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ARTICLE

Discovery and quality analysis of a comprehensive
set of structural variants and short tandem repeats
David Jakubosky1,2, Erin N. Smith3, Matteo D’Antonio 4, Marc Jan Bonder5,6, William W. Young Greenwald7,

Agnieszka D’Antonio-Chronowska4, Hiroko Matsui4, i2QTL Consortium*, Oliver Stegle5,6,8,

Stephen B. Montgomery 9,10, Christopher DeBoever 4 & Kelly A. Frazer 3,4✉

Structural variants (SVs) and short tandem repeats (STRs) are important sources of genetic

diversity but are not routinely analyzed in genetic studies because they are difficult to

accurately identify and genotype. Because SVs and STRs range in size and type, it is

necessary to apply multiple algorithms that incorporate different types of evidence from

sequencing data and employ complex filtering strategies to discover a comprehensive set of

high-quality and reproducible variants. Here we assemble a set of 719 deep whole genome

sequencing (WGS) samples (mean 42×) from 477 distinct individuals which we use to

discover and genotype a wide spectrum of SV and STR variants using five algorithms. We use

177 unique pairs of genetic replicates to identify factors that affect variant call reproducibility

and develop a systematic filtering strategy to create of one of the most complete and well

characterized maps of SVs and STRs to date.
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Structural variants (SVs) and short tandem repeats (STRs)
respresent a significant fraction of polymorphic bases in the
human genome and have been shown to cause monogenic

diseases and contribute to complex disease risk1–14. STRs are
polymorphic 1–6 base pair (bp) sequence repeats whose total size
can range from ~10 bp to more than 1 kb while SVs capture
diverse sequence variation greater than 50 bp in size such as
insertions, duplications, deletions, and mobile element insertions
(MEIs). The full contribution of STRs and SVs to disease risk,
quantitative molecular traits, and other human phenotypes is
currently not understood because previous studies have typically
genotyped SVs and STRs using arrays or low coverage sequencing
which are limited in their ability to accurately identify and gen-
otype these variants in many samples across different variant
classes and sizes15–18. The increasing adoption of high-coverage
whole-genome sequencing (WGS) data, however, has recently
enabled the development of improved methods to identify STRs
and different classes of SVs19–21.

While high-depth WGS data have made it possible to profile a
wider spectrum of genetic variation, the variability in the size and
characteristics of SV classes necessitates the use of several algo-
rithmic approaches that differ in the types of evidence used to
capture all classes of SVs. For instance, some algorithms specialize
in identifying small SVs (50–5000 bp) by using split or discordant
read (abnormal insert size) information to determine the location
of SV breakpoints with high resolution22–25. Other algorithms
detect large SVs (>5 kb) by comparing the amount of reads that
align to the reference genome to identify regions that differ in
copy number between samples26–29, but with lower resolution
breakpoint precision20,30–32. Finally, algorithms have also been
designed to contend with more complex multiallelic signatures,
including regions with multiple copy number or repeat alleleles
that are more challenging to genotype than biallelic variants27,29.
Genotyping SVs and STRs across many samples thus requires
using several highly parameterized algorithms to discover each
class of SVs, processing schemes to combine results from different
algorithms, and detailed filtering to remove false positives or
inconsistely genotyped variants. Such pipelines for SV/STR
identification must also be sensitive to study-specific parameters
such as library prepration methods, sequencing depth, cell/tissue
type, and read length19–21,30–32. Thus, due to the diversity of SV/
STR calling algorithms and the need for complex downstream
processing, it remains difficult to create a comprehensive SV and
STR call set with consistent quality that covers the spectrum of
variant sizes and subclasses.

In addition to difficulties associated with complex pipelines for
calling SVs and STRs, the need to perform de novo discovery and
subsequent genotyping of variants across hundreds or thousands of
samples leads to inconsistencies between variant calls across studies.
A comprehensive catalog of SVs and STRs in the human genome
would make it possible for different studies to genotype this same
set of variants. While several efforts are underway to establish such
catalogs of SVs18–20,32–36 and STRs37,38, most are limited in their
number and diversity of samples or do not capture all types of
variants due to the sequencing depth or algorithms employed.
There is also a need to understand the extent to which differences in
sample collection and preparation may impact SV and STR calling
by measuring the reproducibility of variants called on genetic
duplicate samples that share the same genome but were collected
and prepped separately. A comprehensive reference catalog of high
confidence SVs and STRs discovered in a large set of subjects with
deep WGS data could therefore be useful for calling and genotyping
the full spectrum of variants across future studies involving hun-
dreds to thousands of subjects.

In this study, as part of the i2QTL consortium, we profile 719
whole genomes from iPSCORE39–41 and HipSci42,43 with five

variant calling algorithms to capture a wide spectrum of SVs
including biallelic deletions and duplications; multiallelic copy
number variants (mCNVs; regions that have more than two copy
number alleles segregating in the population); MEIs; reference
MEIs (rMEIs); inversions; unspecified breakends (BND); and
STRs. We identify algorithm-specific quality metrics and SV
genomic properties associated with the reproducibility of variant
calling using 177 pairs of genetic replicates embedded in our
collection (25 monozygotic twin pairs and 152 fibroblast–iPSC
pairs) and devise filtering and processing approaches to obtain a
highly accurate, non-redundant call set across variant classes and
algorithmic approaches. We compare our set of SVs with those
identified in GTEx19 and the 1000 Genomes Project (1KGP)18

and find that we capture the vast majority of common SVs likely
discoverable in Europeans with short read sequencing and add
novel, high-quality variants at lower allele frequencies. Finally, we
characterize the extent to which different classes of SVs and STRs
are tagged by single-nucleotide polymorphisms (SNPs) and
insertions/deletions (indels). This study establishes methods for
filtering SVs and STRs to obtain reproducible variant calls and
provides a high-quality reference catalog of SVs and STRs that
will benefit studies that investigate how these variants contribute
to human disease.

Results
The i2QTL sample set. We generated the i2QTL variant calls
dataset by calling single-nucleotide variants (SNVs), indels, SVs,
and STRs using 719 human WGS samples from 477 unique
donors (Fig. 1a, Supplementary Data 1, Supplementary Data 2).
The samples were obtained by combining data from two induced
pluripoitent stem cell (iPSC) resources: (1) iPSCORE (273 indi-
viduals, mean WGS coverage 50×, range 36–126×)39–41 and (2)
HipSci (446 samples from 204 individuals, mean WGS coverage
37×, range 35–78×)43,44 (Fig. 1b, c). The 477 individuals include
members of all five 1KGP superpopulations45: 415 European, 34
East Asian, 15 Admixed American, 7 South Asian, and 6 African.
While all 204 HipSci donors were unrelated, there were 183
donors in iPSCORE that are part of 56 unique families (2–14
individuals/family) (Supplementary Fig. 1), including 25 mono-
zygotic (MZ) twin pairs (Fig. 1d). For 152 HipSci individuals, we
also obtained matched fibroblast and iPSC WGS data (Fig. 1d).
Between these 152 matched samples and 25 MZ twin pairs, we
had WGS data for 177 genetic replicates, which we used to
determine quality filtering thresholds and to calculate reprodu-
cibility of calls across all variant classes.

Comprehensive SV call set. To identify SVs across a wide range
of sizes (50 bp to >1Mb) and classes, we called variants using four
algorithms (Fig. 1a): SpeedSeq24,26,46, Genome STRiP CNVDis-
covery, Genome STRiP LCNVDiscovery29, and MELT47. Toge-
ther, these algorithms incorporate information from two evidence
types: (1) read-pair signal (LUMPY and MELT), which includes
detection of split reads (two portions of the same read map to
different genomic locations) and discordant read pairs (aligned to
the genome with abnormal insert size or orientation) and (2)
read-depth (Genome STRiP CNVDiscovery, Genome STRiP
LCNVDiscovery, CNVnator). Generally, read-pair signal enables
discovery of shorter variants (50 bp) and balanced events, while
read-depth signal is limited to discovery of longer (>1 kb) copy
number variants (CNVs) which include biallelic deletions, bial-
lelic duplications, and mCNVs. When variant calling algorithms
utilize information from a group of samples to predict genotypes,
study-specific differences in the WGS data (cell type assayed,
library preparation technique) can cause erroneous variant calls.
To account for this, we performed variant calling and genotyping
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separately in HipSci and iPSCORE samples for Genome STRiP
and combined variant calls afterward to avoid batch effects
during variant calling (Methods). Using read-pair signals we
detected 223,371 SVs consisting of CNVs, inversions, MEIs, and
novel adjacencies of indeterminate type referred to as BND.
Among these SVs, biallelic deletions and biallelic duplications
were also supported by supplementary read-depth evidence
(CNVnator). Using read-depth signals alone (Genome STRiP),

we detected 28,417 biallelic deletions, biallelic duplications, and
mCNVs, bringing the initial call set to a combined 251,788 SVs,
before additional processing (Supplementary Figs. 2–6).

Reproducibility of SV calling is associated with quality metrics.
Because there is considerable diversity in subtypes of SVs and
disparities between detection algorithms, measuring SV quality is
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Fig. 1 Variant calling, processing, and i2QTL WGS samples. a Illustration of the evidence types from short read sequencing data utilized in variant calling
(top). Description of the variant callers utilized, the types of variants they identify, and the evidence they use (middle). Flowchart showing the processing,
quality control (see Methods), and integration of SVs from different variant callers (bottom). b Pie chart showing the number of whole-genome sequencing
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of whole genomes from iPSCORE (n= 273) (green) and HipSci (n= 446) (blue). Boxplots are contained within violinplots, and the minimum box edge
indicates the first quartile while the maximum box edge indicates the third quartile. White dots in the boxes indicate the median value. Whiskers of the box
plot are drawn at the maximum point (upper whisker) or minimum point (lower whisker) that is within 1.5 times the interquartile range (quartile
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from 152 unique donors (HipSci). These data enable robust variant calling for all classes of genetic variation along with reproducibility analysis.
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challenging. Here we used 177 genetic replicates (25 MZ twin
pairs and 152 matched fibroblast and iPSC pairs) to measure
reproducibility of SV calls for each variant class and SV calling
approach under a range of quality metric filter thresholds.
Because of complications in variant calling on sex chromosomes
due to dosage differences in males and females, we analyzed
reproducibility among 198,651 autosomal SVs. Notably, we were
able to assess the reproducibility of most variants in the SV call
set since 44% of autosomal SVs (88,496) segregated in at least one
monozygotic twin pair, 65.4% (129,937) segregated in at least one
fibroblast–iPSC pair (Fig. 2a), and 71.8% (142,678) segregated in
any of the 177 genetic replicates. For each variant that segregated
in at least one genetic replicate pair, we assessed reproducibility
by calculating how often a non-reference genotype in one repli-
cate pair sample was called concordantly in the other replicate
sample, which we define as replication rate (RR, Methods).
Replication rates were calculated for each SV separately among
MZ twin pairs and fibroblast–iPSC pairs. The 25 MZ twin pairs
were used to select filters because they have matched cell types

and fewer somatic differences39 while the 152 matched
fibroblasts–iPSC pairs were used to confirm the performance of
these thresholds in the HipSci collection. While filtering is
expected to result in improved reproducibility, using these
genetically matched sample pairs we were able to explicitly
quantify differences in reproducibility between different variant
classes and methods.

Prior to filtering on quality metrics (Supplementary Table 1),
we observed that within the 25 MZ twin pairs CNVs (deletions,
duplications and mCNVs) detected with Genome STRiP showed
high reproducibility (RR > 0.96) as did the SpeedSeq deletions
(RR > 0.9) and rMEIs (RR > 0.95), whereas SpeedSeq duplications
and inversions (both RR < 0.77), BND (RR= 0.65), and MELT
MEIs (RR= 0.59) had lower reproducibility (Fig. 2b). We found
that for all variant callers, increasingly strict quality metric filters
yielded variant sets with higher average RRs, supporting the
premise that reproducibility is a predictor of variant quality
(Fig. 2c–e). For example, we found strong relationships between
Median Sample Quality (MSQ) score from SpeedSeq, the
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GSCNQUAL score from Genome STRiP, and qualitative filters
from MELT and the average RR of filtered variants (Fig. 2c–e).
Notably, filtering MELT variants called in low-complexity regions
(lc tag in FILTER) improved reproducibility from 59% to 87.5%
in MZ twins and applying all four MELT filters improved RR to
~95% (Fig. 2e, Methods). Using RR we selected strict quality
metric thresholds for each caller and variant class to achieve high
specificity without removing a significant number of variants. We
observed that within each algorithm, different variant classes
required different levels of filtering stringency to attain the same
reproducibility (Fig. 2c, d). For instance, insertions and duplica-
tions were less reliably genotyped than deletions regardless of
detection method19,21,32, and SpeedSeq duplications required an
MSQ score of 100 to attain >0.9 RR while deletions had an RR of
0.92 with no MSQ filtering (Fig. 2c) in MZ twin pairs.

After filtering, we obtained 50,980 autosomal variants (20.2%
of initial call set) with generally high RR (>0.9) for all callers,
although variants called by SpeedSeq and MELT tended to have
lower RR than those called by Genome STRiP (Fig. 2b),
suggesting that variants called using read-pair signal are less
reproducibly genotyped between genetic replicates than than
those called by read-depth signals. We tested for batch effects by
comparing allele frequencies between iPSCORE and HipSci
samples and found that they largely agreed across algorithms
(Supplementary Figs. 2, 3 and 6). We compared the CNV
genotypes to those called from SNP arrays for 216 iPSCORE
samples and found that the false discovery rate (FDR) for CNVs
ranged from 3% to 7.8% depending on the SV type and algorithm,
consistent with previous reports18,19. We also found that biallelic
SVs generally obeyed Hardy Weinberg across algorithms after
filtering (Supplementary Figs. 2, 3 and 6). Together, these results
suggest that our stringent filtering approach can be used to obtain
comparable, high confidence variants across SV classes and
algorithms.

Creating a high confidence, non-redundant SV call set. SV
calling algorithms overlap in the types and sizes of variants they
identify (Fig. 3a) which can lead to the same genetic variant being
called with slightly different breakpoints by different algorithms
in the same subject or by the same algorithm in different subjects.
To obtain a non-redundant map of structural variation, we
devised a graph-based approach to consolidate overlapping sites
that are redundant with each other (Supplementary Figs. 7 and 8,
Methods). We first clustered overlapping variants that were
detected using the same algorithm and showed high genotype
correlation and designated each cluster as a single distinct SV
with a breakpoint defined by the highest quality variant (Fig. 1a).
We next stitched together neighboring variants from Genome
STRiP whose genotypes were correlated because they likely
represent a single variant that Genome STRiP called as multiple
adjacent variants19. Finally we clustered overlapping variants
identified by different algorithms with high genotype correlation
and designated each multi-caller cluster as a single distinct SV
(Fig. 3b–d, Methods). We inspected variants identified by mul-
tiple algorithms and found that overlap between Genome STRiP
and SpeedSeq was highest among deletions (55%), while dupli-
cations and mCNVs were only co-discovered 17% and 15% of the
time, respectively, reflecting both the different size spectrums
captured by the two methods (SpeedSeq captures smaller var-
iants) and that evidence types (read-pair/read depth) do not
always co-occur. SVs identified by more than one algorithm (i.e.
with support from both read-pair and read-depth signals) had
higher RRs than SVs detected with a single algorithm (Supple-
mentary Fig. 9), supporting the premise that the highest quality
sites also tend to be the most reproducible. Overall, we collapsed

50,980 variants to 37,296 non-redundant SVs which were used for
downstream analyses (Table 1, Supplementary Data 3, Supple-
mentary Figs. 10 and 11). We examined the numbers and pro-
portions of non-reference calls for each of the 719 i2QTL samples
(from 477 individuals) across variant calling algorithms and
variant classes (Supplementary Figs. 2, 3, 5 and 6). We observed
high consistency in the number of variants per sample except for
individuals with African ancestry who had more SVs per sample,
consistent with other variant types18,48. Taken together, these
results show that the set of i2QTL SVs consists of high confidence
variants and demonstrates the utility of using genetic replicate
samples for SV filtering and processing.

Variant length, allele frequency, and reproducibility. Since SVs
can vary widely in size and we are using short read data to call
SVs, we assessed whether RR was related to SV length. While we
could detect many more short SVs (<1 kb) than long SVs, we
observed that long SVs had higher RR (Fig. 3e, f). Generally, SVs
greater than 1 kb were highly reproducible (>95% RR) while
shorter duplications and insertions tended to have the lowest RR,
reflecting the relative lack of consistency in genotyping small
read-pair-based SVs. This dependence on length was observed
across variant calling approaches and independent of allele fre-
quency (Supplementary Fig. 12a, c). We also found that rare
variants were slightly less reproducible than common variants
across SV classes (Supplementary Fig. 12b, d). These results
highlight that it remains challenging to identify SVs in inter-
mediate size ranges (~200 bp to 1 kb) using short read sequen-
cing, because the interval is: (1) too small to distinguish from
noise in read-depth signal; (2) within the bounds of variability in
insert size, making discordant read-signal undetectable; and (3)
too long to be directly sequenced with a single read. While
challenges in the discovery of SVs in the ~200 bp to 1 kb range
still exist, the i2QTL call set consists of high-quality SVs across a
wide size range of SVs (~50 bp to >1Mb).

Comparison between SVs in i2QTL and other SV resources.
We next investigated what proportion of the SVs in the i2QTL
call set are novel compared to previous SV call sets by comparing
the 37,296 non-redundant i2QTL SVs with the 1KGP18 and
GTEx19 SV call sets. GTEx used 148 deeply sequenced genomes

Table 1 Summary of i2QTL variants called from samples in
the HipSci and iPSCORE collections.

Variant class No. of variants No. of common
variants

SNV 41,826,418 7,013,178
INDEL 7,040,457 1,862,365
Deletion (DEL) 16,238 3,490
Duplication (DUP) 2693 416
Multiallelic CNV (mCNV) 1703 949
Other SV (BND) 4612 1,377
Inversion (INV) 210 92
Reference mobile element
insertions (rMEI)

2343 1689

ALU 7880 2385
LINE1 1175 262
SVA 442 115
Short tandem repeats (STR) 588,189 381,053
Total SV 37,296 10,775
Total SV/STR 625,485 391,828
Total 49,492,360 9,267,371

Common variants are defined as those with ≥5% non-mode allele frequency (NMAF) for SVs
and STRs and ≥5% MAF for SNVs and indels.
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and the 1KGP project used 2504 shallowly sequenced genomes
(7.4×) to call the same SV classes present in i2QTL (excluding
BND in 1KGP and non-reference MEIs in GTEx) and are
therefore strong benchmark datasets. The i2QTL SV call set
captured the vast majority of common deletions, duplications,
mCNVs, inversions, rMEIs, and MEIs present with non-mode
allele frequency (NMAF) greater than 0.05 in either study,
including 77% of variants present in 1KGP Europeans and 79% of
variants present in GTEx (Fig. 4a, b). Out of all SV classes, we
captured the smallest proportion of common GTEx duplications

(49%) and BND (17%) likely due to differences in filtering
stringency, WGS data quality, and breakpoint merging approa-
ches. In total, 83% of common i2QTL SVs (NMAF > 0.05) were
co-discovered by one or both of these studies (Fig. 4c). Common
deletions had the highest co-discovery rate (87%) while mCNVs
had the lowest (~66%), consistent with the idea that mCNV
discovery benefits from high read-depth and large numbers of
samples29. Rare variants (NMAF < 0.05) were more likely to be
unique to either set, with ~40% of sites from GTEx and 1KGP
represented in the i2QTL call set (Fig. 4c). In total, 43% of i2QTL

a

b

e

f

c d

1 
bp

10
 b

p

10
0 

bp

1 
bp

0 
bp

10
 b

p

10
0 

bp 1 
kb

10
 kb

10
0 

kb
1 

M
B

1 
M

B+

1.
0 

kb

10
.0

 kb

0.
1 

M
B

Variant length

Variant length

1.
0 

M
B

10
.0

 M
B

GS

1779 1056 1585 291 0

026

25

4

494 1121

59
2546

66

5396 9798

62
2623

50

GS LCNV

25 M
CNVs

DEL MEI (all types)
ALU

LINE1

SVA

rMEl

DUP
mCNV

INV STR

INDEL DEL
INDEL INS

SNV

BND

MEls/rMEls
1 M

100 K
10 K

1.0

0.8

0.6

0.4

0.2

1 K
100
10
1

GS LCNV GS LCNV

SS GS SS GS SS

SS GS_LCNV

MELT

DEL

DEL

DUP

DUP

mCNV

mCNV

INV
rMEI
ALU
LINE1
SVA
STR

HipSTR

GS

N
o.

 v
ar

ia
nt

s 
(d

en
si

ty
)

N
o.

 v
ar

ia
nt

s
M

ea
n 

R
R

Fig. 3 Variant length distributions and variant caller comparison. a Density plot showing the size spectrum of each variant caller before identifying multi-
caller clusters. b–d Number of overlapping variants after identifying multi-caller clusters for deletions (b), duplications (c), and mCNVs (d). e Number of
variants in the non-redundant call set separated by variant class and grouped in log linear bins by variant length. Points are drawn at the upper limit of each
bin (e.g. a bin from 50 to 100 bp is drawn at 100 bp). For STRs length represents the maximum number of bases different from the reference at each site
(largest insertion or deletion observed). f The average replication rate of variants segregating in the 25 monozygotic twin pairs is represented for each
length bin that contains at least 10 variants. GATK SNVs and indels previously discovered in iPSCORE samples40 were used for e and f.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16481-5

6 NATURE COMMUNICATIONS |         (2020) 11:2928 | https://doi.org/10.1038/s41467-020-16481-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


SVs were not found in either GTEx or 1KGP. These novel var-
iants were predominantly rare, tended to have shorter lengths,
and, excluding those identified by Genome STRiP, had on average
12% lower RRs than co-discovered variants (Fig. 4c, Supple-
mentary Figs. 13–15). This is expected given that small SVs are
the most difficult to genotype and rare variants are more likely to
be false positives or negatives (Supplementary Fig. 12). To assess
how similar genotyping sensitivity was between studies and
confirm that overlapping sites were likely to have the same
breakpoint, we compared the non-reference allele frequencies of
sites that we classified as co-discovered. We found that overall the
non-reference allele frequencies of i2QTL variants were highly
correlated (r > 0.9) with their matched GTEx and 1KGP variants
(Fig. 4d, e). This was true across variant classes in both studies,
with the exception of duplications in 1KGP, which were less
correlated (r= 0.75), likely as a result of limited genotyping
sensitivity in 1KGP due to the use of low coverage WGS data
(Supplementary Figs. 16 and 17). Overall the i2QTL call set
contains a significant number of novel, high-quality variants at
lower allele frequencies missing from 1KGP and GTEx.

We also compared i2QTL variants to the recently released SV
call set generated from high-coverage short read WGS data from

14,891 individuals from the gnomAD consortium49 (Supplemen-
tary Fig. 18). We found that the i2QTL SV call set captured a
large fraction of common (>0.05 minor allele frequency (MAF))
deletions, insertions, and mCNVs found in European individuals
from gnomAD SV (46%, 32%, and 34% respectively) while
biallelic duplications were the least represented (15%). Poor
overlap with biallelic duplications was found to be driven largely
by gnomAD containing small duplications not present in i2QTL
(Supplementary Fig. 18c, d), and was likely due to differences in
merging and filtering strategies between the two studies. Taken
with the comparisons to GTEx, and 1KGP, these results suggest
that despite a relatively small sample size, the i2QTL call set
contains a large fraction of SVs in Europeans that are
discoverable with short read sequencing.

In addition to short read WGS variant call sets, there have been
recent efforts from consortia such as Genome in a Bottle (GIAB)
to create benchmark samples for SV calling that make use of long
read sequencing technology50,51. To investigate how well variants
captured by longer reads are represented in the i2QTL SV dataset,
we repeated variant calling on a set of 75 iPSCORE samples, and
included GIAB/1KGP sample NA12878 downsampled to 48×
coverage to match the median coverage of iPSCORE samples.
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This sample has the advantage of being included in the 1KGP SV
call set as well as having SVs obtained from PacBio sequencing.
Comparing SVs discovered with our methods for NA12878 to
those from the short read SV call set from 1KGP for this sample,
we co-identify a large majority of variants across all classes (total:
2637/3253, 81.1%, DEL 78.7%, DUP 75%, mCNV 62%, MEI 76%,
rMEI 98.4%) (Supplementary Fig. 19). Comparing to the PacBio
SVs called for this sample, we find 2474/4495 (55%) deletions, 8/
243 (2.8%) duplications, and 671/5815 (11.5%) insertions
(Supplementary Fig. 20a, b). Variants that were unique to PacBio
sequencing tended to be small (50 bp–1 kb) while variants unique
to i2QTL tended to be longer (1–10 kb) (Supplementary Fig. 20c,
d). These results, along with the poor reproducibility of variants
in the 50 bp–1 kb size range (Fig. 3e), suggest that small SVs
remain difficult to discover with short reads alone.

We next sought to determine whether some of the small
duplications discovered in gnomAD but not i2QTL might be
identified in i2QTL by using additional variant calling methods.
To do so, we ran wham25 and manta52 on NA12878 and the 75
iPSCORE samples described above. We collapsed the overlapping
variants from wham and manta (Supplementary Figs. 21 and S22,
Methods) resulting in 16,681 non-redundant SVs (7656 deletions,
1986 biallelic duplications, 1798 rMEI, 760 mCNV, 4139 MEI,
and 342 inversions). Of these 16,681 SVs, 2930 (17.56%) were
attributable exclusively to wham or manta (or were discovered by
both callers) (Supplementary Fig. 22). We intersected this
combined variant call set for the 75 iPSCORE samples plus
NA12878 with gnomAD SVs to determine the proportion of
variants co-discovered considering the additional variant callers.

Interestingly, while variants unique to SpeedSeq and Genome
STRiP were largely co-discovered by gnomAD (58.5% and 46.8%,
respectively), variants unique to manta and wham were rarely co-
discovered by gnomAD (10.2% and 9.45%, respectively),
suggesting that these approaches may have a higher FDR.
Furthermore, the gnomAD variants that wham and manta
uniquely identified in the 75 iPSCORE samples were over-
whelmingly deletions (429/583 SVs, 83.6%) rather than the small
duplications that are missing from i2QTL relative to gnomAD.
These results indicate that the i2QTL SV call set contains a large
fraction of common SVs in Europeans discoverable using short
read sequencing data as well as new, rare SVs, making it a
valuable resource for examining functional differences between
the SV classes53.

STR genotyping. We genotyped STR variants at over 1.6 million
reference sites using HipSTR38, which employs a hidden Markov
model to realign reads around each STR locus (Fig. 1a). HipSTR
models PCR stutter artifacts to genotype STRs and because of
such artifacts, greater genotyping sensitivity and accuracy of
predicted de novo STR alleles can be achieved with PCR-free
WGS data. In light of this, HipSci samples, which were generated
with a PCR-free library preparation, were genotyped separately
and then these alleles were used as a reference to genotype
iPSCORE samples, which were prepared using a PCR-based
library prep, and the results for both sample sets were combined
into one call set with consistent alleles. To retain only high-
quality STR calls, we applied the genotype specific filters sug-
gested by HipSTR38 and required all sites to have an 80% call rate
in iPSCORE or HipSci samples. This resulted in 588,189 auto-
somal variants with high reproducibility across the range of
gentotyped expansion/deletion sizes (1–150 bp) (overall 94.5%,
>90% in all size bins); these variants were substantially more
reproducible than indels in this same size range called by GATK
in the i2QTL call set, which overall showed low RRs (62%)
(Fig. 3e, f, Supplementary Figs. 23 and 24). In total, 231,317 of the
588,189 STRs (39.3%) had four or more observed length alleles
and could be classified as multiallelic. Because HipSTR STRs and
GATK indels overlap in size and location, it is likely that some
variants are present in both datasets. To compare the genotyping
quality of these possibly redundant variants, we intersected
GATK indels with 1.6 million HipSTR STR reference loci (Sup-
plementary Fig. 12e). Interestingly, we found that indels (2–100
bp) called by GATK that overlapped an STR locus that was
genotyped non-reference in at least one sample by HipSTR had
higher RR (77.3%) than those that overlapped STR loci not
genotyped as polymorphic by HipSTR (56%), or those that did
not overlap an STR region (64.7%). These findings suggest that it
is useful to filter large GATK indels (>30 bp) because they have
low RR (42%), and that STR genotypes are more reproducible
than GATK indels.

Linkage disequilibrium tagging for SVs and STRs. Given the
large amount of GWAS and QTL studies performed using gen-
otyping arrays, we next asked to what extent different classes of
SVs and STRs are tagged by SNPs and indels. For each of the
42,921 common (NMAF > 0.05) SVs and STRs that were within 1
MB of an expressed gene, we calculated the maximum linkage
disequilibrium (LD) in i2QTL Europeans with SNPs/indels within
50 kb (Methods)53. We found that 97.7% of STRs are tagged by
an SNP or indel with R2 > 0.8 while SVs classes ranged from
44.2% to 86.7% of variants tagged with R2 > 0.8 (Fig. 5). Dupli-
cations and mCNVs were the most poorly tagged classes likely
because they are often located near segmental duplications where
SNPs and indels are poorly genotyped18,29,33. These results
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indicate that most common STRs and some classes of SVs are
assayed well by proxy using SNP and indel genotypes, but to
increase the coverage of SVs, particularly mCNVs and duplica-
tions, studies need to include the genotyping of these variant
classes in their samples.

Discussion
In this study, we discovered and genotyped SVs and STRs in 719
high-coverage WGS samples from 477 unique donors. We detected
a wide spectrum of variants across different sizes as most STRs are
in the 10 bp to 1 kb range whereas SVs may span more than 100 kb.
We leveraged genetic replicates, such as twin pairs and
fibroblast–iPSC matched samples, to test variant calling accuracy
and determine filtering approaches to retain only high-quality SVs
and STRs. Our filtered call set has very high RR, indicating high
genotype quality for detected SVs and STRs. The call set captures
most of the common variants identified in 1KGP18 and GTEx SV
variant calling efforts and also contributes novel short (~100–1000
bp) and rare (NMAF < 5%) variants. The high confidence, non-
redundant i2QTL SV set described here will serve as a useful
reference for other studies and is particularly valuable for genetic
association analyses that aim to identify SVs that influence disease
risk or quantitative molecular traits like gene expression.

We used five algorithms designed for calling variants across
many samples to detect different classes of SVs and STRs and
compared the RR in genetic replicates (MZ twin pairs and
fibroblast–iPSC pairs) to identify factors that impact RR. We
found that we needed to call variants separately in the iPSCORE
and HipSci WGS collections and implement specific filtering
strategies to account for dataset-specific features such as library
preparation techniques to achieve high RR. Given the variability
in library preparation methods, future improvements to SV
calling algorithms may explicitly adjust for specific library fea-
tures such as PCR-free sequencing. We also observed differences
in RR between different classes and sizes of SVs and different
algorithms. We found that SVs in the 100–1000 bp range remain
harder to identify and genotype likely due to the limitation of
using short reads. We also observed that accuracy was highest for
large (>10 kb) duplications, deletions, and mCNVs suggesting
that FDR estimates from orthogonal datasets such as arrays may
overestimate accuracy for SV call sets since they generally assess
the largest and easiest-to-genotype variants. Future studies that
combine deep short read WGS with long read sequencing data
may be able to improve the detection and genotyping of SVs in
the 100–1000 bp range by directly sequencing them or assembling
the short and long reads.

We used genetic replicates to identify algorithm- and SV-
specific thresholds and applied these thresholds to filter the initial
set of SV calls and create a high confidence catalog of SVs and
STRs that complements previous SVs identified using low depth
WGS or fewer samples18,19. We also developed approaches for
collapsing redundant SVs and harmonizing SVs called by dif-
ferent algorithms across hundreds of samples. Comparing our SV
catalog to previous sets of SVs from the 1KGP and GTEx projects
shows that the i2QTL SV call set captures most common (NMAF
> 0.05%) SVs in Europeans. However, consistent with other types
of genetic variants, we found that African ancestry samples had
more SVs than Europeans. Future sequencing studies are needed
to fully catalog SVs in other ancestries and identify rare,
population-specific SVs. Such multi-ancestry SV catalogs will be
indispensable for population sequencing studies such as All of
Us54 that aim to integrate genetic and health data for patients
from diverse and admixed ancestries.

The filtering scheme and catalog of SVs and STRs presented
here can be used in future genetic association and sequencing

studies that aim to study the impact of SVs/STRs. One method
for utilizing this catalog for calling SVs and STRs is to impute
variants via tagging SNPs and indels; a benefit of this approach is
that imputation is possible using both array- and sequenced-
based genotyping. A second option when sequencing data is
available is to skip the de novo SV and STR discovery step and
instead genotype the reproducible variants reported here. This
will restrict genotyping to high-quality sites and may lessen the
burden of filtering variant calls. A third option is to perform de
novo discovery, genotyping, processing, and filtering using the
approaches and thresholds that we have identified. While it may
be possible that some filtering thresholds need to be adjusted for
specific studies, the thresholds provided here likely provide a
good starting point for genotyping and filtering de novo dis-
covered SVs and STRs in other datasets.

Overall, this study provides a roadmap for discovering and
genotyping SVs from WGS data and establishes a high-quality
catalog of SVs and STRs that can be used in future genotyping
efforts. A companion paper53 examines how the i2QTL SVs and
STRs characterized here influence gene expression and contribute
to disease risk. These studies demonstrate that SVs and STRs can
be reliably identified and genotyped for hundreds of samples and
used to study the impact of this class of genetic variation on
human health.

Methods
Subject enrollment. In total, 273 subjects were recruited as part of the iPSCORE
study, of which 215 subjects have been included in previous studies39–41. Data for
additional 204 subjects were obtained from the HipSci Collection42,43. We have
complied with all relevant ethical regulations for work with human participants
and obtained informed consent. The iPSCORE collection was approved by the
Institutional Review Board of the University of California at San Diego (Project
#110776ZF). Each of the subjects provided consent, filled out a questionnaire, had
blood drawn, and had a 1 mm skin biopsy taken from which fibroblasts were
obtained. Five individuals provided consent only for cardiovascular studies;
therefore, they were removed from downstream analyses. Family relatedness, sex,
age, and ethnicity were recorded in the questionnaire. Detailed pedigree infor-
mation for iPSCORE available in Panopoulos et al.39–41 (dbGAP: phs001035). In
total, we utilized a total of 477 HipSci and iPSCORE subjects, 276 were females and
201 were males, and collectively subjects ranged in age from 5 and 89 years of age
(Supplementary Fig. 1a). Notably, iPSCORE individuals were included in 56
families composed of two or more subjects (range: 2–14 subjects) and 86 single
individuals (Supplementary Fig. 1b, Supplementary Data 1). Overall, 167 iPSCORE
individuals were unrelated. All iPSCORE individuals were grouped into one of five
superpopulations (European, African, Admixed American, East Asian, and South
Asian) on the basis of genotype data39–41 and HipSci samples were similarly
categorized42 (Supplementary Fig. 1c). For HipSci, some subjects had multiple
iPSC clones with WGS. For these subjects, we chose the pair of fibroblast and iPSC
WGS samples that had the highest reproducibility for Genome STRiP calls
(see Genome STRiP CNVDiscovery RR analysis).

WGS data processing. IPSCORE: WGS sequencing for iPSCORE individuals is
available on dbGaP (dbGAP: phs001035)40. DNA isolated from either blood
(254 samples) or fibroblasts (19 samples) (Supplementary Data 2, Fig. 1a) was
PCR-amplified and sequenced on Illumina HiSeqX (150 base paired end). We
obtained an average of 180.9 billion total raw bases per sample (range
117.81–523.49 billion bases). The quality of raw fastq files was assessed using
FASTQC55. Reads were then aligned to the human b37 genome assembly with
decoy sequences included and a Sendai virus contig with the BWA-mem algorithm
under default parameters56.

HipSci: We downloaded cram files associated with 446 genomes (mean depth
36.3×) generated with a PCR-free protocol from 204 healthy donors (ENA Study
Accession: ERA828)42. Genomes were aligned to hs37d5 genome, a reference
identical to the one used for iPSCORE alignments with the exception of the
inclusion of a Sendai virus contig. Cram files were converted to the bam file format
and merged when necessary using samtools57.

Bam files from both iPSCORE and HipSci were sorted with sambamba58 and
duplicates were marked with biobambam2.

Variant callers and types of genetic variants detected. We used five variants
callers to identify SVs and STRs. We used the SpeedSeq (SS) SV pipeline46 that
combines LUMPY24 read-pair evidence with read-depth support from CNVna-
tor26. We also used the Genome STRiP CNVDiscovery pipeline (GS) and Genome
STRiP LCNVDiscovery pipeline (GS LCNV)29 that detect SVs based on read-depth
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evidence. We used MELT47 for mobile element insertion discovery and HipSTR38

to identify and genotype STRs. LUMPY, GS, and GS LCNV each identified biallelic
deletions (DEL), biallelic duplications (DUP), and mCNVs. mCNVs are defined as
variants that have at least three predicted alleles. LUMPY identified inversions
(INV) and generic BND that can include deletions and duplications that lack read-
depth evidence, balanced rearrangements (INVs), MEIs, or other uncategorized
breakpoints. As part of the SpeedSeq pipeline we also identified reference mobile
elements (rMEIs). For non-reference MEIs we used MELT to identify Alu element
insertions (ALU), LINE1 element insertions (LINE1), and SINE-R/VNTR/Alu
element insertions (SVA). HipSTR identifies STRs where at least one individual
differed in STR length compared to the reference. We considered CNVs to include
deletions, duplications, and mCNVs. We considered MEI to encompass non-
reference MEI ascertained by MELT, including ALU, LINE1, and SVA elements.

Replication rate and filtering strategy for SVs and STRs. To minimize the
number of poorly genotyped SVs and maximize quality across multiple variant
calling approaches, we used the RR metric, calculated as the proportion of non-
reference genotypes that were also called non-reference in a paired genetic repli-
cate, as a measure of the reproducibility (and quality) of a variant. The rationale
behind this approach is that variants that have high genotyping accuracy should be
genotyped consistently in different samples with the same genome and that var-
iants with low genotyping accuracy will differ between samples with the same
genome. Under this logic, variants should be consistently genotyped in samples
with the same genomes (e.g. technical duplicates, monozygotic twins) and dis-
crepancies would result from false-negative or false-positive genotypes.

To determine RR for all variant classes, we used genetic duplicate samples in the
form of monozygotic twin pairs (n= 25) and fibroblast–iPSC pairs (n= 152). We
used RR to assess the reproducibility of variants under different filtering
conditions; the filters were specific to the unique quality metrics measured by each
calling algorithm. Using the relationships between filters and RR that we identified,
we selected filtering criteria for each variant class in each caller to maximize the
quality (specificity) and the number of variants (sensitivity) called. Because there
may be a greater number of somatic variations between fibroblasts and iPSC
clones39 due to reprogramming, RRs in monozygotic twins were used to select
thresholds, and iPSC–fibroblast pairs were used for additional confirmation. For
this analysis, one member of each pair of genetic duplicates was chosen arbitrarily
as the comparison sample, and the concordance of non-reference sites in this
sample was assessed with respect to the other sample. The replication rate was
calculated on all autosomal SVs on a site-by-site basis as the number of pairs with
matching non-reference genotypes divided by the total number of pairs with at
least one non-reference genotype. Average RRs reported for particular SV classes
were calculated as the average RR over all SVs in that class.

Batch effects and Hardy–Weinberg equilibrium filtering. The i2QTL Con-
sortium includes WGS data from iPSCORE and HipSci41,42, which are different in
aspects which may affect variant calling: (1) mean coverage is higher for iPSCORE
(50.4×, compared with 36.6×); (2) while most iPSCORE donors had WGS from
blood and only 14 from skin fibroblasts, all HipSci donors had WGS from skin
fibroblasts; and (3) HipSci samples were sequenced using a PCR-free protocol
(Supplementary Fig. 1, Fig. 1, Supplementary Data 2). To limit the batch effects
associated with these differences, in cases where a variant caller used information
from the entire set of samples to build a global model (Genome STRiP29 and
HipSTR38), we genotyped or performed discovery separately in iPSCORE samples
and HipSci samples, which were additionally divided into two groups for fibroblast
and iPSC samples.

We compared allele distributions for autosomal variants ascertained for
unrelated members of each collection (167 unrelated iPSCORE samples and 204
HipSci samples) after variant calling and filtering to ensure that differences
between WGS from each collection did not create widespread systematic artifacts
in variant calling. Allele distributions were compared between the studies using a
chi-squared test with a Bonferroni correction. For instance, for an insertion, the
number of samples with zero, one, or two copies of the insertion in iPSCORE were
compared to the number of samples with zero, one, or two copies of the insertion
in HipSci using the chi-squared test. Variants with Bonferroni-corrected p < 0.05
were tagged in the VCF file. For this analysis, missing genotypes were also included
as a unique allele when present.

We calculated Hardy–Weinberg equilibrium to identify variants that could be
affected by batch effects in variant calling or that were poor quality. We used all
unrelated blood/fibroblast samples and considered autosomal biallelic duplications
and deletions from Genome STRiP29 as well as all variant classes ascertained by
SpeedSeq46 and MELT47. We tested HWE using a chi-squared test to compare the
counts of the observed genotypes to those expected given HWE. SVs with
Bonferroni-corrected HWE p < 0.05 were flagged as potentially not obeying HWE.

Filtering based on number of calls ascertained per sample. Consistency in the
number of non-reference calls per sample is associated with variant calls from
high-quality WGS sequencing data, samples of similar ancestry, and algorithm
performance. We counted the number of calls per sample for all algorithms to

assess whether there were differences in the number of SVs identified in samples
from each study, ancestry, or cell type from which the WGS was derived.

SpeedSeq variant calling. We used the split and discordant read-pair-based
structural variant caller LUMPY (v0.2.13)24 under its implementation in SpeedSeq
(v0.1.2)46 to call duplications, deletions, inversions, and other novel adjacencies
referred to as BND. We ran LUMPY on each of 719 samples (478 from the HipSci
collection and 478 from the iPSCORE collection) using the speedseq sv command
with the -P option to retain probability curves in the output VCFs, -d to CNVnator
(v0.3.3)26 to calculate absolute copy number information on each sample, and -x to
exclude a published list of genomic regions (ceph18.b37.lumpy.exclude.2014-01-15.
bed) known to be potentially misassembled regions24,59. Calls from individual
samples were then genotyped using SVTyper (v0.1.4), before being combined into a
single VCF file. Individual VCF files were sorted, and merged using svtools (v0.3.2)
with the sort and merge command (slop 20 bp) to remove overlapping breakpoints,
resulting in a single VCF file with the most probable sites. Each sample was then
genotyped at these merged sites using SVTyper and annotated with an absolute
copy number using the svtools copynumber command. Variants were merged into
a single VCF file, pruned, and reclassified under suggested parameters19. Individual
VCFs were merged using svtools vcfpaste and further processed to remove addi-
tional identical variants using svtools prune. This set of breakpoints was then
reclassified by using svtools classify to identify high confidence CNVs by regressing
the estimated copy number and allele balance information (non-reference/refer-
ence reads at an SV site) as well as to identify MEIs in the reference genome (rMEI,
which appear as deletions in our call set).

SpeedSeq variant processing. Because metrics such as RR may select variants
that are reproducible artifacts, to remove as many known low-quality sites as
possible, we first applied suggested filtering guidelines19 as follows: (1) deletions
that were less than 418 bp were required to have split read support; (2) all non-
BND variants were required to be at least 50 bp in length; (3) BND calls required
25% support from either split or paired-end reads; and (4) QUAL > 100 inversions
were required to have at least 10% of evidence from split or paired-end reads.
Finally, to ensure a baseline level of genotyping consistency at each site, variants
were filtered if they had a missing rate of >10%.

SpeedSeq variant redundancy collapsing. After running the Speedseq/SVtools
pipelines and filtering variants as described above, the variant call set still contained
overlapping variants suspected to be identical. To produce a single set of non-
overlapping unique calls, we performed additional pruning steps. To identify and
prune putatively identical calls that remained in our call set we implemented a
graph-based approach: (1) we constructed a graph where SVs with reciprocal
overlap of at least 50% are nodes connected by an edge; (2) we created a correlation
matrix for each set of connected components using the allele balance (non-refer-
ence/reference reads at an SV site) at each site across individuals; (3) we refined the
graph, retaining only the edges between SVs with r > 0.25 at a given site, which are
likely to represent a single breakpoint; (4) we iterated through connected com-
ponents, and chose variants with the highest MSQ score, pruning other variants in
the subgraph; and (5) in cases where one call was fully contained within another
call and there was a correlation of at least 0.5 in allele balance between them,
indicating that both calls were genotyped as non-reference in the same individual
(s), only the site with the highest MSQ score was retained.

SpeedSeq RR analysis and filter selection. During SpeedSeq quality analysis we
investigated supporting reads (SU) and MSQ as possible filtering criteria and found
that MSQ was strongly associated with RR in iPSCORE twins and HipSci
fibroblast–iPSC pairs (Supplementary Fig. 2a, b) while the number of supporting
reads was not. For variant filtering, we determined variant class-specific MSQ
thresholds, with the goal of ensuring at least 90% RR across all variant classes and
retaining the maximal number of variants. Classes of variation that were highly
reproducible before quality score filtering (>90% RR) were filtered at a 20 MSQ
score19. With this approach, we performed additional filtering as follows: (1)
deletions and rMEIs must have MSQ > 20; (2) duplications, inversions, and BND
calls must have MSQ > 100, 90, and 90, respectively. Deletions and rMEIs were
genotyped most reproducibly, prior to filtering, while duplications were less reliably
genotyped, reflecting the sensitivity of split read versus discordant read signal. After
filtering, RR was on average 97% in twin pairs and slightly worse (92%) in
fibroblasts–iPSC pairs (Supplementary Fig. 2c).

SpeedSeq batch effect and Hardy–Weinberg analysis. We tested variants on
autosomes that passed the filters described above and 196 variants with missing
rate >10% but that otherwise passed filters for differences in allele distribution or
deviations from HWE as described above (see Batch effects and Hardy–Weinberg
equilibrium filtering). We found that only 544 of 25,537 sites tested had different
allele distributions (2.1%, Supplementary Fig. 2d). We also observed that 1256
variants (4.9%) deviated from HWE, suggesting that batch effects do not affect
SpeedSeq variant calls. We also observed that allele frequencies were highly cor-
related between variants detected in iPSCORE and HipSci.
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SpeedSeq calls per sample. After variant calling, we found that the number of
SVs identified was consistent across samples, regardless of the study or cell type
(Supplementary Fig. 2e, f). In agreement with previous SV discovery studies, we
observed on average 10.2% more SpeedSeq variants per sample for those of African
ancestry (4260/sample)18,19 as compared to samples that were not predicted to be
of African ancestry (3863/sample).

Genome STRiP CNVDiscovery variant calling and genotyping. Genome STRiP
(svtoolkit 2.00.1611) CNVDiscovery29, a population level read-depth based caller,
was used to identify and genotype biallelic duplications and deletions as well as
multiallelic CNVs (mCNVs) with suggested discovery parameters for deeply
sequenced genomes (window size: 1000 bp, window overlap: 500 bp, minimum
refined length: 500 bp, boundary precision: 100 bp, reference gap length: 1000).
Because Genome STRiP is sensitive to differences in cell RR between samples
derived from different cell types as well as in sequencing depth, we ran
CNVDiscovery separately for iPSCORE fibroblast and blood samples and HipSci
fibroblast samples. At the midstage of Genome STRiP discovery, 10 iPSCORE
samples and 6 HipSci samples were removed from their respective discovery runs
due to excessive variation in the number of calls per sample (exceeding the median
call rate across all samples plus three median absolute deviations). To produce a
call set where all sites were genotyped in all samples, sites discovered in either
iPSCORE or HipSci samples were next genotyped using SVGenotyper in the
opposite set (genotyping separately within these respective sets) and the combined
list of discovered sites was genotyped in the remaining HipSci iPSC samples, which
were excluded from discovery. Using this strategy, the Genome STRiP dataset was
not biased by the presence of somatic CNVs in iPSCs, and differences due to WGS
library preparation specific to each study were minimized. Additionally, output
VCF files from genotyping each subset of samples were annotated to match those
from variant discovery using the SVAnnotator (-A CopyNumberClass, \-A
CNQuality\-A VariantsPerSample\-A NonVariant\-A Redundancy) to ensure that
quality metric information was available for each variant within each subset of
samples for downstream processing.

Genome STRiP CNVDiscovery RR analysis. A commonly suggested filtering
parameter for SV detection is the per site quality score GSCNQUAL, described as
being comparable for filtering of both duplication and deletion events60. We thus
tested the RR of Genome STRiP variants ascertained in iPSCORE samples as well
as the replication of variants ascertained in the HipSci fibroblast samples (Sup-
plementary Fig. 3a, b). Here we found that GSCNQUAL was highly correlated with
RR in both twin pairs and iPSCs, but duplications and mCNVs had higher RR
among twin pairs than iPSC–fibroblast pairs. Furthermore, deletions in both
iPSCORE and HipSci sites were more reproducible under less stringent filtering
than duplications and mCNVs. We selected 2, 12, and 14 as the minimum
GSCNQUAL score required for deletions, mCNVs, and duplications, respectively.
We then filtered variants that were monoallelic in the dataset as well as sites that
had more than 10% of non-iPSC genotypes marked as low quality (LQ format
field). These standard filters were applied before proceeding to combine the dis-
covery sets of iPSCORE and HipSci and other data processing.

Genome STRiP CNVDiscovery variant redundancy collapsing. To collapse
redundant variants that were obtained through separate SV discovery for iPSCORE
and HipSci samples, we first filtered the HipSci discovery set and the iPSCORE
discovery set to those passing filters described above, and then intersected the call
sets using bedtools61,62. Overlapping sites were required to meet the following
criteria in order to be considered redundant: (1) at least 50% reciprocal overlap; (2)
Pearson correlation coefficient in the copy numbers of non-iPSC samples > 0.95;
and (3) differences in less than 5% of non-mode genotypes in non-iPSC samples.
To process these overlaps, we considered cases where two sites exactly overlapped
(same coordinates), choosing the site with the largest sum of GSCNQUAL scores
from iPSCORE and HipSci (Non-iPSC) samples sets as the high confidence pri-
mary site and marking the other as redundant. Pairs of sites with exact overlaps
were then removed from the analysis, and the remaining intersections were pro-
cessed using a graph-based method similar to the one developed for Speedseq.
Briefly, overlapping sites (nodes) were connected by edges weighted according to
the average percentage overlap (the average of the percentage overlap of site B with
A and the percentage overlap of site A with B) and which variant had the largest
sum of GSCNQUAL scores from iPSCORE and HipSci (non-iPSC) samples. Then,
we iterated through connected components of the graph; chose the pair of sites that
had the highest average overlap; and marked the variant with the largest sum of
GSCNQUAL scores as the primary site and the other variants in the cluster as
redundant. For the X chromosome, the computation of correlation and differences
among non-mode samples was done separately for males and females, requiring
that sites pass criteria in males, females, or both males and females, depending on
whether each subgroup had variability. This was done to control for bias in cor-
relation coefficients due to the difference in reference copy number for males and
females on the X chromosome. Overall, this process resulted in 12,757 sites being
reduced to 6341 non-redundant primary sites.

Genome STRiP CNVDiscovery stitching of CNVs. Genome STRiP occasionally
reports a single CNV as several adjacent CNVs19. To address this issue, we ana-
lyzed sites that passed filtering, and were non-redundant, computing the correla-
tion and distance between every pair of adjacent sites. We observed high genotype
correlation between sites that overlapped or were close to each other (within ~40
kb) (Supplementary Fig. 4a). Pairs of sites were considered for stitching into a
single CNV if they had high overall correlation (r > 0.9) between copy number
genotypes and at least 80% concordance between copy number genotypes of non-
mode samples for each variant (union). Because variants that are very far from one
another are less likely to be fragmented variant calls, we also selected a maximum
distance between a pair of variants to consider for stitching. To do so, we examined
the number and percentage of adjacent variant pairs that passed genotype corre-
lation requirements at different distance thresholds, and selected 30 kb, which
maximized the number and percentage of pairs passing these requirements (Sup-
plementary Fig. 4b). We then identified correlated adjacent CNVs to be stitched
using a graph-based method: (1) a genotype correlation matrix was created for all
the CNVs on each chromosome using estimated copy numbers across samples; (2)
a graph was drawn with CNVs as nodes, connecting a pair of CNVs with an edge if
they resided on the same chromosome and had correlation from their copy number
estimates >0.9; (3) for each connected component in the graph with more than a
single CNV, CNVs were sorted by position and each adjacent pair was examined
for potential stitching; and (4) CNVs were merged if they passed the correlation/
concordance criteria described above and were within 30 kb of one another. This
approach ensured that only highly correlated adjacent CNVs were merged. In cases
where a set of CNVs was chosen to be stitched, a new breakpoint spanning the start
point of the first CNV to the end point of the last CNV (sorted by start point) was
defined, referred to hereafter as the stitch breakpoint, while the other CNVs in the
cluster were considered constituent sites. Note that in cases when a stitch cluster
was made up of a single CNV containing one or more smaller CNVs, the large
CNV was identified as a stitch breakpoint. Overall, this process lead to 3558 sites
being combined into 1252 putative stitch breakpoints, 355 of which were large
breakpoints in the call set that contained smaller breakpoints, and 897 were new
breakpoints. The set of 897 new stitch breakpoints (not already genotyped in our
set) were then genotyped across all samples using Genome STRiP SVGenotyper
(CNVDiscovery), separately for iPSCORE samples, HipSci fibroblast samples, and
HipSci iPSC samples (as was described in initial discovery 3.3.1). Finally, we
compared the genotypes of the stitched breakpoint with the genotypes of the
constituent sites, and those that did not have high correlation (average r < 0.9
across all constituents) were unstitched, and if the stitch breakpoint was one of the
897 new breakpoints genotyped, it was marked for filtering. If the new stitched
breakpoint had over 10% low-quality flagged genotypes (LQ) or was non poly-
morphic, the stitch cluster was also unstitched, and the breakpoint marked for
filtering.

The vast majority of new stitch breakpoints were closely correlated with the
constituents (862/897, 96%), suggesting that our stitching strategy indeed identified
single CNVs that were broken into fragments (Supplementary Fig. 4c). An
additional 7/862 correlated sites failed low-quality genotype filtering criteria,
yielding 855/897 (95%) new stitch breakpoints which passed all criteria. Overall,
the process yielded 1207 unique sites (855 newly stitched sites and 353 sites that
had been previously genotyped) comprising 2–30 distinct CNVs each
(Supplementary Fig. 4d). For analysis of the non-redundant set, we filtered these
constituent sites and retained the stitch breakpoints. After the filtering,
deduplication, and stitching process, remaining non-redundant variants had high
replication fractions in each individual twin pair and fibroblast iSPC pair
(Supplementary Fig. 3c) and high average RRs on a per site basis (Fig. 3a).

Genome STRiP CNVDiscovery batch effect and Hardy Weinberg. After filter-
ing, variant collapsing and stitching, we tested for differences in allele distribution
and deviations from HWE as described above (see Batch effects and
Hardy–Weinberg equilibrium filtering). Non-mode allele frequency was highly
correlated between unrelated samples from iPSCORE and HipSci (Supplementary
Fig. 3d) though a small number of variants (276/10,302 autosomal CNVs) were
identified as having possible differences in allele distribution or deviation from
HWE.

Genome STRiP CNVDiscovery calls per sample. After variant calling and col-
lapsing, we observed approximately the same number of calls per sample among
iPSCORE and HipSci fibroblast samples, and no notable outliers among them
(Supplementary Fig. 3e). As with other variant callers, we saw larger numbers of
calls per sample among samples from the African predicted superpopulation
(~28% more calls per sample). Additionally, we found a small number of low-
quality genotypes per sample (Supplementary Fig. 3f) on the samples from which
we performed discovery. HipSci iPSCs have higher rates of low-quality genotypes
because they were excluded from filtering that of sites based on their percentage of
genotypes that were tagged as low-quality (FORMAT= LQ) because they were
genotyped separately and excluded from the CNVDiscovery pipeline. These results
suggest that the discovery and genotyping approach was successful in preventing
systematic batch effect variants.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16481-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2928 | https://doi.org/10.1038/s41467-020-16481-5 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Genome STRiP LCNVDiscovery variant calling. To identify CNVs longer
than 100 kb, which we refer to as long CNVs (LCNVs) we used the
LCNVDiscovery module of the Genome STRiP toolkit (svtoolkit 2.00.1611).
This pipeline uses information from depth of coverage in fixed-size bins across
the genome, and while sample normalization is performed across samples,
individual samples are called separately. Prior to LCNVDiscovery, we generated
depth profiles for all genomes using GenerateDepthProfiles with suggested
parameters (maximumReferenceGapLength= 1000, profileBinSize= 10,000).
Then, similar to our approach in Genome STRiP CNVDiscovery, iPSCORE
samples, Hipsci fibroblasts, and HipSci iPSCs were processed separately when
running the LCNVDiscovery module (maxDepth= 50). We collected the calls
from each sample and filtered them with the suggested parameters (NBINS ≥ 10
and a SCORE ≥ 1000). Sites that were entirely contained within the centromere
or overlapped the entire centromere were removed and variant sites were
required to have an absolute copy number greater than 2.75 or less than 1.25
for duplications and deletions, respectively (Supplementary Fig. 5a).

Genome STRiP LCNVDiscovery variant processing and QC. Genome STRiP
LCNVDiscovery identifies sites per individual sample, so it is necessary to identify
redundant sites that are called in different samples. To find redundant CNVs
representing a single breakpoint, sites with a reciprocal overlap of at least 80% were
grouped into clusters and a single breakpoint spanning the minimum start position
to the maximum end position of CNVs in the group was used to represent the
merged site. Individual CNVs that were within these clusters were marked as
merged constituents, and excluded from non-redundant set, while those that did
not overlap with CNVs from another individual were considered unique variants
that were present in only a single sample (Supplementary Fig. 5a, b). Absolute copy
number estimates were rounded in order to produce integer copy number esti-
mates similar to Genome STRiP CNVDiscovery. We identified 73 redundant sites
comprising 2–19 CNVs detected in individuals. On average, twin RRs of the filtered
variants was >75% but very few large common variants were identified (Supple-
mentary Fig. 5c). After filtering and collapsing variants, we obtained 432 unique
LCNV sites, with 200 duplications, 166 deletions, and 66 mCNV (size range: 100 kb
to 5Mb, Supplementary Fig. 5d). On average each individual had four large
duplications and three large deletions (Supplementary Fig. 5e).

MELT variant calling. MEIs were called using the Mobile Element Locator Tool
(MELT)47. We used the MELT (v2.0.2) SPLIT workflow to discover, genotype,
merge, and annotate MEI calls for ALU, SVA, and LINE1 elements. We also
included discovered 1KGP MEI sites18 as priors in MELT GroupAnalysis.

MELT RR analysis and filter selection. While MELT does not output quantitative
quality scores, it does flag variants that meet one or more of several criteria. These
criteria include: (1) sites that overlap low-complexity regions (lc), (2) have more
than 25% missing genotypes (s25), (3) have a ratio of evidence for the left and right
breakpoint (LP/RP) that is >2 standard deviations from the ratio among all other
sites (rSD), or (4) have a larger than expected number of discordant read pairs that
are also split reads (hDP). We tested whether the flags, or combinations or flags,
were associated with RR and found that filtering on all suggested criteria improved
RR considerably for detected MEIs, raising it from below 0.6 to ~0.9 for ALU,
LINE, and SVA elements (Supplementary Fig. 6a, b). Among these quality metrics,
filtering on low complexity resulted in the best improvement compared with the
other individual filters; however, filtering on all quality tags was necessary to
improve RR to 0.9. Additionally, MELT outputs a quality tranche score from 1 to 5
(defined as ASSESS) that describes the types of evidence used to determine the
location of the insertion site. For example, the highest quality insertion sites are
given a score of 5, and has a target site duplication sequence flanking the MEI
supported by split reads. Filtering with higher quality tranche score thresholds also
improved RR, either before or after filtering using all flags. We chose to filter
variants that that were flagged for any criteria, and also required a quality tranche
score of 5, for maximum stringency and best RR improvement. After filtering,
individual twin and fibroblast–iPSC pairs had high replication percentages (>0.9;
Supplementary Fig. 6c).

MELT batch effect and Hardy–Weinberg analysis. We tested all MELT variants
for differences in allele distribution and deviation from HWE as described above
(see Batch effects and Hardy–Weinberg equilibrium filtering) and found that only
527/9,566 autosomal MEIs had differences in allele distribution (49/527) or showed
deviation from HWE (492/527) (Supplementary Fig. 6d). Additionally, non-
reference allele frequency in iPSCORE and HipSci was highly correlated (r > 0.9),
suggesting batch effects did not influence MEI calls.

MELT calls per sample. MELT variants were highly consistent in calls per sample
in both studies (mean 1107 and 1097 calls/sample in iPSCORE and HipSci
fibroblast samples, respectively) and in all cell types, while having very few missing
genotypes (median 1/sample, Supplementary Fig. 6e, f). We observed an increased
number of ALU, LINE1, and SVA elements per sample in samples from individuals
of African ancestry (1144 ALU/118 LINE1/53 SVA per sample versus 952 ALU/105
SVA/ 45 SVA sample for Non-African samples from iPSCORE).

HipSTR variant calling. STR variants were genotyped using the HipSTR algorithm
(v0.5.61)38 on a set of 1,527,077 GRCh37 autosomal STR regions that were pro-
vided by the tool (GRCh37.hipstr_reference.bed.gz). Because only HipSci WGS
data were PCR-free, special considerations were required to run HipSTR, as it uses
PCR stuttering models to genotype repeats and assumes all WGS samples were
generated using the same pipeline. For STR genotyping, PCR-free data produce
more accurate genotypes, thus we first ran HipSTR at STR sites in all 446 HipSci
samples under standard settings. Next, we genotyped the iPSCORE samples using
the HipSci genotypes as references (--ref option). Finally, we genotyped iPSCORE
samples separately without using the HipSci genotypes as reference alleles. We used
only the diploid genotype option, as we lacked phased SNVs for all samples.

HipSTR filtering and preliminary RR analysis. To filter HipSTR variants, we first
used the supplied filter_vcf.py script with recommended thresholds for individual
genotypes (min-call-qual= 0.9, max-call-flank-indel= 0.15, max-call-stutter=
0.15, --min-call-allele-bias=−2, min-call-strand-bias=−2). This procedure
converts genotypes that do not pass these thresholds to missing. We examined the
number of variant calls per sample and the number of missing genotypes when
variants were genotyped in iPSCORE, iPSCORE using HipSci reference alleles, and
in HipSci samples (Supplementary Fig. 23). Among iPSCORE samples, we
observed a median of 122,249 calls per sample in African ancestry individuals and
111,613 calls per samples in non-African ancestry individuals (Supplementary
Fig. 23a–d). While four samples from non-African ancestry individuals had a
surprisingly large number of STRs, all but one individual self-reported as having
partial African ancestry (Supplementary Fig. 23d). iPSCORE genotypes at HipSci
reference alleles had similar numbers of calls per sample (median 110,023/sample)
compared to the genotypes from iPSCORE alone (Supplementary Fig. 23e). African
ancestry samples, however, had a smaller number of calls using the HipSci refer-
ence alleles likely because HipSci did not include African ancestry samples, so the
African samples in iPSCORE were only genotyped for STRs discovered in Eur-
opeans. HipSci samples had about twice as many calls per sample (222,321 per
sample for HipSci fibroblast samples) compared to iPSCORE and fewer missing
calls per sample, demonstrating that using PCR-free WGS provides better accuracy
for STR genotyping. To obtain a high-quality set of STRs, we required >80% call
rate for variants from each subset. We excluded one iPSCORE sample from this
missingness calculation that had more than 70,000 missing calls. This filter resulted
in high RRs (>92%) in each twin pair for both genotyping methods in iPSCORE,
and even higher RRs (>95%) in fibroblast–iPSC pairs for HipSci genotyping likely
due to more accurate STR genotyping in the PCR-free WGS (Supplementary
Fig. 24). Overall, the RR before all filtering and after processing improved from
~78% to ~94.4% in iPSCORE twins (Fig. 3b).

Combining the iPSCORE and HipSci data for HipSTR. HipSTR genotypes were
combined between iPSCORE and HipSci by creating a single combined VCF file
using the HipSci genotypes and iPSCORE genotypes at HipSci alleles. We addi-
tionally added iPSCORE genotypes for STRs that were unique to iPSCORE to the
VCF file.

Unifying SpeedSeq and Genome STRiP call sets. Since different variant callers
may detect the same variants using different methods, we developed a strategy to
integrate variants from Genome STRiP and SpeedSeq call sets that were likely to
represent the same site. To approach this problem, we used a graph-based method
similar to those used to identify duplicates within SpeedSeq and Genome STRiP
prior to this step (see SpeedSeq variant redundancy collapsing and Genome STRiP
CNVDiscovery variant redundancy collapsing). To generate clusters of overlapping
SVs, we first intersected our filtered Genome STRiP calls (redundant sites removed,
GSCNQUAL filtered, stitching sites included, stitched constituents excluded) with
filtered SpeedSeq variants (redundant sites removed, standard filters, MSQ filtered)
and retained all SV pairs with >50% reciprocal overlap or where one variant
completely encompassed a second variant that was at least 40% of the length of the
larger variant. SV pairs were required to have the same SV types, with exception
being that mCNVs were allowed to match with both duplications and deletions and
deletions were allowed to match with rMEI (as they appear as deletions). We built a
graph where edges were represented by connected SV pairs that pass these overlap
thresholds and SV type compatibility parameters. We iterated through connected
components, testing every combination of elements in each connected component,
and generating a new graph, connecting pairs of variants if they passed correlation
thresholds between copy number genotypes (Genome STRiP) variants or allele
balance ratios (SpeedSeq) at the sites. If the connected component contained a
duplication and deletion from SpeedSeq and an mCNV from Genome STRiP, SV
pairs were allowed to connect if their genotype evidence had a correlation (R2) > 0,
while other components required an R2 > 0.5. We then iterated through connected
components of this new graph and selected the highest degree variant (connected
to the most other variants) from each caller with the highest quality score
(GSCNQUAL for Genome STRiP, MSQ for SpeedSeq) from which we chose one
variant as the primary variant and all other variants as secondary. All variants in
each cluster were marked with a cluster ID. In cases where a Genome STRiP
deletion overlapped a SpeedSeq rMEI, the SpeedSeq variant was chosen as the
primary site, and the Genome STRiP variant was assigned as secondary. In all other
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scenarios, the Genome STRiP variant was chosen as the primary variant and the
SpeedSeq variant was the secondary due to the comparably higher RRs for Genome
STRiP variants and the granularity of having integer copy numbers.

This method assures that highly correlated variants with significant overlap are
clustered together, and that generally, the larger, higher quality variants are chosen
as representative primary sites. Sites that were assigned as primary sites from the
intersection clusters, as well as unique variants from either variant call set that were
not included in intersection clusters, were then selected to produce a non-
redundant set of sites necessary for global analyses of SVs (Figs. 4 and 5).

A range of reciprocal overlap and genotype correlation thresholds were tested
when unifying the variant calls (Supplementary Fig. 8). Depending on the
stringency of these parameters we found that as many as 14,773 were combined
into 6935 (0.1 GT correlation, 0.1 RO) or as few as 9769 were combined into 4875
(0.9 GT correlation, 0.9 RO). Based on this analysis, we chose to combine variants
under intermediate parameters of 0.5 GT correlation and 0.5 reciprocal overlap,
combining a total of 12,757 variants into 6341 variants (including the sex
chromosomes).

Comparison to SV genotypes from arrays. To estimate the FDR of the merged
CNV call set we used 216 MEGA_Consortium_v2 arrays available for iPSCORE
samples to perform an intensity rank sum (IRS) test to assess whether the SV
genotypes after filtering agree with genotypes from array data. SNP arrays were
analyzed using the Illumina GenomeStudio software (v2011.1) and were required
to have an overall call rate of <97%. The log(R ratio) was obtained from the final
report. We used the Genome STRiP Intensity Rank Sum Annotator to compare
genotypes for a subset of the SV calls that were present in the 216 samples for
which we had array data using the log R ratio as input. Before testing, the intensity
matrix was first adjusted for covariates by regressing out the effects of batch and
plate on a probe-wise basis using the statsmodels (v0.9.0) linear regression module.
To assess our filtering strategy we tested 2563/15,437 SpeedSeq duplications and
deletions, and 4233/18,171 Genome STRiP CNVs that were present in at least one
of the 216 individuals (before any filtering) and contained at least three probes and
computed IRS FDR as in 1KGP18. Restricting our analysis to 2376 filtered and
deduplicated SpeedSeq variants with array probes, we observed that deletions and
duplications had an FDR of 5.35% and 3%, respectively. Similarly, among 1848
filtered and deduplicated Genome STRiP variants containing array probes, we
observed that deletions, duplications, and mCNVs had an FDR of 5.4%, 7.8%, and
7%, respectively. These FDR estimates were similar to those in 1KGP and GTEx,
although the probe density of arrays limited the number of sites we could test.

Comparison of i2QTL SVs to 1000 Genomes Project and GTEx SVs. To
investigate the quality and completeness of our SV calls, we compared them to
GTEx v6p SV calls19 which used 147 deeply sequenced whole genomes (median
49.9× depth), and the robustly characterized 1000 Genomes Project Phase-3 call
set18 derived from 2504 shallowly sequenced samples (7.4× depth). While the
GTEx call set contains relatively few samples, the WGS data and variant calling
approach were similar to the approach used in i2QTL (Genome STRiP and
SpeedSeq), and were thus used as a benchmark. Before analysis, we obtained VCF
files with genotypes from 1KGP phase-3 and GTEx V6p (dbGaP accession number
phs000424.v7.p1). Phased genotypes from 1KGP SVs were converted to unphased
genotypes using the alternative allele information to enable comparison with the
unphased SVs from i2QTL and GTEx. This enabled us to compute NMAF for
1KGP and GTEx SVs to match the frequency measures used in this study. Because
of the significant diversity of the 1KGP cohort (26 populations, 70% European) as
compared to i2QTL (6 subpopulations, 80% European), we filtered the 1KGP data
to 1755 European samples, and used variants present in at least one of these
samples. For co-discovery analyses, we used non-redundant sites from i2QTL as
well as variants that passed filters and were part of redundancy clusters to max-
imize the potential overlap between sets. To identify putative co-discovered sites
between i2QTL and either GTEx or 1KGP, CNVs (DUP, DEL, mCNV), rMEI, and
inversions from each call set were intersected using bedtools intersect and co-
discovered sites were selected using the following approach: (1) excluding inver-
sions, all variants were required to have at least 25% reciprocal overlap, or if one
variant was fully contained within the other, it was required to span at least 20% of
the larger variant; inversions were required to have 80% reciprocal overlap; (2)
variant classes were required to match with the exception of mCNVs, which were
allowed to match with either duplications or deletions; for BND sites, we con-
sidered breakpoints within 50 bp of each other to be matching; and (3) because we
included 1KGP MEIs as priors in our MELT pipeline, MEIs co-discovered with
1KGP were known, and did not require overlap analysis. For overlap reported with
i2QTL, we computed the fraction of sites co-discovered by one or both call sets,
considering non-redundant clusters a single site.

Comparison of i2QTL SVs to gnomAD SVs. We obtained SV calls from 10,738
individuals called from deep WGS (mean 32×) data as part of the gnomAD SV
project (v2)49. Variants were filtered to those that were present in at least one
individual of European ancestry and biallelic duplications, deletions, insertions,
and inversions where FILTER was PASS or MULTIALLELIC were retained for
comparison to i2QTL (N= 135,174). Non-insertion variants were then intersected

with i2QTL variants using bedtools intersect and those that had matching variant
types and at least 25% reciprocal overlap, or if they were fully contained within one
another and were at least 20% of the larger variants length were considered
matching. For insertions we used bedtools closest to select breakpoints that were
within 50 bp of one another, and those that had less than a twofold difference in
length were considered matching (insertional sequence information was unavail-
able for matching). Note that duplications or deletions were allowed to match with
mCNV from either set of variant calls. The proportion of variants matching one
another was then measured at different MAF thresholds in each dataset (MAF
unrelated in i2QTL and MAF European in gnomAD) (Supplementary Fig. 18).

Comparison of i2QTL SVs to Genome in a Bottle NA12878. To further investigate
the quality and completeness of our SV calls, we sought to compare the performance
of our variant calling methods on a Genome in a Bottle benchmark sample
(NA12878, HG001) for which SVs had been called previously. To complete this
analysis, we first ran variant calling using all 5 algorithms for NA12878 and a subset
of 75 iPSCORE samples including 25 unrelated European individuals and 25 pairs of
monozygotic twins. Before variant calling, the 300x NA12878 [ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x] sample
was first downsampled to 48x using samtools view -s to obtain similar coverage to
iPSCORE samples. After downsampling, reads were realigned using bwa mem to the
b37 reference with decoy and sendai virus to match the alignment procedure used to
align iPSCORE samples. Variant calling was performed using MELT, SpeedSeq,
Genome STRiP (CNVDiscovery), and HipSTR and the downstream calls were
processed identically for all tools, with the exception of Genome STRiP. For Genome
STRiP, since all genomes were derived from iPSCORE/blood samples, no separate
genotyping/discovery was necessary to account for batch effects due to tissue of
origin. Variants were filtered under the same parameters as the original variant call
set. Benchmark short read and PacBio long read variant calls for NA12878 were
obtained from 1KGP18 and Mt. Sinai [ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
NA12878/NA12878_PacBio_MtSinai]. PacBio SVs were filtered to PASS. Variants
were intersected and compared with one another under the same parameters that
were used for comparison with gnomAD SV (Supplementary Figs. 19 and 20).

Wham and Manta variant calling. We used wham (v1.7.0)25 to call variants on
NA12878 and 75 iPSCORE samples (see Comparison of i2QTL SVs to Genome in
a Bottle NA12878) separately for each sample using default parameters. After
variant calling, we merged the sites discovered in the individual vcf files using
mergeSVcallers (parameters: -s 250 -r 0.5). Using this single merged SV call set, we
then genotyped each variant in each individual using SVTyper (v0.1.4) under
default parameters.

Additionally, we used manta (v1.6.0)52 to call variants on the same set of
76 samples. Variant calling was done separately for each sample using default
parameters, and for downstream analysis we used SVs genotyped under the diploid
model (diploidSV.vcf.gz). Calls from individual samples were then merged across
samples using mergeSVcallers under the same parameters as with wham. Finally,
the single set of merged variant sites were then genotyped in each individual using
SVTyper (v0.1.4) under default parameters.

Genotyped VCFs for each sample from wham or manta were merged using the
vcfpaste.py utility in svtools (0.3.2). Note that this sums the QUAL column across
all samples for each site.

Wham and Manta RR and filter selection. For both manta and wham variant
calls we examined the effect of QUAL score filtering on RR (Supplementary
Fig. 21). Before any filtering, manta variants had average RRs of 75.4% and 71.7%
for deletions and duplications, respectively. For wham variants, the average RR
before filtering was 79.5%, 65.7%, and 55.9% for deletions, duplications, and
inversions respectively. Filtering variants with increasingly stringent QUAL score
was associated with increased RRs (Supplementary Fig. 21a, b); however, a large
number of variants were removed even under modest thresholds (Supplementary
Fig. 21b, c). We chose to filter all variant classes for both wham and manta by
requiring a QUAL score of at least 250, ultimately retaining 4086/28,852 wham
variants and 3833/24,799 manta variants. Deletions from wham or manta were
highly reproducible at this threshold (>95%) while duplications were slightly less
reproducible overall (91% wham, 87.2% manta).

Unification of wham, manta, Genome STRiP, and SpeedSeq calls. To unify and
examine the overlap between variant calling approaches, filtered genome STRiP,
SpeedSeq, manta, and wham variants from the NA12878 and 75 iPSCORE sample
subset (see Comparison of i2QTL SVs to Genome in a Bottle NA12878) were
intersected using bedtools. Calls from each unique pair of calls were intersected,
requiring 50% reciprocal overlap and matching variant classes. Finally, we used a
graph-based approach to obtain clusters of overlapping variants, connecting each
pair of variants that passed overlap criteria with an edge, and then extracting each
connected component, which then considered a single site occupying the minimum
start position to maximum end position of the variants in the cluster. We then
assessed the number of different variant calling approaches supporting each of
these variant clusters (Supplementary Fig. 22), and used these merged variant
coordinates for further comparison to gnomAD SV.
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SNV and indel calling. For SNV and indel genotype calling we followed the
GATK63 best practices (version 3.8 accessed June 2018). Unless otherwise men-
tioned settings for the tools are taken from the best practices or left default. As
described above, the HipSci WGS data were aligned to the GRCh37 (ref. 64) build
of the human reference genome using bwa56. After alignment Picard was used to
mark duplicates. GATK was used for indel realignment and base-recalibration, and
genotypes were called using the GATK haplotype caller in GVCF mode. iPSCORE
GVCFs were obtained from dbGAP (phs001325) and were used to perform joint
genotyping across all iPSCORE and HipSci samples. We used GATK variant
recalibration (TS filter level 99.0) to filter low-quality genotype calls for the called
SNVs and indels separately.

Linkage disequilibrium tagging. For each of the 42,921 non-redundant SVs and
STRs that were within 1MB of an expressed gene in iPSCs53, we used bcftools57 to
extract all SNPs 50 kb upstream and downstream. For each SV or STR, we cal-
culated LD as the correlation (Pearson R2) between the SV/STR genotype and the
genotypes of each surrounding SNV or indel in i2QTL Europeans and selected the
variant with the strongest LD.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Variant calls from the main i2QTL dataset for iPSCORE samples are available at dbGaP
(phs001325) while these calls for HipSci samples are available from Zenodo (https://doi.
org/10.5281/zenodo.3835306).

Code availability
Code used for analyses and variant processing can be found on GitHub [https://github.
com/frazer-lab/i2QTL-SV-STR-analysis].
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