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ABSTRACT OF THE THESIS 
 

Novel Vision-AI Techniques for Morphological Discovery in System Biology 
 

 
by 

 

Amitash Nanda 

 

Master of Science in Electrical Engineering (Intelligent Systems, Robotics, and Control) 

University of California San Diego, 2023 

Professor Debashis Sahoo, Chair 
Professor Bill Lin, Co-Chair  

 
 

Morphological study in system biology provides a broader perspective of understanding 

biological systems’ structure, form, and organization. Nowadays, incorporating state-of-the-art 

novel vision-AI techniques revolutionizes this study and could accelerate the feature extraction 

process and lead to groundbreaking discoveries. The design of novel computer vision-based Deep 

Learning algorithms enables the development of predictive models, which helps in studying 

disease progression, developing personalized medicines, drug testing, organ replacement, etc.   

This thesis presents novel procedures and techniques to extract features from confocal and 



xv 
 

histopathological images to study organoid culture and colorectal cancer.  I have successfully 

created a unique dataset of Crohn’s disease patient-derived organoids (PDOs) and normal colon 

tissue samples from mice and humans. Organoids need rigorous rapid imaging for continuous 

monitoring over a long period. Therefore, it is challenging for scientists to process and verify the 

data manually. Our developed first-of-its-kind novel organoid mining engine process provides a 

real-time investigation of organoids. The developed model accurately locates, quantifies, tracks, 

and classifies human colon organoids without expert intervention. Histopathology image analysis 

is the key to diagnosing colon cancer by focusing on cell morphology and tissue structures.   A 

pathologist takes images from the interest section of the tissue and prepares them for further 

analysis. The traditional method involves hand-crafted feature extraction followed by classical 

image processing techniques. I have introduced an original U-shaped crypt segmentation model 

using novel vision-AI on colon tissue, revealing a new gene expression pattern on the glandular 

epithelium cells. 
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CHAPTER 1. Introduction 
 

1.1 Thesis Outline 

 
 

This thesis is structured into three chapters. Each chapter addresses the unique objective 

outlined in this thesis research study (below). Chapter 1 begins with an introduction to system 

biology and overviews its scope and significance. Further, it explores the role of computational 

methods in understanding biological systems. The chapter highlights the importance of 

morphological analysis as a significant component of systems biology, providing the groundwork 

for incorporating vision-AI-based technologies. Further, it introduces various types of images 

typically studied in system biology and focuses mainly on confocal and histopathological 

images. Chapter 2 centers on the application of vision-AI in the morphological analysis of colon 

crypts and its study for colorectal cancer, emphasizing the significance of the CDX2 marker. The 

chapter highlights techniques such as gland and cell/nuclei segmentation and outlines the method 

for handling gene-expression data using Boolean implication relationships. It introduces a novel 

approach for the staining process and a vision-AI colon-crypt segmentation model. The chapter 

concludes with the revelation that the above-said techniques aid in novel discoveries from the 

morphological data verified by experts. Chapter 3 uses vision AI to explore the morphological 

analysis of organoids associated with Chron's disease. It provides a comprehensive introduction to 

organoids derived from Crohn's disease patients and underscores its importance in biological 

findings and current gaps in organoid research. Also, it talks about the innovative computer-vision-

based deep learning model for organoid counting and classification. The chapter ends with a 

discussion about the proposed approach's contribution to discoveries in morphological studies 

validated by experts in the respective field. 
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1.2 Systems Biology 
 

Systems biology is a holistic approach in biomedical research deciphering the complex 

biological systems at the cell, tissue, or organism level. Moreover, this research focuses on all the 

components of an organism and the interaction among them, considering all as one system rather 

than just individual parts2. It’s a paradigm shift from the reductionist biology of the past, where 

the emphasis was primarily on deconstructing complex biological systems into their simple 

component. Instead of focusing entirely on individual genes or proteins, it studies the complex 

network of interactions that helps in disease research. Scientists use these interconnections to 

develop effective therapeutic strategies leading pathways for precision medicine, finding new 

disease biomarkers, gene profiling, drug targets, and several other treatments. Systems biology has 

produced significant health science advancement and led to numerous discoveries in biomedical 

research3. It is a collaborative field involving disciplines like biology, computer science, 

mathematics, engineering, bioinformatics, etc. 

 

1.3 Computation in Systems Biology 
 

Predicting the outcome of an observable phenomenon is the basis of natural science. 

However, such predictions in biology are challenging because of the complex systems of living 

organisms. A single cell comprises many molecules that undergo numerous biochemical reactions 

influenced by enzymes, drugs, and variations in nutrition. Therefore, it is impossible for scientists 

to track all the bio-chemical processes considering the complexity of the biological systems, and 

it requires computational approaches along with experimental research4. Hence to calculate the 

effects of cellular functions, it has become necessary to develop computational models. 
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Figure 1.1: Computational Biology Overview. 
 

These models help visualize trends, perform precise component interaction calculations, 

and predict system behavior. Simulating entire cellular systems provides a deeper understanding 

of the system, calculates accurate medication dosage for patients, and identifies potential 

vulnerabilities in harmful pathogens for drug development. Process algebra is a computational 

method biologist have recently explored for modeling and analyzing biological systems. They are 

powerful tools that provide an unambiguous formal specification of interactions and 

synchronizations between concurrent processes. PAs often serve as the intermediate model and are 

translated into other computational models like differential equations or Markov models5. Boolean 

networks are a commonly used computational method that oversimplifies the complexity of 

biological systems by disregarding the intermediate states. It is widely used for analyzing the 
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robustness and stability of genetic regulatory networks6. Fig 1.1 displays the use of biology, 

technology, and computation for novel discovery.  Fig 1.2 displays the need for vision-AI 

framework in morphological study.  

 

1.4 Morphological Study in Systems Biology 
 
 

In systems biology, morphological analysis is the study that involves the investigation of 

the structure, form, and spatial organization of biological systems. This study usually ranges from 

the molecular to organism level and helps to understand the function and behavior through the 

system's organization and arrangement. Some standard techniques are used to understand 

morphology, such as microscopy for observing cellular structure or detailed structural analysis 

through computer imaging. Morphological studies are essential in systems biology to understand 

the system's overall behavior through individual components. Studying the morphology of cells 

helps us understand their function in tissue. Moreover, specific studies help in disease processes 

like changes in cellular morphology, which can indicate disease progression or the drug's effect on 

cells. Morphological analysis in systems biology is a complex process and involves numerous 

steps, as shown in Fig 1.3. The first step is to input data which could be biological samples like 

tissue, cells, organs, etc. The next step is to capture detailed images of the abovesaid biological 

samples through microscopy, tomography, radiology, etc. A pre-processing technique is used 

further to enhance the image quality and remove noise. The next step is identifying and quantifying 

morphological features of interest in the images, such as size, shape, texture, etc. These extracted 

features are used to identify patterns, classify samples, and make predictions based on extracted 

features using statistical analysis, machine learning, or vision AI. Finally, the results obtained 

during the analysis are used for interpretation in a biological context. 
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Figure 1.2: Morphological Analysis in Systems Biology. 
 

 

Figure 1.3: Importance of Vision-AI in the morphological analysis of the biological samples.  
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1.5 Different types of Images used in Biology for Computational Analysis 
 

Microscopy: These are images obtained using different microscopy techniques. Examples 

include bright-field microscopy, fluorescence microscopy, confocal microscopy, electron 

microscopy, and light sheet microscopy. Microscopy images provide a large amount of 

information about cellular and subcellular structures, protein localization, molecular interactions, 

and tissue organization. Microscopic imaging is pivotal in advancing our knowledge of biological 

systems and human health. Pathologists routinely employ microscopy to examine tissue samples 

and identify abnormal cellular structures that are crucial indicators of various diseases, including 

cancer, infectious diseases, and genetic disorders. This imaging technique is also used to examine 

the morphology, composition, and crystal structure of biological samples7. 

X-Ray Crystallography Images: X-Ray Crystallography Imaging determines the three-

dimensional structural design of a specified set of molecules. It is primarily used for both proteins 

and nucleic acids. The images obtained through X-Ray crystallography represent the electron 

density distribution within the crystal and provide valuable insights into the atomic arrangement 

of molecules. X-Ray crystallography has been used extensively to study the three-dimensional 

structures of nucleic acids, such as DNA and RNA. These studies have revealed valuable insights 

into the structural features and interactions within nucleic acid molecules, including DNA double 

helices, RNA folding motifs, and RNA-protein complexes. Understanding this structure and 

interaction is essential for deciphering processes such as DNA replication, transcription, and 

translation. X-Ray crystallography has also contributed to creating comprehensive structural 

databases, providing information for understanding protein evolution, function, and interaction 

networks8. 
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Cryo-Electron Microscopy: Cryo-Electron Microscopy, also known as Cryo-EM, is a 

technique used to determine the three-dimensional structure of macromolecules like proteins and 

complexes at near-atomic resolution. Cryo-EM images are obtained by freezing samples in a thin 

layer of vitreous ice and imaging this frozen sample using an electron microscope. Cryo-EM has 

emerged as a powerful tool for structure-based drug discovery and design. High-resolution cryo-

EM structures of macromolecular targets can provide valuable information for developing small 

molecule inhibitors or therapeutics that precisely target specific regions or binding sites. 

Techniques such as single-particle cryo-EM, cryo-electron tomography, and focused ion beam 

milling have expanded the range of biological samples and complexes that can be studied. 

Moreover, developments in detector technology and image processing algorithms have enabled 

higher-resolution structural determination and improved data interpretation. Cryo-electron 

microscopy has revolutionized the field of structural biology by providing high-resolution insights 

into the structures and dynamics of biological macromolecules and complexes9. 

Medical Imaging: A wide range of medical imaging techniques are available to clinicians, 

including computed tomography (CT). Magnetic imaging (MRI), positron emission tomography 

(PET), ultrasound, etc. Each of these techniques produces images of organs, tissues, and 

physiological processes within the human body. These images are used in computational biology 

to study anatomical structures, disease progression, and treatment responses. Techniques such as 

PET, SPECT, and optical imaging can be used to track the distribution, metabolism, and 

interaction of targeted molecular probes or tracers. Molecular imaging plays a crucial role in 

studying molecular pathways, drug development, and personalized medicine. Functional magnetic 

resonance imaging (fMRI) measures the changes in blood flow and oxygenation levels in the brain. 



8 
 

 

Figure 1.4: Different types of images used in computational biology11-14.  
 

fMRI enables researchers to map brain activity to study cognitive processes, neural networks, 

and brain disorders. Positron emission tomography (PET) and single-photon emission computed 

tomography (SPECT) are functional imaging techniques that assess organ function, metabolic 

activity, and receptor binding. Techniques such as MRI, CT, ultrasound, and positron emission 

tomography (PET) enable the visualization of pathological changes, tumor growth, organ 

dysfunction, and other disease-related abnormalities10. Fig 1.4 shows different types of images 

used in computational biology.  

 

1.6 Previous Work: Vision-AI in Medical Image Data 
 

Vision-based Deep Learning methods have been very effective for various medical diagnostic 

tasks, surpassing medical professional’s performance. This work implements multiclass 

classification on pulmonary diseases based on the NIH chest X-rays sample dataset. Further, chest 

radiographs, a 2D high-resolution greyscale medical image is used to detect Pneumonia. We 

performed a comparative analysis of detecting Pneumonia using different image classification 

models (custom CNN, VGG-16, ResNet-50). Further used model interpretability methods like 

SHAP 15 value analysis to justify the classification outcomes.  
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Figure 1.5: Overview of the research16. 
 

 

 
 
Figure 1.6: Model prediction on sample images16. 
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Figure 1.7: SHAP values for predicted model16. 

 
 
 

1.7  Target Image Data: Confocal and Histopathological Images 
 

 
Confocal Microscopic Images17 : Morphological investigations of confocal microscopic 

images involve analyzing and interpreting the structural characteristics, spatial organization, and 

morphological features of samples. These investigations give insight into the cellular and tissue 

morphology and the spatial relationships between different structures within the sample. Confocal 

microscopy allows for high-resolution imaging of cells and subcellular structures. Morphological 
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investigations examine the shape, size, and arrangement of cells and organoids within the 

specimen. This analysis can reveal details about cellular morphology, such as the presence of 

specific organelles, cell shape changes, or cellular interactions. Confocal microscopy also provides 

a means to study the organization and architecture of tissues.    

Morphological investigations assess the spatial arrangement of cells, tissues, and 

extracellular matrix components within the sample. This analysis can provide insights into tissue 

integrity and alterations associated with diseases or experimental conditions. Confocal microscopy 

enables the visualization of different structures labeled with various fluorescent probes or dyes.  

Morphological investigations analyze the co-localization patterns and spatial relationships 

between the different fluorescent labels. This analysis can reveal interactions, proximity, or co-

localization of specific molecules, proteins, or cellular components within the sample. 

Morphological investigations can also involve quantitative analysis of confocal microscopic 

images. This may include measuring various morphological parameters, such as cell or organoid 

shape descriptors, size, spatial distribution, or density of specific structures. Quantitative 

morphometry can provide objective and numerical measurements, allowing for comparisons 

between different samples or experimental conditions. Ultimately, morphological analysis of 

confocal images plays a crucial role in understanding cellular and tissue biology, characterizing 

disease processes, and evaluating experimental interventions. These investigations provide 

valuable insights into the morphological changes, spatial organization, and structural features 

within biological samples, contributing to our understanding of normal and pathological 

conditions. 

Histopathological Images18 : Histopathological imaging involves examining and 

analyzing tissue samples to study the microscopic features and changes associated with diseases. 
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It is an essential technique used in pathology and medical research to diagnose and understand 

diseases while guiding treatment decisions. Histopathological images are obtained through 

samples taken from biopsies or surgical resections. These samples are either embedded in paraffin 

wax or frozen, sliced into thin sections using a microtome, mounted on glass slides, and subjected 

to specific staining to enhance tissue visibility and highlight specific cellular components and 

structures. The most common staining technique is hematoxylin and eosin (H&E) staining. H&E 

staining provides information about tissue architecture, cellular morphology, and overall tissue 

composition. Another popular staining technique, Immunohistochemistry (IHC) staining, utilizes 

specific antibodies to detect and visualize the presence or absence of specific proteins or 

biomarkers in the tissue. Other staining techniques, such as special stains and fluorescent stains, 

are employed to assess specific tissue components or detect specific cellular abnormalities.  

In recent years, digital imaging technologies have been increasingly used in 

histopathology. Whole-slide imaging (WSI) systems capture high-resolution digital images of the 

entire tissue section, enabling digital viewing and analysis. These images allow for the analysis of 

the morphology, organization, and distribution of cells and tissues in the sample to identify any 

pathological changes or disease-specific features. Histopathological image analysis can automate 

tasks such as cell counting, morphological measurements, tissue segmentation, and broader pattern 

recognition. These analyses can aid in identifying specific features, quantifying biomarkers, and 

correlating histological findings with clinical outcomes. Histopathological imaging is crucial in 

diagnosing diseases, understanding disease progression, and guiding treatment decisions in various 

medical specialties. It provides valuable insights into the cellular and tissue changes associated 

with diseases, facilitating the development of targeted therapies and personalized medicine 

approaches. 
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Figure 1.8: Crohn’s disease organoids and whole slide normal colon tissue image.  
 
 

 

Fig 1.8 shows the confocal and histopathological images used in this research. Crohn’s 

disease confocal images are collected from the patient derived organoids, while whole slide images 

are collected from the normal colon tissue.  
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CHAPTER 2. Morphological Analysis of Colon Crypt using Vision-AI 
 

2.1 Abstract 
 
 

Colorectal cancer (CRC), or colon cancer, is the second most common cancer diagnosed 

in men and women annually in the United States. CDX2 is a crucial biomarker for colorectal 

cancer, and a thorough understanding of its expression pattern within the colon crypts is a 

significant factor in refining the diagnostic procedures and therapeutics for the disease. In addition, 

leveraging histopathological image analysis as a key tool for colon cancer diagnosis by focusing 

on cell morphology and tissue structures enhances the ability to detect this common malignancy. 

The traditional analysis involved hand-crafted feature extraction followed by applying classical 

computer vision methods. However, recent advancement in vision-based deep-learning techniques 

has improved digital pathology. In this research, I proposed that CDX2 is not expressed uniformly 

in every cell of the colon epithelium and is low in stem cells, which is associated with high-risk 

colorectal cancer. Additionally, it is believed that CDX2 is low at the bottom of the crypt and can 

be used as a biomarker for differentiation in colorectal cancer. A new staining process is adopted, 

which demonstrates the differential expression of CDX2 in colon crypts. I performed several 

experiments throughout the investigation to validate the proposed hypothesis. I introduced an 

original work for gland instance segmentation using novel mask-RCNN and state-of-the-art yolo-

based architectures, which reveals a new gene expression pattern on the glandular epithelium cells. 
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2.2 Introduction 
 
 

Colorectal cancer (CRC), also known as colon or rectal cancer, represents a significant 

health threat, as it stands as the second leading cause of cancer-related mortality in the United 

States. According to the worldwide study in 202019, CRC caused 930 thousand deaths out of more 

than 1.9 million cases. The study by researchers from the International Agency for Research on 

Cancer (IARC) indicated that by 2040 the numbers might increase to 3.2 million cases per year 

with an increase of 73% deaths which accounts for about 1.6 million deaths per year20. According 

to the American Cancer Society, in 2023, approximately 153,020 individuals will be diagnosed 

with CRC, and 52,550 will die21. Moreover, there has been a noticeable rise in the incidence of 

cases in the younger generation.   The incidences of colorectal cancer vary region-wide worldwide, 

with higher rates being observed in developed countries like North America, Europe, and 

Australia. However, the deaths associated with colorectal cancer are also increasing in developing 

countries like India, China, etc22. Early detection and diagnosis of colorectal cancer can improve 

the chances of survival and save millions of lives. Pathologists can reach any suspiciously 

identified area through colonoscopy and collect samples for further examination. To facilitate easy 

identification of target area methods like inking are adopted, and to enhance visualization, different 

staining techniques like Hematoxylin and Eosin(H&E) staining, Immunohistochemistry (IHC), 

Periodic Acid-Schiff (PAS) staining, etc. are used. Though manual pathological practices have 

been followed for ages, digital pathology can be more beneficial; for instance, it can eliminate 

human-induced noises23.   

Digital Pathology (DP) is the process of converting a physical histopathology slide into a 

high-resolution digital image or Whole Slide Image (WSI), which can range in size from 200MB 

to 10GB24. This conversion provides efficient compression, storage, sharing, and viewing the  



16 
 

 

Figure 2.1: Application of vision-AI in the morphological analysis of colon crypts. 
 

scanned slides on any platform. Utilizing DP can enhance efficiency and accuracy while 

decreasing operational costs, reducing data biases, and decreasing manual labor25-26. Traditional 

approaches involve extracting hand-crafted features from tissue structures or cells using classical 

image processing techniques27. DP aims to predict and characterize cancer prognosis; however, 

the conventional methods fall short due to poor feature selection, staining bias, and lack of 

generalization, leading to undesirable results. The recent advancement in Deep Learning and state-

of-the-art architectures have significantly influenced biomedical image analysis, offering immense 

improvements in the field.  

There has been a significant advancement in vision-AI using Deep Learning. Some tasks 

include image classification, object detection, image segmentation, etc. Analyzing any problem in 

Deep Learning involves a set of standard steps; preparing the data, which involves annotating the 

desired objects, splitting into the train, test, and valid; selecting a pre-existing model trained on a 

large dataset such as ImageNet or Coco; Adjusting the selected network to suit our use case by 

transfer learning or fine-tuning; followed by dataset evaluation and hyper-parameter optimization 
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to enhance model accuracy. Several professionals and researchers working with medical data have 

thought about starting with ImageNet pre-trained weights. Medical data like X-ray differs from 

ImageNet data, as an X-ray image in grayscale, while the ImageNet model is trained on RGB 

images. Therefore, the features extracted from ImageNet might not necessarily apply to all medical 

images. Even medical datasets are small, as they involve huge costs in generating each cohort. The 

size limitation necessitates freezing most of the neural network layer to avoid overfitting. Despite 

the abovementioned challenges, the medical data trained on ImageNet pre-trained weights have 

achieved human-level accuracy28. Hence, with proper data selection, annotation, and pre-

processing, selecting recently advanced architecture and fine-tuning on ImageNet pre-trained 

weights with error analysis can significantly provide outstanding results. In colon tissue, novel 

vision-AI can solve three major tasks instant or semantic segmentation on nuclei level and 

glandular areas, tissue classification (adenoma, cancerous), and detection29.  

The colon is the most extended segment of the large intestine and performs a crucial 

function in our body’s utilization and processing of food. Uncontrolled cellular growth in the colon 

or rectum leads to colorectal cancer, as shown in Fig 2.2. In the initial stage, colon cancer is 

confined to the inner lining of the colon; as the progression of the disease, cancer infiltrates the 

colon’s layers, extends to nearby structures, and further spreads to other organs. Glands constitute 

a fundamental component of the colon, and the epithelium of the colon glands contains 

morphologically and biochemically identifiable mature cell types. These include absorptive 

Enterocytes, mucus-secreting Goblet cells, Paneth cells, and undifferentiated crypt Stem cells30 as 

shown in Fig 2.3. Intestinal crypts are small tubular recesses in the epithelial lining of the colon 

and small intestine and serve as the home for stem cells, which are vital for the maintenance and 

repair of the epithelial layer.  
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Figure 2.2: Colorectal cancer patient’s colon due to uncontrolled cellular growth. 
 

 

 

Figure 2.3: Glands constitute a fundamental component of the colon. 
 

One important application of deep learning in colon tissue is gland segmentation31. Glands 

are the essential part of the colon, and the epithelium of the colon glands contain morphologically 

and biochemically identifiable mature cell types that include absorptive Enterocytes, mucus-
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secreting Goblet cells, Paneth cells, undifferentiated crypt Stem cells32. While numerous studies 

focus on stem cell characterization in the small intestine, research on colon crypt characterization 

remains limited. It is well known that crypt epithelial cells are heterogeneous, and cell purification 

strategies are a big limitation. Gene expression patterns specific to each cell type provide 

information about the differentiation states, and in Colorectal cancer (CRC), some of them become 

strongly prognostic33, which Immunohistochemistry (IHC) technique can do. 

IHC is a technique used by pathologists to test for the presence of clinically important 

biomarkers in tumors. It generally involves identifying specific antigens present in the tissue 

sample and staining them with corresponding antibodies. This process results in a microscopic 

slide that typically displays two colors, visually representing the target gene expression. Studies 

using Immunohistology on normal colon crypts have demonstrated that ALCAM (also known as  

CD166 Antigen) exhibits high expression at the bottom of the crypts and low expression at the 

top. Therefore, it is considered a good biomarker for intestinal stem cells and Paneth cells34. 

Furthermore, our previous study identified a strong Boolean implication relationship between 

CDX2 and ALCAM; "𝐶𝐷𝑋2	𝑙𝑜𝑤	 => 𝐴𝐿𝐶𝐴𝑀	ℎ𝑖𝑔ℎ"35.This means when CDX2 expression is 

low in the bulk tumor tissue, ALCAM is high in those samples. CDX2 is a protein-coding gene 

and a member of the caudal-related homeobox transcription factor family, which plays an essential 

role in regulating cell differentiation and development. CDX2 is typically expressed in the 

epithelium. In the epithelium layer, the cells are interconnected vis junction cells and act as a glue 

to prevent individual cells from separating when touched. The luminal surface of the colon, when 

viewed in 3D, appears mountain like structure that expands the surface areas and allows for 

increase food and water absorption.  Stem cells are located at the bottom of these crypt-like 

structure. If all stem cells are eliminated from the colon, the entire crypt structure collapses. 
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Figure 2.4: Epithelium Gland of Colon Tissue showing the top and bottom of the crypt. 

 

This results in the death of the epithelial lining.  Scientists started deleting various genes, 

and upon deleting CDX2 lead to the collapse of the epithelium. Therefore, CDX2 expression has 

been studied extensively and is now recognized as crucial for defining the identity of colon tissue. 

Earlier CDX2 is believed to be a Diagnostic biomarker, but Piero Dalerba, Debashis Sahoo, et al. 

(2016) proposed CDX2 as a prognostic biomarker in stage II and stage III colon cancer, states that 

CDX2 can be a prognostic biomarker. From the above discussed CDX2 ALCAM relationship we 

hypothesize that the stem and progenitor cells of the colon tissue that are ALCAM marker of 

normal high have low levels of CDX2 and is tightly linked to the state of differentiation in colon 

tissue. Having these two facts together, does it mean that CDX2 also has a differential expression 

along the crypts? Fig 2.4 shows the schematic of epithelium gland of colon tissue.  
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2.2.1 Gland Segmentation 
 
 
 

 
 

 
Figure 2.5: Effects of different cuts on 3D tabular glands when we project then in 2D.  
 

In Colorectal cancer, glands morphology and structure play a crucial role in cancer 

grading36-37. The colon glands are tabular-shape epithelium layer that are spread all over the outside 

layer of the colon tissue38. A normal tissue can have more than millions of glandular objects39.  

The mechanism for their cell regeneration, forms a pipeline from the bottom, to the top where the 

last cell at the top usually dies and release from the tissue. This circular usually happens every two 

weeks which is one of the fastest regeneration processes in the body where any corruption along 

the process can lead to cancer formation. As discussed above the epithelium layers contains Goblet 

cells and Absorptive cells for absorbing nutrients and water or secreting the enzymes and mucus40. 

The inner part of the gland mostly contains the stem cell and Paneth cell. The small intestine and 

large intestine (colon) both have these glands, however the large intestine doesn’t have the Paneth 

cells. In this study I focus on the morphological analysis of the glands called crypts. Each colonic 

crypt, depending on the cutting across or parallel to the long-axis, can either have a O-shaped or 

U-shaped images as shown in Fig 2.5. Nevertheless, most of the published works in this area are 

using the O-shaped images.  
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The appearance of histological object like gland as you can see in the Fig 2.3 varies in their 

size, structural shape, and boundaries. Studies showed that different stages of cancers lead to 

different outcome of gland morphology, thus H&E images are great resource to predict the cancer 

degree specifically adenocarcinoma, the most common type of cancer in colon tissue. Focusing on 

these objects, requires isolating them from the rest of the tissue, which is get done by semantic and 

instance segmentation methods. Fig 2.6 shows the overall steps followed in this research. 
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Figure 2.6: Individual steps involved during the entire study.  
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2.3 Methods 
 

 
2.3.1 Gene Expression Data 

 

We used available microarray and RNA-Seq datasets in NCBI Gene Expression Omnibus 

(GEO) database.  

Table 2.1: Gene Expression Analysis using Boolean Implication and visualized in Hegemon41. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

2.3.2 Boolean Implication Relationship 
 
 

The expression values of each gene were ordered from low to high, and a rising step 

function was computed to define a threshold by the StepMiner algorithm in the individual data set. 

If the assigned threshold for a gene was t, then expression levels above t + 0.5 were classified as 

high, and the expression levels below t - 0.5 were classified as low. Expression levels between t - 

0.5 and t + 0.5 were classified as intermediate. A previously published BooleanNet algorithm was 

performed to determine Boolean Implication relationships between genes42. Briefly, the 

Data Type n (Sample) Platform 

Microarray GSE42069 (n = 90) Affymetrix Human Genome Homo 
Sapiens 

Microarray GSE120699 (n = 4) Affymetrix Human Gene 1.0 ST 
Array Homo Sapiens 

Microarray GSE45134 (n = 6) Affymetrix Human Gene 1.0 ST 
Array Homo Sapiens 

RNA-Seq GSE135460 (n = 30) Illumina NextSeq 500 Homo Sapiens 
 

RNA-Seq GSE106378 (n = 9)  Illumina HiSeq 2000 Homo Sapiens  

RNA-Seq GSE162633 (n = 8) Illumina HiSeq 2500 Homo Sapiens 
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BooleanNet algorithm searches for at least one sparsely populated quadrant in a scatterplot 

between two genes. The intermediate expression values were ignored by the BooleanNet 

algorithm. There were six possible scenarios: one of the four quadrants was sparse (four 

asymmetric Boolean implications), and two diagonally opposite quadrants were sparse (Equivalent 

and Opposite Boolean implications). Using this method, the Boolean relationship between 

ALCAM and CDX2 expression has been found in the bulk tissue dataset. 

 

2.3.3 Immunohistochemistry Staining procedure 
 

 
Immunohistochemical staining is a technique used to detect specific proteins in tissue sections 

using antibodies that bind to these proteins. The tissue sections are first fixed and embedded in 

paraffin wax or frozen in liquid nitrogen. Then, the sections are treated with primary antibodies 

that bind to the target protein, followed by secondary antibodies conjugated to a detection system, 

such as fluorescent dyes or enzymes. The resulting staining pattern can be visualized using a 

microscope and can provide information on the distribution and abundance of the target protein in 

the tissue sample. For our purposes, we wish to gain information on the distribution and expression 

pattern of the CDX2 gene along the colon crypt. Further, we aim to develop an understanding of 

the differential expression of the CDX2 along the top and bottom of the crypt. 

Fig 2.7 shows the schematic representation of a novel IHC staining procedure introduced 

in this research. More specifically, we have introduced a new method for the antigen retrieval part 

of the overall staining process. The standard method used in practice has been pressure cooking at 

a pH of 9.0. In this research, we have proposed using a new boiling method (pH 9.0) which 

succeeds in showing the differential expression of the CDX2 gene along the top and bottom of the 

crypt.  
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Figure 2.7: New staining procedure introduced and adopted in this research.  
 

We begin the staining procedure with the FFPE selection of the tissue from the colon crypt. 

To contrast the differences between the standard (pressure cooking) and new (boiling) antigen 

retrieval procedures, we use both approaches parallelly and compare the final stained slide 

segments. Once antigen retrieval from the tissue is completed using either pressure cooking or 

boiling, IHC staining is performed on them. More specifically, after the H2O2 incubation and 

blocking, we incubate with the CDX2-88 primary antibody, followed by incubation with the 

conjugated secondary antibody. Finally, the substrate is added for color development, and lastly, 

we counterstain with hematoxylin. At the end of this process, we get the stained tissue slides which 

are then analyzed under a microscope.  
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2.3.4 Data Preparation 
 

We have used different staining slides from human and mouse colon samples for which 

standard protocol for gene targets has been followed. Specifically, we stained different slides in 

svs and Czi format for CDX2, KRT20, CAI, MUC2, and SLC26A3. The colon glands appear as 

U or O-shape in each slide depending upon whether they are cut horizontally or vertically. To get 

more U-shapes, vertical cross-cuts have been applied to each slide. Normal crypt regions have 

been extracted using QuPath software43, and the region of interest (ROI) has been resized to zero 

padding and has been applied wherever necessary. Then Reinhard normalization was applied to 

the images so that they have the same color spectrum. After this, for the training procedure, 1061 

U-crypts and 1550 O-glands were annotated using Gimp software from 291 slide images and 

external datasets (Warwick QU and CRCHistoPhenotypes). These images were split into train, 

test, and validation following the general rule in 219 train, 48 test, and 24 validation images. In 

order to provide more data for the training and improve model accuracy, image augmentation and 

color distortion were applied to the images. We also used the Roboflow pipeline to annotate 1308 

O-glands and 928 U-crypts resized to 640*640, with 192 training, 55 validation, and 28 testing 

images. Fig 2.8, Fig 2.9, and Fig 2.10 shows the dataset generation and preparation for model 

training.  
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Figure 2.8: The schematic representation of whole slide image data generation. 

 

 

 
 
 
 
Figure 2.9: The schematic representation of dataset preparation. 
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Figure 2.10: The schematic representation of data pre-processing. 

 
 

 
 
 
 
 
 
 

Effect of different cuts on 3D tabular glands when we project them in 2D 

XY-axis adjusting unit using hough trtransform 

Regions of normal colon crypts extracted by QuPath

Images after normalization and transformation
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2.3.5 Gland Segmentation 
 
 

 
 

 

Figure 2.11: The schematic representation of maskRCNN and state-of-the-art yolo model.  

 
 

Gland segmentation has been performed using the Mask R-CNN44 model Matterport 

implementation. I deployed various models such as Resnet50-UNet, Resnet50-segnet, Resnet101, 

FCN-8, FCN-32, etc. It was found that Resnet5045 + FPN46 gave superior performance on our 

dataset in terms of accuracy and time trade-off. The learning rate has been set to 0.0001 and RPN 

anchor scales to (32, 64, 128, 256, 512), NMS threshold to 0.4 and min confidence to 0.7. The 

RPN anchor was unable to find satisfactory bounding boxes due to the presence of arbitrary 

orientation of crypts.  Bilateral filtering was applied to blur the neighboring nucleus and form a 

line and then the borders were detected using canny edge detector. After this, probabilistic Hough 

transform has been applied to find straight lines and image is rotated along the fitted line angle to 
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orient all the U-crypts along the same direction. This led to an improvement of 10% IU score for 

the U-crypt detection. I also used Yolo based models to perform object detection in yolov5 and 

instance segmentation in yolov8 trained on Coco dataset as shown in Fig 2.11. The state-of-the-

art yolo models handle different orientation of the input image and provides improved accuracy 

than the maskRCNN. 

 

2.3.6 Color Pattern Detection 
 

After detecting the crypts, the next step is to detect if there exists any color variation along 

them. To do this first the U-shaped crypts have been aligned from top to bottom by fitting ellipses 

and then the color pattern along these aligned crypts were measured. The nucleus is stained blue 

if it passes through the expression for threshold else it is stained brown. Using HSL color spectrum, 

each pixel is classified either as blue if Hue value lies in the range of (80, 140) and brown if it 

either has value between (0, 40) or (150, 180), then the ratio is calculated along the crypt to justify 

the pattern. 

2.4 Result 
 

2.4.1 Boolean Implication Relationship 
 

 
Scientists widely known that ALCAM has differential expressions along the colon 

epithelial cells. I used Boolean analysis to search for other biomarkers of colon epithelial 

differentiation. Various transcriptomic Microarray and RNA-Seq human, mouse, and rat colon 

tissue datasets are collected from NCBI GEO and normalized. Gene expressions in colon tissue is 

searched where low expression of that gene implies the high expression of the ALCAM. Candidate 

genes were ranked according to the availability of clinical-grade diagnostic assays, and then CDX2  

Figure 2.12: CDX2 and ALCAM relationship using Boolean Implication. 
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Figure 2.12: CDX2 and ALCAM relationship using Boolean Implication. 

 

had the best score among the candidates. Our previous study, similarly, has shown a strong 

Boolean relationship between CDX2 and ALCAM35. We developed a mathematical model around 

CDX2 and identified CDX2 low and CDX2 high as distinct differentiation states of colon epithelial 

cells. Based on this, I hypothesize that the crypt base consisting of stem and progenitor cells may 

be CDX2 low. This Boolean implication “if CDX2 low then ALCAM high” is true across all 

human datasets from different platforms- Affymetrix and TCGA RNA-Seq. Based on this strong 

and robust relationship between CDX2 and ALCAM, I assume that there may be a Boolean 

invariant relationship between CDX2 and ALCAM in the colon and small intestine tissue that is 

preserved in both normal and cancer, and across species between human, rat, and mouse. 
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2.4.2 Immunohistochemical Staining Result 

 

The role or function of CDX2 expression in colon cancer has been studied extensively. Our 

hypothesis contrasts with the current understanding of the CDX2 patterns in the human colon. 

Nuclear staining was observed from the bottom to the top of the crypt when the pressure setting 

was changed from high to low. It is hard to assess the CDX2 expression pattern using the IHC 

method quantitatively. Our mathematical model gives new insights into the differential expression 

patterns of CDX2 between stem cells and the differentiated cells of the colon crypt. Our result 

agrees with the previous CDX2 staining result. CDX2 expression may be high in all human colon 

epithelial cells compared to other tissue cells. However, the differentiated cells' CDX2 expression 

may vary between the stem cells, and it is hard to capture that difference using the IHC approach.   

Therefore, the antigen retrieval step is modified in the IHC technique, and the boiling method is 

used to analyze the CDX2 stain in a normal colon crypt. Normal crypts were stained from 5 patients 

using CDX2, and surprisingly, able to capture this difference using IHC. Our CDX2 staining shows 

that the top of the crypt cells is enriched with CDX2 positive (brown stain), whereas the bottom 

has CDX2 negative cells (blue stain) in the adjoining normal tissue. Fig 2.13 shows different 

staining, boiling, vs. pressure cooking with different settings. In boiling protocol with this type of 

setting, you can see a pattern along the crypt, and the expression changes as we go upward; 

however, in pressure cooking, we can't see any pattern. Furthermore, more CDX2 negative cells 

are found in the adenoma, and it is consistent all over the infected region compared to the normal 

crypts. Both the H&E and IHC DAB stained slides are evaluated in this study. Finally, Fig 2.14 

shows all boiling and pressure-cooking samples in one plot. As you can see in boiling, as we 

increase time, the bottom and top of the crypt are getting the same staining, and you see the same  
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Figure 2.13: Violin plots of all the patient difference between the top and bottom of the crypts. 
 
pattern for pressure cooking. However, in pressure cooking, the differences are not as clear as in 

the boiling setting. This data replication shows that the finding is promising. 

 

   
Figure 2.14: Segmented crypt in boiling 2 minutes and pressure cooking 3 minutes. 
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2.4.3 Implementation Details 

 

The suggested MaskRCNN model was trained on the glandular regions with 90 epochs by 

the Adam optimizer. The model was trained on 4 NVIDIA GPU 1080 GTX, Nvidia driver v430, 

Cuda v10.1, and TensorFlow version v2.2. Each epoch took around 15 minutes to finish for the 

Resnet50 backbone model. I started with an initial learning rate of 10-3 and random weights. Each 

inference takes about 30 seconds. All validation loss function has decreasing value except the RPN 

class loss, which seems to overfit after epoch 40th because the two classes will be the same if the 

O-shape glands get cropped by the bounding box; This makes the network convergence even 

harder with our limited dataset. The suggested Yolo models were trained on the Google Colab Pro 

+ version. Object detection with the crypt and gland annotation saved in png format is performed 

using a YOLOv5s model. The original YOLOv5s model was trained on 80 classes; we modified 

the same and built a custom YOLOv5s model with two classes for our use case. Google Colab 

used Tesla T4 GPU and trained the model for 100 epochs with a batch size 16. In comparison, the 

YOLOv8 model was used to perform instance segmentation on the new annotated images. The 

model was trained for 100 epochs. 
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Figure 2.15: Aggregated result for all crypts in patient 1 pattern in different staining protocol. 

 

 
 
 
 

 

Figure 2.16: Aggregated result for all crypts in patient 2 pattern in different staining protocol. 

. 
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2.4.4 Evaluation and Comparison 

 

In the proposed model using mask RCNN only objects with min confidence and non-

maximum suppression of 0.7 and 0.4 were kept. To assess the semantic segmentation performance 

F1 and intersection over union (IOU) scores were computed. For every detected pixel 3 different 

classes are assigned: background, U-shape gland, or O-shape gland. Having the correspondent set 

of pixels as the ground truth, the IOU score is calculated for each class to measure the similarity 

using: 

𝐼𝑂𝑈!"#$% =	
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	 ∪ 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ 

Also, the precision and recall for each class was calculated and F1 score was computed using: 

𝐹&!"#$% = 2	 ×	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

 

A set of models, including Segnet47 and UNet48, which are widely used in previous colon 

segmentation, were compared against the MaskRCNN. Table 2.2 shows the model comparison, 

which demonstrates all the model's scores for each class. We evaluate each model on different 

classes with two scores. We also train all models on the normal colon crypt dataset (our dataset) 

and then test them on our test set and an external dataset (H&E-stained Warwick QU and 

CRCHistoPhenotypes) to measure how well each model can be generalized. As you can see, FCN 

and PSPnet49 didn't perform well on the test. Segnet and Unet needed to work better with others. 

However, VGG-Net as a backbone had improved the accuracy. Nevertheless, both achieved the 

best score with Resnet50 as a backbone. Even though these models can segment images from the 

same distribution as a training set, they perform poorly when we generalize the model with the 
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external dataset. On the other hand, MaskRCNN outperforms all other models in all cases. 

Furthermore, adding our new XY-alignment element before MaskRCNN inputs increased the 

accuracy by 5% on U-shape crypts which shows that this technique is useful. However, due to 

decreased image quality, O-shape gland scores were reduced by 3%. You can see the configuration 

of MaskRCNN has almost the same score on the external dataset, which means these models are 

robust to the data source. Fig 2.18 shows the segmentation result in Yolo v5 model with mAP50, 

and mAP50-95 score as 0.776 and 0.0491 respectively. Fig 2.19 shows the segmentation result in 

Yolo v8 model for gland and crypt with mAP50 score as 0.937, mAP50-95 score as 0.567 and 

mAP50 score as 0.748, mAP50-95 score as 0.654 respectively. This shows that the Yolo based 

model segmentation outperformed maskRCNN. Fig 2.17 shows the result obtained using 

maskRCNN. 

Figure 2.17: Original images with detected mask using novel maskRCNN. 
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Figure 2.18: Detected segmentation result using Yolo v5. 
 
 
 

 

 

Figure 2.19: Detected segmentation result using Yolo v8. 
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Figure 2.20: Performance metrices for results obtained using Yolo v8 for gland and crypt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.21: Precision and Recall curve using Yolo v8 for gland and crypt box. 
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Figure 2.22: Precision and Recall curve using Yolo v8 for gland and crypt mask. 
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Figure 2.23: Example of the output of semantic segmentation models in different settings. 
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Table 2.2: Evaluation metrices for all methods shows the MaskRCNN outperforms the rest. 

 
 

2.5 Discussion 
 

Our previous study discovered a Boolean implication relationship between CDX2 and 

ALCAM, specifically. However, when we used the pressure-cooking method (specifically, the 

Nordic QC recommended protocol for CDX2 obtained in run 48) for heat-induced epitope retrieval 

(HIER) in the immunohistochemical staining procedure, this relationship between CDX2 and 

ALCAM was not observed. On the contrary, the results from this protocol showed a high CDX2 

expression along the entire length of the epithelial cells in the crypt. This indicated that pressure 

cooking was unsuitable for observing the CDX2 pattern in the normal colon tissue. Our speculation 

for this behavior is that the combination of pressure and high temperature during pressure cooking 

might be a limiting factor for CDX2 expression leading to the staining of all cells. Therefore, we 

introduced a new boiling approach as the antigen retrieval procedure in this study. This method 

successfully helped us identify the CDX2 low expression at the bottom of the crypt, highlighting 

the differential expression of the CDX2 along the entire length of the crypt. Hence, this finding 

demonstrates the effect of temperature on the detection limit of the CDX2 expression. We believe 

this study may help in improved diagnosis of colorectal cancer and a better tissue organization 

from the top to the bottom of a normal crypt.  

Test Test on additional dataset
Algorithm background glands crypts mean background glands crypts mean

f1 score IU score f1 score IU score f1 score IU score f1 score IU score f1 score IU score f1 score IU score f1 score IU score f1 score IU score
fcn_8 0.97 0.94 0.48 0.31 0.49 0.33 0.65 0.53 0.93 0.87 0.21 0.12 0.14 0.07 0.43 0.35
fcn_32 0.96 0.92 0.40 0.25 0.42 0.26 0.59 0.48 0.93 0.87 0.41 0.26 0.22 0.12 0.52 0.42
pspnet 0.96 0.93 0.05 0.03 0.29 0.17 0.44 0.37 0.92 0.86 0.00 0.00 0.12 0.06 0.35 0.31
Resnet50 PSPNet 0.96 0.93 0.28 0.16 0.44 0.29 0.56 0.46 0.93 0.88 0.24 0.13 0.19 0.10 0.45 0.37
VGG PSPNet 0.96 0.93 0.22 0.12 0.40 0.25 0.53 0.43 0.92 0.86 0.00 0.00 0.01 0.01 0.31 0.29
Segnet 0.96 0.93 0.15 0.08 0.37 0.23 0.49 0.41 0.92 0.86 0.00 0.00 0.05 0.03 0.33 0.29
Resnet50 Segnet 0.97 0.95 0.58 0.40 0.57 0.40 0.71 0.58 0.93 0.88 0.17 0.09 0.20 0.11 0.43 0.36
VGG Segnet 0.97 0.94 0.43 0.27 0.47 0.31 0.62 0.51 0.93 0.86 0.05 0.02 0.07 0.03 0.35 0.31
UNet 0.97 0.93 0.25 0.14 0.34 0.21 0.52 0.43 0.92 0.86 0.01 0.00 0.01 0.00 0.31 0.29
Resnet50 UNet 0.97 0.95 0.56 0.39 0.56 0.39 0.70 0.57 0.93 0.87 0.16 0.09 0.14 0.08 0.41 0.35
VGG UNet 0.97 0.94 0.47 0.31 0.52 0.35 0.65 0.53 0.92 0.86 0.02 0.01 0.06 0.03 0.34 0.30
MaskRCNN 0.97 0.94 0.67 0.50 0.54 0.37 0.72 0.60 0.95 0.90 0.70 0.54 0.35 0.21 0.67 0.55
MaskRCNN Rotated 0.98 0.97 0.63 0.46 0.59 0.42 0.74 0.62 0.97 0.94 0.74 0.58 0.37 0.23 0.69 0.58
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           This study introduces a novel deep-learning approach for epithelium segmentation in normal 

colon tissue slide images. While many advances have been made in glandular structure 

segmentation within the tissue images, vertical crypt segmentation has yet to see much progress. 

We address this gap by developing a new algorithm that integrates computer vision and deep 

learning with our Boolean analysis framework to create a mathematical model of the human colon 

tissue. Our methodology leverages the characteristics of the tissue slide images with which we 

perform statistical analysis of the staining patterns. Using computational techniques, we 

successfully segmented each stained tissue image into vertical colon crypts with top and bottom 

orientations. Integrating computational approaches and the Boolean framework provides valuable 

insights into the genetic composition of colorectal cancer. Our mathematical model is based on a 

set of robust Boolean invariant relationships between genes, the discovery of which is done with 

the help of existing large-scale cancer datasets. These invariant relationships reveal new insights 

into the biology of the human tissue. Manual identification and grading of colon cancer through 

the analysis of biopsy specimens is a tedious and time-consuming task generally undertaken by 

pathologists. Our computer-aided diagnostic tool will help improve the efficiency and accuracy of 

this histopathological diagnosis, ultimately leading to the determination of the appropriate 

treatment for the patient. 
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2.6 Conclusion and Future work 
 
 

In this research we have shown that digital pathology can help us to diagnose the colon 

cancer. We discussed about different approaches in deep learning for nuclei and gland 

segmentation and how these finding can contribute. Later we explained our new protocol and 

staining for CDX2. Furthermore, we elaborate on our new model for gland instance segmentation 

on our new dataset and we compared it with different state-of-the-art methods. Using novel vision-

AI developed a first-of-its-kind colon U-shaped crypt segmentation. Also, using the proposed new 

IHC staining process along with vision-AI model we saw there is a differential expression at the 

bottom vs top of the colon crypts. We can identify more patient with high risk using this potential 

biomarker and I belief that this finding can open new doors to identify other features of colon stem 

cells. Using this research, we can study macrophage polarity in colon crypt.  
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CHAPTER 3. Morphological Analysis of Organoids using Vision-AI 
 

3.1 Abstract 
 

 

Organoid cultures are 3D in vitro tissue construct that emulates their corresponding in vivo 

organ. Organoids’ accurate mimicking nature has made them powerful in vitro models to study 

various aspects of a tissue. Organoids are generally grown in a 3D setup using naturally derived 

or synthetic extracellular matrices. They are commonly studied by investigating their 

morphological features and growth characteristics. However, such a practice is very challenging 

due to the inherent imaging artifacts in organoid images. Recently, very few segmentation 

techniques have been introduced in the literature to perform localization and quantification of 

organoids. Unfortunately, no attempts have been made to classify healthy and diseased organoids 

reliably or to predict ailments in an organoid. This research demonstrates OrgaTuring, an end-to-

end deep learning approach that can efficiently locate, quantify, and classify human colon 

organoids. OrgaTuring can be a completely automated computational framework to investigate 

thousands of images without expert intervention. OrgaTuring comprises (1) a novel vision-AI 

pipeline; and (2) a manually labeled human colon organoid image dataset. I have made the deep 

learning model, inference procedures, image dataset publicly available and a detailed manual for 

easy adoption. 
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3.2 Introduction 
 

The COVID-19 pandemic created a global health crisis and further incentivized the 

development of intelligent medical devices50. Devising smart medical devices and enabling them 

to offer real-time insights would allow early diagnosis and expert interventions. Investigating 

organoids could facilitate the design of real-time disease-specific smart devices in this context. We 

present OrgaTuring, a novel deep-learning approach for the automatic detection and classification 

of organoids. The CNN-based interpretable deep-learning model enables the real-time location, 

quantification, tracking, and classification of organoids from 2D and 3D images. This research 

will serve as a steppingstone to creating smart point-of-care devices equipped with mobile 

healthcare.  

Traditional in vitro cultures use primary or immortalized cell lines placed on 2D surfaces. 

Owing to their 2D nature, these cultures fail to mimic the complex physiological environment of 

their corresponding tissues and, thus, cannot predict the in-vivo behaviors51. These pitfalls have 

propelled the recent emergence of Organoids, which are multicellular spheroids grown in a 3D 

culture. Organoids, essentially miniature, self-assembled, and self-replicating versions of tissues, 

are cultivated from stem cells that are extracted from either normal or pathologically altered 

samples such as tumor excisions or needle biopsies52. The unique capability of organoid 

technology lies in its ability to encourage the growth of cells that traditionally resist proliferation 

in vitro while preserving characteristics to in vivo conditions, including complex structural 

organization, tissue-specific functionalities, and the representation of disease-associated 

phenotypes. In other words, the organoids recapitulate their parent organ's processes and cellular 

composition in many regards. Examples include organoids from the gut, pancreas, liver, and many 

others, which have been  
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Figure 3.1: Vision-AI importance to observe the morphology of organoids.  

 

 

 
Figure 3.2:  The schematic representation of organoids derived from different organs.  
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widely accepted. This has made organoids a go-to model approach for physiological investigation 

and drug discovery. Fig 3.1 shows the necessity of using vision-AI in organoid morphological 

analysis.  

While organoids are very promising models for studying human processes and structures, 

it requires a tedious job to culture an organoid model that accurately mimics the target organ's in 

vivo functionality and cellular composition as shown in Fig 3.2. To deduce features of an organoid 

requires continuous monitoring of its growth and ensuring they receive the necessary growth 

factors and structural support. To this end, morphological (such as their shape, size, spectrum, 

quantity, and growth rate) understanding of an organoid is paramount in research. At present, the 

standard protocol to culture organoids is as follows. Single cells or tissue fragments from primary 

sources are embedded within a three-dimensional matrix derived from Engelbreth-Holm-Swarm 

(EHS) murine sarcoma53. This forms a gel dome on conventional tissue-culture-treated plastic 

surfaces. Once set, this gel dome is covered with a specially formulated medium composed of 

small molecules, recombinant proteins, and possibly other supplements specific to tissue type and 

disease condition. These cells or fragments proliferate throughout the culture period and 

autonomously arrange themselves into three-dimensional structures. Organoids can be propagated 

and expanded by removal of the ECM followed by enzymatic and mechanical dissociation. The 

dissociated organoids are then returned to 3-D culture conditions to continue expanding and re-

develop into organoids. For monitoring and investigation, the gel dome is imaged in brightfield. 

However, these images encounter several imaging pitfalls, which make morphological 

investigations of organoids very challenging. The pitfalls include large variations in size and shape, 

overlapping organoids, out-of-focus spheroids, sparsity in organoid distribution, and bad lighting 

conditions. Each of these images contains hundreds of organoids. Therefore, the underlying pitfalls 
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make the manual investigation of organoids very challenging. To this end, limited computer vision 

approaches have been proposed, primarily for counting the number of organoids.    

 

3.3 Previous Work 
 

The research community has recently witnessed several discoveries in generating tissues 

in-vitro from stem cells. Organoids are miniature 3D cultures grown in-vitro that resemble organs. 

Scientists have successfully cultivated various in-vitro organoid models using cells derived from 

patients, which can imitate the source organ's physiology. Organoids are being demonstrated as a 

powerful tool due to their immense potential to promote research in fields such as regenerative 

medicine, personalized treatment, drug discovery, organ replacement, genetic disorder pathology, 

etc. As such, organoids can help further research related to tissue morphogenesis, toxicity 

screening, drug testing, regenerative medicine, and disease modeling and help facilitate a better 

understanding of the development and physiology of organs. 

Live-cell imaging of organoids enables us to study and track growth, apoptosis/necrosis, 

and movement within the medium. Since the organoids must be monitored rigorously using rapid 

imaging, it is not feasible to visually interpret and verify the data manually. ML-based algorithms 

can be adapted into bioimaging pipelines to aid in the real-time processing of organoid image data. 

Organoids display complex phenotypes and can be difficult to describe using standard features 

only. Furthermore, due to the culturing medium and the thickness of the samples, the images 

undergo/suffer from various distortions/imaging artifacts, and thus standard bioimaging 

tools/pipelines need to be modified to identify organoids in images. 

In 2017 Piccinini et al. presented ACC (Advanced Cell Classifier), a user-friendly 

graphical software package/tool that implements image analysis methods and machine learning 
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algorithms to aid in the mining and exploration of microscopic single-cell image data54. ACCv2.0, 

the current version of ACC, implements methods to analyze and visualize cell data and includes 

algorithms to find new or rare phenotypes. The latest version of CellProfiler (McQuin et al. (2018)) 

can identify and quantify biological objects and their morphological features from 2D and 3D 

images55. OrganoSeg, developed by Borten et al. (2018), is an open-source computer vision 

approach that enables the segmentation, quantification, and filtering of brightfield phenotypes56. 

However, it uses conventional image processing techniques and requires user intervention in the 

form of parameter tweaking/tuning. In 2019, Kassis et al. presented OrgaQuant, a trained deep 

CNN that enables the localization and detection of human intestinal organoids in brightfield 

images57. It requires no user intervention, automatically localizes individual organoids and labels 

them (using a 'bounding box') and can also be used as a clustering tool. OrgaQuant's ability to 

identify and annotate can be considered at par with that of humans, but it is significantly faster 

than humans. 

In 2021 Gritti et al. developed MorgAna (Machine Learning based Organoid Analysis), a 

flexible python-based tool that requires minimal coding experience and offers visualization, 

quantification, and segmentation for 2D images of organoids via a GUI58. When focusing on the 

run time, OrganoSeg and MOrgAna can be considered at par, while CellProfiler takes about twice 

as long. However, MOrgAna outperforms OrganoSeg and CellProfiler when compared based on 

accuracy and precision. MOrgAna can also handle bent organoids due to its 'straightening' 

algorithm that extracts the midline of the organoid and recomputes all the morphological 

parameters, adding an eccentricity value and the lengths of the major and minor axes as new 

parameters. However, MOrgAna can only process two-dimensional images. While OrgaQuant and 

MOrgAna are elegant ML-based bioimaging approaches, they do not offer classification and could 
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overlook potentially valuable morphological information. Visiopharm is a commercial solution 

based on AI-driven image analysis and tissue mining tools. It has been used on fluorescent cerebral 

organoid images to count cell59.  

 
3.4 Material and Methods 

 
3.4.1 Dataset Generation from human subjects 

 
 

Human Subjects: For generating healthy and CD patient-derived organoids (PDOs), 

patients were enrolled for colonoscopy as part of routine care for the management of their disease 

from the University of California, San Diego IBD-Center, following a research protocol compliant 

with the Human Research Protection Program (HRPP) and approved by the Institutional Review 

Board (Project ID# 1132632: PI Boland and Sandborn). Histologically normal healthy colon 

samples were collected from patients presenting for screening colonoscopy or undergoing the 

procedure for making the diagnosis of irritable bowel syndrome as shown in Fig 3.3. Each 

participant provided a signed informed consent to allow for the collection of colonic tissue biopsies 

for research purposes to generate 3D organoids. Isolation and biobanking of organoids from these 

colonic biopsies were carried out using an approved IRB (Project ID # 190105: PI Ghosh and Das) 

that covers human subject research at the UC San Diego HUMANOID Center of Research 

Excellence (CoRE). For all the deidentified human subjects, information, including age, gender, 

and previous history of the disease, was collected from the chart following the rules of HIPAA. 

The study design and the use of human study participants were conducted in accordance with the 

criteria set by the Declaration of Helsinki. 
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Figure 3.3:  The schematic representation of organoid images generation.  
 

Isolation of Enteroids from colonic specimens of healthy and Crohn’s Disease 

subjects: Intestinal crypts, comprised of crypt-base columnar (CBC) cells, were isolated from 

human colonic tissue specimens using the previously published paper (Ghosh et al., 2020; Sahoo 

et al., 2021; Sayed et al., 2020c; Sayed et al., 2021). In brief, intestinal crypts were dissociated 

from tissues by digesting with collagenase type I (2 mg/mL solution containing gentamicin 50 

µg/mL). The plate was incubated in a CO2 incubator at 37°C, mixing every 10 min with vigorous 

pipetting in-between incubations while monitoring the release of single epithelial units from tissue 

structures by light microscopy. To inactivate collagenase, wash media (DMEM/F12 with HEPES, 

10% FBS) was added to cells, filtered through a 70 μm cell strainer, centrifuged at 200 g for 5 min, 

and then the supernatant was aspirated, leaving behind a cell pellet. The number of viable intestinal 

stem cells was determined by the Trypan Blue Exclusion method using Countess II Automated 

Cell Counter. Epithelial units were resuspended in Matrigel, and 25 μl of cell-matrigel suspension 
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was added to the wells of a 12-well plate on ice and incubated upside-down in a 37°C CO2 

incubator for 10 min, which allowed for polymerization of the Matrigel. After 10 min of 

incubation, 1000 μL of 50% conditioned media, prepared from L-WRN cells with Wnt3a, R-

Spondin and Noggin, ATCC® CRL-3276™ (Miyoshi & Stappenbeck, 2013) with a GI-organoid 

media cocktail 1 (purchased from HUMANOID CoRE), 10 μM Y27632 and 10 μM SB431542. 

The medium was changed every two days, and the enteroids were either expanded or frozen in 

liquid nitrogen for biobanking. 

Quantitative assessment of organoid morphology by Imaris: LIF files were first 

converted into native IMARIS format (.ims). Then a spot filter and surface filter were created. 

This filter is used as a batch function on all processed images. Finally, a cell object is created where 

broken fragments of single organoids are stitched together manually. Upon manual completion, 

specific measurements are exported from IMARIS to GraphPad Prism for further analysis and for 

visualization as graphs.  

Embedding of organoids in HistoGel™: Healthy and CD colonic organoids were 

embedded in histogel as done previously (Tindle et al., 2021). Briefly, mature organoids after 7 

days of culture in 6-Well plates were fixed in 4% PFA at room temperature for 30 min and 

quenched with 30 mM glycine for 5 min. After washing with PBS, organoids were resuspended in 

PBS and stained using Gill’s hematoxylin for 5 min for ease during embedding in paraffin blocks 

and visualization during and after sections. Excess hematoxylin was removed, and organoids were 

resuspended in HistoGel™ and centrifuged at 65°C for 5 min. HistoGel™ embedded organoid 

pellets were cooled to room temperature and stored in 70% ethanol at 4°C until ready for 

embedding in paraffin blocks. FFP-embedded organoid sections were cut at a setting of 4 µm 

thickness and fixed onto microscope slides for H&E staining. Immunofluorescence of FFPE 
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organoids: Sections of FFP-embedded healthy- and CD- PDOs were deparaffinized, rehydrated, 

and underwent antigen retrieval immersed in Sodium Citrate buffer (pH 6.0) and boiled at 100°C 

inside a pressure cooker for 3 min. Once sections returned to room temperature, samples were 

washed in DI water and then permeabilized and blocked for two h using an in-house blocking 

buffer (2 mg/mL BSA and 0.1% Triton X-100 in PBS), as described previously (Lopez-Sanchez 

et al., 2014; Tindle et al., 2021). Primary antibodies [see Key Resource Table] were diluted in a 

blocking buffer and incubated overnight at 4°C. Secondary antibodies were diluted in a blocking 

buffer and allowed to incubate for two h in the dark. Antibody dilutions are listed in the 

Supplementary Key Resource Table. ProLong Glass was used as a mounting medium. Coverslips 

(No.1 thickness) were applied to slides to seal and stored at 4°C until imaged. 

Estimation of Paneth: Goblet cell ratio by confocal imaging of cell markers: 

Fluorescent Z-stack images of lysozyme (a bona-fide marker of Paneth cells) and muc2 (a bona-

fide marker of goblet cell) stained organoids were acquired by successive 1 μm depth Z-slices of 

EDMs in the desired confocal channels of Leica TCS SP5 Confocal Microscope as done 

previously (Ghosh et al., 2020)60. Fields of view that were representative of a given transwell were 

determined by randomly imaging three different fields. Z-slices of a Z-stack were overlaid to create 

maximum-intensity projection images; all images were processed using FIJI (Image J) software61. 

All images were processed on ImageJ software (NIH) and assembled into figure panels using 

Photoshop and Illustrator (Adobe Creative Cloud). 
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3.4.2 Dataset Preparation for AI-pipeline 
 
 

This research involved two cohorts of image data from colon organoids—each labeled as 

two classes having Inflammation and No Inflammation. Cohort 1 comprises 49 Inflamed images 

and 359 Not Inflamed Images, while Cohort 2 comprises 66 Inflamed and 334 Not Inflamed 

images. All the images have two types of dimensions, 2048*1536 and 3888*2592, and different 

color stains. This labeled dataset of Crohn's disease colon organoids is first-of-its-kind. All images 

were color normalized for organoid counting using Reinhard normalization and then passed 

through Roboflow's open-source computer vision platform for further pre-processing. Two 

hundred seventy-nine images were manually annotated for the object detection task using the 

Roboflow annotation tool. 

Further, the images were split into training, testing, and validation set, with the training set 

oversampled with adding augmented images. Image augmentation, like horizontal and vertical 

flips, rotation, brightness, etc., was performed to increase the training set. Finally, the training set, 

validation set, and testing set involved 388, 54, and 31 images, respectively. For the organoid 

classification task, the images were divided into three different types of groups. First, a simple 

stratified sampling was performed on each cohort and a combination of cohort 1 and cohort 2 to 

split the dataset. Second, the images were grouped based on the different zoom sizes available and 

then followed by stratified sampling on each cohort and a combination of cohort 1 and cohort 2. 

Third, the images were grouped based on the same type of images, followed by the same 

stratification process stated above. Fig 3.4, Fig 3.5, Fig 3.6 shows the dataset preparation process.  
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Figure 3.4:  Labeled dataset of Crohn’s disease colon organoid with each cohort distribution.  

 

 

Figure 3.5:  Data normalization process using Reinhard color normalization. 
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Figure 3.6:  Data annotation process using Roboflow open-source tool.  

 

3.5 Result and Discussion 
 

3.5.1 OrgaTuring Counting 
 
 

Roboflow open-source tool was used for the organoid counting task. After generating the 

dataset, the images were exported in the Yolo v5 format for the model training. Yolo is a state-of-

the-art object detection and segmentation architecture. This single-shot detector performs the task 

of object localization and classification in a single forward pass of the network. Hence, they are 

faster and simpler models and don’t require a separate object proposal stage as in maskRCNN. 

They achieve this by dividing the image into multiple grids and predicting the multiple bounding 

boxes and probabilities for each grid cell. The original Yolo v5 model was trained on 80 classes; 

I created a custom Yolo v5m model for the organoid detection task. The model was trained using 

Tesla T4 GPU with image size resizing to 1024*1024. The batch size was kept to 16, with the  
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Figure 3.7:  Organoid detection and counting using Yolo v5m architecture. 

 

 

Figure 3.8:  Performance metrices for the organoid object detection.  

 

epoch of 100 for one training and 270 for the second training, a learning rate of 0.001, and a weight 

decay of 0.0005. Fig 3.7, 3.8, 3.9, 3.10 shows the result of the organoid counting, and the model 

is successfully counting and printing the number of organoids detected in an image. Average 

precision is used in evaluating the model performance. It represents the area under the curve, 

higher the curve represents larger areas, and higher average precision. mAP is the average of all 

the average precision values. It is calculated by fixing the confidence threshold score to 0.5.  
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Figure 3.9:  F1 confidence score and precision-recall curve for organoid detection. 

 

 

Figure 3.10:  Mean average precision curve, object, and box loss for organoid detection. 
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3.5.2 OrgaTuring Classification 
 

 
 

Transfer learning on Medical Dataset is quite a challenging task. With the limited amount 

of data for medical image classification task, it is difficult to create a new model architecture which 

is expensive and time consuming. Using ImageNet pretrained architecture has shown expert level 

classification in previous research in the field of medical image classification. More than 70% of 

the time involved in this research was understanding the data and pre-processing. With ample 

amount of research, pretrained architecture like ResNet152v and DenseNet201 were selected for 

the above process. VGG-16 model was used for the baseline to check for the performance with the 

datasets. The class in each cohort was highly imbalanced. Class imbalance is a significant issue in 

classification problems. There are several methods to handle class imbalance, like class weighting, 

oversampling, under-sampling, data augmentation, transfer learning, etc. We have performed class 

weighting, data augmentation, and transfer learning techniques to deal with lesser data. When the 

dataset is imbalanced, the model learns less about the minority class since the model gets fewer 

data points for the same and does not learn a good representation of the minority class. Hence 

results in an inaccurate classification model on such datasets. The generated organoid image 

dataset has a sample ratio of 1:7. This means forcing our algorithm to treat every instance of class 

1 as seven instances of class 0. So here, every instance of class Inflamed is seven instances of class 

Not Inflamed, which means a higher value was assigned to these instances in the loss function. 

This task involves the binary classification between Inflamed and Not Inflamed types of 

images. As the class was highly imbalanced, the normal Binary cross entropy loss would not have 

provided dedicated results. So, I have used Binary focal cross entropy loss by setting the alpha and 

gamma values for the best results. Alpha and gamma are hyperparameters that controls the shape 
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of the loss and was adjusted setting different training parameters. Alpha is a balancing factor that 

handles the class imbalance. If the classes are imbalanced, alpha set to a value less than 0.5 for the 

majority class and a value greater than 0.5 for the minority class. Gamms is moreover a focusing 

parameter, that reduces the loss contribution.  

ResNet152v and DenseNet201 pretrained ImageNet architectures are used as said 

previously for the classification task. Then transfer learning is implemented, by setting the 

‘include_top’ argument False, final classification layer of each of the model was not included, 

making the base model suitable for feature extraction. Then weights of the base model were frozen, 

to keep the learned features from the pre-trained model, and only train a few final layers. The final 

layer or top layer took the input of the output tensor of the pre-trained backbone and flattened the 

output. Then new dense layer with 512 units and ReLU activation function were added with 

dropout layer, to prevent overfitting. A final dense layer was added with a single unit and a sigmoid 

activation function for binary classification. Further, few of the top layers of the pre-trained model 

was unfrozen for fine-tuning and trained jointly with the newly added layers.  Fig 3.11 and 3.12 

shows the model architecture used for this task.  
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Figure 3.11:  Organoid classification using ResNet152v pretrained architecture.  

 

 

 

Figure 3.12: Organoid classification using DenseNet201 pretrained architecture. 
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Figure 3.13: Organoid classification model accuracy and loss curve on cohort 2.  

 

 

 

 

Figure 3.14: Organoid Classification confusion matrix on cohort 2.  
 

 

 



66 
 

 

Figure 3.15: Organoid Classification model accuracy and loss curve on cohort 1.  

 

 

 
 
 
Figure 3.16: Organoid Classification confusion matrix on cohort 1. 
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Figure 3.17: Organoid Classification model accuracy and loss curve on both cohorts.  

 

 

 

 
 
 
Figure 3.18: Organoid Classification confusion matrix on both cohorts. 
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Table 3.1: Evaluation metrices for all the methods. 
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3.5.3 OrgaTuring API 
 

 

 
 
Figure 3.19: RESTful web API for OrgaTuring. 
 

OrgaTuring provides a python flask based RESTful web application program interface 

(API) to upload organoid image data and obtain the prediction in real-time. It is a static webpage 

to upload images and take the inference quickly with no user intervention and parameter tweaking. 

The simple, and open-source application allows medical professionals to easily adopt and use the 

interface. Fig 3.19 shows the designed API landing page.  
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3.6 Conclusion and Future work 
 

In this research a novel first-of-its-kind AI tool chain to understand organoids morphology 

is designed and developed. Most of the computational tools and techniques used to study organoids 

focus only on quantification. Contrary to that, OrgaTuring with its unique AI algorithms goes 

beyond counting (or quantification). It can also locate, track, and classify organoids w.r.t a variety 

of meaningful phenotypes. This makes OrgaTuring an all-encompassing AI guided toolbox for 

rapid organoid discovery. Further, OrgaTuring’s real-time nature is a boon to system biologists to 

predict outcomes in milliseconds without relying on too many expert interventions. Our model 

bears enough potential to classify thousands of images obtained from different imaging techniques, 

parameters, and cohorts in real-time. In addition, the deep domain adaptation techniques have been 

implemented to leverage the classification tasks of cohort divided by molecular and clinical 

subtypes which has been ignored by the recent literature. Generating organoid images is expensive, 

tedious, and time-consuming task, which involves lot of resources, and labor. Developing a deep 

learning model which uses domain adaptation and learn label classification simultaneously is itself 

a novel task. Through this process the model can predict the unlabeled target data using the source 

and target data in an adversarial training process. This method can make the current research in 

organoid domain less expensive and accelerate organoid research towards drug discovery, 

regenerative medicine, organ replacement, etc.  
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