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Abstract

Inhibitory interneurons are essential components of the neural circuits underlying various brain 

functions. In the neocortex, a large diversity of GABAergic interneurons have been identified 

based on their morphology, molecular markers, biophysical properties, and innervation 

pattern1,2,3. However, how the activity of each subtype of interneurons contributes to sensory 

processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive 

(PV+) interneurons in mouse V1 sharpens neuronal feature selectivity and improves perceptual 

discrimination. Using multichannel recording with silicon probes4,5 and channelrhodopsin 2 

(ChR2)-mediated optical activation6, we found that elevated spiking of PV+ interneurons 

markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. 
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These effects were caused by the activation of inhibitory neurons rather than decreased spiking of 

excitatory neurons, since archaerhodopsin-3 (Arch)-mediated optical silencing7 of calcium/

calmodulin-dependent protein kinase IIα-positive (CaMKIIα+) excitatory neurons caused no 

significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically 

required PV+ neuron activation, since activating somatostatin (SOM+) or vasointestinal peptide 

(VIP+) interneurons had no significant effect. Notably, PV+ neuron activation in awake mice 

caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 

orientation tuning. Together, these results provide the first demonstration that visual coding and 

perception can be improved by elevated spiking of a specific subtype of cortical inhibitory 

interneurons.

To allow specific activation of PV+ interneurons, we injected a Cre-inducible adeno-

associated virus (AAV) vector containing the ChR2 gene fused in-frame with the coding 

sequence for enhanced yellow fluorescence protein (EYFP, Supplementary Fig. 1a)8 into V1 

of a knock-in mouse line expressing Cre-recombinase under the PV promoter (PV-ChR2, 

see Methods)9,10. Three weeks after injection, immunostaining confirmed EYFP expression 

specific to PV+ neurons (Fig. 1a). To measure the effect of ChR2 activation, we inserted a 

multichannel silicon probe4,5 near the injection site for simultaneous recording from all 

cortical layers (Supplementary Fig. 1b). Upon stimulation with blue (473 nm) laser, a small 

fraction (12/96, 13%) of the neurons showed significant increases in spontaneous firing rate, 

while 43% (41/96) showed significant decreases (Fig. 1b, c, Supplementary Fig. 1c). The 

cells with increased firing exhibited narrower spike waveforms than those with decreased 

firing (Fig. 1c, inset; peak-trough width, 0.31±0.12 vs. 0.44±0.09 ms, s.d.), indicating that 

the PV+ interneurons directly activated by laser were mostly fast-spiking cells11. The 

decreased spiking of other neurons is likely caused by increased inhibition from the 

activated PV+ neurons.

We then measured orientation tuning and direction selectivity of the neurons using drifting 

grating stimuli, both with and without ChR2 activation. We found that PV+ neuron 

activation caused striking changes in the tuning of other neurons. In addition to the overall 

firing rate decrease, we also observed a marked reduction in orientation tuning width and 

increase in direction selectivity (Fig. 2a). To quantify these effects, we fitted each tuning 

curve with a double-Gaussian function (Supplementary Fig. 2a). For all the well-tuned 

neurons (whose tuning curves with and without ChR2 activation were both well fitted, see 

Methods), ChR2 activation caused a significant decrease in tuning bandwidth (σ; P<10−4, 

paired t-test; Fig. 2b) and increase in direction selectivity index (DSI; P=0.007; Fig. 2c). 

However, the preferred orientation (θ0) remained relatively constant (Fig. 2d). Interestingly, 

all the putative PV+ neurons (Fig. 1c, white bars) exhibited poor tuning even before laser 

stimulation, consistent with previous findings12,13. Note that while most of the poorly fitted 

tuning curves showed low signal-to-noise ratio (Supplementary Fig. 2b, c, Examples 1, 2), a 

few of them had relatively reliable tuning curves exhibiting multiple, irregular peaks 

(Examples 3–6). Laser stimulation also sharpened the tuning of some of these cells, although 

the degree of sharpening was not well quantified by curve fitting.
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The decrease in σ was correlated with the reduction in firing rate (Supplementary Fig. 3e), 

suggesting that the enhanced selectivity depends on the increase in inhibition. However, we 

also wondered whether an overall reduction in cortical firing is sufficient to enhance the 

selectivity without interneuron activation. As an alternative method to decrease cortical 

spiking, we expressed the light-activated proton pump Arch7 in CaMKIIα+ excitatory 

neurons by injecting AAV (Supplementary Fig. 1a) into V1 of the CaMKIIα-Cre mice14 

(CaMKIIα-Arch, Fig. 1d). Arch-mediated partial silencing of CaMKIIα+ neurons caused 

decreases in both the spontaneous (Fig. 1e, f, Supplementary Fig. 1c) and visually evoked 

(Supplementary Fig. 1c, d) firing rates, similar to PV+ neuron activation. However, 

CaMKIIα+ neuron silencing caused no significant change in σ (P=0.75; Fig. 2f) or DSI 

(P=0.68; Fig. 2g). In addition, there was no significant correlation between the firing rate 

reduction and change in σ or DSI (Supplementary Fig. 3f, j).

Does the enhanced selectivity require a general increase in inhibition or specific activation 

of PV+ interneurons? In addition to PV+ neurons, SOM+ and VIP+ neurons constitute two 

other major subtypes of GABAergic interneurons2. To test their roles in shaping V1 

selectivity, we induced cell type-specific expression of ChR2-EYFP in SOM-Cre or VIP-

Cre mice (Fig. 1g, j). In the SOM-ChR2 mice, laser also caused increased spiking of a few 

neurons (11/91) and decreased firing of the majority (71/91) (Fig. 1h, i, Supplementary Fig. 

1c, d). In fact, compared to the PV-ChR2 group, a higher percentage of neurons showed 

decreased firing. However, SOM+ activation caused no significant effect on either σ 

(P=0.79; Fig. 2i, j) or DSI (P=0.17; Fig. 2i, k). In VIP-ChR2 mice, laser stimulation also 

induced no significant change in σ (P=0.16; Fig. 2m, n) or DSI (P=0.16; Fig. 2m, o), and 

only a mild change in firing rate (Fig. 1k, l, Supplementary Fig. 1c, d). The change in σ 

showed a negative correlation with firing rate change (Supplementary Fig. 3h), opposite to 

PV+ activation (Supplementary Fig. 3e). This may be because the VIP+ neurons also 

innervate inhibitory interneurons15, thus causing both inhibition and disinhibition. In 

addition to σ, tuning measured by orientation selectivity index was also improved by PV+ 

activation, but not by CaMKIIα+ silencing or SOM+ or VIP+ activation (Supplementary 

Fig. 4).

Note that even among the PV-ChR2, SOM-ChR2, and CaMKIIα-Arch groups, the degrees 

of firing rate suppression were not identical. To ensure that the difference in tuning width 

reduction is not caused by differences in firing rate suppression, we selected neurons from 

each group that exhibited intermediate levels of suppression (firing rate change −0.75 to 

−0.3, Supplementary Fig. 5a). Although the spike rate suppression is well matched across 

groups within this range (mean rate change: −0.51 (PV), −0.50 (SOM), −0.50 (CaMKIIα)), 

laser stimulation caused a significant decrease in σ in PV (−0.19±0.05, s.e.m.) but not in 

SOM (0.01±0.09) or CaMKIIα (−0.05±0.03) group. The magnitudes of reduction in σ were 

significantly different between the PV and SOM or CaMKIIα groups (Supplementary Fig. 

5b). We also noticed that neurons in these groups showed different initial tuning widths 

(σlight-off). To ensure that the difference in tuning width reduction was not caused by the 

difference in σlight-off, we selected neurons with σlight-off falling within two ranges: the broad 

(25°–50°) and narrow (0°–25°) ranges. Within each range, the median values of σlight-off 

were not significantly different across groups, but laser stimulation caused significant 
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decrease in σ in the PV-ChR2 group (broad: −0.28±0.09; narrow: −0.11±0.05) and not in 

any other group (Supplementary Fig. 5c, d). Furthermore, within each range the amount of 

decrease in σ was significantly different between the PV and other groups.

While the lack of effect of VIP+ activation on σ is not surprising given its moderate effect 

on firing rate, what underlies the difference between SOM+ and PV+ neurons? Tuning of a 

sensory neuron depends on its FI curve (firing rate vs. input current): subtractive modulation 

of FI curve causes sharpening of tuning, while divisive modulation has no effect16. We thus 

tested the effects of SOM+ and PV+ activation on neuronal FI functions using in vivo 

whole-cell recording (see Methods). For each neuron we measured firing rate vs. injected 

depolarizing current. We found that PV+ activation caused a large increase in spiking 

threshold (P=6×10−4, paired t-test) without significantly changing the slope (P=0.34, Fig. 

3a–d), but SOM+ activation caused a marked reduction of slope (P=0.02) without 

significant change in threshold (P=0.18, Fig. 3e–h). These effects may be related to the 

different subcellular targeting of PV+ and SOM+ neurons onto pyramidal neurons 

(perisomatic vs. dendritic)17. When we plotted the median response of each group at each 

orientation without vs. with laser stimulation, we also found a strong subtractive effect of 

PV+ activation but primarily divisive effect of SOM+ activation (Supplementary Fig. 6).

Changes in V1 orientation tuning can in principle affect perceptual discrimination18,19. To 

test the functional consequence of sharpened tuning, we applied laser stimulation to awake 

PV-ChR2 mice while they performed orientation discrimination. The head-restrained mice 

were trained on a Go/No-Go task and rewarded for licking in response to a grating at one of 

two orientations20 (see Methods, Fig. 4a, b, Supplementary Movie 1). For an easy 

discrimination task (difference between Go and No-Go orientations Δθ = 90°), the 

performance measured by the divergence between hit and false alarm rates (Fig. 4c) and 

discriminability (d′, Fig. 4d) improved systematically over days. As expected, d′ increased 

monotonically with Δθ (Fig. 4e). After the performance reached a steady state, we tested the 

effect of laser and found significant improvement in d′ at a range of Δθ (Fig. 4f, 

Supplementary Fig. 7a–c). To ensure that the improvement was caused by optical activation 

of PV+ neurons rather than through the retinal photoreceptors activated by scattered laser, 

we performed a control experiment in mice that were not virus-infected and found no 

significant increase in d′ (Fig. 4g). Separate electrophysiological experiments in awake mice 

showed that PV+ activation also caused a significant sharpening of tuning (P<0.05, 

Supplementary Fig. 8), similar to that in anesthetized mice (Fig. 2a, b). Thus, the sharpening 

of V1 orientation tuning induced by PV+ activation can facilitate orientation discrimination. 

Unlike the learning curve shown in Fig. 4d, in which discriminability improved steadily over 

5–10 days of training, the effect of PV+ activation showed no systematic change over 

multiple days of testing (Supplementary Fig. 7d), suggesting that the effect was not caused 

by learning of a distorted perception due to PV+ activation.

Previous pharmacological experiments have shown that the endogenous level of GABAergic 

inhibition is necessary for orientation tuning and direction selectivity21,22. Our study showed 

that elevating inhibitory neuron activity above the normal level can further sharpen cortical 

feature selectivity and improve perceptual discrimination. A recent study showed that PV+ 

activation only moderately affects the tuning of V1 neurons23. This is likely caused by the 
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relatively low level of PV+ activation compared to our study, as the increase in stimulus 

selectivity is strongly correlated with the degree of firing rate suppression (Suppmenentary 

Fig. 3e,i). Interestingly, studies in awake, behaving primates have shown that increases in 

task difficulty24 and attention25 are accompanied by a preferential increase in the firing of 

fast-spiking neurons, many of which are likely to be PV+ interneurons11. This suggests that 

the level of inhibitory activity can be dynamically regulated by top-down mechanisms to 

meet changing behavioral demands.

A long-standing debate on the mechanism for orientation tuning is whether the excitatory 

and inhibitory inputs exhibit similar tuning26. In rodent V1, whether inhibitory interneurons 

are well tuned has also been controversial12,13,27. Our results showed that increase in the 

untuned activity of inhibitory interneurons is sufficient to sharpen orientation tuning, 

consistent with previous theoretical prediction28. Furthermore, while driving either PV+ or 

SOM+ interneurons markedly suppressed cortical spiking, only PV+ activation could 

sharpen orientation tuning. This specificity may be attributable to the powerful perisomatic 

inhibition exerted by PV+ neurons1,29. Recent studies have demonstrated the importance of 

PV+ neurons in gating developmental plasticity30 and generating gamma oscillations9,10. 

Our results show that these interneurons also play a unique role in visual coding and 

perception.

METHODS SUMMARY

AAV was injected into V1 of adult (P40-60) PV-Cre, CaMKIIα-Cre, SOM-Cre, or VIP-Cre 

mice. For recording and behavioral training in awake mice, head plate was implanted in the 

same surgery as virus injection; recording or training was performed 2–6 weeks after 

surgery. For ChR2 (Arch) activation, an optic fiber coupled to blue (yellow/green) laser was 

placed on top of injection site. For measuring orientation tuning, 8 repeats of drifting 

sinusoidal grating (spatial frequency, 0.04 cycles/°; temporal frequency, 2 Hz; 100% 

contrast) were presented in 24 directions (0°–360°) in pseudo-random sequence. Blocks of 

trials with or without laser were interleaved. To quantify tuning, we fitted each tuning curve 

by double-Gaussian function. To test orientation discrimination, mice were trained to 

discriminate between Go and No-Go stimuli (drifting gratings at different orientations) for 

water reward20.

Methods

Adeno-associated viral (AAV) vectors

ChR2 fused to the fluorescent protein EYFP (ChR2-EYFP) and Arch fused to EGFP (Arch-

EGFP) were cloned into pAAV-MCS (Stratagene) in an antisense direction flanked by a pair 

of canonical loxP sites and a pair of mutated lox2272 sites. AAV particles (serotype 2) were 

produced by co-transfection of packaging plasmids into HEK293T cells, and cell lysates 

were fractionated via iodixanol gradient ultracentrifugation31. Viral particles were further 

purified from the crude fraction by heparin affinity column (HiTrap™ Heparin HP Columns; 

GE Healthcare), desalted and concentrated with Amicon Ultra Centrifugal Filter (100K, 

Millipore) (1×1012 – 1014 particles ml−1 in PBS). For ChR2, we used AAV serotype 2/2; for 

Arch, we used serotypes 2/2 and 2/8. All recombinant viral vectors were cloned in the 
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genomic DNA backbone of the AAV serotype 2, and we generated the hybrid serotype using 

different capsids from the corresponding serotypes.

Virus injection and head plate implant

All experimental procedures were approved by the Animal Care and Use Committee at the 

University of California, Berkeley. For virus injection, young adult (P40-P60, body weight: 

20–30g) PV-Cre (Jackson Laboratory), CaMKIIα-Cre (Jackson Laboratory), SOM-Cre 

(Cold Spring Harbor Laboratory), or VIP-Cre (Cold Spring Harbor Laboratory) mice were 

anesthetized with ketamine (intraperitoneal, 70 mg per kg of body weight) and 

supplemented with 1.5% isoflurane and 1.5% O2. A craniotomy (~0.5 mm diameter) was 

made above the monocular region of right V1 (3.7 – 3.8 mm posterior to bregma, 2 mm 

lateral from midline), and 1 μl of AAV (containing > 109 viral particles) was injected into 

the cortex at a depth of 250 – 500 μm. For recording and behavioral training in awake mice, 

custom-designed head plates were implanted right after the virus injection. Small screws 

(Small Parts) and dental acrylic (Diamond Springs) were used to fix the head plate onto the 

skull. The skull over the virus injected area was covered by a silicon sealant (Kwik-Cast, 

WPI).

Immunohistochemistry

Two weeks after the virus injection, the mice were deeply anesthetized with isoflurane and 

immediately perfused with chilled 0.1 M PBS followed by 4% paraformaldehyde (wt/vol) in 

PBS. The brain was removed and post-fixed for 15 h at 4 °C. After fixation, the brain was 

placed in 30% sucrose (wt/vol) in PBS solution overnight at 4 °C. After embedding and 

freezing, the brain was sectioned into 40 μm coronal slices using a cryostat (Thermo Fisher). 

Slices were incubated with blocking solution (2% normal goat serum in PBS with 0.5 % 

Triton-X 100) for 2 h at 20 °C and then with primary antibodies diluted in blocking solution 

overnight at 4 °C. The following primary antibodies were used: anti-PV primary antibody 

(PVG-214, Swant; 1:1000), anti-SOM antibody (MAB353, Millipore/Chemicon; 1:200), 

anti-VIP antibody (20077, ImmunoStar; 1:500), or anti-CaMKIIα antibody (sc-13141, Santa 

Cruz Biotechnology; 1:50). Slices were then washed three times with the blocking solution 

and incubated with the secondary antibody for 2 h at 20 °C (for PV and VIP, Alexa594-

conjugated anti-rabbit IgG, Invitrogen, 1:1000; for CaMKIIα, Alexa568-conjugated anti-

mouse IgG, Invitrogen, 1:200; for SOM, Cy3-conjugated anti-rat IgG, Jackson 

ImmunoResearch, 1:200). Slices were washed three times with PBS (10 min each) and 

mounted with DAPI-containing Vectashield (Vector Laboratories). Fluorescence images 

were taken under a confocal microscope (Zeiss).

Electrophysiology

Recording experiments were performed 2–6 weeks after virus injection. For anesthetized 

experiments, mice were anesthetized with urethane (intraperitoneal, 1.65 g per kg of body 

weight) supplemented with 1–1.5% isoflurane and restrained in a stereotaxic apparatus 

(David Kopf Instruments). Body temperature was maintained at 37.5°C via a heating pad 

(Harvard Apparatus). For recording in awake mice, the body of the mouse was placed in an 

acrylic tube (2.9 cm inner diameter; McMaster) and the head plate was fixed on a holder 

attached to the air table. The mouse could move its body inside the tube while the head was 
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fixed. While the animal was under gas anesthesia (1.5% isoflurane in oxygen), a craniotomy 

(~1 mm diameter) was made again above the virus injected area and a small portion of the 

dura was removed to allow insertion of a silicon probe (type I: 27 active channels separated 

by 50 μm, NeuroNexus Technologies, type II: 16 active channels separated by 35 μm, 

California Probe6). Signals were recorded with the Cheetah 32 channel acquisition system 

(Neuralynx), filtered at 0.6 – 6 kHz and sampled at 30 kHz. Following the experiment, the 

mouse was sacrificed with an overdose of isoflurane. The numbers of mice used for 

electrophysiology experiments were 25 (anesthetized PV-ChR2), 33 (anesthetized 

CaMKIIa-Arch), 25 (anesthetized SOM-ChR2), 9 (anesthetized VIP-ChR2), and 13 (awake 

PV-ChR2).

Whole-cell recordings were made with an Axopatch 700B amplifier (Axon Instruments). 

Patch pipettes (3 – 5 MΩ) were filled with internal solution containing (in mM) K-gluconate 

125, KCl 5, phosphocreatine 10, MgATP 4, GTP 0.4, HEPES 10, and EGTA 1. Data were 

filtered at 2 kHz, sampled at 10 kHz and digitized by Digidata 1440 (Molecular Devices), 

and analyzed with custom software in Matlab. Recordings were made under current clamp. 

Step currents (duration 2 s, amplitude 0 – 1.5 nA) were injected with both laser on and off, 

each repeated 2 – 4 times. Based on the FI curve (firing rate vs. current amplitude, 

Supplementary Fig. 6), the current threshold (minimal current to evoke spiking) and the slop 

were determined by linear regression of the curve from the point of initial spiking.

Visual stimulation

Visual stimuli were generated with a PC computer containing a NVIDIA GeForce 6600 

graphics board and presented with a XENARC 700V LCD monitor (19.7 cm × 12.1 cm, 960 

× 600 pixels, 75 Hz refresh rate, 300 cd m−2 maximum luminance, gamma corrected with 

custom software) located 14 cm from the left eye, positioned such that the receptive fields of 

the recorded neurons were at the center of the monitor. To determine the laminar position of 

each channel of the silicon probe, contrast-reversal checkerboard stimuli were presented at 2 

Hz for 400 times. For measuring orientation tuning and direction selectivity of V1 neurons, 

full-field drifting gratings (100% contrast, 2 Hz, 0.04 cycles/°, 4 s) were presented at 24 

directions (separated by 15°) in a pseudorandom sequence. After one block of 24 drifting 

gratings, 4 s of blank stimulus (gray screen) was presented to measure spontaneous firing 

rate. A total of eight blocks were presented in each experiment. To measure orientation 

discrimination in the behavioral experiment, drifting gratings of the same contrast and 

spatiotemporal frequencies (100% contrast, 2 Hz, 0.04 cycles/°, 4 s per trial) were presented 

to the left eye (see ‘Behavioral Experiment’ below).

Optical activation and silencing

A blue laser (473 nm) combined with a yellow laser (593 nm) (CrystaLaser) or a green laser 

(532 nm; Shanghai Laser & Optics Century Co., Ltd.) was connected to an output optic fiber 

and turned on and off by a stimulator (Grass) under computer control. Optical activation of 

ChR2 was induced by blue light, and optical silencing by Arch activation was induced by 

yellow or green light, focused on top of the craniotomy made for virus injection (for 

behavioral experiment, no new craniotomy was made for optical activation). For each PV-

ChR2 or CaMKIIα-Arch experiment, the laser power was manually adjusted such that 
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although the light caused a clear reduction in cortical firing rate, most of the recorded 

neurons still exhibited visually driven spiking responses (PV-ChR2, 0.5 – 1 mW of blue 

light, with the majority of experiments at 0.6–0.7 mW; CaMKIIα-Arch, 2 – 15 mW of 

yellow/green light). For SOM-ChR2 and VIP-ChR2 experiments, we used blue light at 

powers similar to or higher than in the PV-ChR2 experiment (0.6 – 1.5 mW). For VIP-ChR2 

experiments increasing the laser power to 2 – 3 mW also did not cause strong suppression of 

cortical activity. For measuring changes in spontaneous firing rate induced by optical 

activation or silencing, 30 trials of light stimulation (5 s per trial, 25 s inter-trial interval) 

were applied while a blank gray screen was presented as the visual stimulus. To measure the 

effect of optical activation or silencing on visually evoked responses, laser stimulation began 

0.5 s before the onset and ended 0.5 s after the termination of each trial of drifting grating 

stimulation. Since stray laser light could potentially activate the retina (either from the 

outside or traveling through the cortex), beginning laser stimulation prior to the grating 

stimuli helped to minimize contamination of the responses to the grating stimuli by transient 

spiking evoked by the onset of stray laser. We alternated between the blocks of trials (24 

orientations per block) with and without laser stimulation. For the whole-cell recording 

experiments (Supplementary Fig. 6), laser stimulation began 200 ms before the onset of 

current injection and ended 800 ms after termination of the current step. For the behavioral 

task, laser stimulation started with the trial and lasted for 5 s, thus covering the entire 

duration of visual stimulation in each trial (Fig. 4b).

Data analysis

To determine the laminar position of each recording channel, multiunit activity was aligned 

to the start time of the flash checkerboard stimuli and averaged across trials. Layers 4 and 6 

were identified based on short onset latency of the responses. For single-unit isolation, all 

channels of the silicon probe were separated into groups (4 channels per group), and spike 

waveforms were sorted using Klusters (http://klusters.sourceforge.net)32. To assess the 

quality of each sorted unit, we computed both Lratio and Isolation Distance33, 34. To select 

high-quality single units, we set the thresholds at Lratio < 0.1 and Isolation Distance > 20 (a 

unit must satisfy both criteria to be selected), which correspond to < 1% error rate 34. 

Among these high-quality single units, only those with firing rates greater than 0.1 spikes/s 

were included in further analyses. All the analysis was performed in MATLAB 

(Mathworks).

To quantify orientation tuning and direction selectivity of each neuron, we fitted the firing 

rate as a function of orientation by the sum of two Gaussian functions with peaks 180° apart:

where R(θ) is the response at orientation θ, a0 is the untuned component of the response, a1 

and a2 are the amplitudes of the two Gaussians, θ0 is the preferred orientation, and σ is the 

standard deviation of the Gaussian function (Supplementary Fig. 2). Tuning width is 

measured by σ, and direction selectivity (DSI) is measured by:
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The fitting error was computed as:

where Rmeasure(θ)and Rfit(θ) are the measured and fitted responses at θ, respectively, and R̄ 

is the measured response averaged across all orientations. We set a threshold of 0.5 for the 

fitting error; σ and DSI of a cell were included in the analysis only if the fitting error was 

below the threshold both with and without laser stimulation.

To quantify the reliability of each measured tuning curve, we computed the signal-to-noise 

ratio (SNR):

Where R (θ) is the firing rate at θ averaged across all trials, R̄ is the mean firing rate across 

all orientations, andis the variance of the response at VAR (θ) across trials.

Pearson correlation coefficient (r) was used to quantify the relationship between the laser-

induced firing rate change and changes in tuning width and direction selectivity.

Behavioral experiment

Adult PV-ChR2 mice (P60–P100) were water-deprived for 1 day before starting the training. 

A total of 35 mice were used for the behavioral experiment. During daily training, the mouse 

was head-fixed and sat in an acrylic tube within a soundproof training box. Tongue licks 

were detected by a custom-made beam-break lickometer. Training ended when the mouse 

appeared satiated and stopped licking for several minutes35. The entire behavioral 

experiment consisted of 5 phases: habituation, conditioning, easy discrimination, hard 

discrimination, and optogenetic experiment.

For habituation (2–3 days), there was no visual stimulus and the mouse was given free water 

rewards (~4 μl) for each lick.

For conditioning (2–3 days), the mouse was trained to lick in response to a visual stimulus 

(vertically oriented grating drifting rightward; ‘Go stimulus’). Each trial started with a tone 

(0.1 s duration, 5 kHz), followed by the visual stimulus (starting 1 s after the tone, 4 s in 

duration), and ended with an inter-trial period of 4 s. If a lick was detected during the last 2 s 

of the visual stimulation (response window), the mouse was rewarded with ~4 μl of water 

for 2 s (Hit). If no lick was detected during the response window (Miss), water reward was 

given at the end of the visual stimulus during this conditioning phase. Once the number of 

Hits exceeded 150 within 30 min, the mouse was advanced to the next phase.
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For easy discrimination (5–10 days), each trial had the same temporal structure, but the 

visual stimulus was either the Go or No-go (horizontally oriented grating drifting upward) 

stimulus. The Go and No-go trials were randomly interleaved, but the same visual stimulus 

was never presented more than 3 consecutive times. Licking within the response window of 

a Go trial (Hit) was rewarded with water, whereas licking in the response window of a No-

go trial (false alarm, FA) was punished with a mild air puff (100 ms) and a longer inter-trial 

interval (8 s, timeout). The mouse was neither rewarded nor punished for Miss (no-lick in a 

Go trial) or correct rejection (CR, no-lick in a No-go trial). Hit and FA rates were quantified 

as followings:

Based on the Hit and FA rates, orientation discriminability (d′) was quantified by:

where norminv is the inverse of the cumulative normal function21, 36. Higher d′ values 

indicate better performance in visual discrimination.

If a threshold performance (d′ > 1) was reached within 10 days for the easy discrimination 

task (orientation difference between Go and No-go stimuli, Δθ = 90°), the mouse was 

advanced to the next phase. Some of the mice failed to reach the threshold, and they were 

not further tested.

For hard discrimination (> 5 days), each test block consisted of 20 trials, in which Go and 

No-go trials at a fixed Δθ were randomly interleaved (Δθ = 30°, 60°, or 90°). To ensure that 

the mouse stayed motivated, we alternated between a ‘relearning’ block (Δθ = 90°) and a 

‘test’ block (Δθ = 30°, 60°, or 90°; the sequence among test blocks of different Δθ was 

pseudo-random). For each mouse, the orientation of either Go or No-go stimulus was fixed, 

while Δθ changed across blocks. Discriminability (d′) was then measured as a function of 

Δθ. When d′ > 0.5 for Δθ = 30°, we added test blocks with Δθ = 10° (i.e., we alternated 

between the relearning block with Δθ = 90° and a test block with Δθ = 10°, 30°, 60°, or 90°). 

The addition of this most difficult block (Δθ = 10°) often caused a considerable drop of the 

overall performance, most likely caused by a loss of motivation due to the high failure rate. 

We continued the training in this phase until the performance recovered to a level 

comparable to that prior to adding the block with Δθ = 10°.

For the optogenetic experiment, the effect of optical activation of PV+ neurons on 

orientation discrimination was measured at Δθ = 10°, 30°, 60°, and 90°. In each block, laser 

stimulation was applied in 50% of randomly selected trials, and d′ was analyzed separately 

for trials with and without laser stimulation. To eliminate the trials near the end of each 

session, when the mouse was satiated and lost motivation for the task, we only included the 

trials with > 50% hit rate within 100 consecutive trials. To minimize the amount of laser 

light reaching the eyes, the optic fiber was shielded by a black tape.
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Since very strong suppression of visually driven cortical responses can negatively impact 

perception, the laser power was chosen carefully to match between the behavioral and 

electrophysiological experiments. We first measured the loss of laser power through the 

skull (craniotomy was made for the acute electrophysiological experiments but not for the 

chronic behavioral experiments) in vitro by passing the laser beam through the skull of a 

mouse previously used in the behavior experiment (note that a small hole was drilled during 

virus injection several weeks before the behavioral experiment, so the skull at the injection 

site is thinner than at other places; our calibration was performed at the injection site). We 

found ~30% loss of power after passing through the skull. Since in the majority of the PV-

ChR2 electrophysiology experiments we used 0.6 – 0.7 mW of laser power, which was 

found to be effective in sharpening the tuning curve without excessive suppression of 

cortical activity, we chose 0.8 – 1 mW laser power for the behavioral experiments. Each 

mouse was tested up to 8 sessions (one session per day), and all animals tested with 0.8 – 1 

mW laser were included (n = 25).

Among the 25 PV-ChR2 mice tested, 6 were advanced directly from easy discrimination to 

optogenetic experiment, and the effect of PV activation was tested only at_Δθ = 90°; 10 

mice were trained in hard discrimination at Δθ = 30°, 60°, and 90°, and the effect of laser 

was tested at these three angle; the remaining 9 mice were trained in hard discrimination at 

Δθ = 10°, 30°, 60°, and 90° before the effect of laser was tested at all four angles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Optogenetic activation of PV+, SOM+, and VIP+ neurons and silencing of CaMKIIα+ 
neurons
a, Fluorescence images of immunostained PV+ cells (red) expressing ChR2 EYFP (green). 

Scale, 20 μm. Top, schematic illustration of experiment in a–c. b, PSTHs of neurons during 

30 repeats of blue laser stimulation. Top, cells showing significant firing rate decrease 

(P<0.01, bootstrap; n=41). Middle, cells without significant change (n=43). Bottom, cells 

with significant increase (n=12). Gray, individual cells; red, average within each group. Blue 

bar, duration of laser stimulation (5 s). Firing rate of each cell was normalized by its mean 

rate over the 5 s before stimulation. c, Histogram of firing rate changes. Black, gray, white 

bars represent cells showing significant decreases (P<0.01), no change, and significant 

increases, respectively. Inset, spike waveform averaged across cells with significantly 

decreased (black) or increased (gray) firing; d–f, Similar to a–c, for Arch-mediated silencing 

of CaMKIIα+ neurons; g–i, for ChR2-mediated activation of SOM+ neurons; j–l, for ChR2-

mediated activation of VIP+ neurons.
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Figure 2. PV+ activation enhances V1 stimulus selectivity
a, Tuning curves of two cells, each box for one cell. Gray dots, measured firing rates (mean 

± s.e.m.). Black line, fitted curve. Upper, no laser; lower, laser stimulation (thunderbolt 

mark). b–d, Population summary of ChR2-mediated changes in stimulus selectivity (n=41). 

Each circle represents one cell; cross, population average (±s.e.m.). b, Tuning width σ, light-

off, 32.1±2.9° (s.e.m.), light-on, 19.7±1.9°; 22% individual neurons showed significant 

decrease at P<0.01 (bootstrap), none showed significant increase. c, DSI, light-off, 

0.30±0.05, light-on, 0.45±0.06; 11% neurons showed significant increase, none showed 

significant decrease. d, Preferred orientation θ0, median difference between light-on and 

light-off, 6.2°. For neurons in b–d, laser reduced visually evoked firing rate from 5.5±0.6 

(s.e.m.) to 2.8±0.5 spikes/s (P<10−4, paired t-test). Filled circles, examples cells in a. e–h, 

Similar to a–d, for CaMKIIα+ silencing. Mean firing rate reduced from 3.0±0.4 to 2.2±0.4 

spikes/s (n=56, P=0.003). f, σ, light-off, 23.6±1.8°, light-on, 24.3±2.0°, no individual cell 

showed significant change. g, DSI, light-off,0.43±0.04, light-on, 0.41±0.04. h, θ0; median 

difference, 5.4°. i–l, Similar to a–d, for SOM-ChR2 mice. Firing rate reduced from 3.4±0.6 

to 1.9±0.4 spikes/s (P<10−3). j, σ; light-off, 26.9±2.1°, light-on, 26.2±2.3°, n=33. No 

individual cell showed significant change. k, DSI; light-off, 0.29±0.05, light-on, 0.36±0.06. 

l, θ; median difference, 5.7°. m–p, for VIP-ChR2 mice (n=31). n, σ; light-off, 21.8±1.8°, 

light-on, 25.5±2.8°. o, DSI; light-off, 0.35±0.05, light-on, 0.41±0.05. p, θ0; median 

difference, 5.6°.
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Figure 3. Effects of PV+ and SOM+ activation on FI function
a, Example traces showing neuronal spiking evoked by current injection. Red, voltage trace 

without laser; blue, with laser. Arrowhead, laser onset (laser offset, 800 ms after current 

injection, not shown). Current amplitude, 0.45 nA (upper) and 1.2 nA (lower). b, FI curve of 

the cell shown in a. Red, without laser; blue, with laser. Error bar, ±s.e.m. Dashed lines, 

current amplitudes shown in a. c, d, Summary of threshold (lowest current that evokes 

spiking) and FI slope with and without laser. Each symbol represents one cell (n=10). e–h, 

Similar to a–d, for SOM+ activation (n=8).
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Figure 4. PV+ activation improves perceptual discrimination
a, Schematic of behavioral experiment. b, Task design. Gray bar, duration of visual 

stimulation. Black bar, response window. FA, false alarm; CR, correct rejection. c, Changes 

in Hit and FA rates of PV-ChR2 mice over training (n=25 mice, mean ± s.e.m.). d, Changes 

in d′ over training, e, d′ vs. Δθ, Data in c–e were collected without laser stimulation. f, 
Laser-induced change in d′ in PV-ChR2 mice, significant at Δθ = 10° (P=0.008, Wilcoxon 

signed rank test, 0.032 after Bonferroni correction, n = 9 mice), Δθ = 30° (P=0.011, n=19), 

and Δθ=90° (P=0.007, n=25). g, Similar to f, for control mice (n=10).
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