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Distributed underwater systems, consisting of multiple sensing platforms can 

provide critical data to better understand complex and inter-related ocean processes. 

However, to correctly interpret data collected by such systems, we need to know when 

and where samples were obtained. Since GPS is not available underwater, the position 
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of devices should be estimated with respect to certain known references that may 

reside on the surface or on the sea-bed.  

The main challenge is that devices are energy-constrained. Further, low-cost 

solutions to both the sensing platforms and the overall system design would be critical 

in making these systems more prevalent and available to scientists. Existing 

underwater tracking techniques are not well-suited to distributed systems because they 

are built around stand-alone platforms. They ignore vital relative information between 

devices and require long range communication which is both expensive and has high 

energy consumption. As a result, existing techniques do not scale well in multi-vehicle 

systems.  

To address these challenges, we take a systems perspective to underwater 

positioning. This means that instead of viewing each node as a separate entity, as in 

traditional systems, we consider the network as a whole. Therefore, we shift our focus 

to tracking a collective, rather than independently positioning a number of devices. 

This paradigm-shift allows us to use collaboration between devices to improve the 

performance and energy-scalability of mobile distributed systems. However, it makes 

the problem of tracking and localization more complex.  

Our proposed solutions draw on the framework of factor graphs to optimally 

and jointly estimate the trajectories of multiple nodes by combining information in 4 

dimensions.  This framework allows us to leverage both from network density and 

accurate motion information, if available.  In addition, we have identified node 

mobility as a key factor that can both impede and improve performance. We show 

how mobility in combination with delays in medium access is an impairment to time-
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synchronization and localization and propose cross-layer and collaborative approaches 

to counter its effect.  

Our proposed strategies are essentially aimed at more efficient localization and 

tracking in underwater networks where resources are constrained. We believe that our 

techniques in combination with existing systems would address the localization 

requirements of a wide range of underwater applications. 
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CHAPTER 1                                                                                                                 

INTRODUCTION 

The oceans play a vital role in the well-being of our planet. Yet they remain 

vastly unknown even after decades of exploration. Further, human activity has had a 

significant and growing impact on ocean-systems. Scientists predict that without 

making a conscientious effort towards preserving our natural resources, we can 

potentially tip the delicate ecological balance critical to life on the planet. Collecting 

diverse information about ocean processes will be vital in solving some of the 

imminent global problems of our century.  

There are many existing ways in which ocean sensing is done. Bathymetric and 

sonar systems map underwater terrain using acoustics, large-scale surface phenomena 

are observed via satellite, sensors deployed on sea-beds detect seismic activity; 

various mobile platforms such as AUVs, underwater robots, gliders and floats are used 

for surveillance, exploration and sensing. Even divers collect valuable data in the form 

of video-recordings and actual samples. While many oceanographic systems have 

been developed for specific applications, we will elaborate and focus on one class of 

systems, namely mobile distributed underwater systems. 

Physical, chemical and biological processes vary over a large range of spatial 

and temporal scales. As a result, comprehensive scientific studies require observing 

these phenomena at relevant scales. A single device equipped with a number of 

sensors can capture the temporal variations of one or more parameters, however over a 

limited region. To increase the extent of spatial observation multiple devices are often
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deployed in various configurations. For example sensors are arranged at different 

depths on moorings. A number of such moorings can then span a geographic region. 

By deploying multiple instruments we can concurrently sample phenomena both in 

time and space and deduce their correlations. Such a system of underwater sensors and 

vehicles, operating in a coordinated manner forms a distributed sampling system. 

These systems provide a large scale-view of processes and are especially suited for 

studying process-variations and inter-connections. As such they may consist of 

stationary or mobile platforms or a combination of both.  

We are particularly interested in systems with mobile platforms. This is 

because the ocean environment is inherently mobile. The dynamics of ocean currents 

dictate how chemicals, nutrients and organisms are transported within the ocean. As a 

result, many ocean processes need to be observed and followed within this 

intrinsically mobile environment. Mobile platforms naturally lend themselves to 

sensing underwater phenomena that are influenced by ocean currents. For example, a 

collection of mobile devices is more suitable for tracking an oil-spill rather than 

deploying many static sensors. In this dissertation we will specifically focus on mobile 

distributed systems, where devices observe phenomena in their own moving frame of 

reference. A rendering of an example system is depicted in Figure 1.1. It consists of a 

large collection (a swarm) of underwater devices such as guided AUVs, ROVs, gliders 

and floats. A typical system under study in this dissertation can consist of both passive 

and self-propelled vehicles. Equipped with a multitude of sensors, each device 

essentially collects samples in its own local neighborhood. Devices are deployed as a 

collective. In essence, they form a distributed and dynamic sampling system. A more 
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in depth discussion on the oceanographic applications of such systems is presented in 

Appendix A.1.  

 

 

 

 

 

 

 

To act as a sampling system, devices need to know their positions, so that 

spatial correlation of sampled data can be deduced. However, GPS service is not 

available underwater due to the large attenuation of radio waves. As such, the 

vehicles’ positions must be estimated. A simple solution would entail having each 

device communicate with a number of known position references that may reside on 

the surface or at predetermined locations on the sea-bed. By communicating with a 

reference, the distance to the reference can be estimated which results in a geometric 

constraint on the (unknown) position of the device. Once enough constraints are 

established (generally 3), the device position can be estimated fairly accurately which 

is essentially how location service is provided by GPS satellites to terrestrial systems 

[Kap96]. However, for underwater systems one cannot rely on a pre-deployed 

infrastructure as with GPS satellites, instead we would have to provide this 

infrastructure, which can often be a costly undertaking. Even if such an infrastructure 

was put in place, it is impractical to assume that nodes will always be in range of fixed 

Figure 1.1: Underwater network of autonomous mobile platforms 
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localization buoys because the area occupied by the collective can be large. Further, 

devices may have uncontrollable mobility (as in the case of floats [Jaf06]) due to 

which they can drift away from surface transponders in unpredictable ways. Once 

devices can no longer communicate with references, they cannot obtain enough 

constraints to estimate their positions.  However, when multiple vehicles are present, 

this problem can be overcome by sharing information.  

Sharing is possible if devices were allowed to also communicate with each 

other, thereby operating in a networked fashion. Inter-node communication can be 

used to create more geometric constraints while the system is moving. We believe that 

these additional constraints can be used to improve the localization performance and 

we will dedicate most of the later chapters to exploring this overall networked 

approach to underwater localization. A broader overview of the research challenges in 

networking such systems can be found in [Hei06]. 

To sum up, just as distributed systems provide more spatially and temporally 

rich data using simpler platforms, networking opens the door for resource sharing and 

makes more useful data available for location tracking of the collective. This intuitive 

advantage motivates us to look at the problem of distributed underwater localization 

more closely.  

1.1 Problem Motivation  

The main motivation for addressing the problem of localization is that while 

navigation has been a fundamental part of underwater systems, it has been mainly 

designed for stand-alone platforms. In principle, such existing techniques can be 

extended to multi-vehicle systems, by tracking each device independently. While 
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accurate positioning (around a few meters) has been previously demonstrated using 

these techniques they rely heavily on either precise on-board sensors or frequent 

communication with known references [Bla03] [Kin03] [Vic98] [Whi98] [Spi76]. In 

fact, existing strategies essentially tradeoff device sophistication (accurate on-board 

sensors) [Ala02] [Yun01] [Hud98] [Whi99] [Bro97] versus infrastructure costs (well-

calibrated baselines and planned deployments of references)
1
[Bin06] [Lar00] [Lar02]  

[Jak05] [Bel91]. However, we would like to look at systems that play a different type 

of tradeoff, namely, many distributed nodes versus one expensive device.  

The need for new solutions in such systems arises because resources are 

constrained. Specifically mobile platforms are severely energy-constrained. In 

addition, while precision motion sensors and instruments are valuable inputs to 

tracking algorithms, they are expensive and may be available to only a few nodes. 

Lastly, ensuring that each device is within the range of position references requires 

infrastructure which is costly. 

As such, no single localization strategy would be suitable across all different 

oceanographic systems. Nevertheless, in the context of distributed systems we can 

improve upon existing techniques by using cooperation. While cooperative techniques 

are more prevalent in terrestrial networks and robotics [Zha08] [Ihl04] [Bis04] 

[Sha03] [Fox00], they have not been designed to specifically take advantage of the 

characteristics of oceanographic applications and do not address the challenges that 

arise in an underwater environment.   

                                                 
1
 An in-depth discussion on tracking multi-vehicle mobile using existing underwater tracking 

techniques is presented in Section A.2 of Appendix A. 
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1.2 Application Context 

The tracking strategies that we will discuss in this dissertation are targeted for 

a class of underwater applications where position information is not required in real 

time. The main reason is that in many scientific applications data collected by devices 

is analyzed after it is available at a central location and real-time reporting is not 

needed. For example, intensive data collection is essential to building computer-

models that can predict hazardous conditions such as eutrophication and hypoxia that 

are fatal to marine organisms. However building such models takes time. So, data can 

also be collected non-real time. Another example is using measurements of the flow-

field to build high-resolution models of ocean currents [Fri06], [Che06], [Dal06].  

If data is not strictly needed in real-time, it is not efficient to collect it via 

underwater communications. This is because underwater communication (which most 

often is based on acoustic signaling) consumes a lot of energy. So, instead many 

systems rely on batch data extraction using more efficient methods (not based on 

acoustics). For example, nodes could occasionally re-surface to send data via satellite 

links, or upload information to data-gathering entities via high speed optical links only 

when they are at close proximity [Vas05]. Lastly, data can be collected once devices 

have been retrieved, after the mission is over. The fact that data is not required in real-

time also impacts how localization can be performed. 

Running a full localization algorithm while nodes are submerged requires 

considerable communication between nodes. Since position information is not 

required until data is being analyzed, we propose that the actual tracking algorithms be 

run offline. While submerged, nodes measure their inter-node distances and store this 
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information locally along with other measurements of their motion from on-board 

sensors.  This data is then collected at a central location and given as input to tracking 

algorithms. In the remainder of the dissertation, we will describe our solutions in the 

context of this system setup, unless specified otherwise. Our solutions are essentially 

targeted towards the subset of underwater applications that are delay-tolerant. 

1.3 Problem Definition 

The fundamental question that we address in this dissertation is: 

How can we efficiently track the positions of a distributed system consisting of 

a collection of mobile underwater vehicles in the case where position information is 

not needed in real-time? In other words, how can we efficiently perform delay-tolerant 

underwater tracking of mobile vehicle collectives? 

To answer this question we take a systems perspective to tracking distributed 

systems. This means that instead of viewing each node as a separate entity, as done 

traditionally, we consider the network as a whole. To track the collective efficiently 

we would like to optimally and jointly estimate the trajectories of all devices given all 

available data. This is a complex estimation problem because of the inter-dependence 

of a large number of unknown states. By optimal we imply estimating the Maximum 

Likelihood trajectories of devices. This problem has not been solved so far, in the 

most generic sense, to the best of our knowledge. Our goal is to improve upon 

underwater tracking strategies where data is only combined in the time-domain 

[Stu08] [Kin06] [Cor07] [Tri98] and also over terrestrial collaborative localization 

techniques where only spatial information is used [Mao07] [Gol05] [Gol06] [Doh01].  
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As a result of the above approach devices no longer have to be in direct 

communication of references and can use short to medium range acoustic modems to 

estimate inter-node distances which is both more energy efficient and more accurate 

compared to long-range systems.  Therefore, these solutions would be scalable to 

larger networks and robust to changes in topology due to mobility. Such a 

collaborative technique would not only increase the geographical extent of distributed 

systems but also allow sharing of resources and information among devices. To solve 

this problem, we have laid down a probabilistic framework based on factor-graphs. 

This framework allows adding resources (such as Long Baseline (LBL) transponders, 

high resolution bathymetric sonars and gyrocompasses) as needed to meet localization 

accuracy requirements while operating within application and system level constraints. 

Since we use a probabilistic framework, the only information we need is a statistical 

characterization of the error in measurements obtained from motion sensors and 

acoustic ranging.  

 Another problem area is how accurately and energy-efficiently can we 

estimate the inter-node distances which are key inputs for tracking algorithms. While 

the actual tracking would be performed offline, following the setup described in the 

previous section, nodes have to communicate while they are submerged to perform 

ranging, i.e. estimate their distances with neighbors. Now, the unique characteristics of 

underwater acoustic communications open up a number of problems in this area. First, 

unlike terrestrial radio systems, the power consumed for transmitting acoustic signals 

underwater is very high (tens of watts) and much larger compared to the that 

consumed in the receive and idle states. As a result, to address energy-efficiency, 
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networking and localization protocols should be designed to minimize the total 

number of transmissions and/or the number of per-node transmissions. The second 

problem area that has not been given much attention is the effect of mobility on 

localization and time-synchronization. While in terrestrial systems, this effect is 

negligible because the speed at which communication occurs is much higher than the 

speed of devices; underwater acoustic communication is 5 orders of magnitude slower 

than radio. So, the effect of mobility can be much more pronounced underwater and 

needs to be studied in the context of localization and tracking.  

1.4 Contributions 

Our main contribution is system level solutions that make underwater 

localization and tracking more efficient for delay-tolerant applications. To this end, we 

have proposed optimal tracking for distributed systems, energy-efficient signaling 

schemes for gathering data critical to localization and the use of cross-layer design for 

time-synchronization. 

Tracking and localization of mobile distributed systems have so far been 

treated as two different problems. Most existing work on collaborative localization is 

designed for static terrestrial networks and largely relies on heuristics to address this 

problem due to the highly non-linear relationship between data and unknowns. On the 

other hand, existing tracking techniques can at best allow for collaboration between 

nodes in a limited sense [Fox00] [Zha08]. We propose a generalized framework based 

on graphical inference that can solve both these problems and show that a number of 

existing techniques can be cast as special cases of this solution. We only require a 
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probabilistic characterization of measurement errors which can be obtained with only 

two devices and does not require prior information from a full-deployment. 

In addition, through a combination of analysis and simulations, we have 

studied the role of mobility in the context of localization, tracking and time-

synchronization. Interestingly we have shown that mobility can have both an adverse 

and beneficial effect on localization and tracking. We have analyzed and quantified 

this effect and have proposed powerful estimation techniques that use collaboration 

and cross-layer design to counter the adverse effects of mobility.   

While existing localization techniques can be applied to the systems we are 

studying, with restrictions on device size, cost and energy, collaborative methods 

proposed by us become more suitable. We believe that our techniques in combination 

with existing systems would address the localization requirements of a wide range of 

applications that use multiple mobile platforms. 

1.5 Dissertation Outline 

Collaborative localization relies on relative information between nodes, 

specifically inter-node distances. So, we first look at two basic approaches to 

estimating inter-node distances: a traditional approach and another based on broadcast. 

In Chapter 2, we will discuss these two strategies, showing the need for time-

synchronization for energy-efficient ranging. In Chapter 3, we study time-

synchronization in depth. We highlight how node mobility deteriorates time-sync 

performance and propose to counter it using cross-layer design. In Chapter 4 we 

introduce our estimation framework based on factor-graphs that can optimally and 

jointly estimate the trajectories of multiple nodes using inter-node distance 
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measurements along with measurements of nodes’ motion. In Chapter 5 we use our 

factor-graph framework to address the problem of mobility for systems that can only 

measure inter-node distances and further propose energy-optimizations for these 

systems. An account of related work is given at the end of each individual chapter. 
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CHAPTER 2                                                                                                                         

RANGING IN DISTRIBUTED SYSTEMS 

2.1 Introduction 

In Chapter 1, we outlined our overall objective where we intend to track a 

distributed system as a collective as opposed to tracking each device separately. This 

can be done when devices communicate with each other and in doing so establish 

relationships about their relative positions. Once these inter-node relationships are 

available we can in principle use all the measurements obtained by each node locally 

(about its velocity, acceleration, heading and so on) to jointly estimate the positions of 

all nodes in the collective. In this chapter we will talk about how we can obtain crucial 

relative information in the form of inter-node distances, for distributed systems. In 

principle relative information can also be angle measurements with neighbor nodes but 

this requires arrays of sensors which are often too bulky for mobile vehicles. While we 

can incorporate such information within our position estimation framework, we will 

focus on the most easy and common type of inter device information, namely, an 

estimate of the inter-node distances. The process of obtaining these distance 

measurements is generally referred to as ranging.  

Ranging is possible by equipping each device with an acoustic modem. Due to 

the relatively slow speed of sound, acoustic communication lends itself naturally to 

derive distance from time-of-flight (TOF). Time-of-flight is an estimate of the time it 

takes for an acoustic signal to travel from a transmitting node to the node that receives 
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the signal. Since this signal travels at the speed of sound underwater, an estimate of 

the distance between the two nodes can be obtained from first principles:

TOF is estimated by time-stamping the send time of the message and recording the 

time at which it is received (according to the local clocks of nodes).  If both nodes had 

the same notion of time, ranging would be a very simple operation. However, no two 

clock-crystals are identical. They normally tick at slightly different rates, a 

phenomenon commonly referred to as clock-drift. As a result nodes go out of sync as 

time elapses. Time-synchronization is required to re-establish a common notion of 

time between any two nodes. In this chapter we will discuss how the accuracy of time-

of-flight based ranging is related to the level of relative time-synchronization between 

nodes. In addition, we will introduce abstractions that will allow us to compare the 

suitability of different time-sync protocols for ranging and localization. Time-

synchronization is explored in-depth in the next chapter.  

Due the mobility of the system, distance-estimation has to be performed 

periodically. This is illustrated in Figure 2.1. Since devices are battery operated, 

energy efficiency is a crucial constraint. Traditional location estimation techniques are 

designed for stand-alone systems consisting of a few devices. In such systems, devices 

are localized independently. Consequently, ranging functionalities that are part of the 

typical modem software operate in a link-centric way, i.e. for an individual device the 

process of ranging is repeated between a node and each of its neighbors separately 

[Fre05a],[Fre05b]. As devices are added to the system, ranging has to be repeated 

between each node pair. Therefore, the energy consumed by collecting distance 

estimates in this way doesn’t scale well with the number of devices. This motivates us 
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to rethink the way distance-estimation is performed underwater for large networked 

systems.  

 

 

 

 

 To come up with a better approach, we need to first understand what exactly 

the cost of ranging is. To achieve this, we have experimentally characterized the 

energy consumed in communication for an off-the-shelf acoustic modem. We have 

also characterized the intrinsic sources of error. These characterizations will set the 

stage to better understand the severity of the problems related to energy consumption 

and performance of ranging which we will address in subsequent sections. 

2.2 Experimental Characterization 

The power consumption characteristics of underwater acoustic modems are 

widely different from terrestrial radio systems. This affects the way ranging must be 

performed in distributed systems as well as how other important protocols such as 

time-synchronization and MAC must be designed. We have measured the power 

consumed in signaling underwater for the WHOI micro-modem which is short to 

medium range (~ 1km). Figure 2.2 shows the power profile obtained during send and 

receive of a periodic, bi-directional ping exchange, illustrating the high power 

consumption for transmission compared to receive and idle modes. Therefore, the 

amount of signaling needed for ranging can significantly diminish the energy budget 

of nodes. The power numbers for the micro-modem along with other parameters are 

Figure 2.1: Periodic localization in mobile systems 
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summarized in Table 2.1. Using these parameters, we will later obtain the energy 

consumed for traditional roundtrip ranging as a function of network density (Section 

2.3). 

Table 2.1: Parameters of the Micro-modem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data rate Rdata 80 bps 

Transmit power PTx 35 W 

Receive power PRx 0.3 W 

Message length, L 10 bytes 

Transmission range R ≈1000 m 

-10

0

10

20

30

40

0 10 20 30 40

Power (W) 
Rx/Idle (0.3 W) Tx 

time (s) 

Figure 2.2: Measurement of power consumption of 

the micro-modem 
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dock 

Figure 2.3: Set up of experiments in Mission Bay, San Diego, CA 
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In addition, we characterized the ranging performance of the micro-modem by 

conducting two sets of experiments with a modem pair in Mission Bay, San Diego. 

Our experimental set up is as in Figure 2.3, showing the locations where the 

measurements were obtained, in the bay and by the dock.  

In a first set of experiments conducted in the bay, one of the modems was kept 

stationary and the other was moved to different anchored buoys as shown in Figure 

2.3. At each distance, the modems exchanged a number of bi-directional ping 

messages, which we repeated for different orientations of the transducers. Estimates of 

the true distances between buoys were obtained from GPS fixes. Figure 2.4 shows the 

error in estimated distances from these experiments, calculated as the standard 

deviation of measurements from the true distances. Here we have captured the 

cumulative effect of intrinsic errors on the ranging-performance. These errors are due 

to uncertainties in send and receive time, access time, interrupt handling, byte 

alignment and transmission and reception time.  We estimated the speed of sound 

empirically by measuring temperature. Error in our estimate of the speed of sound is 

part of range estimates. Since Mission Bay is relatively shallow, our results also 

include the effect of multi-path on the performance of the modem. The ranging error 

we obtained is within GPS accuracy. Further, the performance does not vary much 

with the orientation of the transducers. 

We also performed experiments at the dock in Mission Bay. Here we measured 

the exact distances between the modems. While in the first set of experiments 

(described earlier) the modems were subject to the small motion of the buoys, at the 
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dock they were completely static. This is reflected in the error distribution of the 

measurements shown in Figure 2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

In general our results show that the errors intrinsic to the modem are small (of 

the order of a meter).  However, as we will see, the effect of other factors such as 

Figure 2.4: Ranging performance from experiments in Mission Bay 
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Figure 2.5: Error distribution of range measurements. 
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time-synchronization, node motion and delays during channel access can potentially 

have a larger effect on the ranging performance. We will analyze these effects in depth 

in the next chapter. The experimental results presented above will be referred to in 

later sections and in other chapters.  

In our experimental results we have observed that the energy consumed to 

transmit is fairly high. Next we investigate the performance and energy-efficiency of 

two basic ranging schemes: a traditional link-based method where time-of-flight is 

determined from a bi-directional message exchange; and an approach based on 

broadcast. We will first investigate the traditional approach to ranging via bi-

directional message exchange, a bit more closely in the next subsection, before 

detailing the principles behind broadcast ranging in the following subsection.  

2.3 Performance Analysis of Link-Based Ranging 

In general, distance between any two nodes can be deduced by measuring the 

time-of-flight of a packet exchange between them. Suppose that a message was sent 

by node A at time t1 and received by node B  at time t2. With knowledge of the speed 

of sound c, the distance between the position of node A at time t1, PA(t1) and the 

position of node B at time t2,PB(t2) which is denoted by dAB(t1,t2), can be found as: 

 ( )1 2 1 2 2 1( ) ( ) ( , ) A B ABP t P t d t t c t t− = = ⋅ −     (2.1) 

Where t1 and t2 are the send and receive times of a message according to a 

global clock, respectively. However, in practice, devices do not know the exact time t1 

and t2. Instead they only have a local notion of time which is measured by counting 

ticks generated by their clock crystal. Since no two crystals are exactly alike, the rate 
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at which they tick is also different. Therefore, over time, the local time measured by 

each device will deviate from the absolute global time, a phenomenon known as clock 

drift.  This drift, which we denote by δ. ( δ - 1) is measured in ppm (parts per million). 

Due to the cumulative effect of clock drift, at any point in time, t, the local time of a 

node is offset from the global time. We denote this offset by Γ(t). 

Now, let’s reconsider the message sent from node A to node B.  The send and 

receive times of the message at nodes A and B according to their local time is denoted 

by tA(t1) and tB(t2) respectively. Further for any node A, ΓA(t0) is the clock offset at 

time t0 with respect to a global clock and δA is the clock skew. The local time of any 

node A at time t is related to the true global time as: 

( )A A At t tδ= ⋅ + Γ        (2.2) 

Therefore the send and receive times as recorded by nodes are related to the 

global times, t1 and t2 as: 

     (2.3) 

In link-based (also known as roundtrip) ranging, each node pair A-B executes a 

bi-directional ping: A first sends a time-stamped ping packet to B, immediately 

followed by a response back from B to A. By averaging the time-of-flight 

measurements, the clock offset is effectively canceled out. This strategy is, for 

example, implemented in the standard software of the micro-modem. The estimated 

distance, neglecting the effect of clock drift during the message exchange, is given by: 

 

( ) ( )2 0 0 2 0( )B B Bt t t t t tδ= + Γ + ⋅ −

( ) ( )1 0 0 1 0( )A A At t t t t tδ= + Γ + ⋅ −
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( ) ( ) ( ) ( )2 1 4 3ˆ
2

B A A BRTRIP

AB

t t t t t t t t
d c

− + −      = ⋅             (2.4) 

Where t3 and t4 are respectively the global times at which the reply message 

was sent by node B and received at node A. However, the above equation is only an 

approximation. Equation (2.4) can be written exactly as the average of the distances 

dAB(t1,t2) and dBA(t3,t4) plus an error term because of neglecting the effect of clock 

skew during the message exchange. We obtain this in equation (2.5) by substituting 

for local times tA(t1), tB(t2), tA(t4), tB(t3) in equation (2.4) as per equation (2.3): 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 1 4 3

0 0 2 0 1 0

0 0 4 0 3 0

2

( ) ( )
2

  ( ) ( )
2

B A A B

B A B A

A B A B

t t t t t t t t
c

c
t t t t t t

c
t t t t t t

δ δ

δ δ

− + −      ⋅

= ⋅ Γ − Γ + ⋅ − − ⋅ − +  

⋅ Γ − Γ + ⋅ − − ⋅ −  

          

( ) ( )2 3 4 1

1 2 3 4

2

( , ) ( , )

2

B A

AB BA
RTRIP

c
t t t t

d t t d t t

δ δ

ε

= ⋅ ⋅ − + ⋅ −  

+
= + �

                                                (2.5) 

Where, ( ) ( ) ( ) ( )4 1 3 21 1
2

RTRIP A B

c
t t t tε δ δ= ⋅ − ⋅ − − − ⋅ −  �  

From equation (2.4) and equation (2.5), we observe that the distance-estimate 

from the roundtrip approach does not correspond to the distance between nodes at any 

one time instance. There is an ambiguity because of node mobility and the effect of 

clock skew during the message exchange. We will explain these effects more in the 

next chapter when we discuss synchronization using the same request and reply 

message exchange.  
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Since link-based ranging relies on a bi-directional message exchange, in a 

networked setting, a ping-exchange would have to be performed on each link 

individually. We assume that nodes overhear messages transmitted by neighbor 

nodes
2
. So, for a network where nodes have on average λ neighbors, each transmission 

results in λ message receptions. The total energy consumed as a result of each 

transmitted message is the transmit energy plus λ times the receive energy. Therefore, 

the energy consumed per node per distance-estimation event is: 

( )RTRIP Tx RxE E Eλ λ= ⋅ + ⋅      (2.6) 

Where, ETx is the energy required to transmit a ping message, 

ERx is the energy required for message reception. 

 

 

 

 

 

 

Since nodes communicate over a shared medium, they can reach all their 

neighbors via a single broadcast message. Broadcast ranging takes advantage of the 

fact that multiple nodes need to estimate distances at around the same time. 

Consequently a single message is used to simultaneously deduce time-of-flight (TOF) 

to neighbor nodes, see Figure 2.6(b). This is as opposed to link-based ranging where 

                                                 
2
 Even if nodes were not overhearing, this result holds because the energy consumed to transmit is dominant in 

underwater acoustic communication. 

(b) Broadcast ranging 

       
(a) Roundtrip ranging 

Figure 2.6: Comparison of two basic ranging strategies 
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distance between each node pair is estimated separately, see Figure 2.6(a). We will 

explore broadcast ranging more in the next section. 

2.4 Network Centric Ranging  

We propose an alternative to ranging which uses a broadcast message instead 

of a ping exchange. Here the problem of ranging is addressed from a network 

perspective by allowing multiple nodes to estimate their distance to a neighbor node 

using a single broadcast. But nodes have to be explicitly synchronized at a prior time.  

Inter-node distances can then be estimated from a single broadcast message rather than 

having to combine two messages (one in each direction) as in link-based ranging. 

We denote the relative clock offset, say between two nodes A and B, by Ψ = ΓB 

- ΓA and the relative clock drift γBA = (δB - δA) The process of determining the offset Ψ 

and/or the relative clock drift γBA between node pairs is known as time-

synchronization. Suppose that nodes were synchronized at time t0, where only the 

clock offset was estimated, denoted by
0

ˆ ( )tΨ . Then, the inter-node distance estimate, 

1
ˆ ( )ABd t  can be obtained from the one-way time of arrival of a broadcast message as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 2 1 0

0 2 0 1 0 0

2 1 1 0 0 0

2 1 2 1 1 0 0 0

1 2 2 1

ˆ ˆ( , ) ( )

ˆ( ) ( )

ˆ( ) ( ) ( )

ˆ( 1) ( ) ( ) ( )

, ( 1) ( )

AB B A

B A

B B A

B B A

AB B B A

d t t c t t t t t

c t t t t t t

c t t t t t t

c t t c t t t t t t

d t t c t t

δ δ

δ δ δ

δ δ δ

δ δ δ

 = ⋅ − − Ψ 

 = ⋅ Ψ + ⋅ − − ⋅ − − Ψ 

 = ⋅ ⋅ − + − ⋅ − + Ψ − Ψ 

 = ⋅ − + ⋅ − ⋅ − + − ⋅ − + Ψ − Ψ 

= + ⋅ − ⋅ − + − ⋅ ( )

( ) ( ) ( )

1 0

1 1 2 1 1 0, ( 1)AB B BA motion

t t

d t t c t t t t

ψ

ψ

ε

δ γ ε ε

 − + 

 = + ⋅ − ⋅ − + ⋅ − + + 

     (2.7) 

Where, ψε  is the error in the offset estimate 0( )tψ .  
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motionε is the error because of the motion of node B during the interval |t2 - t1|  

and is upper-bounded as follows: 

( ) ( )1 2 1 1, ,motion AB AB B

R
d t t d t t v

c
ε = − ≤ ⋅                                                      (2.8) 

Where, vB is the speed of node B and R is the maximum transmission range. 

So, for the case where only the clock offset is estimated by the synchronization 

protocol, the error in distance estimation from a one-way message is given by: 

( ) ( )

( ) ( )

(1)

1 1 1 1

1 2 1 0

1 1 1 0

ˆ ( , ) ( , )

      ( 1) ,

       =( 1) ,

D AB AB

B AB BA motion

B AB BA B motion

d t t d t t

d t t c t t

d t t c t t

ψ

ψ

ε

δ γ ε ε

δ γ ε δ ε

= −

 = − ⋅ + ⋅ ⋅ − + + 

 − ⋅ + ⋅ ⋅ − + + ⋅ 

                    (2.9) 

Suppose the synchronization algorithm also estimate the relative clock drift of 

node B, denoted by ˆ
BAγ . In this case, the inter-node distance estimate at time t1 can be 

obtained from the one-way time of arrival of a broadcast message as: 

( ) ( ) ( )( )

( )

1 2 1 0 1 0

1 1 1 2 1 0

ˆ ˆ ˆ( ) ( )

ˆ( , ) ( 1) ( , ) ( )

AB B A BA

AB B AB BA BA motion

d t c t t t t t t t

d t t d t t c t t ψ

γ

δ γ γ ε ε

 = ⋅ − − Ψ − ⋅ − 

 = + − ⋅ + ⋅ − ⋅ − + + 

       (2.10) 

Following equation (2.10), we can obtain the error in the distance estimate 

when the synchronization protocol estimates both the relative clock offset and skew as 

follows: 

( ) ( )

( 2)

1 1 1 1

1 1 1 0

ˆ ( , ) ( , )

     ( 1) ,

D AB AB

B AB B motion

d t t d t t

d t t c t tδ ψ

ε

δ ε ε δ ε

= −

 = − ⋅ + ⋅ ⋅ − + + ⋅ 

                           (2.11) 

Equations (2.9) and (2.11) can be summarized as: 

( ) ( )1 1 1 0( 1) ,D B AB B motiond t t c t tγ ψε δ ε ε δ ε = − ⋅ + ⋅ ⋅ − + + ⋅                              (2.12) 
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Where, εγ is the relative clock drift between nodes when only the clock offset 

is estimated during synchronization and it is the error in the relative drift when it is 

estimated as well. 

The distance estimates are most accurate immediately after synchronization, at 

time t0.  From equation (2.12) and (2.8), the error in distance estimate, εD(t) will grow 

in time: 

( )
0

ˆ( ) ( ) ( , ) ( , )

( 1) ,

D D AB AB

B AB B m otion

t t t d t t d t t

d t t c tγ ψ

ε ε

δ ε ε δ ε

= ∆ + = −

 = − ⋅ + ⋅ ⋅ ∆ + + ⋅ 
                (2.13) 

Where, ∆t is the time elapsed since the last synchronization at time t0.  

Based on equation (2.13), we can find the upper bound for the magnitude of 

the distance-error as: 

( )

( )

( ) ( 1) ,

         ( 1) ,

         1

         

D B AB B motion

B AB B motion

B
B B

drift

t d t t c t

d t t c t

v
c t R

c

c t

γ ψ

γ ψ

γ ψ

γ ψ

ε δ ε ε δ ε

δ ε ε δ ε

ε ε δ δ

ε ε χ

 = − ⋅ + ⋅ ⋅ ∆ + + ⋅ 

 ≤ − ⋅ + ⋅ ⋅ ∆ + + ⋅ 

  ≤ ⋅ ⋅ ∆ + + ⋅ − + ⋅    

 = ⋅ ⋅ ∆ + + 

                   (2.14) 

        1 B
drift B B

v
R

c
χ δ δ

 
= ⋅ − + ⋅  

                (2.15) 

To limit the ranging error, synchronization has to be repeated periodically in 

addition to periodic localization as depicted in Figure 2.7. Here, the time elapsed 

between synchronization events is indicated as TSYNC.  As per equation (2.13) the error 

in ranging, ( )D tε  grows with TSYNC. Therefore, the synchronization interval is chosen to 

meet an acceptable limit in the error of distance estimates. 
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For a given drift or drift-estimate error, γε , TSYNC is determined from equation 

(2.14) for a target ranging error, max

Dε  as:   

( )max1 1
SYNC D driftT

cγ

ε χ ε
ε

Ψ

 
≥ ⋅ ⋅ − − 

 
                                  (2.16) 

Now, if the system is such that nodes communicate only to localize, energy 

would primarily be consumed to obtain range estimates periodically as depicted in 

Figure 2.1. In this case, the overhead of performing synchronization for broadcast 

ranging should be taken into account when comparing link-based and broadcast 

schemes. For broadcast ranging, the average energy consumed per node per 

localization is given by equation (2.17).  

 

                     (2.17) 

 

                                                                                  

(2.18) 

 

 

 

Here, ESYNC is the energy consumed per node for synchronization. The 

parameter α  is the number of localization events per synchronization. If the 

synchronization interval required to remain within an error bound is less than a 
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Figure 2.7: Periodic synchronization for broadcast-based localization 
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localization period, nodes synchronize only once, right before range estimates are 

obtained. In this case α =1. Now, based on our analysis so far let us compare the 

performance of broadcast and link-based ranging. 

2.5 Choosing a Ranging Scheme: Performance Comparison  

To compare the two ranging alternatives, we express the relative energy 

performance of a broadcast compared to a link-based scheme by combining equations 

(2.6) and (2.17): 

( )
1 1

(1 ) 1BCAST SYNC
SYNC

RTRIP Tx Rx

E E
N

E E E

α
α

λ λ λ

⋅
= ⋅ + = ⋅ + ⋅

+ ⋅
            (2.19) 

 

Here, NSYNC is the number of messages transmitted per node for 

synchronization and depends on the protocol used.  We will discuss different 

approaches to time-synchronization in the next chapter where we will look at both 

existing methods and enhancements proposed by us. However, as an example we will 

use TPSN (Timing-sync Protocol for Sensor Networks) [Gan03] to compare the 

performance of roundtrip and broadcast ranging.  

TPSN requires two message exchanges between each node pair for 

synchronization. Therefore, for a network where nodes have an average of λ 

neighbors, the number of messages transmitted per node for synchronization, NSYNC = 

λ. While this signaling overhead can be further reduced if a hierarchy or a spanning 

tree had been previously established, we will consider the base protocol. 

Consequently, the energy consumption of broadcast based ranging relative to 

roundtrip can be obtained from equation (2.20) as: 
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1BCAST

RTRIP TPSN

E

E
α

λ

 
= + 

 
                                                  (2.20) 

As per equation (2.20), the relative performance of broadcast and roundtrip 

ranging is determined by the network density λ and the parameter α. In general λ 

should be greater than 10 for a connected network (1/ λ < 0.1) [Bet02] and α ≤ 1 (as 

per equation (2.18)). Since TPSN does not estimate the clock drift, the error in drift 

will be the actual relative clock drift. Since a full characterization of TPSN is not 

available we will assume that the offset estimate is perfect right after synchronization. 

By combining equations (2.18) and (2.16), α for broadcast ranging can be expressed in 

terms of clock drift, the localization period and the target ranging error as:    

max
min ,1LOC

D drift

T cγ
α

ε χ

 ⋅ ⋅
=   − 

                                               (2.21) 

 

The period at which localization should be repeated is a function of the 

dynamics of the system, since with increased mobility node positions have to be 

estimated more often. Therefore, for a target ranging accuracy, the combined effect of 

expected mobility and the accuracy of the clock crystal used by nodes decides the 

preferred ranging choice. Figure 2.8 shows the variation in α as a function of the 

product of γ (in ppm) and TLOC (in seconds) for different target ranging errors, max

Dε . 
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The overall relative energy consumption of broadcast ranging vs. roundtrip is 

obtained by combining the results of Figure 2.8 and Figure 2.9. For the broadcast 

approach, the parameter α was determined as a function of various system parameters 

in Figure 2.8. Figure 2.9 shows the relative energy consumption of broadcast ranging 

vs. roundtrip as a function of network density and the parameterα. Here we observe 

that as long as α is below 0.9, broadcast ranging outperforms link-based ranging for all 

network densities.  
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Figure 2.8: Combined effect of localization period and 

clock drift on the parameter α 
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Figure 2.9: Relative energy consumption of broadcast ranging vs. roundtrip 

with network density and parameter, αααα 
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As shown earlier, the preferred ranging scheme and expected gains from it can 

be determined using equations (2.19) and (2.21) for any specific system. As per Figure 

2.9 the gains from broadcast ranging can be substantial. With newly available clocks 

that are both cheap and precise [Eus06] [Sch08], very low values of α can be 

achieved, making broadcast ranging a much more energy-efficient option. As an 

example, Eustice et al have reported integrating a highly accurate temperate-

compensated clock into the micro-modem, with a drift of only 0.02 ppm [Eus06]. 

Similar levels of accuracy have also been achieved through a novel and inexpensive 

approach using two crystals [Sch08]. However, if such accurate clocks are not 

available, nodes have to explicitly time-synchronized which is the topic of next 

chapter. 

2.6 Conclusion  

With an increased interest in understanding underwater processes via 3D 

sampling, future deployments are expected to be large and dense. Estimating positions 

of devices is an integral part of data-collection in such systems. Traditional link-based 

ranging does not scale well as we move to dense deployments. This is because the per 

node energy consumption compounds with the number of links. In our analysis, we 

contrast link-based ranging to a broadcast approach. We further quantify the accuracy 

of time-synchronization to the performance of ranging in underwater networks and 

provide a framework that can determine the preferred ranging choice given the 

specifics of any particular system.  
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CHAPTER 3                                                                                                                         

ENERGY-EFFICIENT TIME-SYNCHRONIZATION 

3.1  Introduction 

A number of important network functionalities require that nodes have a 

common notion of time. These include time stamping of events, distributed data 

aggregation, MAC and localization. However, the local clock of nodes has an intrinsic 

drift due to which nodes go out of sync as time elapses. Therefore, time 

synchronization protocols are crucial to any distributed system. Although the accuracy 

of time synchronization required for underwater networks is much lower than that for 

terrestrial networks due to the fact that communication takes place at a much coarser 

time-granularity, still, accurate time-synchronization can alleviate the need for 

frequent re-synchronizations, which saves energy. Therefore, precise time-

synchronization, using minimal signaling, is of primary importance to underwater 

networks given that underwater devices are highly energy constrained. 

All network time synchronization methods rely on some kind of message 

exchange between nodes to establish a common notion of time. However, non-

determinism in the network dynamics such as medium access time, propagation time 

or interrupt handling time makes synchronization challenging [Siv04]. For sensor 

networks, MAC layer time stamping is exploited to significantly reduce the timing 

uncertainty, which leaves propagation delay as the single major source of error. As the 

distance between two nodes is small compared to the speed of RF signals, propagation 

delay is often negligible in terrestrial networks. 
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Unfortunately, traditional time sync protocols [Els02] [Gan03] [Mar04] 

developed for terrestrial sensor networks cannot be applied to underwater networks 

because of long and unknown propagation delays of acoustic signals [LuF09]. The 

propagation delay, if not estimated, translates into a timing uncertainty between a pair 

of synchronizing nodes. This problem becomes more prominent when nodes are 

mobile. Because the propagation delay changes over time, measurements obtained 

from time-stamped messages are no longer sufficient to accurately synchronize nodes. 

While a few time-sync protocols [Chir08] [Sye06] have been specifically designed for 

underwater networks, they are more suitable for networks with very limited mobility. 

In our work, we focus on mobile systems instead. 

Since energy is a key design constraint, we will first introduce a light-weight 

synchronization protocol that only estimates the clock offset. It uses hardware 

enhancements, namely highly accurate clocks [Eus06] to compensate for the effect of 

drift. However, if such clocks are not available to nodes, they have to estimate their 

relative drift to avoid frequent resynchronizations. So, we will also explore full sync 

protocols where the clock offset and drift are estimates. 

There are two major impediments to underwater synchronization, namely, 

large delays in propagation and medium access, and substantial node mobility during 

the synchronization process. While existing solutions have been proposed to address 

these challenges, they rely on heavy signaling, which is undesirable due to high energy 

costs. We introduce a powerful new approach that incorporates physical layer 

information, namely an estimate of the Doppler shift. Large Doppler shift has been 

identified as a major challenge to underwater communication, and current systems 
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implement sophisticated solutions to estimate and track such Doppler shift for each 

data exchange. While an impediment to communication, we will show that the 

Doppler shift contains highly useful information that can be leveraged to improve time 

synchronization. Specifically, it provides an indication of the relative motion between 

nodes. Our protocol, called D-sync, strategically exploits this feature to address the 

timing uncertainty due to node mobility. As such, D-sync can handle substantial 

mobility, without making any assumptions about the underlying motion, and without 

extensive signaling. Simulation results show that D-sync significantly outperforms 

existing time synchronization both in terms of accuracy and energy. We begin by 

formally introducing the problem of time-sync. 

3.2 Problem Definition 

To formally define the time-sync problem, we will revisit the equations 

introduced in Chapter 2. Let t denote global time. For any node A, ΓA(t0) is the clock 

offset at time t0 with respect to the global clock and δA is the clock skew. The local 

time of any node A at time t is related to the true global time as:  

( ) ( )0 0 0( )A A At t t t t tδ= + Γ + ⋅ −         (3.1) 

Global time-synchronization is the process of estimating the clock offset 

0( )A tΓ  and the skew δA.  We can write equation (3.1) for another node B. Relative 

time sync implies estimating the relative clock offsets ( ) ( ) ( )0 0 0BA B At t tψ = Γ − Γ and 

the relative clock skew. In the next section we will introduce a synchronization 

scheme that only estimates the relative clock offset between nodes. 
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3.3 Post-facto Joint Ranging & Synchronization (SDME-S) 

In Section 2.2, we showed via experimental measurements that transmitting 

data even with short to medium range acoustic modems consume considerable power. 

To address this problem, we propose a light-weight protocol for estimating clock 

offsets, which we have dubbed SDME-S (Sufficient Distance Map Estimation-

Synchronization). The key idea is that nodes exchange only enough information to be 

able to be synchronized at a later time when the data collected by all nodes is available 

centrally. This is in line with our post-facto strategy of localizing nodes and so, 

SDME-S is designed for post-facto ranging and localization. This scheme is also built 

on the realization that extremely accurate clocks have become available. For example, 

Eustice et al have reported integrating one such temperate-compensated clock into the 

micro-modem, with a skew of only 0.02 ppm [Eus06]. Similar levels of accuracy have 

also been achieved through a novel and inexpensive approach of using two crystals 

[Sch08]. 

 

3.3.1 Protocol Description 

The goal of SDME-S is to collect the data needed to estimate the clock offsets 

between each pair of nodes post-mission. As such it is more a synchronization-data-

collection algorithm than a time-synchronization or ranging algorithm. We will see 

that the signaling of SDME-S is such the inter-node distances can also be estimated 

during the sync process.  
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The operation of SDME-S is illustrated in Figure 3.1. Essentially, each node 

only broadcasts once, where a broadcast message contains a time stamp of when it was 

sent (according to the local clock of the node). Each receiving node stores this time 

stamp in addition to the time it received this packet. With this information, the clock 

offset estimates for each node pair, Ψ̂  can be calculated post-mission from (3.2). 

Here, we neglected the effect of the clock skew in (3.1), since all times ti are very 

close to the start of synchronization process t0. We have also neglected the effect of 

node movement during the message exchange. We will study the impact of these 

simplifications in the next subsection.  

( ) ( ) ( ) ( )2 1 4 3 1 1

2 2 2

ˆ

B A A B BA AB
B A A B

B A

t t t t t t t t d d

c c

− − −           ≅ ⋅ + Γ − Γ − ⋅ + Γ − Γ      

≅ Γ − Γ = Ψ

 

                                                                                                                 (3.2) 

One should note that after every node sends out a broadcast message 

containing the send time of the message, only two time stamps i.e. either (t1, t2) or (t3, 

t4) are available on each node and no node has all four timestamps for any of its links. 

This is not an issue if the calculation of range information (and self-localization) is 
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Figure 3.1: SDME-S: Synchronization-data collection using broadcasts 
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done post-mission. However, if range information needs to be extracted while nodes 

are submerged, extra steps need to be taken to distribute the timestamps (e.g. each 

broadcast could also contain the receive times of all broadcasts already heard from 

neighbors). 

By modifying the design goal from global synchronization to post-mission 

relative synchronization, SDME-S reduces the number of packets exchanged by a 

factor of 2 (compared to TPSN (Timing-sync protocol) [Gan03] and LTS (Lightweight 

time synchronization protocol) [Gre03]) or more in TSHL). For a network where each 

node has an average of λ neighbors, the resulting energy consumption per node per 

synchronization event is given by: 

( )SDME S Tx RxE E Eλ− = + ⋅                                                          (3.3) 

Also note that due to the relatively slow speed of sound, we only require clock 

offsets to be estimated with an accuracy of about 1 ms, which corresponds to a range 

error of 1.5 m. Although not for ranging, nodes do need some idea of the global time 

while submerged, for example to make sure they gather ranging data around the same 

time or to support duty cycling. This, however, does not require very accurate timing, 

and a global time accuracy of around 1 second is sufficient. With a clock skew of 0.02 

ppm and synchronization with GPS at the start of the mission, clocks remain within 

this limit for more than 1 year. However, if such hardware enhancements are not 

possible, precise time-synchronization protocols are required which is the topic of 

discussion in Section 3.4. 

We observe that from the timing-information obtained above, the inter-node 
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distances can also be estimated using the same equations as link-based ranging given 

by equation (2.4). However, the way in which these timing measurements are obtained 

is different in SDME-S compared to the link based. 

Although functionally equivalent to roundtrip ranging, the accuracy of SDME-

S is affected by the increased time delay between messages. Unlike the roundtrip ping 

message (where the initial message is followed immediately by a response), the two 

broadcast messages that are combined to provide the same information are typically 

spaced in time. To avoid collisions, nodes should select different times to broadcast. 

As a single packet transmission may take a second or more due to low data rates (e.g. 

80 bps for the WHOI micromodem, see Table 2.1), the time over which broadcasts 

need to be spaced can easily be as large as 200s, also depending on node density. 

During this time, clocks drift apart, but this effect is minor if accurate clocks are used 

(e.g. with a 1 ppm crystal, the drift would be 0.2 ms, or a 0.3m ranging error). 

However, node mobility may be a bigger issue. With relative speeds of only 0.1 m/s, 

nodes move up to 20m between broadcasts, causing this amount of error in range 

estimates. From our modem characterization, we see that this mobility induced effect 

is dominant compared to the intrinsic errors, which are in the order of a meter, (see 

Figures 2.4 and 2.5). Whether this error can be tolerated depends on the system. In 

short-range systems especially, it may be an issue. We tackle the problem of mobility 

induced error in Section 3.4. 

3.3.2 Modeling Synchronization Accuracy 

Next, we will evaluate the performance of SDME-S in terms of accuracy and 

start with its ability to estimate offsets. When we do not neglect clock skew and node 
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mobility during message exchanges, the perceived time of flight obtained from 

equation (3.1) is given by: 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 0 0 2 0( ) ( )B A A A B A Bt t t t t t t t t tδ δ δ− = − ⋅ − Γ − Γ − − ⋅ −  

( ) ( ) ( ) ( ) ( ) ( )4 3 4 3 0 0 3 0( ) ( )A B A A B A Bt t t t t t t t t tδ δ δ− = − ⋅ + Γ − Γ + − ⋅ −              (3.4) 

The offset estimation from equation (3.2) can be more exactly expressed as: 

( ) ( ) ( ) ( )2 1 4 3

0

0 0 int

ˆ ( )
2

( ) ( )

B A A B

B A signaling rinsic

t t t t t t t t
t

t t ε ε

− − −       = Ψ

= Γ − Γ + +

                                            (3.5) 

We added εintrinsic in this equation to include effects such as send and receive 

time, access time, interrupt handling, byte alignment, and transmission and reception 

time. They are common to all synchronization algorithms and we have characterized 

this error experimentally in Section 2.2 of Chapter 2. The unique effects of skew and 

propagation speed in combination with mobility are captured in εsignaling, which is 

further analyzed in (3.6). The inequalities follow from the graphical representation of 

Figure 3.2.     

        

             

                          

                                                                                     

 

 

                                                                                                                       (3.6) 
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Where, dAB(t1,t2) is the distance traveled by a message between nodes A and B 

during the interval (t1, t2). vA is the speed of node A. vmax is the maximum speed of 

nodes. R is the transmission range. TMAC is the maximum delay in channel access, tD = 

(t2+t3) /2 is approximately the time of message exchange and (tD-t0) is time elapsed 

since the last synchronization time.   

 

 

 

 

 

 

 

In equation (3.6), we identify three distinct sources of error: 

εmotion_flight:   Error due to node mobility during the time of flight of the packet. 

This is bounded by the clock skew during the interval (2.vmax.R)/c
2
, which is the 

maximum time of flight of a packet when nodes are mobile. 

εmotion_MAC:  Error due to node mobility during the time between the broadcasts. 

To avoid excessive collisions, nodes need to space their broadcasts apart, e.g. by 

introducing a random back-off. The maximum change in node distances during this 

time is given by (vmax.TMAC) which translates to a timing error, eq (10).   

εdrift_sync:    Error due to clock drift during the time elapsed since the last 

synchronization, (tD-t0). 

With the estimated offsets, the inter-node distances are found for each 
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Figure 3.2: Effect of node mobility on the message exchange of SDME-S 
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localization step using the time-of-flight of a message. Since the network is localized 

for an instance in time tL, distance estimates, Lt

ABd̂  are calculated with respect to this 

common time, equation (3.7). Using an analysis similar to the one in Figure 3.2, we 

compute this error as in equation (3.8). 

( ) ( )( )2 1 0
ˆ ( )Lt

AB B A
d c t t t t t c ε= ⋅ − − Ψ + ⋅                                                        (3.7)           

                                   

 

                                                                                                                    (3.8) 

In this equation, εclock_drift is the error due to the clock drift between localization 

time tL and the last synchronization time t0. On the other hand, εcommon_time is caused by 

node mobility and the fact that the time of the message exchange for each link may 

deviate from the common localization time tL again due to MAC back-offs. Finally, 

we also observe that the accuracy in distance estimation depends on precise 

knowledge of the speed of sound, c. However, accurate empirical models are available 

that predict c as a function of temperature, pressure and salinity, with a reported 

accuracy of 0.07 m/s [Dus93]. In our system, these parameters are being estimated by 

the drifter’s sensors, and also stored during localization. From our analysis of SDME-

S, we have shown that node mobility combined with delay in medium access is the 

major impediment to synchronization. We will next present a full time-sync protocol 

that estimates both the relative offset and clock drift while dealing with the problem of 

mobility. 
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3.4 Time Sync Using Physical Layer Inputs (D-Sync) 

Two main factors contribute to the pronounced effect of mobility on the 

performance of underwater time synchronization. First, the distance between nodes is 

not a constant during the process of synchronization. It changes between message 

exchanges depending on the relative speed of nodes. So, while devices that are not 

propelled such as underwater drifters and gliders, have maximum speeds of up to 

1m/s, their relative speed can be as high as 2m/s. Similarly, the relative speeds of self-

propelled vehicles such as AUVs, can go up to 4 m/s. The second reason for the high 

impact of mobility is the considerable delay before nodes can transmit. This is because 

they need to randomly back off to avoid collisions which can be significant even with 

moderate number of contenders. With relative speeds of about 2m/s, nodes could drift 

tens of meters between transmissions. Given the speed of sound underwater, this 

translates to a timing uncertainty in the order of milliseconds. In this section we will 

specifically focus on designing a time-sync protocol that is robust to mobility by 

incorporating physical layer information, namely an estimate of the Doppler shift. 

The Doppler shift due to node mobility is one of the major impairments to 

underwater communication. Consequently, estimating the Doppler shift and 

compensating for it is a well-studied problem [Sif08] [Joh97] [Lib08] [Mas08] [Par09] 

[Sha00]. It has been shown that the Doppler shift can be estimated from a single 

packet exchange between a pair of nodes without the use of any additional hardware 

[Sha00] [Lib08]. Mason et al. [Mas08] show that their Doppler estimation algorithm 

can estimate relative speeds up to 5m/s with standard deviation of 0.1 m/s using 

experimentally obtained data. Instead of estimating the Doppler information at the 
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packet level, Nathan et al. [Par09] proposed a symbol by symbol Doppler rate 

estimation method for highly mobile underwater systems. This can potentially give us 

an even better estimate of Doppler velocity. We believe that the Doppler shift estimate 

as provided by physical layer algorithms can be a crucial input for time 

synchronization. Our new protocol, called D-sync, strategically exploits this feature to 

address the timing uncertainty due to node mobility as discussed earlier. Further, the 

accuracy of D-Sync outperforms existing time synchronization protocols. 

Among existing time-sync schemes, TSHL [Sye06] has the most energy efficient 

signaling scheme while MU-Sync [Chir08] obtains the best performance. We propose 

a light-weight version of D-Sync, called B-D-Sync which uses the signaling scheme of 

TSHL while achieving the performance of MU-Sync. 

3.4.1 Protocol Description 

 

We begin by describing at a high level the operation of D-Sync. The goal of 

the protocol is to synchronize nodes to a single node within their transmission range, 

which we refer to as the beacon. The beacon essentially takes the role of a cluster-head 

and is responsible for estimating the clock offset and skew for all nodes that can 

communicate with it. The beacon can either be a super-node with a higher energy 

budget or it can be periodically elected among the nodes in the network. Once nodes 

are synchronized to the beacon, they are also synchronized to each other and network 

wide synchronization is achieved. 

We first describe the basic signaling block when a single node has to 

synchronize to the beacon. For the network case, the same signaling pattern follows. 

Figure 3.3 summarizes the messages exchanged between a beacon node and an 
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unsynchronized node B. We also introduce some important signaling parameters that 

we will refer to later in this section.  

 

Figure 3.3: D-Sync Messaging Scheme 

As shown in Figure 3.3, a beacon initiates the synchronization process by 

broadcasting a request message and storing the send time of the message, tA(t1). Node 

B records the receive time of the message as per its local time, tB(t2). As mentioned 

earlier, the message sent by the beacon can be used by node B to estimate its relative 

speed based on the estimated Doppler shift [Mas08] [Sha00]. Now, there is a delay in 

medium access, TMAC before node B can reply message back to the beacon. We will 

refer to this time as the response time of node B. (Later in Section 3.4.3 we will 

discuss the effect of the response time on the performance of D-Sync and MU-Sync). 

Finally, node B transmits a reply message to the beacon at time t3, time stamped by its 

local send time, tB(t3). As before, the beacon estimates its relative speed to node B 

from the reply message and also records the receive time of this message, tA(t4). This 
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process is repeated every Tmessage (s) which is another signaling parameter that affects 

performance as we will discuss in Section 3.4.3. Given all the timing measurements 

and estimates of the relative node speeds obtained from Doppler, we will now derive 

the set of equations used by D-Sync to synchronize nodes. 

We begin with a formal description and discussion of the synchronization 

problem, and continue to relate the unknown skew and offset of a node to the Doppler 

and timing measurements obtained from the messages described earlier. 

As mentioned earlier, the local time of any node A is related to the true global 

time, t by equation (3.1). The synchronization problem is to estimate the clock offset 

and skew for all nodes with respect to a beacon node. To derive our estimator in the 

light of existing schemes, we begin with a set of basic equations that relate the 

propagation delay to the local time of nodes, when a request and reply message is 

exchanged between two nodes. 

Consider a message that is sent by node A at time t1 and received by node B at 

time t2.  The message is time-stamped by the local time of node A at time t1 and by the 

local time of node B at time t2. Using equation (3.1), these local times are related to 

the true global time as: 

( ) ( )

( ) ( )
1 0 0 1 0

2 0 0 2 0

( )

( )

A A A

B B B

t t t t t t

t t t t t t

δ

δ

= + Γ + ⋅ −

= + Γ + ⋅ −
                                              (3.9) 

 The distance, dAB(t1,t2) defined as the distance between the position of node A 

at time t1 , PA(t1) and the position of node B at time t2, PB(t2) is related to the 

propagation delay, (t2 – t1 ) as given by equation (3.10). We must emphasize that 

dAB(t1,t2) does not correspond to an actual distance between nodes at any time but is 
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the distance travelled by the sound wave in the interval (t2 – t1 ). By substituting for t1 

and t2 in equation (3.10) in terms of the local time of nodes A and B, as given by 

equation (3.9) we obtain an equation that relates the skew and offset of node B to the 

unknown distance dAB(t1,t2), equation (3.11). Since node B is being synchronized to 

the clock of the beacon which is node A, node A's clock defines the true time, i.e. ΓA = 

0 and δA = 1. Therefore, the relative clock offset ψ = ΓB  - ΓA = ΓB . 

1 2 1 2
2 1

( ) ( ) ( , )
  A B AB

P t P t d t t
t t

c c

−
= = −             (3.10)  

1 2 2 1( , ) ( ) ( )AB B B A A

B A

d t t t t t t

c δ δ

− Γ − Γ
= −

      

1 2
2 1

( , )
( ) ( ) AB

B B A B

d t t
t t t t

c
δ

 
= ⋅ + + Γ 

                  (3.11)

 

We can similarly obtain equation (3.12) when node B replies to node A at a 

later time, t3 and node A receives this message at time t4. This message exchange is 

summarized in Figure 3.3. 

3 4
3 4

( , )
( ) ( ) BA

B B A B

d t t
t t t t

c
δ

 
= ⋅ − + Γ 

                                                        (3.12)

 

Now, if the nodes are stationary, but the propagation delay is not negligible, as 

is the case in static underwater networks, then we have a total of 3 unknowns and 2 

equations.  If we had one more message exchange between nodes we could obtain 2 

more constraints which would make the problem solvable [Sye06]. However, if nodes 

are mobile, the relative distance between nodes also varies with every message 

exchange. As a result, the number of unknowns grows with the number of equations. 

Specifically, for n equations we have n+2 unknowns. Further the equations are not 

linear in the unknowns. To address this problem, protocols such as MU-Sync make the 



46 

 

 

 

assumption that the relative node distance does not change during a message exchange 

and further use a coarse estimate of the skew to estimate the one-way propagation 

delay. We will show later in Section 3.4.3 how these assumptions affect the 

performance of MU-Sync. In D-Sync, we do not make the above assumptions. Instead 

we relate the clock offset and skew to the change in the relative distance of two nodes 

by adding equation (3.11) and equation (3.12) to obtain equation (3.13).  

3 2

1 2 3 4
4 1

1 1 3 3
4 1
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δ ε
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− 
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 

− 
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                          (3.13) 
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δ
ε = ⋅ − + −                       (3.14) 

εmotion is the error due to node mobility and can be upper bounded as follows: 
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      (3.15) 

Where, R is the maximum transmission range.  

                  vA is the maximum speed of node A. 

                  vB is the maximum speed of node B 

So far, we have obtained a relationship between the unknown skew and offset 

and the change in the distance between nodes during a request and reply message. 

Now if vAB(t) is the relative speed between nodes, the total change in distance during a 

request and reply exchange is given by equation (3.16). From here on we will denote 
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dAB(t1,t1) by dAB(t1). 

                                                                                                           (3.16) 

 We now formulate the estimation problem by relating the Doppler 

measurements obtained at the end of each message to the relative node speed. The 

observed Doppler shift is the projection of the difference in the velocity of nodes on 

the distance between them, given by: 
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Where, λ is the wavelength of sound. The relative node speed is given by the 

change in the distance between nodes as: 
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   (3.18)
 

 From equation (3.17) and equation (3.18), the Doppler shift is related to the 

relative speed of nodes as: 

( ) ( )AB dopplerv t f t λ= ⋅
     

                                                                    (3.19) 

By substituting equation (3.19) in equation (3.16) we obtain: 

            
3

3 1

1

( ) ( ) ( )

t

AB AB doppler

t

d t d t f t dtλ− = ⋅ ∫                                                         (3.20) 

From equation (3.20), we observe that the continuous Doppler shift is required 

to estimate the change in distance. However, we will only use the two Doppler 

3

3 1

1

( ) ( ) ( )

t

AB AB AB

t

d t d t v t dt− = ∫
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measurements obtained at the end of each message exchange. Our estimate of the 

change in distance is given by equation (3.21). 

( ) ( )
3 1
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1 3 1
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Substituting equation (3.21) in equation (3.13), we obtain how the clock offset 

and skew are related to measurements of the relative speed of nodes obtained from 

Doppler: 
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To summarize, when a request and reply message is exchanged between a 

beacon and an unsynchronized node; we can obtain a linear equation in 2 unknowns as 

given by equation (3.22).  We can use the Ordinary Least Squares (OLS) estimator to 

solve the set of equations obtained when N such messages are exchanged. The 

estimator of the clock skew and offset for the above problem is then given below: 

( )
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T T
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Where, Y is a N x 1 vector and W is a matrix with N x 2 entries. The elements 
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of Y and W are given in equation (3.24). We next present an analysis of the error in 

D-Sync. 

3.4.2 Error Analysis 

There are two main sources of error in D-sync: the error due to random noise 

in Doppler measurements and the error due to the fact that Doppler measurements are 

not available continuously. As a result, the change in distance during a message 

exchange can only be estimated using the average of the two measurements obtained 

at the end of each message transmission, as described earlier. We will refer to the 

resulting error as the interpolation error. The timing error in equation (3.22) can be 

expressed in terms of afore mentioned errors as per equation (3.25). Equation (3.25) 

also shows the dependence of the error on the MAC delay, TMAC shown in Figure 3.3. 

This delay affects the performance of MU-Sync as well which we will discuss in the 

next section. 
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ε ε ε
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ε ε
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⋅ 

+ 
= + ⋅  

⋅ 

     (3.25) 

 

3 2 2 1;   MAC propT t t T t t= − = −        

We will next derive an upper bound for the interpolation error in terms of the 

maximum and the average relative acceleration of a pair of nodes. This result is 

summarized in equation (3.26).  
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Figure 3.4: Maximum variation of relative speed with time 

 

The interpolation error is given by: 

1
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The variation in the relative node speed must be such that it satisfies the two 

boundary data points obtained from Doppler measurements of the relative speed: 

vAB(t1)= v1 and vAB(t1+Δt) = v2. 

The maximum interpolation error occurs when a node moves with maximum 

relative acceleration of amax until sometime t1+θ∙Δt, and decelerates at amax thereafter. 

This error is depicted in Figure 3.4 as the area of the triangular region BCD. 

( )
1

max{ } ( ) ( )interp area ABCDE area ABDE
t

ε = ⋅ −
∆                               (3.28)

 

 

We first find θ so that the two boundary speed measurements are satisfied. 
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Now area of the region ABCDE can be written as: 

                                                                                                                                           (3.30) 

From equation (3.30), the maximum interpolation error is given as: 
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We next compare the performance of D-Sync and MU-Sync over a set of 

relevant parameters. 

3.4.3 Performance of D-Sync 

In this section we will compare the D-Sync and MU-Sync via simulations for a 

pair of nodes. For this comparison we use the same signaling scheme as MU-Sync, 

which we described at the beginning of Section 3.4.1. Later, we will discuss the 

performance of the two schemes in a network setting. 

In the following simulations, nodes follow smooth curved paths with a 

constraint on their maximum speed and maximum instantaneous acceleration. Further, 
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all simulation results show the mean and standard deviation of the synchronization 

error 2 hours after a node is synchronized. A total of 10 request and reply messages 

are used for synchronization. The simulation parameters are summarized in Table 3.1 

unless specified otherwise. We now describe the parameters that affect the 

performance of D-Sync and MU-Sync. 

Response Time 

As mentioned earlier, the response time is defined as the time elapsed before 

an unsynchronized node replies to a request message sent by the beacon node, 

indicated by TMAC in Figure 3.3. While this time is assumed to be very small in MU-

sync [Chir08], it can be quite substantial in underwater networks. Due to the low data 

rates of underwater acoustic modems, the duration of packet transmission is in the 

order of hundreds of milliseconds. As the number of nodes competing to respond to a 

reference message increases, nodes will need to back off tens of seconds to avoid 

collision, depending on the number of contenders. Consequently, the response time of 

nodes also increases. 

Figure 3.5 shows the mean and standard deviation of the synchronization error 

for MU-Sync and D-sync when the response time of a node is varied between 5s and 

100s. In our simulations, the maximum relative speed of the node is 2m/s, which is 

nominal for self-propelled vehicles and corresponds to a higher mobility regime for 

devices that are not propelled. 
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Figure 3.5: Performance with response time 

We observe that both D-Sync and MU-Sync show an increasing trend with the 

response time, however for different reasons. In the case of MU-Sync the error 

increases because it assumes that nodes remain stationary during a message exchange.  

While in reality nodes would have moved a distance proportional to the response time. 

This translates to an error in the one-way propagation delay for MU-Sync. The error in 

D-sync increases with the response time because Doppler measurements are available 

only when a message is exchanged between nodes, as opposed to a continuous 

estimate. When the response time grows, so does the interpolation error as given in 

equation (3.25). However, D-Sync still outperforms MU-Sync because unlike MU-

Sync, it takes node mobility into account during a message exchange. We will now 

compare the two schemes vs. network mobility. 

Extent of Mobility 

We define the extent of mobility as the relative speed of nodes. While the 

performance of MU-Sync is affected directly by the relative node speed, the 

performance of D-Sync depends on the rate of change of relative speed as we have 
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shown in Section 3.4.2, equation (3.31). To further illustrate this point, we compare 

the two protocols via simulations when the maximum relative speed of a node is 

varied from .01 m/s to 5m/s. The maximum relative acceleration was fixed at .04 m/s
2
. 

All other simulation parameters are given in Table 3.1. From Figure 3.6 we observe 

that at low node speeds (below 1m/s), the performance of MU-Sync and D-Sync are 

comparable. This is expected, since the assumptions made by MU-Sync are valid at 

low mobility. However, with increased mobility, D-Sync significantly outperforms 

MU-Sync and has consistent performance across different speeds. 

 

Figure 3.6: Performance with relative node speed 

The accuracy of D-Sync is affected by the relative acceleration of nodes. This 

is shown in Figure 3.7 where the maximum relative acceleration is varied between 

.01m/s
2
 to 0.1 m/s

2
, while the maximum relative speed is kept constant at 2m/s. The 

error in MU-Sync had a standard deviation of around 200ms and did not vary with 

relative acceleration, so it is not shown in Figure 3.7. We next evaluate the robustness 

of D-Sync to the error in speed estimates obtained from Doppler. 
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Figure 3.7: Performance with relative node acceleration 

Error in Doppler measurements 

The error in the estimate of relative node speeds based on Doppler 

measurements only affects the performance of D-Sync. Figure 3.8 shows how the 

synchronization error of D-Sync varies when the standard deviation of the error in 

speed is increased from .01m/s to 0.5 m/s. While the nominal reported error is 0.1m/s 

[Mas08], we observe that D-Sync still significantly outperforms MU-Sync at errors of 

above 0.4m/s. The error in MU-Sync was once again around 200ms and showed no 

variation with the Doppler error as expected. 

 
Figure 3.8: Performance of D-Sync with error in Doppler-based relative speed estimate 

 



56 

 

 

 

We will next describe why the interval at which request messages are sent by 

the beacon affects synchronization performance. 

Interval between request messages 

In its basic form MU-sync recommends that the cluster head sends out a 

message every 5s. Further, to achieve accurate synchronization, each node transmits a 

total of 25 messages. However, we recognize that estimating the skew is equivalent to 

estimating the slope of a line that best fits the timing data. To get a good fit, the 

dynamic range over which regression is performed should be far greater than the error 

in measurements. One way of increasing this dynamic range is to allow enough time to 

elapse before initiating the next request-reply exchange.  Figure 3.9 shows how the 

performance of both MU-Sync and D-Sync can be improved by increasing the interval 

between request messages, while keeping the number of messages constant. The 

results show that increasing the message interval is a simple and effective way of 

improving synchronization performance without additional energy overhead. 

 

Figure 3.9: Performance with message interval 
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Total number of reference messages 

Finally, we compare the two schemes when the total number of messages 

transmitted per node is increased from 5 to 45 as shown in Figure 3.10. While both 

protocols benefit from more messages, D-sync outperforms MU-sync especially when 

the number of messages transmitted per node is lower. D-Sync is also able to achieve 

high accuracy, i.e. 10 ms error 2 hours after synchronization, using only 10 messages. 

 

Figure 3.10: Performance with number of messages 

To summarize, we have shown that D-Sync outperforms MU-Sync over a 

range of relevant parameters. As a next step we propose a more light-weight version of 

our protocol, called Broadcast D-Sync (B-D-Sync) that is especially suitable for 

denser networks. 

Table 3.1: Simulation Parameters 

Packet Length, L 60 bytes 

Data Rate, R 240 bps 

Max Transmission Range, D 1000 m 

Max. Offset Error .03 s 

Std. Doppler Error 0.1 m/s
 

Max. back off Duration, TMAC 30 s 

Slot Length, tslot .976 s 
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3.5 A Variant of D-Sync: Broadcast D-Sync 

We have earlier shown that D-Sync can accurately synchronize a pair of nodes 

by exchanging several two-way messages using broadcast signals. However, if we 

want to synchronize a group of nodes, then each node must transmit a reply message 

for every request message sent by the beacon. As a result, the total energy 

consumption can quickly ramp up. On the other hand, TSHL is known to be very 

energy efficient for synchronizing a group of nodes. Since TSHL assumes that the 

network is static, it can estimate the clock skew from a number of consecutive beacon 

broadcasts. Further, it requires only a single two-way exchange between the beacon 

and an unsynchronized node to obtain the unknown propagation delay and clock 

offset. As such, TSHL is not applicable to mobile systems because the propagation 

delay is no longer constant and the variation in the propagation delay is not known. 

However, we can strategically exploit Doppler information to overcome this problem 

as explained below. 

Using Doppler measurements we estimate the change in the relative distance or 

in other words the change in the propagation delay. Instead of relying on two-way 

messages to obtain the propagation delay, we first obtain an accurate estimate of the 

one-way delay from a single two-way exchange. We then use Doppler measurements 

to estimate one-way delay for every broadcast message transmitted by the beacon (see 

Figure 3.11). Once the propagation delays for all messages are known, we apply linear 

regression to jointly estimate the skew and offset. Therefore, nodes need to respond to 

only one beacon message to synchronize. 
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Figure 3.11: Relationship between consecutive propagation delays 

We now describe the messaging scheme used by B-D-Sync which is slightly 

different from TSHL. Instead of dividing the synchronization into two phases, we 

jointly estimate the skew and offset. Here we focus on a single hop network with n 

nodes. We organize the network into a beacon node and n-1 regular nodes. The beacon 

node is in charge of initiating the synchronization process by broadcasting a number of 

beacon messages. In addition, the beacon node will mark its last message to which 

nodes respond. Each unsynchronized node records when a beacon message was 

received. After the last message is received, nodes send all their previous recorded 

timestamps to the beacon node in a response message (or store this information on 

their memory banks for offline computation). Finally, the beacon node computes the 

skew and offset for each unsynchronized node, and broadcasts the result to all nodes. 

To balance the energy consumption, nodes take turns in playing the role of the beacon. 

Figure 3.12 shows the detailed messaging scheme for B-D-Sync. 
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Figure 3.12: B-D-Sync Messaging 

Next, we will evaluate MU-Sync and TSHL together with our proposed 

schemes in a network setting. 

3.6 Comparison of D-Sync and B-D-Sync with Existing Protocols 

In our simulation set up, nodes are placed in a 1000m by 1000m field. Each 

node can move on a smooth curved path in this field with a maximum relative velocity 

of 2m/s and a maximum relative acceleration of 0.1m/s
2
. The speed of sound is set to 

1500m/s and remains constant throughout the synchronization process. Nodes have a 

skew of 80ppm and an offset of 60 μs relative to the beacon clock. Nodes use a slotted 

contention based MAC protocol to gain channel access. Assuming a maximum initial 

synchronization offset of 0.03s, the slot length tslot is calculated based on the packet 

size, maximum synchronization offset, maximum distance between nodes and data 

rate as specified in Table 3.1. Given the above parameters, for a one-hop network with 

n nodes, each node chooses a random back-off in the range [0, 10*(n-1)*tslot] before it 
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responds to a beacon message. The interval between consecutive beacon messages is 

set to 2s for B-D-Sync and TSHL, and (10*n*tslot + 5) s for D-Sync and MU-Sync, 

respectively. The multiplicative constant 10 is carefully chosen to ensure that all nodes 

can respond before the next beacon transmission. Finally, the Doppler-based relative 

speed measurements have a Gaussian error with standard deviation 0.1m/s, which is a 

typically suggested value [Mas08]. 

As both D-Sync and MU-Sync rely on two-way messages, they will follow the 

same signaling scheme as explained in Section 3.4.1. Similarly TSHL and broadcast 

D-Sync share the same signaling scheme as illustrated in Figure 3.12. We now 

compare the performance of the four protocols in terms of accuracy and energy 

consumption, and show how they vary with network size. 

We define accuracy as the mean of the absolute timing error, two hours after 

synchronization. We define the energy consumption as the total number of messages 

sent by all nodes in the network. Figure 3.13 shows the accuracy of each scheme, 

while Figure 3.14 depicts the corresponding energy consumption. From Figure 3.13 

and Figure 3.14, we observe that D-Sync significantly outperforms MU-Sync however 

with identical energy consumption.   
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Figure 3.13: Comparison of the accuracy of protocols vs. network size 

The error in D-Sync increases from 7 to 20ms when the network size grows 

from 2 to 11 because of the increased delay in MAC access time, TMAC . The high 

accuracy achieved by D-Sync makes it an ideal candidate to avoid frequent re-

synchronization. Further B-D-Sync has a performance comparable to MU-Sync, 

however using far less energy. 

 
Figure 3.14: Comparison of the energy consumption of different protocols 

Since D-Sync and MU-Sync use the same signaling scheme, their energy 

consumption curves entirely coincide. Similarly, TSHL and broadcast D-Sync have 

identical energy consumption. Based on Figure 3.14, it is clear that B-D-Sync and 
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TSHL consume far less energy as compared to MU-Sync and D-Sync. When energy 

consumption per synchronization is a constraint, broadcast D-Sync would be a perfect 

candidate.  

In summary, node mobility in underwater networks combined with low data 

rates of acoustic modems can have a significant impact on the performance of time-

synchronization protocols. While the absolute velocity of nodes is hard to obtain 

underwater, information about their relative speed is a key input to time-

synchronization. Incidentally, the Doppler shift caused by the relative motion of nodes 

is a very well studied problem since it is a major impairment to underwater acoustic 

communication. A number of effective physical layer techniques have been developed 

to estimate the Doppler shift. We have shown that our proposed time-sync protocols 

strategically leverage Doppler information provided by the physical layer to achieve 

accurate time synchronization. Depending on how energy-constrained nodes are and 

the level of time-sync accuracy required by applications, D-Sync or B-D-Sync would 

be promising candidates for time synchronization in underwater networks. 

3.7 Related Work 

Two unique characteristics of underwater sensor networks make underwater 

time synchronization challenging. The first one is large propagation delays. The 

second relates to the inherent mobility in underwater systems. Even for static 

underwater systems, sensor nodes tend to experience some degree of mobility due to 

ocean currents or wind. As a result, the propagation delay will not remain constant. 

TSHL [Sye06] is the first method specifically designed to deal with long 

propagation delays. Their synchronization protocol is organized in two phases. In the 
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first phase they perform linear regression over timing information from multiple 

beacon transmissions so that nodes are skew synchronized. In the second phase, the 

clock offset is corrected by exchanging two-way messages. The fundamental 

assumption is that the distance and thus the propagation delay is a constant throughout 

the skew estimation phase. Essentially, they assume a static network which does not 

hold for most underwater systems. 

To account for the time variability in the propagation delay due to the relative 

motion of nodes, MU-Sync [Chir08] employs frequent two-way messaging to estimate 

both the offset and skew. In MU-Sync, the clock skew is estimated by performing 

linear regression twice over a set of local timing information collected via a two-way 

message exchange with a cluster-head. Because of using a large number of two-way 

messages, MU-Sync is not as energy efficient as TSHL. Furthermore, it assumes that 

the one-way propagation delay can be estimated as the average round trip time. 

However, for underwater mobile systems with nominal mobility, the estimate of the 

one-way propagation delay using MU-Sync becomes quickly biased. Finally, due to 

channel contention, nodes have to defer their transmission for random periods before 

responding to the cluster head. As the number of nodes increases, this time duration 

becomes longer which significantly deteriorates the performance of MU-Sync. 

The closest work to our proposed solution is Mobi-Sync [Liu09], in which the 

spatial correlation of nodes' velocities is exploited to estimate the time varying 

propagation delay. Nodes are classified into three groups: surface buoys, super nodes, 

and ordinary nodes. It is assumed that surface buoys are equipped with GPS to obtain 

global time reference and super nodes can communicate directly with them to 
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maintain synchronization. An ordinary node launches time synchronization by 

broadcasting request messages to its neighboring super nodes. Upon receiving the 

request message, each super node responds with a measurement of its absolute 

velocity. Nodes use a correlation model to estimate their velocity given the velocity of 

the super-node. While being effective in estimating the time varying delay, this 

protocol needs to know the exact correlation model between nodes, which is very hard 

to obtain. Also for networks with self-propelled vehicles, there may not be any 

correlation among neighboring nodes. On the contrary, our proposed scheme does not 

make any assumption about the underlying motion model nor does it require the 

motion correlation statistics of nodes for time synchronization. In addition, for Mobi-

Sync, the network has to be densely deployed to ensure that each ordinary node 

maintains connectivity to at least three or more super nodes in order to have a good 

estimate of velocity. 

3.8 Conclusion  

Node mobility in underwater networks combined with low data rates of 

acoustic modems can have a significant impact on the performance of time-

synchronization protocols. While the absolute velocity of nodes is hard to obtain 

underwater, information about their relative speed is a key input to time-

synchronization. Incidentally, the Doppler shift caused by the relative motion of nodes 

is a very well-studied problem since it is a major impairment to underwater acoustic 

communication. A number of effective physical layer techniques have been developed 

to estimate the Doppler shift. We have shown that our proposed time sync protocols 

strategically leverages Doppler information provided by the physical layer to achieve 
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accurate time synchronization. Depending on how energy constrained nodes are, we 

believe D-Sync or B-D-Sync would be promising candidates for time synchronization 

in underwater networks. 
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CHAPTER 4                                                                                                      

COLLABORATIVE TRACKING: SPATIO-TEMPORAL COMBINING  

4.1  Introduction 

As mentioned before, in our overall system setup, nodes collect measurements 

of their motion and their distances to neighbor nodes while they are submerged. The 

specific algorithms that operate on this data to estimate node trajectories are run 

offline after this data is available at a central location. In Chapters 2 and 3, we 

investigated how inter-node distance measurements could be obtained in a network 

setting and the parameters that affect performance. In this chapter we will present the 

specific tracking algorithms that can optimally combine both inter-node distances and 

measurements of nodes’ motion obtained from on-board sensors. The framework that 

we present in this chapter is applicable to a variety of mobile instruments. These 

include vehicles that are self-propelled (such as remotely operated underwater vehicles 

or ROVs), derive mobility from vertical motion (such as gliders) or passively float 

with the underwater currents (such as subsurface drifters). In the case of these mobile 

underwater platforms, location determination is not a one-shot event; instead positions 

have to be tracked over time. While traditional approaches either start from a temporal 

or spatial view, in this chapter, we propose an integrated spatio-temporal solution. Our 

collaborative tracking provides robust positioning of mobile underwater networks with 

limited resources, relying on both low-cost navigational sensors and inter-node 

distance estimates. 
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Independent tracking: the temporal view 

Underwater navigation has long been an integral part of submersibles. When 

dealing with a group if vehicles, devices are treated as a number of independent 

entities rather than a collective in motion: it essentially tracks each vehicle separately. 

This is achieved by equipping a vehicle with its own navigational unit consisting of a 

suite of sensors to measure depth, attitude, velocity and acceleration and algorithms to 

merge these measurements into a running fix of the device’s position [Bla03] [Rom05] 

[Kin06].These algorithms also rely on periodic external position updates to 

compensate for the cumulative effect of dead-reckoning errors. These external inputs 

are often obtained via acoustic range measurements to surface transponders or arrays 

of them (yielding either three independent range measurements for long baseline 

systems [Bin06], or a combination of range and angular data for short baseline 

[Aud04]).  

While effective for stand-alone devices, this traditional approach has a number 

of key drawbacks when considering a collective of them. First, it does not scale well 

as the number of vehicles increases. A larger network typically occupies a larger 

region in space. With a limited number of surface beacons, the spacing between them 

therefore increases and the frequency of external position updates goes down. Also, in 

mobile networks in general, devices may move occasionally out of range from surface 

transponders. As expected, when external position updates become sparse and dead-

reckoning errors grow, this approach starts breaking down. The problem is that 

information is really only considered in one dimension - time. The trajectory of each 

vehicle is essentially viewed as an independent string, as illustrated in Figure 4.1a. It 
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completely ignores the spatial dimension, i.e., the information that could be obtained 

by also looking at the other vehicles. 

t1 

t3 

(c) 

t2 

(a) (b) 

Spatial 

view 

Spatio-temporal 

view 

Temporal 

view 

 

Figure 4.1: Views of multi-vehicle trajectory estimation. 

Collaborative self-localization: the spatial view 

Networked submersible platforms are envisioned to be equipped with short to 

medium range communication capabilities [Jaf06] [Hei06]. In this case, inter-node 

distance estimates can be readily obtained via acoustic ranging. Leveraging inter-

device measurements has been the key component of so-called collaborative 

localization [Cha06]. Devices communicate with each other, and resolve their 

positions by manipulating the network-wide geometric constraints (only a few beacons 

are needed in the network). In essence, this collaborative localization exploits the 

spatial dimension. To extend it towards mobile scenarios, the network is periodically 

re-localized at a succession of time snapshots [Mir08], as illustrated in Figure 4.1b. 

However, this approach ignores the temporal dimension, as each node’s trajectory is 

now viewed as a set of uncorrelated points in time.  

As we will see later, this solution breaks down when the network becomes 

spatially sparse, i.e., when each device only has few neighbors. Collaborative 

localization was first proposed for static networks, such as terrestrial sensor networks. 
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However, unlike these terrestrial sensor networks which can be very dense due to 

extremely low cost mote-like platforms, underwater networks are still expected to 

operate in more sparse regimes. Furthermore, the unpredictable dynamics of ocean 

currents can result in highly varying densities over the network lifetime. This problem 

of network sparsity will have a detrimental effect on collaborative localization, as we 

will discuss in the next section. 

Collaborative tracking: the spatio-temporal view 

Instead of the above approaches, in a mobile networked system, the problem 

should really be viewed as a 4-dimentional one. As shown in Figure 4.1c, node 

trajectories form a set of interrelated strings. Both temporal (dead-reckoning using 

navigational instruments) and spatial (inter-device range measurements) dimensions 

should be exploited together. The most natural approach is to merge traditional 

tracking with collaborative localization. Specifically, position estimates obtained with 

collaborative localization can serve as external updates to tracking. Or equivalently, 

data from navigational instruments can be used to interpolate between periodic 

collaborative position estimates. While intuitively appealing, we will show that this 

combined strategy does not work. It still suffers from exactly the same intrinsic 

limitations discussed before. The problem is that this natural merging of schemes does 

not provide a truly 4-dimensional view. Instead, we will propose a novel approach that 

incorporates both time and space equally. Essentially, it operates on the mobile 

network as a set of interacting strings. This approach will provide real collaborative 

tracking (as opposed to of enhanced collaborative localization). Furthermore, a truly 

collaborative scheme that optimally combines all available measurements will be able 
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to operate well even into regions where network connectivity becomes sparse and 

surface beacons are few and far between. 

The collaborative framework that we introduce in this chapter relies on range 

estimates from acoustic modems (inter-device angular information is much harder to 

obtain as array-style communication is typically impractical on individual devices) 

and cheap navigational instruments. While accurate navigational systems have been 

used in stand-alone vehicles, they may be too expensive for these new networked 

platforms consisting of many vehicles. However, compact and less expensive 

alternatives are available. e.g., pressure sensors made from strain gages or quartz 

crystals can measure depth; magnetic compasses provide heading information with 1-

10 degrees of precision; inertial sensors such as MEMs-based accelerometers, 

magnetometers and gyros with moderate accuracy are available at low cost (tens of 

dollars). Note that on mobile platforms, velocity information is hard to obtain, as 

direct measurements only yield values relative to currents. While ADCPs (acoustic 

Doppler current profilers) can measure absolute velocity if bottom-lock can be 

obtained, these instruments have a high cost and large size.  

4.2 Why Collaborative Tracking?   

Before introducing our collaborative tracking solution, we briefly look at the 

more straightforward technique of directly combining traditional stand-alone tracking 

with collaborative localization. First, networked collaborative localization is run 

periodically, with inter-device distance measurements obtained from acoustic ranging. 

Next, the resulting position estimates are used as external inputs to the tracking 

algorithm, which uses dead-reckoning from cheap navigational sensors. 
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Unfortunately, this solution suffers from an inherent flaw. In the first step, i.e. 

the collaborative localization, each time instance of the network is treated as an 

independent estimation problem. The performance of this localization greatly depends 

on the network density, as shown in Figure 4.2. It depicts the mean RMS localization 

error and related standard deviation for a network of 20 nodes and 3 beacons as a 

function of density (expressed as the average number of neighbors per node; 

transmission range is 200m). The key point is the distinct transition effect (error jumps 

as density decreases beyond a certain point – note the scale on the graph). The reason 

is that as the network becomes sparser, we fairly rapidly shift to a situation where the 

network becomes non-localizable. This means that node positions can no longer be 

uniquely resolved (errors of several hundred meters). E.g., with only one 

measurement, the node can be anywhere on a ring (with the thickness of the 2D ring 

determined by the ranging uncertainty; depth is available from pressure sensors).  

 

 

 

 

 

 

 

 

 

network density (average number of neighbors) 

RMS localization error (m) 

Figure 4.2: Performance of collaborative localization. 
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The problem is that for such a sparse network, collaborative localization 

essentially is unable to provide any useful position information to the tracking 

algorithm. Therefore, for sparse networks, almost all nodes are non-localizable and we 

expect the performance of tracking basically to default back to the case where no 

external position information is available. Essentially, all the information from inter-

node distance measurements is lost. However, even if the network is non-localizable at 

each point in time, there is still a lot of useful information in the distance information 

between nodes that can be leveraged. The key idea is that navigational data and 

ranging information should be used jointly, in a true 4-dimentional estimation 

problem. 

4.3 Problem Formulation 

In its basic form, the collaborative tracking problem that we will talk about in 

this section can be seen as a complex multi-dimensional spatio-temporal estimation 

problem. The goal is to find the maximum likelihood estimate for the overall 

probability distribution function that simultaneously captures the locations of all 

devices in the spatial and temporal dimensions. The constraints are given by the set of 

inter-device range estimates collected at discrete time instants, as well as the inputs 

from the individual navigational sensors. We will now formally define this problem. 

We consider a network with N nodes with unknown positions during the 

tracking interval. The unknown nodes are indexed by the set U = {1, ...N}.  There are 

M position references (with known positions), indexed by the set Q = {N+1,...M+N}. 

Nodes can obtain inter-node distance estimates only with neighbors that are in their 

communication range. The data available for tracking which is derived from 
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measurements made while devices are submerged, during the tracking period, (0, T ) 

can be any combination of the following: 

(1) The position of reference nodes during the tracking interval, Q = {Pi(tk)}.  

Where, i = N+1... N+M; k = 1… K; tk є (0,T) 

(2) The set of inter-node distance estimates obtained between node-pairs,          

zD ={ ( )ij kd t� } 

Where, i є {1,… N}, j є {1,…M+N}. The set { tk  }represents the time 

instances when measurements were made. 

( ) ( ) ( )ij k i k j k dd t P t P t ε= − +� �                                     (4.1) 

dε� is random error in distance estimates which we characterized in Chapter 2. 

(3) Measurements of the unknown nodes’ instantaneous translational velocity, 

zV ={ ( )i vv t� } 
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Where, i є {1,…N};{tv }є (0,T); vε� is random error in velocity measurements. 

(4) Measurements of the unknown nodes’ acceleration, zA ={ ( )i ka t� } 
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Where, i є {1,…N} ;{ ta }є (0,T); aε� is random error in acceleration 

measurements. 
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(5) Measurements of the unknown nodes’ heading, zθ = {θi(tj)} 

Where, i є {1,…N} ;{ tj }є (0,T) 

Given all the above measurements, the problem is to obtain the Maximum 

Likelihood estimates of the position of all nodes during the tracking interval ( 0, T ) at 

a time-granularity of Δt, equation (4.4). The position of a node i at time t in 2-D is 

denoted by Pi(t). The problem is to find P
*
as defined in equation (4.4). Since nodes 

know their depth from measurements of pressure sensors [Kin06], we estimate their 

positions in 2-D, by looking at the projection of a 3-D network on a 2-D plane.  

* * * *
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The above described collaborative tracking is a complex estimation problem. 

The complexity essentially is due to distance measurements made between unknown 

nodes. This introduces a great deal of inter-dependence between large numbers of 

unknown states.  As such as direct approach to evaluating equation (4.4) is infeasible. 

However, the general problem of computing the distribution of individual variables 

from a global function defined over many variables is frequently encountered in 

coding theory. Solutions for particular instances of this problem (i.e. particular 

structures of the joint distribution) have been previously proposed under different 

names. Some examples are the Forward /Backward algorithm or BCJR, iterative turbo 
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decoding and decoding of LDPC codes. However, it has been shown that all these 

algorithms and many others (Pearls belief propagation and even Kalman filters) are all 

instances of a single generic message passing algorithm, the sum-product algorithm 

that operates on a ‘factor-graph’ [Ksc01].  

These factor-graphs offer a way to represent any global function (in this case 

the multi-dimensional probability distribution) in terms of simpler local functions that 

depend only on a subset of variables. The sum-product algorithm can operate on this 

graph and exploit these simple relations to estimate the global function via iterative 

message passing. We will first present a brief overview of factor-graphs and the sum-

product algorithm based on excellent tutorials by Kschischang et al [Ksc01] and 

Loeliger [Loe04]. We refer the reader to these tutorials for an in-depth review of these 

topics.  

4.4 Application of Factor Graphs to Probabilistic Inference 

The sum-product algorithm is the solution to the following generic problem. 

Given a global function g(x1, x2, x3,…, xn), where each  xi takes values in the discrete 

domain Ai, the sum-product algorithm computes simultaneously and efficiently the 

summary for each xi where the summary function is defined in  equation (4.5) 

1 2 2 3 3

1 2 3 1 2 3

~

( , , ) ( , , )
x x A x A

g x x x g x x x
∈ ∈

=∑ ∑ ∑     (4.5) 

When the global function is a joint distribution, the algorithm naturally 

computes the marginal distributions for each xi. To do this, it exploits the way the 

global function g(.) factorizes. Since computing the summary of any state-variable for 

the global function is computationally intensive, the structure of the global function is 



77 

 

 

 

exploited by representing it in terms of the product of a number of functions that only 

depend on a subset of the variable. An example of such a representation is given by 

equation (4.6). 

1 2 3 4 1 2 3 4 1 4( , , , ) ( , ) ( , ) ( , )
A B C

g x x x x f x x f x x f x x=    (4.6)                                    

                                                                   

Where, fA , fB, fC are functions of a subset of the variables and show the 

structure of the global function g(.) by capturing the inter-dependence between 

different state-variables, xi. 

Now, factor-graphs provide a means of representing the structure of the global 

function graphically. However, their significance is more than just an alternate 

representation. This is because once the factor-graph representation of the global 

function is obtained; the sum-product algorithm can operate on this graph to 

efficiently compute the summary function given in equation (4.5). It is noteworthy, 

that the sum-product algorithm can jointly determine the summary of a number of 

variables. The factor-graph form of the example function, given by equation (4.6) is 

shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

fC 

fA fB 

x1 x2 x3 x4 

Figure 4.3: An example factor-graph 
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As mentioned earlier, the sum-product algorithm can now operate on the 

example factor-graph in Figure 4.3, to jointly estimate the summary of variables x1, x2, 

x3, x4. During the operation of the sum-product algorithm, messages are generated by 

state-variables and function nodes. We will next briefly describe these messages. 

Let µx-f (x ) denote the message sent from a state-variable, x to a function node 

f (X), where X is the set of arguments of f. Let µf-x(x) be the message sent from a 

function node to a state-variable. Also, let n(w) denote the set of neighbors of a given 

node w on the graph. Messages are computed by each node as per the following rule 

[Ksc01] [Loe04].  

( )\{ }

( ) ( )x f h x

h n x f

x xµ µ− −
∈

= ∏          (4.7) 

~{ } ( ) \{ }

( ) ( ) ( )f x y f

x y n f x

x f X yµ µ− −
∈

 
=  

 
∑ ∏                                           (4.8) 

The algorithm operates as follows. Per iteration, nodes compute outgoing 

messages on all their links based on the (latest) messages that had arrived on those 

links in a previous iteration. Nodes initiate message-passing by assuming that a unit 

message has arrived on each of their links. Further the algorithm has to iterate a 

number of times to converge. The presence of cycles in the factor-graph affects the 

convergence time.  

The estimate of a state-variable’s distribution is the product of all its incoming 

messages. To obtain a physical interpretation of the operation of the sum-product 

algorithm, it is sufficient to examine a message passed from one state-variable to 

another via a function node as shown in Figure 4.4. In step 1, the message, µx-f (x) is 
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sent from state-variable x to function-node f with f є {f1 ,f2}. This message is an 

estimate of the probability mass distribution of x. Next, in step 2, node f computes an 

estimate of the distribution of the position of y based on the likelihood of any 

information that relates x and y.  

 

 

We observe in step 2, that a number of messages can simultaneously arrive at 

y, each being an individual estimate of its position-distribution. Node y intersects all 

these individual distributions to obtain an estimate of its distribution. This is the 

product step of the algorithm. In step 3, y sends out the most recent estimate of its 

distribution to all its neighbors.  

4.5 Maximum Likelihood Estimation Based on Factor Graphs 

As a first step towards solving our collaborative tracking problem, we have 

come up with the appropriate factor-graph description given in Figure 4.5. It gives a 

graphical representation of the interdependencies between the unknown positions of 

the devices in space and time. Mathematically, this graph describes the joint 

distribution of nodes’ positions given all distance estimates and motion measurements. 

µy-f (y)   f x y 

µx-f (x) µf-y (y) 

1 2 

3 

Figure 4.4: Messages passed between two state-nodes 
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Velocities are added has hidden variables, allowing us to relate accelerations to 

positions (although we did not intend on estimating velocities to begin with).  

The structure of the graph in Figure 4.5 can be viewed in terms of a number of 

basic sub-graphs, which is the key to solving the complex estimation problem in a 

computationally efficient way. First, one observes three main chains stacked 

vertically. Each chain captures the trajectory of an unknown node (we only showed 

three to not overload the figure), where the horizontal dimension represents time. The 

circles indicate the state-variables that have to be estimated, which are the node 

positions (Pij for the position of node i at time tj) and velocities (Vij). Various types of 

square blocks link the state-variables together. These blocks, known as function- 

nodes, not only indicate which state-variables are related but also how they are related. 

Two main types of interdependencies are captured by the graph: temporal and 

spatial. Temporal interdependencies (defined by function nodes of type f1, f2 and f3) 

relate the instantaneous positions and velocities within each chain. Spatial 

interdependencies (defined by functions of type f4), on the other hand, are between 

chains and are dictated by inter-node distance measurements. Function f1 describes 

how the instantaneous velocity of each node is related to its position at consecutive 

time steps, according to the first principles definition of instantaneous velocity. 

Function f2 relates the instantaneous velocity of nodes over time given acceleration 

measurements, while f3 describes velocity given measurements of a node’s heading.  In 

principle speed measurements can also be included, however we do not use these here, 

since this information is difficult to obtain underwater. 
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Function nodes can take any generic form that best describes the likelihood of 

measurements given state-variables [Ksc01] [Loe04]. For our specific problem, their 

formal definition is given in equation (4.9).  

1 , 1 , , , 1 , , , 1 , ,( , , ) ( | , ) ( 0)
i s i s i s i s i s i s i s i s i s

f P P V p P P V I P P V t+ + += = − − ⋅ ∆ =

 

2 , , 1 , , , 1( , ) ( | , )i s i s i t i s i sf V V p a V V+ += �  

3 , , , , ,( ) ( | ) ( | )i s i s i s i s i sf V p V p Vθ υ= ⋅� �                             (4.9) 

4 , , , ,( , ) ( | , )kt

l k m k lm l k m kf P P p d P P= �  

Where, Δt is the time granularity at which motion measurements are obtained. 

All other variables as previously defined. 

  V2,1   V2,2   V2,T-1   V2,T-2 

  P2,1   P2,2   

P
  P2,T 

f1 f2 f3 f4 

  V1,1   V1,2   V1,T-1   V1,T-2 

  P1,1   P1,2   P1,T-1   P1,T 

  V3,1   V3,2   V3,T-1 

  P3,1   P3,2    P3,T 

Figure 4.5: Factor graph representation of 4D tracking 
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We will later present the details of our final algorithm, including the exact 

definitions of these likelihood functions. However, we will postpone this discussion 

until Section 4.5.2 when we address the complexity of the algorithm. The reason is 

that the exact definitions of the likelihood functions follow from how the distributions 

of state-variables are represented. To reduce the computation overhead we have made 

a set of specific choices regarding these representations, which we will discuss in 

Section 4.5.2. Specifically, each state-variable should first define the space over which 

its probability density will be estimated by the algorithm. While both position and 

velocity are most naturally defined over a continuous space, the sum-product 

algorithm has to operate on discrete sample points. As a result, we will choose piece-

wise constant distributions that are uniformly weighted over 2D grids to approximate 

the true and unknown densities of state-variables. As a consequence of this choice of 

distributions, the definitions of the function nodes described by equation (4.9) have to 

be modified: since a sample point now represents an area or grid in 2D, each function 

node, in a strict sense, has to be integrated over the areas represented by its arguments. 

Furthermore, how the discretization is optimized and how many grids are chosen, is 

addressed by the adaptive sampling algorithm given in Section 4.5.2.  

We next describe the overall operation of the sum-product algorithm on the 

factor-graph presented in Figure 4.5 and develop an intuitive understanding of the 

estimation process. These intuitions will later help us to analyze the performance of 

the algorithm.  
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4.5.1 Algorithm Operation 

Once the factor graph is defined, the estimation problem is solved by running 

the sum-product algorithm on it. As mentioned in Section 4.4, the sum-product 

algorithm is essentially a message passing algorithm. Nodes begin by composing 

messages and sending them out over the links of the factor graph. There are two main 

types of messages exchanged during a single iteration of the algorithm. Messages from 

a function node f to a state-variable x, denoted as (.)xf −µ and messages from state-

variables to function nodes, denoted as (.)fx −µ . These are computed as per equations 

(4.7) and (4.8) 

The two types of messages essentially set up the internal machinery of the 

graph that operates as follows. State-variables send out their most current estimate of 

their distributions to all their neighbor functions, while function nodes send out their 

estimates of the distribution of neighbor state-variables. These outgoing messages are 

generated by combing the incoming messages in a past iteration as per equations (4.7) 

and (4.8). A state-variable estimates its distribution (or outgoing messages) by 

intersecting the individual estimates of its distribution provided by its function-node 

neighbors, equation (4.7). A function node generates its message to a neighbor state-

variable by performing a marginalization of its local likelihood function, equation 

(4.8). These messages, operating at a micro-level, provide a way of modifying node 

distributions by carrying information across the graph.  

For tracking, one view of what takes effect as a result of the sum-product 

algorithm is follows. Consider the experience of a state-variable in the graph that 

represents a node’s position at a certain time. Messages that flow to it from the 
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temporal dimension essentially translate the position distribution of the node at all 

other instances in the past and future to a common point. Messages that flow into it 

from the spatial dimension (between nodes) transform the position estimates of its 

neighbors to a distribution for the node. These individual estimates are then intersected 

to obtain more accurate estimates. 

One important implication of this framework is that we have unified the 

notions of localization and tracking in a collaborative setting (although other attempts 

have been made in the past for single robot systems [Fox98] or in the case of multiple 

platforms when both distance and angle are available [Zha08] [Fox00]). As such, 

tracking has long implied estimating the position of a node in time, starting with a 

position fix at some initial time (with Gaussian error). This is especially true for 

tracking based on Kalman filters. As time progresses, if the position estimate becomes 

very inaccurate, tracking is no longer possible. This means new measurements cannot 

be correctly fused to update the position of the node. Instead the device has to be 

localized from scratch by combining multiple measurements. This is often called the 

wake-up robot problem or global positioning problem in robotics [Neg03] [Web10]. 

While, tracking based on particle-filters [Aru02] has been proposed to address this 

problem [Fox00] [Fox98], how these particle-filters would communicate in a 

collaborative setting is not addressed so far. In our factor-graph framework, each 

function-node essentially acts as a particle filter, modifying and propagating generic 

distributions that are fed into it in the form of messages. However, the key advantage 

of our factor-graph solution is how these particle filters are connected so that they act 

in unison for estimating the trajectories of all nodes, utilizing all available information. 
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4.5.2 Complexity Reduction and Analysis 

While the sum-product algorithm offers an elegant way of solving the complex 

multi-dimensional tracking problem, its computational complexity is still prohibitively 

high. We will explore a number of ways to considerably reduce this complexity with 

little compromise on performance. Consider a situation where we are tracking N nodes 

over a period of T (s) (with ∆T (s) as the time-granularity of tracking). This would 

result in K time steps over which nodes are tracked with /K T T= ∆   . Assume 

during those K time steps, there are L distance estimates between unknown nodes and 

LB with beacon nodes (i.e. nodes with known positions on the surface). In that case, 

the total computational cost (in number of operations) is given by the total number of 

iterations until convergence (the sum-product algorithm is based on iterative message 

passing) multiplied by the cost per iteration NC. Equation (4.10) shows the expression 

for NC which is derived from equations (4.6) and (4.7) for one iteration of the 

algorithm. 

3 2 2( )C BN M N K M N K L M L L Mα β γ ρ≈ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅ + ⋅ ⋅         (4.10) 

Where, 3 2 13 ( 3); 2 ( 2); ( 1); 2C C Cα β γ ρ= ⋅ + = ⋅ + = + =   

In this expression, Cn is the cost of evaluating a function with n arguments. 

These functions are the ones needed to calculate the messages passed between nodes, 

from equations (4.7) - (4.8). This will be discussed more in detail later. Finally, the 

message length M captures how state information (e.g. node position Pij) is 

numerically represented in the algorithm.  
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As can be observed from equation (4.10), the message length, M has a large 

impact on the overall complexity, and an efficient representation is therefore crucial. 

Secondly, while the natural state-space representation of position and velocity is in a 

continuous domain (and so the likelihood functions are also defined in this domain), 

the sum-product algorithm operates most efficiently on discrete representations. As a 

result the new likelihood functions are obtained by integrating the original functions 

over a hyper-volume of n x 2 dimensions where n is the number of neighbors of the 

function node. The cost of calculating these integrals can be quite high.  Lastly, the 

granularity of the tracking, ∆T determines the number of state-variables that have to be 

estimated. A smaller time-granularity results in a more time-steps, K and 

proportionally increases the number of unknown states. This effect is also captured by 

equation (4.10). We will next address these problems by making specific choices 

about how distributions are represented and also show how the factor-graph in Figure 

4.5 can be modified to reduce the number of estimated states. 

4.5.2.1 Efficient Representation 

Consider the node position estimates Pij, which are 2D probability distributions 

(depth is known from pressure sensors). One way of representing these distributions 

numerically is to split the space into a grid and work with values at these grid points 

(essentially considering a sampled version of the continuous distribution). The number 

of samples (i.e., number of grid points) is what defines message length M. The 

problem is finding the appropriate sampling. First, the node keeps track of its 

allowable region, which is the smallest square region where it can reside. This region 

is then split in a number of grids or samples. At the onset, the node has no 
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information: its allowable region is the entire space and fine grids are useless and 

extremely wasteful. However, as the algorithm progresses, nodes should adapt their 

sampling and their allowable region to adequately represent their improved 

distribution estimates. As information percolates in time and space through the factor 

graph, the algorithm should therefore adapt its sampling representation at run time. 

We base our solution on the following theorem that provides a simple 

relationship between the quality of piece-wise constant probability distributions (also 

called ‘weighted discretizations’) of p(x) and its entropy H(·), defined in equation 

(4.11) [Isa09]: 

Theorem 4.1: Among any collection of weighted discretizations of p(x), the 

minimum KL (Kullback–Leibler) divergence to p(x) is achieved by a discretization that 

has minimum entropy H. 

1

( ) log
| |

K

k
k

kk

w
q w

V
=

 = − ⋅  
 

∑Η     (4.11) 

In this equation, wk represents the weight and Vk is the vector dimensionality. 

The KL divergence is a measure of the discrepancy between the estimated 

distributions and the actual distribution and cannot generally be computed directly 

because the actual distribution is unknown. However, Theorem 4.1 says that for the 

particular class of approximating distributions, namely piecewise-constant 

distributions, which we are using in our scheme, minimizing the entropy of the 

approximating distribution is the same as minimizing the KL divergence. While this is 

a known result, Isard et al. used this theorem only to obtain the best non-uniform 

discretization with a fixed number of samples [Isa09]. On the other hand, we will use 
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it to adaptively adjust the number of samples and the granularity. By computing the 

entropy of our estimated distributions at run time, we obtain a measure of their quality 

as a function of the number and granularity of samples. We also use the entropy as a 

stopping condition for the algorithm. Specifically, we stop the message passing once 

the change in entropy computed by all state-variables is approximately zero. Our 

approach starts with very coarse representations, a single sample of large area 

representing the entire geographic region (~ kms). It then iteratively splits the space 

into equal sized grids until the change in entropy of the distribution is arbitrarily small. 

From Theorem 4.1, this entropy gradient approach allows us to decide what number of 

samples is sufficient to adequately represent a node’s distribution. Note that this is 

done for each node independently. Figure 4.6 presents the pseudo code of this entire 

procedure. It enables us to adaptively select the minimum value of M (message size) in 

the computational complexity equation (4.10). 

The second important factor that determines the complexity of the sum-product 

algorithm is the calculation of the messages passed between nodes. These were 

lumped together according to their number of arguments. The cost Cn for a function 

with n arguments is that of numerically computing an n
th

 order integral. To reduce this 

cost, we will discretize the weights of our distribution to one bit only. Essentially, we 

are only keeping track of which grids have a non-zero probability of the device 

residing there, without storing which grid is more likely. This allows us to convert all 

computation to binary logic: summations become a logical-OR and multiplications 

become a logical-AND. The resulting operations, which completely describe the sum-

product algorithm we run on our factor graph, and thus our complete estimation 
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algorithm, are presented below. We first present the function node definitions when 

position and velocities are discrete random variables. 

( ) ( ) ( )max max

( , ) 1 2 1 1 2 2 ( , )| , ( , ) ( , ) ,
t coarse T T t

l m dist l m d dp d p p g p z p z d U ε ε≈ − − = −� �
  

(4.12) 

( ) ( ) ( )max max

, 1 2 2 1| , ,coarse

i t accel a ap a v v g v v U T Tε ε≈ − = − ⋅ ∆ ⋅ ∆�                        (4.13) 

( ) ( ) ( )max max,o coarse

speedp v g v U s s≈ = −                                      (4.14) 

( ) ( ) ( )max max

, | ,coarse

i s headingp v g v U θ θθ ε ε≈ ∠ = −�              (4.15) 

As mentioned earlier to reduce the computation overhead, we convert all 

operations to binary logic. We first restrict the weights of node distributions to be 

binary valued. Since the functions being estimated are binary, the likelihood functions 

can also have more coarse representations. Given bounds on measurement errors we 

define the likelihood distribution functions by: 

2 , 1 1 , ,

1 , 1 , , 2 1 1 2

, ,

( , , ) ( 0)

i s i s i s

i s i s i s

p P p P v V

f P P V I p p v t dp dp dv

+

+

∈ ∈ ∈

= − − ⋅ ∆ = ⋅ ⋅∫∫∫          (4.16)
 

( ) ( )
1 , 2 , 1

2 , , 1 , 1 2 1 2

,

, | ,

i s i s

i s i s i t

v V v V

f V V p a v v dv dv

∈ ∈ +

+ = ⋅ ⋅∫∫ �                              (4.17) 

( ) ( ) ( )
,

0

3 , , |

i s

i s i s

v V

f V p v p v dvθ
∈

= ⋅ ⋅∫ �                              (4.18) 

( ) ( )
1 , 2 ,

4 , , ( , ) 1 2 1 2

,

, | ,

l k m k

k

l k m k l m

p P p P

f P P p d p p dp dp

∈ ∈

= ⋅ ⋅∫∫                         (4.19) 

Now, instead of computing the function nodes by evaluating the integrals in 

equations (4.16) to (4.19), we evaluate the functions f1 , f2  and f3   to give a binary 

likelihood as follows: 
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We denote ( ),G a�
 as the operation of expanding grid G by a in all 

dimensions. ( )c G  as the set of all corners of grid G. m(G) is the grid centre and s(G) 

is the size of the grid. The ‘+’ operation on a grid denotes translation in 2D. 

( ) ( )( ), , , , 1

1 , 1 , ,

1,     ,
( , , )

0,

i s i s i s i s

i s i s i s

if P m V T s V T P
f P P V

otherwise

ϕ+

+

 + ⋅ ∆ ⋅ ∆ ∩ ≠ 
≈  
  

�

   (4.20) 

( )max

, , , 1

2 , , 1

1,     ,
( , )

0,

i s i t a i s

i s i s

if V a T T V
f V V

otherwise

ε ϕ+

+

 + ⋅ ∆ ⋅ ∆ ∩ ≠ 
≈  
  

��
         (4.21) 

( ){ } ( )max max

, , ,

3 ,

1,    . . ,
( )

0,

i s i s i s

i s

if s t c V
f V

otherwise

θ θθ ε θ ε ∃ Θ Θ ∈ ∠ ∩ − + 
≈  
  

� �
          (4.22) 
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f P P c P c P d

otherwise

ε

ε
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  

>  
≈   − + 

  
  

�

�
         (4.23) 

Based on the above binary-valued function-node definitions, the messages 

from equations (4.7) and (4.8) are computed using binary logic as: 

( )
{ }

( )
( ) { }

( )
\~

f x y f
y n f xx

x f X A N D yO Rµ µ− −
∈

  =    
             (4.24) 

( )
( ) { }

( )
\

x f h x
h n x f

x A N D xµ µ− −
∈

=                  (4.25) 

The resulting solution is a light-weight algorithm that can efficiently solve the 

complex multi-dimensional collaborative tracking problem. Running times on a 2 GHz 

Pentium Pro machine varied between 4 to 6 hours for a network of 20 nodes and a 

tracking interval of 1 hour, where positions were estimated every 20s. For networks of 

N nodes, this will scale as O(N), as follows from equation (4.10). The running-time 
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gains from adaptive representation and binary discretization were observed to be about 

two orders of magnitude.   

 

 

 

 

 

 

 

 
 

4.5.2.2 State Reduction via Measurement Combining 

The problem that we wish to address in this section arises because 

measurements of the instantaneous acceleration of nodes can generally be obtained at 

a much higher rate than the granularity at which nodes have to be tracked. To correctly 

arrive at the factor-graph representation, the tracking interval would have to be 

reduced to match the sampling rate at which acceleration measurements are observed, 

if the measurements are not modified. As a result, the number of states that have to be 

estimated would substantially increase and so would the computation overhead, as 

equation (4.10) indicates. 

We will show in this section how measurements and the factor-graph shown in 

Figure 4.5 would have to be modified, in order to achieve a desired tracking 

granularity. Let Δt be the interval at which acceleration measurements are obtained. 

while (algorithm_converged == false) { 

 

  // Adapt the sample representation for all nodes i and time step tj 

 ti,∀ , repeat { 

  split_grid(Pij); // split 2D grid of Pij into 4 equal grids 

  new

ti

old

ti HHH ,, −=∆  // compute change in entropy  

 } until ( H∆ < epsilon) // discretization adequate  

 

 // Run the sum-product algorithm 

 sum_product_algorithm(); 

 ti,∀ , prune(Pij); // remove samples with zero belief 

 

 // Stop when there is no change compared to previous iteration 

 algo_converged = update(); 

} 
 

Figure 4.6: Adaptive sample representation algorithm 



92 

 

 

 

As mentioned before ΔT is the tracking interval. If ΔT = N · Δt, then N is the number 

of extra states that are estimated during the tracking interval. We have so far denoted 

the position of a node i at time tN+1 by Pi,N+1. However, since acceleration 

measurements can be modified independently for each node, we will use a simplified 

notation Pk to denote the position of a node at time tk . Using this notation, the position 

of a node at time tN+1 is related to its position at time t1 as follows: 

[ ]

1 1 1

1 1

1      1,  

N N

N j j

j j

T
P P v t P v

N

P v N T

+
= =

∆
= + ⋅ ∆ = + ⋅

= + ⋅ ∆

∑ ∑

                                   (4.26)

 

Where, [ ],v i j  is the average velocity in the interval (ti, tj ). Similarly, we 

relate the position at time t2N+1 to the position at time tN+1as:  

[ ]2 1 1 1,  2N NP P v N N T+ += + + ⋅ ∆
                                            

(4.27) 

Using the similar procedure as above, the instantaneous velocity at time tk 

denoted as vk is related to v1 and acceleration measurements as: 

1

1

1

k

k j

j

v v a t
−

=

= + ⋅ ∆∑
                                                 

                  (4.28) 

We can now relate the average velocity to the instantaneous acceleration 

measurements as:
 

[ ] 1

1 2

1 1
1,  

N N

k k

k k

v N v v v
N N= =

  
= ⋅ = ⋅ +  

  
∑ ∑                   (4.29) 

Substituting for vk in the above equation using equation (4.28) we obtain: 
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                   (4.30)

 

Following the form obtained in equation (4.30), we can obtain the average 

velocity in the interval (t N+1, t 2N+1) as: 

[ ] ( ){ }

( ){ }

2 1
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2 1

1
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1,  2 = 

                     =

N

N j

j N

N N

j j

j j N

t
v N N v N j a

N

t
v N a N j a

N

−

+
= +

−

= = +

∆
+ + ⋅ − ⋅

 ∆
+ ⋅ ⋅ + − ⋅ 

 

∑
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  (4.31)

 

Subtracting equation (4.30) from equation (4.31) and substituting acceleration 

measurements instead of actual acceleration, we relate the average velocities over two 

time epochs for any node I as: 

[ ] [ ] [ ]ˆ1,  2  - 1,  = a 1,  ; 1,  2 .i i iv N N v N N N N t tαε+ + ⋅ ∆ + ∆�
 

Where, [ ] ( ){ }
2 1

, ,

1 1

1
â 1,  ; 1,  2

N N

i i j i j

j j N

N N N j a N j a
N

−

= = +

 
+ = ⋅ + − ⋅ 

 
∑ ∑� �

        (4.32) 

For a more short-hand notation we will denote: 

[ ], ( 1) 1,  i s iV v s N s N= − ⋅ + ⋅  ; ( ),
ˆˆ =a ( 1) 1,  ; 1,  1

i s i
a s N s N s N s N− ⋅ + ⋅ ⋅ + + ⋅    

The factor graph in Figure 4.5 will now have to be modified as follows. Instead 

of estimating the instantaneous velocities, we will estimate the average velocities over 
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the tracking interval. Since the basic structure of the graph remains the same we will 

only show how a single temporal chain is modified to change the tracking granularity. 

 

 

Naturally the function f2 has to be modified to f2
’
. Following equation (4.32) 

and the grid operations defined for equation (4.21) we obtain f2
’ 
as: 

( )max

, , , 1

2 , , 1

ˆ1,     ,
( , )

0,

i s i s i s

i s i s

if V a T T V
f V V

otherwise

αε ϕ+

+

 + ⋅ ∆ ⋅ ∆ ∩ ≠ ′ =  
  

�

    (4.33)

 

4.5.3 Performance Analysis 

So far, we presented how collaborative Maximum Likelihood tracking can be 

performed based on factor-graphs. We would now like to analyze the performance of 

our estimator. In this section we will derive the covariance of the position error for the 

ML estimate of the position of a device at any time t, given all range and velocity 

measurements during a period (0, T). We derive the performance for one node in a 

network, whose neighbors know their positions perfectly. We will refer to the 

neighbor nodes as references. The ML estimation is performed under the condition 

that the measurement (distance and velocity estimate) errors have been characterized. 

f1 f2
’ 

f3 f4 

  P1,1   P1,N+1   P1,2N+1   P1,K·(N+1) 

   V̅1,1 
   V̅1,2 

 

Figure 4.7: Modified factor-graph chain after state-reduction 
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We will denote the error in the distance estimate obtained at time tk as 
R

kε , which is 

Gaussian distributed with zero mean and standard deviation σR. Measurements of the 

node’s velocity are obtained with period Δt. The error in velocity measurements is also 

zero-mean Gaussian with standard deviation σv . 

Each distance measurement, r(tk)  between an unknown node U and a reference 

node R at some time tk results in an estimate of the pdf of the position of node U at 

time tk. If the error in the distance measurements follows a zero-mean Gaussian 

distribution with standard deviation σR, the pdf of the position of node U as a result of 

a distance measurement made with a reference node is a Gaussian ring, depicted in 

Figure 4.8. The dark red regions represent the positions of maximum probability and 

the dark blue that of lowest probability. The Gaussian ring is formally defined as 

follows: 

Definition 4.5.3.1: A Gaussian ring is the pdf of a 2 dimensional random 

variable P = [x, y]
T
 whose distance to a known center point C = [cx, cy]

T
 follows a 

Gaussian distribution with known mean and variance.  

 

 

 

  

 

 

 

 

Figure 4.8: (a) pdf of position of node U as a result of a distance measurement 

made with a reference node (b) The Gaussian Ring: pdf of position of node U as 

seen from above in a 2D plane 

(b) 

(m) 

(m) 
(m) 

(m) 

(a) 
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The velocity measurements allow a way of translating a number of such 

Gaussian rings obtained at different points in time to a common time-instance. By 

intersecting these rings the position distribution of the node at any time t0 can be 

obtained. 

Since velocity measurements are not precise, the error in the radius of each 

ring after a temporal translation will grow. Further, the errors in rings that are 

translated through the same time period are correlated. Therefore, the intersection 

operation has to take this correlation into account. Conceptually, this is what the 

factor-graph algorithm is doing. However, a mathematical analysis of the above 

described steps is complex because of the non-linearity that arises with the rings. The 

exact final distribution of the position estimate of a node at any time instance can only 

be obtained numerically (as done by the sum-product algorithm). For a mathematical 

analysis we will make some simplifying approximations. Nevertheless, we arrive at 

very accurate error results as long as the ranging error is much smaller than the true 

distances. 

As mentioned earlier, a distance measurement taken at any time tk, results in a 

pdf of the unknown position at that time described by the Gaussian ring. To make our 

analysis tractable, we approximate the Gaussian ring by its tangent passing through the 

true position of the node at time tk,PU (tk). The reason why we believe that such an 

approximation would hold is that while for a single measurement the tangent-line is a 

very inaccurate representation of the ring, the intersection of a number of such lines 

would be a fairly good approximation to the intersection of the corresponding rings. 
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To characterize our line representation of the Gaussian rings we introduce the 

following parameters. 

The perpendicular to the tangent-line is at an angle αk. Its thickness is 
R

kε , 

where, 
R

kε  is the ranging error of the k
th

 distance estimate. ( )0,R

k RNε σ∼ . Our line 

approximation and the relevant parameters are illustrated in Figure 4.9. The darkest 

region of the line represents that of maximum probability. The ring shown in the 

figure is same as that in Figure 4.8, although the gray-scale distribution is not shown. 

 

 

Using the line-approximation in place of the Gaussian-rings, we will now 

mathematically describe the operations explained earlier in this Section.  Each velocity 

measurement taken at time ζi has an error , yx

T
vvv

i i iε ε ε =  
. The errors in the velocity 

measurements that are used to translate any range measurement to a reference time t0 

will cumulatively add to the ranging error, 
R

kε

 

. Since the same set of velocity 

measurements are added to range measurements that are translated through a common 

αk 

PR(tk) 

PU(tk) 

R

kε  

R

kε  

Region R 

Zoomed-in view of region R 

Figure 4.9: Line approximation to the Gaussian Ring 
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time epoch, the errors in the translated measurements are correlated. As a first step, 

our goal is to obtain the covariance matrix of the error in the N range measurements 

after they have been translated to a common reference time t0.  

Let there be a total of N range measurements taken at time 

instances{ }1 2, , ..., Nt t t . From Figure 4.9, the corresponding line widths at the time each 

measurement was obtained are given by
1 2, , ...,

T
R R R

R Nξ ε ε ε =   . Note that each R

k
ε  is in 

the direction αk. Let us denote the sequence [ ]
0 1 2, , ...,

T

t NE e e e= as the widths of the N 

lines after they have been translated to the common reference time t0. Also, let 

{ }1 2, , ..., Mζ ζ ζ  be the time-instances velocity measurements were obtained. For every 

velocity measurement added to a range measurement, only the components of the 

velocity measurements along 
R

kε

 

would add to the line width. As a result, by 

projecting each velocity error onto the vector, 
R

kε we obtain the cumulative effect of 

velocity errors during the interval [tk ,t0). This is graphically represented in Figure 

4.10.  

 

       

αk 

R

kε
 

xv

iε

yv

iε
xv

iεΡ
 

yv

iεΡ
 

Figure 4.10: Contribution of velocity errors to error in range 

measurements 



99 

 

 

 

Following our prior discussion and from Figure 4.10, the equation that relates 

the error in each translated range measurement, ek to the ranging error 
R

kε as well as the 

set of relevant velocity errors is given by: 

[ ) [ )0 0: , : ,

cos sin yx

j k j k

vvR

k k k j k j

j t t j t t

e t t
ζ ζ

ε α ε α ε
∈ ∈

= + ⋅ ⋅ ∆ + ⋅ ⋅ ∆∑ ∑          (4.34) 

Let 
1 2, ,...,x x x

T
v v v

X Mt t tξ ε ε ε = ⋅ ∆ ⋅ ∆ ⋅ ∆  and 
1 2, ,..., .y y y

T
v v v

Y Mt t tξ ε ε ε = ⋅ ∆ ⋅ ∆ ⋅ ∆ 
 

We rewrite equation (4.34) in matrix form to obtain the error in the translated 

measurements,
0t

E as:
 

 
0t R c X s yE ξ ξ ξ= + Λ ϒ + Λ ϒ          (4.35) 

Where, ϒ is a N x M matrix with elements [ ],i jϒ  defined as follows: 

[ ] 0 01,   or 
,

0,

i j j iif t t t t
i j

otherwise

ζ ζ≤ ≤ 
ϒ =  

 

≺ ≺

                         (4.36) 

cΛ and sΛ are each diagonal matrices of dimension N defined as follows: 

 

( )1 2cos , cos , ... cosc Ndiag α α αΛ = , 

( )1 2sin , sin , ... sins Ndiag α α αΛ =  

From equation (4.35) and using the fact that the error vectors: Rξ , Xξ and Yξ are 

zero mean and statistically independent of each other, we now obtain the covariance 

error matrix of the N range measurements after they have been translated to a common 

reference time, t0 as: 
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( )
0 0 0

cov

             

T

t t t

T T T T T

R R c X X c s Y Y s

E E E

ξ ξ ξ ξ ξ ξ

= Ε

= Ε + Λ ϒΕ ϒ Λ + Λ ϒΕ ϒ Λ

� �
� �	 


� � � � � �
� � � � � �	 
 	 
 	 
    

(4.37) 

Since all the distance measurements (prior to translation) are independent of 

each other and also the velocity measurements are independent, we have the following 

conditions:  

 
2

0,     if  

,   otherwise

R R

i j

R

i j
ε ε

σ

≠ 
Ε =  

 

� �
� �	 
                 (4.38) 

( )
2

0,     if  

,   otherwise

x xv v

i j

v

i j

t
ε ε

σ

≠  
Ε =  

⋅ ∆  

� �
� �	 
               (4.39) 

( )
2

0,     if  

,   otherwise

y yv v

i j

v

i j

t
ε ε

σ

≠  
Ε =  

⋅ ∆  

� �
� �	 
               (4.40) 

Using equations (4.38) to (4.40), we can further simplify equation (4.37) as: 

( ) ( ) ( )

( ) ( )( )
( ) ( )

0

22

22

22

cov

                      

                      

T T

E t R MxM v c c s s

T T

R MxM v

T

R MxM v

C E t

t R R

t

α α

α

σ σ

σ σ

σ σ

= = ⋅ Ι + ⋅ ∆ ⋅ Λ ϒϒ Λ + Λ ϒϒ Λ

= ⋅ Ι + ⋅ ∆ ⋅ ϒϒ

= ⋅ Ι + ⋅ ∆ ⋅ ϒϒ Β

�

�

(4.41) 

Where,  

[ ]1, cos
i

R iα α= and [ ]2, sin
i

R iα α= , for all i = 1, 2, ..., N. 

Bα = Rα
TRα 

           A B�  is the Hadamard product of matrices A and B defined as: 

                      ( )[ ] [ ] [ ], , ,A B i j A i j B i j= ⋅�  

We now write the joint distribution of the N translated-measurements as:  
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( )
( )

1

0 0

0

1

21
exp

2 det

T
t E tE C E

t
N

E

p E

Cπ

− 
− 
 = ⋅

⋅
      (4.42)

 

Once all the range measurements have been translated to the common time t0, 

we obtain a number of lines passing through the true position of the unknown node at 

time t0. Each line Lk has an error ek in the direction αk from our previous discussion. 

This is represented in Figure 4.11. 

 

 

Now, intersecting all the lines should give us the approximated distribution of 

the unknown position. If the errors {e1,..., eN} were independent, intersecting all the 

lines would be equivalent to multiplying the pdfs of all {ek}. However, since these 

errors are correlated, with the covariance matrix given by equation (4.41), we would 

perform the intersection (or combining) operation as follows: 

We will treat the joint pdf of the error in the N lines as a form of constraint on 

how the position distribution of the unknown node is described around the true 

position PU (t0). Using this perspective, if the position error in the X-direction, 

( )0X t x=� �  and the position error in the Y-direction, ( )0Y t y=� � , then the projection of 

( )0UP t  

( )0X t�  

ek
 

( )0Y t�

e2
 

e1
 

αk
 

Figure 4.11: Error vectors of range measurements after translation to a common time, t0 
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[ ],
T

p x y=� � � on each of the vectors {ek} must follow the joint distribution given by 

equation (4.42). This can be mathematically written as follows: 

 [ ]( )
1 1 1

2 2 2

0

cos sin ,

cos s in ,
( ) ,

cos sin

T

U

N N N

e x y

e x y
p P t p x y p

e x y

α α

α α

α α

= ⋅ + ⋅ 
 = ⋅ + ⋅ = = =
 
 

= ⋅ + ⋅ 

� �

� �
� � � �

�

� �

        

( )

( )

( )

0

1

1

1

2

1

2

                                     

1
                                     exp

2 det

1
                                     exp

2 det

T T
E

T
P

T

t

p R C R p

N

E

pC p

N

E

p E R p

C

C

α α

α

π

π

−

−

 
− 
 

 
− 
 

= =

= ⋅
⋅

= ⋅
⋅

� �

� �

�

             (4.43)

 

Where, Rα is defined in equation (4.41). From equation (4.43), we obtain the 

covariance error matrix of PU (t0) denoted as Cp: 

( )
1

1 T

P E
C R C Rα α

−−=
                                                        

(4.44) 

We also provide the following alternate proof which holds under the condition 

that the covariance matrix CE should be invertible and Rα Rα
T must be full rank (rank 

2). From equation (4.41) since CE is the sum of two matrices, one of which is the 

diagonal matrix and so, full rank, CE is invertible. If there are at least two non-

identical measurements, Rα Rα
T would be full rank. As mentioned before, the vector 

( )0U
P t�  projected onto each vector {ek} should follow the joint distribution of

0t
E . In 

other words:
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0
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1
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1

0

1

0

1
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0
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T

E U

T T T

E U

T T T

E U

R R C R P t R

R R R C R P t R R

I R C R P t R R R R

α α α α
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α α α α α α

−

−

−−

⇒ =

⇒ =

⇒ =

�

�

�

   (4.45) 

The RMS error is given by the square-root of the covariance matrix, Cp : 

( ) ( )0U pRMS P t tr C  = 
�      (4.46) 

 Let 
1 T

ER C Rα α
−Ω = . From equation (3.44): 

( ) ( )
( )

( )( )
( )

1( )
det det

p

tr adjadj
tr C tr tr

−
Ω Ω

= Ω = =  Ω Ω   

 (4.47) 

Since Ω is a 2 x 2 matrix, from the properties of the trace operation,     

tr(adj(Ω)) = tr(Ω). Also, det(Ω) = (tr(Ω )
2
 – tr(Ω

2
))/2. Using these facts we further 

simplify equation (4.47) as: 

( )

( ){ } ( )
2 2

2
( )

p

tr
tr C

tr tr

⋅ Ω
=

Ω − Ω
     (4.48) 

Again, using trace properties: 

( ) ( ) ( ) ( )

( ) ( ) ( ) { }( )

1 1 1

2
2 1 1 1 1 1

T T

E E E

T T T T

E E E E E

tr tr R C R tr C R R tr C

tr tr R C R R C R tr C R R C R R tr C

α α α α α

α α α α α α α α α

− − −

− − − − −

Ω = = = Β

Ω = = = Β
  (4.49)  
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To state our final result: We have derived the RMS error in the unknown 

position of a node at any time t0 as: 

( ) ( )0U pRMS P t tr C  = 
�  

( )

( ){ } ( )

( ) ( )( )

2 2

1
22

2
( )p

T

R MxM v

tr
tr C

tr tr

t α ασ σ
−

⋅ Φ
=

Φ − Φ

Φ = ⋅ Ι + ⋅ ∆ ⋅ ϒϒ Β Β�
                                  (4.50) 

Where, ϒ is defined in equation (4.36) 

   
[ ] ( ), cos i ji jα α αΒ = − . All other parameters as defined earlier. 

Next we want to evaluate the accuracy of our RMS error prediction. 

4.5.4 Accuracy of Performance Prediction 

To test the accuracy with which we can predict the performance of our 

algorithm as discussed in the previous section, we first considered a scenario with one 

beacon and one unknown node. The unknown node took periodic range measurements 

with the beacon. The distribution of the position of the unknown over time as 

computed by our Factor Graph tracking algorithm is shown in Figure 4.12.  

 

 

 

 

 

 

 

Figure 4.12: Scenario 1- Position-estimate distribution of a mobile node as 

computed by Factor Graph tracking algorithm 

 (m) 

(m) 
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We computed the RMS error in the position estimate at each point in time 

based on the distribution obtained from simulations. We also computed the RMS error 

using our theoretical result, equation (4.50). Figure 4.13 shows both the error results 

over the tracking time. The percentage error in our estimate of accuracy is shown at 

the bottom section of the same figure. We observe that when the constraints are such 

that the true position distribution is actually Gaussian, we can predict the accuracy of 

estimates with less than 2% error. 

 

 

 

 

 

 

 

 

 

We next repeated this procedure for a second scenario consisting of 4 beacons 

and 1 mobile node. The mobile node broadcasts periodically to obtain distance 

estimates with all four beacons. The period of broadcast is set to double that of the 

tracking granularity. Once again Figure 4.14 shows the position estimate distribution 

as computed by our FG algorithm.  

 

 

Figure 4.13: RMS error predicted vs. RMS error from simulations for Scenario 1 
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For the above scenario we first compared the RMS Error obtained from 

simulations to the theoretical prediction as per equation (4.50). This is shown in Figure 

4.15(a). We then re-derived our theoretical result ignoring the correlation in the 

translated distance estimates (refer previous section). The deviation in our predicted 

error when this correlation is ignored was as high as 35 percent in this scenario. This is 

shown in Figure 4.15(b). We also observe that in Figure 4.15(b) that the true RMS 

error is consistently larger than our predicted error when the translated measurements 

are assumed to be independent. This is expected because independent distance 

measurement would carry more information than when they are correlated. 

 

 

 

 

Figure 4.14: Scenario 2- Position-estimate distribution of a mobile node as 

computed by Factor Graph tracking algorithm for concurrent measurements 
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Figure 4.15 (a) 

Figure 4.15: RMS Error predicted vs. RMS error from simulations for 

Scenario-2 taking when (a) Measurement correlation taken into account 

(b) Measurement correlation ignored 

Figure 4.15 (b) 
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4.5.5 Evaluations in Simulation 

Next, we evaluated the performance of our algorithm, with respect to a number 

of relevant parameters, through simulations. For these simulations, we considered 

networks consisting of a varying number of submerged vehicles, combined with a few 

surface beacons. These beacons are elements such as buoys that constantly track their 

absolute geo-position via GPS. The submerged vehicles and beacons are also assumed 

to be equipped with acoustic modems. This allows them to estimate their distances 

with their neighbors via a bi-directional ping message exchange. In accordance with 

our own experimental results, we select a maximum ranging error of 2m (Chapter 2, 

Section 2.2). Furthermore, each device carries navigational instruments, yielding 

heading information with 2 degree accuracy [Kin06] and acceleration estimates with 

an accuracy of .04 cm/s
2
. In our simulations, the nodes are assumed to be loosely 

synchronized (±0.1s), and repeat this distance estimation every 20 seconds. As a 

result, each node (beacon or submersible) receives ranging information with all its 

neighbors at 20 second intervals. For our deployment, the collection of underwater 

vehicles resides in a volume of 500 m x 500 m with a maximum depth of 20 m. They 

move on randomly generated smooth paths (generated using spline-interpolated way-

points) with constantly-varying velocities between 0 and 2 m/s. 

First, we compared the performance of collaborative tracking to that of 

repeated snapshot localization. In snapshot localization, nodes only use the range 

estimates available at a particular time instance, to determine their positions 

collaboratively. This is repeated at each instance to estimate the positions over the 

tracking interval. We considered a scenario with very few beacons, two in this case. 
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The network itself consists of 6 independently moving underwater vehicles, and the 

transmission range of the acoustic modem is chosen as 200m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16(a) shows the distribution of the node position over the tracking 

interval for one of the unknown nodes when periodic snapshot localization was used, 

while Figure 4.16(b) does the same for our collaborative algorithm. Similarly, Figure 

4.17(a) and (b) show the distribution of the trajectory of a second unknown node using 

snapshot localization and collaborative tracking respectively. In these figures, the trail 

of small (red) diamond-shaped markers shows the actual positions of the devices at the 

different times. The square grids indicate the collection of possible locations the 

 (b)  (a) 

Figure 4.17: Trajectory of node2 estimated using: (a) Snapshot Localization               

(b) Collaborative Tracking 

 

Figure 4.16: Trajectory of node1 estimated using:  (a) Snapshot Localization                                   

(b) Collaborative Tracking 

 (b)  (a) 
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respective algorithm calculates as the devices residing in. In Figures 4.16(b) and 

4.17(b), these grids are actually so small they appear as dark areas; it is clear our 

collaborative tracking approach is able to provide good overall estimation results. On 

the other hand, in Figures 4.16 (a) and 4.17(a), for most time instances, there is only 

one grid occupying the entire area of observation, i.e. the algorithm has no idea where 

the device is. The arc-like collections of grids are for those times when the node 

happens to be in communication range of a beacon or another node that has resolved 

its position. As can be observed, periodic snapshot localization is completely unable to 

track the devices as they move. The reason is that this network is sparse (at each time, 

the average density is less than 4) and non-localizable at each specific time instant. 

Our collaborative tracking, however, is able to efficiently leverage all distance 

information, even in a network with very few beacons.  

We next perform more comprehensive simulations some important parameters. 

We will compare three different approaches to network tracking: One method is using 

snapshot localization, explained previously. The second method is tracking each 

unknown node independently using measurements of the node’s motion and only the 

distance estimates obtained with reference (or beacon nodes). We will refer to this 

method as beacon tracking. The third strategy is our proposed collaborative scheme 

that combines all available data in 4 dimensions, which we refer to as collaborative 

tracking. 

We begin by comparing the three schemes when the average number of 

neighbors of nodes (or network density) is increased. Since network density is hard to 

precisely quantify in a mobile network, because nodes may not always be Poisson 
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distributed, we will present our results vs. number of unknown nodes. To increase the 

‘density’ of the network we increase the number of unknown nodes deployed in a 

fixed geographic region. Specifically, in our simulations nodes are deployed in a 

cuboid of dimension 600m x 600m x 150m where the maximum depth is 150m.  The 

transmission range of nodes was fixed at 150m. Node moves in smooth curved 

trajectories within the area of deployment. Three beacons were used to track the 

network.  We increased the number of unknown nodes from 6 to 31 which on an 

average increased the number of neighbors of any node from 1 to 6. By increasing the 

number of nodes in this scenario, more information can be used from inter-node 

distance estimates. In Figure 4.18 we show how the three schemes we consider vary 

with the number of nodes. As expected, beacon-tracking does not benefit from 

increasing the number of unknowns since each node is tracked independently and 

inter-node distances are not used. Snap-shot localization benefits from increasing the 

inter-node distance estimates but its performance is still quite bad. We observe that 

our collaborative tracking scheme substantially outperforms the other strategies and 

can operate well into regimes of sparse connectivity. 
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Figure 4.18: Comparative Performance vs. number of nodes 
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Next we compared the three schemes vs. error in velocity measurements 

(normalized by the maximum speed of nodes). The simulation scenario is same as 

before except that we consider only two deployment densities. In the first the number 

of unknown nodes is 11. This is represented by λ = 2 in Figure 4.19 and in the second 

deployment the number of unknowns was 21, represented by λ = 4 in Figure 4.19. We 

present our results vs. velocity error/ speed because we observed that if nodes 

followed the same set of trajectories with double the speed, we would get the same 

results as if the velocity error was halved. The only condition is that nodes should pass 

through the same spatial points when distance measurements are obtained.  

 

 

 

 

 

 

 

 

 

Figure 4.19 shows that the performance of snapshot localization does not vary 

with the ratio of velocity error and speed. This expected because snapshot localization 

does not use measurements of nodes’ motion to estimate position. We also observe 

that for both node densities, λ = 2 and λ = 4, the performance of collaborative tracking 

comes very close to that of snapshot localization when the ratio of velocity error by 

Figure 4.19: Comparative Performance vs. Normalized Velocity Error  
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speed is around 5. This essentially shows that if the error in velocity measurements is 

more than the speed of nodes, velocity measurements do not provide very useful 

information and we have to solely rely on distance-estimates. We also observe that 

once this ratio exceeds 0.2, the performance of beacon-only tracking deteriorates 

quickly. Overall, collaborative tracking is able to leverage from density, mobility and 

precise motion measurements depending on what is available. 

Finally, we compare the three different tracking strategies when the maximum 

depth of the network is varied. Figure 4.20 shows the localization error averaged over 

both the duration of tracking and the nodes. We observe that compared to all nodes 

residing on the surface, both beacon-based tracking and snapshot localization are 

heavily affected when the maximum depth is increased to 150m. However, 

collaborative localization is much more robust. 

 

 

 

 

 

 

 

 

 Figure 4.20: Comparative Performance vs. Velocity Error and Max. Depth 
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4.5.6 Results from Experimental Data 

We have tested our tracking algorithm using data obtained from an 

experimental test-bed. Since conducting such an experiment underwater is quite 

difficult because the true position of nodes is hard to establish, we performed 

controlled experiments on a terrestrial network. The goal was to ensure that our 

algorithm gave us expected results when real data was used. 

Our experimental setup consists of a number of static beacon nodes and one 

mobile node. We used the Telos mote platform for our experiments. The motes were 

programmed to obtain distance estimates acoustically from one-way time-of-flight 

measurements. The on-board accelerometer was used as the only measurement of the 

node’s motion.  

All data collected by the mobile node, namely the inter-node distances and 

measurements of acceleration were communicated to a central base-station for 

processing. The acceleration measurements which were obtained every 1ms and were 

aggregated over a period of 2s using the procedure explained in Section 4.5.2.  

We will present two experimental scenarios. The first one is a static scenario 

where the node, U with unknown position is kept stationary at position (0, 3).  Four 

beacons were placed at positions (1, 1), (-1, 2), (-1, 4) and (1, 5). Node U measured its 

acceleration periodically. It performed ranging by broadcasting a time-stamped 

message every 8s. The receive time of the message was recorded by beacons that were 

within range and were used to obtain an estimate of distance. The acoustic range of the 

motes is about 3m.  



115 

 

 

 

Figure 4.21 shows the position estimate of node U over 20 time steps when 

only the range estimates at each time were used to localize the node. Here only spatial 

combining of data was performed. As before, we refer to this method as snapshot 

localization.  In Figure 4.21, the time instances for which no estimate is available 

corresponds to the times where ranging was not performed. 

 

 

 

 

 

 

 

To counter the effect of outliers, we use the signal strength of the received 

signal to annotate each range estimate with a confidence. We used three levels of 

confidence (1 being the lowest and 3 the highest). For the results presented in Figure 

4.21, only measurements with confidence greater or equal to a level 2 were used. 

Consequently, we observe that at time t5, only one measurement was available and the 

node could be anywhere on a Gaussian Ring (refer Definition 4.5.3.1 of Section 4.5.3).  

Next, we used all the data obtained from the experiment, namely, the inter-

node distance estimates in the interval (t1, t20) as well as the acceleration 

measurements aggregated over 2s intervals within the same period. We ran our factor-

graph algorithm on this data. The results are shown in Figure 4.22. The figure shows 

that the position of the node could be estimated for all time instances. Further, our 

Figure 4.21: Static Scenario- Snapshot Localization 
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estimate at time t5 is much better than in Figure 4.21 where only snapshot localization 

was performed.  

 

 

 

 

 

 

 

 

 

 

 

We also performed experiments for a mobile scenario. The beacon positions 

were same as in the static case, however, this time node U moved in a straight line 

from position (0, 0) to position (0, 5). Range estimates were obtained, while the node 

was moving, by having the mobile node send out a broadcast message every 8s. We 

conducted multiple runs of this scenario and our results were consistent in all runs. 

Here we will present one such run. Figure 4.23 shows the estimated distribution of the 

position of node U for nine time instances using snapshot localization. In this case, the 

node had enough measurements at times t5 and t9 to localize itself with Gaussian error. 

Figure 4.23 also shows that distance estimates were available only at those two time 

instances. 

We next used only the acceleration measurements and applied dead-reckoning 

to estimate the position of the mobile node in the interval (t1, t9). These results are 

shown in Figure 4.24. To apply dead-reckoning we need to have an initial position fix 

Figure 4.22: Static Scenario – Spatio-temporal Combining 
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which is (0, 0) in this case. The acceleration measurements were used to estimate the 

positions at subsequent times.  

 

 

 

 

 

 

 

 

The accelerometer on the motes is not really designed for location tracking 

applications and gives us fairly erroneous estimates of the true acceleration. This can 

be observed in Figure 4.24 where dead-reckoning results in position estimates with 

large uncertainty. We also observe in the same figure that the final position of the 

node as estimated by dead-reckoning is at (0, 2) while the true position at that time 

was (0, 5). 

 

 

 

 

 

  

  

Figure 4.23: Mobile Scenario- Snapshot Localization 

Figure 4.24: Mobile Scenario- Tracking using Dead Reckoning 
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Finally, we used our collaborative algorithm that combines both distance 

estimates and acceleration measurements. The results are shown in Figure 4.25. We 

observe that the estimate of the node position has substantially improved using our 

tracking algorithm. Although the estimate of the motion of the node was quite 

inaccurate, as shown in Figure 4.24, this was corrected when our collaborative 

algorithm was used. 

The results of the mobile scenario essentially demonstrate that our proposed 

tracking algorithm can estimate positions accurately even with low-cost platforms that 

may have imprecise motion sensors. A few accurate measurements give us much 

better estimates than many measurements that contain outliers. For best performance 

the error in measurements should be well characterized. For example, we could obtain 

fairly good estimates of position when we knew that the acceleration measurements 

were more inaccurate than the distance-estimates. 

 

 

 

 

 

 

 

 

 
Figure 4.25: Mobile Scenario – Spatio-temporal Combining 
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4.6 Leveraging Mobility in Single Beacon Systems 

In this section we will specifically investigate the effect of relative motion 

between communicating nodes on the performance on tracking. We would like to find 

out how much error reduction is possible when measurements are made with the same 

beacon node, when there is relative motion between nodes. We will use entropy of the 

distribution of our final position estimate as the performance metric. The entropy of 

the distribution of the position estimate of a node is a measure of the extent of 

uncertainty in the estimate. The reason for choosing entropy as our performance 

metric as opposed to the RMS error is that for the scenarios under consideration we 

are likely to be operating in a regime where the position estimate distributions are 

highly non-Gaussian and multi-modal.  

To answer the question about the benefit of self-measurements, namely, 

repeated measurements between the unknown and the same neighbor node, we will 

quantify the reduction in entropy as a result of additional measurements.  

 

4.6.1 Quantifying the Effect of Mobility  

We will first derive the entropy for the position estimate at some time instance 

when one distance measurement is made with a neighbor node that knows its position 

(also called as a beacon) and also for the case when an additional distance 

measurement is obtained with the same neighbor node, at a later time. Since the 

entropy is a measure of uncertainty, the reduction in entropy quantifies how much we 

have gained (in terms of performance) from the additional measurement. 
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For any generic distribution of the position estimate of the unknown, pU (r,θ) 

the entropy can be obtained as: 

( ) ( )( )
,

, ln ,  U U U

r

p r p r dr d
θ

θ θ θΗ = − ⋅∫∫                        (4.51) 

Let the first distance estimate, s1 be obtained with the neighbor node at time t1. 

The error in the distance measurement is zero mean Gaussian with standard deviation 

σR. Without loss of generality, we set the position of the beacon at time t1 to be (0, 0). 

From measurement s1, our estimate of the pdf of the position of the unknown at time t1 

is a Gaussian ring with center point (0, 0) (Refer to Section 4.5.3 for definition of the 

Gaussian ring). We can describe the non-normalized probability distribution of the 

position estimate of the unknown node at time t1 in polar coordinates as: 

( ) ( )1 ,

1

1
, exp

2

g r

R

f r
θθ

π σ
−

=
⋅

                                                   (4.52) 

Where, ( )
( )

2

1

1 2
,

2 R

s r
g r θ

σ

−
=

⋅
 

To obtain the normalized distribution f1(r,θ) must be divided by N0 defined as: 

( )0 1

,

,   
r

N f r dr d
θ

θ θ= ∫∫                                                            (4.53) 

From equation (4.51) to (4.53), the entropy of the position estimate at t1 when 

only the distance measurement at t1 is available is given by: 
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(4.54) 

We denote the position of node U at any time t as PU (t). Now, let the second 

distance measurement, s2 be obtained at time t2 = t1 + Δt. The distribution of PU (t2) as 

a result of s2 is another Gaussian ring which we denote as G(t2). If the beacon is 

displaced by ξB in the interval Δt, G(t2) is centered at ξB and has a radius with mean s2 

and std. deviation σR. Now, to study the effect of measurement, s2 on the position 

estimate of the node at time t1 we need to translate this measurement to time t1 given 

measurements of the velocity of the known node.  

Suppose node U was displaced by ξU in the interval Δt.  We apply a spatial 

translation, -ξU to G(t2) to translate it to time t1. As a result, the measurement s2 when 

translated to time t1 is a Gaussian ring with center ξUB, where ξUB is the relative 

displacement of the beacon and unknown in the interval Δt:  

ξUB = (Δx, Δy )T 
=  ξB – ξU                                                          (4.55) 

 Now ξB is known since the neighbor node knows its position at all times. 

However, ξU can only be estimated from velocity measurements that have some 

uncertainty. This uncertainty adds to the ranging error. So, the error in the second 



122 

 

 

 

measurement after it is translated to t1 is zero mean Gaussian with standard deviation 

σδ. If k independent velocity measurements were used to translate G(t2) to time t1, σδ  is 

defined as follows: 

  ( )
22 2 1

R v
t

k
δσ σ σ= + ⋅ ⋅ ∆                                                         (4.56) 

Now, the non-normalized probability distribution for PU (t1) in polar 

coordinates given the distance measurement made at t2 alone is: 

( )
( )( )

2
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2

1
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f r δ
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σ

δ

θ
π σ

−
−
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⋅

                                             (4.57) 

( ) ( ) ( )
2 2

, cos sinz r r x r yθ θ θ= − ∆ + − ∆  

Since the two distance measurements are independent, the distribution of      

PU (t1) as a result of both measurements s1 and s2 is given by the product of its 

distribution given each measurement. From equations (4.52) and (4.57) we obtain the 

distribution of the unknown position at time t1 given both s1 and s2 : 

( ) ( ) ( ) ( ),

1 2 2

1
, , , exp
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Let N1 be the normalization factor for f (r, θ ) defined as: 

( )1

,

,   
r

N f r dr d
θ

θ θ= ∫∫                       (4.59) 

From equations (4.51), (4.58), (4.59), the entropy of the position estimate of 

PU (t1) when both measurements s1 and s2 are used is: 
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       (4.60) 

The change in entropy of the position estimate of node U at t1 due to the 

additional measurement, s2 is:  

2 1∆Η = Η − Η                   (4.61) 

Where, H1 and H2 are defined in equations (4.54) and (4.60) respectively. 

We will now use this result to study how a beacon should move with respect to 

an unknown node so as to maximize the reduction in entropy (-ΔH). 

4.6.2 Beacon Motion Strategy 

In this section we will answer the following question: If a beacon had control 

over its mobility, how must it move relative to the unknown node so that the 

information obtained from consecutive measurements with the same beacon is 

maximized?  

To answer this question we will use the results obtained in the previous 

section. Specifically, using equations (4.51) - (4.61), we will plot the reduction in 

entropy for all possible relative displacements of nodes in the interval between two 

consecutive measurements. 

Suppose at time t1 the beacon is at a distance D from the unknown when a 

measurement is obtained. Let the second distance measurement be obtained at time t2. 

Suppose the beacon moves such that the norm of the relative displacement of the 
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nodes in the interval (t1, t2 ) is L and the direction of displacement is β. Due to the time 

elapsed between the two measurements, translating the second measurement to t1 

results in an error growth σδ (See equation 4.56). For a fixed value of σδ we will 

observe the reduction in entropy when both L and β are varied. Figure 4.26 shows the 

change in entropy as a result of the second measurement, ΔH (obtained from equation 

(4.61)) vs. the direction of relative displacement β. Maximum reduction in uncertainty 

(or entropy) is obtained when ΔH is lowest. We have adopted the following 

convention: β = 0 corresponds to a relative displacement where the nodes had moved 

away from each other and β = 180 when the nodes had moved towards each other. 

Figure 4.26 shows that the larger the distance L, the more we gain from consecutive 

measurements with the same beacon. The results also show that as long as the distance 

moved by the beacon is small relative to the initial distance between nodes, D, the 

maximum reduction in entropy is observed when the beacon moves either towards or 

away from the unknown. However, when L is close to D, the optimal motion is when 

the beacon moves towards the unknown. In fact, the results in Figure 4.26 suggest that 

the best strategy is that the beacon moves closer and closer to the unknown until it has 

attached itself to the unknown. 
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4.6.3 Enhancing Performance in Networks with Static Beacons 

It has been shown in earlier work that in a static network, introducing mobility 

in the beacon nodes improves localization performance [Sic04]. We will look at a 

slightly different problem in this section. Suppose that we had a system where the 

beacons were stationary. Examples would be LBL systems or even cellular systems 

where the base-station is used as a position reference. Could we improve the 

localization performance by introducing mobility in the unknown nodes? This is an 

interesting problem because unlike systems with mobile beacons, nodes with unknown 

positions do not have a perfect estimate of their motion which results in an error 

growth in distance measurements when translated to a common time. However, if the 

nodes are known to be static, the error in measurements does not grow with elapsed 

time. Suppose there is only one stationary reference in the system. If the nodes were 

static and this was known, measurements with the beacon would result in identical 

Figure 4.26: Entropy reduction vs. Relative Beacon Motion 
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Gaussian rings. Combining these measurements would only reduce the thickness of 

the ring (because the measurements are independent), however, an unknown node 

would only be able to know that it is somewhere on a ring even when multiple 

measurements were combined. We can obtain the reduction in entropy as a result of 

two such measurements for a static network where nodes are known to be static. In 

Figure 4.27, this shown by a solid red line. We compare this case to the case where 

mobility is introduced in the unknown node. Specifically the unknown moves a 

distance L between consecutive measurements. Since nodes measure their velocity 

with some error, the error growth between consecutive measurements is σδ  (as defined 

by equation 4.56). The rest of the curves in Figure 4.27 correspond to this mobile case, 

showing the change in entropy vs. the direction of motion of the unknown relative to 

the beacon for different values of L. We observe that once the unknown moves more 

than 2.3 times the error growth between consecutive measurements, the uncertainty 

reduction will be better than the static case where nodes are known to be static. Figure 

4.27 essentially shows under this condition we can benefit from introducing mobility 

in the unknown nodes, even if the velocity of the nodes cannot be measured precisely. 

To validate our analytical expressions for the change in entropy, equations 

(4.51) - (4.61), we also obtained the reduction in entropy via simulations. The results 

from simulations are shown as circles in Figure 4.27. To generate the simulation 

results we used our factor-graph solution to obtain the distribution of the positions. 

From Figure 4.27, our simulation results closely match the analytical expressions for 

the change in entropy. 

 



127 

 

 

 

 

 

 

 

 

 

 

 

4.7 Related Work 

There is a vast body of existing work on underwater navigation techniques for 

tracking individual vehicles (e.g., [Bla03] [Rom05] [Sto02]). These often rely on 

stochastic estimators such as (extended) Kalman filters, which are a special 

instantiation of factor graphs. While some methods rely on pure dead-reckoning, 

others also leverage direct links to static anchor nodes, albeit in a non-networked 

fashion [Cor07]. It has also been proposed that nodes can periodically resurface to 

obtain position fixes [Ero07]. Recently, localization has been studied for networked 

underwater vehicles, but reported work either does not consider the effects of mobility 

[Cha06] or uses a distance based correlation model for the movement of nodes 

[Zho07].  

In the realm of terrestrial systems, there exists much work on collaborative 

self-localization for static sensor networks, which suffers from the same sparsity 

problems. On the other hand, for non-networked tracking of mobile robots, techniques 

such as particle filters have been proposed [She05] [Fox98]. However, integration of 

Figure 4.27: Performance improvement by introducing mobility in unknowns 

β 
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networking and tracking into collaborative techniques for jointly tracking a collection 

of mobile vehicles has received considerably less attention. One of the most relevant 

works is LOCALE, which is designed for collaboratively tracking nodes in sparse 

mobile terrestrial networks (ZebraNets) [Zha08]. It allows merging of motion 

estimates with information obtained from encounters with other unknown nodes. 

However, it relies on each node also measuring angle of arrival (as it relies on 

Gaussian statistics), which is not realistic in mobile underwater platforms (hydrophone 

arrays are expensive and bulky). As such, this work cannot be applied to networks of 

submersible vehicles that can only measure distance. 

Finally, the use of factor-graphs for localization was also proposed by 

Wymeersch et al. [Wym08] [Wym09], independently from our own prior work 

[Mir08] [Mir09], but for terrestrial UWB networks. However, it does not include 

generic information from navigational instruments, but only velocity estimates (which 

are not available on typical submersible platforms). In our work, velocities are 

introduced as hidden variables in the factor-graph and are used to incorporate different 

types of motion information into the framework. Also, none of this prior work on 

localization has our analytical results on performance. 
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CHAPTER 5                                                                                                                               

RANGE-ONLY LOCALIZATION 

5.1 Introduction 

In this chapter we will investigate position estimation for systems where 

devices are not equipped with motion sensors and solely rely on acoustic ranging. In 

addition, applications that use such systems do not require continuous tracking. 

Position information is only needed when data-samples are collected and the error in 

position estimates must be minimized only at these particular times. We will focus on 

the problems that arise when a concurrent map of node positions (or a snapshot) is 

required at the times samples are collected.  

At each localization time Tloc, self-localization operates on inter-node distance 

estimates. Now, the intrinsic mobility of the underwater environment creates some 

very specific challenges with respect to range estimates collected around Tloc, which is 

illustrated in Figure 5.1. Ideally, all range estimates should be acquired at the target 

localization time Tloc. However, because communication occurs over a shared channel, 

medium access control (MAC) has to ensure that excessive collisions are avoided. As 

a result, the gathering of ranging information actually occurs over a short time epoch T 

around the target localization time.  The problem is that mobility causes the node 

positions to change significantly during this time epoch. This is illustrated in Figure 

5.1 by showing the positions of three nodes, at the three time instances at which the 

range for each pair is estimated. We observe that ranging (and topology) 
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becomes ambiguous and inconsistent, which results in error in position estimates 

obtained from self-localization. 

 

 

 

 

 

In traditional terrestrial systems, this effect hardly ever comes into play. 

However, as we will illustrate shortly, in underwater networks, it can be very 

significant and the reason is the very nature of the underwater communication 

environment: low data rate, long propagation delays and inherent mobility. The first 

goal of this chapter is to show how we can limit the resulting error on self-localization 

performance via better data-combining or estimation techniques. However, as the 

network density increases, the problem can become more acute. This is because the 

delays in medium access grow substantially with the number of neighbors.  

It has been shown that contender-counting can be performed in underwater 

networks using tone-based techniques [Sye08]. By strategically reducing the number 

of contenders, we could both reduce the large delays in medium access and also the 

energy-consumption of nodes. Our second solution, which we have dubbed Sufficient 

Distance Map Estimation (SDME), achieves this goal using the concept of graph 

rigidity. SDME protocol finds which device needs to collect what data, while 

minimizing the negotiation between devices. 

1t
d

2t
d

3t
d

time 

 

t1 

 

t2 

 

t3 

 

ranging epoch T 

 

Tloc 

Figure 5.1: Position uncertainty due to measurement delay 
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5.2 Effect of Channel Characteristics on Localization Performance 

Communication underwater has long been known to be challenging. Acoustic 

channels are characterized by long propagation delays and acoustic modems can 

achieve relatively low data rates [Hei06]. For example, the micro-modem developed 

by WHOI [WOO] transmits at 80 bps, and even short data packets take around a 

second or more to complete. With speed of sound underwater being around 1500 m/s, 

propagation delays can also be in the order of a second. As such, to avoid collisions in 

time, MAC protocols end up spacing competing transmissions over multiple tens to 

hundreds of seconds. For example, with packets of 10 bytes and distances of 500 m, 

CSMA backoff needs to be around 300s to limit collisions to less than 5% in 

moderately dense networks
3
. This means that the ranging epoch T is in the order of 

100 seconds. On the other hand, current speeds vary between 0.1 to 1 m/s, while 

relative speeds of guided AUVs may even exceed this. As a result, displacement in 

node positions during localization can range from a few tens to up to a hundred 

meters. 

This displacement (essentially a ranging error due to ambiguity) is much larger 

than the intrinsic ranging errors of the system. From the experimental results presented 

in Chapter 2, when stationary, the ranging error is only a few meters, and consistent 

across various scenarios. Therefore, and as we will show in Section 5.3, mobility 

causes significant degradation of self-localization performance in underwater 

networks, if traditional techniques are utilized.  

                                                 
3
 Although CDMA could allow simultaneous transmissions, it is difficult to assign orthogonal codes in a mobile network with 

low overhead. Also it does not allow sending and receiving at the same time (and therefore does not allow concurrent ranging 

either). We assume a CSMA or TDMA style MAC protocol, as is common for most acoustic modems. 
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The problem of node mobility during the ranging epoch is especially relevant 

to such short range systems since errors are large enough to skew our estimate of the 

network topology. Even if nodes move, it is important to have consistent position 

estimates across sampled data, as these sensor networks are data-centric (i.e. the 

correlation between data samples is important, not the identity of the specific device 

that collected the data; as such tracking individual devices is not important). 

Our first goal is to devise a collaborative localization scheme that effectively 

compensates for node motion within the ranging epoch, around the specific 

localization time of interest Tloc. In the next section, we formally define the 

localization problem and introduce a solution strategy.  

5.3 Combating the Drawbacks of Low Rate Modems 

As described earlier, nodes perform ranging with their neighbors during the 

localization epoch, T. We denote the set of measurements taken between node pairs   

(i, j) at any time t as dij
t
. The collection of all distance measurements obtained in the 

interval (0, T ) is denoted by zD = {dij
t
}tє(0,T). By taking into account the fact that nodes 

are moving during the period these distance measurements are collected, we intend to 

improve the localization performance. The problem is to determine the ML estimate 

for the position of each node i at the target localization time, Tloc, given all distance 

measurements and only an upper bound on the speed of nodes. We will refer to this 

problem as concurrent localization and formally define it as follows: 

Estimate: { }* *( ) 1,..i locP T i N= ∀ =Ρ  
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Where, 

*

max( ) arg max ( , | , , )       1,..Ρ Ρ Q

i
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smax is the maximum speed of nodes. 

  Dz is the set of distance measurements obtained between nodes in the interval 

(0,T) and has been formally defined in Chapter 4, equation (4.1).
 

Q is the positions of all reference nodes in the interval (0,T ) which was 

introduced in Chapter 4, Section 4.1. 

Each distance measurement between a node pair introduces a correlation 

between their positions at the time the measurement was obtained. As a result, the 

likelihood function for the position of any node i at the target time Tloc can only be 

determined from the joint distribution of the position of nodes at the times ranging was 

performed.  This is reflected in equation (5.1) where we have augmented the set of 

states that we intend to estimate, namely P to include Paug. Paug is the position of all 

node pairs at the time instances distance-measurements were obtained. Now, the form 

of this problem is very similar to the generic tracking problem defined in Chapter 4. 

So, we can solve it using the same framework. In fact, the concurrent-localization 

problem is a special case of the more general tracking problem, with some 

simplifications. 
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As explained in Chapter 4, we would first need the factor-graph representation 

of the problem. This is shown in Figure 5.2. This is a simplified version of the generic 

factor-graph presented in Figure 4.5, however at a shorter temporal scale and with 

some states eliminated. Since measurements of nodes’ motion parameters are not 

available, we do not need to estimate the velocity of nodes.  In Figure 5.2, the position 

of any node i at time-step k is denoted by a circle, which we refer to as the state-

variable Pi,k. All state-variables that belong to Paug are shown as hidden variables. As 

before, the progression of node positions in time is shown in the horizontal dimension.  

The vertical dimension indicates this time progression for each unknown node.  The 

graph is constructed such that the unknown state of interest Pi,K* , where tK* = Tloc is 

one of the K unknown states being estimated for each node i. We have shown the 

graph representation for only 3 nodes not to overload the figure. 

The likelihood of a distance measurement between a node pair is given by 

functions of type w1. If a measurement is obtained with a beacon the corresponding 

function-node is single-ended i.e. it has a link only to the unknown state-variable as 

shown in Figure 5.2. A zero mean Gaussian model is well suited for ranging error, 

equation (5.2). However, our solution can accommodate any other model.  

( )1 , , , , , ,( , ) ( | , ) ~    ,  kt

i k j k ij i k j k i k j k Rw P P p d P P N P P σ= −
       (5.2)

 

Where, σR is the standard deviation of ranging error.  
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The probabilistic model that describes the evolution of a node’s position in 

time is given by function-nodes of type w2. We model node speeds to be uniformly 

distributed between (0, smax), equation (5.3).   

( )
, , max2

max2 , ,

1
,   

( , )

0,       

i n i m n m

n mi n i m

if P P s t t
s t tw P P

otherwise

π

 
− ⋅ − 

⋅ ⋅ −=  
 
 

≺
        (5.3) 

 

Now that the factor-graph model for the problem has been obtained, the sum-

product algorithm can be applied to compute the distributions of state-variables via 

iterative message passing. The actual messages generated by nodes and the operation 

of the algorithm have been described in detail in Chapter 4, Sections 4.4 and 4.5.1. 

5.3.1 Simulation Results 

To evaluate the performance of our localization scheme, we performed 

simulations in Parsec [PAR]. All simulation parameters are summarized in Table 5.1. 

We deployed nodes over a 3D region where they move with current streams of equal 

P1,1 

PN,1 

P2,2 

PN,2 

P2,K 

PN,K 

w1 w2 

P2,K* 

P1,K* 

PN,K* 

Figure 5.2: Factor-graph representation of the concurrent localization problem 
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thickness. The velocity of these streams varies with depth which is one of the 

commonly used models [Pom06]. The speed of each layer is independently chosen 

between (0, smax). 

Distance estimates are obtained from broadcast transmissions. However prior 

to transmitting, nodes choose a random back off between 0 and Tbackoff to avoid 

collisions. Four surface beacons are used to localize a network of 15 nodes. The 

transmission range is R with some variation. We estimate the position of nodes in 2D 

since nodes know their depth from pressure measurements.  

Figure 5.3 shows a view of the network when looking from above and 

elucidates the problem we are trying to address. In Figure 5.3, the movement of nodes 

during the time all distance measurements are obtained is shown by blue dots. The 

actual positions of unknown nodes at a target localization time are represented by 

stars. Beacon positions at that time are shown as triangles. We observe that nodes are 

displaced between 10m to 180m during localization which is considerably large 

compared to their transmission range. For the above scenario we used our proposed 

method to localize nodes at a target localization time. However, to compare the 

performance of our scheme we also estimate node positions using a robust self-

localization algorithm, Multi-dimensional Scaling (MDS) [Shan03]. To enhance the 

performance of MDS we chose for each node pair distance measurements that were 

closest to the target time. 
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Figure 5.3: Movement in node positions during localization 

Figure 5.5: Cumulative error distribution of position estimates 

(m) 

(m) 

Figure 5.4: Probability contours of position estimates 
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 Table 5.1: Simulation Parameters 

 

 

 

 

 

 

Figure 5.5 shows the cumulative error distribution for position estimates using 

our scheme and MDS. Our proposed scheme localized 70 % of nodes with error lower 

than the minimum error obtained from MDS. The actual distributions of node 

positions are shown in Figure 5.4, with the estimate for each node indicated by circle. 

In Figure 5.5 we observed that around 30% of the nodes had a much larger error 

compared to the rest of the network when our scheme was used. This is because three 

of the eleven unknown nodes have multimodal distributions due to insufficient 

measurements. The distribution of these nodes is spread out over a large region as 

shown in Figure 5.4.  

So far we have shown how non-concurrent measurements can be optimally 

combined to combat the error due to large delays in medium access. We next look at 

an energy-optimization strategy for the same scenario, where nodes have to be 

periodically localized from range estimates. Since the delay in medium access 

increases with the number of contenders, we will look at how to reduce the number of 

contenders by only allowing a subset of nodes to transmit. The key idea is that few 

Max Current speed, vmax 60 cm/s 

Thickness of current 

layers 

10 m 

Max Depth , D 100 m 

Transmission range, R 100 m 

Number of nodes, N 15 

Number of beacons, NB 4 

Area of deployment 300m x 300 m 

MAC Back-off, Tbackoff 300 s 

Number of grids per node 36 
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accurate measurements may have the same or better effect on the overall localization 

performance than many inaccurate ones. By selecting only a subset of nodes for 

transmission the overall energy-consumption is reduced. However, this subset 

selection has to be done strategically because every node in the network requires other 

nodes to self-localize.  

5.4 Lifetime Maximization via Selective Transmissions 

In this section we will introduce Sufficient Distance Map Estimation     

(SDME-D). As such, it is neither a ranging scheme nor a localization algorithm. 

Instead, it is a way of deciding which nodes must transmit every time concurrent self-

localization has to be performed so that the overall energy consumption is reduced, 

without much compromise on performance. 

5.4.1 Selection Scheme: SDME-D 

During distance estimation, one message needs to be sent on each link. As 

mentioned in Chapter 2, this can be done efficiently by sending out a broadcast. 

However, we will show that not all links are required for localization. We therefore, 

propose a two step distance estimation process, SDME-D. First, a selection algorithm 

finds the minimum set of nodes that should broadcast to enable sufficiently accurate 

position estimates post-mission. Second, during the actual distance estimation, only 

that subset of nodes actually initiates broadcast messages. Since time-synchronization 

also has to be repeated periodically, we will design the selection scheme so that it can 

be combined with any time-synchronization protocol that is based on broadcast 

signaling. The overall system set up is shown in Figure 5.6 where the selection 

algorithm is run every TSYNC and distance-estimation is performed every TLOC.  
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Without applying SDME and using broadcast-based distance estimation every 

TLOC, the average energy consumed per node per localization step is given by: 

( )BCAST Tx Rx SYNC
E E E Eλ α= + ⋅ + ⋅             LOC

SYNC

T

T
α =                       (5.4) 

Where, ETx and ERx are the energy consumed to send and receive a ping 

message, respectively. ESYNC is the energy consumed per node for synchronization.  

The parameter α captures the fact that synchronization has to be executed only 

occasionally. Node density λ is defined as the average number of neighbors of a node, 

and it is assumed that nodes overhear unicast packets due to the broadcast nature of 

the medium.  

The goal of SDME is to reduce the energy-consumption given by equation 

(5.4) by selecting only as subset of nodes for transmission. We will re-examine this 

equation at the end of this section after applying the SDME-selection scheme. 

By reducing the number of contending nodes (in the selection phase), we 

would not only reduce the energy consumption but also the delays in medium access 

in the distance estimation phase. E.g. nodes can reduce the duration of their back off 

when a random medium access scheme is used. This would reduce the error in 

TSYNC 

TLOC 

time 

distance estimation 

synchronization 

Figure 5.6: System Setup 
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distance estimates with respect to a common time as discussed in the previous 

sections. Because of powerful post-mission localization techniques, it turns out that the 

final accuracy in positions does not degrade significantly when measurements are 

reduced as long as the network is uniquely localizable. Unique localizability is defined 

as the ability to precisely determine the position of each node if inter-node distance 

measurements were exact [Ere04] [Hen92] [Gol05]. It essentially means that there are 

sufficient constraints imposed on the network to disallow position ambiguity. In 

principle, centralized tests can verify these conditions for a network topology 

[Hen92][Hop73][Gol05].  However, since our network is mobile, these tests would 

have to be executed repeatedly during the mission, which would be prohibitive in 

terms of processing and communication overhead. Instead, we propose to use another 

sufficient, although not necessary, condition for unique localizability, expressed by 

Lemma 1, which is more amendable to a distributed implementation. 

Lemma1: A graph has a tri-lateration ordering with seeds v1, v2, v3 if its 

vertices can be ordered as v1,v2 ,v3….. vn so that v1 ,v2 ,v3 induce a complete sub graph 

and each vi , i > 3 is adjacent to at least three vertices in the sub graph –[Gol06].For 

proof, see[Ere04].  

The goal of the selection algorithm is to reduce the number of nodes that 

broadcast while ensuring that the resultant graph has a tri-lateration ordering and is 

therefore, uniquely localizable. A link between two nodes is activated (i.e. added to the 

graph) if either of them transmits. When nodes broadcast, they automatically activate 

all their links. To select which nodes need to broadcast, we introduce a level 

assignment scheme that allows nodes to determine if it they are localizable by 
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examining the number of active links with neighbors of same or lower level as we will 

show in Lemma 2. We name this level assignment as 3-parent ordering: An elected 

beacon along with two of its neighbors form a local coordinate system and are 

assigned level 0; any node is assigned level l if it is within the transmission range of at 

least 3 nodes at level less than l. By arranging nodes in ascending order of their levels, 

they can be tri-lateration ordered. However, when links are reduced, we can prove that 

a sufficient condition for tri-lateration ordering for broadcast becomes: 

Lemma 2: If a 3-parent ordering can be imposed on a network and links can 

only be activated by broadcasting, a tri-lateration ordering exists if every node has at 

least 3 active links with nodes at a lower or same level. 

Proof: We assume that for any l > 0, all nodes at a level lower than l can be tri-

lateration ordered, and show by induction that an arbitrary node i, at level l with at 

least 3 active links to lower or same level nodes can be ordered. Let node i have M 

active links with nodes of level less than l and K active links with nodes of level l, 

with M+K>=3. For a link to be active, at least one of the nodes has to broadcast. If 

node i broadcasts, then it activates its entire set of links to lower level neighbors. 

Given that nodes at a lower level have tri-lateration ordering, i is also ordered. If node 

i does not broadcast, M lower level neighbors and K level-l neighbors did broadcast 

(with M + K ≥ 3) since node i has active links with all these nodes. The M neighbors 

are ordered by induction, the K neighbors are ordered independent of i because they 

broadcast (as reasoned for i above).  As such, i is ordered again, if it does not 

broadcast. 
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The selection step in SDME-D incorporates Lemma 2 to determine which 

nodes should broadcast. Further, it requires a single broadcast per node. Thus, we can 

integrate it into any synchronization scheme that is based on broadcast signaling, 

thereby using a broadcast for both purposes. The final heuristic that runs on each node 

every time synchronization is done is presented in Figure 5.8. The notation used is 

given below. 

The ‘level’ of a node k: L(k).  Nodes that form a local coordinate system: set C. 

Time a broadcast from neighbor node k was received by node i as per i’s local clock: 

ti,k
rx 

.Time a broadcast was sent by node i as per its local clock: ti
tx
 . Decision for node i 

to remain active: Di .Set of active neighbors: Nactive. Set of lower level neighbors: 

Nparent. MAC Back off timer: tbackoff  Maximum Back off: Tbackoff .Flag indicating 

whether node has sent a broadcast Bsend . 

As before, an elected beacon starts the selection process by forming a local-

coordinate system with two neighbors. Every TSYNC, all nodes send a broadcast. 

Consequently, only the nodes that SDME-D designated as active, will send out a 

broadcast, thereby gathering distance estimates on a sufficient sub-network. However, 

as topology could change during TSYNC, the reduced set of links may not remain 

sufficient to localize the network. Therefore, the value of TSYNC should be determined 

by both the clock drift and the expected time the network topology remains more or 

less stable. Furthermore, each inactive node listens for broadcasts from all neighbors 

that it expects to be active. If one of these is missing, the node decides to broadcast 

anyway. This approach compensates for changes in topology, as well as for other 
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causes of packet loss. In the worst case, all nodes broadcast.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The post-processing steps on data that was collected during the mission are 

given in Figure 5.8. 

 

 

 

For any node i:       

 

1. Initialization:  

 

Di =ACTIVE, Bsend = BROADCAST_PENDING 

      

       If ( node i ∈ C ) { L(i) = 0 ,    set back off timer,  tbackoff = rand(0,Tbackoff )  }  

      Else { L(i) =-1,  Nactive =φ ,  Nparent =φ }  

 

2. If ( EVENT=Back off timer expired ) 

 { 

      Broadcast message mi = [i, L(i) ,Di , ti
tx
] 

      

      Bsend = BROADCAST_SENT} 

 

3.  If ( EVENT=Received broadcast ) 

         { 

               Received message mk = [k, L(k) , Dk , tk
tx
 ] from node k.  

                   

               Store send and receive times of message: tk,i = [ tk
tx

., ti,k
rx

]     // Data used post-

mission 

                

               If (L(k) ≤  L(i) & Dk = ACTIVE) { Nactive = Nactive ∪  k } 

               

               If  ( | Nparent | <  3 )    {    Nparent = Nparent ∪  k. 

 

                                                                                 If  (|Nparent | = 3)   { L(i) = max L(Nparent ) + 1. 

                                                                                   

                                                                                  Set back off timer, 

                                                                                  tbackoff = rand(0,Tbackoff ) }  

                                                                                   

                                                    If (Dk=ACTIVE) { Nactive
 
= Nactive ∪  k }   } 

                                                   

                     If ( Bsend = BROADCAST_PENDING & | Nactive | ≥  3  ) { Di = INACTIVE }    } 

         

Figure 5.7: Pseudo-code for SDME-D selection algorithm 
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5.4.2 Performance Characterization 

To evaluate the effectiveness of the SDME-D selection heuristic, we compare 

it to a centralized scheme that selects nodes based on Lemma 2. This centralized 

scheme can be found as the solution to the following mixed integer LP, which we 

solve using MOSEK [MOS]: 

arg min
i

opt i
x

i

X x= ∑                                                          (5.5) 

( )

. ( ) 3 1,... , 0, 1
j N

              k j i

k

s t x x k N x
′∈

+ ≥ = =∑  

xi ∈ {0,1} is the decision for node i to 

broadcast. { }( ) : ( ), ( ) ( ) N k j j N k L j L k′ = ∈ ≤ .  

N(i)is the neighbors of i , L(i) is the Level of node i . 

We also created an analytical model of the performance of SDME-D, derived 

below. It predicts the probability ps that a node broadcasts, assuming 3-D Poisson 

distributed network with density λ.  ps can be computed numerically as follows: 

1. Corresponding to each TSYNC , 

 

       Compute clock offsets and/or clock skew using a time sync protocol (refer Chapter 2) 

 

2. Corresponding to each TSYNC and TLOC , 

 

a. For every node that sent a broadcast, compute distance estimates with all  

neighbors that received it using send and receive time stamps stored on 

nodes and clock offsets calculated in Step 1. 

 

b. Run localization algorithm (Multi-dimensional Scaling) on distance 

estimates. 

 

c. Refine position estimates with Maximum Likelihood estimator. 

 

Figure 5.8: Post-Facto Localization using data collected during the mission 
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ρ α λ α α= ⋅ − ⋅ +                                                                                 

Proof: Let R be the transmission range of nodes. Since level assignment begins 

with a few nodes at close proximity, the propagation of levels through the network is 

similar to that of a wave front.  An instance of the wave front is defined by a plane B in 

3D that demarcates regions, 1−lζ  and lζ such that liLi l <∈∀ − )(,1ζ  , ljLj l ≥∈∀ )(,ζ . 

Consider a node li ζ∈  which is at a distance of h from the boundary, h<R. Since the 

distribution of nodes is Poisson with parameter λ, the distribution of neighbors of i 

in 1−lζ , denoted as )(1 iNl − , is also Poisson. The average density of )(1 iNl −  is given by 

the fraction of the average neighbors of i in the spherical cap extended by it in 1−lζ , 

given by (5.7). 

2( , ) (1 ) (2 )
4

λ
ρ α λ α α= − ⋅ +               , /h Rα =                              (5.7) 

By construction, for any node lj ζ∈ with α > 1, P( L(j) > l )=1. Therefore, the 

average probability for a node i to be at level l is defined for )1,0(~ Uα  as: 
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Using a similar argument as before, for a node li ζ∈  with α < 1, the average 

number of neighbors of i in lζ that are no more than R units away from the boundary 

B, is given by: 

( )2( , ) 2 3 3
4

λ
β α λ α α= ⋅ − ⋅ + ⋅

                                                          (5.9)
 

For a node li ζ∈  with 1<α , the number of neighbors of i which are at level l, 

)(iNl is Poisson with parameter, )),(( lp⋅λαβ  as shown below.    
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Therefore, the number of neighbors of a node at the same or lower level, 

)()( 1 iNiN ll −+  is Poisson with parameter, )(λη : 

( )
1

0
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       ( ) (1 ( ))

16
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α
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                                      (5.11)

 

Define Sn as the number of nodes that broadcast out of n nodes, when the 

probability to broadcast is ps. The probability that a node transmits as per Lemma 2 is 

then given by: 
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(5.12) 

The goal of SDME was to reduce the number of transmissions every time 

concurrent localization is performed.  With the same notation as (5.4), we express the 

average energy consumed per node per localization as: 

                                                                                                         (5.13) 

 

SYNC Tx RxE E Eλ= + ⋅  if SDME-S is used as the synchronization scheme, refer 

Chapter 3.  

5.4.3 Simulation Results 

To evaluate the performance of SDME, we set up simulations in Parsec, a 

discrete event simulator [PAR]. The models we implemented capture all elements that 

affect performance: propagation times, collisions, clock drift, and mobility.  N nodes 

are randomly deployed over an area of observation, the size of which is chosen such 

that the density λ is equal to a desired value. The current-mobility is modeled as 

different strata with a fixed thickness, each with a randomly chosen speed and 

direction. To avoid excessive packet loss, nodes select a random back-off before 

initiating a broadcast. Due to the low data rate of acoustic modems (e.g. 80 bps for the 

micro-modem), the back-off window has to be relatively large. We use only 3 beacons 

for localization. All simulation settings are given in Tables 5.2 and 5.3. We had to set 

localization and synchronization periods TLOC and TSYNC to values different from what 

    

  

( )SD M E s Tx R x SY NCE p E E Eλ α= ⋅ + ⋅ + ⋅

distance estimation synchronization 
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we expect due to a fundamental limit on the total time that could be simulated, given 

the time granularity needed for offset estimation. To mimic a system that is running 

for several weeks, we introduced an extra clock offset of 0.1 ms. We used SDME-S as 

the synchronization scheme (introduced in Chapter 3). 

Table 5.2: System Parameters 

Data rate Rdata 80 bps 

Transmit power PTx 35 W 

Receive power PRx 0.3 W 

Transmission range R ≈1000 m 

Clock skew γγγγ 0.02 ppm 

Current speed v |·| < 0.1 m/s 

Speed of sound c ≈ 1500 m/s 

    

 
Table 5.3: Parsec Simulation Parameters 

Maximum depth 100 m  Number of nodes N 100 

Strata thickness 10 m  Number of anchors 3 

Std. dev. of εintrinsic 2 m  Packet size 40 bits 

Error in speed of sound 0.07 m/s  Random back-off 100 s 

Localization period TLOC 10 min  Synchronization period TSYNC 30 min 

Density λ 15  Error in beacon position 6m 

 

Figure 5.9 presents a time progression of our algorithm, specifically showing 

the post-mission distance estimation error for all the different links at different 

localization times. The black cloud of crosses shows the inherent accuracy at each 

time, before link measurements are translated to a common time base. The triangles 

depict the actual accuracy after this translation, which is the metric that affects self-

localization performance. The difference between the two was captured by εcommon_time 

in Chapter 3, equation (3.8). From this equation, we expect |εcommon_time | < 20 ms, 

which indeed corresponds to what we observe. Figure 5.9 also includes the histograms 

of the distance estimation errors and the corresponding (cumulative) error distribution 
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in position estimates for two simulation times, t=90 min and t=110 min: the first one 

is during synchronization where all nodes broadcast, the other when only a subset of 

nodes broadcast. Since distance estimates over all links are obtained during the 

synchronization phase, we interpret these results as a comparison between the position 

accuracy achieved using all links, Figure 5.9(c) vs. that when only a subset of links are 

used, Figure 5.9 (d), thereby showing that localization performance does not degrade 

significantly when the number of active nodes are reduced. We observe that ranging 

information is less accurate when it is collected during synchronization. The reason is 

that at this time, the nodes also establish their levels as explained in Section 5.5. The 

broadcasts are ordered in time, which leads to larger effective values of TMAC, causing 

reduced accuracy (see also Chapter 3 equations (3.6) to (3.8)).  With a back-off 

window of 100 seconds, about 9% of the packets were lost due to collisions. However, 

these packet losses were effectively countered by our algorithm, and did not impact 

the overall performance. This can be seen in Figure 5.9, where the cumulative final 

localization error distributions for all nodes are shown. We observe that one node was 

not localizable in the network even when all links were used. The localization 

performance with the reduced set of links (in this case only 40% of the nodes 

transmitted) is as good as with all links, thereby showing that unique localizability is 

sufficient to set as a constraint. The reason is two factors that counteract each other. 

On one hand, estimation quality degrades by reducing the number of constraints. On 

the other hand, it improves when fewer nodes contend for the channel. 
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Figure 5.9: Performance of SDME-D vs. localization using all links 

Time (min) 

Distance estimation error (m) 

TSYNC  

TLOC 

Stdev = 3 m Stdev = 4.5 m 

Distance estimation error (m) Distance estimation error (m) 

Localization error (m) using SDME-D Localization error (m) using all links   

 (b) 

(c) 

 
(d) 

 

(a) 
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 εsignaling + εintrinsic (ms) 

Stdev = 1.1 ms 

 

To get some more insight into the elements affecting accuracy, Figure 5.10 

shows the distribution of total clock offset error, for the same synchronization time as 

Figure 5.9 (around 90 min).  We also observe a good correspondence with our analysis 

of SDME-S protocol in Chapter 3, equation (3.6), when plugging in the values from 

Tables 5.2-5.3. Specifically, we find that |εmotion_flight| ≤ 40 µs, |εmotion_MAC| ≤ 7 ms, and 

|εdrift| ≤ 2 µs (these are all upper bounds). The motion of the drifters during the MAC 

back-off time is the dominant factor impacting error in the offset estimate.  

All simulation results presented here are for the parameters we measured or 

believe are typical in our system. Nevertheless, it is possible that other effects also 

impact the actual ranging performance. For example, the presence of curved paths 

could further introduce errors in our distance estimates [Pre06]. However, these are 

large scale affects. For short range systems, we expect that node mobility and time-

synchronization accuracy to be the major factors affecting distance estimation error. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.10: Accuracy of offset estimation with SDME-S, 

obtained from Parsec simulations 
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5.4.4 Scaling Behavior  

 

 

 

 

 

  
 

igure 12: Statistical performance of SDME. 

 

 
 

 

Since simulation results capture the performance of SDME-D on single 

realizations of the network, we now investigate the energy gains as the network 

density is varied. Figure 5.11 shows the probability that a node is active, ps as a 

function of network density when computed analytically from equation (5.6) and then 

from simulations of SDME. The optimal solution from equation (5.5) is also 

presented. We observe that the gains using SDME can be well predicted from theory 

and the performance is close to the centrally-computed optimal solution. We now 

compute energy consumption of SDME for typical system parameters. As before, we 

assume TLOC = 10 min. On the other hand, TSYNC is now determined by both the clock 

drift and changes in topology. We found from simulations that with SDME-D repeated 

every TSYNC = 1h, the node selection remains mostly valid (and even if it does not, the 

system automatically corrects itself locally as explained in Section 5.5). This results in 

α = 0.17, refer equation (5.13). From Figure 5.11, we find the values of ps for different 

densities. By plugging these into equation (5.13), we observe that the energy 

consumed per node for ranging can be as low as 0.7 to 0.4 times the energy of a single 

Figure 5.11: Statistical performance of SDME. 
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broadcast for node densities between 10 and 30.  

5.5 Related Work 

Traditional collaborative self-localization techniques are primarily designed for 

static networks and do not explicitly account for displacement of nodes during the 

ranging epoch [Sha03] [Bis04] [Doh01] [Gol06]. Conversely, most tracking solutions 

for mobile robots only track devices individually with respect to anchors [Leo91] 

[Cor07] and rely primarily on measurements of node motion. While inter-robot 

distance measurements have been used to improve tracking performance, they do not 

operate in a setting where many nodes only have other to-be-localized nodes as 

neighbors with distance measurements being the only information available. There are 

ongoing efforts towards more dense systems, built on cheaper short-range modems 

[Hei06].  A survey of existing distributed schemes identified some of the challenges 

for underwater networks, such as degradation in performance due to non-uniform 

beacon distribution [Cha06]. However, in our approach, we can use centralized 

schemes due to post-facto processing. These centralized schemes do not exhibit this 

degradation [Sha03] and are in general known to have better error performance 

[Mao07]. 

 A number of approaches reduce localization cost for mobile networks by 

adapting the rate at which distance estimates are obtained to the mobility of nodes 

[Til05] [You06]. They track node positions to adapt the sampling rate. Our approach is 

to reduce the number of measurements without using feedback on the actual position 

of nodes and base it on connectivity information alone. Unlike this related work, we 
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consider mobile networks with sparse beacons where most nodes are not within the 

communication range of beacons and cannot be independently localized. 
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APPENDIX A 

A.1 Applications of Distributed Underwater Systems  

The dynamics of ocean currents play a crucial role in transporting chemicals, 

nutrients and organisms within the ocean. As a result, many ocean processes are 

coupled in nature and need to be observed within this inherently mobile environment. 

A system of mobile entities that can be tracked at high spatial and temporal resolution 

over tens of kilometers has applications in addressing a number of open questions in 

physical oceanography, high resolution ocean modeling, developing bio-physical 

models, tracking pollutants, environmental monitoring and surveillance and effective 

design of marine protected areas. In this Section we will describe some of these 

applications in more detail. 

A. Mapping the Sub-surface Flow-field 

Mapping the sub-surface flow-field is a key application that involves resolving 

the trajectories of ocean-currents (also known as transport processes) at high spatial 

resolution (10 to 100m) over large geographic extents O(km) [Dal06]. Knowledge of 

transport processes and the development of high resolution ocean models would 

enable understanding the interaction of numerous processes with currents which in 

turn impacts various other applications, such as determining the connections between 

geographically separate ecosystems, building early warning systems that detect the 

spread of pollutants, understanding larval transport and the design of marine protected 

areas. We will describe some specific questions that are of interest to scientists, the 
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data they would like to obtain, existing sources of data and the utility of distributed 

systems in this area.  

One of the challenges in physical oceanography is to better understand cross-

shore transport mechanisms and describe them via mathematical models. In this 

context, some of the specific questions scientists are looking to answer include: 

distinguishing subsurface pathways along isotherms (equal temperature paths) from 

those on the surface, obtaining the depth dependence of eddy diffusion and computing 

their Lagrangian statistics such as de-correlation time and space scales. However, 

answering these questions requires data about the sub-surface flow field in time-scales 

of minutes to days and spatial scales of 10 meters to 10 kilometers, which is currently 

scarce.  

Existing technologies for obtaining velocity maps include High-Frequency 

(HF) radar and Acoustic Current Doppler Profilers (ADCPs), however they have a 

number of limitations [Gaw07]. HF radar systems can produce maps of currents at 

spatial resolutions of 100m to 1000m, but a major disadvantage of these systems is 

that they can only provide information about surface currents [Gaw07].  HF systems 

have become key off-shore tools for studying surface characteristics of coastal flows. 

ADCPs are currently the most suitable method for resolving flows at high resolution in 

3D.  The high cost of the instruments and deployment costs are the main setbacks of 

this technique. The resolution at which measurements are obtained typically reduces 

with long range systems and although the micro-structure of flows can be resolved by 

shorter range ADCPs, this would require deploying arrays of ADCPs in two or three 

dimensions. An example of such an approach for smaller domains has been 
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demonstrated by Gaylord et. al. in studying the flows in and around a kelp forest 

[Gay07].  

Another method for observing dispersion processes is by releasing dye along a 

streak at a target depth and tracking it over several days. Diffusion rates are inferred 

by the rate of spreading. However, data obtained from dye experiments are not always 

reliable and alternate methods where Lagrangian trajectories could be observed at 

higher spatial and temporal resolutions are required [Sun01]. 

 Observation of the Lagrangian trajectories at higher spatial and temporal 

scales is possible with a system of multiple floats [Jaf06]. Tracking the sub-surface 

trajectory of such a system is a complementary solution to dye experiments and can 

overcome some of the drawbacks of HF Radar and ADCPs. By equipping floats with 

acoustic communication capability, the collaborative tracking techniques that we have 

proposed in this thesis would be well suited to tracking Lagrangian floats. To obtain 

true Lagrangian pathways, devices need to be small enough to experience the same 

effects of small-scale shear and mixing as micro-organisms. Due to the small size of 

devices, energy-efficient tracking is a key requirement in these systems.  

B. Developing Bio-physical Models 

Physical transport mechanisms, although complex, are just one of the 

processes that determine the connections between geographically separate eco-systems 

and the spatial dynamics of marine species, also known as the problem of 

connectivity. A mechanistic understanding of connectivity is crucial for effective 

design of marine protected areas [Gai07] [Jon07] [Fog07]. However, this is a 

challenging problem because it involves understanding the interaction of marine-
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organisms with the flow-field. Bio-physical models are key tools that capture the 

coupled nature of processes by incorporating behavioral traits into physical models. 

Such models should ultimately serve to improve resource management in observation 

systems and in predicting the effect of climate change and human activity on 

ecosystems.  

One of the key challenges in developing powerful bio-physical models is the 

ability to test model assumptions and validate predictions. In this context a number of 

techniques used in conjunction are valuable, one of which is the use of smart drifters 

(as mentioned in the earlier Section) that have the ability to adjust their buoyancy and 

mimic the behavior of larvae (vertical migration) [Gaw07] [Jaf06] [Jaf07]. It is known 

that larvae respond to a number of factors such as time of day, light, temperature, 

turbulence, pressure and the availability of food [Pin07]. Concurrent sampling of these 

relevant parameters in addition to tracking the movement of smart drifters would be 

very valuable in developing coupled bio-physical models and testing hypotheses about 

the role of behavior of larvae in connectivity [Wer07]. Therefore, the utility of such 

distributed sampling systems, that can measure a number of relevant parameters, goes 

beyond methods such as dye experiments making it especially suited for observing 

ocean processes that are inherently coupled.  

Once again the development of comparative systems is critical to validate 

conclusions. For example there is a need to match a process-based understanding of 

connectivity with other methods of correlating migration of larvae along the coastline, 

such as tagging or mass marking, the use of geochemical signatures [Tho07] or 

genetic tools [Wer07] [Tho07] [Heg07]. 
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C. Tracking Contaminants 

One of the main challenges is to monitor and control water pollution due to the 

cumulative effect of runoff from a number of sources, none of which are known to 

directly discharge waste products into water bodies.  These are commonly referred to 

as non-point sources. Examples include the run off of contaminants such as pesticides 

and toxins, nutrients, chemicals, suspended sediments and trash from agricultural 

operations, urban and sub-urban areas, forestry and mining operations and even from 

atmospheric inputs. Often continuous monitoring of water bodies is essential to 

identify and control pollution from entering larger water bodies and to build early 

warning systems. For example, intensive data collection is essential to building 

computer-models that can predict hazardous conditions such as eutrophication and 

hypoxia that are fatal to marine organisms.  

A key requirement is to track pollutants along water pathways that ultimately 

flow into the oceans. This requires correlating the concentration of chemicals and 

nutrients such as nitrogen and phosphorous to the dynamics of the flow-field. While a 

system of drifters can be used to obtain Lagrangian data, other type of mobile devices 

such as AUVs, robots and gliders can also be used for environmental monitoring of 

lakes and oceans as well as for coastal surveillance. 

D. Tracking Tagged Marine Animals 

 Another application that involves tracking mobile elements is observing the 

movement of tagged marine animals. This data is valuable for obtaining a census on 

marine species to assess and explain the diversity, distribution and abundance of 
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marine life. An example is the Pacific Ocean Shelf Tracking (POST) project where 

acoustic transmitters are implanted on a variety of species [Post]. The POST project 

has been successful in tracking the migration of small Salmon from the headwaters in 

Rockies through Pacific and Alaska. Series of receivers arranged in grid 

configurations across the continental shelf are used to track the movement of animals. 

There is a substantial effort and cost involved in laying down infrastructure for this 

purpose and alternate low cost methods for tracking tagged marine organisms would 

be valuable. 

A.2 Discussion on Existing Underwater Localization Techniques 

Broadly, there are three main techniques used for underwater navigation. 

These are dead-reckoning, acoustic navigation and environmental based navigation. In 

dead-reckoning methods, devices begin with a known initial position and use motion 

information obtained from their on-board sensors to estimate a running fix of their 

positions. On the other hand acoustic navigation is primarily based on acoustic time of 

flight measurements to external elements. Acoustic positioning methods include Long 

Baseline (LBL) and Ultra-short baseline (USBL). These systems can in principle 

estimate vehicle positions without the need for on board navigational sensors, however 

for high precision tracking they are used in combination with dead reckoning 

techniques. In LBL systems a vehicle triangulates its position from acoustically 

obtained distance estimates to a network of surface or sea-bed deployed transponders. 

In Ultra Short Baseline (USBL) systems an array of acoustic hydrophones are used to 

estimate distance and bearing to a vehicle from which positions are derived.  The third 

class is environmental-based navigation. The main idea here is to use either a known 
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landmark map or to build this map by extracting features that can serve as landmarks. 

In either case, with the aid of sensors such as optical cameras and sonar, devices are 

tracked with respect to these landmark features.  

 Now, at a high level, existing work in underwater navigation shows the 

tradeoffs between accuracy, device cost and infrastructure costs. For example acoustic 

navigational methods reduce device cost by alleviating the need for precision on board 

navigational sensors; however they require planned deployments of position 

references. With advances in one way time of travel based ranging [Eus06] [Sin01] 

[Cur05] [Fre05a] [Fre05b] [Sin06], LBL and USBL systems can support higher update 

rates with infrastructure costs that scale well with the number of devices. This may in 

fact be a preferred positioning method when multiple devices are deployed in smaller 

geographic areas such as lakes.  However these solutions break down for large 

deployments. Even with nominal current speeds of 10 cm/s, Lagrangian drifters can 

travel over a km distance in a few hours. Therefore, for applications where Lagrangian 

data has to be collected over time scales of days to weeks, mobile nodes would easily 

go out of range of even long range (10km) LBL transponders. Further the paths 

followed by devices are largely unpredictable. As a result, LBL based localization 

would require over deployment of long range transponders to ensure coverage which 

substantially increases the system complexity, cost and maintenance. Although, the 

need for infrastructure is reduced in case of Short Baseline (SBL), Ultra Short 

Baseline (USBL) and moving baseline systems [Cur05] systems, they still suffer from 

similar problems as LBL systems because they require direct communication with 

reference nodes. 
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To avoid the need for pre-deployed infrastructure (as in LBL systems) and 

high end navigational sensors, environmental based (also called terrain-based) 

navigation techniques were developed. Here scientific sensors such as optical cameras 

and bathymetric sonars are used along with landmark maps (magnetic, gravitational or 

topographic) to determine positions [Mas97] [Eus05] [Rom05] [Vaj98] [Wil03] 

[Wil00] [Fed98] [New98]. Environmental based navigation has also been an area of 

research in robotics.  These methods use perceptual sensors to localize a robot with 

respect to landmarks in the environment. The probabilistic framework to do this was 

first laid out by Smith et al. in 1990 and is known as the problem of Simultaneous 

Localization and Mapping (SLAM) [Smi90].  The original problem in robotics relied 

on extracting features from the environment using sensor data and performing 

localization by matching measurements to features. The difficulty in extracting 

features underwater has resulted in modified solutions to the SLAM problem for 

underwater [Eus05] [Rom05] [Fle00] [Gar01] [Wil04]. The limitation of 

environmental based navigation techniques is that sensors for detecting features are 

often short range, typically O (10-100m) for bathymetric sonars and O (below 10m) 

for optical cameras. Therefore, terrain-based techniques and SLAM are more suited 

for near-bottom navigation.  

We next consider the performance of existing techniques and identify key 

problems that limit performance. A number of existing techniques apply dead 

reckoning to precise navigational sensors such as IMUs and ADCPs and can provide 

positioning accuracy of around a meter, however for short periods (less than 30 

minutes) [Bla03] [Kin07]. This period has been extended to a few hours with 
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accuracies of 0.4% of the traveled distance when a bottom lock could be obtained 

[Bro94] but this is only under the special case of being close to the sea floor. In 

general, position errors from dead reckoning methods accumulate over time even with 

precision sensors. For extended mission periods, devices have to either resurface or 

use position updates from acoustic references (LBLs) to correct for dead reckoning 

errors [Whi98] [Spi76]. 

LBL systems at 300 KHz can provide centimeter accuracy over short ranges 

(below 100m) when there is no uncertainty in the positions of the baseline 

transponders as in well calibrated sea floor deployments [Vic98] [Kin03] [Whi98]. 

However, when transponders are deployed on buoys there would be far more 

uncertainty (tens of meters) due to the motion of the buoys themselves. The accuracy 

of long (km) range LBLs that can go up to 10 kms [Hun74] can further vary over 

several orders of magnitude depending on the acoustic frequency, distance, water 

properties and acoustic path geometry. This is because in long range systems large 

scale effects come into play, such as variations in the speed of sound and the presence 

of refractive paths as a result of water stratification.  

Since the acoustic range of transponders is frequency dependent, long range 

baselines have to operate at low frequencies as mentioned earlier. This has two 

noteworthy implications both for the transmitters on the baselines and the receivers on 

the vehicles- transceiver size and cost, both of which increase as the operational 

frequency is lowered. Our system requirements severely limit the use of large and 

expensive transducers pushing the operating frequencies into the ultrasonic regime and 

therefore limiting the communication range of devices to below a km.  Additionally, 
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large scale coverage of the oceans with low frequency transponders is a source of 

noise pollution to marine organisms such as whales that communicate in these 

frequencies (0.5 to 40 KHz).   

Finally, the energy consumed in tracking plays an important role in system 

lifetime because position estimates are required either periodically (or continuously) 

which is a recurring cost. This is further aggravated by the fact that even short to 

medium range modems (below 1km) have high transmit powers for acoustic 

communication. One of the major drawbacks of existing techniques is that point to 

point communication is the primary way of obtaining distance estimates which is 

inefficient in a network setting. While one-way time of travel has been used to 

improve the update rates (and positioning accuracy) for multi-vehicle localization 

[Eus06] [Sin01] [Cur05], we have proposed to use it for obtaining distance estimates 

in an energy efficient way in underwater networks.  

Among the applications discussed in Section A.1, the application that demands 

the most stringent requirements in terms of position accuracy is obtaining high 

resolution velocity maps of the flow-field, where velocities have to be resolved at 

spatial scales of tens of meters. This remains a challenge given other system and 

application level constraints. Other applications such as tracking pollutants and marine 

animals, or environmental monitoring can tolerate much larger errors in positioning 

(of the order of tens to hundreds of meters).  For these applications many of the 

existing schemes including our proposed methods which are primarily based on short 

range time of flight ranging can provide sufficient positioning accuracy. However, our 
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solutions are more scalable to larger systems and take other system requirements such 

as lifetime and cost into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

167 

 

REFERENCES 

  

[Ala02] Alameda, Jr. W., “Seadevil - a totally integrated inertial navigation 

system (INS) solution”, in Proceedings of the 2002 Underwater 

Intervention Symposium, New Orleans, LA, 2002. 

 

[Aud04] Audric, M., “GAPS, a new concept for USBL”, Oceans’04, Kobe, 

Japan. pp. 786–788, 2004. 

 

[Aru02]  Arulampalam, S., S. Maskell, N. Gordon, T. Clapp, “A tutorial on 

particle filters for on-line nonlinear non-Gaussian Bayesian tracking”, 

IEEE Transactions in Signal Processing, 50(2), 174-188, 2002. 

 

[Bel91]  Bell, B.M., B.M. Howe, J.A. Mercer, R.C. Spindel, “Nonlinear Kalman 

filtering of longbaseline, short-baseline, GPS, and depth 

measurements”, in Proceedings of the Twenty-Fifth Asilomar 

Conference on Signals, Systems and Computers, Pacific Grove, CA, 

USA. pp. 131-136, 1991. 

 

[Bet02] Bettstetter, C., “On the minimum node degree and connectivity of a 

wireless multihop network”, Proceedings of ACM MobiHoc, Lausanne, 

Switzerland, June 2002, pp. 80-91.  

 

[Bin06] Bingham, B., Seering W., “Hypothesis grids: Improving long baseline 

navigation for autonomous underwater vehicles”, Journal of Oceanic 

Eng., Vol.31, No.1, 2006. 

 

[Bis04] Biswas, P., Ye Y., “Semidefinite programming for ad hoc wireless 

sensor network localization”, IPSN’04, Berkeley, CA, Apr. 2004. 

 

[Bla03] Blain, M., S. Lemieux, R. Houde, “Implementation of a ROV 

navigation system using acoustic Doppler sensors and kalman 

filtering”, in Proceedings of MTS/IEEE OCEANS'03, San Diego, CA, 

Vol. 3.,pp. 1255-1260, 2003. 

 

[Bro97]  Brokloff, N., “Dead reckoning with an ADCP and current 

extrapolation”, in Proceedings of IEEE/MTS Oceans’97, Halifax, NS, 

Canada,Vol. 2., pp. 994-1000, 1997. 



168 

 

 

 

[Bro94] Brokloff, N., “Matrix algorithm for Doppler sonar navigation”, in 

Proceedings of IEEE/MTS Oceans'94, Brest, France. Vol. 2. pp. 378-

83, 1994. 

 

[Cha06]  Chandrasekhar, V., Seah W.K.G, Choo Y.S., Ee H.V., “Localization in 

Underwater Sensor Networks - Survey and Challenges”, 

WUWNET’06, Los Angeles, CA, pp. 33-40, Sept 2006. 

 

[Che06]  Chen, C., R.C. Beardsley, G. Cowles, “An Unstructured Grid, Finite-

Volume Coastal Ocean Model (FVCOM) System”, Special Issue on 

Advances in Computational Oceanography, Oceanography 

Magazine,Vol. 19, No. 1, March 2006. 

 

[Chir08] Chirdchoo, N., Soh W. S., and Chua K. C., “Mu-sync: a time 

synchronization protocol for underwater mobile networks”, in 

Proceedings of the third ACM international workshop on Underwater 

Networks WuWNeT '08, pp. 35-42, New York, NY, USA, 2008. 

 

[Cor07] Corke, P.  , Detweiler C.  , Dunbabin M.  , Hamilton M., Rus D.  , 

Vasilescu I., “Experiments with Underwater Robot Localization and 

Tracking”, International Conference on Robotics and Automation, 

2007. 

 

[Cur05]  Curcio, J., J. Leonard, J. Vaganay, A. Patrikalakis, A. Bahr, D. Battle, 

H. Schmidt, M. Grund, “Experiments in moving baseline navigation 

using autonomous surface craft”, In Proceedings of the IEEE/MTS 

Oceans’05Conference Exhibit, Washington, D.C., 2005. 

 

[Dal06] Dalrymple, R.A., S.T. Grilli, J.T. Kirby, “Tsunamis and Challenges for 

Accurate Modeling”, Special Issue on Advances in Computational 

Oceanography, Oceanography Magazine,Vol. 19, No. 1, March 2006. 

 

[Doh01] Doherty, L., Pister K. S. J., Ghaoui L. E., “Convex position estimation 

in wireless sensor networks”,  INFOCOM 2001, Anchorage, AK, April, 

2001. 

 

[Dus93] Dushaw, D., Brian D., Worcester P., Cornuelle B., Howe B., “On 

equations for the speed of sound in seawater”, Journal of the Acoustical 

Society of America, 93 (1), pp: 255-275. 

 

[Els02] Elson, J., Girod L., and Estrin D., “Fine-grained network time 

synchronization using reference broadcasts”, in Proceedings of the 

Fifth Symposium on Operating Systems Design and Implementation 

(OSDI 2002), Boston, MA, USA, pp. 147–163 December 2002. 

 



169 

 

 

 

[Ere04] Eren, T., Goldenberg O., Whiteley W., Yang Y., Morse A., Anderson 

B., Belhumeur P., “Rigidity, computation and randomization in 

network localization”, INFOCOM 2004, March 2004. 

 

[Ero07] Erol, M., Vieira L., Gerla M., “Localization with Dive'N'Rise (DNR) 

beacons for underwater acoustic sensor networks”, WUWNET’07, 

2007. 

 

[Eus05]  Eustice, R., H. Singh, J. Leonard, “Exactly sparse delayed-state filters”, 

in Proceedings of the IEEE International Conference on Robotics and 

Automation, Barcelona, Spain, pp. 2428-2435, 2005. 

 

[Eus06] Eustice, R.M., Whitcomb L.L., Singh H., Grund M., “Recent Advances 

in Synchronous-Clock One-Way-Travel-Time Acoustic Navigation”, 

OCEANS 2006 , pp.1-6, Sept. 2006. 

 

[Fed98]  Feder, H., J. Leonard, C. Smith, “Adaptive sensing for terrain aided 

navigation”, In Proceedings of the IEEE/MTS Oceans’98, Nice, 

France,Vol. 1, pp. 336-341, 1998. 

 

[Fle00]  Fleischer, S., “Bounded-error vision-based navigation of autonomous 

underwater vehicles”, PhD thesis, Stanford University, 2000. 

 

[Fog07]  Fogarty, M.J., L.W. Botsford, “Population Connectivity and 

Conservation of Marine Biodiversity”, Special Issue on Marine 

Population Connectivity, Oceanography Magazine, Vol. 20, No. 3, 

September 2007. 

 

[Fox00] Fox, D., Burgard W., Kruppa H., Thrun S., “A Probabilistic Approach 

to Collaborative Multi-Robot Localization”, Autonomous Robots, 

8(3):325–344, 2000. 

 

[Fox98] Fox, D. , “Markov Localization: A Probabilistic Framework for Mobile 

Robot Localization and Naviagation”, PhD thesis, University of Bonn, 

Germany, December 1998. 

 

[Fre05a]  Freitag, L., M. Grund, J. Partan, K. Ball, S. Singh, P. Koski, 

“Multiband acoustic modem for the communications and navigation aid 

AUV”, In Proceedings of the IEEE/MTS Oceans’05 Conference 

Exhibit, Washington, D.C., 2005. 

 

[Fre05b]  Freitag, L., M. Grund, S. Singh, J. Partan, P. Koski and K. Ball, “The 

WHOI micro-modem: an acoustic communications and navigation 

system for multiple platforms”, In Proceedings of the IEEE/MTS 

Oceans’05 Conference Exhibit, Washington, D.C., 2005 



170 

 

 

 

 

[Fri06] Fringer, O.B. , J.C. McWilliams, B.L. Street, “A New Hybrid Model 

for Coastal Simulations”, Special Issue on Advances in Computational 

Oceanography, Oceanography Magazine,Vol. 19, No. 1, March 2006. 

 

[Gai07]  Gaines, S.D., B. Gaylord, L.R. Gerber, A. Hastings, B. Kinlan, 

“Connecting Places: The Ecological Consequences of Dispersal in the 

Sea”, Special Issue on Marine Population Connectivity, Oceanography 

Magazine, Vol. 20, No. 3, September 2007. 

 

[Gan03] Ganeriwal, S., Kumar R., Srivastava M. B., “Timing-sync protocol for 

sensor networks”, in Proceedings of the 1st international conference on 

Embedded networked sensor systems, pages 138-149, New York, NY, 

USA, 2003.  

 

[Gar01]  Garcia, R., J. Batlle, X. Cufi, J. Amat, “Positioning an underwater 

vehicle through image mosaicking”, In Proceedings of IEEE 

International Conference on Robotics and Automtion, Seoul, Vol. 3. 

.pp. 2779-2784, 2001. 

 

[Gaw07] Gawarkiewicz, G., Monismith S., Largier J., “Observing Larval 

Transport Processes Affecting Population Connectivity: Progress and 

Challenges”, Special Issue on Marine Population Connectivity, 

Oceanography Magazine, Vol. 20, No. 3, September 2007. 

 

[Gay07]  Gaylord, B., J.H. Rosman, D. Reed, J.R. Koseff, J. Fram, S. MacIntyre, 

K. Arkema, C. McDonald, M.A. Brzezinski, J.L. Largier, “Spatial 

patterns of flow and their modification within and around a giant kelp 

forest”, Limnology and Oceanography, 52(5): 1,8381,852, 2007. 

 

[Gol05] Goldenberg, D., Krishnamurthy A., Maness W. ,Yang Y., Young A., 

Morse A., Savvides A., “Network localization in partially localizable 

networks”, INFOCOM 2005, pp.313-326, March 2005. 

 

[Gol06] Goldenberg, D., Bihler P., Cao M., Fang J., Anderson B., Morse A., 

Yang Y., “Localization in Sparse Networks using Sweeps”, ACM 

MOBICOM, Los Angeles, CA, Sept 2006. 

 

[Gre03] Greunen, J. V. and Rabaey J., “Lightweight time synchronization for 

sensor networks”, International conference on Wireless sensor 

networks and applications, San Diego,CA, 2003 pp. 11–19. 

 

[Heg07] Hedgecock, D., P.H. Barber, S. Edmands, “Genetic Approaches to 

Measuring Connectivity”, Special Issue on Marine Population 



171 

 

 

 

Connectivity, Oceanography Magazine,Vol. 20, No. 3, September 

2007. 

 

[Hei06] Heidemann, J., Li Y., Syed A., Wills J. and Ye W., “Research 

Challenges and Applications for Underwater Sensor Networking”, 

WCNC’06, 2006 

 

[Hen92]  Hendrickson, B., “Conditions for unique graph realizations”, SIAM J. 

Comput., vol. 21(1), pp. 65–84, 1992. 

 

[Hop73] Hopcroft, J. E., Tarjan R.E., “Dividing a graph into triconnected 

components”, SIAM J. Comput., vol. 3, pp. 135–158, 1973. 

 

[Hud98] Huddle, J., “Trends in inertial systems technology for high accuracy 

AUV navigation”, in Proceedings of IEEE Symposium on Autonomous 

Underwater Vehicle Technology, Cambridge, MA, USA. pp. 63-73, 

1998. 

 

[Hun74]  Hunt, M.M., W.M. Marquet, D.A. Moller, K.R. Peal, W.K. Smith, R.C. 

Spindel, “An acoustic navigation system”, Technical Report WHOI-74-

6. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

02543 USA, 1974. 

 

[Ihl04] Ihler, A., Fisher J., Moses R., Willsky A.,“Nonparametric belief 

propagation for self-calibration in sensor networks”, IPSN’04, 2004. 

 

[Isa09] Isard, M., MacCormick J., Achan K., “Continuously-adaptive 

discretization for message-passing algorithms”, Neural Information 

Processing Systems (NIPS), 2009. 

 

[Jaf06] Jaffe, J., Schurgers C., “Sensor networks of freely drifting autonomous 

underwater explorers”, WUWNET’06, Los Angeles, CA, pp. 93-96, 

Sept 2006. 

 

[Jaf07]  Jaffe, J., R. Glatts, C. Schurgers, D. Mirza, P. Franks, P. Roberts, F. 

Simonet, “AUE: An Autonomous Float for Monitoring the Upper 

Water Column”, in Proceedings of IEEE/MTS Oceans'07, Aberdeen, 

Scotland, June 2007. 

 

[Jak05]  Jakuba, M., D. Yoerger, A. Bradley, C. German, C. Langmuir, T. 

Shank, “Multiscale, multimodal AUV surveys for hydrothermal vent 

localization”, in Proceedings of the 14th Unmanned Untethered 

Submersible Technology Conference, Durham, NH, 2005. 

 



172 

 

 

 

[Joh97] Johnson, M., Freitag L., and Stojanovic M., “Improved doppler 

tracking and correction for underwater acoustic communications”, in 

Proceedings of IEEE International Conference on Acoustics, Speech, 

and Signal Processing, ICASSP-97., pp. 575 - 578 vol.1, 21-24 1997. 

 

 [Jon07]  Jones, G.P., M. Srinivasan, G.R. Almany, “Population Connectivity 

and Conservation of Marine Biodiversity”, Special Issue on Marine 

Population Connectivity, Oceanography Magazine, Vol. 20, No. 3, 

September 2007. 

 

[Kap96] Kaplan, E. D., Understanding GPS: Principles and Applications, 1996. 

 

[Kin03] Kinsey, J.C., D.A. Smallwood, L.L. Whitcomb,“A new hydrodynamics 

test facility for UUV dynamics and control research”, In Proceedings of 

IEEE/MTS Oceans’03, San Diego, CA. pp. 356-361, 2003. 

 

[Kin06] Kinsey, J.C., Eustice R.M., Whitcomb L.L., “A Survey of Underwater 

Vehicle Navigation: Recent Advances and New Challenges”, In 

Proceedings of the IFAC Conference of Manoeuvering and Control of 

Marine Craft (MCMC’06), September 2006. 

 

[Ksc01] Kschischang, F.R., Frey B.J., Loeliger H.A.,“Factor graphs and the 

sum-product algorithm”, IEEE Trans. on Information Theory, Vol.47, 

No. 2, 2001. 

 

[Lar00]  Larsen, M.,“Synthetic long baseline navigation of underwater 

vehicles”, in Proceedings of IEEE/MTS Oceans’2000 Conference 

Exhibit, Vol. 3.pp. 2043-2050, 2000. 

 

[Lar02]  Larsen, M. B., “High performance underwater navigation- experimental 

results”, in Proceedings of Hydro International, 2002. 

 

[Leo91] Leonard, J.J.,   Durrant-Whyte H.F., “Mobile robot localization by 

tracking geometric beacons”, IEEE Transactions on Robotics and 

Automation, Vol 7, 1991. 

 

[Lib08] Li, B., Zhou S., Stojanovic M., Freitag L., and Willett P. , “Multicarrier 

communication over underwater acoustic channels with nonuniform 

Doppler Shifts”, in IEEE Journal of Oceanic Engineering, 33(2):198 - 

209, April 2008. 

 

[Liu09] Liu, J., Zhou Z., Peng Z., and Cui J.-H., “Mobi-sync: Efficient time 

synchronization for mobile underwater sensor networks”, in 

Proceedings of the fourth ACM international workshop on Underwater 

Networks, WUWNeT '09, New York, NY, USA, 2009. 



173 

 

 

 

 

[Loe04] Loeliger, H.A., “An introduction to factor graphs”, Signal Processing 

Magazine, Vol. 21, No. 1, 2004. 

 

[LuF09] Lu, F., Lee S., Mounzer J., and Schurgers C., “Low-cost medium-range 

optical underwater modem: short paper”, in Proceedings of the Fourth 

ACM International Workshop on Underwater Networks,WUWNet '09, 

pp.1-4, New York, NY, USA, 2009. 

 

[Mao07] Mao, G., Fidan B. and Anderson B. D. O., “Wireless sensor network 

localization techniques”, Computer Networks, Vol. 51, Issue 10, pp. 

2529-2553, 11 July 2007. 

 

[Mar04] Maroti, M., Kusy B., Simon G., and Ledeczi A., “The flooding time 

synchronization protocol”, in Proceedings of the 2nd international 

conference on Embedded networked sensor systems, SenSys '04, pp. 39-

49, New York, NY, USA, 2004. 

 

[Mas97] Massa, D.D., W. Stewart, “Terrain-relative navigation for autonomous 

underwater vehicles”, in Proceedings of MTS/IEEE OCEANS'97, 

Halifax, NS, Canada,  Vol. 1., pp. 541-546, 1997. 

 

[Mas08] Mason, S. F., Berger C. R., Zhou S., and Willett P., “Detection, 

synchronization, and Doppler scale estimation with multicarrier 

waveforms in underwater acoustic communication”, in IEEE Journal 

on Selected Areas in Communications, 26(9), pp.1638-1649, 2008. 

 

[Mir08] Mirza, D., C. Schurgers, “Motion-Aware Self-Localization for 

Underwater Networks”, in Proceedings of Workshop on underwater 

networks,WUWNET’08, San Francisco, CA, pp. 51-58, Sept. 2008.  

 

[Mir09] Mirza, D. and C. Schurgers, “Collaborative Tracking in Mobile 

Underwater Networks”, in Proceedings of ACM International 

Workshop on Underwater Networks (WUWNET) in conjunction with 

ACM SenSys 2009, Berkeley, California, pp. 1-8, November 2009. 

  

[MOS] The MOSEK Optimization Software, http://www.mosek.com/ 

 

[Neg03] Negenborn, R., “Robot Localization and Kalman Filters- On finding 

your position in a noisy world”, PhD Thesis, September 2003. 

 

[New98] Newman, P., H. Durrant-Whyte, “Using sonar in terrain-aided 

underwater navigation”, In Proceedings of the IEEE International 

Conference on Robotics and Automation, Leuven, Belgium, Vol. 1. pp. 

440-445, 1998. 



174 

 

 

 

 

[Par09] Parrish, N., Roy S., and Arabshahi P., “Symbol by symbol Doppler rate 

estimation for highly mobile underwater OFDM”, in Proceedings of the 

Fourth ACM International Workshop on Underwater Networks 

WUWNet '09, pp.1-8, New York, NY, USA, 2009. 

 

[PAR] PARSEC, parallel simulation environment for complex systems, 

http://pcl.cs.ucla.edu/projects/parsec/ 

 

[Pin07]  Pineda, J., Hare J.A., Sponaugle S., “ Larval Transport and Dispersal in 

the Coastal Ocean and Consequences for Population Connectivity”, 

Special Issue on Marine Population Connectivity, Oceanography 

Magazine,Vol. 20, No. 3, September 2007. 

 

[Pom06] Pompili, D., Melodia T., Akyildiz I. F., “Deployment Analysis in 

Underwater Acoustic Wireless Sensor Networks”, in Proceedings of 

ACM International Workshop on UnderWater Networks, WUWNet 06, 

Los Angeles, CA, pp 48-55, September 2006. 

 

[Post] http://www.postcoml.org/ 

 

[Pre06] Preisig, J., “Acoustic propagation considerations for underwater 

acoustic communications network development”, WUWNET’06, Los 

Angeles, CA, pp. 1-5, Sept 2006. 

 

[Rom05] Roman, C. N., “Self Consistent Bathymetric Mapping from Robotic 

Vehicles in the Deep Ocean”, PhD thesis, MIT - WHOI Joint Program, 

2005. 

 

[Sch08] Schmid, T., Friedman J., Charbiwala Z., Cho Y. H., Srivastava M., 

“XCXO: An Ultra-low Cost Ultra-high Accuracy Clock System for 

Wireless Sensor Networks in Harsh Remote outdoor Environments”, 

ISSCC/DAC 2008, February 2008. 

 

[Sha00] Sharif, B., Neasham J., Hinton O., and Adams A., “A computationally 

efficient Doppler compensation system for underwater acoustic 

communications”, in IEEE Journal of Oceanic Engineering25(1), pp. 

52 -61, Jan 2000. 

  

[Sha03]  Shang, Y., Ruml W., Zhang Y., Fromherz M., “Localization from Mere 

Connectivity”, ACM MobiHoc, June 2003. 

 

[She05] Sheng, X., Hu Y. H., Ramanathan P., “Distributed particle filter with 

GMM approximation for multiple targets localization and tracking in 

wireless sensor network”, IPSN’05, pp. 181-188, 2005. 



175 

 

 

 

 

[Sic04]  Sichitiu, M.L.,   Ramadurai, V, “Localization of Wireless Sensor 

Networks with a Mobile Beacon”, in Proceedings of IEEE 

International Conference on Mobile Ad-hoc and Sensor Systems, 2004, 

pp. 174-183, Oct. 2004. 

  

[Sin01]  Singh, H., J. Bellingham, F. Hover, S. Lerner, B. Moran, K. von der 

Heydt, D. Yoerger, “Docking for an autonomous ocean sampling 

network”, IEEE Journal of Oceanic Engineering, 26(4), pp. 498-514, 

2001. 

 

[Sif08] Sifferlen, J.F., H.C. Song, W.S. Hodgkiss, W.A. Kuperman, and M. 

Stevenson, “An iterative equalization and decoding approach for 

underwater acoustic communications”, IEEE J. Oceanic Eng., 33 (2), 

182-197 (2008). 

 

[Sin06]  Singh, S., M. Grund, B. Bingham, R. Eustice, H. Singh, L. Freitag, 

“Underwater acoustic navigation with the WHOI micro-modem”, in 

Proceedings of the IEEE/MTS Oceans’06 Conference Exhibit, Boston, 

MA, 2006. 

 

[Siv04] Sivrikaya, F. and Yener B., “Time synchronization in sensor networks: 

A survey”, IEEE Network, pp.45-50, 2004. 

 

[Smi90] Smith, R., M. Self, P. Cheeseman, “Estimating uncertain spatial 

relationships in robotics”, Autonomous Robot Vehicles (I.J. Cox and 

G.T. Wilfong, Eds.) Springer-Verlag, pp. 167-193, 1990. 

 

[Spi76] Spindel, R.C., R.P. Porer, W.M. Marquet, J. L.Durham, “A 

highresolution pulse-Doppler underwater acoustic navigation system”, 

IEEE Journal of Oceanic Engineering, 1(1), 6-13, 1976. 

 

[Sto02] Stojanovic, M., Freitag L., Leonard J., Newman P., “A network 

protocol for Multiple AUV Localization”, IEEE Oceans 2002, Vol. 1, 

pp. 604-611, 2002. 

 

[Stu08]  Stutters, L., L. Honghai, C. Tiltman, D.J. Brown, “Navigation 

Technologies for Autonomous Underwater Vehicles”, IEEE 

Transactions on Systems, Man, and Cybernetics, Part C: Applications 

and Reviews, Vol.38, Issue 4. pp. 581 - 589, July 2008. 

 

[Sun01]  Sundermeyer, M.A., J.R. Ledwell, “Lateral dispersion over the 

continental shelf: Analysis of dye-release experiments”, Journal of 

Geophysical Research,Vol. 106, No. C5, pp. 9603 - 9621, 2001. 

 



176 

 

 

 

[Sye06] Syed, A.A., Heidemann J., “Time Synchronization for High Latency 

Acoustic Networks”, in Proceedings of IEEE Infocom 2006, pp 1-12. 

 

[Sye08] Syed,  A.A., Heidemann J., “T-Lohi: A New Class of MAC Protocols 

for Underwater Acoustic Sensor Networks”, in Proceedings of IEEE 

Infocom 2008, pp 231-235. 

 

[Tho07]  Thorrold, S.R., D.C. Zacherl, L.A. Levin, “Population Connectivity and 

Larval Dispersal Using Geochemical Signatures in Calcified 

Structures”, Special Issue on Marine Population Connectivity, 

Oceanography Magazine, Vol. 20, No. 3, September 2007. 

 

[Til05] Tilak, S., Kolar V., Abu-Ghazaleh N.B., Kang K.D., “Dynamic 

localization control for mobile sensor networks”, 

Performance, Computing and Communications Conference, (IPCCC) 

2005, 7-9 April 2005 pp. 587 – 592 

 

[Tri98] Trimble, G., “The Doppler inertial acoustic system for littoral 

navigation (DIAS)”, in Proceedings of the Workshop on Autonomous 

Underwater Vehicles(AUV'98), Cambridge, MA. pp. 27-33, 1998. 

 

[Vas05] Vasilescu, I., Kotay K., Rus D., Corke P., Dunbabin M., Schmidd P., 

“Data collection, storage and retrieval with an underwater sensor 

network”, In Proc. of IEEE SenSys, pp.154-165, 2005. 

 

[Vaj98]  Vajda, S., A. Zorn, “Survey of existing and emerging technologies for 

strategic submarine navigation”, In Proceedings of the IEEE Symposim 

for Position Location and Navigation, Palm Springs, CA, USA, pp. 

309- 315, 1998. 

 

[Vic98] Vickery, K., “ Acoustic positioning systems. A practical overview of 

current systems”, in Proceedings of the Workshop on Autonomous 

Underwater Vehicles(AUV'98), Cambridge, MA, USA. pp. 5-17, 

August 1998. 

 

[Web10] Webster, S. E, “Decentralized single-beacon acoustic navigation: 

Combined communication and navigation for underwater vehicles”, 

Ph.D. Dissertation, Johns Hopkins University, Baltimore, MD, USA, 

June 2010. 

 

[Wer07]  Werner, F.E., Cowen R.K., and Paris C.B., “Coupled Biological and 

Physical Models: Present Capabilities and Necessary Developments for 

Future Studies of Population Connectivity”, Special Issue on Marine 

Population Connectivity, Oceanography Magazine, Vol. 20, No. 3, 

September 2007. 



177 

 

 

 

 

[Whi98]  Whitcomb, L.L., D.R. Yoerger, H. Singh, D. A. Mindell, “Towards 

precision robotic maneuvering, survey, and manipulation in 

unstructured undersea environments”, In Proceedings of Robotics 

Research – The Eighth International Symposium (Y. Shirai and S. 

Hirose, Eds.), Chap. 2, pp. 45-54. Springer-Verlag, London. (Invited 

paper), 1998. 

 

[Whi99] Whitcomb,  L.L., D. R. Yoerger, H. Singh, “Advances in Doppler-

based navigation of underwater robotic vehicles”, in Proceedings of the 

IEEE International Conference on Robotics and Automation, Detroit, 

Michigan. Vol. 1.  pp. 399-406, 1999. 

 

[Wil00] Williams, S., P. Newman, G. Dissanayake, H. Durrant-Whyte, 

“Autonomous underwater simultaneous localization and map building”, 

In Proceedings of the IEEE International Conference on Robotics and 

Automation, San Francisco, CA., Vol. 2., pp. 1793-1798, 2000. 

 

[Wil03]  Williams, S., “A terrain-aided tracking algorithm for marine systems”, 

in Proceedings of the International Conference on Field Service 

Robitics, 2003. 

 

[Wil04]  Williams, S., I. Mahon, “Simultaneous localization and mapping on the 

Great Barrier Reef ”, In Proceedings of IEEE International Conference 

on Robotics and Automtion, Vol. 2. pp. 1771-1776, 2004. 

 

[WOO] Woods Hole Oceanographic Institution, Acoustics Communications 

group, “WHOI Micro-modem”, http://acomms.whoi.edu/micromodem/ 

 

[Wym08] Wymeersch, H., Ferner U., and Win M. Z., “Cooperative Bayesian sel 

tracking for wireless networks”, IEEE Commun. Lett., vol. 12, pp. 

505–507, Jul 2008.  

 

[Wym09] Wymeersch, H., Lien J., and Win M. Z., “Cooperative localization in 

wireless networks”, Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009, 

invited paper.   

  

[You06]  You, C.W., Yi-Chao C., Chiang J.R., Huang P., Chu H.H., Lau S.Y., 

“Sensor-Enhanced Mobility Prediction for Energy-Efficient 

Localization”, Sensor and Ad Hoc Communications and Networks 

(SECON '06) Volume 2,  28-28 Sept. 2006 pp. 565 – 574. 

 

[Yun01] Yun, X., E. Bachmann, S. Arslan, K. Akyol, R. McGhee, “An inertial 

navigation system for small autonomous underwater vehicles”, 

Advanced Robotics,15(5), pp. 521-532, 2001. 



178 

 

 

 

 

[Zha08] Zhang, P., Martonosi M., “LOCALE: Collaborative Localization 

Estimation for Sparse Mobile Sensor Networks”, IPSN’08, April 2008. 

 

[Zho07] Zhou, Z., Cui J. H., Bagtzoglou A., “Scalable Localization with 

Mobility Prediction for Underwater Sensor Networks”, WUWNET’07, 

2007. 

 




