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Purpose: The purpose of this study was to evaluate the ability to align two types of
retinal images taken on different platforms; color fundus (CF) photographs and infrared
scanning laser ophthalmoscope (IR SLO) images usingmathematical warping and artifi-
cial intelligence (AI).

Methods: We collected 109 matched pairs of CF and IR SLO images. An AI algorithm
utilizing two separate networks was developed. A style transfer network (STN) was used
to segment vessel structures. A registration network was used to align the segmented
images to each. Neither network used a ground truth dataset. A conventional image
warping algorithm was used as a control. Software displayed image pairs as a 5 × 5
checkerboard grid composedof alternating subimages. This techniquepermitted vessel
alignment determination by human observers and 5 masked graders evaluated align-
ment by the AI and conventional warping in 25 fields for each image.

Results:Our new AImethodwas superior to conventional warping at generating vessel
alignment as judged by masked human graders (P < 0.0001). The average number of
good/excellent matches increased from 90.5% to 94.4% with AI method.

Conclusions: AI permitted a more accurate overlay of CF and IR SLO images than
conventional mathematical warping. This is a first step toward developing an AI that
could allow overlay of all types of fundus images by utilizing vascular landmarks.

Translational Relevance: The ability to align and overlay imaging data from multiple
instruments andmanufacturers will permit better analysis of this complex data helping
understand disease and predict treatment.

Introduction

As retinal treatments advance and imaging becomes
more important, it will be critical to be able to
scientifically analyze and interpret a large amount of
information from different instruments, manufactur-
ers, and diagnostic sources.1 Many investigators have
also found that imaging with different instruments or
optics is useful in improving diagnosis and prognos-
tic information.2–4 These clinical tools, however, have

multiple models, generations of software, and device
specific algorithms used to output data. Ideally, all
of this information could be organized by aligning
such data by retinal location, which could then be
interpreted using artificial intelligence (AI).5 It will be
important for an AI agent to overlay data from a given
retinal region that is procured from different imaging
and function analysis instruments.

Previous studies have usedAI as amultimodal regis-
tration method.6–9 Hervella et al. proposed a hybrid
methodology for the multimodal registration of color
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fundus retinal imaging and fluorescein angiography
data that exploits the presence of the retinal vascu-
lar tree in retinal images.6 Mahapatra et al. applied
the generative adversarial network to register multi-
modal images with the supervision of registration files,
which are obtained from other conventional methods.7
However, in both studies, the overlay approach was
limited to retinal images taken with the identical
camera and the same field of view, just with different
wavelengths (fluorescein angiography and color fundus
images taken with a standard camera).

Additionally, AI has been used in analyzing single
modality image analysis to categorize or detect
disease,10–12 but there is no current method to co-
localize and analyze multiple imaging and functional
data. For this reason, as a preliminary step to apply-
ing AI to analyze multi-instrument imaging and
functional studies, we attempted to overlay images
from a scanning laser platform onto a fundus camera
platform. These imaging platforms utilize different
optical pathways as well as different types of illumi-
nation (scanning laser versus flood illumination). We
chose to use an infrared scanning laser ophthalmo-
scope (IR SLO) image as a prototypical SLO image
to overlay onto color fundus (CF). Photographs were
taken with a fundus camera because such imaging
is done on all patients undergoing optical coherence
tomography (OCT) scans, also the optics and aspects
ratio of infrared images are expected to be similar to
and thus apply to autofluorescence (AF) or multicolor
(MC) images taken with SLO so these results may be
applicable to many types of images. We note that the
SLO image is taken using different optics and instru-
ments than is the CF image, so this appeared to be a
good first step to determine if an AI agent can accom-
plish such overlaying by examining vessel locations.
The novelty of this work is that we have conducted a
rigorous, masked study of the performance of a novel
AI algorithm for the alignment of multimodal retinal
images. Our algorithmwas able to perform image align-
ment without the need for a large set of manually
annotated ground truth image sets.

Methods

This study was conducted according to the princi-
ples of the Helsinki Declaration. Institutional review
board (IRB) approval was acquired from the Univer-
sity of California SanDiego for the review and analysis
of patient’s data. The study complied with the Health
Insurance Portability and Accountability Act of 1996.

Consecutive 50 degrees of diagonal field-of-view
(FOV) CF images (TRC-50DX color fundus images,
Topcon, Oakland, NJ) and 30 degrees × 30 degrees
FOV (equal to 42 degrees diagonal) infrared images
Scanning Laser Ophthalmoscope images (HRA +
OCT Spectralis, Heidelberg Engineering, Heidelberg,
Germany) were obtained between January 2017 and
November 2018. We evaluated 1742 de-identified
images from healthy eyes as well as eyes with retinal
diseases, such as diabetic retinopathy, wet and dry
macular degeneration, and retinovascular occlusion, in
patients from our tertiary retina center (Jacobs Retina
Center, Shiley Eye Institute, University of Califor-
nia San Diego, San Diego, California). The inclusion
criteria were eyes with good quality images in CF
photographs and IR SLO, taken on the same day.

We selected 1388 consecutive series of cases with
good quality images taken with both a conventional
fundus camera and IR SLO on the same day. One
hundred thirty-eight images were excluded because
they were not taken on the same day and pathology
could have changed over time altering vessel position or
focus plane, 216 images, which could not be evaluated
properly due to poor focus, reflection, darkness, overex-
posure, or other artifacts made it difficult to identify
vessels in one or both image types.

From the total of selected images, 1170 were used to
train the AI, 667 healthy eyes and 503 eyes with retinal
diseases and 218 different images were saved to be
used after training to evaluate the overlay systems, 124
healthy eyes and 94 eyes with retinal disease. Two differ-
ent overlaying algorithms were applied. One algorithm
was a conventional warping - modality independent
neighborhood descriptor (MIND) algorithm and the
other an AI algorithm. Human graders masked to the
method determined accuracy of overlay of the vessels.
Both methods involved overlay of region images with
cropping and rotations as needed to have both images
on the same position.

The conventional alignment method or MIND
proposed deformablemultimodal registration based on
human-engineered feature descriptor, which is based
on the self-similarity of multimodal images.13 MIND
was originally applied to register computed tomogra-
phy andmagnetic resonance imaging and was extended
later to register retina images.14 This method uses
mathematical warping algorithms to align vascular
landmarks and is not an AI-based method.15 Such
locally deformable registration can give a better estima-
tion of transformations compared to affine registra-
tion but multimodal retinal image registration is still
a challenge due to the modality dependent resolution,
contrast, and luminosity variation between different
modalities.14,16,17
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Figure 1. Diagram of the style transfer network (STN).18 (A) Shows the pretraining of the CNN using a single pair of fundus image and
segmented vessel diagram. This imagewas not part of our dataset andwas used to train our STN to detect tree-like structures, continuously
stretching and branching vessel paths with decreasing width, etc. We only assume that both the style image and our retinal images share
vessel structure styles. (B) Shows the application of the STN to our set of roughly aligned retinal images. Our network has an independent
part and shared part. In the independent part the network calculates a feature tensor while removing the spatial information and only the
summaries of styles is preserved. Multiple layers of increasing level of the network are used to detect patterns. In the shared part, the last
layer of the network with sigmoid function is shared to guide the transform of the multimodal images into consistent representation of
similar modalities. More details are found in our prior publication.18

Our AI overlay strategy consisted of a joint vessel
segmentation and a deformable registration model
based on the convolutional neural network because
retina vessels are key landmarks even for different
imaging modalities.18,19 The proposed learning scheme
utilized two learning networks. First, a style trans-
fer network was applied20 to train a vessel segmenta-
tion without ground truth such that it would extract
mutual patterns between multimodal retinal images
to find good correspondences.21 We used one previ-
ously published vessel segmentation as initial train-
ing set and experimentally chose one vessel from the
image to get the best performance. One segmented
image, which is described as a style image, was used
for all data (Fig. 1).18 The style transfer network
transformed input retina images to target style images
(segmented vessel images) as shown in Figure 1. The
style transfer network (STN) uses a pre-trained convo-
lutional neural network (CNN) to model the global
vessel structure with an outside dataset (represented

by the image in Figure 1). The segmentation map
was labeled by hand from the DRIVE dataset.22 This
outside dataset was used as the style target. We only
assumed that this style target and our retinal images
share similar vessel structural styles (tree-like struc-
ture, continuously branching, and stretching vessels
with decreasing width, for example). The STN has
an independent and shared segmentation network. In
the independent part, the network calculates a feature
tensor while removing the spatial information and
only the summaries of styles is preserved. Multiple
layers of increasing levels of the network are used
to detect patterns. In the shared part, the last layer
of the network with sigmoid function is shared to
guide the transform of the multimodal images into
consistent representation of similar modalities. The
deformable registration network was trained to find
dense correspondence based on consistent vessel repre-
sentations and wrapped image alignment.23 The regis-
tration network provides the alignment information
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Figure 2. The structure of the proposed neural network to overlaymultimodal retina images. The input images are the color fundus image
and the SLO image shown on the left. The style transfer network (STN) is explained in more detail in Figure 1. The output of the STN is
two vessel segmentations, as shown in the figure. The Registration Network consists of the super-point network35 for key point detection
and description, the outlier rejection network36 for reliable matching points selection, and the refinement network18 for sub-pixel level
adjustment. The super-point network determines the key points on the segmented vessel (denoted yellow points) and the corresponding
descriptions. Next, key points of CF and ones of IR are matched with the nearest neighbor criterion, which is depicted as connection with
yellow lines. More robust matching key points are derived with the outliner rejection network and inliers denoted as green connections are
used for alignment. The refinement network provides sub-pixel level alignment information of which image represents the direction and
magnitude of the localized image shift needed to achieve congruence between the source image (color fundus) and target image (SLO).
The final image on the right shows the overlap of the color fundus image onto the SLO image in an arbitrary 5 × 5 square pattern.

from a source image (CF image) to a target image (SLO
image and aligned both segmented vessel images of
two modalities and original retina images. The Regis-
tration Network consists of the super-point network24
for key point detection and description, the outlier
rejection network25 for reliable matching points selec-
tion, and the refinement network18 for sub-pixel level
adjustment. The registration network was also trained
without any labeled data because it is impossible to
obtain dense correspondences for retina images. These
two networks were cascaded and trained via end-to-
end learning in Figure 2. More details on the network
or reports to replicate the results have previously been
published for us.18,19 We used 109 datasets to train the
algorithm, 20 datasets for validation and 89 datasets for
testing.

A software was developed to show 436 evalua-
tions, recorded as a result of 109 unique image pairs
multiplied by 2 as block replicates, overlying both the
techniques – with and without AI - each image was
divided into 25 squares (5 × 5), which means a total
of 5450 squares were compared. Each image was a
checkerboard composed of alternating infrared and
CF pictures. Each image was graded two times in
each technique, and each individual square was graded
based on the alignment of the vessels. Graders were
masked because they could not identify which images
were aligned by AI or MIND as they were presented in
the same configuration.

The images were graded independently by two
retina specialists and three medical students based on
the longest vessel traversing the image zone (25 image
zones or boxes per fundus photograph). First, each
of the 5 graders scored 10 images and these images
were subjected to the interclass correlation coefficient
(ICC) using SPSS, and the ICC average among all
the 5 graders was 0.903, which is considered excellent.
The grading was performed in each zone by evaluat-
ing the vessel overlap in the area closest to the optic
nerve. The alignment of the 2 images was graded 0 to
5, where 5 is a perfect alignment, 4 is less or equal to
one-third the vessel width difference in continuity of
the vessels, 3 is more than one third or equal to one-
half the vessel width difference in continuity between
the 2 vessels, 2 is more than one half and less than 1
vessel width difference in continuity between vessels,
1 is more than 1 vessel width difference in continuity
between vessels, and 0 is ungradable due to absence of
vessels (Fig. 3). For the analysis, we considered only
regions where visible vessels were included. Grades 1
and 2 were considered a bad match, 3 reasonable, and
4 and 5 good/excellent matches.

After this result, a total of 5450 pairs of images
zones were analyzed and compared (Fig. 4). We
performed the Wilcoxon Signed Rank Test compari-
son between both methods using SPSS (IBM, version
26). Non-parametric statistics were used because of the
categorical nature of the grading system.
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Figure 3. Examples of images analyzed using the checkerboard comparison method of grades 1 to 5 (0 ungradable, not shown). (A, B)
The “mosaic,”overlying color fundus image and infrared SLO image. Each square was graded following the largest vessel closest to the optic
nerve. (C,D, E, F,G) Are examples of classifications 1, 2, 3, 4, and 5, respectively, the yellow circles show the areas where the vessels’alignment
was scored in each square.

Results

We performed the Wilcoxon Signed Rank Test
comparison between both methods. The AI overlay
method was statistically significantly better than the
conventional warping grading score as judged by
masked grading by the experienced human graders
(Z = −8.467, P < 0.0001).

There were 5.450 squares analyzed (25 squares per
eye). Themean score of the conventionalMINDproce-
dure was 4.45 ± 1.228 and the mean score of the
proposed new method was 4.58 ± 1.078 (Table). Even
though the data are categorical ordinal and the proper
statistical expression would be the median score, we
decided to calculate the mean score and add this infor-
mation to the table to show a difference. The statis-
tical test found a highly statistical difference but the
median scores of both procedures were identical at
the value “5” and therefore meaningless. In partic-
ular, the number of bad matches was reduced by
approximately 75% using the AI (proposed) agent

and there was also an increase in the proportion of
good/excellent matches. In general, the assessors did
not notice any systematic bias in images for regions
that were consistently misaligned, although this was
not formally assessed in this study. It was clear from the
image alignment results that such alignment was nearly
pixel to pixel using the AI (good/excellent matches)
and the AI achieved this in 94.4% of cases, which
was higher than the 90.5% achieved by the conven-
tional warping method. Perhaps more importantly,
the AI bad mismatch rate was 0.97% versus conven-
tional warping of 3.8%. Thus, the AI can more closely
overlay CF and IR SLO images analyzing lesions more
precisely using the two modalities.

Discussion

The use of AI, in particular, deep learning, has
been limited in retinal analytics but does show promise.
A group in Germany analyzed predictors and visual
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Figure 4. (A, B) The “mosaic,”overlying CP and IR using the AI and the conventional (MIND) methods, respectively, in the same eye. On the
border between squares 11 and 12, following the largest vessel closest to the optic nerve, it is possible to see the difference between both
methods. (C) The border on the AImethod, the vessel alignment classification (yellow circle) was 4, almost perfect. In (D) we can see the same
border using the MINDmethod, the classification was 1, the poorest one.

outcomes of anti-vascular endothelial growth factor
(VEGF) therapy and noted that analysis of raw
imaging data would enhance predictive ability.9 Most
analyses of retinal images evaluate only one type of
imaging modality, a major problem in scientific rigor,
and use human graders or AI algorithms analyzing
only one modality, such as OCT layers.26 As a prelimi-
nary step to using AI to overlay the plethora of differ-
ent types of retinal images and functional tests, we
evaluated overlay methods using AI and conventional
warping algorithms from different imaging modali-
ties, optics, and cameras. Our eventual goal is to be
able to overlay multiple platforms. We are interested
in this because numerous studies have suggested that
analysis of OCT and other imaging and functional
data may offer better ways to predict vision outcomes
after choroidal neovascularization (CNV) treatment,
but quantification of OCT raster scans, fluorescein
leakage dynamics, volumes of retinal pigment epithe-
lium (RPE) detachment, and subretinal fluid, fundus
tessellation, and wide field angiography are difficult
to perform without machine learning.27,28 In addition,
our grading system was fine enough to detect vascular
structures and misalignment down to 20 to 30 microns.
This would encompassmost retinal vascular abnormal-
ities.

As a first step toward multi-instrument and modal-
ity image registration, we chose to develop an AI
algorithm that would permit an overlapping of images
from CF and scanning laser platforms. These are
two completely different platforms for retinal imaging
and do not readily overlay because of different
optical pathways and light sources and illumination
techniques. The FOV of the IR is 30 × 30 degrees
and the CF is 50 degrees diagonal, our algorithm
is very robust to different images conditions. Proba-
bly the main advantage of our approach is the
ability to use CNN to alignment different retinal
images without a ground truth (GT). There are very
few GT databases available for training (DRIVE,22
and VARIA29). Therefore, we wanted to develop an
algorithm that does not require a GT database. In the
absence of GT, we validated the results of the overlay
with expert human observers using a grading system.

We chose to evaluate the ability to overlay CF
images onto IR SLO because color imaging has been
the standard for retinal evaluation for close to a century
and does give the images that are the most similar
to that of a clinical ophthalmoscopic examination.
On the other hand, infrared images are a prototypi-
cal reference fundus image for SLO images and OCT
scans and have similar optics and aspect ratio to AF
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and multicolor scanning laser images. New SLO and
other imaging systems allowwavelength and SLO selec-
tive imaging and are often done in combination with
OCT. Confocal imaging is often used in SLO imaging
to selectively image certain outer retinal or choroidal
structures.30 In addition, other imaging modalities, like
AF imaging, utilize the principle of the property of
AF to determine the size and activity of lesions.31
Different AF wavelengths may selectively image differ-
ent photophores and or tissues as has been shown
in Stargardt’s disease, where infrared AF, which is
commonly imaged with fundus cameras, picks up a
larger size of the lesion as it reflects the AF from
the RPE, as compared to the short wave AF imaging,
which reflects the lesion at the level of the outer retina
more than the RPE.32 Multicolor images recreate a CF
image but differ in the ability to detect lesion features,
particularly regarding retinal and choroidal patholo-
gies.33 Indeed, choroidal Nevi may appear larger and
more prominent in fundus camera based near infrared
imaging than SLO short wavelength AF imaging.34,35
We recognize that SLO imaging instruments are expen-
sive but we chose to use them because it has the
potential to deliver many types of useful imaging data.
Furthermore, IR imaging of the retina is the standard
for almost all OCT imaging instruments, including
three of the four leading OCT manufacturer Heidel-
berg Engineering, Optovue, and Zeiss.

Our study shows the superior ability of AI
as compared to conventional mathematical image
warping programs to permit accurate overlaying and
registration of images of the same fundus taken with
two different imaging systems. The AI system was
superior to conventional methods. We were careful to
use a different data set to “train” the AI than what
was used to evaluate it compared to both techniques.
Because this has been demonstrated with two different
systems (conventional wide-field flood camera fundus
imaging and monochromatic scanning laser imaging)
our results demonstrate the potential utility of AI
in improving the problem of analysis of multimodal
and multicamera (and functional) imaging in the field
of retinal diseases, likely the modest but significant
improvement in overlay byAIwill becomemore impor-
tant when widefield and/or more than two imaging
modalities are analyzed. Future analytic techniques
may allow the ability to simultaneously analyze angiog-
raphy, OCT angiography, OCT, nerve fiber layer analy-
sis data, microperimetry, wide-field imaging, and other
techniques, such as adaptive optical imaging. Such
analytics will improve our ability to better under-
stand the parameters that best predict outcomes and
help us understand retinal diseases. Features typically
taken on SLO instruments, such as imaging of the

photoreceptor integrity, will potentially be able to be
co-localized with multi wavelength AF images, OCT
angiography, and conventional fluorescein or indocya-
nine green angiography and adaptive optical imaging.
Once it is possible to co-localize structural imaging
and functional imaging, such as SLO microperime-
try,36 such data can be combined with visual acuity,
drug treatment, disease, and other information to help
understand retinal disease better and also help predict
outcomes to treatment. We recognize that our work
was done in the central 30 degrees of the fundus where
there is less distortion of images than when viewing the
periphery. Further workwill be needed to study periph-
eral retinal images and the ability to overlay those using
different types of imaging techniques.
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