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ABSTRACT OF THE DISSERTATION 

 

Development of a Polymeric Platform for the Enhancement of Molecular CO2 

Reduction Catalysts 

 

by 

 

Swagat Sahu 

 

Doctor of Philosophy in Chemistry 

 

University of California, San Diego 2017 

 

Professor Nathan Gianneschi, Chair 

 

A series of polymeric frameworks were designed with moieties tailored to alter the 

catalytic activity of a covalently bound ReI fac-tricarbonyl bipyridine (bpy) molecular CO2 

reduction catalyst. The covalent binding of the ReI bpy catalyst was achieved by appending it 

to a cis-olefin containing chain transfer agent suitable for cross-metathesis (CM) and a 

norbornyl unit suitable for ring-opening metathesis polymerization (ROMP). 
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 When the chain transfer agent suitable for CM was used to covalently end-label 

polymers made via ROMP bearing a charge the catalytic potential for CO2 reduction was 

shifted positively for polymers with positive side chains, not altered for polymers with neutral 

side chains, and shifted negatively for polymers containing negatively charged side chains.  

Analysis of these polymers under an inert atmosphere revealed that the these shifts in 

catalytic potential correspond to shifts in the potential with which the active species for CO2 

reduction forms. 

 The chain transfer agent itself exhibited interesting electrochemical behavior 

indicating that the molecular framework of the ligand anchored two ReI bpy catalysts within 

proximity to one another allowing for intervalent charge transfer to occur between them when 

singly reduced. This mixed-valent state was characterized by infrared spectroscopy and UV-

Vis and shown to stabilize singly reduced ReI bpy species to the extent that it promotes CO2 

reduction via a known alternate binuclear pathway.   

 When polymerized, the norbornyl derivative made macromolecules which showed 

interpolymer charge transfer which indicated that the polymer architecture was similarly 

anchoring catalysts near each other through space.  When co-polymerized with BrØnsted acid 

phenol or RuII bpy photosensitizing monomers the resulting macromolecules showed 

enhanced activity for electrochemical and photochemical CO2 reduction respectivley.  

 These materials elucidate potential design principles for the first step towards the 

synthesis of porous polymer membranes bound to electrode surfaces with molecular catalysts 

incorporated into site-specific microenvironments for enhanced heterogeneous catalysis. 



 

1 

Chapter 1   

Molecular Catalysts and their Incorporation 

into Materials for CO2 Reduction 

1.1 Motivation for CO2 Reduction 

The development of methods for successful and efficient reduction of carbon dioxide 

(CO2) to liquid fuels has been a consistent and pressing matter for the past few decades. 

Indeed, CO2 reduction provides a potential route towards the chemical storage of electrical 

energy.1-5 The decline of fossil fuels has created a need for renewable energy sources that 

must be addressed by science. Recent research has focused on harnessing wind for electrical 

energy and utilizing solar cells to convert sunlight as a permanent source of energy. Plants 

capture atmospheric CO2 utilizing enzymes with complex secondary and tertiary structures 

using energy from sunlight.  Much of research into new ways of converting CO2 to liquid 

fuels is inspired by biological principles leading to biomimetic scaffolds and assemblies 

primarily made up of synthetic artificial catalysts.1-2, 6-7 

 

1.2 Thermodynamic and Kinetic Barriers for CO2 Reduction 

CO2 can be converted to fuels electrochemically, requiring a source of electricity and 

photochemically, wherein light provides the necessary energy to transfer electrons from an 

electron source to CO2 typically via a sensitizer or intermediary with specific optical 
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properties.1-4, 8-88 The reduction of CO2 to a liquid fuel is incredibly challenging both in terms 

of thermodynamics and kinetics. The single electron reduction of CO2 to its corresponding 

radical anion is calculated to have an extremely high thermodynamic barrier (-1.9V vs. 

NHE).1 This is due to the strength of the linear molecule and how difficult it is to bend its 

double bonds. Proton coupled reduction of CO2 is much more stable with respect to the 

thermodynamics because it usually involves the favorable formation of water. Figure 1.1 

adapted from reference 1 shows the reduction of CO2 to various products and the 

thermodynamic penalty for said reductions. 

Figure 1.1 Energies associated with CO2 reduction to CO, formate, formaldehyde, 

methanol, methane, and the CO2 anion adapted from reference 1. 
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 From a kinetic perspective, it is unfavorable to break and make multiple bonds in 

order to convert CO2 to even simple fuels such as methanol or methane. Given these 

considerations it is more plausible to convert CO2 to a more primary substrate like CO or 

formate and subsequently convert that further to liquid fuels. CO can be used with H2 to make 

syngas which can be used to make chemical fuels via industrial Fischer-Tropsch reactions.89 

1.3 Utilization of Rhenium Bipyridine Tricarbonyl Molecular 

Catalysts for CO2 Reduction 

Among the many molecular catalysts being considered for the reduction of CO2 to 

carbon monoxide (CO), ReI fac-tricarbonyl 2,2´bipyridyl (bpy) catalysts originally reported 

by Lehn et. al.90 have received significant attention because they have high turnover 

frequencies in the presence of weak acids1, 9, 22, 91 and unusually high selectivity for the 

reduction of CO2 over proton reduction; the latter being the thermodynamically favored 

reaction. One impediment is that these catalysts operate at potentials that are far more 

negative than the thermodynamic potential that is required to reduce CO2 to CO. 

In the electrochemical reduction of CO2 to CO by these catalyst, the active species is 

formed after 2 single electron reductions; the first, a reversible reduction around -1.4 V vs. 

SCE and a quasi-reversible reduction around 1.8 V vs. SCE (Figure 1.2).92.The reaction of 

this anion with CO2 was found to be 1st order with respect to CO2 and second order with 

respect to protons, consistent with a water forming mechanism (Figure 1.3). 
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Figure 1.2 Cyclic Voltammetry of dimethyl substituted Re bpy CO3Cl catalyst under argon 

reproduced from reference 92. 

Figure 1.3 Linear sweep curves of ditertbutyl Re bpy CO3Cl titrated with Methanol and 

Methanol-D4 adapted from reference 91. 
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1.4 Incorporation of Molecular Catalysts into Materials for CO2 

Reduction  

There are several examples of molecular catalysts being incorporated into materials 

via post synthetic modification strategies.  One very common practice is to cast commercial 

Nafion 117 which, is comprised of sulfonated Teflon, onto an electrode surface or other 

surface of interest and use electrostatics to non-valently bind positively charged molecules to 

the surface.8 One report involved the use of polystyrene type polypyridine to coordinate 

cobalt porphyrin catalysts which changed the product distribution.30 The most common 

method for production of surface bound films of Re bpy type catalysts is to take advantage of 

the non-innocence of the bipyridine ligand and electropolymerize vinyl bipyridine via 

electrochemical reductions (Figure 1.4).23, 25-26, 30 

    

Figure 1.4 Depiction of the reduction of vinyl bipyridine and its resulting radical 

polymerization. 

1.5 Acknowledgements 
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Chapter 2   

Charged Macromolecular Rhenium Bipyridine 

Catalysts with Tunable CO2 Reduction 

Potentials 

2.1 Introduction 

The development of methods for the efficient reduction of carbon dioxide (CO2) to 

liquid fuels has been a pressing challenge for the past few decades.1-9 Indeed, CO2 reduction 

provides a potential route towards the chemical storage of electrical energy.2-6 Among the 

many molecular catalysts being considered for the reduction of CO2 to carbon monoxide 

(CO), ReI fac-tricarbonyl 2,2´bipyridyl (bpy) catalysts have received significant attention 

because they have high turnover frequencies in the presence of weak acids and unusually 

high selectivity for the reduction of CO2 over proton reduction; the latter being the 

thermodynamically favored reaction.10-13 One impediment is that these catalysts operate at 

potentials that are far more negative than the thermodynamic potential that is required to 

reduce CO2 to CO. Borrowing principles inherent to enzymatic catalysis we aimed in this 

work to examine, and potentially enhance the performance of these ReI (bpy)-type catalysts 

by placing them within a polymeric scaffold. 

The typically high efficiencies of enzymatic processes found in nature emerges from 

the highly evolved tertiary and quaternary structures of the proteins. These architecturally 
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complex proteins create substrate specific active sites which enable the efficient shuttling of 

substrates towards one another and also stabilize the relevant transition states that facilitate 

product formation.14 Here, we sought to develop synthetic materials that could mimic the 

behavior of the active sites of these complex proteins to improve the catalytic performance of 

the ReI(bpy) CO2 reduction catalysts, in the simplest manner possible. To achieve this, we 

chose polymers as a homopolymeric scaffold that could anchor multiple functional sidechains 

creating a specific microenvironment around a linked molecular electrocatalysts; a concept 

which has been recently demonstrated by synthetic incorporation of charged units onto the 

ligand framework of a well-known iron porphyrin catalyst.15 

There are several examples of molecular electrocatalysts being incorporated into 

polymers via post-polymerization modification strategies16-19, non-covalent electrostatic 

binding to polymer membranes, and electropolymerization of non-innocent ligands20-26 in an 

effort to make materials that immobilize complexes at an electrode surface for heterogeneous 

catalysis. Some recent work has also focused on non-covalently immobilizing a ReI bpy 

catalyst in an ionic gel which is permeable to CO2.27 We know of no strategies that have 

utilized a bottom up approach wherein a derivative of the catalyst can react site specifically 

with a living polymer chain leading to precise incorporation into the polymer structure. Ring 

opening metathesis polymerization (ROMP) combined with cross metathesis (CM) were seen 

as ideal methods due to the functional group tolerance of the ruthenium based initiators in 

addition to their high reactivity with strained cyclic olefins and cis-olefins.28-29 ROMP 

utilizing these initiators also typically produces polymers with a narrow molecular weight 

distribution making polymer synthesis controllable and reproducible.29-30 

2.2 Results and Discussion 
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We began by preparing a chain transfer agent consisting of a cis-olefin bis-ReI (bpy) 

complex (1) capable of undergoing cross metathesis. 1 was readily synthesized from 

commercial starting materials in several steps28, 31-32 (Materials and Methods). 1 could be 

added to the chain end following complete polymerization of the positively charged 

quaternary ammonium monomer 2, neutral phenyl monomer 3, or negatively charged 

trifluoroborate monomer 4 yielding end-labeled polymers 5, 6, and 7 respectively (Figure 

2.1). These fully soluble polymers were then analyzed electrochemically to determine what 

effect the charge of the polymer had on the redox features and catalytic potential of the Re 

complex. The cross-metathesis reaction ensures that only one complex will be incorporated 

into each macromolecule, nullifying possible interactions between multiple complexes which 

has been reported for certain ReI (bpy) derivatives.33-34 

Figure 2.1 Synthesis of cationic polymer 5, neutral polymer 6, and anionic polymer 7 from 

the addition of fifteen equivalents of cationic monomer 2, neutral monomer 3, and anionic 

monomer 4 to a second generation modified Grubbs catalyst as the initiator and complex 1 as 

a termination agent. 
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Norbornene-based quaternary ammonium salts have been reported to polymerize via 

ROMP although they are typically prepared as bromide salts which have been shown to 

partially inhibit polymerizations via coordination to the ruthenium catalyst.35 Additionally, 

we rationalized that bromide exchange could also occur at the rhenium center which could 

alter catalysis. To bypass these issues, we synthesized 2 with a non-coordinating counter ion 

PF6
-.  Similarly, we also chose the non-coordinating R-BF3

- as the anionic moiety in 

monomer 4. In the same vein, previous reports have illustrated that Lewis acidic ions can 

alter the mechanism for CO2 reduction36 leading us to use n-tetrabutyl ammonium as the 

counter ion for 4 and the quaternary ammonium salt as the head group for the cationic 

monomer 2. To assess if the monomers polymerize reproducibly to yield polymers of narrow 

molecular weight distributions in a living, controllable manner, we ran polymerizations 

varying the monomer to initiator ratio and analyzed the resulting polymers by size exclusion 

chromatography multi angle light scattering (SEC-MALS) (Figures 2.2-2.4). Polymerizations 

of 2, 3, were living up to degrees of polymerization (DP) of 100. Monomer 4 was 

polymerizable, but did not perform as well, and when polymerized upwards of 40 DP, the 

dispersity began to increase and the solubility in DMF and ACN decreased. Polymerization 

rates were determined for 2, 3, and 4 by 1H NMR tracking the olefin peak before and after the 

addition of the initiator (Figures 2.5-2.7). 

Figure 2.2 A) LS traces of polymers made from 3 varying the monomer to initiator ratio.  B) 

Plot of Mn vs monomer 3 to initiator ratio with dispersity. 
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Figure 2.3 A) LS traces of polymers made from 4 varying the monomer to initiator ratio.  B) 

Plot of Mn vs monomer 4 to initiator ratio with dispersity. 

Figure 2.4 A) LS traces of polymers made from 5 varying the monomer to initiator ratio.  B) 

Plot of Mn vs monomer 5 to initiator ratio with dispersity.   
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Figure 2.5 1H-NMR of thirty equivalents of monomer 2 before and after addition of the 

initiator in DMF-d7. 

Figure 2.6 1H-NMR of thirty equivalents of monomer 3 before and after addition of the 

initiator in DMF-d7. 
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Having established the efficacy of 2, 3, and 4 as suitable ROMP monomers we then 

tested whether complex 1 was a viable chain transfer agent capable of end-labeling nascent 

polymers. This was achieved via 1H-NMR tracking the alkylidine peak of the initiator 20 

minutes after the addition of 15 equivalents of 2, 3, or 4 and 60 minutes after the subsequent 

addition of 1 (Figures 2.8-2.10). Within 60 minutes, all three cross metathesis reactions went 

to 100% conversion as determined by 1H NMR. These results support the use of 1 in cross 

metathesis reactions as a facile method for synthesizing a library of polymers end-labeled 

with the catalytic center to screen for various secondary sphere effects, as planned. 

Figure 2.7 1H-NMR of thirty equivalents of monomer 4 before and after addition of the 

initiator in DMF-d7 
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Figure 2.8 1H-NMR of alkylidine peak ten minutes after the addition of fifteen equivalents 

of 2 (blue) and forty-five minutes after the subsequent addition of 1. 

Figure 2.9 1H-NMR of alkylidine peak ten minutes after the addition of fifteen equivalents 

of 3 (blue) and forty-five minutes after the subsequent addition of 1. 
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We aimed to polymerize monomers 2, 3, and 4 to a DP of 15, end-labeled using 1 to 

give polymers 5, 6, and 7 (Materials and Methods). The isolated final products were 

characterized by 1H-NMR (Figures 2.11-2.13) and we verified that the catalytic moiety was  

intact after cross metathesis by observing IR bands of the CO ligands (Figures 2.14-2.16).  

SEC-MALS of 5, 6, and 7 showed well defined polymers with a narrow molecular weight 

distribution (Figure 2.17-2.19). The dispersity (Ð) and molecular weights for polymers 5 

6,140 g/mol (1.05), 6 5,510 g/mol (1.01), and 7 6,250 g/mol (1.08) were determined by SEC-

MALS relative to a norbornene phenyl standard with a dn/dc of 0.179.  

 

 

 

 

 

Figure 2.10 1H-NMR of alkylidine peak ten minutes after the addition of fifteen equivalents 

of 4 (blue) and forty-five minutes after the subsequent addition of 1. 



23 

 

 

 

 

 

Figure 2.11 1H-NMR of polymer 5 in DMF-d7. 

Figure 2.12 1H-NMR of polymer 6 in DMF-d7. 
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Figure 2.13 1H NMR of polymer 7 in DMF-d7 

Figure 2.14 Infrared spectra of polymer 5 in ACN. 
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Figure 2.15 Infrared spectra of polymer 6 in ACN. 
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Figure 2.16 Infrared spectra of polymer 7 in ACN. 
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Figure 2.17 SEC-MALS of Polymer 5 showing retention time and molecular weight 

distribution in DMF with 0.05 M LiBr. Mn = 6,140 g/mol. Ð = 1.05 

 

Figure 2.18 SEC-MALS of Polymer 6 showing retention time and molecular weight 

distribution in DMF with 0.05 M LiBr. Mn = 5,510 g/mol. Ð = 1.01 
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Subsequently, we examined the electrochemical behavior of 5, 6, and 7 in solution 

under an inert atmosphere of argon via cyclic voltammetry (Figure 2.20). The first reversible 

reduction of the positively charged 5 was observed at -1.75V vs. Fc/Fc+ which is consistent 

with the behavior of the free molecular Re(bpy) catalysts in ACN. The second quasi-

reversible reduction of 5 was observed at -1.94V vs. Fc/Fc+ which is ~ 300 mV more positive 

than the neutral 6 vide infra. This could possibly indicate that a local positive charge can 

stabilize formation of the negatively charged doubly reduced species.  This is significant 

since the double reduced species is the active catalyst for CO2 reduction. 6 showed redox 

behavior consistent with what has been previously reported with a single reversible reduction 

at -1.75V vs. Fc/Fc+ and a second quasi-reversible reduction at -2.24V vs. Fc/Fc+. The 

negatively charged 7 showed a first reduction at -1.80V vs. Fc/Fc+ and an additional 

irreversible feature around -2.69V vs. Fc/Fc+. Differential pulse voltammetry (DPV) showed 

Figure 2.19 SEC-MALS of Polymer 7 showing retention time and molecular weight 

distribution in DMF with 0.05 M LiBr. Mn = 6,250 g/mol. Ð = 1.08 



29 

 

a small second feature 7 scanning at -2.79V vs. Fc/Fc+ which suggests the negative charge 

from the polymer destabilizes the formation of the active species (Figure 2.21). 

Concentrations were approximated by measuring the absorbance of the polymers at 385 nm 

against a standard curve of 1 in ACN (Figure 2.22). Variable scan rate studies of 5, 6, and 7 

measuring the current at both reductions showed that the polymers exhibited behavior 

consistent with a freely diffusing species where electrode reactions are limited by mass 

Figure 2.20 Cyclic voltammetry of 5 (blue), 6 (green), and 7 (red) under an atmosphere of 

argon at 0.1V/s in acetonitrile with 0.1M TBAH as the supporting electrolyte. Working 

electrode (glassy carbon), counter (platinum wire), and reference (silver wire with ferrocene 

added as an internal standard). 
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transport (Figures 2.23-2.25). 

 

 

 

Figure 2.21 Differential pulse voltammetry of 7 under an argon atmosphere with a pulse 

width of 0.05V in acetonitrile with 0.1M TBAH as supporting electrolyte.  Working 

electrode (GC), counter (platinum wire), reference (silver wire with ferrocene added as an 

internal standard). 

Figure 2.22 (A) Visible spectrum of 2 in acetonitrile at variable concentrations. (B) 

Standard curve of absorbance of 2 at 385nm with extinction coefficient. 
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Figure 2.23 (A) Variable scan rate studies of 5 in acetonitrile under argon with 0.1M 

TBAH as supporting electrolyte.  Working electrode (glassy carbon), counter (platinum 

wire), reference (silver wire with ferrocene added as an internal standard). (B) Linear plot 

of the current of the first reduction of 5 versus the square root of the scan rate. (C) Linear 

plot of the current of the second reduction of 5 versus the square root of the scan rate. 
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Figure 2.24 (A) Variable scan rate studies of 6 in acetonitrile under argon with 0.1M 

TBAH as supporting electrolyte.  Working electrode (glassy carbon), counter (platinum 

wire), reference (silver wire with ferrocene added as an internal standard). (B) Linear plot 

of the current of the first reduction of 6 versus the square root of the scan rate. (C) Linear 

plot of the current of the second reduction of 6 versus the square root of the scan rate. 
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Under CO2, the maximum catalytic current achieved for 5 was observed at the 

potential of the second reduction, -1.94V vs. Fc/Fc+ (Figure 2.26).  The maximum current for 

6 occurred at -2.24V vs. Fc/Fc+ which indicates that incorporating the catalyst into a 

polymeric structure alone has no significant impact on the potential at which it reduces CO2. 

No current increase was observed for 7 which suggests that the negative charge destabilizes 

the catalytically active species, preventing its formation, and thus inhibiting CO2 reduction. 

ReI(bpy)(CO)3Cl was titrated with potassium phenyl trifluoroborate which did not deter 

catalysis further (Figure 2.27) supporting the local negative charge of 7 being the key factor 

in the inhibition of catalysis.   A similar trend was observed for 5, 6, and 7 in DMF under 

argon and CO2 atmospheres (Figure 2.28). Analysis of control polymers where 1 was not 

added before termination with ethyl vinyl ether under CO2 showed that the macromolecules 

themselves have no redox behavior within the solvent window indicating they do not 

contribute to the reactivity of 5, 6, or 7 with CO2 (Figure 2.29). The icat/ip for 5 and 6 under 

Figure 2.25 (A) Variable scan rate studies of 7 in acetonitrile under argon with 0.1M 

TBAH as supporting electrolyte.  Working electrode (glassy carbon), counter (platinum 

wire), reference (silver wire with ferrocene added as an internal standard). (B) Linear plot 

of the current of the first reduction of 7 versus the square root of the scan rate. 
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anhydrous conditions were 4.0 and 2.3 respectivley while ReIbpy(CO)3Cl is reported to have 

a icat/ip of 3.5 under these conditions13 suggesting that attachment to a macromolecule might 

decrease catalytic activity. 

 

 

 

 

 

 

Figure 2.26 Cyclic voltammetry of 5 (blue), 6 (green), and 7 (red) under an atmosphere of 

argon at 0.1V/s in acetonitrile with 0.1M TBAH as the supporting electrolyte. Working 

electrode (glassy carbon), counter (platinum wire), and reference (silver wire with ferrocene 

added as an internal standard). 
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Figure 2.27 Cyclic voltammetry of 5 (blue), 6 (green), and 7 (red) under an atmosphere of 

argon (A) and CO2 (B) at 0.1V/s in dimethyl formamide with 0.1M TBAH as the supporting 

electrolyte. Working electrode (glassy carbon), counter (platinum wire), and reference 

(silver wire with ferrocene added as an internal standard). 

Figure 2.28 Cyclic voltammetry of unlabeled analogues of polymers 5, 6, and 7 at 0.1V/s in 

acetonitrile with 0.1M TBAPF6 as the supporting electrolyte. Working electrode (glassy 

carbon), counter (platinum wire), and reference (silver wire with ferrocene added as an 

internal standard). 
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Bulk electrolysis experiments under CO2 were performed on 5, 6, and 7 for several 

hours at the potential which gave maximum current. The head spaces were analyzed by gas 

chromatography (GC) to show that 5 produced CO with a Faradaic efficiency (FE) of 

50±15%.  6 produced CO with a Faradaic efficiency of 25±7%.  7 did not produce a 

detectable amount of CO under these conditions. Minimal amounts of H2 were detected 

which would amount to an efficiency of <1% for 5, 6, and 7.  No other products were 

detected by GC and post CPE 1H NMR showed no detectable formate.  After prolonged bulk 

electrolysis we observed a precipitate on the electrode surface which could account for 

Figure 2.29 Cyclic voltammetry of 5 under argon and CO2 titrated with KPhBF3 in DMF 

with 0.1M TBAPF6 as supporting electrolyte at a scan rate of 0.1V/s. Working electrode 

(glassy carbon), counter (platinum wire), and reference (silver wire with ferrocene added as 

an internal standard). 
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lowered FE for the polymers as the efficiency is typically near 100% for these complexes in 

ACN.13 

Finally, we evaluated the behavior of polymer 5 with BrØnsted acids under CO2. 

Indeed, the titrations of trifluoroethanol (TFE) to 5 under saturated CO2 in ACN and DMF 

lead to a profound increase in the current response (Figures 2.30 & 2.31). Bulk electrolysis of 

5 in the presence of TFE showed a FE of 83±4% for CO2 with H2 still at less than 1% further 

supporting that the polymer does not change the inherent selectivity of the catalyst. In 

summary, the charge effects from the polymer on the potential of CO2 reduction persisted in 

the presence of TFE. 

Figure 2.30 Cyclic voltammetry of 5 under argon and CO2 titrated with 2,2,2-

trifluoroethanol until maximum current response was achieved in acetonitrile with 0.1M 

TBAPF6 as supporting electrolyte at a scan rate of 0.1V/s. Working electrode (glassy 

carbon), counter (platinum wire), and reference (silver wire with ferrocene added as an 

internal standard). 
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Figure 2.31 Cyclic voltammetry of 5 under argon and CO2 titrated with 2,2,2-

trifluoroethanol until maximum current response was achieved in dimethyl formamide with 

0.1M TBAPF6 as supporting electrolyte at a scan rate of 0.1V/s. Working electrode (glassy 

carbon), counter (platinum wire), and reference (silver wire with ferrocene added as an 

internal standard). 
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2.3 Materials and Methods 

1H NMR and 13C NMR spectra were recorded on a Varian 400 MHz spectrometer or 

Varian 500 MHz spectrometer at 298 K and referenced to residual solvent shifts. Data 

manipulations were completed using ACD Labs and Jeol software. Infrared spectra were 

taken on a Thermo Scientific Nicolet 6700 or a Bruker Equinox 55 spectrometer. 

Microanalyses were performed by Midwest Microlab , Indianapolis, In for C, H, N, O, P, F, 

and Cl. All solvents were obtained from Fisher Scientific. Any dry solvents were dried in 

house by storing in a moisture free environment and dried on a custom drying system running 

through two alumina columns prior to use. All compounds were obtained from Fisher 

Scientific or Sigma-Aldrich and used as obtained unless otherwise specified. 

Tetrabutylammonium hexafluorophosphate (TBAPF6, Aldrich, 98%) was recrystallized from 

MeOH twice and dried at 90 C overnight before use.  

Initiator, (IMesH2)(C5H5N)2(Cl)2Ru=CHPh,, was synthesized according to previously 

reported to literature procedures.37 4-cyano-2,2′-bipyridine, and 4-aminomethyl-2,2′-

bipyridine were synthesized according to literature procedures.13, 31-32  

Polymer Characterization.  Polymer dispersity and molecular weight were 

determined by size-exclusion chromatography (Phenomenex Phenogel 5u 10, 1K-75K, 300 x 

7.80 mm in series with a Phenomex Phenogel 5u 10, 10K-1000K, 300 x 7.80 mm with 0.05 

M LiBr in DMF) using a Chrom Tech® Series 1500 pump equipped with a multi-angle light 

scattering detector (DAWN-HELIOS: Wyatt Technology), a refractive index detector 

(Optilab T-rEX: Wyatt Technology) and a UV-Vis detector (Shimadzu SPD-10AVP) 

normalized to a polystyrene standard. 

Electrochemistry. Electrochemical experiments were carried out using a BASi 

Epsilon potentiostat. For all experiments, a single compartment cell was used with dry stir bar 
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and a dry needle was connected to control the atmosphere. A 3 mm diameter glassy carbon 

electrode from BAS was employed as the working electrode. The counter electrode was a 

flame-treated platinum wire and the reference electrode was a silver wire separated from 

solution by a Vycor tip. Experiments were run both with and without an added internal 

reference of ferrocene. All solutions were in acetonitrile dried under Ar atmosphere on a 

custom column system and contained 1 mM of catalyst and 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) as the supporting electrolyte. Experiments were purged with 

Ar or CO2 (to saturation at 0.28 M) before CV’s were taken and stirred in between successive 

experiments. 

Synthesis of Monomers and Chain Transfer Agent 

 

 

(Z)-4,4'-(but-2-ene-1,4-diylbis(oxy))bis(N-([2,2'-bipyridin]-4-

ylmethyl)benzamide): To a 100mL round bottom flask was added the bipyridal amine2,3 

2.57g (13.89 mmol), the PFP ester28 4.17g (6.31 mmol), and 4.83mL (27.75 mmol) in 50mL 

of dry THF.  The reaction was stirred under argon for 18 hours. The solvent was removed by 

rotary evaporation and the remaining residue was run on silica gel 7:3 EtOAc/Acetone to give 

3.54g (85%) of a white solid. 1H NMR (Acetone-D6, 500 MHz): δ (ppm) 8.61 (d, 2H, ArH, 

J=4.2 Hz),  8.56 (d, 2H, ArH, J=5.1 Hz),  8.39 (d, 2H, ArH, J=8.1 Hz),  8.35 (s, 2H, ArH),  

7.82 (d, 2H, ArH, J=8.3 Hz),  7.79 (d, 4H, ArH, J=8.4 Hz),  7.32 (t, 2H, ArH, J=6.1 Hz),  7.02 

(bt, 2H, NH),  6.91 (d, 4H, ArH, J=8.6 Hz),  5.95 (bt, 2H, -C=CH), 4.74 (d, 4H, CH2, 
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J=3.3Hz), 4.62 (d, 4H, CH2, J= 6.1 Hz). 13C{1H} NMR (Acetone-D6, 500 MHz):  (ppm) 

166.57, 166.27, 156.07, 155.98, 150.09, 149.33, 149.24.15, 136.99, 129.27, 128.47, 127.00, 

124.02, 122.71, 120.86, 119.21, 114.44, 84.35, 42.53. HR-MS (m/z) [M+H]+: Calculated: 

663.2714, Found: 663.2709. Elemental Analysis for C40H34N6O4 Calculated: C 72.49, H 5.17, 

N 12.68, O 9.66; Found: C 71.96.48, H 5.22, N 11.52, O 10.09. 

 

 

1 : An oven-dried 50 mL flask was charged with one equivalent of the bis-bpy 

(72mg, 0.11 mmol) ligand and two equivalents of rhenium(I)pentacarbonylchloride (80 mg, 

0.22 mmol). A reflux condenser was attached to the flask and dry THF (25 mL) was added. 

The solution was heated to reflux during which the clear solution became yellow in color. 

After 4 hours, the solvent was removed under reduced pressure and the yellow residue 

dissolved in a minimal amount of THF. An excess of diethyl ether was added before the flask 

was transferred to the freezer at –20 C and left overnight. The solution was filtered and 

washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a yellow spectroscopically 

pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, 

J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 

8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 

(d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, 

CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-D6, 500 MHz):  

(ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 
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129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) 

(CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 

1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 Calculated: C 43.36, H 2.69, Cl 5.56, 

N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 6.12, O 13.48. 

 

2: To a stirred solution of dimethylamine monomer4 (1g, 4.27 mmol) in dry THF (10 

mL) was added benzyl bromide (1.6 mL, 12.8 mmol). Immediately a white precipitate forms 

and the reaction was stirred further for one hour. The suspension was then filtered and 

washed with 50mL of diethylether.  The white solid was taken up in 35mL of deionized water 

and 1.044g of NH4PF6 dissolved in 5mL of water was added and a white precipate formed.  

This mixture was filtered and washed with 30mL of deionized water and dried in vacuo to 

give 2g (99%) of a white solid. 1H NMR (d6-DMSO, 500 MHz): δ (ppm) 7.54 (m, 5H, ArH), 

6.33 (s, 2H, -C=CH), 4.61 (s, 2H, CH2), 3.95 (t, 2H, CH2, J=7.6 Hz), 3.43 (t, 2H, CH2, J=7.7 

Hz), 3.13 (s, 2H, CH), 3.03 (s, 6H, CH3), 2.76 (s, 2H, CH), 1.39 (d, 1H, CH, J=9.8 Hz), 1.15 

(d, 1H, CH, J=9.7 Hz) 13C{1H} NMR (d6-DMSO, 500 MHz):  (ppm) 177.34, 137.68, 133.02, 

130.48, 129.00, 127.65, 66.52, 59.12, 49.22, 47.52, 44.52, 31.62. HR-MS (m/z) [M-PF6]+: 

Calculated: 325.1911, Found: 325.1910. Elemental Analysis for C20H34N2O2PF6 Calculated: 

C 51.07, H 5.36, N 5.96, P 6.58, F 24.23; Found: C 51.29, H 5.39, N 6.05, P 6.41, F 24.61. 
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(4-hydroxybenzyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 

(Phenol Monomer): To a stirred solution of cis-5-Norbornene-exo-2,3-dicarboxylic 

anhydride (500 mg, 3.04 mmol) in dry toluene (20 mL) was added 4-amino methyl phenol 

(375 mg, 3.65 mmol). 5mL of dry DMF was added and the reaction was heated to reflux with 

a Dean-Stark trap for 24 hrs. The reaction mixture was concentrated to dryness in vacuo and 

passed through a plug of silica in ethyl acetate 850 mg (95%) of a white solid. 1H NMR 

(CDCl3, 500 MHz): δ (ppm) 7.24 (d, 2H, ArH, J=8.6 Hz), 6.74 (d, 2H, ArH, J=8.7 Hz) 6.27 

(s, 2H, -C=CH), 4.56 (s, 2H, CH2), 3.24 (s, 2H, CH), 2.69 (s, 2H, CH), 1.39 (d, 1H, CH, 

J=9.9 Hz), 1.02 (d, 1H, CH, J=9.9 Hz) 13C{1H} NMR (CDCl3, 500 MHz):  (ppm) 178.28, 

155.70, 137.94, 130.52, 127.75, 115.54, 47.84, 45.28, 42.60, 41.92. HR-MS (m/z) [M+Na]+: 

Calculated: 292.0944, Found: 292.0945. Elemental Analysis for C16H15NO3 Calculated: C 

71.36, H 5.61, N 5.20, O 17.82; Found: C 71.30, H 5.62, N 5.21, O 17.96.  

 

4-((1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-

yl)methyl)phenyl acetate 3: To a cooled stirring solution of phenol monomer (500 mg, 1.85 

mmol) and triethyl amine (0.5 mL, 3.71 mmol) in dry dichlormethane (20 mL) was added 

acetyl chloride (0.25 mL, 3.71 mmol) dropwise over 5 minutes. The reaction warmed to room 

temperature and stirred for 1 hour.  The mixture was then diluted with 30 mL of 
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dichloromethane and was washed with saturated sodium bicarbonate 3 x 15 mL and 0.1M 

HCl 3 x 15mL.  The organic phase was dried over anhydrous sodium sulfate and concentrated 

to in vacuo to give a 580 mg (98%) of a white solid.  1H NMR (d1-CDCl3, 500 MHz): δ 

(ppm) 7.40 (d, 2H, ArH, J=8.4 Hz), 7.01 (d, 2H, ArH, J=8.5 Hz) 6.27 (s, 2H, -C=CH), 4.60 

(s, 2H, CH2), 3.25 (s, 2H, CH), 2.68 (s, 2H, CH), 1.41 (d, 1H, CH, J=9.9 Hz), 1.05 (d, 1H, 

CH, J=9.8 Hz) 13C{1H} NMR (d1-CDCl3, 500 MHz):  (ppm) 177.63, 169.40, 150.27, 137.91, 

133.47, 130.28, 121.77, 47.83, 45.27, 42.70, 41.68, 21.13. HR-MS (m/z) [M+Na]+: 

Calculated: 334.1050, Found: 334.1047. Elemental Analysis for C18H17NO4 Calculated: C 

69.44, H 5.50, N 4.50, O 20.56; Found: C 69.88, H 5.75, N 4.61, O 20.36. 

 

 

(4-hydroxybenzyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 

pinacol ester monomer): To a stirred solution of cis-5-Norbornene-exo-2,3-dicarboxylic 

anhydride (500 mg, 3.04 mmol) and triethyl amine (0.5 mL, 3.34 in dry toluene (20 mL) and 

5 mL of dimethyl formamidine was added 4-(Aminomethyl)phenylboronic acid pinacol ester 

hydrochloride (900 mg, 3.34 mmol). The reaction was heated to reflux with a Dean-Stark trap 

for 24 hrs. The reaction mixture was concentrated to dryness in vacuo taken up in 

dichloromethane and passed through a plug of silica gel to give 980 mg (87%) of a white 

solid. 1H NMR (d1-CDCl3, 500 MHz): δ (ppm) 7.75 (d, 2H, ArH, J=8.0 Hz), 7.37 (d, 2H, 

ArH, J=8.0 Hz) 6.28 (s, 2H, -C=CH), 4.64 (s, 2H, CH2), 3.25 (s, 2H, CH), 2.68 (s, 2H, CH), 

1.42 (d, 1H, CH, J=9.9 Hz), 1.34 (s, 12H, CH3) 1.05 (d, 1H, CH, J=9.9 Hz) 13C{1H} NMR 
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(d1-CDCl3, 500 MHz):  (ppm) 177.64, 138.86, 137.94, 135.12, 128.18, 83.89, 47.79, 45.31, 

42.68, 42.21, 24.85. HR-MS (m/z) [M+Na]+: Calculated: 402.1851, Found: 402.1847. 

Elemental Analysis for C22H26BNO4 Calculated: C 69.67, H 6.91, N 3.69, O 16.52; Found: C 

69.74, H 7.17, N 3.74, O 16.52. 

 

 

4: Pinacol ester monomer (850 mg, 2.14 mmol) was stirred in a 10 mL of 50/50 

tetrahydrofuran/methanol cooled in an ice bath. 3M KHF2 (5 mL, 12.83 mmol) was added 

dropwise over 10 minutes and the reaction was warmed to room temperature and allowed to 

stir. After thirty minutes the reaction was dried in vacuo, resuspended 4 mL in 

methanol/water 50/50 and dried again 3 times.  The crude residue was lyophilized overnight 

and then extracted with a soxhlet extractor with 100 mL of acetone. After removing the 

acetone via rotary evaporation the white solid was dissolve in 40 mL of deionized H2O and 

tetrtabutyl ammonium bromide (827mg, 2.56 mmol) was added in 5 mL of deionized water.  

The resulting precipitate was centrifuged and the water was poured off leaving a waxy solid 

which was washed with diethyl ether to give 765 mg (62%) of an off white solid. 1H NMR 

(d6-DMSO, 500 MHz): δ (ppm) 7.23 (d, 2H, ArH, J=7.7 Hz), 6.97 (d, 2H, ArH, J=7.6 Hz) 

6.29 (s, 2H, -C=CH), 4.42 (s, 2H, CH2), 3.15 (t, 8H, CH2, J= 8.3 Hz) 3.08 (s, 2H, CH), 2.70 

(s, 2H, CH), 1.55 (m, 8H, CH2), 1.29 (m, 10H, CH & CH3) 1.00 (d, 1H, CH, J=9.5 Hz) 0.93 

(t, 12H, CH3, J=7.20)  13C{1H} NMR (d6-DMSO, 500 MHz):  (ppm) 177.87, 138.19, 133.07, 

134.55, 126.51, 57.95, 47.85, 45.05, 42.67, 42.28, 23.50, 19.67, 13.96. HR-MS (m/z) [M-
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NBu4]+: Calculated: 320.1078, Found: 320.1080. Elemental Analysis for C32H50BF3N2O2 

Calculated: C 68.32, H 8.96, N 4.98, F 10.17; Found: C 68.33, H 8.99, N 5.05, F 10.98. 

Polymer Synthesis 

Synthesis of Polymers 6 & 8: Monomer 2 or 4 (0.413mmol) were dissolved in 4 mL 

degassed dimethyl formamide and initiator (IMesH2)(C5H5N)2(Cl)2Ru=CHPh (0.0272 mmol) 

was added in 0.5 mL of degassed dimethyl formamide in one portion. The reaction was 

allowed to stir under nitrogen gas for thirty minutes. 2 (0.0548 mmol) was then added in 0.5 

mL and reaction was stirred for an addition two hours. The reaction was then quenched with 

0.2 mL of ethyl vinyl ether and stirred for an additional five minutes. The reaction was then 

poured into 40 mL of tetrahydrofuran and a yellow solid precipitated out of solution.  This 

solid was filtered and washed with tetrahydrofuran to give polymer 5 or 7. 

Synthesis of Polymer 7: Monomer 3 (0.413mmol) were dissolved in 4 mL degassed 

dimethyl formamide and initiator (IMesH2)(C5H5N)2(Cl)2Ru=CHPh (0.0272 mmol) was 

added in 0.5 mL of degassed dimethyl formamide in one portion. The reaction was allowed to 

stir under nitrogen gas for thirty minutes. 2 (0.0548 mmol) was then added in 0.5 mL of 

degassed dimethyl formamide and reaction was stirred for an addition two hours. The 

reaction was then quenched with 0.2 mL of ethyl vinyl ether and stirred for an additional five 

minutes. The reaction was then poured into 40 mL of methanol and a yellow solid 

precipitated out of solution.  This solid was filtered and washed with methanol to give 

polymer 6. 

2.4 Conclusions  

These results indicate that polymer scaffolds can be used to modulate the potential at 

which molecular catalysts reduce CO2 by changing the microenvironment around the 
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catalytic center, stabilizing or destabilizing the catalytically active species accordingly. We 

consider this a novel step towards generating bioinspired macromolecular electrocatalysts 

where the polymeric scaffold can be used to modulate the performance of a catalytic metal 

center. Further work will include utilizing this bottom up approach to incorporate these 

molecular catalysts into electrode bound macroporous materials with specific local 

environments to achieve enhanced heterogeneous CO2 reduction at an electrode surface. 
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Chapter 3   

Bridged Bis-Bipyridyl Rhenium Complex 

Enables Stable Mixed Valent State: Structural 

Insight Into The Ligand Framework 

3.1 Introduction 

Re(I) fac-tricarbonyl bipyridine (bpy) catalysts have been studied extensively for the 

reduction of CO2 to CO because of their high turnover frequencies in the presence of weak 

acids and high selectivity for the reduction of CO2 rather than the thermodynamically 

favorable proton reduction.1-10 One drawback is that these catalysts operate at potentials far 

more negative than the thermodynamic potential to reduce CO2 to CO. Typically, these 

catalysts operate via a unimolecular 2 electron reduction pathway where a ReI[(bpy)(CO)3Cl] 

catalyst is reduced by a single electron to form ReI[(bpy)-(CO)3Cl which subsequently 

undergoes a ligand-to-metal charge transfer and loses chloride to be reduced by a second 

electron to form Re0[(bpy)(CO)3]- anion which is catalytically active for the reduction of CO2 

to CO.  Recently we have reported on a ReI fac-tricarbonyl (bpy) catalyst with 

acetamidomethyl groups on the 4,4‘position of the 2,2‘-bipyridal ligand complex which was 

shown to reduce CO2 though an alternative binuclear mechanism which utilized two singly 

reduced complexes forming a non-covalently bonded dimer via hydrogen bonding of the 

amides.  Through this pathway, a ReI (dac bpy) hydrogen bonded dimer is singly reduced at 
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each metal center to form a species catalytically active for the disproportionation of two 

molecules of CO2 to CO and carbonate with lower overpotential.5-6 Absent CO2 this dimer 

composed of two singly reduced complexes which rapidly form a metal-metal bonded species 

that is catalytically inactive for CO2 reduction.   In this work, we present a cis-olefin bridge 

bis-ReI fac-tricarbonyl bipyridine complex 1 capable forming the same catalytically active 

species independent of concentration and reducing CO2 at the same potential with a higher 

Faradaic efficiency.  The ligand bridge anchors the metal centers close enough to see a 

pronounced comproportionation between the first and second reduction 220 mV (Kc= 5.2 × 

103) which favors CO2 reduction over metal-metal bond formation resulting in a higher 

Faradaic efficiency. Herein we present infrared, UV-Vis, and EPR spectroscopy of the stable 

singly reduced mixed valent species. Varying the X-ligand seemed to indicate that there is a 

relationship between the formation of the mixed-valent state and the extrusion of the ligand. 

We also show electrochemically that this stabilization effect is independent of the 

stereochemistry of the olefin and even exists with a saturated analogue of the complex as 

well. Given this discovery we also prepared asymmetric variations of this complex bearing a 

phenolic and pentafluorophenyl side chains and showed cooperative catalytic effects in terms 

of turn over frequency (TOF) and overpotential. These results suggest that complex 1 be used 

in multiple CM reactions with a library of olefin substrates to screen for co-catalytic effects in 

a high throughput fashion.11 

3.2 Results and Discussion 

We began by analyzing the cyclic voltammetry (CV) of 1 under argon which showed 

four reductions consistent with the behavior of Re (dac bpy) in acetonitrile.  The first 

reduction at -1.75 V vs. Fc/Fc+ corresponds to a single electron transfer to one of the two 

complexes with the second complex getting a single electron at -1.97 V vs. Fc/Fc+ (Figure 
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3.1).  These complexes subsequently undergo loss of their chloride ligands and form a Re-Re 

covalent bond which can be inferred from its oxidation on the return sweep at -0.51 V vs. 

Fc/Fc+.  Lastly, on the forward sweep there are two more reductions at -2.16 V and -2.36 V 

vs. Fc/Fc+ which correspond to two more single electron reductions at each of the metal 

centers all of which are consistent with the electrochemical behavior of the parent complex 

Re (dac bpy) in acetonitrile.  In acetonitrile 1 reduces CO2 near the first reduction potential 

(Figure 3.2) consistent with the behavior of Re (dac bpy). Variable scan rate studies showed 

that the separation of the first two reductions was maintained regardless of sweep rate (Figure 

3.3).  Unlike Re (dac bpy), 1 seemed to exhibit similar behavior in dmf as well (Figure 3.4) 

 

 

 

 

 

Figure 3.1 Cyclic Voltammetry of 1 under argon in acetonitrile with 0.1M TBAPF6 at a 

scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum wire, Reference: 

Ag wire with ferrocene added as an internal standard. 
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Figure 3.2 Cyclic Voltammetry of 1 under argon (black) and CO2 (red) in acetonitrile with 

0.1M TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: 

platinum wire, Reference: Ag wire with ferrocene added as an internal standard. 
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Figure 3.3 Variable scan rate study of 1 under argon in acetonitrile with 0.1M TBAPF6 at a 

scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum wire, Reference: 

Ag wire with ferrocene added as an internal standard. 
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Rotating disk electrode (RDE) measurements were taken at same concentration as 

that of the CVs to calculate the diffusion coefficient of 1 in acetonitrile and DMF both of 

which were consistent with a monomeric species diffusing in solution further confirming that 

the binuclear behavior observed is due to intramolecular interactions within individual bis-

complexes. 

  Next, we examined the CO stretches of the carbonyl ligands at resting potential and 

at each reduction potential using infrared spectroelectrochemistry (IR-SEC).  Interestingly, 

the major CO stretch corresponding to the species with the Re-Re bond isn’t observed when 1 

is held at the first reduction in acetonitrile.  At the first reduction broad peaks were observed 

at 2017 cm-1, 1912 cm-1, and 1890 cm-1 which is slightly more shifted than at resting potential 

which are 2022 cm-1, 1915 cm-1, and 1899 cm-1 respectivley (Figure 3.4).  When 1 was 

Figure 3.4 Cyclic Voltammetry of 1 under argon (black) and CO2 (red) in dimethyl 

formamide with 0.1M TBAPF6 at a scan rate of 0.05 V/s. Working electrode: glassy 

carbon, Counter: platinum wire, Reference: Ag wire with ferrocene added as an internal 

standard. 
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allowed to equilibrate at the second reduction potential peaks at 1982 cm-1 and 1922 cm-1 

consistent with previously observed Re-Re bonded complexes (Figure 3.5).  

 

 

 

 

 

Figure 3.5 IR-SEC of 1 at resting potential (black) and the first reduction (red) in under 

argon in acetonitrile with 0.1M TBAPF6. Working electrode: platinum disk, Counter: 

platinum ring, Reference: Ag ring.  
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Bulk electrolysis of 1 under CO2 in acetonitrile showed a steady current over eight 

turnovers and GC of the headspace confirmed the formation of CO with a Faradaic efficiency 

ηCO=100±3%.   

Figure 3.6 IR-SEC of 1 at resting potential (black), the second reduction (red), third 

reduction (green) and the fourth reduction (blue) in under argon in acetonitrile with 0.1M 

TBAPF6. Working electrode: platinum disk, Counter: platinum ring, Reference: Ag ring. 
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To investigate the nature of the mixed-valent state we synthesized analogues varying 

the X-ligand (Br = 2, I = 3, CN = 4) in an effort to determine if their lability was related to 

stability of the mixed valent state (Figure 3.7). Cyclic voltammetry of 2 showed similar 

behavior to 1 (Figure 3.8 and 3.9).  Scan rate studies going to the first reduction show that a 

reversible singly reduced species exists on the CV time scale (Figure 3.10).  

4 exhibited behavior more consistent with the mononuclear complexes with only two 

reductions at -1.80 V vs. Fc/Fc+ and -2.62 V vs. Fc/Fc+ (Figure 3.11). Variable scan rate 

studies showed both reduction species persisted even at 3200mV/sec (Figure 3.12). Sweeping 
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Figure 3.7 13C NMR of 1 (blue), 2 (green), 3 (red), and 4 (pink) looking at the carbonyl 

carbon shifts. 
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only to the first reduction, no oxidation was observed at -0.5 V vs. Fc/Fc+ on the reverse 

sweep (Figure 3.13). 

Figure 3.9 Cyclic Voltammetry of 2 under argon in acetonitrile with 0.1M TBAPF6 at a 

scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum wire, Reference: 

Ag wire with ferrocene added as an internal standard. 

Figure 3.8 Variable scan rate study of 2 under argon in acetonitrile with 0.1M TBAPF6 at a 

scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum wire, Reference: 

Ag wire with ferrocene added as an internal standard. 
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Figure 3.10 Variable scan rate study of 2 sweeping to the first reduction under argon in 

acetonitrile with 0.1M TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, 

Counter: platinum wire, Reference: Ag wire with ferrocene added as an internal standard. 
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Figure 3.11 Cyclic Voltammetry of 3 under argon in acetonitrile with 0.1M TBAPF6 at a 

scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum wire, Reference: 

Ag wire with ferrocene added as an internal standard. 

Figure 3.12 Variable scan rate study of 3 under argon in acetonitrile with 0.1M TBAPF6 at 

a scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum wire, 

Reference: Ag wire with ferrocene added as an internal standard. 
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Next, we investigated the relevance of the stereochemistry of the double bond on the 

ability to enter into the mixed valent state and reduce CO2. Through a similar synthetic route, 

were able to synthesize complex 5, the trans analogue of 1.  Under argon, 5, exhibited 

electrochemical behavior similar to 1, with the first reduction at -1.75 V vs. Fc/Fc+, the 

second at -1.98 V vs. Fc/Fc+, and a third at -2.22 V vs. Fc/Fc+ all of which persisted even at 

higher scan rates (Figure 3.14). There was no fourth reduction likely due to its instability 

under these conditions.  The reverse sweep also showed an irreversible oxidation around -0.5 

V vs. Fc/Fc+ which indicates that the Re-Re metal bond also forms with 5. Under CO2 an 

Figure 3.13 Variable scan rate study of 3 sweeping to the first reduction under argon in 

acetonitrile with 0.1M TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, 

Counter: platinum wire, Reference: Ag wire with ferrocene added as an internal standard. 
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increase in current is seen just after the first reduction indicating that 5 and 1 operate via the 

same mechanism (Figure 3.15). 

 

 

Figure 3.14 Variable scan rate study of 4 sweeping under argon in acetonitrile with 0.1M 

TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: platinum 

wire, Reference: Ag wire with ferrocene added as an internal standard. 

Figure 3.15 Cyclic Voltammetry of 4 under argon (black) and CO2 (red) in acetonitrile with 

0.1M TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: 

platinum wire, Reference: Ag wire with ferrocene added as an internal standard. 
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Having shown that the ligand framework is capable of anchoring 2 complexes near 

one another, we aimed to demonstrate that a proton transfer relay could be incorporated onto 

a single complex via the same bridged linker. We achieved this by synthesizing an 

asymmetric mono-bipyridyl ligand with an open activated ester 5, subsequently metalating 

said complex to give 6, and then reacting the active ester with 4 methyl amino phenol to give 

7 (Figure 3.16).   

 

 

 

Electrochemical analysis mono-pfp ester complex 6 under argon showed features not 

typical of these types of catalysts where an irreversible first reduction was observed at -1.76 

V vs. Fc/Fc+, and an irreversible second was shifted more negative to -2.42 V vs. Fc/Fc+.  6 

reduced CO2 just after the first reduction which could be due to inductive effects from the 

fluorine stabilizing CO2 binding the metal complex (Figure 3.17). 7, under argon had features 

consistent with the monomeric catalyst with a reversible first reduction at -1.78 V vs. Fc/Fc+ 

Figure 3.16 Synthesis of complex with proton relay, 7 
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and a second quasi reversible reduction at -2.17 V vs. Fc/Fc+.  Under CO2 a large catalytic 

current was observed for 7 indicating the phenolic arm is acting co-catalytically (Figure 

3.18). 

 

Figure 3.18 Cyclic Voltammetry of 7 under argon (black) and CO2 (red) in acetonitrile with 

0.1M TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: 

platinum wire, Reference: Ag wire with ferrocene added as an internal standard. 

Figure 3.17 Cyclic Voltammetry of 6 under argon (black) and CO2 (red) in acetonitrile with 

0.1M TBAPF6 at a scan rate of 0.1 V/s. Working electrode: glassy carbon, Counter: 

platinum wire, Reference: Ag wire with ferrocene added as an internal standard. 
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3.3 Materials and Methods 

1H NMR and 13C NMR spectra were recorded on a Varian 400 MHz spectrometer or 

Varian 500 MHz spectrometer at 298 K and referenced to residual solvent shifts. Data 

manipulations were completed using ACD Labs and Jeol software. Infrared spectra were 

taken on a Thermo Scientific Nicolet 6700 or a Bruker Equinox 55 spectrometer. 

Microanalyses were performed by Midwest Microlab , Indianapolis, In for C, H, N, O, P, F, 

and Cl. All solvents were obtained from Fisher Scientific. Any dry solvents were dried in 

house by storing in a moisture free environment and dried on a custom drying system running 

through two alumina columns prior to use. All compounds were obtained from Fisher 

Scientific or Sigma-Aldrich and used as obtained unless otherwise specified. 

Tetrabutylammonium hexafluorophosphate (TBAPF6, Aldrich, 98%) was recrystallized from 

MeOH twice and dried at 90 C overnight before use.  

Electrochemistry. Electrochemical experiments were carried out using a BASi 

Epsilon potentiostat. For all experiments, a single compartment cell was used with dry stir bar 

and a dry needle was connected to control the atmosphere. A 3 mm diameter glassy carbon 

electrode from BAS was employed as the working electrode. The counter electrode was a 

flame-treated platinum wire and the reference electrode was a silver wire separated from 

solution by a Vycor tip. Experiments were run both with and without an added internal 

reference of ferrocene. All solutions were in acetonitrile dried under Ar atmosphere on a 

custom column system and contained 1 mM of catalyst and 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) as the supporting electrolyte. Experiments were purged with 

Ar or CO2 (to saturation at 0.28 M) before CV’s were taken and stirred in between successive 

experiments. 
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Synthesis of Complexes 

 

2 : An oven-dried 50 mL flask was charged with one equivalent of 1 and 50 

equivalents  of potassium bromide (KBr) (80 mg, 0.22 mmol). A reflux condenser was 

attached to the flask and dry methanol (25 mL) was added. The solution was heated to reflux 

and covered with aluminum foil and stirred in the dark. After 24 hours, was poored into 250 

mL of cold water, extracted with dichloromethane (DCM) 5 x 50 mL, and concentrated to 

dryness. The yellow residue dissolved in a minimal amount of THF and an excess of diethyl 

ether was added before the flask was transferred to the freezer at –20 ºC and left overnight. 

The solution was filtered and washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of 

a yellow spectroscopically pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 

2H, NH),  9.00 (d, 2H, ArH, J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, 

J=8.1 Hz),  8.71 (s, 2H, ArH), 8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  

7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 (d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 

(bt, 2H, -C=CH2), 4.83 (d, 4H, CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR 

(DMSO-D6, 500 MHz):  (ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 

153.22, 153.07, 140.55, 129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 

64.26, 42.32. IR (THF) (CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  

Calculated: 1235.1079, Found: 1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 

Calculated: C 43.36, H 2.69, Cl 5.56, N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 

6.12, O 13.48. 
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3: An oven-dried 50 mL flask was charged with one equivalent of 1 and 50 

equivalents  of sodium iodide (NaI) (80 mg, 0.22 mmol). A reflux condenser was attached to 

the flask and dry acetone (25 mL) was added. The solution was heated to reflux and covered 

with aluminum foil and stirred in the dark. After 24 hours, was filtered into 250 mL of cold 

water, extracted with dichloromethane (DCM) 5 x 50 mL, and concentrated to dryness. The 

yellow residue dissolved in a minimal amount of THF and an excess of diethyl ether was 

added before the flask was transferred to the freezer at –20 ºC and left overnight. The solution 

was filtered and washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a yellow 

spectroscopically pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  

9.00 (d, 2H, ArH, J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  

8.71 (s, 2H, ArH), 8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, 

ArH, J=6.5 Hz),  7.61 (d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -

C=CH2), 4.83 (d, 4H, CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-

D6, 500 MHz):  (ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 

153.07, 140.55, 129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 

42.32. IR (THF) (CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 

1235.1079, Found: 1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 Calculated: C 

43.36, H 2.69, Cl 5.56, N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 6.12, O 13.48. 
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4 : An oven-dried 50 mL flask was charged with one equivalent of 1 and 50 

equivalents  of potassium cyanide (KCN) (80 mg, 0.22 mmol). A reflux condenser was 

attached to the flask and dry methanol (25 mL) was added. The solution was heated to reflux 

and covered with aluminum foil and stirred in the dark. After 24 hours, was poored into 250 

mL of cold water, extracted with dichloromethane (DCM) 5 x 50 mL, and concentrated to 

dryness. The yellow residue dissolved in a minimal amount of THF and an excess of diethyl 

ether was added before the flask was transferred to the freezer at –20 ºC and left overnight. 

The solution was filtered and washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of 

a yellow spectroscopically pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 

2H, NH),  9.00 (d, 2H, ArH, J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, 

J=8.1 Hz),  8.71 (s, 2H, ArH), 8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  

7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 (d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 

(bt, 2H, -C=CH2), 4.83 (d, 4H, CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR 
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(DMSO-D6, 500 MHz):  (ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 

153.22, 153.07, 140.55, 129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 

64.26, 42.32. IR (THF) (CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  

Calculated: 1235.1079, Found: 1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 

Calculated: C 43.36, H 2.69, Cl 5.56, N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 

6.12, O 13.48. 

5 : An oven-dried 50 mL flask was charged with one equivalent of the bis-bpy 

(72mg, 0.11 mmol) ligand and two equivalents of rhenium(I)pentacarbonylchloride (80 mg, 

0.22 mmol). A reflux condenser was attached to the flask and dry THF (25 mL) was added. 

The solution was heated to reflux during which the clear solution became yellow in color. 

After 4 hours, the solvent was removed under reduced pressure and the yellow residue 

dissolved in a minimal amount of THF. An excess of diethyl ether was added before the flask 

was transferred to the freezer at –20 C and left overnight. The solution was filtered and 

washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a yellow spectroscopically 

pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, 

J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 

8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 
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(d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, 

CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-D6, 500 MHz):  

(ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 

129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) 

(CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 

1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 Calculated: C 43.36, H 2.69, Cl 5.56, 

N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 6.12, O 13.48. 

 

6 : An oven-dried 50 mL flask was charged with one equivalent of the bis-bpy 

(72mg, 0.11 mmol) ligand and two equivalents of rhenium(I)pentacarbonylchloride (80 mg, 

0.22 mmol). A reflux condenser was attached to the flask and dry THF (25 mL) was added. 

The solution was heated to reflux during which the clear solution became yellow in color. 

After 4 hours, the solvent was removed under reduced pressure and the yellow residue 

dissolved in a minimal amount of THF. An excess of diethyl ether was added before the flask 

was transferred to the freezer at –20 C and left overnight. The solution was filtered and 

washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a yellow spectroscopically 

pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, 

J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 

8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 

(d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, 
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CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-D6, 500 MHz):  

(ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 

129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) 

(CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 

1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 Calculated: C 43.36, H 2.69, Cl 5.56, 

N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 6.12, O 13.48. 

 

7 : An oven-dried 50 mL flask was charged with one equivalent of the bis-bpy 

(72mg, 0.11 mmol) ligand and two equivalents of rhenium(I)pentacarbonylchloride (80 mg, 

0.22 mmol). A reflux condenser was attached to the flask and dry THF (25 mL) was added. 

The solution was heated to reflux during which the clear solution became yellow in color. 

After 4 hours, the solvent was removed under reduced pressure and the yellow residue 

dissolved in a minimal amount of THF. An excess of diethyl ether was added before the flask 

was transferred to the freezer at –20 C and left overnight. The solution was filtered and 

washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a yellow spectroscopically 

pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, 

J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 

8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 

(d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, 

CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-D6, 500 MHz):  

(ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 
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129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) 

(CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 

1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 Calculated: C 43.36, H 2.69, Cl 5.56, 

N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 6.12, O 13.48. 

 

3.4 Conclusions  

We have demonstrated that we can utilize a covalently linked bis-bipyridyl ligand to 

intramolecularly promote binuclear CO2 disproportionation to carbonate and carbon 

monoxide. Substitution of one of the complexes with a co-catalyst lead to an enhancement in 

catalysis.  Future work will involve using CM to screen for other possible co-catalysts. 

3.5 Acknowledgements 

Chapter 3 contains material that is currently being prepared for submission for 

publication: "Bis-Bipyridal Ligand Promotes Formation of Stable Mixed Valent State with 

Re Catalyst" Swagat Sahu, Tyler M. Porter, Po Ling Cheung, Clifford P. Kubiak* and Nathan 

C. Gianneschi*. The dissertation author is the primary author of this pending manuscript.    

3.6 References 

1. Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M., Factors 

affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in 

a polyvinylpyridine membrane coated on a graphite electrode. Journal of Electroanalytical 

Chemistry 1996, 412 (1-2), 125-132. 

 

2. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M., Electrocatalytic and 

homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 

89–99. 

 



75 

 

3. Hawecker, J.; Lehn, J.-M.; Ziessel, R., Electrocatalytic reduction of carbon dioxide 

mediated by Re(bipy)(CO)3Cl (bipy = 2,2[prime or minute]-bipyridine). J. Chem. Soc., 

Chem. Comm. 1984,  (6), 328–330. 

 

4. Inglis, J. L.; MacLean, B. J.; Pryce, M. T.; Vos, J. G., Electrocatalytic pathways 

towards sustainable fuel production from water and CO2. Coord. Chem. Rev. 2012, 256, 

2571–2600. 

5. Machan, C. W.; Chabolla, S. A.; Yin, J.; Gilson, M. K.; Tezcan, F. A.; Kubiak, C. P., 

Supramolecular assembly promotes the electrocatalytic reduction of carbon dioxide by Re(I) 

bipyridine catalysts at a lower overpotential. J Am Chem Soc 2014, 136 (41), 14598-607. 

 

6. Machan, C. W.; Yin, J.; Chabolla, S. A.; Gilson, M. K.; Kubiak, C. P., Improving the 

Efficiency and Activity of Electrocatalysts for the Reduction of CO2 through Supramolecular 

Assembly with Amino Acid-Modified Ligands. J Am Chem Soc 2016, 138 (26), 8184-93. 

 

7. McNicholas, B. J.; Blakemore, J. D.; Chang, A. B.; Bates, C. M.; Kramer, W. W.; 

Grubbs, R. H.; Gray, H. B., Electrocatalysis of CO2 Reduction in Brush Polymer Ion Gels. J 

Am Chem Soc 2016, 138 (35), 11160-3. 

 

8. Sampson, M. D.; Kubiak, C. P., Manganese Electrocatalysts with Bulky Bipyridine 

Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low 

Overpotentials. J Am Chem Soc 2016, 138 (4), 1386-1393. 

 

9. Smieja, J. M.; Benson, E. E.; Kubiak, C. P., Electrocatalytic reduction of CO2 by 

Re(bipy-tBu)(CO)(3)Cl: A very fast catalyst. Abstracts of Papers of the American Chemical 

Society 2010, 239. 

 

10. Yoshida, T.; Tsutsumida, K.; Teratani, S.; Yasufuku, K.; Kaneko, M., 

Electrocatalytic Reduction of Co2 in Water by [Re(Bpy)(Co)3br] and [Re(Terpy)(Co)3br] 

Complexes Incorporated into Coated Nafion Membrane (Bpy = 2,2'-Bipyridine, Terpy = 2,2'-

6',2''-Terpyridine). J Chem Soc Chem Comm 1993,  (7), 631-633. 

 

11. Trnka, T. M.; Grubbs, R. H., The Development of L2X2RuCHR Olefin Metathesis 

Catalysts:  An Organometallic Success Story. Acc. Chem. Res. 2000, 34 (1), 18–29. 



 

76 

Chapter 4   

Living Polymerization of Molecular Catalysts: 

A Facile Approach for Synthesizing 

Macromolecular Proton and Electron Transfer 

Relays 

4.1 Introduction 

ReI fac-tricarbonyl 2,2´bipyridyl (bpy) catalysts have received a significant amount 

of attention due to their ability to reduce CO2 to CO both electrochemically and 

photochemically in the presence of a photosensitizer and electron donor.  The electrochemical 

reduction of CO2 to CO with these catalysts has been shown to occur at high turnover 

frequencies (TOF) in the presence of weak acids, while maintaining selectivity for CO2 over 

proton reduction. Given the dependency of these catalysts on co-catalytic additives we aimed 

to borrow principles from nature to construct an artificial metalloprotein which could 

effectively place catalyst and co-catalyst within proximity of one another to promote 

favorable interactions which would ultimately lead to and enhancement in the TOF for CO2 

reduction.1-5 

We have recently reported on a strategy to modulate the overpotential of these 

catalysts by appending them to the end of a polymers bearing sidechains with charged 
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moieties.  This required that precisely one complex was incorporated into each polymer to 

avoid possible interactions between metal centers which have been previously reported. In 

this work, we aimed to take advantage of side chains of brush type polymers, using them as a 

scaffold for anchoring catalyst and co-catalyst in a cooperative fashion. 

 There are several examples of molecular catalysts being bound to materials 

through post synthetic covalent modifications6-8, electropolymerizations8-11, and ligand-metal 

coordination12 as well as a myriad of work by Oshanti and coworkers making hyperbranched 

branched networks with catalyst covalently bound or using supramolecular assembly to form 

catalytic and co-catalytic assemblies13-38. We reasoned that a living polymerization, wherein 

the catalyst and co-catalyst were grafted into the polymer structure from monomers would 

give us operational control over the amount of each is incorporated and kinetic control over 

their relative distribution. These materials could be designed to incorporate BrØnsted acid 

side chains which are known to enhance the rate of electrochemical CO2 reduction by these 

catalysts as well as metallic photosensitizers which increase the photochemical rate of CO2 

reduction. This represents a novel and facile approach for the preparation macromolecular 

proton and electron transfer relays. 

4.2 Results and Discussion 

We began by synthesizing norbornyl monomers of the Re bpy catalyst, 1 and 2, 

capable of undergoing ring-opening metathesis polymerization (ROMP)9, 39. These could be 

copolymerized with monomers bearing a RuII (bpy)3 photosensitizer 3 or phenolic side chain 

4 (Figure 4.1) to afford macromolecular electron and proton transfer relays respectively. We 

reasoned that a bromide counterion would be more soluble in dimethyl formamide during the 

electrochemical analysis, both 1 and 2 could be prepared in good yields from commercial 

starting materials in several steps (see supporting info for synthetic details). We confirmed 
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the electrochemical activities 1, 2, and 3 by cyclic voltammetry (CV) which showed behavior 

consistent with those of the unsubstituted complexes in N,N dimethyl formamide (DMF) 

under argon and CO2. Variable scan rate studies of monomers 1, 2, and 3 verified that they 

exhibited behavior consistent with a freely diffusing species where mass transport limits 

electrode reactions. Fluorescence measurements of 3 showed a maximum excitation of 465 

nm and a maximum emission of 625 nm (Figure 4.2 & 4.3).   

Figure 4.1 Synthesis of macromolecular proton and electron transfer relays via 

copolymerization of 1 and 2 with 3 and 4. 

Figure 4.2 Uv-vis spectrum of 3 in DMF. 



79 

 

          

    

         1 polymerized to a degree of polymerization (DP) of 20 very rapidly by 1H NMR 

(Figure 4.4) to afford polymer P1 which had a very narrow molecular weight distribution as 

determined by size exclusion chromatography with multiangle light scattering SEC-MALS 

(Figure 4.5). Electrochemical analysis of P1 by CV in dimethyl formamide in an inert 

atmosphere showed 2 single electron reductions at -1.78 V vs. Fc/Fc+ and -1.95 V vs. Fc/Fc+ 

as well as an oxidation at -0.5 V vs. Fc/Fc+ which corresponds to the oxidation of a Re-Re 

metal bond (Figure 4.6). Under CO2 a current increase was observed just after the first 

reduction and maximized at the second which is all consistent with the reductive 

disproportionation of CO2 to carbon monoxide (CO) and carbonate CO3
2- via a binuclear 

mechanism in which two complexes work cooperatively. This observation led us to believe 

that a phenyl spacer between the norbornyl unit and catalyst/co-catalyst would yield the most 

cooperative effects.  With that in mind, we included a phenyl spacer for monomers 3 and 4. 

 

Figure 4.3 Emission spectrum of 3 
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Figure 4.4 1H NMR of twenty equivalents of 1 with a modified second generation Grubbs 

catalyst at 0 minutes (blue), 5 minutes (green), 10 minutes (red), 15 minutes (purple), and 

20 minutes (yellow). 
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Figure 4.5 SEC-MALS of P1. Ð = 1.01 
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Next, we evaluated the monomers in terms to determine whether we could modulate 

the molecular weight by varying their ratio with the initiator.  Polymerizations of 1, 2, 3, and 

4 were found to be living allowing for operational control over molecular weight. We also 

confirmed that copolymerization of any of these monomers would yield polymers with 

catalyst and co-catalyst distributed evenly by measuring the polymerization kinetics. 

Having demonstrated the ability to synthesize these macromolecules with control 

over the size and distribution, we aimed to make copolymers of 1 with ruthenium based 

photosensitizer 3 at various ratios and polymer lengths to investigate their activity for the 

Figure 4.6 Cyclic Voltammetry of P1 under argon (black) and CO2 (red). Working electrode 

GC, Counter Platinum wire, reference Ag/Ag+ with ferrocene added as an internal standard. 
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photochemical reduction of CO2 to CO. We selected a ratio of 5:1 photosensitizer (3)/catalyst 

(1) with a total DP of 20 herein referred to as P2. We irradiated P2 at 470 nm using a known 

optimized solvent mixture 4:1 (v/v) DMF/triethanolamine (TEOA) with 0.1M 1-benzyl-1,4-

dihydroxynicotinamide (BNAH) as a sacrificial reductant. We also irradiated monomers 1 

and 3 under the same conditions with at a ratio of 5:1 sensitizer (3)/catalyst (1). We 

summarize the results with turn over number (TON) (Figure 4.7). P2, which displayed five 

sensitizers to one catalyst, reduced CO2 with a TON of 83 for CO while the free monomers at 

five to one did so with a TON of 40 suggesting that the polymer framework helps facilitate 

electron transfer between sensitizer and catalyst. The quantum yields were fairly consistent 

for all samples which is expected given that the sensitizer is the same moiety in all the 

samples.  
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Finally, we wanted to evaluate the efficacy of these macromolecules as proton 

transfer relays by synthesizing copolymers of 2 and 4 with the same ratio and a total DP of 20 

to give polymer P3. Electrochemical analysis under argon and CO2 P3, and 2 titrated with 

100 equivalents of 4 gave icat/ip’s which indicative of turnover frequency (TOF) are 

summarized in (Figure 4.8 & 4.9). P11 had an icat/ip of 6 (Figure 4.8) while 2 had an icat/ip of 

2.5 under anhydrous conditions. 2 titrated with one hundred equivalents of 4 gave an icat/ip 

of 5.5 (Figure 4.9) which suggests colocalizing catalyst and proton source at a five to one 

ratio produces roughly the same enhancement as adding one hundred non-covalently bound 

protons. The addition of external acid to   did not enhance the electrochemical activity further 

indicating that the maximum TOF was already achieved. The overall electrochemical activity 

of the polymers is significantly lower than that of the what is reported for these catalysts 

Figure 4.7 Summary of TON of P2 and 1 with 5 equivalents 3. 
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likely due to poor diffusion at the electrode.  Polymers at larger DP’s showed significantly 

less activity and solubility at negative potentials. 
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Figure 4.8 Cyclic Voltammetry of P3 under argon (black) and CO2 (red). Working electrode 

GC, Counter Platinum wire, reference Ag/Ag+ with ferrocene added as an internal standard. 
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Figure 4.9 Cyclic Voltammetry of 2 and 4 under argon (black) and CO2 (red). Working 

electrode GC, Counter Platinum wire, reference Ag/Ag+ with ferrocene added as an internal 

standard. 
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4.3 Materials and Methods 

1H NMR and 13C NMR spectra were recorded on a Varian 400 MHz spectrometer or 

Varian 500 MHz spectrometer at 298 K and referenced to residual solvent shifts. Data 

manipulations were completed using ACD Labs and Jeol software. Infrared spectra were 

taken on a Thermo Scientific Nicolet 6700 or a Bruker Equinox 55 spectrometer. 

Microanalyses were performed by Midwest Microlab , Indianapolis, In for C, H, N, O, P, F, 

and Cl. All solvents were obtained from Fisher Scientific. Any dry solvents were dried in 

house by storing in a moisture free environment and dried on a custom drying system running 

through two alumina columns prior to use. All compounds were obtained from Fisher 

Scientific or Sigma-Aldrich and used as obtained unless otherwise specified. 

Tetrabutylammonium hexafluorophosphate (TBAPF6, Aldrich, 98%) was recrystallized from 

MeOH twice and dried at 90 C overnight before use.  

Electrochemistry. Electrochemical experiments were carried out using a BASi 

Epsilon potentiostat. For all experiments, a single compartment cell was used with dry stir bar 

and a dry needle was connected to control the atmosphere. A 3 mm diameter glassy carbon 

electrode from BAS was employed as the working electrode. The counter electrode was a 

flame-treated platinum wire and the reference electrode was a silver wire separated from 

solution by a Vycor tip. Experiments were run both with and without an added internal 

reference of ferrocene. All solutions were in acetonitrile dried under Ar atmosphere on a 

custom column system and contained 1 mM of catalyst and 0.1 M tetrabutylammonium 
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hexafluorophosphate (TBAPF6) as the supporting electrolyte. Experiments were purged with 

Ar or CO2 (to saturation at 0.28 M) before CV’s were taken and stirred in between successive 

experiments. 

Synthesis of Complexes 

 

Acid Monomer: An oven-dried 50 mL flask was charged with one equivalent of 

norbornene anydhride and 1.2 equivalents of 4-carboxy benzyl amine. A reflux condenser 

was attached to the flask and dry Toluene (25 mL) was added. The solution was heated to 

reflux and covered with aluminum foil and stirred in the dark. After 24 hours, was poored 

into 250 mL of cold water, extracted with dichloromethane (DCM) 5 x 50 mL, and 

concentrated to dryness. The yellow residue dissolved in a minimal amount of THF and an 

excess of diethyl ether was added before the flask was transferred to the freezer at –20 ºC and 

left overnight. The solution was filtered and washed with diethyl ether (2 x 15 mL) to yield 

127mg (95%) of a yellow spectroscopically pure powder, 1H NMR (DMSO-D6, 500 MHz): δ 

(ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 

(d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, 

J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 (d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, 

J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 

13C{1H}13-38, 40-46 NMR (DMSO-D6, 500 MHz):  (ppm) 197.97, 190.29, 166.39, 160.92, 

155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 129.48, 128.56, 128.09, 126.33, 125.88, 
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124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) (CO): 2019, 1916, and 1893 cm-1.  HR-MS 

(m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 1235.1060.  

 

Bipyridine Monomer: An oven-dried 50 mL flask was charged with one equivalent 

of 1 and 50 equivalents  of sodium iodide (NaI) (80 mg, 0.22 mmol). A reflux condenser was 

attached to the flask and dry acetone (25 mL) was added. The solution was heated to reflux 

and covered with aluminum foil and stirred in the dark. After 24 hours, was filtered into 250 

mL of cold water, extracted with dichloromethane (DCM) 5 x 50 mL, and concentrated to 

dryness. The yellow residue dissolved in a minimal amount of THF and an excess of diethyl 

ether was added before the flask was transferred to the freezer at –20 ºC and left overnight. 

The solution was filtered and washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of 

a yellow spectroscopically pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 

2H, NH),  9.00 (d, 2H, ArH, J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, 

J=8.1 Hz),  8.71 (s, 2H, ArH), 8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  

7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 (d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 

(bt, 2H, -C=CH2), 4.83 (d, 4H, CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR 

(DMSO-D6, 500 MHz):  (ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 

153.22, 153.07, 140.55, 129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 

64.26, 42.32. IR (THF) (CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+. 
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4 : An oven-dried 50 mL flask was charged with one equivalent of 1 and 50 

equivalents  of potassium cyanide (KCN) (80 mg, 0.22 mmol). A reflux condenser was 

attached to the flask and dry methanol (25 mL) was added. The solution was heated to reflux 

and covered with aluminum foil and stirred in the dark. After 24 hours, was poored into 250 

mL of cold water, extracted with dichloromethane (DCM) 5 x 50 mL, and concentrated to 

dryness. The yellow residue dissolved in a minimal amount of THF and an excess of diethyl 

ether was added before the flask was transferred to the freezer at –20 ºC and left overnight. 

The solution was filtered and washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of 

a yellow spectroscopically pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 

2H, NH),  9.00 (d, 2H, ArH, J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, 

J=8.1 Hz),  8.71 (s, 2H, ArH), 8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  

7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 (d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 

(bt, 2H, -C=CH2), 4.83 (d, 4H, CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR 

(DMSO-D6, 500 MHz):  (ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 

153.22, 153.07, 140.55, 129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 

64.26, 42.32. IR (THF) (CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  

Calculated: 1235.1079, Found: 1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 

Calculated: C 43.36, H 2.69, Cl 5.56, N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 

6.12, O 13.48.  
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5 : An oven-dried 50 mL flask was charged with one equivalent of the bis-bpy 

(72mg, 0.11 mmol) ligand and two equivalents of rhenium(I)pentacarbonylchloride (80 mg, 

0.22 mmol). A reflux condenser was attached to the flask and dry THF (25 mL) was added. 

The solution was heated to reflux during which the clear solution became yellow in color. 

After 4 hours, the solvent was removed under reduced pressure and the yellow residue 

dissolved in a minimal amount of THF. An excess of diethyl ether was added before the flask 

was transferred to the freezer at –20 C and left overnight. The solution was filtered and 

washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a yellow spectroscopically 

pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, 

J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 

8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 

(d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, 

CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-D6, 500 MHz):  

(ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 

129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) 

(CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 

1235.1060. Elemental Analysis for C46H34Cl2N6O10Re2 Calculated: C 43.36, H 2.69, Cl 5.56, 

N 6.60, O 12.56; Found: C 42.74, H 2.66, Cl 5.50, N 6.12, O 13.48. 
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6 : An oven-dried 50 mL flask was charged with one equivalent of the bis-bpy 

(72mg, 0.11 mmol) ligand and two equivalents of rhenium(I)pentacarbonylchloride (80 mg, 

0.22 mmol). A reflux condenser was attached to the flask and dry THF (25 mL) was added. 

The solution was heated to reflux during which the clear solution became yellow in color. 

After 4 hours, the solvent was removed under reduced pressure and the yellow residue 

dissolved in a minimal amount of THF. An excess of diethyl ether was added before the flask 

was transferred to the freezer at –20 C and left overnight. The solution was filtered and 

washed with diethyl ether (2 x 15 mL) to yield 127mg (95%) of a orange spectroscopically 

pure powder, 1H NMR (DMSO-D6, 500 MHz): δ (ppm) 9.16 (bt, 2H, NH),  9.00 (d, 2H, ArH, 

J=4.8 Hz),  8.92 (d, 2H, ArH, J=5.6 Hz),  8.72 (d, 2H, ArH, J=8.1 Hz),  8.71 (s, 2H, ArH), 

8.34 (t, 2H, ArH, J=7.9 Hz),  7.91 (d, 2H, ArH, J=8.8 Hz),  7.75 (t, 2H, ArH, J=6.5 Hz),  7.61 

(d, 2H, ArH, J=5.6 Hz),  7.07 (d, 4H, ArH, J=8.8 Hz), 5.92 (bt, 2H, -C=CH2), 4.83 (d, 4H, 

CH2, J= 3.8 Hz), 4.67 (d, 4H, CH2, J= 5.4 Hz). 13C{1H} NMR (DMSO-D6, 500 MHz):  

(ppm) 197.97, 190.29, 166.39, 160.92, 155.30, 155.04, 154.24, 153.22, 153.07, 140.55, 

129.48, 128.56, 128.09, 126.33, 125.88, 124.36, 122.89, 114.52, 64.26, 42.32. IR (THF) 

(CO): 2019, 1916, and 1893 cm-1.  HR-MS (m/z) [M-Cl]+:  Calculated: 1235.1079, Found: 

1235.1060.  

4.4 Conclusions  

We successfully incorporated a Re (bpy) catalyst into macromolecular electron and 

proton transfer relays via ROMP. We demonstrated the efficacy of these materials in 
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enhancing the photocatalytic and electrochemical reduction of CO2 to CO. These monomers 

can act as precursors in the synthesis of crosslinked membranes suitable for surface 

attachment to achieve heterogenous catalysis at an electrode or photovoltaic surface. 
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