobelv are the horizontal and vertical Söbel masks respectively, and ∗
is the convolution operator. At each location j in the image, the orientation of the edge

is

φj = arctan(
Ghj
Gvj

) (3.124)

We then divide the unit circle into no orientation bins, and create no auxiliary images

Θ = (Θ1, ...,Θno) where the value at each jth pixel is

Θi
j =


√
Ghj

2 +Gvj
2 if φj ∈ bini

0 otherwise
(3.125)

Using the integral image, it is efficient to compute the sum of pixels within any sub-

region of any of these auxiliary orientation-bin images with only four lookups and three

arithmetic operations. Let r be a sub-regions within an image. Then given a sub-region

r, orientation k, and orientation images Θ, let a dominant orientation feature f be

f(r, k,Θ) =

∑
j∈r Θk

j + ε∑no
l=1

∑
j∈r Θl

j + ε
(3.126)

where ε is a small regularization constant (we set this to 1 for images with pixel values

in the range [0, 255]). In addition to these basic dominant orientation features, we

also created a set of symmetry features which were simply the difference of a normal

orientation feature and it’s reflection with respect to the detection window about either

the horizontal or vertical axis, or about origin.

For both contrast and dominant orientation features, the range of possible output

values varies depending on the statistics of the image database. Because we use tuning

curves instead of arbitrary real-valued functions, it is important to fix the minimum and

maximum bins of the tuning curve to cover most of the possible outputs of the associated

feature across the training dataset. Therefore in each experiment, we find a minimum

and maximum value for each feature so that 99% of the training data lies between these

two values. This can be considered step zero of learning, since it is driven by the data.

A bad choice of tuning-curve input ranges can lead to poor performance.

3.8 Experiments

Given a set of images labeled as containing or not containing an object of interest,

our goal is to learn a model that allows us to identify the presence or absence, as well
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as the location, of the object of interest in unseen images. The first two data sets are

commonly in use in the computer vision community – the Caltech-4 and Caltech-101

data sets. We then perform an experiment on a large dataset of faces collected from the

web, GENKI06, which is more difficult and more realistic than the faces in the Caltech

data sets.

3.8.1 Experiment 1: Caltech-4

The most commonly used and reported on dataset for the object discovery task

is the “Caltech-4” dataset, containing between 400-1200 images for each of 4 categories:

faces, airplanes, motorbikes, and cars (viewed from behind), plus a fifth “background”

category containing snapshots from around the Caltech campus. The faces and back-

ground dataset are from Weber et al. [2000], and the additional object categories were

introduced by Fergus et al. [2003]. Each image in the dataset contains an example of

the object of interest at a particular orientation – i.e., faces are always frontal upright,

airplanes are always viewed from the side, pointing to the right. The objects are typi-

cally near the center of the image, and the variation in scale is about 1 to 1.5 octaves,

although in the faces category the size is fixed.

For each object category, we trained an object detector using 35 positive images,

and sampled segments from 200 background images. For each foreground image, we

collected a random sample of up to 3000 segments, and for each background image we

collected a random sample of a maximum of 200 segments. To reduce the influence of the

overall size of the image, we restrict the minimum size of each segment in an image to

no smaller than about 18% of the total area of the image. This means that the object of

interest is assumed to be somewhat prominent in the image – i.e., images containing only

tiny examples of the object would likely not be able to learn the object category in this

experiment. We also immediately reject any segment whose standard deviation is below

0.02, which prevents the classifier from using large numbers of redundant near-uniform

colored segments. The total number of image segments collected this way was 100, 000

image segments from each category.

For all the image experiments reported in this paper, we fixed the foreground

contamination term β = 0.0001. The tuning curves had nb = 128 bins, and we used a

Gaussian kernel with bandwidth σ = 0.2 for smoothing. We used these same parameter

settings for all the experiments in this paper.
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For each category, we trained for 50 steps, and then used a holdout-validation

set to find a minimum number of features required to achieve peak accuracy in terms of

the area under the ROC curve. For the Caltech-4 dataset, it was typically possible to

achieve best accuracy using only about 3 − 8 features. We then computed final results

by testing on all of the remaining images in the dataset.

Table 3.1: Caltech-4 equal point classification rates for our system, along with the best
reported results for each year since 2003. Although other systems did not include confi-
dence intervals, we show the standard deviation of the mean. Quattoni et al. [2004] did
not report runtime speed.

Fergus et al.

[2003]

Quattoni

et al. [2004]

Serre et al.

[2005]

Current system

Faces 96.4 99.0 98.2 99.8± 0.2

Cars rear 90.3 94.6 99.8 99.8± 0.2

Airplanes 94.0 96.0 96.7 98.4± 0.5

Motorbikes 95.0 95.0 98.0 97.8± 0.6

Time per

image:

10-15 seconds – 15-20 seconds 0.02-0.06 seconds

Table 3.8.1 shows the correct classification rates for our classifier, compared to

those of several other recent algorithms for the same data sets. Our system achieves state-

of-the art detection accuracy on this dataset. In addition to a high detection accuracy

rate, our system is also able to perform detection in real-time – i.e., a 500 × 300 image

can be evaluated in less than 60 milliseconds. This is several orders of magnitude faster

than previous systems, which typically require a minimum of several seconds to detect

the presence or absence of an object in the scene (however it is not known to what degree

these other systems were optimize for speed). Finally, this system provides a belief about

the location of the object in the image, making it the first weakly supervised system that

could be useful for object tracking in a real video application.

3.8.2 Experiment 2: Caltech 101

The Caltech-101 dataset, from Fei-Fei et al. [2004], is similar to the Caltech-

4 data sets, however the number of object categories has been expanded to 100, plus

a new “background” dataset which contains the result of typing the string “Things”
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Figure 3.6: Examples of inference on novel Caltech-4 Faces. On top of each image
pair is the original image, with the bounding box showing the minimum classification
error region inferred by the model. On the bottom is the saliency map, showing the
approximate posterior probability under the model that each pixel was generated by the
foreground object.

into the Google images internet search engine. Each object category contains between

30 and 60 examples of the object of interest. Some categories are more difficult than

others, containing greater variation in scale, orientation, and variety – for instance, the

category “cannons” contains both photographs and hand-drawn images, and contains a

great variety of styles of cannons e.g., cannons with and without wheels, and pointed at

different elevations – though the images were prepared so that the cannons always point

generally to the right. Figures 3.7 – 3.10 show some examples from these data sets.

We followed the same procedure for learning each category as described for the

Caltech-4 dataset. We did not perform any optimizations for the parameters, simply us-

ing the exact same settings as in the previous experiment. One issue that made this task

different from the Caltech-4 dataset is that some categories do not contain many images
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Figure 3.7: Examples of inference on novel images in the ”cougar faces” category. The
image above shows the best classification window inferred by the model. On the bottom
is the saliency map, showing the approximate posterior probability under the model that
each pixel was generated by the foreground object.

– sometimes no more than 34 images. In order to get reasonable confidence intervals for

performance, we automatically limited the number of images used for training so that

at least 20 images were available for validation. Therefore, some training data sets used

fewer than 30 training images.

The average area under the ROC curve for these data sets was 92.7 and the

average equal point error was 89.1. This compares favorably with other results on recent

systems. Serre et al. [2005], which is among the best current systems (indeed has the

best reported results on Caltech-4), did not report the average AUC, however they did

give histograms of the AUC for their system under several different conditions. We

superimpose a histogram of our own system over theirs in Figure 3.8.2. Tables 3.2 and

3.8.2 give a view of the specific values of the AUC for the top 10 and worst 10 categories.

We can see that in raw accuracy performance, our system is an improvement over Serre

et al. [2005]. Our system offers the added advantage of being very fast, and offering good

localization.

3.8.3 Experiment 3: GENKI database

The GENKI database contains 75,000 images of people collected from the internet.

Labels for the corners of the eyes, nose, mouth and head pose (pitch, yaw, and roll) are

available, however we did not use any of these labels for training. Although the images
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Figure 3.8: Examples of inference on novel images in the ”cannon” category. The image
above shows the best classification window inferred by the model. On the bottom is the
saliency map, showing the approximate posterior probability under the model that each
pixel was generated by the foreground object.

tend to contain frontal upright faces near the center of the image, the variation in scale

of the head across images is about three octaves and there are a considerable number

of examples that are rotated both in and out of plane, contain both the head and the

body, and are not centered in the image (see Figure 3.14).

For training, we used 45 positive images and 200 negative images. Training seg-

ments were collected using the same procedure as described in section 3.8.1. This resulted

in about 200,000 image segments per category. Figure 3.12 shows a subset of the training

segments resulting from one positive image and several negative images. We used the
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Figure 3.9: Examples of inference on novel images in the ”bonsai” and ”buddha” cate-
gories. The image above shows the best classification window inferred by the model. On
the bottom is the saliency map, showing the approximate posterior probability under
the model that each pixel was generated by the foreground object.

same parameter settings as in the previous experiments. Training 50 features took 6

hours in Matlab on a 2GHz PowerMac G5.

We performed ten cross-validation rounds of training and testing on 1000 ran-

domly selected images from this dataset. The resulting performance was 95.0% area

under the curve, and 89.0% equal error rate. The confidence intervals for these mea-

surements were all smaller than ±0.01%. Because the parameters for learning were the

same as on the Caltech-4 face dataset, the lower performance on this dataset is indicative

that it is indeed much more difficult than the Caltech faces. However we were surprised

that we were able to achieve even this level of performance. Figure 3.14 shows several

images and their saliency maps, giving a sense of how much variety in size, head orien-

tation, facial structure, skin color, hair, and background clutter exists in this dataset.
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Figure 3.10: Examples of inference on novel images in the ”Leopards” category. The
image above shows the best classification window inferred by the model. On the bottom
is the saliency map, showing the approximate posterior probability under the model that
each pixel was generated by the foreground object.

In figure 3.13, we show the first ten features and tuning curves learned for this dataset.

GENKI represents a new kind of challenge for this problem, compared to the

Caltech-101 object categories, because of the degree of variability in the data sets, par-

ticularly in size. While images in the Caltech-101 dataset tends to be fairly well centered,

cropped and oriented in roughly the same direction, GENKI contains many more im-

ages in which the faces are far off center, extremely large or extremely small, partially

occluded, etc.

3.9 Conclusions

The system we have presented uses a generative modeling approach to derive

a weakly supervised learning algorithm for discovery of object categories from images

labeled only as containing or not containing an object of interest. The resulting algorithm
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Table 3.2: Ten best performing classifiers for Caltech-101 dataset for the current system
compared to those of Serre et al. [2005].

Current system Serre et al. [2005]

% error (eq. pt) category

99.25± 0.8 ’pagoda’

99.18± 0.3 ’car side’

99.06± 1.3 ’accordion’

98.88± 0.7 ’trilobite’

98.69± 1.9 ’panda’

97.82± 1.8 ’cellphone’

97.75± 1.1 ’windsor chair’

97.70± 1.0 ’minaret’

97.43± 0.3 ’airplanes’

97.38± 1.6 ’metronome’

% error (eq. pt) category

100.0 ’metronome’

99.5 ’inline skate’

98.3 ’scissors’

98.1 ’pagoda’

97.9 ’trilobite’

97.3 ’faces’

97.2 ’accordion’

96.2 ’minaret’

95.7 ’faces easy’

95.7 ’car side’

Table 3.3: Ten worst performing classifiers for Caltech-101 dataset for the current system
compared to those of Serre et al. [2005].

Current system Serre et al. [2005]

% error (eq. pt) category

79.71± 5.6 ’dragonfly’

79.53± 6.4 ’wheelchair’

79.48± 8.2 ’cougar body’

79.04± 9.0 ’anchor’

78.48± 2.4 ’watch’

78.43± 6.4 ’nautilus’

78.26± 9.0 ’strawberry’

78.00± 6.4 ’chair’

75.65± 4.0 ’umbrella’

74.32± 5.2 ’starfish’

% error (eq. pt) category

73.0 ’chair’

72.1 ’barrel’

72.1 ’ibis’

71.6 ’octopus’

71.3 ’cup’

71.1 ’cannon’

70.8 ’wheelchair’

70.6 ’lamp’

68.4 ’flamingo’

62.9 ’ewer’

achieves state-of-the-art accuracy on two public data sets of images containing multiple

object categories, as well as a new dataset of 75000 face images, while also achieving much
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Figure 3.11: Histograms of area under the ROC curve for generalization on the Caltech-
101 object categories for different systems. We show the current system compared to the
C2 systems from [Serre et al., 2005] with different classification methods and numbers of
training examples. The parentheses indicate the number of positive training examples.
The best performing system is our system, which used an average of 26 positive images
per category. The C2 systems were trained with 30 or 40 examples, using GentleBoost
or linear SVM classifiers.

Figure 3.12: (left) Subset of segments from a single example face image, (right) examples
of segments from the nonface images

faster run-time performance than any other weakly-supervised system we are aware of. It

has an intuitive interpretation as a convolutional neural network with 5 million hidden

units. While our emphasis has been on visual object detection, the technique in fact

relies on a much more general concept of an “object” as a subset of dependent data

that is conditionally independent from the other subsets within the container set. This
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1
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Figure 3.13: (top) The first ten features and (bottom) their respective tuning curves

Figure 3.14: Face images and their saliency maps

makes it well suited to other domains in which the underlying cause making two streams

of data “different” is an unknown, arbitrary subset of that stream which is assumed to

be dependent, but independent from the other subsets in the stream. For instance, this

could be useful in analysis of touch or auditory data, sequences of DNA or RNA, security

systems, financial data, and many other areas.

The ability to learn from a very weak training signal suggests that it may be

possible to move to a completely unsupervised system by using other modalities to

provide the weak training signal. For instance, color or motion in the video stream could

be used to indicate the presence of a person. This is also highly suggestive of biological

systems that do not receive strong supervision but also have access to sensory cues such

as motion detection, smell, or contingency. The approach presented here suggests these
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Figure 3.15: Some correctly rejected nonface images, and one false alarm (the chicken
on the right), along with their saliency maps

basic features may be sufficient for organisms to discover the appearance of objects of

interest, without the need to posit any specific innate knowledge about these objects.

In the next chapter, we test this theory in an interactive robot which uses auditory

contingency detection to generate its own weak labels about the presence or absence of

a person.
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3.A Theorem: Scale Invariance of the Partition Function

The background model is determined by a background distribution b for a refer-

ence size r, a collection of scaling functions φs : Rs → Rr for s > r , and by a collection

of distributions for generating patches of size s given patches of size r. Under the model

a patch y of size s is generated by sampling a patch x of size r with probability b(x) and

then sampling a patch y of size s with probability p(y | x), where

p(y | x) def= δ(φ(y), x) g(y, x), for x ∈ Rr, yRs (A-1)

where the function g is such that ∑
y

p(y | x) = 1 (A-2)

In other words, given a “seed” patch x of size r we put the constraints that a patch y of

size s > r can only be derived from x if the scaled down version of y looks like x. Thus,

p(y) =
∑
x

b(x)p(y | x) =
∑
x

b(x)δ(φ(y), x)g(y, x) = b(φ(y)) g(y, φ(y)) (A-3)

and

Z(s, f, b) def=
∑
y∈Rs

p(y)ef(φ(y)) =
∑
y∈Rs

b(φ(y)) g(y, φ(y))ef(φ(y)) (A-4)

∑
y∈Rs

∑
x∈Rr

δ(φ(y), x)b(x) g(y, x)ef(x) (A-5)

=
∑
x∈Rr

b(x)ef(x)
∑
y∈Rs

δ(φ(y), x) g(y, x) (A-6)

=
∑
x∈Rr

b(x)ef(x)
∑
y∈Rs

p(y | x) = Z(r, f, b) (A-7)

which does not depend on s, or g.
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3.B Summary of terms

Constants:

Z+ positive integers

R+ positive real numbers

np ∈ Z+ number of pixels

si a segmentation, a partition of {1, ..., np}
S = {s1, ..., snk

} allowable segmentations

nk ∈ Z+ number of allowed segmentations

A = {a1, ..., ans} =
⋃nk
i=1 si all allowed segments

ns ∈ Z+ number of segments

|ai| size of set ai

nc ∈ Z+ number of object categories

r ∈ Z+ smallest segment size

D = {Rr
⋃

Rr+1 · · ·
⋃

Rnp} real valued vectors of lengths r to np

β foreground contamination

nf number of feature detectors

Specification of the model:

X = (X1, X2, ..., Xnp) ∈ Rnp

+ an image, i.e., collection of pixel intensities

Xi = {Xj : j ∈ ai} ∈ R|ai| image segment

O = (O1, ..., Ons) ∈ {0, ..., nc}ns object assignments

Y = (Y1, ..., Ynp) ∈ {1, ..., nc}np pixel assignments

F ∈ F foreground model parameters

B ∈ B background model parameters

p(s) prior probability of segmentation s

p(oj |s) probability object assignment Oj takes value oj

given segmentation s

p(xj |Oj = o, f, b) probability image segment Xi takes value xj if ren-

dered by object category o under model parameters

f and b
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Other important terms:

l(x|aj , f, b) foreground vs. background likelihood ratio of xj

φr(z) ∈ D → Rr scaling function, scales patches from size ρ ∈ D to r

h(z) ∈ Rr → R feature detector

f(xj) foreground model parameters

Z(aj , f, b) partition function ensuring p(xj |Oj = 1, f, b) sums to one

b̂ estimate of background distribution

L(x|f, b) log likelihood of image x under models f , b

Gf (z) functional gradient of L with respect to f

L′(x|f, b) pseudo-log likelihood, a lower bound of log likelihood

G′
f (z) pseudogradient of L with respect to f

u(x, f) weighted histogram of segments in foreground image x

v(f) weighted histogram of segments in background sample

w(x, b̂) background weights

Ψ = {ψ1, ...ψnf } features

ηi tuning curve for feature detector using feature ψi

ũ(x, f) feature weighted histogram of segments in foreground image x

ṽ(f, β) feature weighted histogram of segments in background sample

λ̃(f, β) feature weighted histogram of pseudogradient
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Unsupervised Object Discovery

In the previous chapter, we developed a technique by which object categories such

as faces can be learned without requiring that a human indicates the location of objects

in example images. All that was needed was access to a label indicating whether or not

the object of interest is present or absent.

In this chapter we explore whether it is possible to learn to detect the presence

and location of objects without any human supervision if we combine the techniques

developed in the previous chapter with a system that generates its own presence vs. ab-

sence labels based on another sensory domain. Multiple researchers have pursued the

idea of combining multiple, low-level cues in one modality to bootstrap learning in an-

other modality. For example Hershey and Movellan [2000] showed that it is possible

to locate faces by focusing on regions of the image plane that correlate highly with the

acoustic signal. Beal et al. [2003] developed a probabilistic generative model under which

a common cause generates both auditory and visual data, and used this model to infer

templates of human appearance from video without supervision. Triesch and von der

Malsburg [2001] used multiple low-level visual features for unsupervised person tracking

in video, and de Sa [1994] developed an unsupervised learning method in which audio

and video systems trained each other to classify spoken syllables. Finally, Blum and

Mitchell [1998] used a similar technique for classifying web pages, in which the links to

web pages and the words in the page are treated as separate modalities.

Some have suggested that the combination of multiple, low-level cues may also

be a basic mechanism used in infant learning [Cohen and Cashon, 2001]. Rather than

innate visual biases, simple low-level cues such as auditory, tactile, or proprioceptive

78
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input may be used as evidence for the presence or absence of objects. The features

needed to perform this discrimination are learned due to their ability to help make this

discrimination, not because of any implicit bias.

Watson [1972] suggested that the infant brain may be particularly sensitive to

the presence of contingencies between sensory channels, and this contingency drives

the definition and recognition of caregivers. Watson hypothesized that human faces in

particular are learned because they tend to occur in high contingency situations. This

idea developed over decades of research, but originated from an a study in which 2-

month-old infants spontaneously exhibited intense social responses toward mobiles that

did not look particularly human, but that responded to the infant’s head movements

[Watson, 1972].

To investigate the process of visual learning in systems without external supervi-

sion, we built an inexpensive robot out of off-the-shelf parts, with the aim of letting it

interact with the environment and then learn about objects from self-generated labels

based on multimodal input. Our goal was to explore whether auditory contingency in-

formation would be sufficient for the robot to develop preferences for human faces, to get

a sense for the time scale of the learning problem, and to test whether those preferences

would transfer to abstract stimuli, like 2-D drawings. We found our robot was able to

rapidly learn face preferences from only minutes worth of visual data. Furthermore, it

learned to identify and locate people in the visual scene reliably, even when their faces

are not present.

4.1 Infant robot

We created a simple interactive robot by fitting a plush baby doll with an IEEE1394a

webcam, a microphone, and a loudspeaker (Figure 4.1). These components were con-

nected to a computer which ran a social contingency detection algorithm from Movellan

[2006]. The algorithm is grounded in the theory of stochastic optimal control [Movellan,

2005], and consists of (1) an Infomax controller which schedules vocalizations so as to

maximize the information gained about the presence or absence of contingencies, and

(2) a Bayesian inference algorithm that computes the probability that a contingency is

present given the observed sequences of auditory signals.

The controller periodically makes vocalizations and listens to the environment to

determine as quickly as possible if a contingent agent is present. The continuous audio



80

input was converted to binary auditory “events” by thresholding the instantaneous power

from the microphone. Whenever an auditory event occurred and the posterior probability

of social contingency given by the contingency detector was simultaneously above 97.5%,

an image was saved with the label “contingent”. Whenever an auditory event occurred

and the posterior probability of social contingency was simultaneously below 2.5%, an

image was saved with the label “not contingent”.

Figure 4.1: The robot used in our experiments. Two types of beginning experimental
conditions, “stroller” and “crib”, are shown (left and middle respectively). The robot
infant did not remain in a constant position as subjects were allowed to pick it up if they
liked (right).

4.2 Data collection

We allowed the robot to run continuously for a total of 88 minutes across two

sessions. During this time, the robot made vocalizations and collected images labeled

by the contingency detector. During the 88 minutes of the experiment the robot was

placed in three different conditions: a chair condition, a stroller condition, and a crib

condition. For each condition the baby robot was moved so as to face one of three

different backgrounds. Each condition was presented in one of two lighting conditions

bright and dim. This provided 18 different background conditions (see Figure 4.1 for two

example starting conditions). Within each background condition subjects could move

the robot, thus constant backgrounds could not be assumed.
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Nine members of the Machine Perception Laboratory at UCSD were asked to

interact with the baby robot and instructed to try to make it “excited”. They were told

that the robot would make excited noises if it thought somebody was responding to it,

and would make bored noises otherwise. The robot could play 5 different sounds, ranked

in level of excitation by the experimenter, each corresponding to a different level of the

posterior probability of contingency as estimated by the contingency detector.

The subjects interacted with the robot for 2 trials of 2 minutes each; each trial

began in a different background condition chosen randomly. The robot ran continuously

during the 88 minutes of the experiment, including times that it was being moved to

different starting conditions and as subjects entered and left the room. The experimental

room was noisy due to a computer cluster in the same room, the background conversa-

tions from adjacent offices, and occasional conversations between the subjects and the

experimenter.

Table 4.1: Disagreement between contingency detector vs. experimenter labels

Experimenter

Label

Internal Contingency Label

Training Set Validation Set

“Contingent” “Not Contingent” “Contingent” “Not Contingent”

“Face” 21%(41/200) 16%(99/624)

“No Face” 18%(6/34) 15%(421/2843)

“Person” 29%(58/200) 25%(154/624)

“No Person” 9%(3/34) 4%(126/2843)

4.3 Discovery of a “Person” category

Over the course of the 88 minutes of interactions, a total of 2877 images labeled

“contingent” and 824 images labeled “not contingent” were collected. From these images,

a training set of 34 contingent images and 200 not contingent images were chosen at

random, comprising 6.3% of all images. Since the images were collected over 88 minutes,

this training set represents just under 5 minutes and 34 seconds of visual experience. All

subsequent testing was done with the remaining 3467 images not used for training.

In order to better understand what the system was learning, we provided post-hoc
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labels of whether or not a face was present in the image, and whether or not a person

was present in the image, to supplement the original self-generated “contingent” vs.

“not-contingent” labels. Images labeled as “face” contained either a whole or part of a

face. Images labeled “person” had at least some portion of a person visible. Note that

all images labeled“face” were also labeled “person” and all images labeled“no person”

were labeled “no face”. Table 4.1 shows the relative frequencies of the three labels.

As expected, we found that the labels provided by the contingency detector were only

weakly informative about the presence or absence of people in the images. For example,

29% of the images which were labeled as “contingent” did not contain people, and 9%

of the images labeled as “not contingent” did contain people (see Table 4.1).

1 2 3
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Contingent
 

Person
 

100%
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80%

Figure 4.2: Generalization performance for “face” vs. “no face”, “contingent” vs. “not
contingent”, and “person” vs. “no person” tasks. The system was only trained with the
noisy “contingent” vs. “not contingent” labels. The plot shows the area under the ROC
curve.

4.4 Person identification and localization

For each image in the testing set, the system made an inference about whether or

not a foreground object is “present” or “absent”’ using the procedure described in 3.5.2.

We then tested how well this inference predicted three different types of labels: con-

tingency, face, and person labels. For each task, we measured the area under the

ROC (AUC), which can also be interpreted as the correct classification rate on the



83

Figure 4.3: Examples images and their saliency maps. On the top row are good localiza-
tion and detection results, despite variations in lighting, scale, gender, pose, and facial
expression. Note that the top right image is an example that was originally labeled “not
contingent”. From left to right on the bottom row: (1) correct rejection, (2)-(4) correct
detections, where the body was preferred over the face, (5) the most probable loca-
tion was incorrect, however the image was correctly classified, (6) an incorrect rejection,
(7)-(8) incorrect detections.

two-alternative-forced-choice task (2AFC) [Cortes and Mohri, 2004]. The system’s per-

formance was 86.17% correct if we asked how well the output predicted the presence or

absence of a face, 89.7% correct if we asked how well the output predicted the contin-

gency label given to the image by the contingency detector, and 92.3 % correct if we

asked how well the output predicted the presence or absence of a human (see Figure 4.2).

These performance levels are quite interesting. Although the detector was trained

with image labels provided by the contingency detector, which in fact disagreed with the

human labels of the presence versus the absence of people by about 26%, the detector

actually achieved 92% accuracy in person detection. The labels did not provide any in-

formation about where people were located in the image, and there were no constraints

on the views and poses of people, which sometimes contained faces, sometimes only bod-

ies, and had wide variability in orientation, scale, and lighting conditions. Interestingly,

although the system was generally quite good at finding faces, it also seemed to be very

good at finding other parts of the human body. Some examples of the system’s predic-

tions are shown in Figure 4.3, showing that both head and body tend to be identified as

more likely to have been caused by the foreground category.

Figure 4.4 shows several of the learned feature detectors superimposed on a sketch

face. On top are the features, and on bottom are the tuning curves. For each tuning
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curve, the horizontal axis is the feature output, and the vertical axis is the tuning curve

output corresponding to that feature output. Many of the learned feature detectors are

easily interpretable. Bilateral symmetry and edges around the mouth were among the

earliest selected features, and features that might be called “hairline” and “bridge of

nose” detectors were also present. For example, the fourth feature gives a high output

response if there is strong light-dark contrast from left to right over the bridge of nose

area, low response if there is little contrast, and stays close to zero if there is strong right

to left contrast.

Symmetry: 45º Contrast Dominant Edge: 45º Contrast Dominant Edge: 0º

Figure 4.4: (top) Several of the most informative features superimposed on a sketch face,
and (bottom) their tuning curves.

4.5 Preferences for face stimuli

Johnson et al. [1991] presented 40 minute old human infants with 3 types of visual

stimuli to study their visual preferences (See Figure 4.5): (1) A drawing of a frontal face;

(2) A drawing with the same features of the face but scrambled arrangement while

maintaining symmetry; (3) An empty face-outline. They found that infants showed

an order of tracking preference in favor the face stimulus, followed by the scrambled

stimulus, followed by the empty stimulus.

We presented the baby robot with the same three stimuli used in [Johnson et al.,

1991]. Recall that this system had been trained only with real visual scenes labeled by

the InfoMax contingency detector as containing or not containing a contingent agent. It
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had never seen line drawings of faces. Despite this the approximate posterior probability

map reproduced the preference order reported in Johnson et al. [1991] perfectly. The area

around the face drawing was given the highest probability of coming from the contingency

category, the area around the scrambled face was given somewhat less probability, and

the area around the empty face was given even less probability.

Figure 4.5: (top) The stimuli used by Johnson et al. to test whether neonate infants
showed preferential face tracking. Infants tracked the first stimulus the most, and the
third the least. (bottom) Posterior probability map from the learned model, indicting
estimates of the probabiltiy that the pixel was generated by a “contingent” object. There
is relatively high probability around the first image, and decreasing probability from left
to right, following the order of infant preferences exactly.

4.6 Developmental implications

From a sample of only 34 images labeled as “contingent” and 200 images labeled

as “not contingent”, the robot’s visual system was capable of detecting the presence of

people in novel images with high accuracy (over 90 % correct). In doing so it developed

a preference for human faces that was detectable in 2d-face drawings it had never been

exposed to. The robot was never told by a human whether or not people were present

in the images, or whether people were of any particular relevance at all. However it

discovered that the only consistent visual explanation for two sets of scenes with differ-
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ing auditory response statistics was a combination of feature detectors that happened to

discriminate the presence of people. There was nothing special about the auditory con-

tingency domain – similar results could undoubtedly be obtained using other modalities.

The results illustrate that from a computational point of view, the visual preferences

of the type typically investigated in human neonates can be acquired very quickly, in a

matter of minutes. Previous studies that were thought to provide evidence for innate

cognitive modules may actually be evidence for rapid learning mechanisms in a neonate

brain exquisitely tuned to detect the statistical structure of the world. This further adds

to a body of evidence that simple cues from one or several other modalities are sufficient

to learn visual concepts without supervision (e.g., Triesch [2001]; de Sa [1994]).

The results show that rapid learning is a viable explanation for empirical results

that had previously been thought to require innate “units of mental architecture.” They

provide computational credibility to John Watson’s views about the role of contingency

on infant development Watson [1972]. Most importantly the results illustrate the impor-

tance of understanding the problems faced by the developing brain via computational

experiments with real-world images and sounds.
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