
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Learning Structured and Causal Probabilistic Models for Computational Science

Permalink
https://escholarship.org/uc/item/0xf1t2zr

Author
Sridhar, Dhanya

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0xf1t2zr
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

LEARNING STRUCTURED AND CAUSAL PROBABILISTIC
MODELS FOR COMPUTATIONAL SCIENCE

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Dhanya Sridhar

September 2018

The Dissertation of Dhanya Sridhar
is approved:

Lise Getoor, Chair

Marilyn Walker

Kristian Kersting

Lori Kletzer
Vice Provost and Dean of Graduate Studies



Copyright © by

Dhanya Sridhar

2018



Table of Contents

List of Figures vi

List of Tables viii

Abstract xii

Dedication xiv

Acknowledgments xv

1 Introduction 1
1.1 Challenges in Computational Science . . . . . . . . . . . . . . . . 3
1.2 Structured Probabilistic Approaches . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13
2.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . 13

2.1.1 Markov Random Fields . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Inference and Learning . . . . . . . . . . . . . . . . . . . . 17

2.2 Statistical Relational Learning . . . . . . . . . . . . . . . . . . . . 19
2.3 Hinge-loss Markov Random Fields

and Probabilistic Soft Logic . . . . . . . . . . . . . . . . . . . . . 21

3 Modeling Online Debates 24
3.1 Debate Stance Classification . . . . . . . . . . . . . . . . . . . . . 25
3.2 Online Debate Forums . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Modeling Debate Stance . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 PSL Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Cost-Penalized Learning . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



3.7.1 Evaluating Modeling Choices . . . . . . . . . . . . . . . . 44
3.7.2 Evaluating CP-MPLE . . . . . . . . . . . . . . . . . . . . 45

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Fusing Multiple Sources 52
4.1 Drug-drug Interaction . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Drug Interaction Data . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Drug Similarity Data . . . . . . . . . . . . . . . . . . . . . 57

4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Collective Drug-drug Interaction . . . . . . . . . . . . . . . 60
4.4.2 Comparison Methods . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Comparison to State-of-the-art Baselines . . . . . . . . . . 66
4.5.2 Validation of Unseen Interaction Predictions . . . . . . . . 70

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Discovering Causal Structure 75
5.1 Causal Structure Discovery . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Preliminaries and Related Work . . . . . . . . . . . . . . . . . . . 78

5.2.1 Background on D-separation and Faithfulness . . . . . . . 79
5.2.2 Related Work on Constraint-based Approaches . . . . . . . 80

5.3 Joint Probabilistic CSD . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 CausPSL Approach . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 CausPSL Model . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 89
5.5.3 Cross-validation Study of Modeling Components . . . . . . 90
5.5.4 Comparisons in Real-World Sachs Setting . . . . . . . . . 92
5.5.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.6 Robustness to Noisy Evidence . . . . . . . . . . . . . . . . 94

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Estimating Causality in Text 96
6.1 Causal Effects of Exercise on Mood . . . . . . . . . . . . . . . . . 98
6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 104
6.4.2 Q1: Filtering Users . . . . . . . . . . . . . . . . . . . . . . 105

iv



6.4.3 Q2: User-specific Matching . . . . . . . . . . . . . . . . . . 105
6.4.4 Q3: Incorporating Text Data . . . . . . . . . . . . . . . . 106
6.4.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Causal Effects of Online Debate Styles . . . . . . . . . . . . . . . 110
6.6 Background and Related Work . . . . . . . . . . . . . . . . . . . . 112
6.7 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.8 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.9 Text-based Propensity Score . . . . . . . . . . . . . . . . . . . . . 117

6.9.1 Modeling Dialogue Content . . . . . . . . . . . . . . . . . 118
6.10 Measuring Linguistic Outcomes . . . . . . . . . . . . . . . . . . . 121
6.11 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.11.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 122
6.11.2 Results and Findings . . . . . . . . . . . . . . . . . . . . . 123

6.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Learning Structured Models 129
7.1 Structure Learning for PSL . . . . . . . . . . . . . . . . . . . . . 130
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Structure Learning for SRL . . . . . . . . . . . . . . . . . 133
7.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4.1 Path-Constrained Clause Generation . . . . . . . . . . . . 135
7.4.2 Greedy Local Search . . . . . . . . . . . . . . . . . . . . . 137
7.4.3 Piecewise Pseudolikelihood . . . . . . . . . . . . . . . . . . 138

7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 144
7.5.3 Predictive Performance . . . . . . . . . . . . . . . . . . . . 147
7.5.4 Comparisons against DDI Similarity-based Models . . . . . 148
7.5.5 Scalability Study . . . . . . . . . . . . . . . . . . . . . . . 149

7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusion and Future Work 153
8.1 Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.1.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 156

v



List of Figures

3.1 Example of a debate dialogue turn between two users on the gun
control topic, from 4Forums.com. . . . . . . . . . . . . . . . . . 26

3.2 PSL rules to define the collective classification models, both for
post-level and author-level models. Each X is an author or a post,
depending on the level of granularity that the model is applied at.
The disagree(X1, X2) predicates apply to post reply links, and to
pairs of authors connected by reply links. . . . . . . . . . . . . . . 34

3.3 Overall accuracies per model for the author stance prediction task,
computed over the final results for each of the four data sets per
forum. Note that we expect significant variation in these plots, as
the data sets are of varying degrees of difficulty. . . . . . . . . . . 50

3.4 A post-reply pair by 4Forums.com authors whose gun control
stance is correctly predicted by AD, but not by AC. . . . . . . . 51

4.1 Triad-based drug-drug interaction prediction rules. . . . . . . . . 61
4.2 PSL model for collective drug-drug interaction prediction. . . . . 62
4.3 Small subset of ground PSL rules. . . . . . . . . . . . . . . . . . . 62
4.4 Non-collective PSL model for drug-drug interaction prediction. . . 63
4.5 Precision-recall curves comparing all DDI prediction models on

CRD Interactions dataset. . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Precision-recall curves comparing all DDI models on NCRD Inter-

actions dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



4.7 Precision-recall curves comparing all DDI models on
general interactions dataset. . . . . . . . . . . . . . . . . . . . . . 69

5.1 Average F1 score vs. synthetic evidence noise rate on DREAM4
(n = 30, C = 1). CausPSL remains robust as noise rate increases. 94

6.1 EmotiCal System Components. The left screen shows the logging
of mood and energy levels. The right screen shows the logging of
different activities which affected the user’s mood . . . . . . . . . 101

6.2 LIWC categories that belong to each vector that captures repre-
sentations of posts and enable measuring change in wording choices
and sentiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 A closer look at significant positive and negative sentiment changes
between treated and control groups across reply types when using
each type of propensity score model. . . . . . . . . . . . . . . . . 126

7.1 Running times (in seconds) in log scale on Freebase tasks. PPLL
consistently scales more effectively than GLS. . . . . . . . . . . . 146

vii



List of Tables

3.1 Structural statistics averages for 4Forums and CreateDebate. 30
3.2 Ratio of positive to negative stance and disagreement labels in the

4forums dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Ratio of positive to negative stance and disagreement labels in the

CreateDebate dataset. . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Author stance classification accuracy and standard deviation for

4Forums, estimated via 5 repeats of 5-fold cross-validation. Bolded
figures indicate statistically significant (α = 0.05) improvement
over AL, the baseline model for the author stance classification task. 41

3.5 Author stance classification accuracy and standard deviation for
CreateDebate, estimated via 5 repeats of 5-fold cross-validation.
Bolded figures indicate statistically significant (α = 0.05) improve-
ment over AL, the baseline model for the author stance classifica-
tion task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Post stance classification accuracy and standard deviations for 4Fo-
rums, estimated via 5 repeats of 5-fold cross-validation. Bolded fig-
ures indicate statistically significant (α = 0.05) improvement over
PL, the baseline model for the post stance classification task. . . 42

viii



3.7 Post stance classification accuracy and standard deviations for Cre-
ateDebate, estimated via 5 repeats of 5-fold cross-validation.
Bolded figures indicate statistically significant (α = 0.05) improve-
ment over PL, the baseline model for the post stance classification
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Accuracy results onADmodel across four topics of 4Forums.com.
CP-MPLE improves performance significantly. . . . . . . . . . . . 46

3.9 Accuracy results forADmodel on CreateDebate.comhighlights
the greatest significant gains from CP-MPLE. . . . . . . . . . . . 46

3.10 F1 scores for AD model on 4Forums.comshows trade-off between
precision and recall of predictions across learning methods. CP-
MPLE yields most balanced predictions. . . . . . . . . . . . . . . 47

3.11 F1 scores for AD model on CreateDebate.comshows that CP-
MPLE gives strongest improvements in this imbalanced domain. . 47

4.1 Average AUPR, AUC and F1 scores (with best threshold t indi-
cated), and standard deviation for 10 fold CV comparing all DDI
prediction models for CRD interactions from dataset 1. . . . . . . 67

4.2 Average AUPR, AUC and F1 scores (with best threshold t indi-
cated), and standard deviation for 10 fold CV comparing all DDI
prediction models for NCRD interactions from dataset 1. . . . . . 67

4.3 Average AUPR, AUC and F1 scores (with best threshold t indi-
cated), and standard deviation for 10 fold CV comparing all DDI
prediction models for general interactions from dataset 2. . . . . . 67

4.4 Average AUPR and standard deviation for 10 fold CV for single
similarity collective DDI prediction models across all interaction
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Top ranked PSL model predictions for interactions unknown in
DrugBank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 PSL rules for causal and ancestral structure inference. . . . . . . . 84
5.2 Average F1 scores of methods across compared baselines. . . . . . 87

ix



5.3 Average F1 scores of methods across variants of CausPSL. We
show how each CausPSL component contributes to performance. 88

5.4 Running times in seconds for obtaining conditional independence
tests (CI) and inference (Inf). CausPSL scales to large networks
using multiple tests with no pruning. . . . . . . . . . . . . . . . . 92

6.1 ATE and hypothesis testing results for experimental conditions
across evaluation questions Q1 to Q3. The results suggest bene-
fits to including textual data in matching methods. . . . . . . . . 104

6.2 p-values from T -tests evaluating balance of other measured activ-
ities across control and treated groups. We compare the balance
between three matching strategies. Text, C=0.9 improves balance
over the User matching for three covariates. . . . . . . . . . . . . 104

6.3 Examples of matched treatment and control pairs that highlight
differences between conditions Text and User. Text results in
more contextually similar pairs. . . . . . . . . . . . . . . . . . . . 109

6.4 Numbers of annotated quote-response pairs of posts in the four
most annotated debate forum topics. N/N: nice/nasty; A/D: agree-
ment/disagreement; R/A: reason/attack; F/F: fact/feeling . . . . 114

6.5 Mean F1 scores from cross-validation averaged also across topics.
We compare BOW and LDA-based propensity score models in pre-
dicting binary observed reply types (i.e. treatment assignment).
We see that the latent LDA representations used as features are
significantly more predictive in three out of four reply type settings. 122

6.6 Checkmarks indicate a significant difference (at level α = 0.1) in
the particular LIWC-vector outcome between treated and control
groups for a given reply type. The large number of significant
changes in wording found by all matching strategies supports the in-
tuition that the tone of a reply provokes different word usage. How-
ever, the topic-based approach finds no changes sentiment while the
text-based matching approaches do. . . . . . . . . . . . . . . . . . 124

x



7.1 Average AUC of methods across five prediction tasks. Bolded num-
bers are statistically significant at α = 0.05. We show that PPLL
training improves over GLS in three out of five settings. . . . . . . 147

7.2 Average AUC of similarity-based approaches to DDI trained with
different weight learning methods. We see that the DDI model
learned with PPLL significantly improves over all configurations of
the similarity-based models. . . . . . . . . . . . . . . . . . . . . . 148

xi



Abstract

Learning Structured and Causal Probabilistic Models for Computational Science

by

Dhanya Sridhar

The drive to understand human phenomena such as our behavior and biology

guides scientific discovery in the social and biological sciences. Today’s wealth of

observational and experimental data presents both opportunities and challenges

for machine learning methods to facilitate these discoveries around human behav-

ior and biology. Social media sites provide observational data, capturing snapshots

of how users feel towards current events, engage in discourse with one another,

and reflect on behavioral factors that affect their mood. These rich textual data

support socio-behavioral modeling and understanding. In biology, large-scale ex-

perimental datasets are available, coupled with extensive efforts to extract and

curate scientific ontologies and knowledge bases. Such empirical data enables in-

ferences in pharmaceutical sciences and genetics. While standard machine learning

methods build probabilistic models using social media posts or gene expression

levels, they fall short on handling three important challenges in these problems.

First, in socio-behavioral and biological domains, inferences are interrelated and

require collective reasoning. Second, prior knowledge from multiple sources such

as textual or experiment evidence are abundant and probabilistic methods must

fuse these signals of varying fidelity. Third, to advance discoveries in social and bi-

ological sciences, computational methods must go beyond predictive performance.

In both domains, experts seek new insights and knowledge, requiring techniques

to discover patterns and causal relationships directly from data.

My dissertation addresses the challenges of computational science domains by

developing a unified probabilistic framework that: 1) exploits useful structure in

xii



the domain to make collective inferences; 2) fuses several sources of signals; 2) dis-

covers causal structure; 4) enables learning of complex, structured models directly

from data. I validate this framework on important scientific modeling problems

such as online debate and dialogue, mood and behavioral choices, interactions

between drug treatments, and gene regulation. In this thesis, I first develop

structural patterns for collective inference by evaluating several modeling choices

for online debates. My findings illustrate the harms of naïve collective reason-

ing while showing the benefits of jointly modeling debate interactions and users’

stances. I extend these collective patterns to fuse several sources of biological

information which lead to state-of-the-art performance in drug-drug interaction

prediction. To go beyond predictive performance, I combine multiple statistical

signals to infer causal networks of gene regulation from measurements of gene ex-

pression and estimate causal effects in dialogue. Finally, I develop algorithms that

learn these modeling patterns directly from data, showing the benefits of discov-

ering complex dependencies in the drug-drug interaction prediction domain. The

technical contributions highlighted in my thesis lay the foundation for applying

structured and causal models to computational science. I conclude by outlining

promising areas of future research that stem from my work and further bolster

probabilistic methods for scientific domains.
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Chapter 1

Introduction

The drive to understand human life underscores much scientific research in

disciplines such as social science and systems biology. These fields shed light on

socio-behavioral and biological phenomena, producing a wealth of experimental

and observational data. This abundance of data supports probabilistic models

which learn meaningful associations between variables to infer new facts, facili-

tating further scientific study. However, inference problems in socio-behavioral

and biological settings, which I denote computational science, challenge the stan-

dard assumptions of probabilistic methods, requiring new modeling paradigms

and frameworks. In this thesis, I address problems in sociological and biological

settings to formalize the challenges of computational science, identifying three

desiderata for probabilistic methods. Building on a powerful class of structured

probabilistic models, I develop a unified framework to support these needs, ad-

dressing real problems in socio-behavioral and biological domains.

Computational science tasks in both socio-behavioral and biological domains

are supported by data that are relational, representing rich interdependencies

between entities of interests such as users or genes. For socio-behavioral set-

tings, relational data is typically observational, capturing snapshots of behaviors
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or interactions. In contrast, biological settings often rely on empirical data from

high-throughput experiments and their findings. User behavior data can be gath-

ered at scale from online sources such as social media sites and mood or activity

tracking platforms. Social media sites such as Twitter, Facebook or Reddit en-

ables users to reflect on their opinions while discussing and debating with one

another. Representing these interactions between users is inherently relational.

Mood and activity logging applications allow users to monitor their daily choices

both through measurements and textual entries [84, 58, 138]. In these platforms,

dependencies across time capture relational structure. In these socio-behavioral

domains where direct experimentation is prohibitive, probabilistic models play an

important role in using these observational data to shed light on behaviors and

attitudes. In this thesis, I focus on multiple social science tasks and settings such

as inferring users’ stances towards current political issues, attitudes between users,

and links between users’ physical and mental well-being.

In contrast to observational user behavior data, in biological domains, exper-

imental results from large-scale assays or screens combined with highly curated

databases of existing knowledge provide empirical data for computational science

problems. For example, assays that produce gene expression measurements sup-

port inferences of gene regulatory patterns, and known interactions between drug

treatments combined with measurements of their molecular structure similarity

inform the prediction of novel drug-drug interactions. Again, links between en-

tities such as drugs and genes induce relational structure that is important in

inference tasks. In biological domains, probabilistic models disentangle mean-

ingful patterns and associations from varied, heterogeneous experimental data. I

validate the approaches developed in this thesis on two different biological tasks of

inferring interactions between drug treatments and regulatory networks of genes.
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In both of these prototypical computational science domains, standard proba-

bilistic approaches to classification or regression problems have been proposed. For

example, logistic regression and support vector machines classify users’ stances on

topics that they debate on online forums [157]. Similarly, using measurements of

similarity between drug treatments from molecular structure or known side-effects,

logistic regression ranks probable interactions between drugs [55]. However, to ad-

dress computational science problems more broadly, standard probabilistic models

still face several shortcomings and require additional assumptions. I formalize the

challenges of computational science below and outline my technical contributions

to meet the needs of socio-behavioral and biological modeling problems.

1.1 Challenges in Computational Science

The standard probabilistic modeling pipeline proceeds as follows: 1) specifying

assumptions about the data and functional form of the model; 2) fitting model

parameters with available data; and 3) making inferences on unseen data. In

this pipeline, we typically further assume that the model structure is known and

the inferences elucidate correlations and not causation, which requires stronger

assumptions. Along each of these dimensions, computational science problems

necessitate sophisticated choices, culminating in three desiderata:

Interrelated Inferences. Inferences in scientific domains are typically inter-

related, e.g. the most probable stance of a social media user toward a political

issue depends on probable stances for others with whom the user debates. When

predicting interactions between drug treatments, similar drugs are likely to have

common sets of interactions. Traditionally, modeling methods assume that given

features local to a entity such as text from users’ posts or cell response measure-
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ments for drugs, inferences such as political views or interactions are independent,

neglecting the signals from related predictions. In contrast, for computational

science tasks, it is important to lift these limiting independence assumptions and

reason with not only local features but also over the inferences for related variables

such as the stance of another user. These are referred to as collective modeling as-

sumptions, and support the interrelated inference imperative to socio-behavioral

and biological settings.

Multiple Sources of Information. Training data and observations for com-

putational science problems most often combine several sources of evidence with

varying fidelity for the task. As an example, to infer regulatory links between

genes, we not only have assays from a single experiment, but from multiple, poten-

tially overlapping experiments. Additionally, curated knowledge bases provide in-

formation on taxonomy categories associated with genes or known protein-protein

interactions that cover a subset of genes. In social media settings, to understand

users’ political biases, text data from posts can be combined with multiple sig-

nals such as liking, sharing, commenting between posts, and use of hash-tags or

political slogans. Each signal varies in reliability and coverage, explaining dif-

ferent regions of the inference space. Fusing several sources of information when

specifying and training probabilistic models is critical in scientific domains.

Discovery of Causal Knowledge and Complex Patterns. For tasks such

as predicting new drug interactions or identifying the polarity of online discus-

sions, a probabilistic model trained with informative signals for the task suffices

to make inferences and find associations between variables. However, for several

computational science problems, expert domain knowledge is limited and the goal

of analysis is to discover complex patterns and causal relationships. Cause-and-
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effect relations lie in contrast to standard statistical associations. For example, a

probabilistic model trained on social media posts to recognize opinions on topics

might exploit the association that using the phrase “second amendment” correlates

to taking an anti stance on the gun control issue. However, the phrase usage does

not cause a person to take a particular view. Causation is a stronger statement

which indicates that a change in the cause always changes the outcome. In both

socio-behavioral and biological tasks, supporting causal reasoning is crucial for

true scientific discovery. For example, using gene expression measurements, biolo-

gists need to know which genes cause other genes to change their expression levels

to develop new disease treatments. To support causal inferences, probabilistic

methods require both different modeling assumptions and reasoning frameworks.

Another example of adapting probabilistic methods for discovery is learning

complex patterns which inform model structure directly from data. Consider

a complex database of relationships between drug therapies, their gene targets,

enzymes, and transporters. To effectively model interactions between drugs, we

require an understanding of the underlying patterns and rules that govern the

relationships between these entities. Such long-range patterns are difficult to

discern, even for domain experts, and discovering these structural dependencies

enables proper specification of the model. Causal and structure discovery tasks

both require different assumptions and probabilistic objectives that conventional

modeling frameworks overlook.

These desiderata drive the need for methods that can model complex in-

terdependencies, fuse signals and support discovery. Computational science do-

mains require more flexible approaches than standard probabilistic models such as

regression- or factorization-based methods that assume strict independences and

homogeneity in the training data. In the next section, I first highlight a connection
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between the structure in computational science data and a class of probabilistic

models that are well-suited to capture structured representations. I review these

structured approaches that lay the foundation for modeling computational science

domains, and introduce my technical contributions for applying these models to

real scientific problems.

1.2 Structured Probabilistic Approaches

Using an accurate representation of the data can often guide the selection of

a modeling approach. The standard data representation input to the modeling

pipeline is a flat table of entities and their attributes. For example, when pre-

dicting the stance of users towards a topic from social media posts, the rows of

this table correspond to users and its columns include counts of each word that

appears in the entire post corpus. This choice refers to the standard bag-of-words

representation often used to predict characteristics from textual data. In con-

trast, for computational science domains, a useful abstraction is a complex graph

which I refer to as relational data graph. Relational representations have been

long studied across multiple research areas that span databases to formal logic.

Relational models of data include both attributes of potentially multiple types of

entities and relationships between them. These models can be compactly repre-

sented both with multiple tables, as in a relational database, and with graphs,

which is the view I emphasize and use in this thesis.

A relational data graph GR is defined by: 1) vertex set V = {V1 ∪ . . . ∪ VK}

which contains K subsets that represent different types of vertices; and 2) edge set

E = {E1 ∪ . . . ∪ EL} that consists of L edge type subsets. As an example, in the

social media domain, GR contains two types of vertices, for users and their posts,

and the edge types might represent two kinds of interactions: liking and replying

6



to posts. In pharmacological settings, the vertices of GR are drug treatments,

gene targets, and enzymes; the edge types may include interactions between drugs,

similarities between genes, or interactions between enzymes and drugs. In general,

Ei can represent hyperedges of the form (v1, . . . , vk) that connect k vertices. For

simplicity, I often refer to binary edges between two vertices.

Each edge type subset Ei = {(vj, vk)|vj ∈ VD, vk ∈ VR} has different vertex

types as its domain and range. In our running social media example, users like

posts while users may reply to other users. These result in two edge types where

the “likes” relation has vertices of type user as its domain and those of type post

as its range, while the “reply” relation is between two user vertices. Additionally,

each vertex vi ∈ Vj of type j has a set of attributes, or annotations, which is

denoted vi.xk for all attributes xk ∈ Xj valid for type j. In our social media

relational data graph, attributes for user vertices might include age, demographic

information, or political views. Each of these user attributes are variables whose

values depend on the type of attribute. For example, political views may be

represented as categorical variables while age is continuous.

Similarly, an edge ei = (vj, vk) of type m can also take discrete, binary or

continuous values to encode the strength or affinity of the tie between vj and

vk. For example, in the pharmacological data graph, edges that capture similar-

ity between two genes can have continuous values that represent the degree of

closeness. Many useful measures such as the cosine similarity between two gene

DNA sequences naturally output continuous values. In the social media setting,

the reply edges between posts may have discrete values {agree, disagree, neutral}

which indicate the agreement polarity of the interaction. An important advantage

of the relational data graph representation is that the annotations, edge values and

structure encode important dependencies in the domain. For example, the likes
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edges in the social network domain indicate probabilistic dependencies between

the corresponding users’ stance attributes. The structure of GR and the infor-

mation it encodes subsume the flat table representation and motivates a more

sophisticated class of probabilistic models.

The first requirement for modeling relational data graphs is capturing proba-

bilistic dependencies between variables. This need for joint models points to the

family of probabilistic graphical models (PGM). A PGM is defined by an undi-

rected or directed graph G = (V,E) with variables V and edges E that encode

statistical dependencies between these variables. For example, in the biological

setting, a directed edge E = (Vi, Vj) between genes Vi and Vj indicates that chang-

ing the expression levels of gene Vi affects the expression levels of gene Vj. The

graph structure encodes a joint distribution that allows each variable to influence

the value of other variables in inference. In the graphical model that captures

influences between genes, finding the most probable expression level assignment

to all gene variables requires considering the dependencies between genes to find a

parsimonious set of values. Thus, the joint distribution viewpoint of PGMs suits

our first criteria for modeling relational data graphs, which requires representing

probabilistic dependencies between variables.

Although the probabilistic semantics of PGMs are useful, relational data graphs

require a richer modeling representation beyond G = (V,E) to capture repeated

substructures in GR such as the same-stance views shared by users who like one

another’s posts. Representing this pattern separately for each individual user

and post increases the dimensionality of G. Moreover, since GR is defined in

terms of relational semantics, a graphical model whose structure can be directly

defined with a relational language would ease the difficulty of modeling these

complex data. To overcome these limitation, the class of statistical relational
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learning (SRL) methods combine richer representations such as first-order logic

or relational models with PGMs [75, 83, 150, 7, 126, 73]. SRL approaches specify

the underlying PGM structure with weighted logical clauses or relational con-

straints that can be instantiated from data graphs GR, capturing repeated pat-

terns and substructures. Recently introduced and popular SRL frameworks such

as Markov logic [126], Bayesian logic programs [75], and probabilistic soft logic [7]

use weighted logical clauses to specify models, and have been successfully applied

to domains from information extraction to natural language processing [12, 118].

First-order logic provides a powerful language for describing models of relational

data graphs with clauses that constrain assignments to attributes and edge values

of interest. For example, in our social media example, first-order logical clauses

can encode preferences for same political view labels for users that like one an-

other’s posts. Moreover, this first-order clause is invoked for all such pairs of users

that are incident on a “likes” edge, capturing the recurring pattern.

SRL methods thus provide a promising modeling framework for the relational

data graphs in computational science domains. However, the goal is to learn these

SRL models from training data and use them to infer attributes such as political

views or interactions between drug treatments. The expressivity of SRL methods

comes with a computational cost for both inference and learning, which are typ-

ically NP-hard in arbitrary and cyclic PGMs. One exception is probabilistic soft

logic (PSL), which circumvents otherwise NP-hard inference by applying continu-

ous relaxations that admit polynomial-time, efficient inference [7]. This scalability

combined with its expressivity makes PSL an attractive candidate for extending

and developing a unified computational science framework. In the next section, I

detail the contributions of this thesis in fulfilling the desiderata of computational

science.
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1.3 Contributions

As motivated in the previous section, the PSL framework for structured prob-

abilistic models is a promising step towards meeting the desiderata of computa-

tional science. However, given relational data graphs for complex biological or

socio-behavioral problems, we still require a unifying framework which builds on

PSL to fully address the challenges of these domains. My thesis develops this

computational science framework based on PSL by making four foundational con-

tributions:

1. General patterns for modeling the structure common in computational sci-

ence domains;

2. Methods for fusing multiple sources of information with collective reasoning;

3. New constraints that support the assumptions of causal inference and dis-

covery;

4. Algorithms for learning complex model structure directly from data.

I devote a chapter to each of these overarching tasks, demonstrating the pro-

posed techniques on real biological and socio-behavioral tasks. To address social

science settings, I study tasks such as modeling debate and dialogue on online

forums, identifying the causal effects of exercise on mood, and understanding the

impact of dialogue styles on user sentiment. I also validate my proposed ap-

proaches in biological science settings such as predicting drug-drug interactions,

inferring gene regulatory networks, and learning biological patterns of drug inter-

action. The technical contributions of my thesis culminate in a unified framework

for computational science problems. This thesis is organized as follows:

In Chapter 2, I first review probabilistic graphical models and statistical rela-

tional learning methods in detail to lay the theoretical foundation of my work. In
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this chapter, I formalize the two core problems of probabilistic models: inference

and learning. I build on these formalisms in subsequent chapters.

In Chapter 3, I propose extensible modeling patterns for relational graphs from

online debate forums to infer users’ stances towards topics and issues they discuss.

I evaluate the ramifications of several modeling choices and develop a joint PSL

approach that combines users’ text and discussion patterns to reason about both

user stance and user-user edges. The joint approach provides a useful template

for subsequent computational science tasks and outperforms multiple competing

methods in predicting online debate forum stance for users. Much of this work is

published in Sridhar et al. [141, 140].

Chapter 4 focuses on methods for fusing multiple information sources with col-

lective inference in the multi-relational pharmaceutical domain. I study the task of

predicting novel drug-drug interactions and propose a PSL modeling pattern that

combines known interactions and multiple similarity signals between drug treat-

ments to propagate information across predictions. I show that this approach

achieves state-of-the-art performance and yields predictions that are validated by

the literature. These key findings are published in Sridhar et al. [142].

In Chapter 5, I develop a novel framework, CausPSL, that discovers a graph

of cause-and-effect relationships given observed measurements of variables of in-

terest. I encode logical characterizations of causal graphs as constraints in PSL,

fusing statistical signals, graph structure penalties and domain knowledge from

side information. I apply CausPSL to inferring gene regulatory networks and

protein signaling pathways and demonstrate the scalability, performance and ro-

bustness of the method. Much of this work appears in Sridhar et al. [143], Sridhar

and Getoor [139].

Chapter 6 extends the focus on causality by considering a complementary prob-
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lem of estimating causal effects between a single outcome and its potential causes.

In Chapter 6, motivated by the benefits of fusing data sources, I address causal

inference problems in settings with varying degrees of textual data. I consider two

socio-behavioral domains: 1) a mood logging application with variable measure-

ments and text entries; and 2) discussions from online forums. First, in the mood

logging domain, I evaluate several modeling choices to develop a methodology

for improving causal estimation by combining text data. Second, I focus on text

alone and analyze the causal effect of linguistic tone on sentiment in online forum

discussions. These studies highlight the importance of considering structure and

fusing sources in socio-behavioral causal inference problems. The contributions

on mood modeling appear in Sridhar et al. [144].

Chapter 7 covers the discovery of PSL model structure directly from data.

The task of learning PSL clauses contrasts against Chapter 5, which focuses on

discovering the structure of causal graphs. This discovery problem searches over a

different space of models which present scalability and formulation challenges. In

this chapter, I formalize the task of structure learning for PSL based on prior work

for SRL methods. I propose an efficient data-driven structure learning algorithm

that exploits relational patterns in the data to discover PSL models for given tasks.

I demonstrate the effectiveness of this proposed structure learning approach for

drug-drug interaction prediction given a complex relational graph of enzymes,

genes, transporters and drugs. Much of this work is published in Embar et al.

[43].
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Chapter 2

Preliminaries

Chapter 2 provides an in-depth review of the structured approaches high-

lighted in Chapter 1. First, I describe the formulation of probabilistic graphical

models (PGM), which lay the theoretical foundation for the statistical relational

learning (SRL) paradigm. Next, I outline SRL methods, focusing on those that

use weighted first-order logic. This review provides the groundwork for describing

hinge-loss Markov random fields (HL-MRF), a special family of PGMs that applies

a particular convex relaxation to logical satisfaction and probabilistic soft logic

(PSL), the language for defining these models. These three formalisms underpin

the technical contributions of my thesis and will be referenced throughout.

2.1 Probabilistic Graphical Models

PGMs define joint distributions over variables which are parameterized by an

undirected or directed graph where edges between variables denote statistical de-

pendence. Formally, we are given a set X = {X1, . . . , Xn} of random variables.

Each variable Xi takes a value xi from the domain X . X can be discrete, binary or

real-valued, making Xi a categorical, Boolean or continuous variable. The vector
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x =< xi, . . . , xn > denotes the joint assignment where each Xi = xi. The goal

is to define a distribution P (x) over the joint assignment to all variables X. A

probabilistic graphical model is defined by a graph G = (X,E) whose vertices

correspond to the variables X. An edge ei ∈ E is of the form (Xi, Xj) and in-

dicates that P (x) should model probabilistic dependencies between Xi and Xj.

Consequently, an important property of PGMs is that the graph structure thus

entails conditional independences between variables, allowing the joint distribu-

tion to be compact without requiring all 2n dependences. PGMs are characterized

by undirected or directed acyclic graphs (DAG). When G is undirected, the re-

sulting PGM is referred to as a Markov random field (MRF); when G is a DAG,

the resultant graphical model is a Bayesian network (BN). Below, I describe each

of these formalisms and their conditional independence semantics in detail.

2.1.1 Markov Random Fields

Given an undirected graph G = (X,E), and the corresponding set of maximal

cliques C = {ci, . . . , cM} formed by the edges in E, a MRF defines the joint

distribution over x as:

P (x) = 1
Z

M∏
k=1

φk(xk)

Z =
∑
xi∈X

k∏
i=1

φk(xk)

φk(xk) = exp(λTk fk(xk))

(2.1)

where Xk = {xj|xj ∈ ck} is the set of all variables that participate in the k-th

clique, and vector xk is the assignment to Xk variables. Z is a normalization

constant, denoted the log partition function, and requires exponentially many

sums to compute. Thus, evaluating Z is intractable and in practice, several useful
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approximations exist. The final component of an MRF are φk functions, known

as the clique potentials. These clique potentials have the property that log(φk) is

linear and φk is defined by a vector of feature functions fk(Xk) and weight vector

λk. Each function f ik(xk) assigns a real-value in (0,∞) to xk that measures the

compatibility of this assignment to the variables Xk. Intuitively, higher scoring

assignment configurations are exponentially more probable under the distribution.

The set of all weight vectors Λ = {λk}Mk=1 are the parameters of the MRF.

To understand the independences entailed by the graph G which defines an

MRF, we consider N(Xi), the neighbors of variable Xi in G (variables connected

to Xi by an edge). The local Markov property of distribution P with respect to

G indicates that each Xi is conditionally independent of variables X \ Xi given

its neighbors N(Xi), denoted Xi ⊥⊥ X \ Xi|N(Xi). In MRFs, the neighbors of

Xi, N(Xi), denote its Markov blanket, the set of variables required to render Xi

conditionally independent of other variables in the graph. For BNs, their directed

counterparts, the graph induces a different factorization of the joint distribution

and as a consequence, entails different conditional independences, as I show below.

2.1.2 Bayesian Networks

Given a DAG G = (X,E) and a function π(Xi) that maps Xi to its parents in

G (variables with edges incoming to Xi), a BN defines the joint distribution over

X as:

P (x) =
n∏
i=1

p(xi|π(Xi)) (2.2)

where conditional probabilities p(xi|π(Xi)) parameterize the distribution. When

variables X are categorical or Boolean, these conditional probabilities can be
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represented by tables. If variables X are continuous, each p has a functional form

with coefficients which correspond to the parameters of the joint distribution. The

BN defined by G fulfills two conditional independence properties: the local and

global Markov property. The local Markov property of the BN defined by G is

that each Xi ∈ X is independent of its non-descendants in G conditioned on its

parents π(Xi). The global Markov property of a distribution defined by G relies on

all other conditional independences entailed by G. The independence entailment

criteria on the graph is known as d-separation and builds on the notion of blocked

paths. Below, I introduce necessary definitions and formalize the global Markov

property based on these terms.

Definition 1. A path p from Xi to Xj in G is an ordered set of edges defined

by the sequence of vertices Z =< Xu . . . Xv > such that (Xi, Xu), (Xv, Xj) ∈ E

and all other contiguous Xl, Xl+1 ∈ Z are connected by an edge directed in either

direction.

Definition 2. A variable Xw along path p is a collider if p consists of two

incoming edges into Xw.

Definition 3. A path p between Xi to Xj is blocked by a set of variables Z

when there exists a variable Xw along p such that: 1) Xw is not a collider and Xw

in Z; or 2) Xw is a collider and neither Xw nor its descendants are in Z.

Definition 4. Variables Xi and Xj are d-separated by Z in G if and only if

every path from Xi to Xj is blocked by Z.

Definition 5. The BN p(X) defined by DAG G satisfies the global Markov prop-

erty that for all subsets of X: U , V and Z such that U and V are d-separated by

Z, U and V are conditionally independent in p(x) given Z.
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These definitions, when combined with assumptions defined in Chapter 5,

imply constraints on valid DAGs G when given a set of variable observations.

BNs and MRFs are probabilistic models that support inference and given training

data, require learning. Below, I formalize both of these tasks in the context of

PGMs.

2.1.3 Inference and Learning

Probabilistic inference is a widely studied problem that includes several forms

of queries including marginal inference, which finds P (xi) from P (x), and condi-

tional inference, which finds P (XU |XE) for unknown variables XU given evidence

variables XE. In this thesis, I focus on the Maximum a Posteriori (MAP) infer-

ence problem which finds the mode assignment of P (x). Formally, MAP inference

corresponds to the optimization:

x∗ = arg max
x

P (x) (2.3)

It is standard to maximize logP (x), which gives an equivalent solution. In MRFs,

the normalization constant can be ignored and log ∏M
k=1 φk(xk) is instead maxi-

mized. In general, MAP inference in graphical models is NP-hard. However, for

BNs that are structured as trees or chains, there exist efficient and exact dynamic

programming algorithms for MAP inference. In MRFs with arbitrary cycles, MAP

inference is typically solved with approximate algorithms that find local optima.

Before performing MAP inference, the parameters of the PGM are learned from

training data, leading to the parameter estimation, or learning, problem.

BNs and MRFs are parameterized by conditional probability distributions and

the real-valued weights Λ of feature functions, respectively. For generality, I de-

17



note any model parameters with set Θ. Here, I focus on a particular class of

parameter estimators obtained through maximum likelihood estimation (MLE),

which comes with desirable statistical properties. In the context of MLE, the

goal of the learning problem is to find the optimal parameters Θ∗ so that the log

likelihood of observed data is maximized. Formally, we are given n observations

of assignments to all the variables < x(1) . . .x(n) > and Θ∗ is given by:

Θ∗ = arg max
Θ

n∑
i=1

logP (x(i)) + r(Θ) (2.4)

where the first term is the log likelihood of the observed data and r(Θ) is a reg-

ularization term that prevents over-fitting. An example of r(Θ) when Θ consists

of real-valued weights λk is ||Θ||2, the Euclidean or L2 norm.

The choice of graphical model again affects the complexity of the learning

problem. Here, for MRFs, since the log partition function Z depends on the pa-

rameters, it cannot be omitted from the optimization. In general, arbitrarily cyclic

MRFs, learning the parameters requires approximations to the full log likelihood.

Two important approximations are covered in Chapter 7. In BNs, the log like-

lihood decomposes into a sum over the conditional probability for each variable

Xi, admitting exact and often closed-form solutions. Another important learning

problem in PGMs is structure learning, which finds the underlying graph G (and

the form of the feature functions f ik for MRFs) from observed data. Structure

learning corresponds to model discovery and plays a critical role in computational

science, as highlighted in Chapter 1. This problem will be covered in full detail

in subsequent chapters of this thesis.
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2.2 Statistical Relational Learning

One challenge in PGMs is defining conditional probability distributions or fea-

ture functions. Importantly, relational data graphs typically contain several re-

peated substructures and specifying a separate feature function for each of these

is tedious. Statistical relational learning (SRL) methods overcome this challenge

by defining the factors of a PGM with template relational patterns that are in-

stantiated several times by the data. Examples of notable SRL frameworks which

define both undirected and directed PGMs include probabilistic relational mod-

els [83], relational Markov networks [150], Bayesian logic programs [75], Markov

logic networks [126], relational dependency networks [107], probabilistic soft logic

[7] and most recently, relational logistic regression [73]. A powerful relational

language is first-order logic, and several notable SRL methods such as Markov

logic, Bayesian logic programs and probabilistic soft logic rely on weighted first-

order logical clauses to define their underlying distributions. While Bayesian logic

programs specify directed models, MLNs and PSL yield undirected MRF distri-

butions. In my review of SRL, I discuss logic-based methods for MRFs, as the

contributions of my thesis focus on these methods. For an more extensive and

comprehensive review of SRL, I refer to the reader to Getoor and Taskar [51]. I

first provide an overview of first-order logic before formalizing the MRFs defined

by logical clauses.

An atom p(·) in first-order logic consists of a predicate p (e.g. Works,

Lives) over constants (e.g. Alice, Bob) or variables (e.g. A,B). An atom

whose predicate arguments are all constants is a ground atom. A literal is an

atom or its negation. A clause c is a formula ∧iLi ∨j Lj where Li and Lj are

literals. Given n clauses C = {c1 . . . cn} and real-valued weights w = {w1 . . . wn},

a model MC,w = {(w1, c1) . . . (wn, cn)} is a set of clause and weight pairs.
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Given constants from a domain, we substitute the variables appearing in liter-

als over C with these constants to obtain a set of ground clauses Gc for each clause

c ∈ C. The corresponding set of ground atoms is the set of random variables X

which constitute the vertices of graph G. The domain for each Xi is {0, 1} since

the variables correspond to logical atoms. The model MC,w defines a distribution

over x as:

PMC,w(x) = 1
Z

exp(−
n∑
i=1

∑
Gci

wiφci(x))

where

Z =
∑

x
exp(−

n∑
i=1

∑
Gci

wiφci(x))

(2.5)

Each φc instantiated from a clause c is a function over assignments x that returns

1 if r is satisfied by x and 0 otherwise. The underlying MRF factorizes over cliques

that are induced by ground clauses φc. A key difference from general MRFs is

that the first-order clauses capture repeated patterns by templating several in-

stantiations φc. Both MAP inference and learning for most logic-templated SRL

methods remain computationally intractable and require approximate algorithms

such as Gibbs sampling or loopy belief propagation for inference and pseudolike-

lihood estimation for learning. In the next section, I introduce a particular class

of undirected models, HL-MRFs, and PSL, a SRL method for defining these dis-

tributions. I show how MAP inference can solved in polynomial time due to the

formulation of HL-MRFs, and define pseudolikelihood estimation in the context

of HL-MRFs.
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2.3 Hinge-loss Markov Random Fields

and Probabilistic Soft Logic

In this section, I provide a succinct review of HL-MRFs and the framework

for describing them, PSL. I refer the reader to [7] for a full description of these

methods. PSL is a SRL framework that defines HL-MRFs, a special class of the

undirected graphical model given by Equation 2.5. HL-MRFs are distributions

over continuous variables X whose domain is [0, 1]. To obtain HL-MRFs from

logical clauses, we apply a continuous relaxation of Boolean logic to the ground

clauses to derive φc of the form:

φc(x) = max{1−
∑
i∈I+

Xi −
∑
i∈I−

(1−Xi), 0}p (2.6)

where I+ and I− denote the set of non-negated and negated ground atoms in the

clause and p ∈ {1, 2}. In contrast to ground Boolean clauses that are satisfied

or violated (returning 0 or 1), a ground clause in soft logic assigns a continuous

distance to satisfaction. The above relaxation of logical satisfaction is convex

and follows from applying the Lukasiewicz t-norm to relax logical operators for

continuous values. Intuitively, φc(x) corresponds to a linear or quadratic penalty

for violating clause c.

PSL defines conditional distributions over the target variables for a particular

task conditioned on the remaining evidence variables. Formally, given a set of

target predicates PT , a PSL model ˜MC,w consists of non-negative weights w ∈ R+

and disjunctive clauses ∧iLi → ∨iTi where the predicate for literal Ti belongs to

PT . In this thesis, the disjunctive clauses of this form are interchangeably referred

to as rules. Given target atoms Y and a set of evidence atoms X where each Xi
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is observed, a PSL model ˜MC,w defines an HL-MRF distribution of the form:

P ˜MC,w
(y|x) = 1

Z
exp(−

n∑
i=1

∑
Gci

wiφci(x,y))

where

Z =
∫

y
exp(−

n∑
i=1

∑
Gci

wiφci(y,y))

(2.7)

Following Equation 2.3, the MAP inference problem for HL-MRFs requires solving:

y∗ = arg min
y

(−
n∑
i=1

∑
Gci

wiφci(x,y)) (2.8)

Each continuous hinge-loss penalty function φci is piecewise linear in the variables

y. Consequently, MAP inference for every HL-MRF is a convex optimization

problem which can be solved in polynomial time. This result leads to exact MAP

inference algorithms including the scalable consensus-based alternating direction

method of multipliers (ADMM) method. Bach [5] unifies convex MAP inference

in HL-MRFs with linear programming relaxations for discrete MRFs and random-

ized algorithms for weighted maximum satisfiability (MAX-SAT) problems. The

efficiency of MAP inference makes PSL an attractive modeling choice.

As discussed in Section 2.2, the learning problem remains computationally

challenging. To overcome the intractable likelihood score, pseudo-likelihood [13]

(PLL) is an approximation that is commonly used across SRL structure learn-

ing and weight learning methods. For HL-MRFs, PLL P̂ ˜MC,w
approximates the
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likelihood as:

P̂ ˜MC,w
(y|x) =

∏
Yi∈Y

1
Zi(y,x) exp(−fi(yi,y,x))

where

Zi(y,x) =
∫
yi

exp(−fi(yi,y,y))

fi(yi,y,x) =
∑
c∈C

∑
j:Yi∈Gc

wjφj(yi,y,x)

(2.9)

The notation j : Yi ∈ Gc selects ground clauses j where Yi appears. This nota-

tion also corresponds to the Markov blanket of variable Yi. PLL factorizes the

likelihood as a product of local conditional distributions, yielding a log partition

function Zi(y,x) that requires only evaluating a single integral. Although even

a one-dimensional integral can be challenging to compute numerically, it can be

efficiently approximated with Monte Carlo methods.

In the subsequent chapters, I introduce PSL modeling patterns for multiple

computational science tasks. In Chapter 7 where I formalize structure learning

for PSL, I cover both fundamental learning problems in detail.
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Chapter 3

Modeling Online Debates

As delineated in Section 1.3, to apply structured PSL models to computational

science problems, the first important task is specifying useful modeling patterns

that combine the information encoded by relational data graphs. The online de-

bate forums domain introduced in Chapter 1 provides a rich testbed for developing

these modeling patterns which can then be extended to other computational sci-

ence problems, as shown in Chapter 4. In online debate forums, users participate

in discussions, or threads, on various topics by writing posts to initiate a discus-

sion, or reply to another user. The text in users’ posts indicate both the user’s

position, or stance, on the topic and the polarity of his/her interaction with other

users. The relational data graph for the online debate setting consists of users and

their text via posts as vertices, and reply interactions with other users as edges.

The reply interactions could include several types of interactions such as agreeing,

disagreeing, supporting or opposing. This graph supports several socio-behavioral

inference tasks.

With their rich textual data combined with user-user interactions, online de-

bate forums present a valuable opportunity for the understanding and modeling

of dialogue. To understand these debates, a key challenge is inferring the users’
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stances, all of which are inherently interrelated as described in Chapter 1. Re-

lated work in online debate forums have shown the benefits of collective models

that rely on structured approaches, but there are several modeling choices whose

ramifications are not well understood. To develop general structural patterns, we

require investigating these choices carefully and understanding their impacts on

collective modeling. This chapter presents a unified framework based on PSL that

enables the comprehensive study of collective models that: 1) fuse textual data

and interaction information at user (author) or post-level granularity; 2) reason

jointly about the polarity of interactions between users; and 3) learn more pre-

dictive classifiers using empirical losses that capture imbalances in the training

data. We comprehensively evaluate the possible modeling choices on eight topics

across two online debate corpora, finding accuracy improvements of up to 11.5

percentage points over a local classifier. The empirical highlights of this chapter

emphasize the importance of carefully exploring modeling decisions when devel-

oping structured approaches. The modeling templates developed in this chapter

inform collective models introduced throughout this thesis.

3.1 Debate Stance Classification

Social media sites such as Twitter, Reddit or Facebook provide a snapshot into

users’ opinions on a particular topic, broader ideologies, and attitudes toward one

another. On such sites, debates emerge as a prominent pattern of discourse and

dialogue. Understanding users’ positions in these debates and their interactions

with one another sheds light on larger political, behavioral and cultural trends.

Computational methods that use these online debates to learn users’ stances and

interactions thus facilitate advances in sociology and political science. This moti-

vates the problem which we refer to as stance prediction in online debate forums,
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Dialogue Turns Stance

User 1: 18. That’s the smoking age thats the
shooting age. Why do you think they call it
ATF?

anti

User 2: Shooting age? I know 7 year old shoot-
ers. 18 should be the gun purchasing age, but
there is really no "shooting" age.

anti

User 1: I know. I was just pointing out that
the logic used to propose a 21 year "shooting
age" was inconsistent.

anti

User 2: I see. I dont think its really fair that
you can join the army at 18 and use handguns
and military weapons, but you cant purchase a
handgun until 21.

anti

Figure 3.1: Example of a debate dialogue turn between two users on the gun
control topic, from 4Forums.com.

which identifies users’ opinion toward the topics they debate and discuss.

Machine learning methods have already been extensively applied to predict

users’ stance and disagreement between users in online debates [1, 99, 103, 91,

157, 159, 134, 9, 8, 56]. One line of work proposes sophisticated linguistic fea-

tures that elicit useful signals from users’ text alone, without considering the

context of entire debate and discussion threads [1, 99, 159, 134]. Several collective

approaches have improved upon these text-based models by making joint predic-

tions that combine the networks of interactions across users [157, 9, 56, 91]. These

collective models exploit both the structure of online debates and domain knowl-

edge of argumentation, but still face several modeling decisions with important

ramifications. Below, we emphasize three aspects of debate forum structure that

motivate these modeling questions.

In these debate threads, users typically author multiple posts, replying to other

users’ posts and engaging in back-and-forth discussions. Each post encodes signals

about the users’ stance and their (dis)agreement towards others. When viewed

from the lens of users, these threads are complex, potentially loopy graphs while
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from the perspective of posts, the thread represents a tree structure. Typically,

approaches for predicting stance from online debates focus on posts, with few

methods highlighting preliminary benefits of constraining information at the level

of authors [56]. In a separate line of work for stance prediction from congressional

debate transcripts, the advantages of author-level modeling have been shown [18].

The first modeling question is whether to specify collective models at the post-

level – treating posts as the units of interests – or at the author-level, aggregating

post information for each user.

Debates inherently provoke disagreement, with replies between users often dis-

playing negative polarity of sentiment. This domain knowledge underscores many

collective approaches which enforce or encourage posts connected by reply inter-

actions to have opposite stance values. However, many socio-political issues are

nuanced, presenting multiple facets that lead to more complicated discourse and

dialogue than simple disagreements. To properly capture this complexity, the sec-

ond modeling choice is whether to infer (dis)agreement between users and stance

jointly, exploiting the dependencies across these predictions when combining tex-

tual information with network structure.

Debates, especially online, are often biased – one side of a topic typically

provokes stronger, more polarized reactions than the other. Users arguing for

this particular stance are thus more vocal and represented better in the data.

Additionally, inherently in debates, interactions between users of opposing stances

are more common than between users of the same stance. These biases manifest

as imbalance in the labels of training data. When learning probabilistic models in

the presence of skewed data, the predictions from the trained model can result in

high false positive or false negative rates and harm performance. If policy experts

or lawmakers use these predictions in decision-making, these biased models can
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have deleterious downstream effects on society. Motivated by data imbalance, the

final modeling question examines how we can train probabilistic models to improve

predictive performance in the presence of skewed labeled data. In particular, we

focus on augmenting learning algorithms with terms that capture the imbalance

structure in the data with appropriate loss terms.

In this work, we develop a unified debate stance classification framework for

evaluating choices along each modeling dimension: 1) level of aggregating; 2) joint

(dis)agreement modeling; 3) mitigating imbalance in learning. We use probabilis-

tic soft logic [7], a declarative approach well-suited to specifying collective models

using soft logical constraints. We propose post- and author-level PSL models

to investigate the effects of jointly inferring (dis)agreement interactions between

users on stance prediction. We introduce a new learning objective for PSL that

augments penalty terms for mitigating the imbalance in training labels. We eval-

uate our framework on several topics two online debate forums, 4Forums and

CreateDebate [158, 56]. In addition to empirical improvements of up to 11.5

percentage points of accuracy over simple classification approaches, our technical

contributions include:

1. joint modeling framework in PSL that allows us to evaluate all choices

2. novel PSL learning algorithm which augments losses that capture systematic

biases in the training data

3. comprehensive validation of all modeling questions across four topics from

two debate forum sites

Our extensive experimental results emphasize the importance of aggregating in-

formation at the correct level, jointly modeling reply polarity and adjusting for

the label imbalances.

28



3.2 Online Debate Forums

Online debate forums represent richly structured argumentative dialogues. On

these forums, users debate with each other in discussion threads on a variety of

topics or issues, such as gun control, gay marriage, and marijuana legalization.

Each discussion consists of a number of posts, which are short text documents

authored by users of the forum. A post is either a reply to a previous post,

or it is the start (root) of a thread. As users engage with each other, a thread

branches out into a tree of argumentative interactions between the users. Forum

users often post numerous times and across multiple discussions and topics, which

creates a potentially cyclic interaction graph. Online debates present different

challenges than more controlled dialogic settings such as congressional debates.

Posts are short and informal, there is limited external information about authors,

and debate topics admit many modes of argumentation ranging from serious, to

tangential, to sarcastic. The reply graph in online debates also has substantially

different semantics to networks in other debate settings, such as the graph of

speaker mentions in congressional debates. To illustrate this setting, Fig. 3.1

shows an example dialogue between two users who are debating their opinions on

the topic of gun control.

In the context of online debate forums, stance classification [151, 133] is the

task of assigning stance labels with respect to a discussion topic, either at the

level of the user or the level of the post. Stance is typically treated as a binary

classification problem, with labels pro and anti. In Fig. 3.1, both users’ stances

toward gun control are anti.

We study datasets from two online debate websites: 4Forums.com, from the

Internet Argument Corpus [158], and CreateDebate.com [56]. Table 3.1 shows

statistics about these datasets including the average number of users per discussion
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4Forums CreateDebate

Users per topic 336 311

Posts per user, per
topic

19 4

Words per user, per
topic

2511 476

Words per post 134 124

Distinct reply links 6 3
per user, per topic

Stance labels given for Users Posts

%Post-level reply
links

71.6 73.9

have opposite-stance
users

%Author-level reply
links

52.0 68.9

have opposite-stance
users

Table 3.1: Structural statistics averages for 4Forums and CreateDebate.

topic and average number of posts authored. In the online debate forum corpora

that we study, the presence of a reply, or even a textual disagreement between

posts, does not necessarily indicate opposite stance (e.g. in gun control debates

on 4Forums, 23% of disagreements correspond with same stance). These more

nuanced debates necessitate richer modeling of replies.

For our unified framework, we specify a hinge-loss Markov random field to

reason jointly about stance and reply-link polarity labels. We denote reply-link

polarity as (dis)agreement, and obtain labels by considering same- or opposite-

stance interactions between pairs of users. Table 3.3 and Table 3.2 show the

ratio of positive to negative labels for both stance and disagreement in Creat-

eDebate.com and 4Forums.com, respectively. We see that in topics such as

evolution, gay marriage and marijuana legalization, the proside outweighs antiby

up to three times, whereas in discussions around gun control, the antiside dom-

inates. In the case of disagreement labels, in topics such as debating Obama on

CreateDebate.com, users largely take opposing views whereas when discussing
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Topic Stance Disagreement

Abortion 1.6 1.7
Evolution 3.6 0.9

Gay Marriage 3.0 1.3
Gun Control 0.5 1.1

Table 3.2: Ratio of positive to negative stance and disagreement labels in the
4forums dataset.

Topic Stance Disagreement

Abortion 1.5 2.3
Marijuana 3.2 1.5
Gay Rights 2.4 3.1
Obama 1.0 3.0

Table 3.3: Ratio of positive to negative stance and disagreement labels in the
CreateDebate dataset.

gun control on 4Forums.com, users with matching views interact with one an-

other almost as much. These systematic biases in the training data can result in

models that produce higher rates of false positives or false negatives, yielding both

poorer classifier performance and imbalance in predictions. This motivates our

final contribution around extending the learning algorithm with these appropriate

loss functions to mitigate this skew in the results.

3.3 Related Work

Previous work on stance in online debates has shown that contextual infor-

mation given by reply links is important for predicting stances [157], and that

collective classification often outperforms methods which treat each post indepen-

dently. Hasan and Ng [56] use conditional random fields (CRFs) to encourage

opposite stances between sequences of posts, and Walker et al. [159] use MaxCut

over explicitly given rebuttal links between posts to separate them into pro and

anti clusters. Sridhar et al. [141] use hinge-loss Markov random fields (HL-MRFs)
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to encourage consistency between stance and disagreement predictions, evaluating

several modeling choices within their framework.

While the first two approaches leverage rebuttal or reply links, they model

reply links as being indicative of opposite stances. However, as shown in Fig.

3.1, responses—even rebuttals—can occur between users with the same stance,

which suggests the benefit of a more nuanced treatment of reply links. The ap-

proach of Sridhar et al. [140] considers text-based agreement annotations between

posts, though it requires that reply links are labeled, which can be restrictive.

In contrast, Sridhar et al. [141] demonstrate the advantages of jointly inferring

uncertain reply label predictions to improve stance classification. Recently, Dong

et al. [34] also model both agreement and disagreement in interactions to con-

straint same- and opposite-stances between users in a generative model applied

to predict stances on a news site’s comments.

In the context of opinion subgroup discovery, Abu-Jbara and Radev [2] demon-

strate the effectiveness of clustering users by opinion-target similarity. In contrast,

Murakami and Raymond [103] use simple recurring patterns such as “that’s a good

idea” to categorize reply links as agree, disagree or neutral, prior to using Max-

Cut for subgroup clustering of comment streams on government websites. This

approach improves over a MaxCut approach that casts all reply links as dis-

agreements. Building on this work, Lu et al. [91] model unsupervised discovery

of supporting and opposing groups of users for topics in online military forums.

They improve upon a MaxCut baseline by formulating a linear program (LP) to

combine multiple textual and reply-link signals, suggesting the benefits of jointly

modeling textual and reply-link features. Recently, several approaches build on

the joint stance constraints proposed by Sridhar et al. [141] to develop weakly

supervised learning algorithms for stance prediction [69, 40] when ground truth
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is limited or unavailable. Ebrahimi et al. [40] exploit textual similarity to en-

code relational bootstrapping constraints in HL-MRFs and predict stances when

given only a few phrase-level annotations on new topics. Johnson and Goldwasser

[69] also use HL-MRFs and include constraints based on temporality and domain

knowledge of argument framing, also applying their approach to predicting stances

on new and unseen topics.

In a different line of work, while Somasundaran and Wiebe [134] do not use

relational information between users or posts, their approach shows the benefit

of modeling opinions and their targets at a fine-grained level using relational

sentiment analysis techniques. Similarly, Wang and Cardie [160] demonstrate the

effectiveness of using sentiment analysis to identify disputes on Wikipedia Talk

pages. In the congressional debate setting, approaches using CRFs and similar

collective techniques such as minimum-cut have also leveraged reply link polarity

for improvements in stance classification [151, 9, 8, 18]. However, these methods

rely heavily on features specific to the congressional setting in order to predict

link polarity, and make little use of textual features. In contrast, Abbott et al.

[1] use a range of linguistic features from the text of posts and their parents to

classify agreement or disagreement between posts on the online debate website

4Forums.com, without the goal of classifying stance.

Several approaches have been proposed to train joint classifiers in the presence

of imbalanced labels, but have mainly studied problems in link prediction and

knowledge base completion [167], named-entity recognition [53] and collaborative

filtering [168]. These methods consider training CRFs and Markov logic networks

(MLN) [126], templated random field models. Gimpel and Smith [53] first propose

a framework for augmenting the pseudolikelihood training loss commonly used

for CRFs with a cost function that capture empirical loss. The resulting training
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All models: Collective models only:

localPro(X1) → pro(X1) disagree(X1, X2) ∧ pro(X1) → ¬ pro(X2)
¬ localPro(X1) → ¬ pro(X1) disagree(X1, X2) ∧ ¬ pro(X1) → pro(X2)

¬ disagree(X1, X2) ∧ pro(X1) → pro(X2)
¬ disagree(X1, X2) ∧ ¬ pro(X1) → ¬ pro(X2)

disagree(X1, X2) = 1

Disagreement models only:

localDisagree(X1, X2) → disagree(X1, X2)
¬ localDisagree(X1, X2) → ¬ disagree(X1, X2)

pro(X1) ∧ ¬ pro(X2) → disagree(X1, X2)
pro(X1) ∧ pro(X2) → ¬ disagree(X1, X2)

¬ pro(X1) ∧ ¬ pro(X2) → ¬ disagree(X1, X2)

Figure 3.2: PSL rules to define the collective classification models, both for
post-level and author-level models. Each X is an author or a post, depending
on the level of granularity that the model is applied at. The disagree(X1, X2)
predicates apply to post reply links, and to pairs of authors connected by reply
links.

algorithm provides a max-margin solution that trades off likelihood against loss

functions that capture different structure in the problem. Yang et al. [167] extend

this formulation for MLNs by introducing false-positive (FP) and false-negative

(FN) costs that can be tuned for imbalanced link prediction problems, where

experts can indicate a strong bias for type one or two error. In our work, we adapt

FN and FP penalties for the continuous learning setting in HL-MRFs, motivated

by the imbalance in stance and disagreement in online forums.

3.4 Modeling Debate Stance

We face multiple modeling decisions that may impact predictive performance

when classifying stance in online debates. A key contribution of this work is

the exploration of the ramifications of these choices. We consider the following

variations on modeling: collective (C) versus local (L) classifiers, whether to

explicitly model disagreement (D), and author-level (A) versus post-level (P)

models. We describe each modeling approach below. We then introduce a novel
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cost-penalized learning algorithm that handles the false positive and false negative

imbalance in both stance and disagreement labels, for any modeling variant.

Collective versus Local. The first modeling distinction we consider is between

classifiers that predict the stance of each user in isolation using only attributes for

that user (local) and those that predict all users’ stances jointly, exploiting also the

stance labels and attributes of other users (collective). In both modeling cases, the

content from debate forum posts provide noisy but important local signal about

the post and its user’s stances. The methods proposed in this work build upon the

state-of-the-art local classification approach of Walker et al. [157], which trains

a supervised classifier using features including n-grams, lexical category counts,

and text lengths. We use logistic regression for our local classifiers which make

independent stance predictions. These models will be referred to as local (L).

In collective (C) classification approaches for stance prediction, the stance labels

are all predicted jointly, leveraging relationships along the graph of replies. The

simplest way to make use of reply links is to encode that the stance of posts (or

authors) that reply to each other is likely to be opposite [159, 56]. Collective

approaches attempt to find the most likely joint stance labeling that is consistent

with both the local classifier’s predictions and the alternation of stance along

response threads. The alternating stance assumption is not necessarily a hard

constraint, and may potentially be overridden by the local predictions. C and

L models can be constructed with A or P-level granularity as described below,

resulting in four modeling combinations.

Modeling Disagreement. As seen in Fig. 3.1 and Table 3.1, the assumption

that reply links correspond to opposite stance is not always correct. This suggests

the potential benefit of more nuanced models of agreement and disagreement. A
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natural disagreement modeling approach is to predict the polarity of reply links

jointly with stance.

There are two variants of reply link polarity to consider. In textual disagree-

ment, replying posts are coded as expressing agreement or disagreement with the

text of the parent post. This may not correspond to a disagreement in stance

relative to the thread topic. Some forum interfaces support user self-labeling of

post reply links as rebuttals or agreements, thereby explicitly providing textual

disagreement labels for posts. Alternatively, in the stance disagreement variant,

reply links denote either same or opposite stance between users (posts). In Fig.

3.1, User 1 and User 2 disagree in text but have the same stance. For collective

modeling of stance and disagreement, it is useful to consider the stance disagree-

ment variant which identifies opposite and same-stance reply links, and jointly

encourage stance predictions to be consistent with the disagreement predictions.

As with the local classification of stance, we can construct local classifiers for

stance disagreement. In this work, for each reply link instance, we use a copy of

the local stance classification features for each author/post at the ends of the reply

link. The linguistic features further include discourse markers such as “actually"

and “because" from the disagreement classifier of Abbott et al. [1]. Additionally,

we use textual disagreement as a feature for stance disagreementwhen available.

When reply links are not explicitly labeled as rebuttals or agreements, or only

rebuttals are known, we instead predict textual disagreement using the features

given above, trained on a separate data set with textual-disagreement labels.

Finally, with a stance disagreement classifier in hand, we can build collective

models that predict stance based on predicted stance disagreement polarity. We

denote these models as disagreement (D). When applied at one of A or P-level

modeling, this yields two more possible modeling configurations. These models
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are certainly more complex than others we consider, but their design is consistent

with intuition about the nature of discourse, so the added complexity may yield

better accuracy.

Author-Level versus Post-Level. When modeling debates, stance classifiers

can predict either the stance of a debate participant (i.e. an author (A)) [18], or

the stance expressed by a specific dialogue act (i.e. a post (P)) [56]. The choice

of prediction target may depend on the downstream goal, such as user modeling

or the study of the dialogic expression of disagreement. From a philosophical

perspective, authors are individuals who hold opinions, while posts are not. A

post is simply a piece of text which may or may not express the opinions of its

author.

Nevertheless, given a prediction target, either author or post, it may be bene-

ficial to consider modeling at a different level of granularity. For example, Hasan

and Ng [56] find that post-level prediction accuracy can be improved by “clamp-

ing” all posts by a given author to the same stance in order to smooth their la-

bels. Alternatively, author-level predictions may potentially be improved by first

treating each post separately, thereby effectively giving a classifier more training

examples, i.e. the number of posts instead of the number of authors. With this

procedure, a final author-level prediction can be obtained by averaging the pre-

dictions over the posts for the author, trading the noisiness of post-level instances

against the smoothing afforded by the final aggregation. When designing a stance

classifier, the modeler must decide the level of granularity for the prediction target

and find the best model therein.
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3.5 PSL Models

To study these choices, we build a flexible stance classification framework

that implements the above variations using PSL. The models we introduce are

specified by the PSL rules in Fig. 3.2, with both post-level and author-level

models following the same design. We denote the different modeling choices with

the letters defined in Section 3.4. First, local logistic regression classifiers output

stance probabilities based on textual features of posts or authors. All of the

models begin with these real-valued stance predictions, encoded by the observed

predicate localPro(Xi). The rules listed for all models encourage the inferred

global predictions pro(Xi) to match these local predictions.

This defines the local classification models L, which are HL-MRFs with node

potentials and no edge potentials, and which are equivalent to the local clas-

sifiers. The collective models extend the L models by adding edge potentials

which encourage the stance labels to respect disagreement relationships along re-

ply links. Specifically, every reply link between authors (for author-level models)

or between posts (for post-level models) x1 and x2 is associated with a latent

variable disagree(x1, x2). The rules encourage the global stance variables to re-

spect the polarity of the disagreement variables (same stance, or opposite stance)

and while also trying to match the stance classifiers. For the models that do not

explicitly model disagreement, it is assumed that every reply edge constitutes a

disagreement, i.e. disagree(x1, x2) = 1. These models are denoted C.

Otherwise, the disagreement variables are encouraged to match binary-valued

predictions from the local disagreement classifiers. We binarize the predictions

of the disagreement classifiers to encourage propagation. The disagreement vari-

ables are modeled jointly with the stance variables, and label information propa-

gates in both directions between stance and disagreement variables. The full joint
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stance/disagreement collective models are denotedD. In the following, the models

are denoted by pairs of letters according to their collectivity level and modeling

granularity. For example, AC denotes collective classification performed at the

author level, without joint modeling of disagreement. To train these models and

use them for prediction, weight learning and MAP inference are performed using

the structured perceptron algorithm and ADMM algorithm of Bach et al. [6].

3.6 Cost-Penalized Learning

An important contribution of this work is addressing the training data imbal-

ance in online forum debates. To mitigate this issue, we propose a novel learn-

ing algorithm for HL-MRFs which we call cost-penalized maximum pseudolikeli-

hood estimation (CP-MPLE). The CP-MPLE algorithm is a supervised learning

method that learns rules weights for a proposed PSL model and extends cost-

penalized learning in MLNs [167]. The key idea of our formulation is to augment

standard learning with soft FP and FN costs based on continuous variables which

can be tuned to balance the effect of positive or negative label skew. Formally, the

CP-MPLE estimate optimizes a cost-augmented variant of log pseudolikelihood

under an HL-MRF distribution [13, 7]:

CM-MPLE =
∑
Yi∈Y

fi(yi,y,x)− logZcost
i

=
∑
Yi∈Y

fi(yi,y,x)− log
∫
y′i

exp(−fi(y′i,y,x)) exp(c(y′i, yi))

where

fi(yi,y,x) =
∑
c∈C

∑
j:Yi∈Gc

wjφj(yi,y,x)

(3.1)
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and

c(yi′, yi) =


c(yi′, yi) = α(y′i − yi) if y′i > yi

β(yi − y′i) if y′i < yi

Each normalization constant term Zcost
i marginalizes out Yi in each conditional

distribution P (Yi|Y,X), integrating over possible continuous assignments to Yi,

denoted y′i. However, unlike standard pseudolikelihood, each Zcost
i is multiplied by

a cost c(y′i, yi) which is eα and eβ depending on whether a possible assignment y′i is

a false positive or false negative. In contrast to the discrete formulation proposed

by Yang et al. [167], based on continuous values y′i, we define soft variants of

false positives and false negative assignments. Costs α and β are then multiplied

by these degrees of FP and FN violation rather than using indicator functions.

When FP cost eα < 0, false positive assignments to Y are penalized less, and if

FN cost eβ < 0, false negative assignments contribute less error when adjusting

the weights during training.

We follow Bach et al. [7] and perform gradient descent with the voted percep-

tron algorithm. The resulting weight updates are of the form:

∇wc =
∑
Yi∈Y

f ci (yi,y,x)− EP cost [f ci (yi,y,x)]

=
∑
Yi∈Y

f ci (yi,y,y)−
∫
y′i

f ci (y′i,y,y) exp(fi(yi,y,x) + (c(y′i, yi))∫
y′i

exp(f ci (yi,y,x) + c(y′i, yi))

(3.2)

The expected value of distances to satisfaction of clause c is computed under

the modified cost-penalized conditional distribution of P (Yi|Y,X). Under the

cost-penalized distribution, every possible assignment y′i is multiplied by its cost,

changing the expected value and thus the gradient. Intuitively, α and β modulate

the effect that negative or positive examples have on the gradient. For example,

if the stances in a topic are skewed towards anti, by increasing the penalty on
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4Forums

Models Abortion Evolution Gay Gun
Marriage Control

PL 61.9 ± 4.3 76.6 ± 3.9 72.0 ± 3.6 66.4 ± 4.6
PC 63.4 ± 5.9 74.6 ± 4.1 73.7 ± 4.3 68.3 ± 5.5
PD 63.0 ± 5.4 76.7 ± 4.2 73.7 ± 4.6 67.9 ± 5.0
AL 64.9 ± 4.2 77.3 ± 2.9 74.5 ± 2.9 67.1 ± 4.5
AC 66.0 ± 5.0 74.4 ± 4.2 75.7 ± 5.1 61.5 ± 5.6
AD 65.8 ± 4.4 78.7 ± 3.3 77.1 ± 4.4 67.1 ± 5.4

Table 3.4: Author stance classification accuracy and standard deviation for 4Fo-
rums, estimated via 5 repeats of 5-fold cross-validation. Bolded figures indicate
statistically significant (α = 0.05) improvement over AL, the baseline model for
the author stance classification task.

CreateDebate

Models Abortion Gay Marijuana Obama
Rights

PL 66.4 ± 5.2 70.2 ± 5.0 74.1 ± 6.5 63.8 ± 8.7
PC 68.7 ± 5.7 72.6 ± 5.6 75.4 ± 7.4 66.1 ± 8.5
PD 69.5 ± 5.7 73.2 ± 5.9 74.7 ± 7.0 66.1 ± 8.5
AL 65.2 ± 6.5 69.5 ± 4.4 74.0 ± 6.6 59.0 ± 7.5
AC 65.8 ± 7.0 73.6 ± 3.5 73.9 ± 7.6 62.5 ± 8.3
AD 67.4 ± 7.5 74.0 ± 5.3 74.8 ± 7.5 63.0 ± 8.3

Table 3.5: Author stance classification accuracy and standard deviation for Cre-
ateDebate, estimated via 5 repeats of 5-fold cross-validation. Bolded figures
indicate statistically significant (α = 0.05) improvement over AL, the baseline
model for the author stance classification task.

false negatives and decreasing the penalty on false positives, the negative stance

examples’ influence on the learned model are reduced.

3.7 Experimental Results

The goals of our experimental evaluation are two-fold: 1) performing a com-

prehensive study of the merits of different modeling choices; and 2) validating both

the classifier accuracy and balance benefits of our cost-penalized MPLE learning
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4Forums

Models Abortion Evolution Gay Gun
Marriage Control

PL 66.1 ± 2.5 72.4 ± 4.2 69.0 ± 2.7 67.8 ± 3.5
PC 70.5 ± 2.5 74.1 ± 3.8 73.2 ± 3.1 69.1 ± 3.0
PD 69.7 ± 2.5 73.9 ± 4.0 72.5 ± 3.0 68.8 ± 3.0
AL 74.7 ± 7.1 73.0 ± 5.7 70.3 ± 6.0 68.7 ± 5.3
AC 76.8 ± 8.1 68.3 ± 5.3 72.7 ± 11.1 46.9 ± 8.0
AD 77.0 ± 8.9 80.3 ± 5.5 80.5 ± 8.5 65.4 ± 8.3

Table 3.6: Post stance classification accuracy and standard deviations for 4Fo-
rums, estimated via 5 repeats of 5-fold cross-validation. Bolded figures indicate
statistically significant (α = 0.05) improvement over PL, the baseline model for
the post stance classification task.

CreateDebate

Models Abortion Gay Marijuana Obama
Rights

PL 60.2 ± 3.2 62.7 ± 4.4 68.1 ± 6.1 59.4 ± 6.0
PC 62.8 ± 3.8 66.1 ± 4.9 68.7 ± 7.9 61.1 ± 6.6
PD 62.6 ± 4.1 66.2 ± 5.4 69.1 ± 7.4 61.0 ± 6.6
AL 61.6 ± 9.8 63.7 ± 5.3 66.7 ± 6.7 59.7 ± 13.6
AC 63.4 ± 12.4 71.2 ± 8.4 66.9 ± 9.0 63.7 ± 15.6
AD 66.8 ± 12.2 72.7 ± 8.9 69.0 ± 8.3 63.5 ± 16.3

Table 3.7: Post stance classification accuracy and standard deviations for Cre-
ateDebate, estimated via 5 repeats of 5-fold cross-validation. Bolded figures
indicate statistically significant (α = 0.05) improvement over PL, the baseline
model for the post stance classification task.

algorithm. To evaluate the modeling choices outlined in Section 3.4, we study

eight topics from 4Forums.com [158] and CreateDebate.com [56], for classi-

fication tasks at both the author level and the post level. Our collective models

(C) provide a comparison against the CRF approach proposed by Hasan and Ng

[56]. We perform extensive cross-validation evaluation to find the best perform-

ing modeling choices. We build on this model by examining the effects on both

performance and the imbalance in predictions of various learning algorithms, es-

pecially our CP-MPLE approach. We select FP and FN cost parameters within
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our cross-validation framework to evaluate these merits.

On average, each topic-wise data set contains hundreds of authors and thou-

sands of posts. The 4Forums data sets are annotated for stance at the author

level, while CreateDebate has stance labels at the post level. To perform post-

level evaluations on 4Forums we apply author labels to the posts of each author,

and on CreateDebate we computed author labels by selecting the majority

label of their posts. For 4Forums, since post-level stance labels correspond di-

rectly to author-level stance labels, we use averages of post-level predictions as

the local classifier output for authors. Section 3.2 includes an overview of these

debate forum data sets.

In the experiments, we measure classification accuracy across five repeats of 5-

fold cross-validation. In each fold, we ran logistic regression using the scikit-learn

software package,1 using the default settings, except for the L1 regularization

trade-off parameter C which was tuned on a within-fold hold-out set consisting

of 20% of the discussions within the fold. For PSL models, weight learning was

performed on the same in-fold tuning sets. We trained via 700 iterations of all

learning algorithms, and ran the ADMM MAP inference algorithm to convergence

at test time. For CP-MPLE, we tune α and β cost parameters within the same

cross-validation framework. We search over all combinations of α from -20 to

20 in intervals of 5.0 and β from -10.0 to 10.0 in intervals of 2.0. These ranges

were selected through exploration on a separate development dataset. We hold

out each fold in turn and select best performing parameters on the remaining

folds. We also perform five repeats of this experiment. When evaluating the

impact on classifier performance, we select parameters based on accuracy and

when studying imbalance, we optimize for the F1 score. F1 score is a natural

metric for evaluating the trade-offs between false negatives and false positives
1Available at http://scikit-learn.org/.
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since it captures the balance between precision and recall. On average, weight

learning and inference took around 1 minute per fold.

3.7.1 Evaluating Modeling Choices

The full results for author-level and post-level predictions are given in tables

3.4-3.5 and tables 3.6-3.7, respectively. In the tables, entries in bold identify

statistically significant differences from the local classifier baseline under a paired

t-test with significance level α = 0.05. These results are summarized in Fig.

3.3, which shows box plots for the six possible models, computed over the final

cross-validated accuracy scores of each of the four data sets from each forum.

The overall trends can be seen by reading the box plots in each figure from left

to right. In general, collective models outperform local models, and modeling

disagreement further improves accuracy. Author-level modeling is typically better

than post-level, even for the post-level prediction task. The improvements shown

by collective models and author-level models are consistent with Hasan and Ng

[56]’s conclusion about the benefits of user-level constraints. This may suggest

that posts only provide relatively noisy observations of the underlying author-level

stance. Modeling at the author level results in more stable predictions, as noisy

posts are pooled together. But here we also show that the full joint disagreement

model at the author level, AD, performs the best overall, for both prediction tasks

and for both forums, gaining up to 11.5 percentage points of post-level accuracy

over the local post-level classifier.

A closer analysis reveals some subtleties. When comparing D models with

C models in Fig. 3.3, disagreement modeling makes a much bigger difference at

the author level than at the post level. This is likely impacted by the level of

class imbalance for disagreement classification in the different levels of modeling.
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Disagreement, rather than agreement, between authors prompts many responses.

Thus, reply links are more likely disagreements when measured at the post level, as

seen in Table 3.1. Therefore, enforcing disagreement may be a better assumption

at the post level, and the nuanced disagreement model is not necessary in this case.

The overall improvements in accuracy from disagreement modeling for post-level

models were small.

On the other hand, the assumption that reply edges constitute disagreement

is less accurate when modeling at the author level (see Table 3.1). In this case,

the full joint disagreement model is necessary to obtain good performance. In

an extreme example, the two datasets with the lowest disagreement rates at the

author level are evolution (44.4%) and gun control (50.7%) from 4Forums. The

AC classifier performed very poorly for these data sets, dropping to 46.9% accu-

racy in one instance, as the “opposite stance” assumption did not hold (Tables

3.4 and 3.6). The full joint disagreement model AD performed much better, in

fact achieving an outstanding accuracy rates of 80.3% and 80.5% for posts on

evolution and gay marriage respectively. To illustrate the benefits of author-level

disagreement modeling, Fig. 3.4 shows a post for an author whose stance towards

gun control is correctly predicted by AD but not the AC model, along with a

subsequent reply. The authors largely agree with each other’s views, which the

joint disagreement model leverages, while the simpler collective model encourages

opposite stance due to the presence of reply links between them.

3.7.2 Evaluating CP-MPLE

Our first validation of the different modeling choices elucidates the benefits

of joint modeling with the AD approach. We build on this finding and turn our

evaluation to the choice of learning algorithm. As shown in Section 3.2, online
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4Forums

Learning Abortion Evolution Gay Gun
Marriage Control

MLE 65.8 ± 4.4 78.7 ± 3.3 77.1 ± 4.4 67.1 ± 5.4
MPLE 66.7 ± 4.8 78.8 ± 3.4 77.0 ± 3.6 67.2 ± 5.5

CP-MPLE 67.0 ± 2.6 80.8 ± 1.0 78.9 ± 1.6 68.3 ± 1.4

Table 3.8: Accuracy results on AD model across four topics of 4Forums.com.
CP-MPLE improves performance significantly.

CreateDebate

Models Abortion Gay Marijuana Obama
Rights

MLE 67.4 ± 7.5 74.0 ± 5.3 74.8 ± 7.5 63.0 ± 8.3
MPLE 68.5 ± 7.8 74.2 ± 5.7 75.7 ± 8.2 65.7 ± 10.5

CP-MPLE 71.4 ± 3.8 76.5 ± 2.5 77.3 ± 3.1 68.9 ± 4.0

Table 3.9: Accuracy results for AD model on CreateDebate.comhighlights
the greatest significant gains from CP-MPLE.

debate sites exhibit biases in labels. Often, both the stances on a topic and

pairwise disagreements are skewed. The goal of this experiment is to validate the

benefits of CP-MPLE on both prediction accuracy and balance.

We first evaluate classification accuracy on the author stance prediction task

across all eight topics from both forums. We compare CP-MPLE against the struc-

tured voted perceptron algorithm (MLE) and maximum pseudolikelihood learn-

ing (MPLE). Table 3.8 shows the accuracy across 4Forums.com topics for all

weight learning methods after we select cost parameters for CP-MPLE using cross-

validation. Table 3.9 shows the performance across CreateDebate.com topics.

Throughout this evaluation, bolded figures represent significant improvements at

a statistical significance level of 0.05 over MLE.

The results show that CP-MPLE improves upon the accuracy of MLE in all

topics across both online forums, with best gains of 9% in the Obama topic of

CreateDebate.com. Indeed, we see on average greater gains in the Creat-
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4Forums

Learning Abortion Evolution Gay Gun
Marriage Control

MLE 74.4 ± 3.9 87.7 ± 1.8 86.1 ± 2.7 17.2 ± 12.8
MPLE 74.1 ± 4.2 87.9 ± 2.1 86.3 ± 2.7 18.9 ± 12.8

CP-MPLE 74.7 ± 2.4 88.6 ± 1.0 86.7 ± 1.1 30.9 ± 3.3

Table 3.10: F1 scores for AD model on 4Forums.comshows trade-off between
precision and recall of predictions across learning methods. CP-MPLE yields most
balanced predictions.

CreateDebate

Models Abortion Gay Marijuana Obama
Rights

MLE 73.9 ± 7.4 82.8 ± 3.9 84.7 ± 5.2 59.5 ± 9.6
MPLE 74.6 ± 8.0 83.6 ± 3.6 85.4 ± 5.7 63.8 ± 11.6

CP-MPLE 77.2 ± 3.2 84.5 ± 1.6 86.2 ± 2.0 67.1 ± 4.2

Table 3.11: F1 scores for AD model on CreateDebate.comshows that CP-
MPLE gives strongest improvements in this imbalanced domain.

eDebate.com topics where CP-MPLE improves up to four accuracy points over

MLE in both abortion and Obama topics. In 4Forums.com topics, the best

gains are achieved in evolution and gay marriage topics. Across both forums, the

topics where CP-MPLE boosts performance most correlate to the most skewed

topics in Table 3.2, matching our intuition of the cost parameters. We also see that

standard MPLE algorithm performs comparably with MLE. Although MPLE sees

accuracy gains in four topics, the increased variance makes these gains insignif-

icant. This suggests that pseudolikelihood alone remains insufficient to improve

upon the structured perceptron algorithm. However, the CP-MPLE algorithm

which augments empirical loss terms that capture FP and FN cost gives us the

best predictive performance.

As a second line of investigation, we evaluate the balance in stance predictions

by computing average F1 scores to compare the learning methods across both
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forums. Table 3.10 shows these F1 results for 4Forums.com and Table 3.11

presents the corresponding evaluation for CreateDebate.com. We see that in

4Forums.com, MPE and MPLE only achieve an F1 of up to 18.9 on the gun

control topic which Table 3.2 shows is skewed towards the anti stance. CP-MPLE

improves the F1 to 30.9, which is promising though it leaves room for further gain.

Interestingly, again we see that the greatest and most significant gains are achieved

across topics in CreateDebate.com, with F1 improvements of up to 13% on the

Obama topic. The results demonstrate that CP-MPLE can better mitigate the

imbalance in stance prediction, especially on topics that exhibit a greater skew in

the training labels, as shown by Table 3.3.

To summarize our conclusions from all experiments, the results suggest that

author-level modeling is the preferred strategy, regardless of the prediction task.

In this scenario, it is essential to explicitly model disagreement in the collective

classifier. Our top performing AD model statistically significantly outperforms

the respective prediction task baseline on 6 out of 8 topics for both tasks with p-

values less than 0.001. Based on our experimental results, we recommend the full

author-disagreement model AD as the classifier of choice. Our second key finding

is that the CP-MPLE learning algorithm further improves AD performance due

to the presence of imbalanced labels.

3.8 Discussion

The prediction of user stance in online debate forums is a valuable task, and

modeling debate dialogue is complex and requires many decisions such collective or

non-collective reasoning, nuanced or naive use of disagreement information, and

post versus author-level modeling granularity. We systematically explore each

choice, and in doing so build a unified joint framework that incorporates each

48



salient decision. Our method uses a hinge-loss Markov random field to encour-

age consistency between local classifier predictions for stance and disagreement

information. We find that modeling at the author level gives better predictive per-

formance regardless of the granularity of the prediction task, and that nuanced

disagreement modeling is of particular importance for author-level collective mod-

eling. The resulting collective classifier gives improved predictive performance over

both the simple non-collective and standard collective approaches, with a running

time overhead of only a few minutes. We show that these performance gains can

be further improved with our novel learning algorithm which explicitly encodes

empirical loss in its objective. Finally, we demonstrate that our learning algo-

rithm mitigates the imbalance in predictions especially in skewed training data

settings, which benefits the downstream usage of these predictions in policy or

decision-making.
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Figure 3.3: Overall accuracies per model for the author stance prediction task,
computed over the final results for each of the four data sets per forum. Note
that we expect significant variation in these plots, as the data sets are of varying
degrees of difficulty.
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Text Stance

Post: I agree with everything except the last
part. Safe gun storage is very important, and
sensible storage requirements have two impor-
tant factors.

anti

Reply: I can agree with this. And in case
it seemed otherwise, I know full well how to
store guns safely, and why it’s necessary. My
point was that I don’t like the idea of such a
law, especially when you consider the problem
of enforcement.

anti

Figure 3.4: A post-reply pair by 4Forums.com authors whose gun control
stance is correctly predicted by AD, but not by AC.
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Chapter 4

Fusing Multiple Sources

In the previous chapter, we developed useful collective modeling templates in

the context of online debate forums and stance prediction. In this chapter, we

turn our focus to another important computational science domain with a sim-

ilarly complex relational data graph. We consider pharmacological graph where

vertices are drug treatments. We observe several types of edges between these

drug treatments, including adverse or beneficial drug-drug interactions and sim-

ilarities between drugs based on molecular, chemical or annotation-based traits.

In contrast to the debate forum graph in the previous chapter, this graph is

multi-relational, requiring structured approaches to fuse these multiple sources of

information.

In this domain, an important problem is predicting new interactions between

drugs based on current knowledge of interactions and multiple drug similarities.

As concurrent use of multiple medications becomes ubiquitous among patients,

it is crucial to characterize both adverse and synergistic interactions between

drugs. Probabilistic models of putative drug-drug interactions (DDIs) can guide

in vitro testing and cut down significant cost and effort. With the abundance of

experimental data characterizing drugs and their associated targets, such methods
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must effectively fuse multiple sources of information and perform inference over the

network of drugs. In this chapter, we build on the collective modeling patterns in

Chapter 3 and propose a probabilistic approach for jointly inferring unknown DDIs

from a network of multiple drug-based similarities and known interactions. We

compare against two methods including a state-of-the-art DDI prediction system

across three experiments and show best performing improvements of more than

50% in AUPR over both baselines. We find five novel interactions validated by

external sources among the top-ranked predictions of our model. These results

highlight the importance of fusing sources of varying reliability when developing

collective probabilistic models. In the following chapter, we extend this idea to

combining several constraints types in PSL and sources of prior information when

discovering causal knowledge.

4.1 Drug-drug Interaction

Increasingly, patients use multiple pharamceutical drugs simultaneously to

treat their illnesses. Interactions between drugs can result in reduced efficacy

of one or more drugs, and in some cases, even deletrious side-effects. The risk

of adverse effects is higher in demographics like the elderly that commonly take

multiple medications at once. On the other hand, certain drugs interact to pro-

duce synergistic effects that are more effective in combatting diseases like cancer

[104, 23]. Crowther et al. [26] characterizes a drug-drug interaction (DDI) as

a drug effect that is greater or less than expected in the presence of another

drug. While it remains crucial to verify potential DDIs in vitro, it is prohibitively

expensive to exhaustively test all possible interactions. Therefore, computational

modeling and predictive methods provide a viable way to identify the most salient

potential interactions for downstream experimental validation [171].

53



Interactions between drugs are classified as pharmacokinetic and pharmaco-

dynamic. Computational and mathematical modeling methods rely on current

understanding of the mechanisms underlying each of these types of interactions

and are specific to each interaction type. A pharmacokinetic interaction with a

drug affects the process by which the other drug is absorbed, distributed, metab-

olized or excreted in the body [26]. On the other hand, drugs acting on the same

receptor, site of action, or physiological system constitutes a pharmacodynamic

interaction. While pharmacokinetic interactions are usually associated with an

adverse or exaggerated response, pharmacodynamic interactions are implicated

in both synergistic and detrimental effects. Many pharmacokinetic interactions

are facilitated by the enzyme family Cytochrome P450 (CYP) and extensive but

incomplete knowledge of its mechanisms have been used for computational model-

ing of pharmacokinetic interactions [41]. Similarly, prior work has applied math-

ematical modeling of known drug response mechanisms to simulate and predict

pharmacodynamic interactions [71, 68].

In contrast to computational modeling, statistical and predictive methods

leverage data and evidence from related experiments as domain knowledge and

biological priors. Recent advancements in high-throughput experimentation have

generated a wealth of biological characterizations of drug compounds and their

target genes [46]. A key challenge for statistical models of drug-drug interactions,

or the closely related problem of drug-target interactions, lies in fusing or com-

bining information from multiple data sources. Much related work has developed

ways of computing similarity scores between drugs or pairs of drugs to be used

as features for machine learning classifiers [20, 55, 4, 156, 155]. Sophisticated

algorithms such as restricted Boltzmann machines and matrix factorization are

especially effective in combining two types of similarities by learning latent rep-
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resentations of the entities [163, 19, 54], however, they do not inherently support

multiple similarities in the same model. Statistical methods for DDI prediction are

more generalizable as they do not rely on extensive expert knowledge of each mode

of interaction. Although Park et al. [109], Huang et al. [59] apply their predictive

methods only to pharmacodynamic interactions, statisicals models can be easily

extended to both types of interactions. To the best of our knowledge, [55] present

state-of-the-art results for drug-drug interaction prediction of both pharmacoki-

netic and pharmacodynamic interactions with their INDI system for combining

similarity measures to use features for a local logistic regression classifier.

However, these similarity-based methods neglect the structural information en-

coded in the biological network of drugs and their interactions. Two general types

of approaches have been studied for adding network information to similarity-

based features: methods that compute additional network-based features and

methods that perform inference directly over the structure of the network. We re-

fer to these as network-similarity methods and network-based inference methods,

respectively. Both kinds of approaches begin by formulating a graph of drugs and

their interactions. Network-similarity methods proceed by computing relational

features, based on the local neighborhoods of drugs such as neighborhood overlap

and other well-studied network attributes [20, 19, 59]. The relational features

supplement the similarity information given as input to a classifier. In contrast,

network-based inference methods reason over the graph structure when predicting

interactions.

Multiple network-based inference approaches have been introduced for the

closely related problem of drug-target interaction prediction. Bleakley and Ya-

manishi [15] formulate the problem of inferring missing links in a bipartite graph

of drugs and targets, and introduce a model that uses local bipartite structure
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for prediction. Cheng et al. [21], Mei et al. [96] similarly leverage local bipartite

topology for inference and Park et al. [109] introduce a random walk approach for

reasoning over the network of drugs and targets. However, local network-based

features cannot enforce global constraints based on the full graph of entities. Given

local relational features, current network-based inference methods follow tradi-

tional machine learning algorithms in assuming the instances to be independent

and identically distributed. In recent work, Fakhraei et al. [45, 44] improve upon

existing bipartite drug-target interaction prediction approaches using the proba-

bilistic programming framework Probabilistic Soft Logic (PSL) to jointly classify

all interactions, fusing similarity relations and global network information.

In this chapter, we formalize the problem of network-based drug-drug interac-

tion prediction using multiple similarity relations. We collectively predict drug-

drug interactions, considering statistical dependencies between predictions along

with knowledge of observed interactions using Probabilistic Soft Logic. We ap-

ply our collective approach to predict DDIs on three kinds of interactions: (1)

CYP-related interactions (2) non-CYP related interactions (3) general interac-

tions documented by Drugbank [165]. For all settings, we evaluate our collective

approach against two non-collective methods including state-of-the-art INDI sys-

tem of Gottlieb et al. [55] and a non-collective PSL model. Our model achieves

statistically significant improvement up to 5% in area under the ROC (AUC) re-

sults from Gottlieb et al. [55]. We further assess area under the precision-recall

curve (AUPR) for all methods and show that our collective DDI prediction ap-

proach significantly outperforms the state-of-the-art baseline method by up to

50%. Finally, we present important novel DDIs predicted by our approach that

are validated in literature.
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4.2 Datasets

We use two datasets for our experimental evaluation. The first dataset, re-

leased by Gottlieb et al. [55], includes pairwise interactions between 807 drugs,

with the drug IDs anonymized . We constructed the second dataset by extracting

interactions from Drugbank for the 315 drugs used by Fakhraei et al. [45], Perlman

et al. [116], where Drugbank IDs are provided for additional validation. The fol-

lowing section described interaction types and similarities used in these datasets.

4.2.1 Drug Interaction Data

For the first dataset, Gottlieb et al. [55] download 10,702 interactions from

DrugBank and 70,099 interactions listed as moderate or high from Drugs.com

website[165]. The dataset contains two types of interactions: (1) CYP-related

interactions (CRDs), where both drugs are metabolized by the same cytochrome

P450 (CYP) enzyme (2) non-CYP-related interactions, where no CYP is shared

between the drugs (NCRDs). After filtering and processing, the final dataset

includes 10,106 CRD and 45,737 NCRD DDIs [55] across 807 drugs.

For the second dataset, we download interactions from DrugBank version 4.3

for the 315 drugs used by Perlman et al. [116], Fakhraei et al. [45]. We cross

referenced Drugbank IDs released for the 315 drugs to extract the listed drug

interactions, resulting in 4293 known interactions.

4.2.2 Drug Similarity Data

Both datasets contain seven drug-drug similarities. Four of these similar-

ity measures are drug-based: Chemical-based, Ligand-based, Side-effect-based,

Annotation-based. Three similarities are between drug targets and computed
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by aggregating over known targets for the drugs: Sequence-based, PPI network-

based, and Gene Ontology-based. In the first dataset, Gottlieb et al. [55] average

maximal similarities between the associated targets for drugs that have more than

one target. In the second dataset, we average over all possible pairwise similarities

between target genes for drugs that have multiple targets.

Following section provides a brief description of the methods in Gottlieb et al.

[55], Perlman et al. [116] for similarity extraction:

Chemical-based is the Jaccard similarity, or closely related Dice similarity, of

molecular fingerprints from pairs of drugs. Molecular fingerprints are retrieved

from cheminformatics toolkits such as chemical development kit (CDK) [145] or

RDKit using canonical SMILES1. Fingerprinting methods represent molecules as

bit strings for fast similarity computation and are grouped into hashing-based

and structural methods. Hashed fingerprints such as the Daylight method rely

on hash functions to represent linear substructures of molecules as bit strings.

Structural fingerprints such as MACCS, Atom-Pair, Morgan and Feature-Based

Morgan methods use features of molecular substructures to compute bit strings.

The Jaccard and Dice similarity scores between two sets X and Y are defined as

Jaccard(X, Y ) = |X ∩ Y |
|X ∪ Y |

,Dice(X, Y ) = 2|X ∩ Y |
|X|+ |Y |

We obtain all fingerprints described above from RDKit and additionally, the

hashed fingerprint from CDK computed with default values as used by Gottlieb

et al. [55]. In our experiments, we use the hashed fingerprint from CDK after

comparing performance of all fingerprinting methods on development data.
1Simplified Molecular Input Line Entry Specification
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Ligand-based is the Jaccard similarity between the corresponding sets of protein-

receptor families for each drug pair. The protein-receptor is obtained from the

similarity ensemble approach (SEA) search tool [74] Drugs’ canonical SMILES

compared with a collection of ligands2.

Side-effect-based is the Jaccard similarity score between common side-effects

for each pair of drugs.

Annotation-based is the Resnik semantic similarity [125] of Drugs’ ATC codes

mapped to the World Health Organization ATC classification system [132].

Sequence-based is the Smith-Waterman sequence alignment score between the

corresponding drug targets (proteins). They are normalized via dividing the pair-

wise score by the geometric mean of the alignment scores of each sequence against

itself, suggested in [15].

Protein-protein interaction network-based is the distance between pairs

of corresponding drug targets using their corresponding proteins in the human

protein-protein interactions network via an all-pairs shortest path algorithm.

Gene Ontology-based is the Resnik semantic similarity [125] between Gene

Ontology annotations of drugs’ corresponding targets.

For more detailed descriptions of these similarities, refer to Perlman et al.

[116], Gottlieb et al. [55].
2A substance that binds with a biomolecule to serve a biological purpose.
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4.3 Problem Statement

We consider the problem of inferring new edges in a partially observed graph

of interactions between drug vertices by leveraging multiple known similarity rela-

tions between vertices. We are given a set of drugs D = {D1 . . . Dn}. We observe

a set of interaction edges between the drugs denoted by n× n interaction matrix

I where Iij = 1 indicates an interaction between di and dj and is 0 indicates

an unobserved or missing edge. Additionally we are given a set of n × n drug-

drug similarity relations encoded by tables {M1 . . .Mk} where Mlij ∈ [0, 1] and

indicates similarity between di and dj according to biological similarity l.

We define a drug network as a multigraph G = (V,E) where V = D is the

vertex set of drugs and E = {M1 . . .Mk} ∪ I is the collection of multiple edge

types given by the similarity relations and the interaction matrix I. The drug-

drug interaction prediction problem is to use all the information encoded in G to

predict the unobserved interaction edges between drug vertices in G.

4.4 Approach

4.4.1 Collective Drug-drug Interaction

Given all the information G, we want to infer interaction values for missing

edges U = {(di, dj)|Iij = 0}. Many techniques have been studied for inference of

missing links but here we focus on the intersection of two well known approaches:

network-based methods and collective probabilistic methods. Generally, network-

based inference techniques make use of the structure of G by considering the local

neighborhoods for each di and dj in edges we want to infer. For example, network-

based methods might include set similarity of the neighbors of di and dj along

with the local edge similarites encoded in G. Collective probabilistic methods
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learn joint distributions P (U,G) to infer the most probable joint assignment to

all edges in U thereby leveraging statistical dependencies between prediction tar-

gets as well as the observations in G. Network-based collective methods combine

the two techniques by parametrizing P (U,G) according to structural features of G.

Collective prediction methods have been shown to work well in the closely related

setting of drug-target interaction prediction [45]. Below we describe hinge-loss

Markov random fields and probabilistic soft logic, a framework for performing

network based collective inference, and describe our model for drug-drug interac-

tion prediction.

Drug-drug Interaction PSL Model

?

?

Si Sj Sk 

I 

I 

I 

Si 

Sj 

Sk 

Figure 4.1: Triad-based drug-drug interaction prediction rules.

We propose a PSL model for collective drug-drug interaction prediction that

fuses several sources of information. The rules of a PSL model capture beliefs

or knowledge about the problem domain. For the drug-drug interaction domain

encoded by drug network G, we assert that a drug is likely to be involved in an

interaction if it is similar to another drug that is a known interactor. To model the

notion of similarity, we are interested in fusing multiple sources of drug similarity.
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We make this concrete in the full set of rules for drug-drug interaction prediction

shown in figure 4.2.

w1 : SimChemical(D1, D2) ∧ Interacts(D2, D3)→Interacts(D1, D3)
w2 : SimLigand(D1, D2) ∧ Interacts(D2, D3)→Interacts(D1, D3)

. . .

w7 : SimGO(D1, D2) ∧ Interacts(D2, D3)→Interacts(D1, D3)

Figure 4.2: PSL model for collective drug-drug interaction prediction.

where we have one rule for each drug similarity described in section 4.2, result-

ing in seven rules. We represent the prediction target with the Interacts(D1, D3)

predicate. Given a set of drugs d1, d2, and d3 with known interaction between d2

and d3, the rule results in groundings of the form:

w1 : SimChemical(d1, d2) ∧ Interacts(d2, d3)→ Interacts(d1, d3)
w2 : SimChemical(d2, d3) ∧ Interacts(d3, d1)→ Interacts(d2, d1)

Figure 4.3: Small subset of ground PSL rules.

We exclude multiple symmetric groundings for ease of exposition. The ground

rules show the propagation of similarity information between target variables. The

inferred value of Interacts(d1, d3) also informs the value of Interact(d2, d1).

Following [45], we refer to these as ‘triad rules’ as they encourage triangle comple-

tion, or triadic closure. Figure 4.1 shows a schematic overview of the triad rules.

The predicted interaction edge provides evidence for other inferences, resulting in

a flow of information throughout the network. This form of collective prediction

leverages the full structure of the drug network graph G while combining multiple

sources of similarity information. To fully evaluate the impact of joint prediction,

we describe below two baseline methods that work non-collectively and assume

independence between predicted interactions.
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4.4.2 Comparison Methods

We compare against two non-collective methods including the state-of-the-art

INDI framework for inferring interactions between drugs [55]. We describe each

of these below.

State-of-the-art INDI method

[55] introduce the INDI framework for novel drug-drug interaction prediction.

They introduce a method for computing similarity scores between target interac-

tion edges to known interaction edges based on the given drug-drug similarities.

For each target drug-pair, each pairwise combination of similarities is considered

for computing the similarity score to the most similar known drug interaction.

The procedure effectively performs nearest neighbor search using different simi-

larity distance measures. Each score is then used as a feature to train a logistic

regression classifier. We refer to [55] for full details.

Non-collective PSL Model

To quantify the effect of collective prediction, we also use a non-collective

PSL model that considers the dependencies between the target interactions and

observed interactions only, as in the INDI method. Formally, we modify the triad

rules above as follows: where we introduce the InteractsObs predicate to limit

w1 : SimChemical(D1, D2) ∧ InteractsObs(D2, D3)→Interacts(D1, D3)
. . .

w7 : SimGO(D1, D2) ∧ InteractsObs(D2, D3)→Interacts(D1, D3)

Figure 4.4: Non-collective PSL model for drug-drug interaction prediction.

the triadic closure of predicted interactions to known interactions only.
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4.4.3 Experimental Setup

In order to validate our collective drug-drug interaction prediction method and

compare against state-of-the-art methods, we perform experiments on the two

drug interaction networks described in section 4.4. For each dataset, we perform

ten-fold cross-validation across all pairs of interactions. We use eight folds as

interaction evidence or observations, one fold as training labels to learn weights

for the rules, and the final fold as a held-out test set. All similarities between drugs

are used as evidence, or features, for the models. The similarity distributions are

highly left-skewed, which is problematic for the soft truth interpretation used

by PSL, as values below 0.5 do not highly affect the inference. We transform

all similaritity values between drugs by taking the cube-root to normalize the

distributions and allow for proper interpretation by PSL.

We compute area under the precision-recall curve (AUPR) for the positive

class, area under the ROC (AUC) and F1 score on the test set. Link predic-

tion tasks usually suffer from class imbalance as true positive links are sparse

compared to true negatives. Related work on general link prediction and DDI

prediction report AUC because it is more robust to the skewness than metrics

such as accuracy. However, AUC is still sensitive to the high number of negative

examples. For practical downstream biological validation of predicted DDIs, it is

more important to have a reliable ranking of candidate positive interactions. The

precision-recall curve better captures the effectiveness of models at discriminat-

ing true positive examples. F1 score is another measure of classification accuracy

and can interpreted as a weighted average of precision and recall. Since PSL

outputs real-valued truth scores and logistic regression produces class probabili-

ties, we threshold the values to {0,1} to compute the F1 score. We perform grid

search over a range of threshold values between [0,1] to obtain best-performing
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thresholds.

We implement the INDI feature computation method in Matlab by extending

a related implementation of the computation for the drug-target interaction pre-

diction setting [45, 116]. We use the logistic regression classifier provided in the

glmfit package with default settings. For our models, we use the open-source

PSL framework. We run 700 iterations of the structured voted-perceptron weight

learning algorithm in PSL and use default settings for the ADMM inference algo-

rithm. We will make all code and datasets publicly available.

Blocking Methods for PSL

In a drug network with n drugs and n2 interactions where PSL considers

dependencies between pairs of interactions, the computational complexity reaches

O(n4), which quickly becomes expensive for large networks. To make the approach

scalable, we employ a common techniques to block unimportant links from being

grounded out by the model. In the PSL triad rule setting, for each similarity i,

we limit the possible Similari(D1, D2) edges that are considered for each drug

D1. By blocking on the similarity links, we restrict the grounding of all possible

triads to only the ones that are most likely.

To block similarities in the grounded out PSL models, for each drug, we per-

form nearest neighbor search to pick the top 15 most similar other drugs as evi-

dence for Simi(D1, D2). In the first drug dataset, for the CRD interaction exper-

iments, we use a more restrictive blocking method to induce more sparsity since

CRD interactions are rarer. When searching for the 15 nearest neighbors for each

drug, we restrict ourselves to those drugs that have appeared in at least one ob-

served interaction in the full network. In this sparser setting, some drugs may not

appear in any Simi(D1, D2) groundings. For those drugs, we additionally retrieve
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five most similar other drugs using standard nearest neighbor search and include

the pairs as evidence for Simi(D1, D2). [45] provide more comprehensive analysis

on techniques for blocking.

4.5 Experimental Results

4.5.1 Comparison to State-of-the-art Baselines

We compare our proposed collective PSL approach for DDI prediction to two

baselines including the state-of-the-art INDI system with 10-fold cross-validation

experiments. We apply the three methods to each fold and report average and

standard deviations of our chosen metrics for each model. We refer to the INDI

system as INDI, the non-collective PSL baseline as NC-PSL, and collective PSL

model as PSL. Tables 4.1-4.3 present average and standard deviation for area

under the precision-recall curve (AUPR) and area under the ROC (AUC) from

cross-validation experiments on the three interaction types from two datasets:

(1) CYP-related interactions (CRD) from Drugs.com and Drugbank [55] (2) Non-

CYP-related interactions (NCRD) from Drugs.com and Drugbank [55] (3) General

interactions from DrugBank. Bolded results highlight statistically significant im-

provement over both baselines with α = 0.05. Figures 4.5, 4.6 and 4.7 show

precision-recall curves of all methods plotted for interaction type settings (1), (2)

and (3) respectively. Additionally, to assess the benefit of fusing multiple sim-

ilarities, we compare against our collective PSL model implemented with single

similarities. Table 4.4 shows AUPR for the collective PSL model for single simi-

larities across interaction type settings (1), (2) and (3).
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Table 4.1: Average AUPR, AUC and F1 scores (with best threshold t indicated),
and standard deviation for 10 fold CV comparing all DDI prediction models for
CRD interactions from dataset 1.

Method AUPR-Pos AUROC F1

INDI 0.15 ± 0.007 0.92 ± 0.003 0.24 ± 0.005 (t = 0.1 )
NC-PSL 0.15 ± 0.01 0.91 ± 0.004 0.23 ± 0.01 (t = 0.8)
PSL 0.34 ± 0.02 0.96 ± 0.003 0.4 ± 0.02 (t = 0.3)

Table 4.2: Average AUPR, AUC and F1 scores (with best threshold t indicated),
and standard deviation for 10 fold CV comparing all DDI prediction models for
NCRD interactions from dataset 1.

Method AUPR-Pos AUROC F1

INDI 0.64 ± 0.01 0.95 ± 0.003 0.63 ± 0.01 (t = 0.35)
NC-PSL 0.70 ± 0.006 0.96 ± 0.001 0.62 ± 0.01 (t = 0.9)
PSL 0.78 ± 0.006 0.97 ± 0.001 0.70 ± 0.01 (t = 0.3)

Table 4.3: Average AUPR, AUC and F1 scores (with best threshold t indicated),
and standard deviation for 10 fold CV comparing all DDI prediction models for
general interactions from dataset 2.

Method AUPR-Pos AUROC F1

INDI 0.47 ± 0.04 0.91 ± 0.01 0.51 ± 0.03 (t = 0.2)
NC-PSL 0.56 ± 0.04 0.95 ± 0.006 0.6 ± 0.03 (t = 0.5)
PSL 0.69 ± 0.02 0.96 ± 0.006 0.67 ± 0.02 (t = 0.4)

Table 4.4: Average AUPR and standard deviation for 10 fold CV for single
similarity collective DDI prediction models across all interaction types

Similarity CRD NCRD General

ATC 0.18 ± 0.01 0.73 ± 0.01 0.68 ± 0.02
Chemical 0.32 ± 0.02 0.58 ± 0.01 0.46 ± 0.04
Distance 0.31 ± 0.03 0.63 ± 0.004 0.35 ± 0.04
Gene Ontology 0.33 ± 0.02 0.63 ± 0.004 0.39 ± 0.04
Ligand 0.18 ± 0.01 0.67 ± 0.01 0.37 ± 0.03
Sequence 0.29 ± 0.02 0.63 ± 0.004 0.37 ± 0.04
Side Effect 0.30 ± 0.01 0.56 ± 0.01 0.51 ± 0.03
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Figure 4.5: Precision-recall curves com-
paring all DDI prediction models on
CRD Interactions dataset.

Figure 4.6: Precision-recall curves com-
paring all DDI models on NCRD Inter-
actions dataset.
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Figure 4.7: Precision-recall curves com-
paring all DDI models on
general interactions dataset.
[55] report AUC results consistent with our evaluation of the INDI system as

given in tables 4.1 and 4.2. Our collective PSL model statistically significantly

outperforms both baselines in AUC, AUPR and F1-score for all three interaction

type prediction experiments. For AUPR, in the best case CRD interactions set-

ting, our collective model improves up to 50% in AUPR over the state-of-the-art

INDI system and non-collective PSL model, from 0.15 to 0.34. For the NCRD

and general interactions, the collective PSL approach sees gains of up to 20% in

AUPR over both baselines. The collective model improves up to 0.05 in AUC

over the state-of-the-art INDI method, with AUC as high as 0.97 for the NCRD

interaction setting, signficantly improving over the 0.95 achieved by the INDI sys-

tem. For F1-score, our collective model improves close to 50% over the INDI and

non-collective baselines for the CRD setting and up to 30% for NCRD and gen-

eral interaction settings. Interestingly, the non-collective PSL method performs

at least as well as the INDI system in setting (1) and for settings (2) and (3),

significantly outperforms the INDI system in AUPR and AUC. This improvement

by the non-collective PSL model demonstrates the method’s effectiveness in com-

bining multiple similarities as well as or better than the state-of-the-art similarity
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Table 4.5: Top ranked PSL model predictions for interactions unknown in Drug-
Bank

Rank Drug Bank IDs Drug Bank IDs

1 DB00870; DB01418 Suprofen and Acenocoumarol
2 DB01067; DB00839 Glipizide and Tolazamide
3 DB01297; DB00806 Practolol and Pentoxifylline
4 DB00870; DB00806 Suprofen and Pentoxifylline
5 DB00272; DB01232 Betazole and Saquinavir
6 DB00870; DB01032 Suprofen and Probenecid
7 DB00939; DB01418 Meclofenamic acid and Acenocoumarol
8 DB00414; DB01032 Acetohexamide and Probenecid
9 DB01297; DB01392 Practolol and Yohimbine
10 DB01097; DB01262 Leflunomide and Decitabine

combination technique used by INDI. The gains achieved by the fully collective

PSL model highlights the benefits of joint inference over the full drug-drug inter-

action network. Additionally, for all interaction settings, the multiple similarity

collective approach significantly improves in AUPR over all individual similarity

collective models. This result supports the findings of Fakhraei et al. [45], Gottlieb

et al. [55] that multiple similarities benefit performance of both drug-target and

drug-drug interaction prediction tasks.

4.5.2 Validation of Unseen Interaction Predictions

In order for statistical methods to be useful for domain experts, predictive

models should produce highly probable novel interactions for subsequent in vitro

testing. Thus, following Gottlieb et al. [55], Fakhraei et al. [45], Bleakley and

Yamanishi [15], we compare top-ranked, unseen DDI predictions produced by our

collective PSL model with evidence from medical and biological data sources.

These predictions are novel with respect to Drugbank interactions used as train-

ing data and validate the ability of our collective approach to produce salient
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interaction predictions given observations.

For this experiment, we use predicted drug-drug interactions from non-anonymized

dataset 2 to cross-reference in literature. From our 10-fold cross validation exper-

iments, we output the predictions and filter out those that are not present in

Drugbank as verified interactions. We rank these new predictions and consider

the top 10 interactions as shown in table 4.5. Bolded rows indicate drug pairs

that are verified by literature or another database as interactors, or have sub-

stantive supporting evidence for potential interaction. We use the Interactions

Checker tool provided by drugs.com (http://drugs.com) for validation, as these

interactions were not used to train any of our models. Additionally, Drugbank

provides the BioInteractor tool that uses drug-target, -enzyme and -transporter

associations to predict highly probable interactions that are not included in the

main database. Our collective PSL approach highly ranks five interactions that

are substantiated by Interactions Checker or BioInteractor. Some interactions in-

volve the following four drugs that are no longer FDA approved or used outside

of the United States: Suprofen, Acenocoumarol (used worldwide but not in U.S.),

Practolol and Acetohexamide. Because these drugs are presently less well-studied

and documented, they arise naturally as test cases for our validation study.

The top predicted interaction is between Suprofen, a non-steroidal anti-inflammatory

drug, and Acenocoumarol, an anticoagulant. BioInteractor characterizes the effect

of Suprofen on Acenocoumarol as a CYP mediated pharmacokinetic interaction.

The sixth most highly ranked prediction involving Suprofen and Probenecid, a

uricosuric agent used to treat gout, is also classified by BioInteractor as a CYP

related interaction. Acetohexamide is in the sulfonylurea class of compounds used

to treat type-II diabetes and is predicted by our model to interact with Probenecid,

which is highly protein-bound. Interactions Checker characterizes this particular
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interaction as enhancing the hypoglycemic effects of sulfonyureas when taken to-

gether. The risk of using Probenecid together with Acetohexamide is high with

the elderly, who are commonly treated simultaneously for gout and diabetes.

The collective PSL model also ranks Decitabine, used to treat Leukemia, and

Leflunomide, used for rheumatoid arthritis treatment, as interactors. Interactions

Checker indicates a major interaction between Leflunomide and Decitabine in

conjunction since both are immunosuppressants and can have additive effects to

increase risk of serious infection. Ranked third, Pentoxifyline, a vasodilator and

anti-inflammatory used to improve blood circulation, is predicted to interact with

Practolol, a beta-blocked formerly used to treat cardiac arrhythmias. Although

Drugs.com does not list this particular interaction, the Interactions Checker lists

moderate interaction between Propranolol, beta-blocker now used in place of Prac-

tolol, and Pentoxifyline. The prediction of an effect on Pentoxifyline by a drug

chemically similar to Propranolol also demonstrates the effectiveness of the PSL

triad rules. The propagation of likely interaction across drugs that are similar

is also evident in the second ranked prediction of interaction between Glipizide

and Tolazamide. Both are sulonyureas like Acetohexamide and are used to treat

type-II diabetes. Though the drugs deliver similar responses, currently there is

no strong evidence of their interaction.

We compare the predictions in Table 4.5 to the top ten novel interactions

predicted by the INDI system. In contrast, only three out of the ten predic-

tions made by INDI can be verified by BioInteractor or Interactions Checker:

(1) Ciprofloxacin and Lomefloxacin (rank 2) (2) Methotrexate and Lomefloxacin

(rank 4) (3) Mifepristone and Lomefloxacin (rank 6). There are no overlaps with

the predictions ranked highly by PSL. Lomefloxacin and Ciprofloxacin both fight

infection, Methotrexate treats cancers and Mifepristone ends pregancy. Interest-
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ingly, both the collective PSL model and the INDI system predict interactions

involving major cancer drugs, Decitabine and Methotrexate, respectively.

4.6 Discussion

In this work, we formulate the problem of collective drug-drug interaction

prediction. We introduce a joint probabilistic approach using the PSL frame-

work to fuse multiple sources of similarity information together with domain-

knowledge of the network structure for this domain. The originality of this

work lies in proposing and experimentally validating a highly scalable, collective

probabilistic approach for DDI prediction that is easily extensible with differ-

ent sources of information and similarity measures. We evaluate our approach

on two datasets containing three types of interactions, including one extracted

for this work with known Drugbank IDs for additional validations. We perform

ten-fold cross-validation on all settings and see that our collective PSL model

significantly outperforms two other similarity-based methods, including the state-

of-the-art INDI system, on two important metrics for link prediction, AUPR and

AUC. Our best performing PSL model improves more than 50% upon AUPR of

both baselines and achieves a best AUC of 0.97. Moreover, the non-collective

similarity-based method implemented in PSL also significantly outperforms INDI

in two settings and performs comparably to INDI in other settings. This result also

highlights the effectiveness of PSL as an extensible framework for similarity-based

reasoning that enjoys the benefits of collective inference shown by the first re-

sult. Furthermore, the top then predictions of our best performing collective PSL

methods contain five interactions that are unseen in Drugbank but substantiated

by Drugs.com and the BioInteractor tool on Drugbank. This result signifies the

usefulness of our collective approach for producing high-quality predictions that
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can be verified experimentally downstream.

Another benefit of our collective PSL method is scalability and speed. The

focus of the INDI method is combining similarities by computing interaction edge-

based similarity score using a nearest-neighbor search approach. This feature

computation is a computationally expensive procedure, requiring O(n4) passes

over the drug entities. For a dataset containing 807 drugs, this computation takes

approximately 12 hours on average per fold on a single 32GB machine with 4

cores. The comparable non-collective PSL model introduced in this work takes

approximately 1 hour for a round of weight learning and inference per fold on

the same machine. The collective PSL model completes computation for a fold in

approximately 7 hours. The PSL framework admits highly efficient, polynomial-

time inference and here, we further reduce computational complexity by blocking

unnecessary groundings of the model. Scalability is crucial for link prediction

tasks in increasingly massive biological networks, as new drugs are frequently

introduced.

The task of DDI prediction is closely related to problems of predicting drug

side effects, drug adverse reactions, and synergistic drug pairs. In fact, predict-

ing synergistic drug interactions is just a specific subtask of the DDI prediction

problem. Our collective approach for similarity-based reasoning in networks can

be applied and generalized to all these related settings.
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Chapter 5

Discovering Causal Structure

Chapter 3 and 4 focused on inference tasks in two complementary computa-

tional science relational data graphs. The collective modeling patterns developed

for the multi-modal online debate forums domain benefits the multi-relational

problem of inferring drug interactions amidst several sources of information. In

these settings, we addressed the first two challenges of adapting PSL to compu-

tational science domains: 1) evaluating modeling decisions to develop templates

for collective inference; and 2) fusing collective inference with multiple signals of

varying fidelity. In both domains, collective PSL models outperformed compa-

rable methods. However, prior work and knowledge of these domains informed

our choice of model structure such as specifying appropriate rules for the task.

In contrast, for several computational science tasks, domain knowledge is limited

and the goals of probabilistic modeling lie in model structure discovery.

This chapter focuses on discovery of causal structure, the first of two impor-

tant structure discovery tasks addressed in this thesis. Causality is a stronger

notion that probabilistic dependency between two variables. While dependencies

tell us that observing one variable’s value gives us more information about another

variable’s value, causality tells us that changing a variable’s value always changes
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the value of the variable it affects. Going beyond single causal edges, scientific

phenomena such as gene regulation, population genetics, or atmospheric patterns

are best described by a graph of cause-and-effect relationships between key en-

tities such as genes or air masses. Directed acyclic graphs whose edges encode

causal relations are extensively applied and studied, based on foundational work

by Pearl and Verma [112], Pearl et al. [113], Pearl [111]. In the context of scientific

settings, the role of computational methods is to infer the structure of these causal

graphs using observational data and domain knowledge. The work in this chap-

ter identifies three key requirements for inferring the structure of causal networks

for scientific discovery: (1) robustness to noise in observed measurements; (2)

scalability to handle hundreds of variables; and (3) flexibility to encode domain

knowledge and other structural constraints.

We first formalize the problem of joint probabilistic causal structure discovery.

The approach introduced in this chapter builds on and significantly extends the

templates developed in the preceding chapters, fusing sources of information and

collectively propagating inferences but combining new forms of structural con-

straints. We propose CausPSL, an approach using PSL that exploits multiple

statistical tests, supports efficient optimization over hundreds of variables, and

can easily incorporate these structural constraints, including imperfect domain

knowledge. We compare our method against multiple well-studied approaches on

biological and synthetic datasets, showing improvements of up to 20% in F1-score

over the best performing baseline in realistic settings.

Importantly, this chapter introduces notions of causality and model structure

discovery, both of which are further developed in subsequent chapters. Chapter 6

addresses the complementary causal inference problem of estimating the effects of

a single cause on an outcome for socio-behavioral problems where text modalities
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are prominent forms of observational data. Chapter 7 returns to the problem of

discovering graphical model structure but focuses on learning PSL models.

5.1 Causal Structure Discovery

The problem of causal structure discovery (CSD) consists of inferring a network

of cause-and-effect relationships between many variables using observational data

and domain knowledge. In contrast to the estimation of single causal relationships,

CSD finds consistent causal graphs over all variables, exponentially increasing

problem complexity. CSD is an important task for facilitating scientific discovery,

such as determining regulatory networks amongst genes [47, 89] and understanding

influences between atmospheric patterns to better forecast climate events [38].

Computational methods for causal structure discovery face several critical chal-

lenges. First, observational data is frequently noisy, containing spurious correla-

tions between variables. Second, even with simplifying assumptions, CSD requires

searching over exponentially many potential causal graphs, posing a scalability

bottleneck. Finally, CSD requires incorporating heterogeneous domain knowledge

of differing reliabilities, such as ontological and experimental evidence. Thus,

successful CSD approaches must be robust, scalable, and flexible to succeed on

real-world problems.

Existing methods for CSD have largely been evaluated in synthetic and low-

noise settings that do not accurately represent the challenges of real-world do-

mains. Traditional CSD approaches make locally greedy and iterative decisions,

improving scalability at the cost of robustness. However, recent approaches based

on logical satisfiability (SAT) [93] or linear programming (LP) [27] have shown

the benefits of enforcing global constraints on the causal graph structure through

joint inference.
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In this chapter, we extend the joint inference view and propose a novel ap-

proach, CausPSL, that provides an attractive compromise between robustness

to noise, scalability, and flexibility. We explore these trade-offs through extensive

experimental evaluation on biological datasets, demonstrating significant perfor-

mance gains on both real-world data and synthetic benchmarks. We formulate

CSD as an inference problem by defining a joint probability distribution over

causal graphs. Our approach defines this distribution by unifying constraints

from statistical tests, side information, and domain knowledge. We implement

CausPSL using the probabilistic soft logic (PSL) framework [7] which defines a

hinge-loss Markov random field and supports efficient MAP inference. In experi-

ments, we demonstrate several key strengths of CausPSL:

• Robustness via Redundancy: CausPSL exploits redundancy by using

multiple statistical tests and soft constraints, mitigating noisy inputs.

• Efficient Performance: CausPSL scales to causal graphs with hundreds

of variables via exact and efficient MAP inference.

• Flexible Modeling: CausPSL encodes both well-studied structural con-

straints and novel long- and short-range constraints with an easily extensible

logical syntax.

We validate the features of CausPSL on realistic experimental settings including

gene regulatory networks and protein signaling datasets, showing increases in F1-

score of up to 20% over state-of-the-art CSD methods.

5.2 Preliminaries and Related Work

We focus on causal DAGs introduced by Pearl et al. [113], Pearl [111], Pearl

and Verma [112]. To motivate modeling causal and ancestral structures using
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independences in the data, we briefly review the foundations of conditional inde-

pendences in DAGs. The two key concepts of d-separation and faithfulness, which

are defined in Chapter 2, directly underpin constraint-based approaches to causal

structure discovery. We contrast related work in constraint-based methods to our

proposed approach.

5.2.1 Background on D-separation and Faithfulness

We recall that the causal DAG G∗ encodes conditional independences in the

data. The Markov condition, which states that each variable is conditionally in-

dependent of its non-descendants given its parents, directly identifies some condi-

tional independences, and the DAG entails others. The graphical d-separation cri-

teria determines the remaining conditional independences, as described in Chapter

2. Recall that Vi and Vj is d-separated by Zk if all paths from Vi and Vj are blocked

by Zk. We denote this relation D(Vi, Vj; Zk). If 〈G, P 〉 are faithful, then G consists

of all conditional independences in P and

D(Vi, Vj; Zk) = Vi ⊥⊥ Vj|Zk

will hold for all i, j, k [72].

The faithfulness property forms the basis of constraint-based approaches for

BN structure learning. Independence tests on the data are important as they

constrain certain edge orientation along paths based on d-separation criteria.

Marginal dependence relations identify adjacencies. Conditional dependencies

are useful in distinguishing edge orientations, as described below. For example,

consider path A − B − C where undirected edges indicate associations between

variables. We orient B as a collider with parents A and C if B is not in the

conditioning set Z that makes A and C independent. Collider orientation follows
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directly from criterion (2) above and is used in all constraint-based approaches.

5.2.2 Related Work on Constraint-based Approaches

Traditional constraint-based structure learning algorithms iteratively prune

edges from a complete, undirected graph based on conditional independence tests

of increasing set size between adjacent nodes and then iteratively apply rules based

on d-separation and acyclicity to orient as many undirected edges as possible

[136, 135, 25, 123]. The canonical PC algorithm assumes that no latent variables

or confounders are present, and prunes edges without enforcing any consistency

checks against conflicting independence tests [136]. Extensions of PC include

Conservative PC (CPC) for avoiding edge orientations based on conflicting tests,

Fast Causal Inference (FCI) for admitting latent variables, and order-independent

PC for remaining robust to variable orderings used for iteration [123, 137, 135].

However, PC and its extensions remain sensitive to false positives and negatives

since the algorithms enforce local rather global consistency and do not infer edges

jointly.

The Max-Min Parents Children (MMPC) skeleton graph algorithm of [153]

enforces consistency checks and conservatively selects association tests for use

in edge-removal to prevent false positives and false negatives. However, MMPC

still remains iterative and only outputs an undirected skeleton graph to be used

downstream by score-based hill climbing algorithm [153]. In our probabilistic

approach, we use multiple independence tests as input so that conflicting evidence

does not rule out edges but only makes them less probable.

Constraint-based approaches can also easily be expressed using logic. The

LoCI algorithm [24] is one such method that performs logical inference on clauses

that represent d-separation constraints to discover causal structure. The COm-
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bINE algorithm [152] casts causal structure discovery as an instance of satisfiabil-

ity based on constraints generated from perfect interventions across overlapping

sets of variables. Interventions elucidate ancestral relations since only ancestors

can the change distribution of downstream variables. In contrast, we model im-

perfect and noisy interventions as evidence for ancestral edges which we leverage

to infer direct causal relations using soft constraints.

Our work is most similar to constrained optimization approaches that formu-

late logical constraints from multiple, conflicting sets of conditional independence

tests to identify causal or ancestral structure [63, 93, 62]. These approaches score

edges by the number of independence statements they satisfy, weighted by the

confidence scores of the statements. Conflicting independence tests are handled

more robustly than traditional constraint-based methods. However, high confi-

dence inputs will dominate without fully probabilistic reasoning. In our work,

we directly encode a joint probability distribution over causal and ancestral edge

predictions, combining both multiple independence tests and noisy evidence of an-

cestral relations to collectively propagate structural constraints between the two

types of edges.

Score-based methods to CSD evaluate possible DAGs with penalized forms of

likelihood. These approaches solve CSD efficiently by performing either greedy

hill-climbing search [153, 22, 31] or constrained optimization using integer linear

programs (ILP) [66, 27, 169, 10]. ILP methods can perform exact inference [10]

but require constraints on the number of parents per variable, which are unknown

or hard to justify in less understood biological domains.
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5.3 Joint Probabilistic CSD

The input to causal structure discovery (CSD) is a set V = {V1 . . . Vn} of

n variables and m independent observations of V. Here, we assume that the

observations are drawn without selection bias or hidden confounders, as in PC

and most score-based methods. The problem of CSD is to infer a directed acyclic

graph (DAG) G∗ = (V,E) such that each edge Eij ∈ E corresponds to Vi being

a direct cause of Vj. If Vi is a direct cause of Vj, manipulating the value of Vi

changes the marginal distribution of Vj. If Vi is an ancestor of Vk, there exists

a directed path p, denoted by sequence of edges Vi → · · · → Vk, from Vi to

Vk. Ancestral structure is encoded by DAG G∗A where edges represent ancestral

relations and correspond to the transitive closure of the causal graph G∗. Typically,

CSD methods output an equivalence class of G∗ and G∗A that correspond to the

optimal distribution.

The joint probabilistic CSD problem is to infer causal graph G∗ together with

the ancestral graph G∗A. The problem requires defining a suitable joint meta-

distribution P over the space of possible structures G and GA. The inputs to P

are random variables that capture structural and independence attributes of G

and GA. To avoid confusion with the random variables in our probabilistic model,

henceforth, we refer to the domain variables V ∈ V as vertices.

C and A are the set of variables Cij and Aij for all Vi, Vj that denote the

absence or presence of an ancestral or causal edge, respectively. The goal of infer-

ence is to find assignments for these variables. U is the set of observed variables

Uij associated with an undirected edge, or adjacency, from Vi to Vj for all Vi, Vj.

U corresponds to the skeleton graph used in constraint-based methods. The set

M of Mij variables denotes marginal association between Vi and Vj where each

Mij is obtained by performing a statistical test of independence Vi ⊥⊥ Vj. Sim-
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ilarly, Sij = {SZ1
ij . . . SZm

ij } denotes the set of variables that measure conditional

association between Vi and Vj when conditioned on a non-empty subset of ver-

tices Zk ⊂ V\{Vi,Vj}. Each set Zk has size between 1 and |V | - 2. Each SZm
ij

corresponds to a statistical test for Vi ⊥⊥ Vj|Zm. Finally, we optionally observe

L = {Lkl . . . Lst}, local evidence that captures domain knowledge or side informa-

tion about causal, ancestral or adjacency relations.

To solve this problem, the meta-distribution P(C,A|U,S,M,L) is first fully

defined. Then, we perform maximum a posteriori (MAP) inference over P to find

an optimal joint assignment to variables C and A.

5.4 CausPSL Approach

Defining meta-distribution P that relates G and GA requires a flexible modeling

framework. To efficiently solve the joint probabilistic CSD problem, P must admit

tractable inference. Our approach uses PSL, which offers both desired features.

5.4.1 CausPSL Model

CausPSL represents statistical tests, causal and ancestral relations as predi-

cates to form orientation constraints in a HL-MRF using the rules shown in Table

5.1.

Predicates

The targets of joint probabilistic inference, Cij and Aij, are represented with

predicates Causes(A,B) and Anc(A,B). We represent undirected edges UAB

with Adj(A,B).

We introduce Assoc(A,B) and Indep(A,B) to capture marginal association
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Rule Type Rules

Causal Orientation C1) ¬Adj(A,B)→ ¬Causes(A,B)
C2) Causes(A,B)→ ¬Causes(B,A)
C3) Adj(A,B) ∧ Adj(C,B) ∧ ¬Adj(A,C) ∧ CondAssoc(A,C, S) ∧ InSet(B,S) →
Causes(A,B)
C4) Adj(A,B) ∧ Adj(C,B) ∧ ¬Adj(A,C) ∧ CondAssoc(A,C, S) ∧ InSet(B,S) →
Causes(C,B)
C5) Causes(A,B)∧Assoc(A,C)∧CondIndep(A,C, S)∧InSet(B,S)∧Adj(B,C)→
Causes(B,C)
C6) Causes(A,B) ∧ Causes(B,C) ∧Adj(A,C)→ Causes(A,C)

Basic Joint Rules J1) Causes(A,B)→ Anc(A,B)
J2) ¬Anc(A,B)→ ¬Causes(A,B)
J3) Anc(A,B) ∧Anc(B,C)→ Anc(A,C)
J4) Anc(A,B) ∧Adj(A,B)→ Causes(A,B)
J5) Adj(A,B) ∧ Adj(B,C) ∧ Assoc(A,C) ∧ CondIndep(A,C, S) ∧ InSet(B,S) ∧
Causes(B,A) ∧ ¬Anc(C,A)→ Causes(B,C)

Ancestral Orientation A1) Indep(A,B)→ ¬Anc(A,B)
A2) Anc(A,B)→ ¬Anc(B,A)
A3) Indep(A,C)∧CondAssoc(A,C, S)∧InSet(B,S)∧HasSize(S, 1)→ ¬Anc(B,A)
A4) Indep(A,C)∧CondAssoc(A,C, S)∧InSet(B,S)∧HasSize(S, 1)→ ¬Anc(B,C)
A5) Assoc(A,C)∧CondIndep(A,C, S)∧InSet(B,S)∧HasSize(S, 1)∧Anc(B,C)∧
Anc(B,A)→ ¬Anc(A,C)
A6) Assoc(A,C)∧CondIndep(A,C, S)∧InSet(B,S)∧HasSize(S, 1)∧Anc(A,B)∧
Anc(B,C)→ Anc(A,C)
A7) Assoc(A,C)∧CondIndep(A,C, S)∧InSet(B,S)∧HasSize(S, 1)∧Anc(C,B)∧
Anc(B,A)→ Anc(C,A)
A8) CondIndep(A,C, S)∧InSet(B,S)∧¬Anc(A,B)∧HasSize(S, 1)→ ¬Anc(A,C)

Table 5.1: PSL rules for causal and ancestral structure inference.

and independence, corresponding to MAB. To denote conditional association and

independence, we introduce CondAssoc(A,B, S) and CondIndep(A,B, S). S

will be substituted with all possible conditioning sets Zm. These logical atoms

correspond to the SAB. To obtain substitutions for these predicates, we enumer-

ate pairwise marginal and conditional tests with all possible conditioning sets up

to a maximum size. We threshold p values from statistical tests to determine

whether independence statements are characterized as Assoc,CondAssoc or

Indep,CondIndep. We use 1−p as truth values for CondAssoc, Assoc and p

for CondIndep, Indep. Since adjacencies imply dependence between variables,

we obtain Adj(A,B) by retaining Assoc(A,B) observations that are never condi-

tionally independent. Finally, because orientation constraints require membership

checks in conditioning sets S, we use auxiliary predicate InSet(C, S) to indicate

that vertex C is in conditioning set S.
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Localλ(A,B) predicates denote evidence from source λ for causal, ancestral

or undirected edge between vertices A and B and correspond to variables L.

Obtaining local evidence is domain-specific, and in our experimental evaluation,

we show applications of both intervention-based and other side information.

Soft Constraints

The constraints which we fuse in our proposed approach arise from the graph-

ical d-separation criteria presented in earlier sections. Broadly, these criteria pro-

vide a correspondence between the observed conditional independences in the

data to valid paths in causal graphs. Table 5.1 shows the rules used in CausPSL.

The causal orientation rules (C1-C6) follow from the three sound and complete

PC rules [136] and the ancestral orientation rules (A1-A8) are derived from con-

straints used in the SAT-based ancestral causal inference (ACI) algorithm [93].

The basic joint rules (J1-J5) connect ancestral and causal edge predictions through

fundamental relationships between the structures introduced in Section 5.3. These

multiple types of well-studied constraints propagate consistency across predictions

for CausPSL.

Causal Orientation Rules Rule C1 discourages causal edges between vertices

that are not adjacent. Rule C2 penalizes simple cycles between two vertices.

The remaining rules ensure that observed independences match those implied by

the graph through d-separation. Rules C3 and C4 correspond to the PC rule

which orients chain Vi − Vj − Vk as Vi → Vj ← Vk if conditioning on Vj breaks

the independence between Vi and Vk. Unlike in PC, in CausPSL, Vj appears

in multiple conditioning sets. The redundancy recovers information when Vj is

incorrectly missing from a separating set. Rule C5 captures the PC rule that

orients path Vi → Vj − Vk as Vi → Vj → Vk when Vi → Vj is probable and Vj
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induces conditional independence between Vi and Vk. Rule C6 maps to the final

PC rule, and if Vi → Vj → Vk and Vi − Vk, orients Vi → Vk to avoid a cycle. PC

applies these rules iteratively to fix edges whereas in CausPSL, the rules induce

dependencies between causal edges to encourage parsimonious joint inferences.

Basic Joint Rules Rule J1 encodes that causal edges are also ancestral by

definition and rule J2 is its contrapositive. Rule J3 encodes transitivity of ancestral

edges, encouraging consistency across predictions. Rule J4 infers causal edges

between probable ancestral edges that are adjacent. These four rules exactly

encode the relationship between causal and ancestral graphs, and suffice to recover

structure under perfect inputs. However, in noisy settings, we gain robustness by

including additional joint constraints such as rule J5 and ancestral rules below

to recover consistent explanations from conflicting inputs. Rule J5 orients chain

Vi − Vj − Vk as a diverging path Vi ← Vj → Vk when Vk is not likely an ancestor

of Vi. Without ancestral constraints, statistical tests alone cannot distinguish

between diverging and linear paths.

Ancestral Orientation Rules Ancestral rules A1 and A2 are analogous to

their causal orientation counterparts. Rules A3 to A7 follow from lemmas relating

minimal conditional (in)dependence to the existence or absence of ancestral edges

[93, 24]. Minimal conditional independence is defined as (X ⊥⊥ Y |W∪Z)∧¬(X ⊥⊥

Y |W) and corresponds to ancestral edge existence between Z and X or Y . Sim-

ilarly, minimal conditional dependence is ¬(X ⊥⊥ Y |W ∪ Z) ∧ (X ⊥⊥ Y |W) and

denotes ancestral edge absence between Z, and X and Y . For compactness, we

encode minimal conditional (in)dependence by only comparing marginal associa-

tions to conditional tests of set size one. We model ancestral edge existence with

three rules, A5 to A7, for each path orientation case: 1)← Z → where Z is diverg-
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ing, 2)← Z ← where Z is along linear path from X to Y , and 3)→ Z → where Z

is along a linear path in the opposite direction. Rule A8 translates the first novel

ancestral rule introduced in ACI [93]. Rules A5 to A8 introduce dependencies

across ancestral edge predictions, requiring collective inferences.

5.5 Experimental Results

Our evaluation demonstrates three advantages of our method: the flexibility

of combining multiple structural constraints, scalability for large causal networks,

and robustness to noise.1 We evaluate our model on standard synthetic data [63,

62, 93] and two real-world biological datasets. We compare against PC [136], the

canonical constraint-based CSD method and Max-Min Hill Climbing (MMHC),

a score-based hybrid approach that uses the max-min parents children (MMPC)

graph pruning algorithm and has achieved state-of-the-art performance in multiple

BN structure learning domains [153]. We also include comparisons against a

bootstrapped variant of PC commonly used to improve robustness [122, 93]. In

our experiments, scalability prevents us from comparing against the SAT-based

CSD approach [63], which becomes prohibitively expensive for domains larger

than eight variables.

Dataset PC MMHC Bootstrapped PC

Synth 0.74 ± 0.09 0.76 ± 0.12 0.72 ± 0.11

DREAM20 0.15 ± 0.04 0.17 ± 0.05 0.18 ± 0.05
DREAM30 0.16 ± 0.03 0.2 ± 0.05 0.16 ± 0.04

Table 5.2: Average F1 scores of methods across compared baselines.

1Code and data at: bitbucket.org/linqs/causpsl.
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Dataset CausPSL-PC CausPSL-Joint CausPSL-Anc CausPSL

Synth 0.87 ± 0.06 0.87 ± 0.06 0.86 ± 0.06 0.87 ± 0.06

DREAM20 0.17 ± 0.05 0.18 ± 0.05 0.19 ± 0.05 0.20 ± 0.05
DREAM30 0.22 ± 0.03 0.23 ± 0.03 0.24 ± 0.03 0.22 ± 0.03

Table 5.3: Average F1 scores of methods across variants of CausPSL. We show
how each CausPSL component contributes to performance.

5.5.1 Datasets

We validate our approach using three datasets: (1) synthetic linear acyclic

models with Gaussian noise; (2) simulated gene expression from the DREAM4

challenge [94, 120]; (3) perturbation experiments on protein-signaling pathways

[130].

Synthetic data

To generate synthetic observations, as in previous work [63, 93, 62], we ran-

domly generate 100 ground truth DAGs over 15 variables with edge probability of

0.2 using the pcalg package. We sample 500 observations from each using a lin-

ear Gaussian model. CSD methods typically evaluate on this low-noise synthetic

setting which serves as a contrast to the more realistic noisy settings described

below.

DREAM4 Challenge

Our second dataset from the DREAM4 challenge consists of a gold-standard

yeast transcriptional regulatory network and simulated gene expression measure-

ments [94, 120]. For cross validation, we sample 10 subnetworks of sizes 20 and 30,

denoted DREAM20 and DREAM30, with low Jaccard overlap. The real-valued

gene expression measurements are simulated from differential equation models

of the system at 210 time points. We perform independence tests on the mea-
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surements which yield numerous spurious correlations. Additionally, we include

domain knowledge of undirected protein-protein interaction (PPI) edges modeled

by Anc(A,B) ∧ LocalPPI(A,B)→ Causes(A,B).

Protein Signaling Pathway in Human T-Cells

Our third dataset comes from a protein-signaling pathway in human T-cells

with flow cytometry measurements [130]. The discovered protein signaling net-

work has been biologically validated and used extensively as a benchmark for eval-

uating CSD algorithms [152, 93, 101, 37, 117]. The variables are abundance levels

of 11 molecules, measured across eight experimental conditions with 700 to 900

observations each. The first condition activates the pathway and is considered

by previous work as the steady-state observed data. The remaining conditions

are interventions on seven out of 11 proteins. Following prior work, we consider

statistically significant (α = 0.05) post-interventional changes as evidence of an

ancestral relation between the intervention target and effected protein [93, 130].

We model this intervention-based local evidence as LocalIntervention(A,B) →

Ancestor(A,B).

5.5.2 Experimental Setup

To evaluate the result quality across methods and robustness to noise, we com-

pute F1 scores of predicted causal edges against the ground truth edges from each

dataset. To calculate F1 in DREAM and synthetic settings, rounding thresholds

on the continuous outputs of CausPSL and Bootstrapped PC are selected using

cross-validation with 10 and 100 folds, respectively. In the Sachs setting where

the small network size prevents sampling of subnetworks for cross-validation, a

standard 0.5 threshold is used. For independence tests in all settings, we use lin-
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ear and partial correlations with Fisher’s Z transformation for continuous data.

We run both PC variants and MMHC with the pcalg and bnlearn R packages,

respectively. CausPSL uses ADMM inference implemented in PSL [7]. Without

a priori preference for rules, we set all CausPSL rule weights to 5.0 except for

causal and ancestral orientation rules 2 which are set to 10.0, since they encode

strong asymmetry constraints. For both PC variants and CausPSL, we condi-

tion on sets up to size two for DREAM20 and up to size one for DREAM30. The

MMPC phase of MMHC performs tests on sets up to size |V | − 2. For Boot-

strapped PC, we follow the bootstrapping procedure used by [93] and randomly

sample 50% of the observations to include in 100 iteration of PC and average the

predictions across multiple runs. In DREAM and synthetic settings, α thresholds

on independence tests for all methods are also selected within the cross-validation

framework. Baselines use α to prune undirected edges while CausPSL uses sepa-

rate α values to categorize association tests and identify Adj. Since α is typically

small, we rescale truth values p for CondIndep, Indep by 3
√
p to reduce right-

skewness of values. For Sachs, we use α = 0.05 for all methods, which has been

reported to have the best performance in prior work. We rescale p-values of the

post-interventional changes with the sigmoid function to prevent overconfident

local evidence.

5.5.3 Cross-validation Study of Modeling Components

We first investigate how each type of constraint in CausPSL bolsters per-

formance. CausPSL has three critical modeling components that contribute

in differing degrees to improvements in CSD: CausPSL-PC, CausPSL-Joint,

and CausPSL-Anc. CausPSL-PC uses only the causal orientation rules and

upgrades PC with multiple independence tests and collective inferences. The
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CausPSL-Joint model combines CausPSL-PC and basic joint rules for longer-

range structural consistency but excludes full ancestral modeling. The CausPSL-

Anc model extends CausPSL-Joint with ancestral orientation rules. Finally, we

distinguish between CausPSL-Anc and the complete CausPSL model, which

includes the novel ACI constraint [93]. To understand the factors affecting result

quality, we perform cross-validation across the model variants of CausPSL and

compare against both PC variants and MMHC in the DREAM4 and synthetic set-

tings. Table 5.2 shows average F1 scores across the compared baseline methods.

Table 5.3 shows average F1 scores across all variants of CausPSL.

CausPSL-PC alone outperforms PC in all settings, with significant gains

over both PC variants in two. These improvements suggest that collective in-

ference and multiple statistical tests without pruning alone provide robustness

benefits, even over bootstrapping the PC algorithm. CausPSL-Joint outper-

forms CausPSL-PC in two of three settings, suggesting that modeling even

transitivity and short-range dependencies between ancestral and causal struc-

tures improves performance. CausPSL-Anc and CausPSL further gain over

CausPSL-Joint in two of three settings. CausPSL achieves the best perfor-

mance in DREAM20 with significant gains over MMHC and PC. CausPSL-

Anc outperforms all methods in DREAM30 with gains of up to 50% over both

PC variants and 20% over MMHC. Our best performing PSL models significantly

outperform multiple baselines using a paired t-test on DREAM, showing the ben-

efit of more sophisticated ancestral-causal constraints under noisy experimental

conditions, where spurious correlations dominate. On straightforward linear Gaus-

sian data, all modeling variants of CausPSL significantly outperform both PC

variants and MMHC with F1 score improvements of up to 17.5%. However, in this

synthetic setting, simpler CausPSL-PC and CausPSL-Joint models suffice for
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D Size PC MMHC PSL;C=1 PSL;C=2
CI Inf CI Inf

Sy
nt
h

10 0.02 0.01 0.07 0.19 0.35 0.23
20 0.06 0.03 0.93 0.65 19.7 1.11
30 0.19 0.15 4.94 1.55 684 8.91
50 0.44 0.48 65.4 6.99 440k 159

D
R
EA

M
4 10 0.03 0.02 0.06 0.09 0.3 0.19

20 0.08 0.06 0.73 0.37 14.3 3.12
30 0.22 0.15 3.76 1.5 433 30.2
50 0.41 0.49 57.1 9.96 437k 425

Table 5.4: Running times in seconds for obtaining conditional independence
tests (CI) and inference (Inf). CausPSL scales to large networks using multiple
tests with no pruning.

good performance. The contrasting result highlights the importance of evaluating

CSD methods on more realistic settings.

5.5.4 Comparisons in Real-World Sachs Setting

In the real-world Sachs setting, we compare the F1 scores of causal edge pre-

dictions by CausPSL-Anc and CausPSL against those of MMHC, the best

performing baseline method. Additionally, we compare our ancestral edge predic-

tions to ACI results reported by [93]. CausPSL-Anc improves over MMHC from

0.307 to 0.32 F1 while CausPSL performs as well as MMHC. For ancestral infer-

ence, ACI achieves a reported F1 score of 0.38. CausPSL-Anc gains over ACI

with an F1 of 0.43 and CausPSL also improves over ACI with a score of 0.4.

5.5.5 Scalability

Our second evaluation focuses on the scalability of our approach. PC and

MMHC scale by iteratively pruning adjacencies with statistical tests, potentially

sacrificing result quality despite permitting larger conditioning set sizes. More
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flexible SAT-based methods enumerate all statistical tests but cannot scale to

large networks. For example, running the SAT approach proposed by [63] with

nine variables and a conditioning set size of one required over 40 minutes [93].

In contrast, CausPSL uses all statistical tests without pruning and requires less

than a second for 10 variables, overcoming the inference scalability bottleneck. To

evaluate running times, we generate synthetic linear Gaussian networks and sam-

ple DREAM4 subnetworks of increasing size. Our method computes all possible

statistical tests up to conditioning set size denoted by C and the baseline methods

prune conditioning sets through independence. In Table 5.4, we present running

times for all methods, splitting up our approach into conditional independence

testing (CI) and inference (Inf). We show that CausPSL can efficiently infer

causal graphs while using more information than competing methods.

The running time depends on the network size n and the maximum condition-

ing set size C. The results indicate that the dominant factor in the running time

of our method is enumerating all statistical tests rather than inference. For the

largest networks (n = 50, C = 1), computing statistical tests requires approxi-

mately a minute, while inference only requires 7 to 10 seconds. Larger condition-

ing sets impact running time, requiring up to 10 minutes when n = 30, C = 2.

However, Table 5.3 shows that by enumerating statistical tests, CausPSL outper-

forms pruning-based methods with only C = 1. SAT-based methods also enjoy

this benefit [93] but require expensive inference. In contrast, CausPSL com-

pletes inference within 10 seconds for 30- and 50-variable networks when C = 1.

In further study, CausPSL completed inference for a DREAM4 network with 100

variables in 27 minutes, scaling to an order of greater magnitude than SAT-based

methods. In future work, statistical tests can be parallelized to admit larger C.
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Figure 5.1: Average F1 score vs. synthetic evidence noise rate on DREAM4
(n = 30, C = 1). CausPSL remains robust as noise rate increases.

5.5.6 Robustness to Noisy Evidence

In our final evaluation, we validate the robustness of CausPSL to imper-

fect evidence. CausPSL incorporates real-valued noisy signals within joint infer-

ence, exploiting global structural constraints to smooth local errors. In contrast,

MMHC and PC must discretize noisy evidence and incorporate domain knowledge

as fixed edges or non-edges.

To evaluate the robustness of CSD methods on DREAM30 subnetworks, we

simulate noise with a new local ancestral signal drawn by fixing a Bernoulli error

rate and sampling real-valued evidence from its conjugate, a β distribution. We

set a Bernoulli error rate of 1−p. For each pair of vertices, with probability p, true

ancestral edges are sampled from β(8, 2), and true non-edges are sampled from

β(2, 8) which are peaked at high-confidence and accurate soft truth values. With

probability 1− p, incorrect values are sampled from β(2, 5) and β(5, 2) for edges

and non-edges, respectively. For CausPSL, we incorporate this new signal using

the local ancestral evidence rule shown in the Sachs setting. For MMHC and

PC, synthetic values from this signal of < 0.5 are treated as fixed causal non-
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edges, representing the hard version of joint rule J3 in Table 5.1. Synthetic values

≥ 0.5 are intersected with PPI edges to obtain fixed causal edges, simulating the

discretized version of the PPI rule given in the DREAM setting.

In Fig. 5.1, we compare average F1 scores across all modified methods as the

Bernoulli error rate of the synthetic signal increases from 0.0 to 0.9. CausPSL re-

mains robust as the error increases beyond 0.3 while PC and MMHC steadily

degrade in performance. When the signal is near-perfect with error ≤ 0.2, the

baselines receive select correct causal edges while CausPSL fuses the signal with

imperfect statistical tests. However, analysis of intervention-based evidence in the

Sachs setting shows that real-world local signals are in the ≥ 0.5 noise regime,

where CausPSL excels over compared methods.

5.6 Discussion

We propose a probabilistic model for the CSD problem that achieves scalability

despite using multiple independence tests and global structural constraints. Our

method is flexible, fusing noisy ancestral and causal signals with side information

from PPI networks and interventions. Our experimental highlights include: 1)

scaling up to networks with hundreds of variables; 2) achieving significant per-

formance gains over constraint- and score-based baselines despite many spurious

correlations; and 3) showing robustness to increasingly noisy local signals. In fu-

ture work, we will extend our approach to support latent variables and perform

approximate marginal inference to score possible causal and ancestral edges.
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Chapter 6

Estimating Causality in Text

Chapter 5 underscores the importance of discovering causal knowledge, focus-

ing on inferring DAGs that capture networks of cause-and-effect relationships.

This chapter presents a complementary viewpoint, studying the estimation of

a single causal effect on outcomes of interest. Particularly, we focus on socio-

behavioral phenomena where observational data, as outlined in Chapter 1, is

obtained from digital sources such as social media or mood/activity logging plat-

forms. In contrast to the previous chapter that focused on conventional forms of

observational data such as gene expression measurements, in this chapter, we con-

sider including textual data in causal inference. This chapter is divided into two

sections to study socio-behavioral causal inference problems that require fusing

varying degrees of textual information. The first section focuses on estimating the

effects of exercise on mood from a recently proposed activity and mood tracking

application that combines both text and measurements. This first task allows us

to understand the ramifications of combining traditional forms of observational

data such as variable measurements with text observations. The second section

again studies online debate threads to understand the causal impact of reply tone

on users’ sentiment. This dialogue analysis relies only on text data, requiring new
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methodologies for adapting causal inference to textual data.

Section 6.1 explores the behavioral domain of understanding mood through

platforms that enable users to track their behaviors. Mood and activity logging

applications empower users to monitor their daily well-being and make informed

health choices. To provide users with useful feedback that can improve quality

of life, a critical task is understanding the causal effects of daily activities on

mood and other wellness markers. In this section, we analyze observational data

from EmotiCal, a recently developed mood-logging web application, to explore

the effects of exercise on mood. Since the causal link between exercise and mood

is validated in literature, this study allows us to develop and evaluate approaches

for causal inference. To develop a robust methodology for estimating the average

treatment effect (ATE), an important estimator, from heterogeneous user data,

we outline and investigate three important modeling questions about: 1) filtering

or stratifying strategies on users to eliminate implicit confounds or outliers; 2)

performing the analysis per-user or per-entry; and 3) including text sources to

estimate the ATE. The question of aggregating information at the user level follows

from Chapter 3, and we again find that selecting modeling granularity affects our

analysis. With these modeling strategies, we tackle causal inference when only

textual data is present.

Section 6.5 investigates the causal effect of reply tone on user sentiment change

in online debate forums. Going beyond stance and disagreement prediction, this

inference question aims to develop a deeper understanding of dialogue strategies

and their effectiveness in invoking certain responses from others. In contrast to the

previous section, to perform causal inference in this setting, we require extracting

variables from text to encode treatment, outcome and confounders. After identi-

fying variables, estimating causal effects with existing methods such as propensity
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score matching is not straightforward and poses modeling choices, as above. In

this section, we explore: 1) formulating the causal estimation problem in the con-

text of discussions threads; 2) modeling the propensity score from users’ posts;

and 3) proposing a structured method for directly modeling treatment, outcome

and confounders in this relational data graph. We evaluate these three impera-

tives on the previously studied 4Forums domain and study the effect of multiple

styles of replies on the change in users’ sentiment. Our empirical findings again

highlight the importance of careful consideration of modeling choices, especially

in textual data and demonstrate the benefits of our novel structured model for

estimating the ATE.

6.1 Causal Effects of Exercise on Mood

Mood and activity logging applications play an important role in the larger,

emerging trend of technologies that empower users to monitor and improve their

quality of life [84, 110, 88]. Notable platforms include Fitbit or Strava for exercise

tracking, and Moodscape or Echo for reflection on emotion and mood [84, 88].

In mood logging applications, users track their activities together with markers

of their mental state to promote psychological well-being. To facilitate positive

outcomes, these applications must provide actionable feedback on how factors in

users’ daily life affect their mood. An important step to generating feedback is

understanding the causal effects of these factors on mood, estimated by the average

treatment effect (ATE). Estimating ATE requires several modeling assumptions

and careful choices, especially on complex user-behavior data.

Prior approaches to understanding factors that affect mood rely on traditional

methods such as surveys and randomized intervention trials [146, 131]. The find-

ings suggest a link of exercise and socializing on mood. In recent years, mood
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logging applications such as Echo, Moodscape and iHappy have driven empirical

research in user behavior [64, 84, 88, 110]. Some platforms perform direct in-

terventions such as recommending activities to improve users’ mood [110], while

predictive applications like Moodscape infer mood changes from activity patterns.

Recently, a different line of work focuses on Twitter social media posts to find

causal links on outcomes that span mood or emotion to significant life milestones

[108, 35]. These approaches extract treatments such as exercising behavior and

potential outcomes such as mood from tweets, and perform matching on text to

eliminate confounds. Despite using non-conventional forms of observational data,

both studies report findings validated in literature, such as the exercise and mood

link.

Our work focuses on causal estimation using a unique mood logging appli-

cation, EmotiCal (Emotional Calendar), that features both recorded values for

daily activities and mood, and text descriptions from users [58, 138]. Motivated

by promising results from the complementary studies of social media sites and

task-specific mood logging platforms, we study the causal effect of exercise on

mood by combining text and observational data. The link between exercise and

mood is well-validated in literature, providing a benchmark for our analysis. To

develop a robust methodology for estimating ATE from heterogeneous user data,

we outline and investigate three important modeling questions in this paper:

1. What filtering or stratifying strategies on users are necessary to eliminate

implicit confounds or outliers?

2. Should we perform our analysis per-user or treat all logged user entries as

independent units of study?

3. What impact does including text sources in our analysis have on the esti-

mated ATE?
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Our findings highlight the importance of each modeling choice, and suggest that

per-user analysis and incorporating text provide stronger causal results. We illus-

trate our empirical results with useful qualitative examples.

6.2 Dataset

We obtain our dataset from EmotiCal (Emotional Calendar), an application

created to help people regulate and improve their mood and well-being [58, 138]
1. EmotiCal users were asked to use the application at least twice a day, logging

an entry each time. These entries consist of users’ current mood, energy level,

and up to 14 trigger activities that users believe have influenced their mood.

For example, users can log social interactions (e.g., time spent with a friend or

coworker), aspects of physical health (e.g., sleep or exercise), and work activities

(e.g. meetings) to track these activities’ effects on mood. EmotiCal also prompts

users to generate short textual explanations of how and why they think those

activities have affected their mood.

Figure 6.1 shows the EmotiCal user interface for logging mood and energy

levels (left panel), and activities that affect these factors (right panel). To create

a mood entry, users first make a simple mood valence and strength decision,

choosing a mood ranging from -3 (very negative) to +3 (very positive). Users also

recorded energy levels ranging from -3 (low energy) to +3 (high energy). After

selecting mood, users engage in active mood analysis. Users identify which of 14

possible trigger activities influenced their mood and rate that influence on a scale

of -2 (negatively impacted mood) to +2 (positively impacted mood).

Users choose as many activities as they deem relevant, although most users
1The data collection process has IRB approval. All participants were directly informed of

the research uses of their anonymized data and allowed to exclude private items from the final
dataset. Strict procedures are in place to secure and protect users’ privacy.
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Figure 6.1: EmotiCal System Components. The left screen shows the logging of
mood and energy levels. The right screen shows the logging of different activities
which affected the user’s mood

choose relatively few per entry. Eight of these 14 trigger activities are constant

across users: food, sleep, exercise, social activity, work, leisure, mood, and social

company; the other 6 categories are customizable, allowing users to record triggers

that are unique to their lives. After logging their trigger activities, users write

short textual entries about the factors that affected their mood.

In this work, we focus on the eight activities listed above which are consistent

across users. In addition, we use the textual entries users wrote to improve the

significance of our results. In total, the EmotiCal dataset consists of 6344 entries

from 143 unique users. The EmotiCal data enjoys two important advantages over

typical user-behavior modeling datasets: 1) participants provide real-time and

longitudinal self-labels for all attributes without need for crowd-sourced annota-

tions; and 2) users log their own perception of how activities influence mood and

also include textual information, producing a reliable dataset.
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6.3 Problem Statement

We consider units X = {x1, . . . , xn} where each logged entry xi = (v1, . . . v8, t)

includes measurements for the eight specified variables vi and text denoted t. The

treatment assignment for xi is 1 if vexercise ≥ 1 and 0 otherwise, and is denoted

by random variable Ti. For each xi, we observe only the mood outcome under

treatment Y1(xi) when Ti = 1 or the outcome under control Y0(xi) when Ti = 0.

The goal is to estimate the average treatment effect (ATE), defined as:

ATE = Ep(x)
[
Ep(Y1|x)[Y1(xi)]− Ep(Y0|x)[Y0(xi)]] (6.1)

The expectation requires unobservable outcomes Y1−ti(xi), called counterfactu-

als. One well-studied approach to estimating ATE from this incomplete observed

data alone is to perform matching [129]. The goal of matching is to pair every

unit xi with another unit xj that has the opposite treatment assignment, i.e.

Tj = 1 − Ti. For example, the match for a treated entry where the user records

having exercised is a control entry where potentially a different user does not

record exercise activity. The selected match xj = arg minxk∈X d(xi, xk) should be

the nearest-neighbor of xi according to a distance measure d(·). Since for every

entry, we only observe the outcome under a given treatment assignment, matching

estimates the difference in outcomes by comparing against a unit which similar

in every other aspect except the treatment assignment. In our problem, for ex-

ample, we expect to find matched entries that record similar values for the other

activities besides exercise such as sleep or food. The matching produces a set of

pairs M = {(xi, xj)|xi, xj ∈ X,Ti 6= Tj} to estimate ATE as:

ˆATE = 1
|M |

∑
m∈M

(2Ti − 1)[YTi
(xi)− YTj

(xj)] (6.2)
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The summand is shorthand to indicate correct subtraction order, depending on

whether Ti = 1 or not. In our analysis, we investigate key experimental choices

for estimating ATE with user-behavioral data.

6.4 Experimental Results

The goal of our analysis is to investigate three modeling questions to develop

a methodology for estimating treatment effects from mood logging data:

• Q1: Which steps to filter users help to control for implicit confounds and

eliminate outliers in causal estimation from behavioral data?

• Q2: Should we aggregate the ATE estimate over treatment and control

entries matched per-user, treating users as the key units of study, or should

we treat entries as the unit of study?

• Q3: What signal does textual data contain to help us control for additional

implicit confounding?

To validate key modeling decisions, we focus on estimating the ATE of exercise

on mood, a link that has been well-studied in literature and found to have a

significant positive effect. Studying the exercise-mood link allows us to interpret

differences in ATE across the experimental conditions we use as better or worse

performance. Our findings below suggest that filtering users and matching entries

per-user are important, and highlight the benefits of incorporating textual data

sources.
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6.4.1 Experimental Setup

For all experimental questions, we perform matching on treated units to ob-

tain their nearest control unit. For Q1 and Q2, the metric used for matching is

Euclidean distance over the eight other measured variables. We introduce a text-

based propensity score matching [129, 127] technique when we examine Q3. We

also perform a Z-test to compare the mean mood across treatment and control

samples to understand the significance of the effect. We introduce experimental

conditions to evaluate each question that we investigate. Table 6.1 shows the ATE

and hypothesis test p-value results for all conditions, and we provide a detailed

discussion of these results below.

Table 6.1: ATE and hypothesis testing results for experimental conditions across
evaluation questions Q1 to Q3. The results suggest benefits to including textual
data in matching methods.

Condition ATE Hypothesis Test P-value

Baseline 0.26 3× 10−5
Filtered 0.31 1.5× 10−6

User 0.49 2× 10−12
Text, C=0.9 0.53 6.7× 10−13
Text, C=0.01 0.61 0.0

Table 6.2: p-values from T -tests evaluating balance of other measured activities
across control and treated groups. We compare the balance between three match-
ing strategies. Text, C=0.9 improves balance over the User matching for three
covariates.

Covariate User Text, C=0.01 Text, C=0.9

Food 0.058 1.3 ×10−4 0.023
Sleep 0.012 3.8 ×10−5 0.549
Work 0.163 0.017 0.586
Leisure 0.025 6.1 ×10−5 0.005

Social Company 0.072 0.014 0.068
Social Activity 0.437 0.005 0.649
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6.4.2 Q1: Filtering Users

For our first question Q1, we investigate whether filtering a subset of the users

to consider in our analysis is necessary to mitigate noise in the estimates. Our

baseline condition, which we call Baseline, includes all users who report the

effects of exercise at least once. The Baseline condition retains 114 users out of

143 total users. To compare against Baseline, we consider whether to target our

study to the 73 users of EmotiCal who report having exercised at least 3 times.

We refer to this experimental condition as Filtered. Users that report exercise

as a factor that effected mood only once may not consistently value this activity,

introducing noise to the causal estimation.

Table 6.1 shows that the ATE estimated through the Baseline condition is

significant. This result validates a previous regression analysis on EmotiCal data

that showed significant correlations between exercise and mood [138]. However,

the Filtered condition increases both the ATE and its significance, which we

expect to see for the well-validated causal link between exercise and mood. This

comparison shows the importance of excluding the users for whom exercise rarely

plays a role in affecting their mood. The gains in ATE significance may be due

to comparing users that are more similar in their proclivity for exercise.

6.4.3 Q2: User-specific Matching

Following findings from Q1, we adopt the Filtered condition throughout the

analysis. Our next critical question is whether to only match entries of the same

user, while still aggregating across all users’ matched entries when estimating the

ATE. To evaluate this, we introduce condition User which adds a constraint

to the matching algorithm that matched entries must be from the same user.
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Formally, Ui is the user of entry xi and the modified matched pairs are:

MU = {(xi, xj)|xi, xj ∈ X,Ti 6= Tj, Ui = Uj}

The compute ATE given by equation 6.2, we now sum over m ∈ Mu. The User

condition tests the impact of controlling for variations across users that potentially

introduce noise and reduce significance of the ATE.

Table 6.1 shows that compared to the previous condition Filtered, User

increases ATE to 0.49 and makes it more significant with a p-value of 2× 10−12.

The number of matched entry pairs used in the User condition (614) remains

comparable with the number of matched entries used to compute significance in

the Filtered case (632). This validates that a decreased power of the significance

test when estimating ATE does not account for the increased significance achieved

by the User condition. This finding substantiates approaches that estimate causal

effects at the user-level, aggregating over tweets or entries [108, 35]. The goal of

mood logging platforms is to personalize feedback or recommendations for each

user, and the User condition better captures this end goal.

6.4.4 Q3: Incorporating Text Data

For our final question about the additional benefits of incorporating textual

data, we apply the User condition and extend it with Text, which upgrades

the matching strategy to support variables from text. In Text, we replace the

distance metric d(xi, xj) used in matching with the propensity score which includes

text variables. Formally, given treatment assignments Ti and user entries xi, the

text-based propensity score is:

P (Ti|xi, Ci)
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where Ci = {c1, . . . , c|V |} is the set of variables where cj counts the appearances of

the j-th unigram from a vocabulary V in the text entry ti corresponding to xi. The

vocabulary V consists of all unigrams in the text entries t of user Ui. Intuitively,

the propensity score models the conditional probability of treatment assignments

given attributes of units of interest. We model the propensity score with logistic

regression. To reduce overfitting and select a sparser model, we include a L1

penalty term with a cost parameter C that controls the degree of sparsity. Small

values of C induce sparser models and might exclude the covariates that represent

the other measured activities such as quality of sleep or food among others.

To evaluate this trade-off between sparsity and a propensity score that en-

courages better balance across measured covariates, we consider two variants of

Text, with a low value of C = 0.01 that induces greater sparsity and a high

value of C = 0.9. We evaluate the balance across treated and control groups for

each of the other measured activities by performing t-tests to assess the difference

in means. Table 6.2 shows the p-values from these t-tests; larger values indicate

better balancing of covariates between control and treated groups, which is an

important criteria for causal inference.

Table 6.1 shows that condition Text, C = 0.01 gives the highest ATE of 0.61

and greatest significance, as the p-value is effectively 0.0. However, the p-values

for Text, C = 0.01 in Table 6.2 suggests that the stricter L1 penalty removes

several other measured activity variables from the model, resulting in imbalance

for these covariates. In contrast, by setting C = 0.9, the balance across these

covariates remains comparable with that of the User matching. Interestingly,

for covariates sleep, work and social activity, the balance even improves when

we include text-based attributes in the propensity score model. Additionally, the

trade-off against estimating ATE remains desirable as Text, C = 0.9 still gains

107



over User in both significance of the ATE and its value.

The results from both estimation and balance suggest that users’ language

might encode other factors and variables that the study could not measure. How-

ever, the balance analysis points to the importance of carefully evaluating mod-

eling choices and parameter settings to not violate key causal assumptions. To

further understand the text-based approach, an in-depth exploration of the learned

propensity score model is critical to indicate which signals were useful. Below,

we follow this analysis up with several qualitative results that shed light on the

usefulness of text in causal effect estimation.

6.4.5 Qualitative Results

We further study the Text (C=0.9 is used for the remainder of the analysis)

propensity score model by examining its features and outputs. We first find the

unigrams used in Text with the overall highest coefficients in logistic regression

and identify two trends. First, we find highly weighted unigrams such as “drained”

and “tired” which may serve as proxies for unmeasured confounders that affect

both whether a person exercises and their mood. Since EmotiCal users do not

record metrics of their health, these adjectives may provide text signals about their

physical well-being. Second, we see several positive valence unigram features such

as: energized, destresses, enjoyed, great, helped, productivity. Since the users were

asked to describe the factors which affected their mood, this finding is expected,

but captures reasons for why exercise impacted users’ mood positively. These

reasons can be interpreted as intermediate variables between exercise and mood,

indicating that exercising affects stress levels, for example, which then affects

mood.

Next, we provide illustrative examples of treated entries that are matched with
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Table 6.3: Examples of matched treatment and control pairs that highlight dif-
ferences between conditions Text and User. Text results in more contextually
similar pairs.

Treated Entry Text-Matched Control User-Matched Control

“Really enjoyed a bike ride
today to Pioneer park, an
old timey park area. It was
a fun new experience to ex-
plore it, it reminded me a
bit of main street in Disney
world. Before the bike ride
I wrote in my diary too,
nice. I feel good, but noah
seems more distant today
so my mood is more sub-
dued and reflective.”

“Visited the visitors cen-
ter in Fairbanks for a few
hours which I had never
been to before. I chatted
with some nice folks and
it was fun. Also had din-
ner with a friend’s family
which I enjoyed.”

“Slept well. Feeling re-
laxed.”

“Got up early to do yoga
class outside in morning
ramped up my mood and
energy”

“Content that I’m learning
different things in excel but
today’s class required lots
of focus”

“Going for walk to harvest
garden event and shopping
for gardening supplies im-
pacted mood positively al-
though energy could be
higher but not due to over-
sleeping and running late
and unhealthy breakfast”

“Went on a run which was
good stress relief. Spend-
ing the day outside and
getting sun also upped my
mood. Ate something and
got sick from it.”

“Got to learn something
new at work today which
made me happy, but then
the new tech that replaced
me came in and I started
feeling jealous/sad that I
never had the interaction
she has with my old boss.
”

“Drinking makes me
happy”

different control entries by Text and User. Table 6.3 contrasts the differences

in control entries chosen by each matching strategy. The examples suggest that

condition Text, which models a text-based propensity score, yields matched pairs

that are more lexically similar than those produced by the distance matching in

User.
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In the first treated entry, the user describes exploring a new area and inter-

estingly, Text produces a matching control entry that also discusses travel and

exploration. On the other hand, the control entry matched using User is brief

and less related, only discussing sleep. The second treated entry example conveys

a relaxed, positive tone which is mirrored in the matched control entry chosen

by Text. In contrast, User produces a match that initially exudes a negative

tone. The final example suggests a common tone of positivity combined with

annoyance in the matched pairs by Text while the User-selected control entry

is semantically unrelated.

6.5 Causal Effects of Online Debate Styles

Debate and dialogue on social media sites provide rich observational data for

both socio-political and linguistic analysis. Online debate forums are already well-

studied for collectively inferring users’ stances [69, 40, 39, 157, 56, 91], identifying

the polarity of interactions between users [1, 99, 149] and even reasons or moral

arguments for their chosen stances [57, 100]. In the context of online debates, our

work strives to further facilitate understanding of argumentation styles and their

effects. In contrast to the previous section on estimating the effects of exercise,

when studying online debates, we only observe text and interactions between users.

In this dialogue context, we ask and answer the important question of how various

styles of reply impact users’ subsequent sentiment and wording choices. Our

analysis of dialogue patterns can help suggest effective communication strategies

and support downstream interventions to mitigate online harassment.

To estimate the effect that a reply has on subsequent dialogue, we need to

ask how else a user may have responded had the reply tone been different. This

what-if question requires reasoning about a counterfactual dialogue which remains
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unobserved. However, several well-studied methods for estimating counterfactual

statements have been proposed in the long-standing research area of causal in-

ference [113, 111, 128]. One such technique is matching samples in training data

with their closest counterfactual neighbor based on a propensity score which can

be effectively modeled from observations [129]. In the previous section, we use

propensity score matching to match users’ entries based on both measurements

and text. In our debate setting, the propensity score should model the similarity

between two dialogues in terms of content to identify the closest match where the

reply tone is different but the arguments made are similar.

Recently, approaches to estimating outcomes such as the effects of exercise

on mood from social media sites such as Twitter have adapted propensity score

matching for text data [108, 35]. In this text-based observational setting, these

methods must first identify and extract possible outcomes and influencing vari-

ables from text before applying matching techniques. However, counterfactual

reasoning with propensity scores based on text from online debates remains largely

an open problem. Estimating the effects of dialogue styles requires controlling for

several latent confounding variables such as facets of arguments and ideological

values espoused by users.

In this work, to estimate the effects of reply styles on subsequent dialogue,

we extend propensity score matching for threads of discussion on online debate

sites. We evaluate several modeling choices to represent dialogue outcomes and

control for latent content confounding. We propose a propensity score that uses

a distributional representation of dialogue turns based on latent Dirichlet alloca-

tion (LDA) and an interpretable outcome representation that captures changes

in wording, sentiment, perception and noun usage. Our technical contributions

include:
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• Formulating the problem of estimating the effects of reply styles on subse-

quent dialogue within the framework of causal inference and counterfactual

reasoning.

• Extending propensity score matching with latent representations of dialogue

content.

• Highlighting interpretable findings on how reply styles affect sentiment and

wording choices from a comprehensive analysis across several topics from a

real-world debate forums site.

We perform extensive counterfactual analysis on debates from 4Forums.com, a

forum corpus that includes annotations for multiple styles of replies. Our findings

on the effects of reply styles substantiate long-held domain knowledge that replies

can significantly change wording patterns and agreeable replies increase positive

sentiment.

6.6 Background and Related Work

Prior work on online debate forums primarily focus on using the textual

content and interaction context to predict stance, sentiment or reply polarity

[141, 99, 1, 157, 56, 91, 134]. Our work instead focuses on the linguistic analy-

sis of debate dialogue. Our hypotheses on the effects of various reply styles are

guided by the well-established theory of linguistic accommodation [48, 52] that

dialogue participants adopt one another’s wording styles. Recently, approaches

have proposed to quantify linguistic accommodation on both Twitter and other

dialogue sources such as arguments in front of the U.S. Supreme Court [28, 29].

These methods develop probabilistic models and metrics that capture linguistic

accommodation, and evaluate the fit on observed data. Here, we instead formulate
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an approach based on counterfactual reasoning and estimate multiple linguistic

effects from debate forum data.

In the online debate setting, one line of existing work studies the Change My

View forum on Reddit.com to find correlations between argumentation styles and

their persuasiveness [149, 164]. These approaches focus on a supervised task of

identifying correlations between linguistic patterns and their effectiveness in per-

suading users to reconsider their views. A similar line of work on the effects of

wording and stylistic choice on post likability draws on methods from causal infer-

ence [148, 67]. While Jaech et al. [67] control for topic and timing of posts, they

focus on developing a classifier. In contrast, Tan et al. [148] propose a matching-

based approach to control for the inherent popularity of the user and topic Our

work further extends matching to control for latent aspects of argumentation and

content in dialogue.

6.7 Dataset

For our estimation of the effects of replies on dialogue, we use the 4Fo-

rums.com corpus collected and annotated as part of the Internet Argument Cor-

pus [158]. 4Forums.com has been well-studied for predicting users’ stances on

a variety of topics, disagreements between users, sarcasm use, and summarizing

arguments made by users [92, 100, 157, 159, 141].

4Forums.com is a collection of debate discussions where each discussion be-

longs to a topic such as “evolution” or “climate change.” 4Forums.com includes

quote-response pair annotations from Amazon Mechanical Turker workers on a

subset of these discussions. A quote-response pairs is an interaction between a

user and a replying user where the replier quotes a portion of the original user’s

post and then directly responds to it. The response is annotated by multiple
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Topic N/N A/D R/A F/F
Abortion 317 378 303 285
Evolution 349 410 331 334

Gay Marriage 158 211 137 127
Gun Control 296 316 279 289

Table 6.4: Numbers of annotated quote-response pairs of posts in the four most
annotated debate forum topics. N/N: nice/nasty; A/D: agreement/disagreement;
R/A: reason/attack; F/F: fact/feeling

annotators along four dimensions which we refer to as reply types: nice/nasty,

agree/disagree, fact/feeling, reason/attack. The annotation score for each type

ranges from -5 to 5, where negative values correspond to the antagonistic polar-

ity such as nasty or disagree and positive values conversely map to agreement or

niceness.

We select the four debate topics with the most quote-response annotations.

Table 6.4 shows the number of quote-response pairs annotated in each of these

topics across the four reply types. We see that aggregating over topics yields

thousands of annotations per reply type. We follow prior work and consider

the mean score across annotators for each quote-response pair. Additionally, for

users that participate in these quote-response annotated pairs, we have labels for

their pro or anti stance toward the topics they debate. In the next section,

we formalize the use of these reply type annotations to perform counterfactual

reasoning and estimate the effect of each reply type on subsequent dialogue.

6.8 Problem Statement

To study effects on online debate dialogue, we first introduce post triples.

A post triple ti = {p1
i , p

2
i , p

3
i } is an ordered sequence of three posts where each

post pji belongs to the i-th triple and appears j-th in the sequence. Based on
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the discussion in which the triple appears, the triple ti has a debate topic τ(ti).

Henceforth, we commonly refer to p1
i as the original post and to p2

i as the reply

post. The author of post pji is denoted by a(pji ). Each author a(·) has a stance

σ(a(·)) towards the topic τ(ti) that belongs to {pro,anti}. In this work, we

only consider triples where the original and final post have the same author, i.e.

a(p1
i ) = a(p3

i ). This constraint allows us to characterize the change in a particular

user’s wording and sentiment patterns before and after an dialogue exchange with

the replying user.

Section 6.7 introduced annotations for reply posts toward their parent post.

The triples we consider belong to the set of quote-response post pairs that are an-

notated. In causal inference terminology, these annotations constitute the treat-

ment in our analysis whose effects on subsequent dialogue we wish to estimate.

We build on notation from the potential outcomes framework [128] which con-

siders binary-valued treatment variables. Given a reply type α and a real-valued

annotation score (already averaged across annotators) between -5 and 5, we first

binarize the values by considering those ≤ −1 as 0 and ≥ 1 as 1. We follow prior

work in not considering annotations with a mean score between -1 and 1 [141]. As

an example, if we consider the nice/nasty annotation type, then we treat nasty

responses as having a value of 0 and nice ones as value 1. With this binarizing

strategy, for each triple ti and reply type α, the annotation of reply post p2
i to-

ward p1
i gives the treatment assignment Rα

i ∈ {0, 1} for the triple. In nice/nasty

example, we say that a triple ti where the reply p2
i is nice towards p1

i is treated,

i.e. Rα
i = 1 and is a control triple otherwise.

The next problem is to quantify the linguistic changes between p3
i and p1

i after

receiving reply p2
i . We consider a set of K functions S = {S1(pji ), . . . , SK(pji )}

that map post pji to a vector. One possible vector-valued function could return
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a n-vector for a vocabulary of n positive sentiment words where the i-th entry

indicates whether word wi appeared in pji or not. In the next section, we make

precise several functions that capture sentiment, wording, perception, and other

attributes of posts pji .

Finally, we define the estimation of reply type effects on dialogue for a given

reply type α. The units of study are the set of all post triples t. The treatment

assignment Ri
α partitions the units into treated and control groups based on the

reply post polarity towards the original post. Given a function Sk(·) that mea-

sures attributes of posts, the potential outcome of a triple ti given its treatment

assignment is YRαi (ti) = ∆Sk(p1
i ),Sk(p3

i ). This class of outcomes capture changes be-

tween the original post of user a(p1
i ) and the final post p3

i which responds to the

reply post p2
i . The average treatment effect (ATE) on the outcome is given by:

ATE = Ep(t)
[
Ep(Y1|t)[Y1(ti)]− Ep(Y0|t)[Y0(ti)]] (6.3)

This quantity estimates the mean difference between the outcome if a triple ti

receives the treatment (a positive polarity reply) and the outcome when ti receives

no treatment (a negative polarity reply). In the observed data, the treatments

assignments have already been made, and for each triple, we only observed a single

outcome. The missing, unobserved outcome is called the counterfactual and must

be imputed somehow from our observed data.

A common approximation of the ATE is to match each triple ti with another

triple tj such that it has the opposite treatment assignment Rα
j = 1 − Rα

i and

tj = arg mintk∈t d(ti, tk) is the nearest neighbor of ti according to d(·), a mea-

sure of distance between triples. The matching produces a set of pairs M =
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{(ti, tj)|ti, tj ∈ t, Ti 6= Tj} to estimate ATE as:

ˆATE = 1
|M |

∑
m∈M

(2Rα
i − 1)[YRαi (ti)− YRαj (tj)] (6.4)

Intuitively, we replace the counterfactual outcome with the observed outcome

from a highly similar other triple to approximate the treatment effect. The im-

portant open problems addressed in this work are designing appropriate distance

metrics between post triples that take into account the content in the dialogue,

and introducing methods for capturing linguistic changes.

6.9 Text-based Propensity Score

In this section, we introduce various propensity scores of triples that pro-

vide an appropriate similarity measure when perform nearest-neighbor matching.

Propensity score matching is a well-used technique for estimating the ATE espe-

cially from text observations [129, 108, 35]. In our dialogue context, given reply

type α, the propensity score is defined as:

PS = P (Rα
i = 1|f(ti))

the conditional probability of Rα
i , that a triple receives the treatment of a pos-

itive polarity reply, given attributes of triple f(ti). The attributes, or features,

should include those that potentially confound the effect of a reply on linguistic

changes in the response post. Similar approaches to studying social media effects

already recognize that need to control for the topic of a post [148]. In the dia-

logue setting, we include the thread topic as a potential confounder, but extend

the propensity score model features to capture finer-grained reply post content
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including latent representations of the text. We propose multiple choices for mod-

eling these confounders from text, ranging from high-dimensional word counts to

low-dimensional distributional representations of posts and authors.

6.9.1 Modeling Dialogue Content

As motivated above, a critical confounder in analyzing the effects of a reply is

the topic and content of the reply post itself. The debate topic and finer points of

arguments being made by the replying user affect both the polarity of the reply

and the subsequent changes in wording and sentiment by the original post’s user.

Also, the propensity score should be close for triples with contextually similar

reply posts so that the selected match will have an opposite polarity reply, but

similar arguments. To model this content from triples of dialogue, we introduce

coarse- to fine-grained strategies that use text, author stances and debate topics.

Topic-only As in prior work [148], restricting the debate topic of a triple τ(ti)

and its match τ(tj) to be the same is a straightforward but coarse-grained way to

capture the general content of a dialogue. This approach is equivalent to setting

the propensity score of all triples ti with the same topic to be 1.0. The matching

then randomly breaks ties when selecting the nearest other triple. In our eval-

uation, we compare this simple matching procedure with the more sophisticated

text-based approaches proposed below.

Bag-of-words (BOW) In our first text-based approach, we consider a bag-of-

words representation of the reply post p2
i . Given vocabulary of words V , a post

pji is represented by vector c =< c1, . . . , c|V | > of length |V | where ci counts the

appearance of the i-th word in V . We compute these vectors for each reply post

p2
i to use in the features f(ti) for each triple ti. We remove standard English stop
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words to obtain the vocabulary over all posts. This bag-of-unigrams representation

is high-dimensional but can be computed efficiently.

LDA-based In contrast, prior work has shown that in political debates, the

main points made by users lie in a lower dimensional space which correspond to

argument facets, or frames, which capture broader moral, economic, or religious

principles that guide particular ideological viewpoints [70, 100, 65, 17]. Unsu-

pervised approaches have been used to discover word-clusters that correspond to

these frames directly from text [65]. As an alternative to the high-dimensional

unigram representation above, we use latent Dirichlet allocation (LDA) [16] to

discover k topics of words. LDA infers each post’s distribution over these k topics

and we use this low-dimensional vector representation of posts as features in f(ti).

The choice of k is discussed in our analysis. We combine two granularities of LDA

features: latent representations of each post and those of each author obtained by

concatenating the posts of authors to train LDA.

LIWC features For the BOW and LDA-based approaches, we follow much

prior work in computational linguistics [157] and include an additional vector rep-

resentation of post p2
i in our feature set f(ti) based on the Linguistic Inquiry and

Word Count (LIWC) tool [114]. LIWC is a dictionary which maps an extensive

set of English words to categories that capture both lexical and semantic choices.

LIWC has been successfully used in several text classification tasks for a more

sophisticated, though shallow, representation of text [157, 1, 99]. For each p2
i and

LIWC categories L, we compute an |L|-vector where each entry i captures the

normalized counts of the i-th category in L. We include this vector in f(ti) to

further model the content of reply posts.
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Author stance constraints In all settings, to further account for potential

variances in the linguistic change outcome from content confounding, we include a

user-stance constraint. For ti and its match tj, we restrict the stance σ(a(p1
i )) and

σ(a(p1
j)) towards topic τ(ti) to be the same. Users’ stance offers another coarse-

grained proxy that captures their ideological views and bases of their arguments.

This stance restriction still yields several hundred matched triples for each reply

type.

Figure 6.2: LIWC categories that belong to each vector that captures represen-
tations of posts and enable measuring change in wording choices and sentiment.
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6.10 Measuring Linguistic Outcomes

To obtain the set of functions S which allow us to measure the change across

p1
i and p3

i , we follow other linguistic analyses [28] and again use LIWC. We first

combine LIWC categories into groups that measure wording, positive sentiment,

negative sentiment, perception and common nouns. Fig. 6.2 lists the LIWC

categories in each of these groupings. These groupings allow us to construct

vector representations of the original post p1
i and final post p3

i . We then use

cosine similarity to compute a difference between posts. For each of these five

category types, k, consisting of l LIWC categories, we obtain a corresponding

Sk(·) that returns a l-vector for a post pji where each entry i captures the counts

of the i-th category in category type k. To compute ∆Sk(p1
i ),Sk(p3

i ), we measure the

cosine similarity of the two vectors. This strategy suggests a rich set of possible

vector representations of posts including document embeddings [98]. However,

in this work, our choice of LIWC vector representation allows us to maintain

interpretability of results.

6.11 Empirical Analysis

The goals of our empirical analysis are twofold: 1) comparing the BOW feature

representation against the more sophisticated LDA-based distributional features

in simply predicting observed reply types; 2) estimating dialogue effects from

reply types for each of our matching strategies to contrast these findings against

known socio-linguistic theories. We consider three dialogue-based propensity score

matching approaches: topic-only, BOW, and LDA-based. We apply these strate-

gies to estimate effects on debates from 4Forums.com and highlight significant

dialogue changes from various reply tones. Since gold-standard true linguistic
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effects are not available, we contrast our findings with well-established domain

knowledge on linguistic accommodation and argumentation behaviors.

6.11.1 Experimental Setup

All matching variants are implemented in Python, with BOW and LDA-based

propensity scores trained using logistic regression in the sci-kit learn library.

LDA is also trained using the implementation in sci-kit learn. To select the

best value for the number of topics k for each debate topic, we hold out a devel-

opment set when training LDA and choose k that maximizes marginal likelihood

of the observed text. We consider k = {2, 3, 4, 5, 6}. To compute the post repre-

sentations for both LDA and BOW, we exclude unigrams occurring in more than

60% of the posts to eliminate generic words. For BOW, this document frequency

threshold reduces the dimensionality of the representation. We also report the

cross-validation F1 score of trained propensity score models for predicting each

binarized reply type annotation. We perform five-fold cross-validation, training

the propensity score model on four folds of the available reply type annotations,

and validating on the remaining fold.

Reply type BOW LDA-based
Nice/Nasty 0.57 ± 0.05 0.83 ± 0.03

Agree/Disagreement 0.17 ± 0.02 0.17 ± 0.03
Reason/Attack 0.55 ± 0.06 0.76 ± 0.04
Fact/Feeling 0.45 ± 0.11 0.70 ± 0.09

Table 6.5: Mean F1 scores from cross-validation averaged also across topics.
We compare BOW and LDA-based propensity score models in predicting binary
observed reply types (i.e. treatment assignment). We see that the latent LDA
representations used as features are significantly more predictive in three out of
four reply type settings.
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6.11.2 Results and Findings

The first part of our evaluation focuses on predictive performance to validate

the use of either dialogue-based propensity score model. The second analysis

compares the fine-grained content-based approaches to the topic-only matching

strategy to contrast the differences in findings. The results motivate an in-depth

look into how sentiment changes differ between treated and control triples across

each content-based approach.

Cross-validation performance We first validate BOW and LDA-based propen-

sity score models against predicting the binary reply polarity (i.e. the treatment

assignment for each triple) for each reply type by performing cross-validation.

Since we train propensity score models per debate topic, we compute an average

across topics over mean cross-validation F1 performance. Table 6.5 shows the

mean F1 scores for each method, separated by reply type. The results suggest

that the distributional representation of posts based on latent groupings of words

from LDA are more powerful in predicting the polarity of observed replies. The

LDA-based features for propensity score models outperform the BOW features in

three out of four reply type settings. We see that agreement/disagreement reply

type yields the lowest predictive performance and a closer look shows that replies

are highly skewed towards disagreement than agreement. This imbalance in agree-

ment/disagreement replies matches the intuition that debates inherently provoke

more disagreement than agreement. However, the skew necessitates future work

in developing more sophisticated linguistic features which capture deeper text

semantics to overcome the imbalance.

Estimation of treatment effects We apply each of the three matching strate-

gies proposed in this work to our debate triples dataset: 1) topic-only, 2) BOW
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Approch Reply
Type

Wording Common
Nouns

Perception Pos.
Senti-
ment

Neg.
Senti-
ment

To
pi
c-
on

ly N/N X
A/D X X X
R/A X
F/F X

B
O
W

N/N X X X X X
A/D X X X
R/A X X X
F/F X X X

LD
A
-b
as
ed N/N X

A/D X
R/A X X X X
F/F X X

Table 6.6: Checkmarks indicate a significant difference (at level α = 0.1) in
the particular LIWC-vector outcome between treated and control groups for a
given reply type. The large number of significant changes in wording found by all
matching strategies supports the intuition that the tone of a reply provokes dif-
ferent word usage. However, the topic-based approach finds no changes sentiment
while the text-based matching approaches do.

and 3) LDA-based. After triples differing in treatment assignment are matched,

we compute the ATE using Equation 6.4, which calculates the mean difference in

outcome across matched pairs. We measure the ATE in turn using the ∆Sk(p1
i ),Sk(p3

i )

representation based on each of the five LIWC category groupings shown in Fig.

6.2. Table 6.6 shows the ∆Sk(·),Sk(·) change outcomes which vary significantly (at

significance level α = 0.1) between treated and control groups for each possible

LIWC vector representation and each reply type which constitutes a treatment.

The checkmarks indicate that a significant average treatment effect occurs.

The first notable insight is that all three matching methods find multiple sig-

nificant wording changes. BOW estimates that wording significantly changes for

all reply types, while LDA-based uncovers that agreement/disagreement and rea-
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son/attack provoke significant changes in wording. These results support prior

work which suggests that dialogue dynamics do affect users’ subsequent responses

[149, 29]. While our formulation differs from measuring linguistic accommodation,

our framework can be naturally extended to analyze such effects. The second no-

table result is that the topic-only matching strategy does not find any significant

changes in sentiment, while the LDA-based and BOW approaches estimate sig-

nificant negative and positive sentiment changes as the polarity, or tone, of the

reply varies, especially for nice/nasty, reason/attack and fact/feeling reply types.

The changes in sentiment fit with the intuition that negative replies breed further

negativity in a dialogue, and vice versa. The final finding is that overall, BOW

estimates the most number of significant treatment effects across all reply types

but its poorer performance compared to LDA-based in predicting held-out reply

polarity suggests that confounding may still exist in its estimates of effects. Of-

ten, better adjustment for confounders reduces the effect of the treatment alone

on the outcome, which may explain the reduced number of effects found by the

LDA-based approach.

Examination of effects on sentiment The effects of replies on change in

sentiment highlighted by Table 6.6 prompt a closer look into the differences be-

tween treated and control triples across all reply types. Fig. 6.3 plots the mean

∆Sk(p1
i ),Sk(p3

i ) values when considering positive and negative sentiment LIWC vec-

tors for control and treated groups. We consider the differences for each reply type

and across both LDA-based and BOW strategies. The p-value of these differences

is shown, and we abbreviate the reply types as detailed in the figure and indicate

the positive or negative LIWC sentiment vector considered below the reply type.

Fig. 6.3a shows that for LDA-based propensity score matching, factual and

non-attacking language as captured by the treated groups increases positive sen-
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(a) LDA-based propensity score model.
N/N: nice/nasty, A/D: agree/disagree,
F/F: fact/feeling, R/A: reason/attack.

(b) BOW propensity score model.

Figure 6.3: A closer look at significant positive and negative sentiment changes
between treated and control groups across reply types when using each type of
propensity score model.

timent. In a similar vein, attacking and nasty replies which correspond to control

groups, show significant increases in negative sentiment. Both of these trends

support domain knowledge on argumentation, that antagonistic replies can pro-

voke defensive behavior. Fig. 6.3b shows sentiment changes found by the BOW

approach. On one hand, the negative sentiment increase found when replies are

nasty, attacking, disagreeing or feeling seem to corroborate the LDA-based find-

ings. However, BOW finds that positive sentiment decreases when replies are

nice or factual, which contradicts our intuition. This finding further indicates the

importance of investigating modeling assumptions since the BOW approach may

simply be estimating spurious effects.

6.12 Discussion

This chapter extends causal inference methods to combine text data, ranging

from fusing text with traditional measurements to using only observed textual
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sources. In Section 6.1, we introduce a propensity score matching method that

integrates both measurements and text to estimate the average treatment effect

between exercise and mood. We use data from the recently developed Emoti-

Cal mood-logging application. We develop our approach Text which incorpo-

rates text variables by carefully examining several modeling choices. Our find-

ings highlight the importance of user-specific, stratified analysis when modeling

user-behavior domains. Our preliminary results suggest future work in modeling

dependencies between multiple causal factors and finding latent representations

of confounders from text.

In Section 6.5, we estimate the effect of various reply styles on the change

in users’ linguistic choices and sentiment. We formulate this problem within the

framework of causal inference, using only dialogue threads from online debates.

We propose multiple propensity scores that use coarse- to fine-grained representa-

tions of dialogue content, ranging from simple debate topic to latent representa-

tions of posts and authors. Our extensive analysis of four reply types and multiple

outcome representations for measuring the change in users’ posts validates domain

knowledge and intuition around argumentation and debates. We find that word-

ing changes often differ significantly depending on whether users’ receive positive

or negative polarity replies, and positive polarity replies typically increase posi-

tive sentiments. Our contribution points to a promising avenue of argumentation

research, including future work in using this framework to validate socio-linguistic

theories around linguistic accommodation, power dynamics, and persuasion.

This chapter concludes the exploration of causality in computational science

and contrasts against the causal graph discovery problem of the previous chapter.

We thus address the third requirement for extending PSL to meet computational

science desiderata by inferring causal knowledge. In the next chapter, we turn to
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the fourth and final task of discovering PSL model structure from data.
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Chapter 7

Learning Structured Models

Chapter 5 motivates the need for model structure discovery algorithms when

domain knowledge to specify a probabilistic model is limited. Chapter 5 introduces

the CausPSL modeling framework that infers causal graphs by fusing constraints,

statistical tests, and side information. The inferred causal graphs are DAGs that

define BN distributions, and as described in Section 2.1, the d-separation criteria

for DAGs induces a correspondence between observed independences and graph

structure, providing useful structural constraints. Moreover, logical characteriza-

tions of these constraints supported the specification of CausPSL. In contrast,

this chapter focuses on discovering the model structure for PSL and HL-MRFs, an

undirected and logic-templated graphical model. In contrast to directed models,

SRL methods such as PSL present new challenges for model structure discovery

algorithms.

As discussed in Section 2.2, SRL frameworks such as MLNs and PSL encode

model structure with weighted first-order logical clauses. The model discovery

problem of learning these clauses from data is referred to as structure learning.

As in Chapter 5, structure learning is a critical step in computational science

tasks to discover new knowledge. Additionally, structure learning alleviates the
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manual cost of specifying models and evaluating modeling decisions, as we pro-

pose in Chapter 3. However, these benefit comes with high computational costs;

structure learning typically requires an expensive search over the space of clauses

which involves repeated optimization of clause weights. This chapter proposes

the first two approaches to structure learning for PSL. We introduce a greedy

search-based algorithm and a novel optimization method that trade-off scalabil-

ity and approximations to the structure learning problem in varying ways. The

highly scalable optimization method combines data-driven generation of clauses

with a piecewise pseudolikelihood (PPLL) objective that learns model structure

by optimizing clause weights only once. We compare both methods across several

tasks including the familiar drug-drug interaction prediction setting. However, we

revisit the task with a complex relational database that describes relationships be-

tween drugs, enzymes, transporters and other biological entities. We demonstrate

that structure learning discovers complex modeling patterns for this domain that

outperform the previously proposed similarity-based method. Finally, we show

that PPLL achieves an order of magnitude runtime speedup and AUC gains up

to 15% over greedy search.

This chapter thus addresses the final task of extending PSL for computational

science domains: discovering PSL model structure from data. The subsequent

final chapter provides concluding remarks and highlights the key interplay be-

tween these chapters in learning structured and causal probabilistic models for

computational science.

7.1 Structure Learning for PSL

Statistical relational learning (SRL) methods combine probabilistic reasoning

with knowledge representations that capture the structure in problem domains.
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Markov logic networks (MLN) [126] and probabilistic soft logic (PSL) [7] are

notable SRL frameworks that define model structure with weighted first-order

logic. However, specifying logical clauses for each problem is laborious and requires

domain knowledge. The task of discovering these weighted clauses from data is

referred to as structure learning, and has been well-studied for MLNs [79, 81,

82, 97, 14, 60, 76, 78]. The extensive related work for MLNs underscores the

importance of structure learning for SRL.

Structure learning approaches alleviate the cost of model discovery. However,

they face several critical computational challenges. First, even when the model

space is restricted to be finite, it results in a combinatorial search. Second, heuris-

tic approaches that iteratively refine and grow a set of rules require interleaving

of several costly rounds of parameter estimation and scoring. Finally, scoring the

model often involves computing the model likelihood which is typically intractable

to evaluate exactly.

Structure learning approaches for MLNs vary in the degree to which they ad-

dress these scalability challenges. An efficient and extensible class of MLN struc-

ture learning algorithms adopt a bottom-up strategy, mining patterns and motifs

from training data to generate informative clauses [97, 81, 82]. The data-driven

heuristics reduce the search space to useful clauses but still interleave rounds of

parameter estimation and scoring, which is expensive for SRL methods.

Motivated by the success of structure learning for MLNs, in this paper, we

formalize the structure learning problem for PSL. We extend the data-driven ap-

proach to generating clauses and propose two contrasting PSL structure learning

methods that differ in scalability and choice of approximations. We build on

path-constrained relational random walk methods [85, 49] to generate clauses that

capture patterns in the data. To find the best set of clauses, we introduce a
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greedy search-based algorithm and an optimization method that uses a piecewise

pseudolikelihood (PPLL) objective function. PPLL decomposes the search over

clauses into a single optimization over clause weights that is solved with an effi-

cient parallel algorithm. Our proposed PPLL approach addresses the scalability

challenges of structure learning and its formulation can be easily extended to other

SRL techniques, including MLNs. In this paper, our key technical contributions

are to:

– formulate path-constrained clause generation that efficiently finds relational

patterns in the data.

– propose greedy search and PPLL methods that select the best path-constrained

clauses by trading off scalability and approximations for structure learning.

– validate the predictive performance and runtimes of both methods with real-

world tasks in biological paper recommendation, drug interaction prediction

and knowledge base completion.

We compare both proposed PSL structure learning methods and show that our

novel PPLL method achieves an order of magnitude runtime speedup and AUC

improvements of up to 15% over the greedy search method.

7.2 Background

We briefly review of structure learning for statistical relational learning (SRL)

before formalizing structure learning in the context of PSL and HL-MRFs.
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7.2.1 Structure Learning for SRL

Our work focuses on SRL methods such as MLNs and PSL that encode depen-

dencies with first-order logic. Chapter 2 introduces the notation for these SRL

methods. Below, we define the structure learning for these methods.

The problem of structure learning finds the model MC,w which best fits a set

of observed assignments X, regularized by model complexity. We denote the set

of possible clauses as the language L. Although L can be infinite, it is standard

to impose restrictions that make L finite for structure learning. Furthermore, we

make the commonly used closed-world assumption that all predicates are fully

observed. Formally, the structure learning problem finds C ⊆ L,w ∈ RN , N =

|C| that maximize a regularized log likelihood function lll(C,w) given observed

assignments:

arg maxw∈RN , C⊆Llll(C,w)

= arg maxw∈RN , C⊆L logPC,w(X)− r(C,w)
(7.1)

where r(C,w) represents priors on the weights and structure. Typical choices for

r combine a Gaussian prior on weights and an exponential prior on clause length.

The log likelihood requires an exponential sum to compute Z and the optimiza-

tion combines a combinatorial search over L with a maximization of continuous

weights w (called weight learning). Consequently, solving structure learning re-

quires further approximations to search and scoring. Approaches to structure

learning broadly interleave two key components: clause generation and model

evaluation, or scoring. The clause generation phase produces a candidate lan-

guage L over which to search. In practice, L is a subset of all possible clauses,

chosen to restrict the search to useful regions of the space. Model evaluation typ-

ically iteratively refines the existing model by learning w and scoring candidate

133



clauses in L using approximations to lll(C,w).

7.3 Problem Statement

Given target predicates PT , structure learning for PSL finds a model ˜MC,w

to infer ti ∈ PT . The language space LR is restricted to clauses of the form

∧iLi → ∨iTi and we again constrain LR to be finite. In Section 2.3, we review the

pseudolikelihood approximation to the likelihood score. For structure learning, as

in weight learning, it is conventional to use the pseudolikelihood score to optimize

over the space of clauses.

Given target predicates PT , real-valued variable assignments Y and X where

each Yi atom consists of p ∈ PT , following the objective in Equation 7.1, structure

learning for PSL maximizes log pseudolikelihood lpll(C,w):

arg maxC⊆LR,w∈R+

∑
Yi∈Y
− log(Zi)−wTΦC(X,Y) (7.2)

where ΦC denotes all ground rules that can be instantiated from clauses C. In

the next section, we propose two approaches to the structure learning problem for

HL-MRFs that rely on an efficient clause generation algorithm.

7.4 Approaches

To formulate PSL structure learning algorithms, we introduce approaches for

both key method components: clause generation and model evaluation. We out-

line an efficient algorithm for data-driven clause generation. For model evaluation

over these clauses, we first propose a straightforward greedy local search algorithm

(GLS). To improve upon the computationally expensive search-based approach,
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we introduce a novel optimization approach, piecewise pseudo-likelihood (PPLL).

PPLL unifies the efficient clause generation with a surrogate convex objective that

can be optimized exactly and in parallel.

7.4.1 Path-Constrained Clause Generation

The clause generation phase of structure learning outputs the language LR of

first-order logic clauses over which to search. Driven by relational random walk

methods used for information retrieval tasks [86, 49], we formulate a special class

of path-constrained clauses that capture relational patterns in the data. Path-

constrained clause generation is also related to the pre-processing steps in bottom-

up structure learning methods [97, 81, 82]. Bottom-up methods typically use

relational paths as heuristics to cluster predicates into templates and enumerate

all clauses that contain predicate literals from the same template. The structure

learning algorithm greedily selects from these clauses. Path-constrained clause

generation also produces LR prior to structure learning. Here, we use a breadth-

first traversal algorithm which directly generates informative path-constrained

clauses by variablizing relational paths in the data.

The inputs to path-constrained clause generation are the ground atoms of

a domain, the set of all predicates P and target predicate PT . In this work, we

consider predicates with arity of two but our approach will be extended to support

predicates with arity three and higher. We begin with a running example that

illustrates the definitions below.

Example 1. Consider a ground atom set with Cites(Paper1, Paper2), Men-

tions(Paper2, Gene), Mentions(Paper1, Gene) and PT = {Mentions}. In

this simple example, all ground atoms have an assignment of 1. In general, real-

valued assignments to atoms must be rounded to 0 or 1 during path-constrained
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clause generation.

Definition 6. A target relational path for ti ∈ PT denoted πtij is defined by an

ordered list of ground atoms [p1(e1, e2), p2(e2, e3) . . . , ps(es, es+1), ti(e1, es+1)] such

that each pi(ei, ei+1) = 1, its last argument ei+1 is the first argument of pi+1(ei+1),

and ti(e1, es+1) ∈ {0, 1} is a target atom.

Definition 7. Given a target relational path πtij , the corresponding first-order

path-constrained clause ctiπj has the form p1(E1, E2) ∧ . . . ∧ ps(Es, Es+1) →

ti(E1, Es+1) where each Ei is a logical variable and the j-th literal in the clause

variablizes the j-th atom in πtij . The negation of ctiπj is the clause with ¬ti(E1, Es+1),

the target predicate literal negated.

For Example 1, given target relational path [Cites(Paper1, Paper2), Men-

tions(Paper2, Gene), Mentions(Paper1, Gene)], we obtain the first-order path-

constrained clause:

Cites(E1, E2) ∧Mentions(E2, E3)→Mentions(E1, E3)

We generate the set of all possible path-constrained clauses CΠ up to length s,

by performing breadth-first search (BFS) of up to depth s from the first argument

ej of each target atom ti(ej, ek).

Definition 8. A connected BFS search tree bijk for training example ti(ej, ek)

is rooted at ej and one of its leaf nodes must be ek. Every non-leaf constant eu in

bijk has child entities ev connected by ground atoms pi(eu, ev) = 1.

For Example 1, the connected BFS search tree of depth 2 for target atom

Mentions(Paper1, Gene) is:

Paper1 Cites−−−→ Paper2 Mentions−−−−−→ Gene
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Given a tree bijk, each path from its root ej to leaf node ek is a target relational

path πtij . For target predicate ti, Bi = {b1 . . . bn} is the set of connected BFS

search trees corresponding to all n target atoms. For all ti ∈ PT , we enumerate

all such πtii from each b ∈ Bi and obtain the unique set of these paths Π. For

each πi ∈ Π, we form the corresponding path-constrained clause and its negation

to obtain all such clauses CΠ. Moreover, we can further restrict CΠ to those

clauses that connect ≥ t target atoms, preferring clauses that cover, or explain,

at least training t examples. The language defined by CΠ guides the search over

models that capture informative relational patterns in the data. Although CΠ

produces only Horn clauses and is thus a subset of the language LR [? ], it has

been successfully used in several relational learning tasks [85, 49]. While our path-

constrained clause generation performs well in the tasks we study, where needed,

we will explore more expressive strategies.

7.4.2 Greedy Local Search

Given N path-constrained clauses, exactly maximizing the pseudolikelihood

objective given by Equation 2.9 requires evaluating 2N subsets of clauses, which

is already infeasible with only 100 clauses. Instead, we propose an approximate

greedy search algorithm that selects locally optimal clauses in each iteration to

maximize pseudolikelihood.

Algorithm 1 gives the pseudocode for greedy local search (GLS) which

approximately maximizes the pseudolikelihood score lpll(·). GLS iteratively picks

the c∗ ∈ CΠ that maximizes lpll(·) and adds it to the model M until the score has

only improved by ≤ ε or a maximum number of iterations l has been reached.

While GLS is straightforward to implement, it requires O(Nl) rounds of weight

learning and evaluating lpll(·) where N denotes the size of CΠ. As N grows, the
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Algorithm 1 Greedy Local Search (GLS)
Input: CΠ: path-constrained clauses; ε: tolerance; l: max iterations
Output: C∗,w: optimal clauses and weights
S ← CΠ
C∗ ← ∅
current, prev, i← 0
while current− prev ≥ ε or i ≤ l do

current← prev
for s ∈ S do

C∗ ← C∗ ∪ s
score← maxw lpll(C∗,w)
if score > current then

current← score
c∗ ← s

C∗ ← C∗ \ s
C∗ ← C∗ ∪ c∗
S ← S \ c∗
i← i+ 1

GLS becomes prohibitively expensive unless we sacrifice performance by increasing

ε or decreasing l. To overcome the scalability pitfalls of GLS and search-based

methods at large, we introduce a new structure learning objective that can be

optimized efficiently and exactly.

7.4.3 Piecewise Pseudolikelihood

The partition function Zi in pseudo-likelihood involves an integration that

couples all model clauses. Optimizing pseudo-likelihood requires evaluating all

subsets of the language LR, necessitating greedy approximations to the com-

binatorial problem. To overcome this computational bottleneck, we propose a

new, efficient-to-optimize objective function called piecewise pseudolikelihood

(PPLL). Below, we derive two key results which have significant consequences for

scalability of structure learning: 1) with PPLL, structure learning is solved by

performing weight learning once; and 2) the factorization used by PPLL admits
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an inherently parallelizable gradient-based algorithm for optimization.

PPLL was first proposed for weight learning in conditional random fields

(CRF) [147]. For HL-MRFs, PPLL factorizes the joint conditional distribution

along both random variables and clauses and is defined as:

P ∗ ˜MC,w
(Y|X) =

∏
c∈C

∏
Yi∈Y

exp(−f ci (Yi,Y,X))
Zc
i (Y,X)

where

Zc
i (Y,X) =

∫
Yi

exp(−f ci (Yi,Y,X))

f ci (Yi,Y,X) =
∑

j:Yi∈Gc
wjφj(Yi,Y,X)

(7.3)

The key advantage of PPLL over pseudo-likelihood arises from the factorization

of Zi into Zc
i , which requires only clause c and variable Yi for its computation.

Following standard convention for structure learning, we optimize the log of

PPLL denoted lppll(C,w). We highlight a connection between PPLL and pseudo-

likelihood that is useful in deriving the two key scalability results of PPLL. The

product of terms in PPLL corresponding to clause c is the log pseudo-likelihood

of the model containing only clause c. We denote this lcpll(wc):

lcpll(wc) =
∑
Yi∈Y
− log(Zc

i (Y,X))− f ci (Yi,Y,X) (7.4)

We now show that for the log PPLL objective function, performing weight

learning on the model containing all clauses in LR is equivalent to optimizing the

139



objective function over the space of all models. Formally:

arg max C⊆LR,w∈R+lppll(C,w)

≡

arg maxw∈R+lppll(LR,w)

(7.5)

Lemma 1. Optimizing lppll(C,w) over the set of weights w is equivalent to opti-

mizing over each wc separately.

Proof Each lcpll(wc) is a function of only wc. By definition of lppll(C,w), we have

arg max
w∈R+

lppll(C,w) = arg max
w∈R+

∑
c∈C

lcpll(wc)

=
∑
c∈C

arg max
wc∈R+

lrpll(wc)

Theorem 1. For PPLL, maximizing the weights w of the model containing all

clauses in LR is equivalent to optimizing the structure learning objective.
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Proof

arg max C⊆LR,w∈R+lppll(C,w)

= arg max C⊆LR

∑
c∈C

arg max
wc∈R+

lcpll(wc) [Lemma 1]

By setting wc = 0, we get lrpll(wc) = 0.

Therefore, the maxima must be non-negative, i.e.:

arg max
wc∈R+

lcpll(wc) ≥ 0.

This implies that:

arg max C⊆LR

∑
c∈C

arg max
wc∈R+

lcpll(wc)

=
∑
c∈LR

arg max
wc∈R+

lcpll(wc)

= arg maxw∈R+lppll(LR,w)

As a result of Theorem 1, instead of combinatorial search, we perform a simpler

continuous optimization over weights that can be solved efficiently. Since the

objective is convex, and the weights are non-negative, we optimize the above

objective using projected gradient descent.

The projected gradient descent algorithm for optimizing the objective function

is shown in Algorithm 2. The partial derivative of lppll(C,w) for a given weight

wc is of the form:

∇wc = Φc(Yi,Y,X)− Eppll[Φc(Yi,Y,X)]

where

Φc(Yi,Y,X) =
∑
Yi∈Y

∑
j:Yi∈Gc

φc(Yi,Y,X)

(7.6)
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The gradient for any weight wc is the difference between observed and expected

penalties summed over corresponding ground clausesGc. For both pseudo-likelihood

and PPLL, we can compute observed penalties once and cache their values but

the repeated expected value computations, even for a one-dimensional integral,

remain costly. However, unlike the gradients for pseudo-likelihood, each expecta-

tion term in the PPLL gradient considers a single clause. Thus, when evaluating

gradients for weight updates in Algorithm 2, we use multi-threading to compute

the expectation terms in parallel. The dual advantages of parallelizing and requir-

ing weight learning only once makes PPLL highly scalable. After convergence of

the gradient descent procedure, we return the set of clauses with non-zero weights

as the final model.

Algorithm 2 Piecewise Pseudolikelihood (PPLL)
Input: CΠ: path-constrained clauses; ε: tolerance; l: max iterations; α: step size
Output: C∗,w: optimal clauses and weights
for c ∈ CΠ do

C∗ ← c
i← 0
scoreprev ← −∞
scorecurr ← lppll
while scorecurr − scoreprev > ε or i < l do

i← i+ 1
for c ∈ C∗ do

wc ← wc + α∇wc

if wc < 0 then
wc = 0

scoreprev ← scorecurr
scorecurr ← lppll

for c ∈ C∗ do
if wc = 0 then

C∗ ← C∗ \ c

Finally, although it is beyond the scope of this work to formalize PPLL for

MLNs, our proposed formulation can be extended to MLNs by considering a
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discrete variant of pseudolikelihood [126, 78, 79]. The computations required by

PPLL for MLNs will involve summing instead of integration, and require counting

of satisfied Boolean clauses instead of simply evaluating the value of continuous

hinge-loss satisfaction as we do for PSL. Interestingly, since MLNs typically de-

scribe joint distributions instead of conditionals for particular target variables

as PSL does, we can expect to see further scalability gains from applying fully

factorized PPLL to MLNs.

7.5 Experimental Results

The PPLL optimization method uses a fully factorized approximation for scal-

ability while GLS greedily maximizes the less decoupled pseudolikelihood at the

expense of speed. We explore the trade-offs made by these two methods by eval-

uating predictive performance and scalability. We investigate these experimental

questions with five prediction tasks and compare PPLL against GLS after gen-

erating path-constrained clauses. The evaluation tasks include paper recommen-

dation in biological citation networks, drug interaction prediction and knowledge

base completion.

7.5.1 Datasets

For our datasets, we obtain citation networks for biological publications, drug-

drug interaction pharmacological networks and knowledge graphs.

Biological Citation Networks Our first dataset consists of biology-related

papers and entities such as authors, venues, words, genes, proteins and chemical

compounds [86]. The dataset includes relations over these entity types for two

domains, “Fly” and “Yeast”, resulting in two citation networks. The prediction
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target is the Gene relation between genes and papers that mention them. To

enforce training only on papers from the past, we partition papers into periods

of time, using those from 2006 as observations, training on papers from 2007 and

evaluating on papers from 2008. We randomly subsample targets to obtain 1500

train and test links, and generate five such random splits for cross-validation.

Drug-drug interaction The second dataset we use includes chemical interac-

tions between drug pairs, called drug-drug interactions (DDI) across 196 drug

compounds obtained from the DrugBank database. This dataset also contains a

directed graph of relations from Drugbank between these drugs and gene targets,

enzymes, and transporters. Our target for prediction is the Interacts relation

between drugs. We subsample the tens of thousands of labeled interaction and

shuffle the remaining labeled DDI links into five folds for cross-validation. Each

fold contains almost 2000 labeled DDI targets. We alternate using one fold of

DDI edges as observations, one for training and one for held-out evaluation.

Freebase Our third dataset comes from the Freebase knowledge graph and is

well-used in validating knowledge base (KB) completion tasks [50]. We study KB

completion for two relations: links from films to their ratings (FilmRating(·))

and links from authors to books written (BookAuthor(·)). The remaining rela-

tions in the KB are observed. For both target relations, we subsample edges and

split the resultant edges into five folds for cross-validation, yielding 1000 labeled

edges per fold.

7.5.2 Experimental Setup

Our first experimental question evaluates predictive performance using area

under the ROC curve (AUC) on held-out data with five-fold cross-validation across
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the five tasks described above. Our second question validates scalability by com-

paring running-times for both methods as the number of clauses grows. For both

methods, we use ADMM inference implemented in the probabilistic soft logic

(PSL) framework [7]. For GLS, we use the pseudo-likelihood learning algorithm

in PSL and implement its corresponding scoring function within in PSL 1. For

PPLL, we implement the parallelized learning algorithm in PSL. For all tasks,

we enumerate target relational paths using the BFS utility in the Path Ranking

Algorithm (PRA) 2 [85, 49, 50] and generate path-constrained clauses from these

paths. PRA generates and includes the inverses of all atoms when performing

BFS. To form clause literals from these inverses, we use the original predicate and

reverse the order of its variablized arguments.

As the number of generated clauses grows, GLS becomes prohibitive as we

show in our scalability results and necessitates a clause-pruning strategy. We

prune the set of clauses by retaining those that connect at least 10 target atoms

and select the top 50 clauses by number of targets connected. For each target

predicate ti in the prediction tasks detailed above, we also add a negative prior

clause ¬ti(·) to the candidate clauses. For link prediction tasks, the negative prior

captures the intuition that true positive links are rare and most links do not form.

We refer the reader to [7] for detailed discussion on the importance of negative

priors. For the biological citation networks and Freebase settings, we subsample

negative examples of the targets to mitigate the imbalance in labeled training

data. We perform 150 iterations of gradient descent for PPLL and 15 for GLS

since it requires several rounds of weight learning.
1psl.linqs.org
2github.com/matt-gardner/pra
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Figure 7.1: Running times (in seconds) in log scale on Freebase tasks. PPLL
consistently scales more effectively than GLS.
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Table 7.1: Average AUC of methods across five prediction tasks. Bolded numbers
are statistically significant at α = 0.05. We show that PPLL training improves
over GLS in three out of five settings.

Setting GLS PPLL

Fly-Gene 0.95 ± 0.01 0.97 ± 0.002
Yeast-Gene 0.86 ± 0.02 0.90 ± 0.003
DDI-Interacts 0.66 ± 0.06 0.76 ± 0.01
Freebase-FilmRating 0.65 ± 0.04 0.65 ± 0.05
Freebase-BookAuthor 0.67 ± 0.03 0.65 ± 0.04

7.5.3 Predictive Performance

Our first experimental question investigates the ramifications of approxima-

tions made by each method on predictive performance. We contrast PPLL, which

decouples the optimization over both clauses and target variables against GLS,

which greedily maximizes the pseudolikelihood approximation that only factor-

izes across target variables. We first generate path-constrained clauses as input

to both methods and evaluate their performance on held-out data. Table 7.1

compares both methods using AUC for all five prediction tasks averaged across

multiple folds and splits.

Table 7.1 shows that PPLL gains significantly in AUC over GLS in three out

of five settings. These results suggest that the fully factorized PPLL objective

maintains and even improves predictive performance over greedy optimization of

pseudolikelihood. For the Gene link prediction task in the Yeast and Fly biolog-

ical citation networks, PPLL also yields lower variance given the same rules. In

the DDI setting where we predict Interacts links between drugs, PPLL enjoys

a 15% AUC gain over GLS from 0.66 to 0.76. In the Freebase setting, for both

prediction tasks, FilmRating and BookAuthor, both methods achieve compa-

rable performance, with GLS seeing a 0.02 AUC gain in predicting FilmRating.
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Table 7.2: Average AUC of similarity-based approaches to DDI trained with
different weight learning methods. We see that the DDI model learned with PPLL
significantly improves over all configurations of the similarity-based models.

Learning Method With relational path similarity Without relational path similarity

Maximum likelihood 0.59 ± 0.01 0.69 ± 0.01
Pseudolikelihood 0.58 ± 0.01 0.69 ± 0.01
PPLL 0.56 ± 0.03 0.58 ± 0.02

7.5.4 Comparisons against DDI Similarity-based Models

To further validate the advantages of learning complex relational dependen-

cies directly from data, we compare the cross-validation performance of clauses

learned with PPLL to the state-of-the-art similarity-based PSL models proposed

in Chapter 4. We extend the current Drugbank DDI dataset with five drug-drug

similarity matrices obtained from a publicly available source 3. Four out of the

five similarities measure chemical similarity between drugs using different hashing

functions and features to represent drugs, as described in detail in Section 4.2.

The fifth similarity captures a flattened representation of the relational paths over

the full data graph found by PRA, which the structure learning methods use to

generate candidate clause. The similarity measure instead computes the reach-

ability between two drugs based on the number of relational paths that connect

them.

In our evaluation, we consider two variants of the similarity-based DDI model:

with and without the relational path-based similarity measure. We also train

these models with three different learning objectives: PPLL, pseudolikelihood,

and maximum likelihood estimation (MLE). Table 7.2 shows the average AUC

results across the same folds used to evaluate PPLL structure learning for both

modeling variants and all training methods. Direct comparison of these results
3https://starling.utdallas.edu/datasets/ddi/
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against the performance pf PPLL structure learning in Table 7.1 on DDI re-

veals that the learned clauses significantly outperform all configurations of the

similarity-based approaches. Interestingly, a closer look at Table 7.2 shows that

the flattened relational path similarity worsens performance regardless of the cho-

sen learning algorithm, and the chemical similarities used on their own give the

best performance with an AUC of 0.69 when trained with pseudolikelihood or

MLE. The results of this comparison against a well-validated, state-of-the-art

PSL model substantiate the benefits of learning complex relational structure from

data. The findings suggest that even transforming the relational paths into a

similarity metric remain weaker than directly learning weighted clauses.

7.5.5 Scalability Study

Our second experimental question focuses on the scalability trade-offs made

by GLS and PPLL. PPLL requires only weight learning over clauses, made faster

with parallelized updates while GLS requires iterative rounds of weight learning

and model evaluation. We select the two Freebase tasks, BookAuthor and

FilmRating where path-constrained clause generation initially yielded several

hundred rules. We plot the running time for both methods as the size of the

candidate clause set increases from 25 to 200.

Figure 7.1 shows the running times (in seconds) for both methods plotted

in log scale across the two Freebase tasks as the number of clauses to evaluate

increases. The results show that while PPLL remains computationally feasible as

the number of clauses increases, GLS quickly becomes intractable as the clause set

grows. Indeed, for BookAuthor, GLS requires almost two days to learn a model

with 200 candidate clauses. In contrast, PPLL completes in four minutes using

200 clauses in the same setting. PPLL overcomes the requirement of interleaving
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weight learning and scoring while also admitting parallel weight learning updates,

boosting scalability. The results suggest that PPLL can explore a larger space of

models in significantly less time.

7.6 Related Work

Finally, we review related work on structure learning approaches for MLNs and

Markov random fields. We also provide an overview of work in relational informa-

tion retrieval which motivates our path-constrained clause generation. There is

extensive work on learning logical clauses [32, 33, 102] and structure learning for

other SRL methods such as relational dependency networks [105, 106] or ProbLog

[11] which we do not review here.

For general Markov random fields (MRF) and their conditional variants, struc-

ture learning typically induces feature functions represented as propositional log-

ical clauses of boolean attributes [95, 30]. An approximate model score is op-

timized with a greedy search that iteratively picks clausal feature functions to

include while refining candidate features by adding, removing or negating literals

to single-literal clauses. MRF structure learning is also viewed as a feature se-

lection problem solved by performing L1-regularized optimization over candidate

features, admitting fast gradient descent and online algorithms [115, 172].

Although structure learning has not been studied in PSL, many algorithms

have been proposed to learn MLNs. The initial approach to MLN structure learn-

ing performs greedy beam search to grow the set of model clauses starting from

single-literal clauses. The clause generation performs all possible negations and

additions to an existing set of clauses while the search procedure iteratively selects

clauses to refine. To efficiently guide the search towards useful models, bottom-up

approaches generate informative clauses by using relational paths to capture pat-
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terns and motifs in the data [97, 81, 82]. This relational path mining in bottom-up

approaches is related to the path ranking algorithm (PRA) for relational infor-

mation retrieval [85]. PRA performs random walks or breadth-first traversal on

relational data to find useful path-based features for retrieval tasks [85, 49, 50].

Wang et al. [161] similarly use PRA to learn logical clauses as relational features

for inferring new facts in knowledge bases. Finding patterns in relational has also

been applied in exploiting symmetries to speed up loopy belief propagation, which

significantly speeds up the training of relational models [3].

Most recently, MLN structure learning has been viewed from the perspectives

of moralizing learned Bayesian networks [76] and functional gradient boosting [77,

78]. These methods improve scalability while maintaining predictive performance.

Moreover, Khot et al. [78] propose an EM-style structure learning method to

overcome the closed-world assumption, and the show the benefits of learning from

partially observed relational data. Recently, Van Haaren et al. [154] propose lifted

structure learning for MLNs, leveraging symmetry in logical clauses to speed up

learning.

Alternately, approaches have been proposed to learn MLNs for target variables

specific to a task of interest as we do for PSL. Structure learning methods for

particular tasks use inductive logic programming [102] to generate clauses which

are pruned with L1-regularized learning [60, 61] or perform iterative local search

[14] to refine rules with the operations described above.

7.7 Discussion

In this work, we formalize the structure learning problem for PSL and in-

troduce an efficient-to-optimize and convex surrogate objective function, PPLL.

We unify scalable optimization with data-driven path-constrained clause genera-
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tion. Compared to the straightforward but inefficient greedy local search method,

PPLL remains scalable as the space of candidate rules grows and demonstrates

good predictive performance across five real-world tasks. Although we focus on

PSL in this work, our PPLL method can be generalized for MLNs and other SRL

frameworks. An important line of future work for PSL structure learning is extend-

ing L1-regularized feature selection and functional gradient boosting approaches

which have been applied successfully to MRFs and MLNs. These methods have

been shown to scale while maintaining good predictive performance.
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Chapter 8

Conclusion and Future Work

In this thesis, I have introduced new probabilistic frameworks for computa-

tional science. I focus on problems in both social and biological sciences through-

out my work. I contrast the observational data such as social media interactions

which supports socio-behavioral questions with experimental data such as gene

expression measurements which facilitate biological inferences. I formulate three

desiderata for applying probabilistic models to these types of data: 1) handling

interdependencies in the domain; 2) fusing multiple sources of information; 3) sup-

porting the discovery of both causal knowledge and complex, long-range patterns

that inform modeling. I show how both types of data in computational science

tasks can be cast as relational data graphs, useful and well-studied abstractions

which motivate the use of PSL, a structured probabilistic framework which ad-

mits exact and efficient MAP inference. As the key contributions of my thesis, I

build on PSL to develop a unified framework for computational science with four

necessary developments:

1. Useful structural patterns that extend across multiple domains, developed

by comprehensively evaluating several modeling choices.
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2. Modeling patterns for fusing multiple sources of information with collective

reasoning.

3. Methods that support causal inference and discovery, incorporating textual

modalities of data.

4. Algorithms for learning PSL model structure directly from data.

These foundational contributions are validated on socio-behavioral and bio-

logical tasks to demonstrate the empirical advantages of my work for compu-

tational science. In Chapter 3, I show that joint author-level modeling com-

bined with a learning algorithm that mitigates label imbalance achieves best

gains in predicting users’ stance in online debates. In Chapter 4, my proposed

similarity-fusion method for drug-drug interaction outperforms state-of-the-art

non-collective method and single-similarity collective variants. In Chapter 5, I

introduce the CausPSL causal structure discovery approach which enjoys scala-

bility and robustness benefits in inferring gene tegulatory networks over competing

methods. I demonstrate complementary approaches for causal inference in Chap-

ter 6 which incorporate text data to better understand the effects of exercise on

user mood and debate styles on user sentiment. In Chapter 7, I propose scalable

structure learning approaches for PSL learn complex drug-interaction models that

outperform similarity-fusion approach.

8.1 Open Challenges

While the contributions in this thesis lay the groundwork for addressing com-

putational science tasks, I highlight important limitations of this work which mo-

tivate several open research problems. Broadly, these limitations span challenges

in modeling latent variables to learning from incomplete or partially observed
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data. I formalize these problems below and identify future work which builds on

my contributions to develop more sophisticated models.

Incomplete Data Settings. In Chapter 3 and Chapter 4, I present structured

modeling templates for capturing patterns such as homophily and disagreement

while fusing multiple local signals such as text or evidence of similarity between

drugs. However, in both settings, to learn the relative reliabilities of various

similarity measures or to learn in the presence of imbalanced debate forum data,

I assume that the training data are fully observed and belong to two classes. In

predicting drug interactions, I make a closed-world assumption that in the training

data, unobserved interactions are negative examples. In modeling debate, I treat

stance as belonging to pro and anti, and require training labels for both user

stances and disagreement links. In both cases, these assumptions can be limiting

and prohibitive. In the drug interaction setting, unobserved interactions may

actually indicate that a particular drug-drug combination has simply not been

tested yet and treating this link as a non-edge can hurt the model’s performance

on unseen data. In inferring user stance, obtaining labels can be costly, especially

as new topics emerge. Learning from weaker and cheap-to-obtain signals of stance,

or bootstrapping from a small set of reliable labels will enable modeling on a wider

scale and range of debate forum sites.

Latent Representations. In a similar vein to learning from incomplete or par-

tially observed data, another open problem only briefly addressed by my work lies

in explicitly learning representations of latent variables in a domain. Chapter

5 and Chapter 6 present methods for inferring both graphs of causal relation-

ships and single cause-and-effect outcomes. When learning causal graphs from

observational data, I follow several other methods in assuming that no latent
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confounders are present in the data. When estimating causal effects on a single

outcome, I typically model confounders from fully observed text using shallow and

high-dimensional representations such as word counts. In Section 6.5, I show the

benefits of latent distributional representations of posts when modeling changes in

dialogue from reply styles, but do not learn hierarchical or deeper representations

on confounders. In both settings, latent confounding can bias or even nullify the

findings of the constraints used by CausPSL or propensity score matching. For

improved causal discovery and inference, it is important to learn causal graphs

that explicitly model latent confounding, and find latent representations of con-

founders from text data when estimating effects.

Similar to learning causal structure, Chapter 7 deals with discovering the

clausal structure of PSL models. As in Chapter 4, the structure learning ap-

proaches proposed in this chapter make a closed-world assumption that all un-

observed relations are negative examples. Moreover, I only learning from the

relations, or predicates, present in the observational data. An open challenge

in the structure learning setting is to learn latent representations of unobserved

relations in the data, resulting in more compact and accurate models.

8.1.1 Future Work

Motivated by the open challenges I describe above, I outline three areas of

future research that overcome the limiting assumptions of this thesis and support

richer probabilistic modeling. I briefly review current research advances in each of

these tasks, and identify novel technical directions that build on my work. These

open areas span semi-supervised approaches to relational representation learning.

Semi-supervision in Computational Science. In socio-behavioral domains

such as modeling user stance from social media or detecting textual sentiment,
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advances have been made in learning from a limited corpus of labeled data or

from weak signals that provide model supervision. Johnson and Goldwasser [69],

Ebrahimi et al. [40] propose approaches based on relational bootstrapping, where

training data is iteratively labeled by a relational classifier, for stance classification

on new topics. Qadir and Riloff [121] apply bootstrapping to model emotion from

Twitter data. In both biological and social science tasks based on text, substantial

work has studied learning from positive and unlabeled data, where unseen links

are not assumed to be negative examples [42, 166, 87]. This challenge is referred

to as positive-unlabeled (PU) learning. All of these methods broadly fall under

semi-supervised learning, which combines limited training data with strategies to

learn from weak signals or completely unlabeled data.

Building on these existing approaches, I envision an open research agenda

in extending PU learning and weakly supervised learning approaches for struc-

tured PSL models of computational science domains. Johnson and Goldwasser

[69], Ebrahimi et al. [40] already propose relational bootstrapping using PSL,

but there remain open problems in combining latent variables such as ideology

to learn stances on unseen topics based on existing training data. Although

Elkan and Noto [42], Li and Liu [87] make connections between PU learning

and expectation-maximization (EM) algorithms for hidden data, proposing a PU

learning algorithm for relational PSL models is a novel problem. Each of the

above directions of future work in semi-supervised learning approaches improve

the models I propose for drug-drug interaction and debate stance prediction.

Learning Representations of Latent Confounders. In causal inference and

discovery, two separate classes of approaches support the representation and infer-

ence over latent confounding variables. For discovering causal structure, several

methods use a coarser representation of causality called ancestral graphs which
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allow edges that represent latent confounding [93, 170, 24]. Magliacane et al. [93]

and Claassen and Heskes [24] exploit logical constraints which characterize these

graphs to orient ancestral edges. In a different vein, for causal inference, Louizos

et al. [90] recently propose a deep neural network approach to learn represen-

tations of latent confounders from observational data. Wang and Blei [162] and

Ranganath and Perotte [124] estimate the effects of multiple causes simultaneously

by learning latent factor models of confounding from data.

These advances are promising for make progress in estimating both causal

graphs and single cause-effect links from observational data alone, especially with

modalities such as text. However, much current work is applied to observed

measurements of variables instead of combining or using text data only. Another

important direction of future research lies in addressing the limitations of Chapter

6 by learning latent confounders from text data. In the case of mood modeling, a

latent variable model might discover categories of words in users’ text entries that

correspond unmeasured factors such as health, family relationships, or intrinsic

mental well-being. In the dialogue analysis setting, text from debates may yield

latent groupings of words that represent ideologies or the key facets of a topic.

This representation learning from text can be fused with causal graph discovery

from statistical tests to improve the understanding of confounding edges which

the ancestral graph represents. The interpretability benefits of latent confounder

representation learning can be extended to both causal inference in the social

sciences and causal discovery in biological settings.

Relational Representation Learning. In learning relational models such as

Markov logic networks, many approaches have addressed the representation learn-

ing challenge of discovering latent relations or predicates from the observed re-

lational data graph. Kok and Domingos [80], Popescul and Ungar [119] cluster
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relations to discover representations of new predicates, a task called statistical

predicate invention. Recently, Dumančić and Blockeel [36] formalize this prob-

lem as unsupervised relational representation learning and show the advantages

of using unseen predicates within structure learning. The final area of fruitful

future work I envision is extending relational representation learning for PSL,

and going beyond clustering of relations. An important research direction is to

build upon the functional gradient boosting approach of Khot et al. [78] to learn

neural representations of PSL feature functions. The advantages of this approach

would allow interpretable logical clauses to be combined with non-linear functions

that can capture more complex combinations of observed relations to represent

unseen predicates. This novel contribution would support the learning of more

sophisticated models of social science and biology.
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