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ABSTRACT OF THE DISSERTATION 

 
From the Deep Earth to the Atmosphere: New Geochemical Techniques to Address Marine 

Productivity, Long-term Climate, and Continental Rifting 
 
 

by 
 

Brian Morrison House 
 
 

Doctor of Philosophy in Earth Sciences 
 
 

University of California San Diego, 2019 
 
 

Professor Richard Norris, Chair 
 
 

 
This dissertation, as indicated by its title, is eclectic, but is united around the theme of 

developing and applying new geochemical approaches to answer large-scale questions in 

earth science.  And it represents an interdisciplinary contribution, drawing on paleobiology, 

paleoclimate and paleoceanography as well as incorporating near surface and deep earth 

seismic models and signal analysis techniques to expand the range of conclusions that can be 

extracted from large geochemical datasets.  The first two chapters focus on the marine 

biosphere in the geologic past.  Chapter 1 presents a new high-throughput method for 

establishing paleo export productivity as well as evidence that increased supply of Southern 

Ocean water masses during glacial intervals stimulated productivity off the coast of East 



 xiii 

Africa.  The method presented in Chapter 1 enabled Chapter 2, in which an unprecedented 

global view of marine productivity reveals a global biological “heartbeat”: marine 

productivity varies at the same frequencies as Earth’s orbital obliquity and precession, 

indicating a fundamental link between astronomical and biological processes.  Chapters 3 and 

4 explore the information contained in the carbon in marine sediments to better constrain the 

amount and form of C subducting along the Sunda margin, Indonesia and to infer a multi-

phased expansion of C4 grasslands on the Indian subcontinent, indicating punctuated episodes 

of aridification.  The final chapter traces the He isotope signature of a mantle plume from the 

core-mantle boundary to elucidate the processes involved in forming and sustaining 

continental rifting in Ethiopia and Afar.  The breadth of topics covered here reflects the range 

of my own curiosity in pursuing what Nietzsche termed fröliche wissenschaft – joyful science. 
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CHAPTER 1 

 

Unlocking the barite paleoproductivity proxy: a new high-throughput technique 

reveals glacial/interglacial productivity changes at the East African margin 

  

Brian M. House1, Richard D. Norris1  

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037 

Corresponding author: Brian M. House (bhouse@ucsd.edu)   
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Abstract 

The accumulation rate of barite (BaSO4) in marine sediments is a powerful tracer of paleo 

export productivity due to the refractory nature of barite in sediments and its ability to record 

ecosystem-wide productivity.  Although it has been used to reconstruct past export 

productivity and infer the effects of ocean circulation and nutrient supply on ocean 

ecosystems, the complexity of and time needed for analyses has limited the usefulness of this 

proxy.  We developed a new high-throughput method for quantifying barite in marine 

sediments, and using it in concert with X-Ray Fluorescence (XRF) core scans from IODP Site 

1476 in the Mozambique Channel, we established a high-resolution record of export 

productivity since ~8 Ma.  Focusing on the past 1 Myr., we find dramatically lower export 

productivity during glacial periods.  We propose that diminished Antarctic Intermediate 

Water formation during glacial episodes may reduce nutrient availability at IODP Site 1476.  

This mechanism has been used to explain patterns of productivity in the high-latitude 

Southern Ocean and Benguela Current system, so our results expand this hypothesis to 

encompass the Indian Ocean as well. 

 

1 Introduction 

The accumulation rate of barite in marine sediments has proven to be one of the most 

useful tracers of paleo export productivity in the world’s oceans (Dymond et al., 1992; 

Dymond & Collier, 1996; Francois et al., 1995; Gingele & Dahmke, 1994; Paytan & Kastner, 

1996).  Due to the strong correlation between organic C and particulate barite concentrations 

in sediment traps and surficial sediment samples, barite is hypothesized to form in the water 
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column as sinking organic matter is remineralized (Dehairs, et al., 1980; Dymond & Collier, 

1996; Griffith & Paytan, 2012; Paytan & Griffith, 2007).  Despite barite undersaturation in 

much of the world’s oceans (Monnin et al., 1999), oxidation of organic matter may lead to 

“microenvironments” rich enough in Ba and sulfate that barite precipitates (Chow & 

Goldberg, 1960; Dehairs et al., 1980; Ganeshram et al., 2003).  Marine barite is also highly 

refractory in sediments that lack pervasive sulfate reduction (e.g. Dymond et al., 1992).  

Furthermore, unlike many other proxies, the barite accumulation rate (BAR) reflects the 

export productivity of all species within an ecosystem that contribute to marine snow rather 

than tracing productivity of a subset of an ecosystem, such as calcifying organisms, or single 

microfossil species.  For example, changes in ecological regime that alter the composition of 

biogenic sediments may appear as lulls in overall productivity if only a certain ecologic group 

or species is tracked (e.g. Calvert and Pedersen, 2007). 

The potential of the BAR proxy has not, however, been fully realized due in large part 

to analytical challenges.  Barite typically constitutes a small enough fraction of sediments that 

direct quantification with techniques like X-Ray Diffraction or electron microscopy is 

difficult and can lead to considerable uncertainty (Gingele and Dahmke, 1994; Robin et al., 

2003).  Instead, two broad schemes have been used to measure or estimate barite abundance 

in discrete samples: (1) the sequential barite extraction method, which involves quantification 

of barite following removal of silicate minerals and other Ba containing phases (Bains et al., 

2000; Gonneea & Paytan, 2006; Ma et al., 2014; Paytan, 1995; Paytan et al., 1993; Paytan et 

al., 1996), and (2) estimation of barite abundance by measurement of total Ba and correction 

for non-barite Ba sources (Averyt and Paytan, 2004; Dehairs et al., 1980; Eagle et al., 2003; 

Gingele and Dahmke, 1994; Olivarez Lyle and Lyle, 2006; Reitz et al., 2004).  We present a 
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new high-throughput method falls under the first scheme and directly quantifies barite in 

sediments without the need for correction.  We also find that the commonly-used sequential 

barite extraction method of Paytan et al., (1993) and subsequently modified, is likely to 

underestimate true barite abundance and does not always produce repeatable results.  Finally, 

the new method presented here can repeatably measure barite concentrations using less than 

one-tenth of the material needed for the sequential extraction method and is simple and uses 

non-hazardous chemicals, allowing it to be used during coring expeditions to measure barite 

concentrations in near real-time. 

Non-destructive XRF core scanning is a particularly attractive method for estimating 

barite concentration due to the analytical rapidity that permits high-resolution records (e.g. 

Hull & Norris, 2011; Jaccard et al., 2010, 2013), but the results can be hard to interpret.  The 

ratio of Ba to a predominantly terrigenous element like Al, Fe, Ti, or Zr is often interpreted to 

reflect Ba contributions from barite, but the analytical challenges in measuring barite in 

discrete samples have, in part, limited the rigorous evaluation of this assumption.  For IODP 

Site 1476 in the Mozambique Channel, we find that discrete barite measurements showed no 

appreciable correlation with the previously-used XRF proxies of Ba/Al, Ba/Fe, and Ba/Ti.  

The ratio of Ba/Zr showed a mild correlation.  However, normalizing Ba to Rh and Ag, which 

are present in the x-ray source and detector collimator respectively, showed a much more 

robust correlation with an R2 for Ba/Ag of ~0.7 (n = 67).  We therefore used Ba/Ag and 

discrete barite measurements from Site 1476 to “calibrate” the core scanning results and 

generate an envelope of estimated barite concentrations at cm-scale resolution.  We chose to 

focus on the last ~1 Myr. of the ~8 Ma. record, and during this interval, the inferred barite 

concentration and accumulation rate (calculated as the product of barite concentration, bulk 
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dry density, and sedimentation rate) are at least twice as high during interglacial periods than 

during glacial intervals.  While a relative paucity of paleceanographic data at Site 1476 

prevents us from drawing definitive conclusions, changes in the supply of nutrient-rich 

Southern Ocean masses to this site are consistent with our observations. 

The supply of nutrient-rich water from high southern latitudes has been implicated in 

sustaining productivity along the Antarctic margin and in the Benguela Upwelling System 

(Etourmeau et al., 2009; Jaccard et al., 2013), one of the most productive regions of the global 

ocean.  Ventilation of deep waters and subduction to intermediate depths in the high-latitude 

Southern Ocean produces Antarctic Intermediate Water (AAIW), which spreads North and 

remains buoyant with respect to Antarctic Deep Water and North American Deep Water.  The 

interaction of the South Equatorial Current with Madagascar makes the Mozambique Channel 

a region of exceptional eddy activity (José et al., 2014), and cyclonic eddies induce upwelling 

in their centers, which appears to cause the majority of productivity within the channel itself 

(e.g. Sætre and da Silva, 1984).   

While this region has been the target of numerous hydrological and physical 

oceanographic studies, the origins of biological productivity and ultimate nutrient sources, 

both in the modern system and in the geologic past, have received significantly less attention.  

The glacial/interglacial productivity pattern we find since 1 Ma at Site 1476 mirrors the trends 

in the Southern Ocean and Benguela Upwelling System that are attributed to the diminution 

of AAIW production due to less vertical mixing during glacial periods (Etourmeau et al., 

2009; Jaccard et al., 2013).  This restricts the northern leakage of nutrients from the Southern 

Ocean and hence the productivity in regions that rely on Southern Ocean nutrient supply to 

sustain productivity.  We propose a similar mechanism to explain the glacial/interglacial 
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export productivity trends within the Mozambique Channel, and our hypothesis would 

provide a unified framework for understanding productivity in regions that rely on high-

latitude Southern Ocean water masses as a nutrient source. 

 

2 Methods 

2.1 Barite extraction and quantification procedure 

Our novel method for quantifying barite in marine sediments relies on the well-

documented ability of chelating carboxyl-amine ligands to bind Ba, thereby dissolving barite 

(Bao, 2006; Lea and Boyle, 1993; Paytan, 1995; Putnis et al., 2008).  We used 

diethylenetriaminepentaacetic acid (DTPA), an octadentate analogue of 

ethylenediaminetetraacetic acid (EDTA), to quantitatively dissolve barite from a variety of 

test sediments and natural samples.  Seven bulk test sediments were chosen to represent a 

range of lithologies, oceanographic settings, and expected export productivity levels (Table 

1.1) to fully evaluate DTPA extraction of barite regardless of amount present or sediment 

matrix.  Test sediments included predominantly biogenic material (INMD-12 105P CC and 

ANT-03 46G CC) as well as calcareous clays (Hessler-61 and IODP Site 1480E trimmings), 

all of which were expected to be rich in barite due to the abundance of foraminifera frustules.  

A red clay (ANT-13 201P CC) was included as well to evaluate the effects of transition metal 

oxyhydroxides deposits on Ba measurements, and a Mn-nodule from the same site was 

powdered to test the ability of reducing agents to liberate Ba, Fe, Mn, and S directly from 

metalliferous material.   A sapropel was collected subaerially in Sicily, and a sample of 

terrestrially-sourced material from off the coast of La Jolla, California was included to test for 

interference from silicate-hosted Ba. 
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All sediments were dried at 50°C until the mass stabilized between two successive 

weighings, after which samples were ground with an agate mortar and pestle.  Subsamples 

between 0.25 and 2 g were weighed and treated with 5 N acetic acid for 12 to 24 hours to 

remove carbonates that could contribute Ba; dissolving carbonates also removes Ca that 

would compete with Ba in DTPA complexation.  Following acidification, samples were 

centrifuged, the supernatant was decanted, and samples were washed with DI water three 

times with centrifugation between each wash.  A solution of 0.2 M DTPA was prepared by 

adding sufficient NaOH to an aqueous slurry of DTPA to dissolve the ligand and raise the pH 

to ~11.5-12.  This ensures complete deprotonation of the pentaprotic DTPA, which is 

necessary to maximize Ba binding efficiency (Putnis et al., 2008).  Samples were treated with 

0.2 M DTPA solution in a ratio of 20 mL/g sediment and sonicated for 3 hours before being 

placed in a shaking water bath for at least 6 hours at 60°C.  Aliquots of the resulting leachate 

were filtered through a 0.45 um membrane and archived for analysis.  Table 1.2 summarizes 

the leaching method. 

 Approximately 50 uL of archived solution was added to 4 mL 2% v/v trace metal 

grade HNO3/18.2 MΩ cm-1 water for analysis using a Perkin Elmer Optima 3000 Inductively 

Coupled Plasma-Optical Emission Spectrometer (ICP-OES) operating at 1300 W RF power, 

15 L/min plasma Ar flow, 0.5 L/min auxiliary flow, and 0.8 mL/min through a concentric 

flow nebulizer.  Samples were introduced at a flow rate of 1 mL/min, and a 40 second wash of 

2% trace metal grade HNO3 was conducted between samples.  Measurements were made in 

axial view using the following emission peaks: Ba: 233.527 nm; Ca: 317.933 nm; Sr: 421.552 

nm; Mn: 257.610 nm; Fe: 238.204 nm; S: 180.669 nm; and Al: 394.401 nm.  A four-point 

calibration curve was constructed using a multi-element standard in a solution of 50 uL 0.2 M 
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DTPA/4 mL 2% HNO3.  Check standards were run every 15 samples to correct for 

instrumental drift.  Counts obtained from five replicate spectroscopic measurements were 

averaged and converted to concentration values, and the precision on these replicates was 

better than 1% for most Ba analyses and was no greater than 4% for analyses presented in 

Table S1.  Full procedural replicates of sample splits indicate an average one-sigma 

uncertainty of ~ 0.11-4.8% (Table S1) for Ba analyses.  While instrumental replicates of S 

measurements gave a Relative Standard Deviation (RSD) of ~4%, S concentrations in 

leachate aliquots used for Ba standard addition experiments – which should contain identical 

amounts of S – differed by up to nearly a factor of two (978 ppb versus 519 ppb measured) for 

the PLDS 81 Bx-1 0-5 cm sample. 

The effects of a pre-extraction reduction step – designed to minimize Ba contributions 

from Fe-Mn oxyhydroxides – were evaluated by treating samples with 20 mL/g sediment of a 

0.2 M ascorbic acid solution in 5 N acetic acid.  Bulk sediment samples for ascorbic acid 

reduction were collected from the same archived sediment as those used for sequential barite 

addition tests (Section 2.2), but due to sample depletion, we sometimes had to use new 

samples of the original cores. 

2.2 Method verification and quality control tests 

Synthetic barite was prepared by addition of NaSO4 to BaCl2; the resulting barite had 

impurities (including Sr levels) below the detection limit of ICP-OES. We conducted 

sequential barite addition experiments – in which progressively increasing amounts of 

synthetic barite were added to sediment aliquots –to ensure that added barite could be 

accurately quantified and as a check on possible interferences in measurement using ICP-

OES.  For these experiments, one sample aliquot with no added barite and at least four 
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aliquots with different masses of added barite were submitted to the DTPA leaching 

procedure.  Separate Ba standard addition experiments were also conducted on individual 

samples to evaluate non-spectral ICP-OES interferences that could not be corrected by 

matrix-matching of calibration standards.  In this case, at least two different masses of a Ba 

standard prepared by dilution of 100ppm Ba standard were added to sample aliquots, and the 

instrumental response was compared to the added Ba amount to determine the extent of 

“rotational” matrix effects and establish a correction factor to account for suppression of the 

Ba signal in complex matrices. 

Sequential barite addition and Ba standard addition experiments were conducted on 

each of the seven bulk test sediments (Table 1).  In addition, we obtained seven samples from 

the same cores and intervals previously analyzed using the sequential barite extraction method 

of Eagle et al. (2003) and analyzed them using the DTPA leaching method.  These samples 

are not strict duplicates of what was previously analyzed, but we expect them to record 

similar compositions to published results. 

Finally, quantitative leaching of barite was verified by doping an aliquot of 

decarbonated Hessler-61 material with synthetic barite representing >20 times the natural 

barite abundance. High-resolution Scanning Electron Microscope (SEM) images of unleached 

and leached aliquots were acquired by digitally mixing images from in-column (T1) and 

standard backscatter detectors on an Apreo SEM.  Elemental analyses of individual grains and 

elemental maps of Ba, S, O, Si, Al, and Fe were produced using quantitative Energy 

Dispersive X-Ray Spectroscopy (EDS) with an XFlash detector on a Quanta 600 SEM. 

Additional tests designed to verify quantitative leaching were conducted by adding known 
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amounts of synthetic barite to a barite-free matrix of ground kaolinite and subjecting these 

samples to the DTPA leaching procedure. 

2.2.1 Calculation of barite dissolution at low pH 

To estimate the amount of barite dissolved during the acid dissolution steps of the 

sequential extraction method, we calculated the expected solubility of barite at low pH values.  

This calculation assumed a liquid of zero ionic strength such that all activity coefficients were 

one, and therefore it is likely to represent a lower bound on the true solubility.  Using the 

definition of the solubility product (Rumble, 2018): 

!"# =
%&'()*
[,-.(/]

≈ 1045.57 

along with the second dissociation equation for H2SO4 (Rumble, 2018): 

!89 =
[:)]
[,-.(/]

≈ 104;.55 

we calculated dissolved Ba2+, HSO4-, and SO42- concentrations for low pH values (Figure 1.4).  

To further investigate the potential effects of HF and non-zero activity coefficients, we used 

the PHREEQC geochemical modeling program to determine speciation and barite solubility 

under the reaction conditions presented in Eagle et al. (2003), which employed a set of three 

distinct HF/HNO3 digestion steps with different reagent concentrations.  We used the included 

wateq4f thermodynamic database to predict the amount of barite that would dissolve in 30 mL 

of (1) 2:1 1M HNO3:HF, (2) 1:1 1M HNO3:HF, and (3) 1:2 1M HNO3:HF while maintaining 

equilibrium with a great excess (10 mole) of barite and allowing the formation of BaF2 should 

it be thermodynamically favored.  The results from these calculations are shown in Figure 1.4, 

and we find that for all steps, BaF2 never reaches saturation (maximum saturation index ~10-

3), indicating that the addition of HF will have minimal additional effect on barite solubility at 
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low pH.  For all pH conditions, however, the expected barite solubility calculated with 

PHREEQC (which accounts for ionic strength effects) was higher than what we calculated 

assuming activity coefficients of one.  In total, the PHREEQC results suggest that if barite 

dissolution proceeds to thermodynamic equilibrium during each of the acid digestion steps of 

Eagle et al. (2003), a total of ~6 mg of barite will dissolve. 

2.3 Discrete sample XRF measurements of total Ba 

Sample preparation and analysis was carried out in the Peter Hooper Geoanalytical 

Laboratory at Washington State University.  Samples were re-ground to ensure adequate 

homogeneity for XRF analysis and were mixed with Li2B4O7 in a 1:2 sample:flux ratio.  

Sample beads were formed by fusion at 1000 ºC in graphite crucibles, and the resulting beads 

were ground and re-fused to ensure sample homogeneity.  Sample surfaces were polished and 

elemental abundance measured on a ThermoARL Advant’XP wavelength-dispersive XRF 

spectrometer.  Reproducibility of Ba between repeated duplicates and multiple calibration 

cycles was within 1.6%. 

2.4 Comparison between discrete barite measurements and core scanning XRF 

To establish a correlation between discrete barite concentration and XRF core 

scanning Ba records, 67 samples from IODP Site 1476 were analyzed by DTPA extraction 

and the results were compared with XRF core scans conducted at the Scripps Institution of 

Oceanography core repository.  Core scans were conducted on an Avaatech XRF core scanner 

equipped with a 100 W Rh target x-ray tube from Oxford Instruments and a Canberra X-PIPS 

energy-dispersive detector with Ag collimator.  Prior to analysis, the core surface was scraped 

gently to remove oxidized material and was covered in 4 µm SPEXCertiPrep Ultralene foil.  

All scans were conducted at 1 cm resolution with a footprint of 10 x 12 mm with scanning 
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gaps added to accommodate cracks or significant surface irregularities in the core.  Scans 

were taken at 10, 30 and 50 kV with count times of 10, 20, and 30 seconds respectively.  An 

x-ray tube current of 500 µA and no filter was used for 10 kV scans while currents of 2000 

µA were used for both 30 and 50 kV scans with a Pd filter for 30 kV and Cu filter for 50 kV 

scans.  Data processing followed the procedure detailed in Addison et al. (2013).  One-sigma 

uncertainties averaged ~3% for Ba, ~4% for Zr and Rh, and 0.2% for Ag.  The overall 

uncertainties for elemental ratios were estimated by summing the individual elemental 

uncertainties in quadrature. 

For samples from IODP Site 1476, standard addition experiments were conducted on 

three samples to monitor for changes in non-spectral interference affecting measured Ba 

concentrations.  Due to the paucity of material available from the stratigraphic splice for 

which XRF measurements exist, samples from IODP Site 1476A were analyzed and sample 

depths were correlated to along-splice XRF measurements using shipboard magnetic 

susceptibility measurements from the Special-Task Multisensor Logger “Fast Track” 

(STMSL; Hall et al., 2017). 

2.4.1 Construction of age model 

For the samples from IODP Site 1476, we modified the shipboard biostratigraphy age 

model to assign ages to samples and calculate a mass accumulation rate that was multiplied by 

the measured sediment barite concentration to obtain the Barite Accumulation Rate (BAR).  A 

third-order polynomial was found to fit the biostratigraphic datums well (R2 >0.99), and this 

polynomial was not constrained to zero age at zero depth (i.e. a non-zero intercept was 

permitted) as imposing zero age at the core top could propagate mathematical artifacts 

through the rest of the age model.  Instead, we assumed a linear sedimentation rate between 
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the youngest biostratigraphic datum and the top of the core at zero age to minimize the 

assumptions inherent in this section of the age model. 

3 Results and Discussion 

3.1 Method verification and comparison 

3.1.1 Sequential barite addition experiments 

A wide variety of sediment compositions were used for these tests to ensure that 

leaching with DTPA reliably extracts barite regardless of sediment matrix.  The results from 

sequential barite addition experiments for each of the seven bulk sediments (Table 1) were 

used to define lines of best fit using an ordinary least-squares regression (Figure 1.1).  The y-

intercept of this line gives the amount of Ba in sediment with no added barite, while the slope 

of the line gives an estimate of barite recovery with a slope of one indicating 100% full 

recovery.  However, we found that apparent matrix effects during ICP-OES measurement 

confounded accurate determination of barite content.  Matrix matching and internal standards 

were unable to resolve these effects to our satisfaction, and substantially increasing sample 

dilution was impractical for samples with low starting Ba concentrations.  Instead, we 

conducted Ba standard addition experiments (distinct from sequential barite addition 

experiments), which, while more time consuming, better mitigated the presumed matrix 

effects that were particularly prominent for the Fe- and Mn-rich sapropel test sediment.  

Without such corrections, barite recovery varied between 89% for the sapropel and 99% for 

the terrigenous test sediment (Table S1).  While the corrections indicated by standard addition 

experiments were small (0-9%; Table S1), applying them led to estimated recoveries of 

between 94 and 101%, and regressions for all sediments produced R2 values > 0.99 (Table S1; 

Figure 1.1).  Furthermore, the agreement between the y-intercepts of the linear fits and the Ba 
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contents of sediments with no additional barite indicates that single measurements of natural 

sediment provide results of comparable quality to those of sequential barite addition 

experiments. Finally, the high R2 values indicate that our method gives repeatable results, and 

replicates of Hessler-61 sediment (n=6) along with replicates of previously analyzed samples 

(n= 3-7; Section 3.2) reveal a total procedural precision of 0.7-4% over an order of magnitude 

of barite content.  

3.1.2 Verification of leaching effectiveness and other potential Ba sources 

To verify that all barite dissolves during the DTPA extraction procedure and to 

establish whether the morphology of barite grains was likely to influence dissolution, we 

doped an aliquot of decarbonated Hessler-61 sediment with an additional 100 mg barite/g 

sediment, representing over 20 times the inferred natural barite content and up to three orders 

of magnitude more barite than we measured in other test sediments.  Backscattered electron 

images and elemental mapping using Energy-Dispersive X-Ray Spectroscopy (EDS; Figure 

1.2) confirm the presence of abundant barite in the doped sediment.  A portion of this 

sediment was leached with DTPA, and subsequent SEM images and EDS elemental maps 

confirm the absence of detectable barite, providing strong evidence that all barite was 

removed (Figure 1.2).  For all tests, we used laboratory-made barite, which tends to have a 

smaller grain size (~0.25-1 µm) than natural marine barite (~1-5 µm), and we might therefore 

expect our dissolution experiments with synthetic barite to proceed more rapidly than 

dissolution of natural barite would.  However, because our method can dissolve the abundant 

natural barite from doped Hessler-61 sediments as well as 20 times more synthetic barite, we 

are confident that our procedure can dissolve all natural marine barite from even the most 

barite-rich sediments.   
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Indeed, we find that the total Ba measured by quantitative discrete sample XRF agrees 

well with the inferred amount of Ba from barite for five of the six samples analyzed (Figure 

1.3), so any remaining marine barite must be minimal.  Furthermore, Putnis et al. (2008) show 

that the dimensions of dissolution pits formed by DTPA treatment of barite surfaces exceed 

the size of marine barite grains after 30 minutes at 80°C and less optimal reagent 

concentrations.  As a final test of leaching efficiency and reproducibility, we added known 

amounts of barite to a barite-free ground kaolinite matrix to produce test sediments with 

similar barite concentrations to those of natural samples.  Subjecting these sediments to the 

DTPA leaching procedure confirmed that our method can measure barite concentrations to 

within 4% of the expected value (Figure 1.1; Table S1), which is not the case for other 

proposed barite quantification methods (Robin et al., 2003; Rutten and de Lange, 2002). 

Because carbonates and any associated Ba are removed during acetic acid treatment, 

Ba associated with organic matter and that in hydrothermal Fe-Mn oxyhydroxides are likely 

to be the only remaining sources of DTPA-extractable Ba aside from barite (Gonneea and 

Paytan, 2006).  We tested the contribution of organic matter-hosted Ba by degrading organic 

matter in samples with 15 mL 10% H2O2 per gram for 12 hours at room temperature prior to 

DTPA leaching. The samples evolved considerable gas when exposed to H2O2 but did not 

give appreciably different Ba yields compared to untreated samples for any test sediments 

(Table S1), even when the pH of the H2O2 solution was raised from 7 to 12 to increase 

reactivity.  This step was not designed to completely remove organic matter but rather to 

degrade it sufficiently that Ba bound to it would be released.  We therefore conclude that the 

amount of leachable Ba associated with organic matter is within the range of analytical 

uncertainty and treatment with H2O2 is unnecessary. 
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Previous work (e.g. Dymond et al., 1992)  has noted the potential for Ba to be present 

in hydrothermally-sourced Fe-Mn oxyhydroxides, which at least partially dissolve during 

treatment with DTPA, but are efficiently removed by prior chemical reduction.  However, 

because H3NOHCl, the most commonly used reducing agent, is capable of partially dissolving 

barite (Table S1), the Ba contribution from Fe-Mn oxyhydroxides could be overestimated in 

previous studies (e.g. Dymond et al. 1992) and the barite concentration underestimated.  

Additionally, hydrothermal Fe-Mn deposits are thought to be a quantitatively minor 

component of sediments away from ridge crests (Calvert & Pedersen, 2007; Dymond et al., 

1992), so sediments from most oceanographic settings are unlikely to incorporate significant 

hydrothermal Ba, either in Fe-Mn deposits or in abiotic hydrothermal barite.  To avoid partial 

dissolution of barite during chemical reduction, we instead used ascorbic acid, a milder 

reducing agent.  Because ascorbic acid is most reactive under acidic conditions, this reduction 

step was combined with sample decarbonation by using a solution of 0.2 M ascorbic acid in 5 

N acetic acid.  Doing so means that no separate reduction step is necessary, streamlining 

sample analysis.   

In our experiments, ascorbic acid reduction liberated a similar amount of Fe, Mn, and 

S from both powdered Mn nodules and the red clay test sediment as treatment with H3NOHCl 

did, but it does not dissolve barite, even at elevated temperatures (Table S1).  To directly test 

the effect of ascorbic acid pre-treatment on DTPA leaching results, we subjected aliquots of 

five bulk test sediments and all seven samples previously analyzed by Eagle et al. (2003) to 

the reduction step prior to DTPA extraction.  Due to sample depletion during sequential barite 

addition experiments, the aliquots of bulk test sediment used for ascorbic acid reduction tests 

were not strictly identical to those used in the first round of sequential barite addition 
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experiments, but they nonetheless gave Ba concentrations at or above those of samples that 

did not undergo the reduction step (Table S1).  This suggests that reduction with ascorbic acid 

did not remove significant Ba from hydrothermal deposits, but it should be conducted as it 

may help minimize any ICP-OES matrix effects arising from solutions rich in Fe, Mn, and 

other metals rendered soluble by reduction. 

Finally, because the unique utility of the DTPA leaching method extraction rests on its 

ability to selectively dissolve barite without releasing non-barite Ba from silicate phases, we 

monitored Al concentrations during ICP-OES analyses.  Aluminum remained below the 

practical detection limit of 5 ppb for all analyses, corresponding to less than 200 ppb Al in the 

undiluted leachates.  Using a Ba/Al ratio of 0.0075 for terrigenous sediments (Dymond et al., 

1992), silicate dissolution is likely to contribute no more than 60 ng Ba/g sediment, which is 

well within analytical uncertainty for all samples. 

3.1.3 Comparison with previous discrete barite measurements 

Seven samples from sediment cores previously analyzed for barite concentration by 

Eagle et al. (2003) were re-analyzed to test agreement with the DTPA extraction method.  For 

all samples, DTPA extraction gave higher Ba concentrations, and the Ba liberated during 

DTPA extraction is between 57 and 101% of the total Ba determined by quantitative XRF for 

six samples (Figure 1.3).  While this is higher than for many samples from previous studies, it 

is not unreasonable given prior results that suggest that barite is often the dominant Ba-

containing phase in marine sediments, particularly for samples in which barite is abundant 

(Dymond et al., 1992; Gonneea & Paytan, 2006).  We cannot categorically rule out the 

possibility that DTPA extraction liberates Ba from non-barite phases, but chemical treatments 

designed to minimize Ba contributions from organic matter and Fe-Mn oxyhydroxides – 
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thought to be the main non-silicate Ba phases aside from barite and carbonate (Dymond and 

Collier, 1996; Gonneea and Paytan, 2006) – have a minor impact on our results (Table S1; 

Section 3.3). 

Partial barite dissolution during the sequential extraction method of Eagle et al. (2003) 

may account for the difference in barite concentrations presented therein and what we 

measured.  At least two steps in the sequential extraction procedure were shown to partially 

dissolve pure barite (Gonneea and Paytan, 2006), and our results indicate substantial barite 

dissolution during treatment with hydroxylammonium chloride (H3NOHCl) and subsequent 

digestion using HF/HNO3.  Hydroxylammonium chloride, also known as hydroxylamine 

hydrochloride, is a reducing agent used to remove Fe-Mn oxyhydroxides that harbor Ba 

(Dymond et al., 1992).  However, 0.2 M H3NOHCl solution is also capable of partially 

dissolving barite (Table S1), presumably by reduction of sulfate or increasing barite solubility 

by raising ionic strength (Monnin and Galinier, 1988).  Results from the treatment of pure 

barite indicate that the H3NOHCl treatment of Gonneea and Paytan (2006) can mobilize at 

least 0.1 mg of barite (Table S1), which may represent a substantial fraction of the barite in 

natural samples. 

However, enhanced dissolution of pure barite at low pH presents an even larger 

problem.  While sulfate is only weakly basic (pKa of HSO4- ≈ 2), it will be protonated at low 

pH conditions, reducing the activity of sulfate, and thereby increasing barite solubility (Figure 

1.4).  Ignoring the effects of ionic strength (i.e. using activity coefficients of one), treatment 

of barite with 1 N HNO3 (pH = 0) should protonate barite-derived SO42- to such a degree that 

barite becomes approximately 10 times more soluble than it is at pH ≥ 2 (see Section 2.2.1; 

Figure 1.4).  Results from the PHREEQC geochemical modeling program indicate that the 
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addition of HF will not greatly influence barite solubility because pH is only modestly 

affected, and BaF2 remains undersaturated at the reaction conditions in Eagle et al. (2003) 

(see Section 2.2.1).  Model results suggest that at equilibrium, a total of ~6 mg of barite would 

dissolve during the three acid digestion steps of the Eagle et al. (2003) procedure (see Section 

2.2.1; Figure 1.4), but empirical tests suggest that slightly less may dissolve (Table S1) during 

the 12-hour reaction time (Table S1).  Nevertheless, the amount of barite that is likely to be 

dissolved during this step exceeds the amount present in many aliquots of natural samples 

analyzed in this study.  Paytan (1995) and Eagle et al. (2003) suggest approximately 5-10% of 

marine barite dissolves during the full sequential barite extraction procedure while Markovic 

et al. (2016) find that up to 50% dissolves.  Therefore, the degree of partial dissolution prior 

to quantification is unclear, and indeed, the sequential extraction method of Eagle et al. (2013) 

recovered less than 50% of the barite we infer using the DTPA leaching method on samples 

from the same sediment cores and core depths (Figure 1.3).  While the samples we compared 

with those of Eagle et al. (1993) are not strict replicates, it is striking that the DTPA leaching 

method always recovered higher amounts of barite than the sequential barite extraction 

method, including in samples for which barite was previously undetectable. Finally, barite 

contents of nominally identical samples analyzed by Eagle et al. (2003) and Gonneea and 

Paytan (2006) do not always show good agreement (Figure 1.3).  For some samples, this may 

be due in part to the multiple HNO3/HF digestion steps Eagle et al. (2003) employed to 

separate barite since each acid treatment is likely to dissolve progressively more barite.  

However, this is unlikely to account for the 30-fold difference in barite content for the JGOFS 

TT013-MC06 5-10 cm sample, and some analyses from Eagle et al. (2003) find higher barite 
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concentrations than re-analyses by Gonneea and Paytan (2006), which is contrary to 

expectations if repeated acid digestion steps are the sole source of discrepancy.  

3.2 Paleo export productivity reconstruction using XRF core scans 

3.2.1 Calibration of XRF core scan from IODP Site 1476 

The ratio of Ba to a predominantly terrigenous element such as Al, Ti, Fe, or Zr 

measured by core scanning XRF has been employed as a paleoproductivity proxy (Hull and 

Norris, 2011; Jaccard et al., 2013, 2010, 2009), but the fidelity of this proxy has yet to be 

rigorously evaluated.  Using the DTPA leaching method, we compared 67 discrete barite 

measurements from IODP Site 1476 with XRF core scanning results.  The ratios of Ba/Al, 

Ba/Ti, and Ba/Fe show a poor correlation with our measurements of barite concentration (R2 

< 0.1) while Ba/Zr shows a reasonable correlation (R2 ≈ 0.34; Figure 1.5), indicating this 

better reflects the barite content of sediments.  However normalizing Ba to an element whose 

flux may vary independently can be problematic since a change in the elemental ratio need 

not reflect a true change in Ba concentration (Anderson and Winckler, 2005).  Therefore, we 

also tested the correlation of barite with Ba/Rh and Ba/Ag because Rh and Ag are present in 

the x-ray source and detector (see Methods Section) in much greater amounts than in 

sediments, so normalizing Ba to them should more accurately reflect true variations in Ba 

content by reducing the effects of sediment porosity, grainsize, sediment water content, and 

varying x-ray source intensity without requiring normalization to a separate lithogenic 

element.  Indeed, the Ba/Rh and Ba/Ag ratios correlate better with barite concentration (R2 = 

0.43 and 0.55 respectively; Figure 1.5) than any other elemental ratios, indicating that they are 

better predictors of sediment barite content – at least for Site 1476 – than traditional proxies 

derived from XRF core scans.   
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We therefore chose to calibrate the Ba/Ag ratio throughout the core by using the 

relationship between Ba/Ag and discrete sample barite measurements.  To reduce the 

influence of potential inaccuracies in the XRF scanning results and correlation between 

discrete sample and XRF measurement depths (see Section 2.3), we removed the four points 

for which the (ordinary) linear regression residual was more than two standard deviations 

away from the mean residual.  This improved the correlation (R2 =0.70) while still retaining 

63 calibration points.  Using this linear relationship and 95% confidence levels for the slope 

and intercept, we converted the Ba/Ag XRF record into an envelope of inferred barite 

concentrations for the entirety of the ~8 Myr. Site 1476 record (Figure 1.6).  This record 

shows a secular trend toward higher barite concentrations from ~4.3 to 3.5 Ma, after which 

concentrations remained relatively constant until approximately 0.9 Ma – roughly 

contemporaneous with the shift to ~100 kyr. glacial/interglacial cycles – when the mean barite 

concentration fell by nearly 30% and cyclic variation about the mean became more extreme.  

Long period (~200-400 kyr.) cyclicity is apparent in inferred barite concentrations between 

about 6 and 2.5 Ma, suggesting that low frequency orbital variations may help modulate 

export productivity in addition to the ~40 kyr. obliquity cycles apparent from 2.5 to ~1.3 Ma.  

Barite accumulation rates, calculated as the barite concentration multiplied by the mass 

accumulation rate, record a similar long-term trend as the calibrated Ba/Ag record with the 

exception of a more pronounced peak around 3.5 Ma, when sedimentation rates increased 

substantially.  Because sedimentation rates were approximately constant since 1 Ma, the time 

period we examine in detail, barite concentrations and accumulation rates show nearly 

identical trends. 

3.2.2 Interpreting glacial/interglacial productivity cycles since 1 Ma 
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One of the most notable features of the barite record from Site 1476 is the pronounced 

relationship between export productivity and the global benthic d18O stack (Lisiecki and 

Raymo, 2005) within the last 1 Myr., indicating that export productivity was regularly two to 

three times greater during interglacial periods than during glacial intervals.  Despite the 

hydrographic complexity of the Mozambique Channel (De Ruijter et al., 2002; Sætre and da 

Silva, 1984; Schouten et al., 2003; J F Ternon et al., 2014), decreased supply of Antarctic 

Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) during glacial periods is 

consistent with export productivity trends at Site 1476 and has been hypothesized to underlie 

similar productivity trends in other locations (Jaccard et al., 2013).  Here we focus on the 

influence of AAIW (which may, in the strictest sense, represent a combination of AAIW and 

SAMW and potential mixing with overlying Indian Ocean water) in the Mozambique Channel 

because it clearly appears as a distinct water mass in hydrographic surveys due to its 

characteristic low salinity and temperature.   

The present mechanism stimulating productivity in the center of the Mozambique 

Channel appears to be upwelling associated with mesoscale eddies induced by the interaction 

of the South Equatorial Current with Madagascar (e.g. Sætre & da Silva, 1984).  The 

Mozambique Channel represents one of the most energetic eddy systems in the world (José et 

al., 2014), and eddy currents have been detected reaching the seafloor at ~2 km water depth 

(De Ruijter et al., 2002; Schouten et al., 2003), so while AAIW appears to reside mainly 

between 500-1000 m within the Mozambique Channel (De Ruijter et al., 2002), eddy-induced 

upwelling of it into the mixed layer seems plausible.  Indeed, eddy cores have been shown to 

retain the AAIW temperature and salinity signatures to depths shallower than 500 m (Sætre 

and da Silva, 1984).  Furthermore, the South Indian Common Water that upwells and drives 
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productivity near the Natal Bight, South of Site 1476, appears to acquire nutrients from 

mixing with AAIW (Meyer et al., 2002), so AAIW rather than the overriding Red Sea outflow 

or an Indian Ocean-sourced water mass is likely the ultimate nutrient source to the 

Mozambique Channel.  Therefore, decreasing the supply of AAIW during glacial periods 

would be expected to limit the nutrient supply and hence productivity in the interior of the 

Mozambique Channel, assuming no major oceanographic rearrangements.  Fluctuations in 

AAIW production have also been linked to productivity trends in the Benguela Current 

system off southwestern Africa (Etourmeau et al., 2009) and ODP Site 1094, South of Africa 

in the high-latitude Southern Ocean, though at this site, productivity is inferred from XRF 

Ba/Fe ratios (Jaccard et al., 2013).  Opposing trends of greater productivity during glacial 

periods in the sub-Antarctic Zone are likely due to local Fe fertilization, which intensifies 

during glacial periods (Jaccard et al., 2013).  Therefore, linking changes in AAIW supply to 

export productivity at Site 1476 would help provide a unifying framework for understanding 

productivity during glacial and interglacial periods in regions that are influenced by Antarctic 

water mass production. 

The fraction of pre-formed versus recycled nutrients currently sustaining primary 

production in the Mozambique Channel is unclear as are possible changes in circulation or 

nutrient supply in the geologic past, so we cannot definitively link AAIW production to 

export productivity trends at Site 1476.  The region remains poorly studied in general (J. F. 

Ternon et al., 2014), and no studies have yet constrained the origin of upwelled nutrients that 

stimulate primary productivity in the cores of cyclonic eddies in the Mozambique Channel, so 

at least some portion could be locally recycled rather than upwelled from an advected water 

mass like the AAIW.  However, because cyclonic eddies produce regions of elevated 
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productivity, a widespread nutrient reservoir must exist below the mixed layer, and because 

productivity is otherwise low in the channel, nutrient recycling seems an unlikely explanation.   

Alternatively, it is possible that sea level changes associated with glacial/interglacial 

cycles may have exposed or inundated portions of the continental margin either of East Africa 

or Madagascar, altering upwelling behavior and/or continental nutrient supply.  At the 

moment, though, no evidence exists for changes in nutrient supply due to possible sea level 

fluctuations.  Finally, because the barite paleoproductivity proxy only reflects export 

productivity, we also cannot rule out the possibility that primary productivity behaved 

differently, possibly even increasing during glacial periods while dramatic changes in 

ecosystem regime substantially altered the ratio of primary to export productivity.  Indeed, 

alternation between layers of foraminifera-rich nanno fossil ooze and nanno fossil-rich 

foraminifera ooze in Site 1476 cores have been interpreted to reflect glacial/interglacial 

changes in ecological regime that could imply variation in organic matter ballasting and hence 

the fraction of primary productivity represented in the export productivity record (Hall et al., 

2017a).  The magnitude of difference in barite concentrations would seem to require a major 

change in the ballasting potential of organic matter rather than a small relative shift in 

ecosystem abundance.  Altogether, the repeated switching between barite concentrations of 

~0.6 mg/g during interglacial periods and ~0.3 mg/g during glacial periods (Figure 1.6) 

implies that the process(es) causing the glacial/interglacial productivity fluctuations were 

almost perfectly reversible, suggesting a regular and predictable mechanism such as nutrient 

supply via AAIW. 

 

4 Conclusions 
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 We have developed and verified a new method for the quantification of barite in 

marine sediments that relies on selective extraction of barite rather than either inference of 

barite content based on overall elemental abundances or sequential extraction followed by 

measurement of residual barite.  Our method, involving complexation of Ba with the organic 

chelating ligand DTPA, promises a substantial improvement in sample throughput and 

recovery of barite.  Furthermore, we have shown that previous barite quantification methods 

likely underestimate true barite content due to partial dissolution of barite prior to 

quantification.  The rapidity of the DTPA leaching method allowed us to compare numerous 

discrete barite concentrations with XRF core scanning results to test the suitability of various 

elemental ratios in reconstructing paleo export productivity.  We find that traditional XRF-

derived proxies of Ba/Al, Ba/Fe, and Ba/Ti show no appreciable correlation with true barite 

concentrations at IODP Site 1476.  Instead, we propose Ba/Ag as a far more reliable export 

productivity proxy as long as Ag is present in the XRF detector, leading to a far greater 

detector-driven Ag response than sediments alone would produce.  Using discrete barite 

measurements to calibrate the Ba/Ag record for Site 1476 reveals that export productivity was 

regularly and up to nearly three times higher during interglacial periods compared to glacial 

intervals, particularly during the period of intense glacial/interglacial variation following the 

Mid-Pleistocene Transition at ~1 Ma.  We propose that diminished upwelling in the Antarctic 

Zone during glacial periods reduced the supply of AAIW available to upwell in the 

Mozambique Channel, thereby reducing primary and ultimately export productivity.  Our 

results therefore support a unified global model in which lowered AAIW production during 

glacial periods reduces productivity in the Antarctic Zone as well as other areas as 

geographically dispersed as the Indian Ocean and North Pacific.  Our results show the unique 
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promise of the new DTPA extraction method of quantifying barite in marine sediments, a 

technique that will enable production of the large paleoproductivity datasets necessary to 

answer previously inaccessible questions regarding the global biological system of the oceans. 
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Tables 
 
Table 1.1 Test sediment sources and compositions used for sequential barite addition experiments 
 

Material type Sample source Oceanographic setting 

Calcareous clay Hessler-61 Equatorial Pacific, 4225 m water depth 

Carbonate ooze INMD-12 105P CC Equatorial Atlantic, pelagic, 3200-4700 m water 
deptha 

Terrigenous Surficial sediment from 32° 
40.324’ N 117° 29.139’ W 

Continental shelf near La Jolla, California 
terrigenous with identifiable mineral grains, 488 m 
water depth 

Calcareous clay Trimmings from interstitial 
water whole round samples, 
IODP Site 1480E 

Indian Ocean near Sumatra, hemi-pelagic to pelagic, 
4100 m water depth 

Red clay ANT-13 201P CC Western Pacific, pelagic, 5721 m water depth 

Sapropel Mediterranean Cycle 107 
sapropel 

Punta Grande, Sicily, Subaerial but originally 
pelagic with water depth of ~1000 m 

Siliceous ooze ANT-03 46G CC Northwest Pacific, pelagic, 5736 m water depth 
a Sample is not in SIO database, so exact water depth is unknown 
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Table 1.2 Summary of DTPA leaching method for barite extraction 
 

Step Reagent to 
sample ratio 

1. Dry sample at 50° C or freeze dry and 
homogenize N/A 

2. 

Treat with 5 N acetic acid or 0.2 M ascorbic 
acid in 5 N acetic acid for 12 hours at room 
temperature or ≤ 60° C after initial CO2 
evolutiona 

20 mL/g 

3. Centrifuge and wash 3x with DI water 15 mL/g 

4. 
Treat with 0.2 M DTPA at pH 11.5-12 with 
sonication for 3 hours and agitation at 60° C 
for at least 6 hoursb 

20 mL/g 

aAscorbic acid can be included during this step to remove Ba 
associated with Fe-Mn oxyhydroxides if necessary 
bTests with only sonication and no additional heating revealed poor 
barite recovery 
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Figures 

 

Figure 1.1 (a) results of all sequential barite addition experiments for seven compositions of 
bulk test sediments (Table 1) and (b) enlargement of region in (a) to show results for low 
barite samples.  Barite equivalent is the amount of barite in the sample assuming all measured 
Ba derives from barite.  After correction for matrix effects by standard addition experiments, 
all test sediments produced lines with slopes between 0.94 and 1.01 and R2 values of ≥ 0.99.  
Dotted lines are results of ordinary least-squares linear regression.  
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Figure 1.2.  (a) backscatter SEM images of Hessler-61 test material doped with 100 mg 
synthetic barite/g sediment prior to leaching with DTPA, (b) after leaching, (c) overlaid 
Energy-dispersive X-Ray Spectroscopy (EDS) map of Ba (red), S (green), and Si (blue) for 
doped H-61 sediment prior to leaching, and (d) after leaching.  In (a), barite grains appear as 
bright regions, while their absence is conspicuous in (b).  In (c) and (d), insets show 
backscatter SEM image with white rectangle showing region of EDS elemental maps.  
Regions of collocated Ba and S without Si appear yellow and were confirmed to be barite 
grains with point analyses.  Barite grains are abundant prior to DTPA leaching in (c) and none 
are apparent after leaching in (d). 
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Figure 1.3. (a) Comparison of standard barite separation method and DTPA leaching method 
for previously analyzed samples as well as total Ba concentrations determined by sample 
digestion (Eagle et al. 2003) and quantitative XRF (this study).  The DTPA leaching method 
consistently gives higher values than the sequential extraction procedure, and the putative 
barite Ba liberated during DTPA treatment closely matches total Ba for five of the six samples 
with high enough Ba to measure by quantitative XRF.  Error bars on DTPA Ba indicate the 
maximum estimated 4% one-sigma uncertainty (see Methods Section).  (b) Comparison of 
values from Eagle et al. (2003) and Gonneea and Paytan (2006) for samples analyzed in both.  
Values often agree to within 30%, but for JGOFS TT013-06MC 0-5 cm, the two values differ 
by nearly a factor of 30. 
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Figure 1.4. Modeled solubility of barite under acidic conditions.  Calculations without 
considering ionic strength are shown as solid curves, and the outputs of the PHREEQC model 
results for the three acid digestions of Eagle et al. (2003) are shown as discrete points.  The 
two models agree reasonably well considering that high ionic strength increases barite 
solubility.  Model results suggest that the three acid digestion steps of Eagle et al. (2003) 
could dissolve up to ~6 mg barite, more than is in most sediment aliquots analyzed for this 
study. 
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Figure 1.5. Correlation between XRF core scanning elemental ratios and barite concentrations 
measured on discrete samples for IODP Site 1476.  (a) R2 values for correlation between 
various element ratios and measured barite values with uncertainty estimated by simulated 
addition of random, normally distributed error and subsequent recalculation of R2. (b) Ba/Fe 
shows no apparent correlation with barite concentration while the correlation is statistically 
significant for (c) Ba/Zr (R2 = 0.47; p ≈ 10-10), (d) Ba/Rh (R2 = 0.48; p < 10-10), and (e) Ba/Ag 
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(R2 = 0.55; p < 10-12).  For b-e, Error bars show estimated 1σ uncertainty given by error 
propagation of XRF measurement uncertainty and assuming an extremely conservative 4% 
uncertainty in discrete barite measurements. These results indicate that the ratio of Ba to 
terrigenous elements like Fe may not be reliable paleoproductivity proxies, but the ratio of Ba 
to minor terrigenous elements like Zr much better reflects true barite content. The abundance 
of Ag and Rh in the x-ray source and paucity in natural sediments means Ba/Ag and Ba/Rh 
ratios will reflect true variations in Ba content more reliably than other elemental ratios. 
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Figure 1.6. Ba/Ag from core scanning XRF calibrated into an inferred barite concentration 
using the linear relationship in Figure 1.5.  (a) the full ~7.5 Myr. record of barite 
accumulation rate is shown in the top curve, and barite concentrations calculated from Ba/Ag 
are on the bottom as a curve averaged in 5 kyr. bins (blue) and a 95% confidence envelope 
(purple).  Red points on the bottom curve show barite concentrations of discrete samples used 
to construct the Ba/Ag to barite calibration. (b) enlargement of the interval from the present to 
1 Ma.  Black curve is 5-point moving average of LR04 benthic foraminifera d18O stack 
(Lisiecki and Raymo, 2005), and barite concentration data are the same as in panel a (5 kyr. 
binned average in blue, 95% confidence envelope in purple, and discrete measurements in 
red).  Light grey lines indicate boundaries between marine isotope stages.  Site 1476 
shipboard biostratigraphic age model was used for barite depth to age conversion, so slight 
misalignments between the d18O and barite curves are likely to be an artifact of the age model 
rather than true asynchronicity.  
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Abstract 

Marine productivity shows orbital pacing in individual sediment records, but whether 

this reflects orbital control of the size of the global biosphere remains unknown.  We 

produced high resolution productivity records from eight sediment core locations to make the 

first global “stack” of marine productivity.  Both the individual records and the stack show 

cycles that coincide in frequency with the major variations in Earth’s orbit, suggesting 

productivity in the global ocean has an astronomically-paced “heartbeat”. 

 

Main text 

Periodic variations the Earth’s orbital eccentricity (how non-circular the orbit is), 

obliquity (the inclination of the orbit), and the position in the orbit at which solstices occur 

lead to mathematically predictable cycles in the intensity of incoming sunlight, termed solar 

insolation.  These long-term changes in solar insolation could conceivably affect marine 

productivity directly by altering the intensity of sunlight available for photosynthetic primary 

production, which we would expect to be reflected in sediment core paleoproductivity proxies 

that reflect the amount of biological production in the overlying water column.  Such trends 

have been identified over different time intervals at various locations (Jaccard et al., 2013; 

Paytan and Kastner, 1996; Rickaby et al., 2007), but to systematically address this question, 

we generated early Pleistocene records of the accumulation rate of barite (BaSO4) in marine 

sediments, which is a powerful proxy for export productivity (Averyt and Paytan, 2004; 

Dehairs et al., 1980; Eagle et al., 2003; Griffith and Paytan, 2012), at eight sediment core 

locations (Figure 1).  For each site, we measured the barite concentration of ~100 samples, 

giving an average sampling interval of ~5 kyr. from 2.5-2 Ma., which was only feasible with a 
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high-throughput analytical method (House and Norris, n.d.), and which provides the necessary 

temporal resolution and record length to identify precession (~19 and 23 kyr.), obliquity (41 

kyr.), and the more minor eccentricity cycles (~100 kyr. period; Table S1).  Using either 

published (Bickert et al., 1997; Chen et al., 1995; Gorgas et al., 2017; Harris, 2002; Lisiecki 

and Raymo, 2005; Mix et al., 1995; Raymo et al., 1989; Shackleton et al., 1990; Tiedemann et 

al., 1994; Tiedemann and Haug, 1995) or re-aligned age models to convert sample depth to 

age, we constructed Barite Accumulation Rates (BARs), which show widespread coherence 

with solar insolation at precession and obliquity frequencies (Figure 1) despite a range of 

effects such as variations in phytoplankton ecological communities, upwelling intensity, and 

seafloor carbonate dissolution that may affect the fidelity of productivity records.  We also 

normalized and mathematically “stacked” the BAR records to look for more global trends 

while minimizing the effects of geographically localized processes and uncertainty in age 

models at individual sites (Figure 2).  Our productivity stack – the first of its kind – reveals 

strong coherence with precession and obliquity insolation cycles, and the phase lag between it 

and orbital obliquity suggests glacial periods tended to be more productive during the early 

Pleistocene.   

We find pronounced coherence at ~40 kyr. periods, reflecting the obliquity cycle 

underlying early Pleistocene glacial and interglacial intervals (Figure 1; Supplement).  

Obliquity cycles are especially notable at Site 607 (Figure 1), which is consistent with 

substantial glacial/interglacial reorganization of intermediate and deep water in the North 

Atlantic (Curry and Oppo, 2005).  We note that while barite in carbonate-rich sediments could 

be concentrated during glacial periods when increased deep water acidity leads to carbonate 

dissolution (Curry and Oppo, 2005), but the five-fold increase in barite concentration during 
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glacial periods at North Atlantic Site 607 during an interval of relatively constant carbonate 

content (Leg 94 Shipboard Scientific Party, 1983) suggests that the barite signal represents 

variations in biological production rather than carbonate dissolution.  The difference in phase 

lag between BAR and insolation at the summer and winter solstices implies that glacial 

periods are gnerally more productive than interglacial intervals (Figure 3), which accords with 

the coherence and phase lags at Site 882 in the North Pacific (Figure 1) as well as previous 

localized studies (Paytan and Kastner, 1996).  Previous results suggest spatial heterogeneity in 

whether glacial or interglacial periods are more productive, particularly in areas influenced by 

nutrient-rich water masses produced in the high latitude Southern Ocean (Etourmeau et al., 

2009; Jaccard et al., 2013), so local effects may cause deviations from the large scale trends 

apparent in our data.  However, coherence peaks at ~40 kyr. periods for the lower latitude 

sites 677, 849, and 758 suggest that the productivity response to orbital obliquity is not 

relegated to the high latitude regions most affected by obliquity variations (Figure 1). 

 Precession has the greatest effect on low-latitude insolation, and indeed we see the 

greatest evidence for coherence at ~23 kyr. periods at tropical ODP Sites 758 (Indian Ocean), 

849 (Pacific), 659, and 927 (eastern and western Atlantic, respectively).  While productivity 

variations between glacial and interglacial periods have been noted before (House and Norris, 

n.d.; Jaccard et al., 2013; Paytan et al., 1996), this is the first time that precessional 

frequencies have been identified in productivity records, suggesting that orbital variations 

affect productivity on a more fundamental level than previously thought.  Localized 

phenomena such as the Indian Ocean Monsoon (Site 758) or tropical rainfall and terrigenous 

runoff (Site 927, near the Amazon fan), may modulate productivity at precessional 

frequencies more than insolation does directly (see Supplement).   
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To deemphasize local effects and magnify global trends, we normalized and summed 

the site-specific BAR records to form the first global marine productivity stack (Figure 3; 

Supplement).  We compare the stack to boreal summer insolation from North Pacific Site 882 

(Figure 2) since it most closely represents the canonical 65º N summer insolation curve.  

Insolation records from other sites and times of year produce similar results (see Supplement).  

Coherence spectra show peaks at ~150, ~40, ~23, and ~17-18 kyr. periods using both 

published and re-aligned age models (Figure 2).  The peaks associated with obliquity and 

precession frequencies produce coherence magnitudes that are highly unlikely to emerge from 

random signals (Figure 4; Supplement) and the associated phase lags are largely unchanged 

by age model adjustments (Figure 3).  The exceptionally strong ~40 kyr. BAR cyclicity is out 

of phase with Northern Hemisphere summer insolation and orbital obliquity (Figure 2), which 

accords with the interpretation from site-specific results that glacial periods tend to be more 

productive during the early Pleistocene.  The phase lag at precessional frequencies is less 

easily interpreted and would benefit from further study, but may support the conclusion from 

(Rickaby et al., 2007) that both insolation intensity and growing season length contribute to 

intervals of high productivity (see Supplement). 

This is the first work to present contemporaneous high-resolution productivity records 

from globally-dispersed core locations.  There have been hints of an astronomical cycle in 

carbon burial based on carbon isotope records form the deep Pacific (e.g. 22), which, as the 

largest ocean basin, is expected to reflect a global signal.  Biotic evolution, including the 

appearance of species (Dam et al., 2006) and abundance of C3 and C4 plants (An et al., 

2005), may also respond to orbital cycles that change terrestrial aridity and productivity.  Our 

results support this suggestion that evolutionary opportunity, reflected by marine productivity, 
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varies with an orbital rhythm.  While uncertainty is unavoidable in extrapolating isolated 

sediment core analyses to the global ocean, our data nevertheless cover a large geographic 

area and strongly suggest that the oceans, the largest global ecosystem by biomass, have an 

astronomically-paced biological “heartbeat”. 
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Figures 

 
Figure 2.1. (following page) Overview map of site locations and coherence magnitude and 
phase lag between BAR and local summer solstice insolation at each site shown in polar form.  
For each site, the color of point(s) on the polar graph represents the frequency of a coherence 
peak deemed significant.  The radial distance of these points represents the magnitude of the 
associated coherence peak while the angle from the positive x-axis represents the phase lag 
between the BAR and insolation signals (clockwise rotation indicates BAR lags insolation, 
counterclockwise indicates insolation lags BAR).  The shaded areas on the plots represent the 
estimated interquartile range in coherence magnitude and phase lag based on Monte Carlo 
simulations of age model uncertainty (see Supplement). 
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Figure 2.2. (A) BAR records for individual sites, and (B) global BAR stack that shows visual 
similarities with boreal summer insolation at Site 882, which best represents the frequently-
used June insolation curves from 65º N. (C) the coherence spectra between the BAR stack and 
Site 882 insolation show peaks at obliquity and precessional frequencies that remain 
regardless of which age models are used for individual sites.  The red dotted line indicates the 
formal 95% confidence level (see Supplement), though we also employed Monte Carlo 
simulations as an additional test of robustness (Figure 4).  The robustness and physical 
meaning of the ~150 kyr. peaks are unclear from this study.  Phase lags associated with the 
coherence peaks imply more productive glacial periods (Figure 2), in accordance with site-
specific results, and a more complex relationship at precessional frequencies. 
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Figure 2.3. Interpretation of the physical meaning behind phase lags of ~40 kyr. cycles at 
different seasons.  (A) Extremes in orbital obliquity lead to extremes in seasonality as the 
insolation difference between opposing seasons is greatest, (B) shows the BAR record (red) 
for Site 607 in the North Atlantic, where ~40 kyr. coherence is particularly prominent and 
orbital obliquity (blue).  As indicated in (C), BAR is out of phase with ~40 kyr. insolation 
cycles at the summer solstice and in phase at the winter solstice indicating periods of lower 
obliquity, which correspond to intervals of decreased seasonality and hence glacial periods, 
tend to be more productive. 
 

  



 

 
 

65 

 

 

Figure 2.4. Univariate and bivariate histograms showing the coherence magnitudes at 
different frequencies produced by simulated perturbations of the ages of stacked BAR data 
(red) and random white-noise signals (blue).  Both the BAR stack (based on the published age 
models) and random signals were compared with June insolation at Site 882.  All peaks in the 
coherence spectra with magnitude greater than 0.3 and a minimum prominence of 0.1 above 
the surrounding spectrum were identified and discretized into frequency and coherence 
magnitude bins.  More intense colors indicate higher bin counts, and the marginal histogram 
below the frequency axis shows the distribution of the frequencies of coherence peaks 
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detected along with the frequencies of obliquity and precession cycles.  The ~40 kyr. and ~23 
kyr. peaks occurred more frequently and generally at greater magnitude for the BAR stack 
than for random signals, leading us to conclude that these peaks in the coherence spectrum of 
the BAR stack are likely to represent true processes linking cycles in obliquity and precession 
to export productivity. 
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Chapter 2 Appendix 

1 Materials and methods 

1.1 Barite quantification 

 Barite concentrations in discrete sediment samples were determined using the method 

of House and Norris (2019), which involves selectively dissolving barite from sediments 

using a chelating organic ligand.  Barium in solution was quantified according to the detailed 

methods in House and Norris (2019): briefly, Ba concentrations in leachate solutions were 

measured with Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) using 

the 233.527 nm Ba emission peak viewed axially.  House and Norris (2019) note the potential 

for ~5-10% diminution of Ba emission intensity, likely due to the complex sample matrices, 

so we conducted standard addition experiments in which increasing amounts of a Ba standard 

(CertiSpex, 100 ppm Ba) were added to at least three sample splits, and the slope of the 

resulting line of added versus measured Ba concentrations was used to correct for matrix 

effects that could not be overcome with matrix matching of standards.  This procedure 

suggested a small correction of ~5% for samples from all sites.  We also conducted sets of 

sequential barite addition experiments in which progressively increasing amounts of synthetic 

barite were added to splits of the same sediment samples to verify that recovery, when 

corrected for matrix effects using standard addition experiments, was sufficiently close to 

100%.  Check standards were run every 15 analyses to correct for instrumental drift. 

1.2 Age models and mass accumulation rate 

Original age models came from comparing benthic foraminifera  d18O records to 

(Lisiecki and Raymo, 2005) for all sites except Site 882 at which cyclicity in the magnetic 

susceptibility and Gamma Ray Attenuation Porosity Evaluator (GRAPE) records were 
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orbitally tuned to the 41 kyr. obliquity cycle (Tiedemann and Haug, 1995).  We note, 

however, that filtering these records with a slightly wider (40-42 kyr.) bandpass filter or very 

narrow filters centered at either 40 or 42 kyr. produced a number of cycles that was either 

greater or less than the number of obliquity cycles between 2.5 and 2 Ma., so we are uncertain 

of how physically meaningful the apparent cyclicity is.   

The ~10 cm sample spacing for  d18O measurements necessary to minimize sediment 

bioturbation effects means that the  d18O record at all sites is an aliased version of the global 

stack, which leads to slight ambiguity in aligning the two records.  Estimated sedimentation 

rates for the sites we used were on the order of several cm/kyr., so a ~10 cm sample spacing 

would represent a temporal resolution of ~1 sample per 2-5 kyr.  While this uncertainty is 

small relative to the age resolution needed for many purposes, it can be significant when 

testing for cyclicity at the precessional frequencies of ~19 and 23 kyr.  We tested the potential 

effects of aliasing in the  d18O (and the Site 882 magnetic susceptibility/GRAPE signals) used 

to create age models by fitting smoothing splines through the age/depth data and re-aligning 

them with obliquity cycles.  This process typically led to minor adjustments in the age 

models.  These re-aligned age models generally, however, produced small changes in the 

results.  Ages of discrete samples generated from published and realigned age models are 

presented in Table S1. 

Sedimentation rates were calculated from age models by smoothing apparent 

sedimentation rates from adjacent age/depth tie points with a 25-point moving median filter to 

avoid spurious extrema.  Dry bulk densities were taken from shipboard values presented in the 

relevant site reports (Leg 108 Shipboard Scientific Party, 1988; Leg 111 Shipboard Scientific 

Party, 1988; Leg 121 Shipboard Scientific Party, 1989; Leg 138 Shipboard Scientific Party, 
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1992; Leg 145 Shipboard Scientific Party, 1993; Leg 154 Shipboard Scientific Party, 1995; 

Leg 94 Shipboard Scientific Party, 1983; Party, 1999), and the barite accumulation rate was 

calculated as the product of the sedimentation rate, the dry bulk density, and the sediment 

barite concentration.   

1.3 Data treatment 

We primarily used spectral coherence between our BAR records and either local 

insolation (for individual sites) or a combination of local insolation and global orbital 

parameters (for the stacked data; see below) to establish whether cyclicity in export 

productivity occurs at similar frequencies as those of orbital variations.  Coherence consists of 

two parts: the magnitude of similarity between two datasets at different frequencies and the 

phase lag between cycles in the two datasets as a function of frequency.  Because the 

magnitude of coherence reflects the normalized magnitude of the Fourier transform of the 

cross-correlation function between the BAR and insolation/orbital parameter timeseries, it is 

only sensitive to linear relationships between the two datasets.  More complex non-linear 

relationships cannot be detected, so less direct effect of insolation variations such as potential 

changes in wind patterns or cloud cover, could conceivably affect productivity in complicated 

ways that would be exceedingly difficult to identify unambiguously. 

For analysis of the coherence at individual sites, we compared the BAR records with 

local insolation averaged over the 30-day periods centered on the solstices and the March 

equinox to better understand the influences of seasonality based on the changes in phase lags 

between BAR and insolation at different seasons (Figures 2 and 3).  Because of the relatively 

short length of BAR signals, we used three Hamming windows with 50% overlap to estimate 

coherence for both the individual and stacked BAR records (see below), which means that 
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coherence of ~0.77 corresponds to a confidence level of 0.05 according to the formal 

definition of statistical significance.  

Uncertainty in the age model complicates analysis of coherence as it also leads to 

uncertainty in BAR, which is calculated as the product of barite concentration, dry bulk 

sediment density, and sediment accumulation rate.  Because of the difficulties in quantifying 

age model uncertainty, which was nevertheless likely to introduce greater uncertainty than the 

<4% associated with the barite measurement procedure (House and Norris, n.d.), we used 

Monte Carlo simulations in which we perturbed the age of each individual sample by an 

amount randomly drawn from a normal distribution with a relatively large standard deviation 

of 2.5 kyr.  We note that searching only within specified frequency windows for coherence 

peaks could bias results by ignoring peaks at non-orbital frequencies, but the coherence 

spectra for all sites and the global stack were quite clean with few unexpected peaks (Figure 

S1), so peak detection within prescribed frequency windows seems reasonable.  The peak 

detection algorithm we used only picked coherence peaks with an absolute magnitude above 

0.3 and prominence of at least 0.1 above the surrounding spectrum.  Using 103 simulations for 

each site/season combination and 104 simulations for the global stack, we established 

distributions for coherence magnitudes at the frequencies of orbital parameter variations 

(Figure S2).   

To produce a null model to compare our data against, we conducted similar Monte 

Carlo simulations using 500 random white-noise signals (the color of the noise we used had 

minimal effect on our results), each subjected to 103 random age perturbations using the same 

parameters as for our BAR signals. The difference between the distributions of coherence 

peak magnitudes from our data and those from the random signals was visually distinct for 



 

 
 

71 

certain frequencies at certain sites (Figure S2).  One-tailed Kolmogorov-Smirnov statistical 

tests supported the conclusion that in these cases, the level of coherence associated with the 

true age model for our data was extremely unlikely to arise from a random signal, even when 

p-values for confidence intervals were adjusted to account for multiple hypothesis testing by 

the conservative Bonferroni method (p < ~5 x 10-4 for a=0.05; p < ~10-5 for a=0.01; see 

Table S2).  Because of the potentially large influence of age model uncertainty on coherence 

magnitude, we feel this approach is more reasonable than relying solely on the formal 

confidence intervals for the magnitude of coherence peaks. 

We additionally tested the effects of the magnitude of age model perturbations and the 

potential for noise in a signal to degrade coherence given age model uncertainty.  The age 

model perturbations used for Monte Carlo simulations were drawn from a normal distribution 

of random numbers with a standard deviation of 2.5 kyr. for individual sites and 1.5 kyr. for 

the global stack to reflect the decrease in uncertainty magnitude associated with producing a 

data stack.  At sedimentation rates of several cm per kyr., this age uncertainty would 

correspond to a substantial “uncertainty” of centimeters in sample depths, which is already 

likely to be unrealistically large.  However, we also tried increasing the standard deviation of 

the age model perturbation distribution to 10 kyr., and while the magnitude and phase lags of 

precession-frequency peaks were understandably altered greatly, neither the coherence 

magnitude nor phase lags for the ~40 kyr. period coherence peaks were changed greatly, 

indicating they are a robust feature.  Finally, to test the combined coherence effects of signal 

noise and age model uncertainty, we estimated coherence between two identical insolation 

signals, one with added age uncertainty (simulated in the same way as in earlier tests) and 

signal noise to simulate non-linear relationships between insolation and BAR.  When the 
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standard deviation of the normally-distributed random noise reached ~30% of the insolation 

signal, the 2.5 kyr. standard deviation age model perturbations reduced the coherence of these 

two originally identical signals substantially (Figure S3).  This indicates that the procedure we 

use to evaluate coherence between BAR and insolation records is reasonably sensitive to non-

linear “noise” in the BAR-insolation relationship, and therefore that the observed levels of 

coherence are likely to be physically meaningful. 

 To assemble a more globally representative view of periodicity in export productivity 

and to minimize the potential influence of phenomena localized at individual sites, we stacked 

the data by normalizing each site’s BAR record to have a magnitude between zero and one, 

interpolating the records onto a finer scale, and binning the resulting records.  Interpolating 

the BAR of individual sites onto a common timescale yielded similar results.  Comparing the 

stack with the individual orbital parameters of eccentricity, obliquity, and precession index 

(Laskar et al., 2004), which are invariant with respect to location, presented reasonably 

different results than estimating the coherence between the global stack and insolation at 

individual sample sites.  However, the location of the insolation record we used made only a 

small difference in both the coherence spectrum and phase lags.  Insolation was calculated 

from the Laskar (2004) orbital parameters using the Palinsol package for R (Crucifix, 2016). 
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Supplemental figures 

 

 
Figure 2.S1. Coherence spectrum between Site 1123 BAR and local summer insolation 
showing frequency windows used for peak picking in all spectra.  The frequency windows are 
centered around the main eccentricity, obliquity, and precession frequencies as well as the 
minor 16 and 30 kyr. period variations in insolation.  An automated algorithm was used to 
identify peaks that had a coherence of at least 0.3 and a prominence over the surrounding 
spectrum of at least 0.1.  This technique of using only the magnitude of coherence peaks is 
justified because of the general lack of peaks outside the frequencies of astronomical 
variation; otherwise, if coherence spectra contained abundant additional peaks, choosing only 
those at the frequencies of interest could bias results. 
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Figure 2.S2. Example empirical cumulative distribution functions of the magnitudes of 
coherence peaks at different frequencies following Monte Carlo simulations for winter 
insolation at Site 758.  The distributions for the dataset were constructed from recalculating 
coherence and picking coherence peak magnitudes for 103 simulations in which sample ages 
were randomly perturbed.  Distributions for random data are the compilation of coherence 
peak magnitudes of 500 samples, each of which was subjected to 103 random age 
perturbations using the same procedure as for BAR data.  When no coherence peak was 
identified within a frequency window using the criteria described above, a value of 0 was 
assigned.  For the coherence peak at ~16 kyr., random signals perform better (i.e. have higher 
coherence at all cumulative fractions) than the actual BAR data.  This means that the true age 
model is likely to produce a coherence peak at ~16 kyr. that is of lesser magnitude than 
random signals do.  However, for the ~40 and ~23 kyr. peaks, the data clearly produce a 
superior distribution of peak magnitudes, so the true age model is likely to give coherence 
peaks at these periods that are substantially greater in magnitude than random signals do.  We 
therefore consider these peaks but not the peak at ~16 kyr. period in our interpretations. 
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Figure 2.S3. Polar plot of magnitude and phase lags associated with coherence peaks between 
two copies of Site 1123 December insolation, one unaltered, and one with added white noise 
and simulated age perturbations treated using the same Monte Carlo process as for BAR 
signals.   
The addition of white noise with maximum amplitude of 30% of the insolation signal 
simulates non-linear interactions between insolation and BAR signals.  As in Figure 1, the 
magnitude of coherence peaks at different frequencies are represented by the radial distance 
while the phase lag between the signals at those frequencies are shown as an angle from the 
positive x-axis.  For each frequency, the point represents the median magnitude and phase lag 
while the shaded region represents the inter-quartile range produced from 103 Monte Carlo 
simulations of age model uncertainty in one signal.  The extreme decrease in coherence 
magnitude for all periods but ~23 kyr. suggests that age model uncertainty along with indirect 
insolation/productivity relationships could tremendously affect the observed coherence.  This 
suggests that the strength of the coherence we detect between our data and insolation likely 
reflects a true physical link between productivity and orbital parameters. 
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G.E., Hilton, D.R., 2019. Carbon cycling at the Sunda margin, Indonesia: a regional study 

with global implications. Geology 47, 483–486.  The dissertation author was the primary 

investigator and author of this paper. 
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Chapter 3 Appendix 

1. Detailed methods 

 1.1 Sediment analyses 

 Sediment samples were obtained from archived DSDP, ODP, and piston cores from 

the Lamont-Doherty Earth Observatory (LDEO) core archive.  Samples were dried at 50 °C, 

and sediment aliquots for Total Organic C (TOC) analysis were acidified using 1 N HCl for at 

least 12 hours or until effervescence ceased.  Following acidification, samples were 

centrifuged and washed 3x with DI water and re-dried before homogenization in an agate 

mortar and pestle.  Approximately 100 mg was combusted with Cu/CuOx in an evacuated 

quartz tube at 910 °C overnight.  Resulting CO2 was purified and collected on a gas line.  

Sample aliquots for carbonate analysis were acidified with 100% phosphoric acid at 70 °C in 

a Finnigan Gas Bench CO2 handling system.  For all samples, CO2 was quantified using 

manometry, and all isotope measurements were conducted on a Finnigan MAT 252 mass 

spectrometer operated in dual inlet mode.  All d13C values are reported relative to VPDB C 

isotope standard.  For measurements of C isotopic composition of carbonate within Altered 

Oceanic Crust (AOC), we used a microdrill to obtain samples of the carbonate veins and 

breccia matrix.  These samples were then analyzed in an identical fashion to sedimentary C. 

 1.2 Sediment and unit thicknesses 

 Archived 3.5 kHz single channel seismic lines from the Lamont-Doherty Earth 

Observatory (LDEO) collection were used to determine overall sediment thickness and the 

thicknesses of geochemically distinct units outboard of the Sunda margin.  Archived profiles 

from the following cruise tracks were used: 

RC 1107 



 

118 
 

RC 1402 

RC 1403 

V 1909 

V 2009 

V 2410 

V 2819 

V 2901 

V 3503 

V 3616 

Seafloor, basement, and unit boundary picks, made using the GeoMap App program for these 

profiles, were augmented with additional constraints from more recent published multichannel 

lines(Kopp and Kukowski, 2003; Lüschen et al., 2011; Kopp et al., 2006; Planert et al., 2010; 

Kopp, 2013; Kopp et al., 2009; McNeill et al., 2016; Dean et al., 2010).  Geochemical unit 

boundaries (Nicobar Fan, terrigenous trenchfill, pelagic material, and calcareous turbidites) 

were defined by picks following the seismic interpretations in the Initial Report volumes of 

the appropriate DSDP/ODP sites and subsequent seismic studies.  The terrigenous trenchfill 

unit is defined by reflectors that converge moving away from the trench, and the top of the 

Nicobar Fan was inferred to coincide with the base of this unit as reported elsewhere(Dean et 

al., 2010).  The base of the Nicobar Fan lacks clear seismic reflectors, and as such, we 

assumed a uniform thickness of 200 m for the underlying pelagic unit (which is intermediate 

between results from DSDP 211 and IODP 1480) rather than using dubious seismic picks to 

constrain the thickness of the Nicobar Fan unit(Expedition 22 Scientific Party, 1974; McNeill 

et al., 2017).  The lower extent of the unit of calcareous turbidites from the Exmouth 
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Plateau/Australian margin is defined by a distinct set of reflectors(Ludden and Gradstein, 

1990), and since this unit is uppermost at Sites 261 and 765 where it is sampled, we infer that 

overlying sediment is likely to be quantitatively minimal throughout the margin.  Therefore, 

constraining this unit’s thickness – as well as that of the underlying pelagic sediments – was 

straightforward.  The lack of a clear seismic boundary between the calcareous turbidite unit 

and the trenchfill wedge in seismic profiles along the southeastern portion of the margin led 

us to assign a thickness for the trenfill unit by subtracting the thickness of the other units 

outboard of the trench from the overall sediment thickness at the trench.  This approach, while 

necessary to constrain overall sediment flux to the trench, is unlikely to substantially affect 

our estimates of subducting C because the entirety of the trench wedge appears to be off-

scraped through much of the margin.  While the Roo Rise is inducing localized subduction 

erosion along eastern Java, sediment cover on the rise is minimal, and sediments trenchward 

of it are difficult to interpret from seismic profiles.  Indeed, East Java stands out as a region of 

low sediment cover (Figures S2 and 3), so while our estimates consider the subduction of the 

thin sediment veneer currently present, significantly more sediment and sedimentary C may 

have subducted in the recent past when the Roo Rise first impinged upon the margin. 

When seismic velocity profiles reported two-way travel time rather than sediment thickness 

and sediment velocity models were not available, sediment velocities of 2 and 2.5 km/s were 

used to construct upper and lower bounds on sediment thickness respectively.  While these 

velocities are greater than those determined for surficial sediments(Dean et al., 2010), they 

encapsulate the range of velocities expected for the deeper sediments that escape off-scraping 

at the deformation front along much of the margin.  Therefore, these seismic velocity bounds 

are reasonable for estimating subducting C flux and may slightly overestimate the amount of 
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sediment – and hence C – present at the trench.  A total of ~8000 picks were made, and 

additional unit and sediment thickness constraints from DSDP Sites 211, 213, 260, 261, ODP 

Site 765, and IODP Site 1480 were also incorporated.  Using these data, surfaces were 

constructed to model unit and overall sediment thicknesses and extrapolate these from core 

sites to the trench. With these models and results from sediment analyses, we estimated the 

amount and types of C within the sediment column at the trench.   

 Plate motion models of the Indoaustralian plate relative to the stable Sunda core from 

McNeill et al. (2014) were used to convert C content into a C flux to the trench, calculated at 

points along the trench that correspond to the MORVEL plate boundary between the 

Indoaustralian and Sunda plates(Argus et al., 2011).  Single and multichannel seismic profiles  

as well as velocity models across the trench (Lüschen et al., 2011; Kopp et al., 2009, 2006; 

Kopp and Kukowski, 2003; Kopp et al., 2001; Planert et al., 2010) were used to estimate the 

fraction of the overall sediment and C flux bypassing the deformation front and subducting 

past ~20 km, the maximum seismically-resolved depth.  These estimates were combined with 

those from McNeill et al. (2014) to generate upper and lower bounds on the sediment 

subducting past the deformation front.  This range in possible subduction channel thickness 

leads to the range in estimates for subducted C amount.   

The thickness of Nicobar Fan deposits is difficult to establish definitively from seismic 

profiles as the bottom of the fan is not marked by any prominent reflector (e.g. DSDP 211 site 

report).  This led us to define a uniform thickness of the underlying hemi-pelagic to pelagic 

unit (Unit 3 of Dean et al., 2010) of 200 m, consistent with interpretations from DSDP 211 

and shipboard sedimentological evidence from IODP U1480.  In contrast, the base of the 

calcareous turbidites from the Australian margin/Exmouth Plateau is marked by a series of 
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clear reflectors (DSDP 261, ODP 765 site reports), and while they infill bathymetric relief, 

where they do not fully account for total sediment thickness, they are underlain by a 

Cretaceous pelagic to hemipelagic unit.  Sediment thickness off East Java is minimal as this 

region represents the impingement of the Roo Rise on the deformation front. 

2. Comparing shipboard and shore-based organic C analyses 

 The tendency for disagreement between shipboard estimates of Total Organic C 

(TOC) made during coring expeditions and shorebased measurements has been previously 

documented (Olivarez Lyle and Lyle, 2006).  Shipboard TOC is typically not measured 

directly but calculated as the difference between total C (measured by combustion elemental 

analysis) and carbonate C (measured by coulometry).  However, this method can lead to 

substantial uncertainty.  Several hundred replicate shipboard analyses conducted on a total of 

5 samples from IODP Site 1480 give one-sigma uncertainties of 35 to 180%(McNeill et al., 

2017).  Furthermore, comparing the pool of shipboard data from DSDP Sites 211, 260, 261, 

262, and ODP Site 765(Ludden and Gradstein, 1990; Plank and Ludden, 1992; Bode, 1974; 

Pimm, 1974) with our shore-based TOC results shows that we are unable to reproduce the 

highest shipboard TOC values and that the distribution of values is substantially different 

between ship- and shore-based analyses (Figure S1).  While these analyses were not 

conducted on precisely the same samples, the large number of data compiled suggests a true 

difference between the two distributions, and indeed a one-tailed non-parametric unpaired t-

test reveals that the mean of shipboard data is higher than that of shorebased data at a 

statistically significant level (p < 10-10).  This suggests that using shipboard data is likely to 

overestimate of the abundance of organic C and to overemphasize its importance in C-
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cycling.  Future studies of organic C cycling at convergent margins should therefore rely on 

shorebased reanalysis of shipboard samples. 

3. Caveats in determining provenance of arc CO2 

 The three endmember mixing model of Sano and Marty (1995) has been used 

previously to establish the provenance of volcanic and hydrothermal CO2 released along 

Indonesia (Halldórsson et al., 2013; Fig. S3).  In this model, the d13C and CO2/3He 

composition of volcano or hydrothermal CO2 are used to resolve contributions from 

subducting carbonate and organic C as well as C from the mantle wedge.  While the d13C of 

organic C can be readily measured, the meaning of a CO2/3He ratio for organic C is less clear.  

A value of ~1014 is typically used for this ratio, as well as for the CO2/3He ratio of 

sedimentary carbonate (termed “limestone” in previous work; Marty et al., 1989; Hilton et al., 

2002; Halldórsson et al., 2013).  Because typical volcanic gases have a CO2/3He ratio of 

~1010, CO2 provenance results from this mixing model are relatively insensitive to changes in 

these endmember compositions.  However, the CO2/3He composition of the mantle wedge 

endmember is also required for the mixing model, and small changes in this value can have 

enormous effects on inferred CO2 provenance. 

 A value of ~2.7 x 109 is usually used for the CO2/3He ratio of the mantle wedge(Hilton 

et al., 2002), but this value reflects the average of measurements of volatile concentrations in 

mid-ocean ridge glasses, which show significant variation (e.g. Graham, 2002), an may not 

represent the composition of the extensively flux-melted mantle wedge.  When the CO2/3He 

ratio in volcanic gas samples is relatively low, the precise CO2/3He ratio used for the mantle 

wedge endmember becomes very important.  Using data from Varekamp et al. (1992) for 

Sirung volcano, even a 25% deviation from 2.7 x 109 leads to a ~10-fold change in the ratio of 
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CO2 from carbonate to CO2 from organic C inferred from the mixing model.  Therefore, 

results from this mixing model should be used with caution, which is why we consider the 

simple balance between the d13C of the subducting sedimentary C and the d13C of volcanic 

CO2 to infer that an additional 13C rich reservoir external to sedimentary C is likely 

contributing to the arc-released CO2.   

Other insight, potentially significant, regarding the mixing of C from multiple sources 

comes from study of deeply subducted metasedimentary rocks containing varying proportions 

of C in carbonate (oxidized) and C in carbonaceous matter (reduced). Cook-Kollars et al. 

(2014)  and Kraft et al. (2017; manuscript in preparation) demonstrated extensive C isotope 

exchange between C in the two reservoirs as they attempted equilibration particularly at the 

higher temperatures represented in the suite. This exchange is most significant in pelite-

carbonate mixed rocks inferred by Cook-Kollars et al. (2014) to have experienced the most C 

loss by decarbonation. Both the oxidized and the reduced C reservoirs were shifted in d13C 

from their starting/oceanic compositions toward the “mantle value” of -6‰. Depending on the 

relative abundances of carbonaceous matter and carbonate in the samples, the reduced C is 

shifted from d13C values near -22‰ for low-grade rocks in which there is little re-

equilibration with carbonate near 0‰ to values as high as -8‰ at the higher grades (also see 

Kraft et al., 2017). Carbonate C is shifted from d13C values near +1‰ for low-grade rocks in 

which there is little re-equilibration with carbonate near 0‰ to values as low as -6‰ at the 

higher grades.  Shift in the C isotope compositions of the two subducting C reservoirs would 

obviously have implications for the application of the three-component mixing model of Sano 

and Marty (1995). Yet unknown are the relative degrees of C release from each of these 
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reservoirs during the devolatilization and partial melting beneath arcs at the subduction 

interface and in subducting slabs.     
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Supplemental figures 

 

Figure 3.S1. Histograms showing distributions of shipboard (a) and shore-based (b) Total 
Organic Carbon (TOC) measurements generated for this study from DSDP 211, 213, 260, 
261, 262 and ODP 765.  Normalized counts represent the fraction of samples that fall within a 
given range of TOC values.  Shipboard values are calculated as the difference between total 
C, measured by combustion elemental analysis, and carbonate C, measured by coulometry 
whereas shore-based values represent direct measurements of TOC following acidification to 
remove carbonate phases.  While we were not able to analyze splits of precisely the same 
samples used for shipboard analyses, the pronounced difference in the distributions and 
number of data points strongly suggests that shipboard analyses overestimate the true TOC.  
Indeed, we were unable to reproduce TOC values over 0.86 wt% C with shore-based analyses. 
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Figure 3.S2. Model of overall sediment thickness model based on seismic picks (small red 
points) of seafloor and acoustic basement depth.  Points outside the interpolated region 
represent regions where acoustic basement was not reliably imaged and picks could only be 
made to constrain unit thicknesses.  Black points indicate the DSDP/ODP/IODP sites that are 
labeled in Fig. 1.  The color scale saturates at 3 km sediment thickness.  Material from the 
Nicobar Fan (to the northwest) and calcareous turbidites from the Australian margin (to the 
southeast) are separated by the Christmas Island Seamount Province. 
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Figure 3.S3. The three-endmember mixing model of Sano and Marty (1995) can be used to 
infer the provenance of volcanic CO2 from measured d13C and CO2/3He ratios in volcanic 
gases (Halldórsson et al., 2013; Varekamp et al., 1992).  Solving a set of linear equations for 
the fraction of CO2 from sedimentary carbonate (termed “limestone” in the original reference 
and represented the L endmember), organic C (termed “sedimentary” and denoted by S), and 
mantle wedge (M) sources.  Open, unshaded circles represent global averages for the S and L 
endmembers that were used previously, and yellow circles represent values measured for this 
study.  The CO2/3He ratio of the mantle wedge is inferred from measurements of Mid-Ocean 
Ridge Basalt (MORB), but whether these values accurately represent the mantle wedge 
composition is unclear.  For some volcanoes, the results of this mixing model are exceedingly 
sensitive to the exact CO2/3He used. 
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Abstract 

 

Modern grasslands on the Indian subcontinent, in North and South America, and in East 

Africa appear expanded widely during the late Miocene to earliest Pleistocene, likely in response 

to increasing aridity.  Grasses utilizing the C4 photosynthetic pathway are more tolerant of high 

temperatures and dry conditions, and because they induce less C isotope fractionation than plants 

using the C3 pathway, the expansion of C4 grasslands can be traced through the d13C of organic 

matter in soils and terrigenous marine sediments.  We present a high-resolution record of the 

elemental and isotopic composition of bulk organic matter in Nicobar submarine Fan material 

from IODP Site 1480, off northern Sumatra, to elucidate the timing and pace of the C3–C4 plant 

transition within the ~1.5 x 106 km2 catchment of the Ganges/Brahmaputra river system, which 

has and continues to supply vast amounts of Himalaya-derived sediments to the Bay of Bengal.  

Using a multi-proxy approach to correct for the effects of marine organic matter and account for 

major sources of uncertainty, two distinct phases of C4 expansion are apparent: a gradual shift 

from ~8.5–7 Ma and a step-wise transition at ~2.5 Ma.  These intervals coincide well with 

periods of Indian and East Asian monsoon intensification, as well as the expansion of northern 

hemisphere glaciation at ~2.7 Ma.  While our results suggest both periods produced a similar 

magnitude of grassland expansion, the ~2.5 Ma transition occurred four times as quickly, 

suggesting that the extent of northern hemisphere glaciation had a particularly profound effect on 

the climate of South Asia. 

 

1 Introduction 
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Shortly after 10 Ma, a major paleoclimate transition appears to have led to a synchronous 

expansion of grasslands on the Indian subcontinent as well as in East Africa and North and South 

America (e.g. Cerling et al., 1997).  Evidence for this comes from the C isotopic composition of 

tooth enamel (Cerling et al., 1997), paleosol carbonate nodules (Freeman and Colarusso, 2001; 

Karp et al., 2018; Quade et al., 1989), terrestrial sediments (Vögeli et al., 2017), and terrigenous 

marine sediments (Freeman and Colarusso, 2001).  All of these record a shift toward higher d13C 

values that suggest an expansion of vascular plants utilizing the more complex C4 photosynthetic 

pathway rather than the C3 pathway of woody plants, marine photosynthesizers, and many 

grasses.  Because the C4 pathway produces a lower degree of C isotopic fractionation, the 

increase in d13C of both bulk organic matter and terrestrial biomarkers is interpreted to reflect the 

expansion of C4 plants, most of which are grasses, and are better suited than C3 plants to warmer 

and more arid conditions.  Therefore, the expansion of C4 plant coverage in the late Miocene is 

interpreted to be an indication of increasing aridity (e.g. An et al., 2005; Cerling et al., 1997; 

Freeman and Colarusso, 2001; Karp et al., 2018; Khim et al., 2019; Morley, 2018; Quade et al., 

1989; Scheiter et al., 2012; Zhisheng et al., 2001). 

The Indian subcontinent has received particular attention regarding the C3–C4 transition 

in part because of the relationship between grassland expansion and the intensity of monsoon 

wind patterns.  The extreme elevation of the Himalaya and the Tibetan Plateau alters the local 

atmospheric heat budget to the extent that the predominant winds in summer are southwesterly 

and transport humid air masses from the Arabian Sea and Bay of Bengal, generating intense rains 

at the Himalaya front while atmospheric circulation reverses in the winter, causing far more arid 

conditions.  The intensity of monsoonal winds also influences marine productivity, for example 

by strengthening upwelling off the Arabian Peninsula during the summer monsoon (Kroon et al., 
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1991; Prell et al., 1992).  Other metrics of monsoon wind intensity like aeolian dust flux and 

hence magnetic susceptibility, also reflect the intensity of monsoonal circulation patterns, both 

on the Indian subcontinent as well as in Central and East Asia (Rea et al., 1998). 

Terrestrial records of monsoon intensity tend to reflect local conditions, which means 

they may not be representative of continental-scale ecological shifts (Freeman and Colarusso, 

2001; Vögeli et al., 2017).  Much of the evidence for grassland expansion has come from the 

Siwalik paleosols in northern Pakistan and India (Figure 1), and despite efforts to sample 

throughout the spatial extent of this unit (e.g. Freeman and Colarusso, 2001; Vögeli et al., 2017), 

extrapolating regional results from a single geologic unit can introduce substantial uncertainty.  

Other efforts to understand long-term climate evolution on the Indian subcontinent have focused 

on the elemental and isotopic composition of organic matter in terrigenous sediments of the 

Indus and Bengal Fans (Freeman and Colarusso, 2001; Karp et al., 2018; Khim et al., 2019; 

Krishna et al., 2013), which integrate ecological signals over entire river catchments, and can 

therefore better capture large-scale environmental changes without as much interference from 

spatially heterogenous variability. 

The Bengal-Nicobar Fan system (Figure 1), is uniquely suited to address climate 

evolution in south Asia because of the largely continuous record of terrigenous sediment flux to 

the deep sea since 10 Ma and the extremely high sediment accumulation rates (McNeill et al., 

2017a, 2017b). We present a high-resolution record of total organic carbon (TOC), the isotopic 

composition of TOC (expressed in delta units as d13CTOC), total nitrogen (TN), and major and 

trace-element composition for a subset of samples from IODP Site 1480, which cored ~1200 m 

of the Nicobar Fan (McNeill et al., 2017b).  Fan deposits at Site 1480 are largely the result 

sediment gravity flows of Himalaya-sourced material transported via the Ganges/Brahmaputra 
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river system and therefore incorporate terrigenous organic matter from the combined catchment 

area.  Organic C content was generally < 0.5 wt% and within the range expected for open-ocean 

sediments, although some horizons contained visible (up to ~1 cm) pieces of organic matter, and 

the vascular structure of plant fragments was commonly visible in smear slides (McNeill et al., 

2017b).  Although Site 1480 is ~2000 km from the sediment source in the Bay of Bengal, 

sediment accumulation rates were commonly higher than at IODP sites on the distal Bengal Fan 

(Figure 1).  Additionally, the Site 1480 record more fully captures sedimentation history since 10 

Ma with fewer hiatuses, intervals of bit advancement without coring, and better age constraints 

than many of the Bengal and Indus Fan sites (sites 1450, 1451, 1455, and 1457; (Expedition 354 

Scientists, 2016a, 2016b, 2016c; Khim et al., 2019).  Site 1480 therefore presented a unique 

opportunity to capture a largely continuous record of ecologic and paleoclimate conditions 

during the past ~10 Ma on the Indian subcontinent. 

Our datasets give a unique view of the timing and pace of the C3–C4 transition.  While 

previous studies relied primarily on compound-specific isotope analyses of terrestrial plant 

biomarkers (e.g. Freeman and Colarusso, 2001), we instead relied upon simple analytical 

techniques to generate a large dataset capable of revealing more subtle temporal trends and 

reduce the reliance on single measurements.  Because the incorporation of organic matter from 

the marine ecosystem can mimic a shift toward terrestrial C4 plant cover (Galy et al., 2008), we 

employed a multi-proxy approach that used mixing models based on d13C, TOC/TN, and 

Br/TOC ratios to correct for contributions from marine organic matter.  Uncertainty in 

endmember composition can dramatically limit the utility of mixing models, so we used Monte 

Carlo simulations using randomly perturbed endmember compositions to place reasonable 



 

 
136 

quantitative bounds on the contributions of C4 plants to the terrigenous organic matter through 

time. 

The Site 1480 record suggests two major phases of landscape evolution, a gradual shift 

between ~8.5–7 Ma, coincident with intensification of Indian summer monsoons (Kroon et al., 

1991; Prell et al., 1992), and a second abrupt shift at ~2.5 Ma.  Both phases align reasonably well 

with periods of inferred monsoon intensification, although we infer significant spatial 

heterogeneity in the timing of the C3–C4 transition.  While the two phases of C4 expansion 

appear similar in magnitude, the second transition was approximately four times faster, 

suggesting rapid aridification effectively contemporaneous with the major expansion of northern 

hemisphere ice sheets (Zachos et al., 2001).  Our records are consistent with monsoon 

intensification as a major source of climate change on the Indian subcontinent during the past 10 

Myr and give an unusually complete and detailed view of climate evolution on the Indian 

subcontinent. 

 

2 Methods 

2.1 Analytical procedures 

The sample set consists of the residues from shipboard carbonate/TOC analyses and 

additional dedicated samples that were vacuum sealed and kept frozen.  The carbonate residues 

were freeze-dried for 12 hours while additional dedicated samples were dried at 50 C until 

consecutive weighings indicated no further mass loss.  All samples were ground in an agate 

mortar and pestle.  Approximately 10 mg of sediment was weighed into Ag capsules and 

decarbonated for TOC and d13C analyses using aqueous SO2 (~6–8% by mass).  Following 

dropwise addition of SO2 solution, the samples were heated to 60 C until dry, at which point 
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additional SO2 solution was added.  We continued this procedure until a total of ~1.5 mL had 

been added, representing at least a 100-fold stoichiometric excess of SO2/CaCO3.  Pre-

combusted glass pipettes and polypropylene 96 well plates were used to minimize any possibility 

of contamination with organic matter during decarbonation.  The Ag capsules containing the 

decarbonated sediment samples were sealed in Sn capsules to aid in final conversion of organic 

C to CO2 in the elemental analyzer combustion column.  Separate sample aliquots of ~40 mg 

were not subjected to decarbonation and were sealed in Sn capsules for TN analyses.   

Prior results (Kennedy et al., 2005) suggested that aqueous SO2 incompletely 

decarbonates samples for TOC analysis, but the amount of SO2 solution added provided a less 

than stoichiometric ratio of SO2/CaCO3, so decarbonation should not proceed to completion.  

Because our samples were likely to contain trace detrital dolomite ((Ca,Mg)CO3), which is 

resistant to decarbonation, and would artificially raise d13CTOC measurements, we tested the 

decarbonation procedure on a powdered dolomite sample from the Scripps Institution of 

Oceanography collections.  The C content of the untreated dolomite implies an Mg concentration 

of ~33%, and decarbonation of ~1 mg, far in excess of the amount in our samples, resulted in C 

concentrations below the analytical detection limit of <10 ug C.  We are therefore confident that 

the decarbonation procedure we used quantitatively removes even unrealistically large amounts 

of (Ca,Mg)CO3 and is suitable for analyzing TOC and d13CTOC.  Decarbonation with aqueous 

SO2 has the added benefit of producing Ca/Mg salts that are not hygroscopic, obviating the need 

for the rigorous drying procedures required after decarbonation by HCl fumigation. 

Analyses of TOC, d13C of TOC (d13CTOC) and TN were conducted at the University of 

California Santa Cruz Stable Isotope Laboratory.  Carbon and nitrogen isotopic and elemental 

composition was determined by Dumas combustion using a Carlo Erba 1108 elemental analyzer 
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coupled to a ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer. Analytical 

precision of internationally calibrated in-house standards is better than 0.2 ‰ for d13C, which 

means the d13C error bars in Figures 2–5 and 7 would be smaller than the data points.  Sample 

isotopic values are corrected for size, drift and source stretching effects.  Carbon and nitrogen 

elemental composition is estimated based on standards of known elemental composition.  

Precision of these known compounds is determined to better than 1%, again indicating error bars 

smaller than data points in Figure 2.  All d13C values are reported relative to the VPDB C isotope 

standard. 

Major and trace element analyses were conducted on sample aliquots that were washed 

three times with DI water and centrifuged between washings to ensure seawater-derived bromide 

would not interfere with sediment Br measurements.  The sample aliquots were analyzed by 

Instrumental Neutron Activation Analysis (INAA) at the Oregon State University Radiation 

Center.  Precision is estimated at ~0.7 ppm at the 2-sigma level for Br, and we also used this 

value as the detection limit. 

 

1.2 Data treatment 

 Data were first filtered to address the tendency for samples with low TOC to give low 

d13C values (Figure 2).  We established a cutoff of 0.125 wt% C and an overall d13C threshold of 

-28.5 to discard unreliable data while still retaining as many as possible.  For Br analyses, we 

discarded data points for samples with over 400 ppm Cl, which may indicate incomplete removal 

of seawater Br based on co-variation between Br and Cl for samples with high Cl content.  

Furthermore, data for which Br concentrations were less than 2 standard deviations from the 

detection limit were also discarded.  These procedures led to 302 measurements of TOC, 
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d13CTOC, and TN as well as 28 measurements of Br (and other major/trace elements) that we 

deemed to be reliable (Tables S1; S2).  Only these data were used in further analyses. 

Two separate three-endmember mixing models were used to correct the d13CTOC values 

for the influence of marine organic matter and place quantitative bounds on the fraction of 

organic matter from C4 plants.  Both consisted of a system of linear equations of the form !" =

$ where ! = 	 &
'()* '(+* ',*
'()- '(+- ',-
1 1 1

/ with '01 equal to the composition of endmember j with respect to 

the elemental/isotopic system i, " = 	 &
"()
"(+
",
/ with the fractional contribution "0  from endmember j, 

and $ = &
2** 2-* …
2*- 2-- …
1 1 …

/ with data 241  for the measured value of data point k with respect to the 

elemental/isotopic system i.  A total of 104 Monte Carlo simulations were run in which 

endmember compositions were allowed to vary randomly within normal distributions centered 

on literature values (e.g. Galy et al., 2008) and/or extreme measured values and with standard 

deviations encompassing a range of reasonable values (Table 1).  The distributions of 567
5678569

 

(the fraction of terrigenous organic matter from C4 plants) are represented in Figure 6, and we 

generated smoothed curves fitting the data based on the distributions produced by bootstrap 

resampling of the data and the smoothed values at ages corresponding to those of the data. 

 

3 Results and discussion 

3.1 Correcting for marine organic matter inputs 
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Bulk TOC d13C data have been shown to correlate well with C isotope ratios of terrestrial 

plant biomarkers in Bengal Fan sediments (Freeman and Colarusso, 2001; Valier Galy et al., 

2008), suggesting that records of d13CTOC (Figure 3) present a reasonable first-order view of 

landscape evolution and therefore paleoclimate conditions.  However, because the d13C values of 

marine organic matter are typically intermediate between those of vascular C3 and C4 plant 

material, a shift toward higher d13C values could reflect greater marine organic matter input 

rather than a true shift toward greater C4 plant abundance.  Attempting to remove the marine 

organic matter d13C signal using only d13CTOC results in a mathematically underdetermined 

system in which the mixing contributions of three endmembers (C3, C4 and marine organic 

matter) cannot be uniquely defined.  Because correcting for inputs from marine organic matter 

offers the potential to place at least quantitative bounds on the C3/C4 contributions, we applied a 

multi-proxy approach to remove or at least minimize the influence of marine organic matter 

contributions. 

The ratio of TOC to total nitrogen (TN) is a widely used metric for the fraction of marine 

organic matter in marine sediments because while terrestrial organic C preserved in sediment is 

often N-poor, largely proteinaceous marine organic matter tends to have much greater TN, 

leading to high TOC/TN ratios for terrigenous and low TOC/TN ratios for marine organic matter 

(Figure 4).  However, TOC/TN as an organic matter provenance proxy suffers from several 

problems, most notably the potential for inorganic N (primarily as NH4+) to adsorb to clay 

minerals, producing artificially low TOC/TN values (Müller, 1977), and a wide range in 

particularly the vascular C3 and C4 endmember compositions.  We relied on three approaches to 

minimize these effects: (1) a large dataset of d13C and TOC/TN (Figure 4), which reduces the 

importance of individual data that might be influenced by NH4+ adsorption, (2) the additional 
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less common proxy of Br/TOC, and (3) Monte Carlo simulations to reduce the influence of 

uncertainty in endmember compositions.  We chose to use d13CTOC as the main proxy for C3–C4 

transition because the ease of the analytical procedure facilitates the gathering of a large dataset, 

and indeed, the d13CTOC show substantial scatter during nearly all time intervals, which suggests 

that restricted datasets using a more analytically challenging technique such as compound-

specific isotope measurements may not fully reflect the range of isotopic variability. 

While we used TOC/TN, measured on all samples, as the main proxy for organic matter 

provenance, we also analyzed the trace element composition of a subset of samples (Figures 3, 5; 

Table S2) to use Br/TOC as an additional proxy.  The Br/TOC ratio in sediments with 

predominantly marine organic matter has been shown to far exceed that of sediments rich in 

terrigenous organic matter (Mayer et al., 2007), presumably due to the incorporation of Br-rich 

secondary metabolites produced by marine organisms (Gribble, 1998).  Therefore, as Mayer et 

al. (2007) found, we expect a graph of d13CTOC and Br/TOC to be consistent with mixing 

between three extreme endmember compositions, and Figure 5 confirms this, though the marine 

endmember we infer is not as Br-rich as that identified in continental shelf cores.  Because 

Br/TOC has received less attention than TOC/TN as a tracer of organic matter provenance, we 

allowed a wide range of endmember compositions (Table 1).  Inverting the d13C and Br/TOC 

data produced very similar inferred C4 plant abundances as we obtained using the d13C and 

TOC/TN system (Figure 6), providing evidence for the utility of Br/TOC ratios in constraining 

marine organic matter contributions.  While the two methods of correcting for marine organic 

matter contributions are not entirely independent (both rely on d13CTOC data), the agreement 

between the results they produce is encouraging and suggests that our reconstructions of C4 plant 

abundance are on robust footing. 
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We also used Monte Carlo simulations to attempt to limit or at least estimate the 

uncertainty in C4 abundance arising from the possible range of endmember composition.  Figure 

6 shows the results using 104 endmember compositions for d13CTOC, TOC/TN, and Br/TOC taken 

randomly from normal distributions centered at our estimated endmember compositions and with 

generous standard deviations (Table 1).  Because of the scatter in the resulting data, we used a 

bootstrapping technique to produce a range and best estimate of a smoothed curve of inferred C4 

landcover (Figure 6).  This curve, with confidence intervals predicted through bootstrapping, and 

(though less clearly) the original inferred C4 coverage data, show a similar overall trend as the 

raw d13CTOC uncorrected for marine organic matter inputs.  Our approach shows the promise of 

combining voluminous analytically facile data, multiple proxies, and uncertainty estimation 

techniques to more quantitatively describe geochemical processes.   

 

3.2 Climatic implications of inferred C3–C4 transition 

 Our data suggest that the expansion of C4 plant coverage in the South Asia was 

punctuated by two distinct periods of C4 expansion rather than a consistent gradual shift or single 

episode as inferred from many terrestrial and marine records (Freeman and Colarusso, 2001; 

Gupta and Thomas, 2003; Prell et al., 1992; Quade et al., 1989).  We infer an initial increase in 

d13CTOC and C4 fraction between ~8.5–7 Ma, which is earlier than some records suggest (e.g. 

Bengal Fan d13C in Freeman and Colarusso, 2001, d13C in Quade et al., 1989) but effectively 

contemporaneous with inferred intensification of summer monsoon wind patterns from the 

Indian subcontinent (d18O from Quade et al. 1989), Indian Ocean (Gupta and Thomas, 2003; 

Kroon et al., 1991; Prell et al., 1992), and IODP Site 1143 in the South China Sea (Chen et al. 

2003), as well as a shift toward C4 plant dominance in North America, South America, and East 
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Africa (Cerling et al., 1997).  The second period of C4 expansion is much more rapid, occurring 

at ~2.5 Ma, and is not recorded in other records from either terrestrial paleosols or marine 

sediments from the Bengal Fan.  However, sediment records from the Bengal Fan may not fully 

reflect terrestrial conditions during this time interval as the Nicobar Fan appears to have received 

a substantially greater fraction of Himalayan-sourced sediment, so Site 1480 data may be more 

reliable for dating the onset of C4 expansion (McNeill et al., 2017a).  Finally, analyses of 

terrestrial samples from specific formations like the well-studied Siwalik paleosols (Figure 1) 

may fail to capture the true onset of a transition that is spatially heterogenous on a continental 

scale. 

The strength of monsoon winds is a fundamental control on aridity on the Indian 

subcontinent where southwesterly winds in summer bring moisture-laden air from the Arabian 

Sea and northern Indian Ocean inland.  Humid air masses deflected upward by the Himalaya 

cause extreme precipitation compared to the dry winters in which northeasterly winds provide 

little moisture.  The separate East Asian monsoon system, while not as pronounced, leads to 

similar intra-annual precipitation patterns in Central and East Asia.  Even if intensification of 

either monsoon system does not lead to an overall increase in annual precipitation, an increase in 

summer precipitation, particularly with the tradeoff of greater winter aridity, will tend to favor C4 

grasses (An et al., 2005), which are better suited to warm and dry conditions due to their ability 

to limit water loss during stomatal gas exchange.  Additionally, because the C4 pathway involves 

a CO2 preconcentration mechanism, low atmospheric pCO2/pO2 will also favor C4 grassland 

expansion. 

Freeman and Colarusso (2001) proposed a “vegetation mosaic” model in which 

environments like river floodplains are likely to be particularly sensitive to monsoon intensity as 
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episodic inundation and desiccation would become more dramatic, favoring C4 grasses that could 

resist drier winters.  Monsoon intensification is likely, they argue, to have a lesser effect on more 

mountainous areas not susceptible to periodic flooding, and these environments are therefore 

more likely to retain C3 plants.  The modern landscape (Galy et al., 2008) and analyses of 

Siwalik paleosol organic matter from the eastern front of the Himalaya (Vögeli et al., 2017) 

support spatial heterogeneity in aridity and C3 and C4 plant coverage, as do palynological studies 

(Morley, 2018) and model results based on orographic effects (Boos and Kuang, 2010).  Part of 

the benefit of using terrigenous seafloor sediments such as those of the Nicobar Fan at Site 1480 

is that they spatially integrate heterogenous signals over a wide enough area that localized 

changes are less likely to alter continental-scale interpretations.  For example, the ~8.5–7 Ma 

episode of C3–C4 landscape evolution apparent in our data predates the d13C shift in carbonate 

nodules, but is essentially synchronous with the carbonate nodule d18O shift as well as a shift in 

d13C of herbivore tooth enamel (Cerling et al., 1997) that would seem to require a prior or 

concurrent change in the plant community.  This suggests that the apparent ~1 Myr. lag between 

d18O and d13C increase in carbonate nodules from the northwest of the Siwalik group (Quade et 

al., 1989) likely represents a local rather than a more widespread feature.  Carbon isotope 

analyses of long-chain n-alkanes also suggest an earlier onset for C4 expansion in parts of the 

Siwalik, underscoring the geographic variability of this formation (Freeman and Colarusso, 

2001; Vögeli et al., 2017).  The scatter in both our d13C and inferred C4 coverage supports the 

hypothesis that the entire C3–C4 transition from ~9 to 2 Ma was patchy, and that local terrestrial 

samples may not convey the full spatial variability in ecosystem composition (Vögeli et al., 

2017). 
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Additionally, when compared with many studies using organic matter from 

sands/sandstones, the C3–C4 data presented in this study (from muds/mudstones) records a 

higher-resolution climate-change, including monsoonal, signal. This is because the former data 

represents a more time-averaged response (as sandy sediments can be stored in "temporary 

sinks" in river and coastal systems, e.g., in the Himalaya for the order of 100 kyr or longer 

(Blöthe and Korup, 2013; Gaudemer and Metivier, 1999) such that millennial lag times 

complicate correlating sedimentary archives to climate forcing. Sandy beds tend to be much 

thicker than muds/mudstones and represent relatively infrequent events compared with muddy 

sediment delivery to ocean basins. Sand samples depend on the availability of coarser-grained 

sediment, especially compared with the abundance of finer-grained sediment. Even though plant 

material will also be stored with sands, to be incorporated into (relatively infrequent) sediment 

gravity-flows, plant material is continuously being supplied to ocean basins via several higher-

frequency processes such as hyperpycnal flows, nepheloid layers and other plumes of suspended 

finer-grained sediment from river and coastal environments. Thus, understanding any climate 

change signals is best achieved through analyzing muddy sediments from the distal parts of the 

Nicobar Fan. It is, therefore, perhaps unsurprising that many studies of sandy sediments tend not 

to show clear monsoonal changes. 

Uplift of the Himalaya and Tibet has long been proposed as a mechanism for monsoon 

intensification either through direct orographic effects or by influencing global temperature and 

latitudinal temperature gradients (e.g. Molnar et al., 1993; Raymo and Ruddiman, 1992).  

However, because increases in marine productivity and C4 landcover begin globally ~9 Ma 

(Cerling et al., 1997; Kroon et al., 1991; Prell et al., 1992), the hypothesis that this initial shift 

only reflects increasing monsoon intensity on the Indian subcontinent seems problematic.  
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Furthermore, while phased uplift of the Himalaya and Tibetan Plateau has been proposed as an 

explanation for monsoon intensification ~8 Ma (Zhisheng et al., 2001), the mechanism by which 

the Himalaya and Tibet enhance monsoon wind patterns may be more complicated than first 

thought and may depend on the precise location of uplift (Boos and Kuang, 2010).  In a study of 

sediment provenance in the Indus Fan since ~17 Ma, Clift et al., (2019) conclude that “no simple 

links can be made between erosion and the development of the South Asian Monsoon, implying 

a largely tectonic control on Lesser Himalayan unroofing,” in accordance with the results of 

sediment provenance studies by McNeill et al. (2017a). 

Records of monsoon intensity in Central Asia, largely from loess plateaux and marine 

sediments suggest that aridification progressed northward through time as the East Asian 

monsoon intensified, increasing the difference in seasonal precipitation (Shen et al., 2018, 2017).  

Our results are also consistent with a general northward expansion of C4 grasslands during this 

time: we detect the shift beginning ~8.5 Ma, which coincides with the change in Indian Ocean 

monsoon intensity inferred from western Siwalik carbonate nodules (Freeman and Colarusso, 

2001), but predates the increase in d13C of Quade et al. (1989).  We propose that increasing 

seasonality or long-term aridification, regardless of the underlying cause, affected the 

paleoecology of the lowlands of the Ganges catchment first, and C4 grasslands then spread to the 

north, finally reaching the location of the northwest Siwalik sampled by Quade et al. (1989) after 

~1.5 Myr.  Northward C4 grassland expansion also appears consistent with the shift toward 

higher d13C of mammal tooth enamel – which indicates a dietary shift to more C4 grasses – 

shortly after 10 Ma in northern Pakistan but later in China (Arppe et al., 2015).  Additionally, the 

production rate of North Atlantic Deep Water (NADW) appears to have been strongly variable 

beginning ~10 Ma (Wright et al., 1991), and the associated changes in heat transport could have 
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substantially altered the global climate, although whether changes in NADW formation rate 

caused or resulted from climate changes in the late Miocene is unclear.   

The alternative explanation from Cerling et al. (1997) that decreasing atmospheric pCO2 

in the late Miocene was a fundamental driver of global climate change is difficult to reconcile 

with more recent records indicating relatively low and stable pCO2 lacking pronounced changes 

from ~10–8 Ma (Knorr et al., 2011; Pagani et al., 2005).  However, despite low pCO2, the 

Miocene is known to have been warmer than present (e.g. Knorr et al., 2011), and the 

combination of a warmer climate along with low pCO2 would be particularly favorable to C4 

grassland expansion.  Finally, expansive wildfires have been proposed as either a cause or result 

of C4 grassland expansion (Scheiter et al., 2012), and while records of fire frequency have 

limited temporal resolution, they appear to agree with the increase in C4 abundance we infer to 

have started ~8.5 Ma (Karp et al., 2018).  The complexity and multitude of explanations for 

increasing aridity in South and Central Asia makes us hesitant to definitively attribute the ~8.5–7 

Ma shift to a single mechanism, but a consensus appears to be building around the primacy of 

monsoon intensification (e.g. An et al., 2005), which is consistent with our observations. 

The second main feature of both the d13C data and inferred C4 coverage is a sharp 

increase in d13CTOC and C4 fraction between ~2.5 and 2 Ma, effectively coeval with the major 

expansion of northern hemisphere glaciation (e.g. Raymo et al., 1989).  Similar changes have 

been recorded in the abundance of marine primary producers thought to be particularly 

responsive to upwelling intensity (Kroon et al., 1991; Prell et al., 1992) as well as magnetic 

susceptibility and aeolian dust flux from loess and marine sediment deposits (Figure 7; Rea et al., 

1998).  Many other records showing increasing aridity beginning ~9–7 Ma on the Indian 

subcontinent rarely indicate an additional transition at ~2.5 Ma (Cerling et al., 1997; Freeman 



 

 
148 

and Colarusso, 2001; Karp et al., 2018; Quade et al., 1989).  North Pacific Site 885/886 dust flux 

records (Figure 7), which are thought to predominantly reflect aridity in central Asia and East 

Asian monsoon wind patterns (e.g. Rea et al., 1998), also show a peak at ~2.5 Ma, suggesting 

that the Site 1480 record may also reflect ecological evolution outside the Indian subcontinent.  

While the rapidity of the ~2.5 Ma transition in the Site 1480 record could conceivably arise from 

a sudden change in sediment provenance rather than true C4 expansion, zircon age spectra from 

Site 1480 are inconsistent with major sediment provenance shifts (McNeill et al., 2017a).  

Furthermore, at Site 1480, sediment from the Ganges catchment exceeds that from the 

Brahmaputra throughout this time period, which would be consistent with the expectation that 

organic matter from the Ganges would show an earlier and greater shift toward higher d13C 

values (Galy et al., 2008; Vögeli et al., 2017). 

The rapidity of the ~2.5 Ma shift toward greater C4 plant cover is noteworthy compared 

to the more gradual shift starting ~8.5 Ma.  While we infer C4 coverage increased from ~20 to 

~40% between 8.5 and 7 Ma, the shift at ~2.5 Ma is of similar magnitude (~45 to ~65% 

coverage) but occurs over about 0.5 Myr.  Such a dramatic, effectively stepwise change, 

demands a similarly abrupt cause and coincides with both the end of a particularly substantial 

increase in monsoon intensity as well as the major expansion of Northern Hemisphere glaciation, 

which made South and East Asian climates more arid (Shen et al., 2018, 2017).  However, while 

we find an abundant range in both  d13CTOC and inferred C4 plant coverage, our estimates of C4 

fraction agree remarkably well with those of An et al. (2001) based on modeling results 

assuming multiple episodes of Himalayan uplift and records of East Asian summer monsoon 

intensity, so we cannot discount the possibilities that regional uplift, a global climate shift, and/or 
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spatially complex landscape evolution conspired to produce the ecological changes apparent in 

the Site 1480 record.   

 

4 Conclusions 

Altogether, the elemental and isotopic composition of organic matter at Site 1480 gives 

an unusually complete view of major climate shifts throughout South and East Asia since ~10 

Ma.  What we infer to be an initial expansion of C4 plant coverage, likely associated with greater 

aridity and intensifying monsoons ~8.5–7 Ma, coincides with greater abundance of marine 

primary producers that thrive with increasing monsoon wind intensity as well as a multi-

continental shift toward C4 grassland coverage (e.g. Cerling et al., 1997).  A second episode of 

C4 expansion at ~2.5 Ma is of similar magnitude but is four times a rapid, implying a sudden 

climatic alteration contemporaneous with the expansion of Northern Hemisphere glaciation, a 

major climatic event whose effects are not detected in many other ecological records from south 

Asia.  The wide array and complexity of potential forcing mechanisms makes drawing definitive 

conclusions about climate drivers difficult; however, the uniquely detailed record of d13CTOC 

from Site 1480 underscores the potential for both local factors (e.g. monsoon intensification) and 

global (expansion of northern hemisphere glaciation) ones in causing spatially heterogenous 

landscape evolution. 
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Figures 

 
 

Figure 4.1. Overview map showing the locations of Site 1480 on the Nicobar Fan and sites where 
other related studies have been conducted.  The Ganges and Brahmaputra Rivers transport most 
of the terrigenous sediment in the Nicobar and Bengal Fans (we have denoted the general 
position of the river system near the Bay of Bengal as the river delta is complex).  Paleosols of 
the Siwalik group are the most studied terrestrial deposits that provide evidence for the C3-C4 
shift, though no shift appears to have occurred at the eastern extent of the group, and it captures 
conditions at the foot of the Himalaya, not farther into the lowlands where C4 grasses may be 
expected to first appear (Freeman and Colarusso, 2001). 
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Figure 4.2. Measured  d13CTOC as a function of TOC in Site 1480 sediments shows a substantial 
decrease in  d13CTOC in samples with low TOC.  The positions of the red lines indicate the cutoffs 
used to filter data (Section 3.1); points to the left and below these lines were not used for further 
analyses. 
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Figure 4.3. Site 1480  d13CTOC record for the past 10 Ma data point color denoting TOC/TN 
ratios and black points indicating the subset of samples chosen for trace element analysis to 
establish Br/TOC.  Heavier d13C values (reported as permill with respect to the VPDB standard) 
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imply either a shift toward more C4-derived and/or a greater fraction of marine organic matter.  
The TOC/TN ratio is a proxy for organic matter provenance with ratios below ~5-8 indicating a 
marine origin and ratios above ~8 indicating a terrestrial source.  Data characterized by a high 
TOC/TN ratio will therefore be more representative of terrestrial conditions and will be subject 
to a smaller correction when the marine organic matter signal is subtracted (Section 3.1; Figure 
6) The marginal histogram shows the difference in frequency of  d13CTOC before and after the 
dramatic ~2.5 Ma shift. 
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Figure 4.4.  d13CTOC and TOC/TN data can be largely explained by a mixing model between 
organic matter from: vascular C3 plants with high TOC/TN and low d13C, C4 plants with high 
TOC/TN and high d13C, and marine organic matter with low TOC/TN and intermediate d13C.  
Shaded regions indicate the approximate TOC/TN range of <5-8 for marine organic matter and 
>8 for both C3 and C4 terrestrial organic matter.  Because of the uncertainty in both the TOC/TN 
and d13C values of the three endmembers, we assumed reasonable values based on this figure and 
previous work (e.g. Galy et al. 2008) and conducted Monte Carlo simulations in which 
endmember values were perturbed over a wide range (Table 1) to more fully account for 
uncertainty introduced when applying the mixing models. 
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Figure 4.5.  d13CTOC and Br/TOC for the subset of samples analyzed for major and trace element 
composition.  These data are consistent with the three endmember mixing model introduced by 
Mayer et al. (2007) in which terrigenous organic matter is characterized by much lower Br/TOC 
ratios than marine organic matter.  These data were used in a separate mixing model based on 
assumed and previously published endmember values (Mayer et al., 2007) to correct for organic 
matter contributions and produce quantitative bounds on the fraction of C4 land cover through 
time.  Using Br/TOC as well as TOC/TN as independent metrics of marine organic matter 
contributions provides a more robust basis for inferring the composition of terrestrial plant 
communities through  d13CTOC in marine sediments.  The effects of uncertainties in Br/TOC 
endmember compositions were estimated using Monte Carlo simulations based on random 
perturbations in endmember composition (Section 3.1). 
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Figure 4.6. Estimated fraction of terrigenous organic matter from C4 plants through time based 
on  d13CTOC, TOC/TN, and Br/TOC data from Site 1480.  Two separate mixing models using 
TOC/TN and Br/TOC data respectively were used to minimize the influence of marine organic 
matter.  Data points in grey show the median output from 105 Monte Carlo simulations using 
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random perturbations of TOC/TN and  d13CTOC endmember compositions while the uncertainty 
bars represent the interquartile range of simulation outputs.  Points in darker grey were inferred 
to have smaller contributions from marine organic matter and therefore underwent a smaller 
correction to minimize the influence of marine organic matter.  Points in red show C4 fraction 
when contributions to the  d13CTOC data from marine sources were corrected for using Br/TOC, 
and the error bars represent the interquartile of values based on Monte Carlo simulations.  The 
blue region represents the interquartile range of smoothed curves resulting from random 
resampling (bootstrapping) of C4 coverage estimates while the yellow curve is the median of the 
smoothed curves from bootstrap resampling.  Two main periods of C4 expansion (~8.5-7 and 
~2.5 Ma) are apparent, suggesting a multi-phase transition toward greater aridity. 
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Figure 4.7. Comparison of multiple marine and terrestrial proxies for the C3-C4 transition and 
aridity including Site 1480  d13CTOC and median smoothed C4 coverage (this study), Site 885/886 
aeolian dust flux from central Asia (Rea et al., 1998), and d13C of 31 C n-alkanes extracted from 
Siwalik paleosols (Freeman and Colarusso, 2001; Karp et al., 2018).  The initial shift inferred 
from this study appears to pre-date the first spike in dust flux from central Asia, suggesting that 
the C3-C4 transition on the Indian subcontinent may have begun before widespread aridification 
of central Asia.  Low temporal resolution introduces uncertainty into the timing of C4 expansion 
from the d13C of C3, though the onset of the transition appears to postdate that implied by the 
Site 1480 record, suggesting that regions of the Ganges catchment downstream from the 
northwest Siwalik paleosols may have shifted toward C4 plant coverage earlier.  The sharp ~2.5 
Ma increase in C4 coverage inferred from Site 1480 data agrees well with the timing of the 
second increase in aeolian dust flux, suggesting this transition was rapid across Asia. 
Tables 
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Table 1. Endmember values and ranges used in mixing models 

Endmember d13CTOC 
(‰ VPDB) 

TOC/TN 
(‰ VPDB) 

Br/TOC 
(parts per thousand) 

Terrigenous C4 -15±1 15±5 1±0.95 
Terrigenous C3 -30±2 15±5 1±0.95 

Marine -24±1 5±3 8±2 
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Abstract 

Two main processes have been proposed for initiating and sustaining magmatic 

continental rifting: a “passive” mechanism in which decompression melting of the upper 

mantle supplies the magma, and one in which a deep-rooted mantle plume encourages melt 

production.  While a mantle plume has been implicated in initial rifting of the Arabian, 

Nubian, and Somalian plates in the northern section of the East Africa Rift System, recent 

seismic and petrologic studies question the current role of deep mantle upwelling in sustaining 

melt production and continental rifting.  In this study, we compare the spatial distribution of 

He isotope ratios, a highly sensitive tracer of deep mantle input, with tomographic shear-wave 

velocity models of the Ethiopian and Afar rifts to show that regions of contemporary deep 

mantle input correlate well with inferred areas of higher than average partial melt content.  

The most compelling explanation is that deep mantle input continues to facilitate melting, and 

that the mantle plume therefore has an ongoing role in rifting, though this role may be 

subordinate to more passive processes in much of Afar.  

 

1 Main text 

Flood basalts emplaced at ~30 Ma on what is now the Ethiopian and Yemen Plateaux 

(Hofmann et al., 1997; Rooney, 2017) are thought to represent the first volcanic expression of 

deep mantle upwelling associated with a thermochemically anomalous plume beneath East 

Africa (Courtillot et al., 2003; Simmons et al., 2007).  While deep mantle upwelling may have 

facilitated initial rifting in East Africa (White and McKenzie, 1989), the estimated upper 

mantle thermal anomaly of ~100°C and melt formation depth of ~90 km are unusual among 

other plume-influenced regions – Hawaii and Iceland are inferred to have thermal anomalies 
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of ~300°C with melting commencing at 100-300 km.  Additional seismic and petrologic 

studies in the Ethiopia and Afar rifts also question the ongoing role of a deep mantle plume in 

melt generation and continental breakup (Rooney et al., 2005; Rychert et al., 2012).  Instead, 

rifting may be sustained by decompressional melting as the region transitions to an oceanic 

spreading regime, particularly in Afar.  The residual geochemical and thermal signature of a 

mantle plume could therefore represent “fossil” plume material that stalled beneath the 

lithosphere and is no longer being renewed (Rooney et al., 2012, 2005; Rychert et al., 2012).  

Therefore, the extent of continued communication between the shallow and deep mantle is 

unclear, particularly in light of contrasting studies suggesting plume-enhanced melting still 

contributes to rifting (Kendall et al., 2005).  An extensive set of xenolith and mafic lava 

samples from Ethiopia and Afar (Figure 1) makes this region an ideal target for combining 

geochemical data and tomographic velocity models to more fully understanding rifting 

processes. 

He isotope ratios (4He/3He) are an exceptionally sensitive tracer of deep mantle input 

in part because they span three orders of magnitude in natural samples.  Continental crust 

averages ~0.05 RA(Marty et al., 1996) where RA = 1.4 x 10-6, the ratio in air4.  A maximum of 

~50 RA has been measured in (extinct) hotspots (Stuart et al., 2003), thought to sample the 

less degassed deep mantle (Craig and Lupton, 1976; Marty et al., 1996), while upper mantle 

He sources are characterized by isotope ratios of ~6±1 RA for the subcontinental lithospheric 

mantle and ~8±1 RA for the asthenospheric mantle (Gautheron et al., 2005; Graham, 2002).  

Therefore He isotope ratios above ~9 RA in mafic mineral fluid inclusions, which capture 

magmatic volatiles prior to eruption, typically indicate deep mantle upwelling (Marty et al., 

1996).  The sensitivity of 3He/4He ratios to mixing of deep and shallow mantle He reservoirs, 
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as well as the tendency to decrease over time due to 4He production by alpha decay of U and 

Th, make He isotope ratios ideal for evaluating the degree of current mantle plume 

involvement. 

 

2 He isoscape and comparison with velocity models 

 Our He isotope dataset for the Ethiopian Rift and Afar consists of two parts: new data 

generated for this study and published data (Beccaluva et al., 2011; Halldórsson et al., 2014; 

Hopp et al., 2004; Marty et al., 1996, 1993; Medynski et al., 2013; Moreira et al., 1996; Pik et 

al., 2006; Rooney et al., 2012; Scarsi and Craig, 1996).  We combined 86 new reliable 

analyses of 3He/4He from crushed olivine and clinopyroxene phenocrysts separated from 

basaltic lavas with 75 reliable measurements from a compilation of literature 3He/4He ratios 

(see Supplemental Discussion).  The final dataset consists of 161 measurements, representing 

133 unique sample locations that encompass an area of 500,000 km2, nearly 95% of which 

now falls within 100 km of a 3He/4He measurement (Figure 1; Supplemental Discussion).  He 

isotope ratios were interpolated through the MER and Afar to visualize spatial variations and 

compare them with tomographic velocity models (Figure 2). 

One of the strengths of 3He/4He as a tracer of deep mantle input can also be a 

weakness: addition of small amounts of He from shallow reservoirs can lower the high 

3He/4He ratio of a mantle plume before lithogenic tracers like olivine Mg content (Mg#) or Sr 

isotope ratios show evidence of mixing (Füri et al., 2010; Halldórsson et al., 2014).  In the 

strictest sense then, measured 3He/4He ratios higher than upper mantle/crustal ratios represent 

a lower bound on the true He isotope ratio of a high 3He/4He mantle plume.  However, these 

values are still useful in that they indicate some contribution from deep mantle He, and He 
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isotope ratios in modern samples that reach values near the maximum found in continental 

flood basalts suggest an ongoing connection to the deep mantle that allows plume-derived He 

to reach the surface relatively quickly and with minimal “contamination” from shallow He 

reservoirs.  Likewise, 3He/4He ratios well below upper mantle or lithosphere values indicate 

old continental crust rich in U and Th, which produce 4He by alpha decay. 

 Lithogenic tracers of deep mantle input occasionally correlate with He isotope ratios 

(Marty et al., 1994), but in many cases, 3He/4He will reflect shallow contributions not 

recorded in other element or isotope systems, reducing the utility of independent tracers to 

evaluate how faithfully 3He/4He represents deep mantle input (Halldórsson et al., 2014).  We 

therefore employed several strategies to ensure our interpretations of He isotope ratios are on 

a robust footing.  The lack of a clear trend between 3He/4He ratios and He concentrations as 

well as good agreement between the 3He/4He ratios of fluid inclusions in olivine and 

clinopyroxene grains from the same samples suggests our dataset as a whole retains reliable 

information on deep mantle He incorporation (see Supplement).  We furthermore restricted 

our interpretations to three broad classes of He isotope ratios: (1) those high enough to be best 

explained by ongoing plume input, (2) intermediate values suggesting significant 

incorporation of He from shallow reservoirs, and (3) those low enough to be indicative of 

radiogenic 4He ingrowth in old continental crust.  Because the 3He/4He ratios from 

lithospheric mantle xenoliths show a bimodal distribution with peaks at ~8 and 13 RA (Figure 

3, deep mantle He appears to have infiltrated the lithosphere (Figure 3), indicating the 

canonical upper mantle 3He/4He ratio of 8±1 RA may not be appropriate for this region.  To be 

conservative, we therefore only considered samples with 3He/4He ratios above 15 RA as 
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indicative of ongoing deep mantle input, ratios between 7 and 15 RA to represent primarily 

upper mantle He, and values << 7 RA to indicate He derived from old continental crust. 

The most notable feature in the He isoscape is an elongate ~400 km region of 3He/4He 

values above 13 RA extending through most of the MER (Figure 2).  He isotope ratios within 

this region reach 19.2 RA, effectively identical to the putative plume value(Marty et al., 1996).  

This is strong evidence that deep mantle volatiles continue to traverse the upper mantle and 

crust rapidly enough to reach the surface with minimal contamination from He reservoirs with 

lower 3He/4He ratios.  The other well-constrained region with plume-like 3He/4He is Southeast 

of Erta Ale volcano in northwestern Afar, where 3He/4He reaches 15.8 RA, also indicative of 

substantial input of deep mantle He.  The final prominent feature of the isoscape is a region of 

highly radiogenic 3He/4He (minimum of 0.034 RA) near the Tadjoura Gulf.  This ~100 km 

long region, marked by 3 samples below 2 RA, implies the existence of residual continental 

crust old enough to incorporate substantial 4He from U and Th alpha decay. Aside from the 

Erta Ale area and this region of radiogenic 3He/4He, He isotope ratios are generally around 11 

RA in Afar, which likely reflects mixing of plume and upper mantle/lithospheric material, 

consistent with previous models (Deniel et al., 1994; Feyissa et al., 2017). 

Using high 3He/4He from young (Pleistocene to recent) lavas as a tracer of 

contemporary deep mantle input and two models of upper mantle S-wave velocity (Vs) 

structure(Gallacher et al., 2016; J O S Hammond et al., 2013) (Figure 2), we can link 

sustained plume input with regions of partial melt in the upper mantle.  Low shear velocities 

in this region are thought to primarily reflect higher than average partial melt content 

(Hammond et al., 2013; Keir et al., 2009a), so if a mantle plume continues to influence melt 

production, we would expect a negative correlation between 3He/4He and Vs anomalies: that 
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is, regions of plume-like 3He/4He should overlap regions of high melt content – and therefore 

low Vs – and vice versa.  Indeed our He isoscape correlates well with 75 km depth relative Vs 

anomalies imaged with body-wave tomography (Hammond et al., 2013) as well as surface 

wave-derived absolute Vs values (Gallacher et al., 2016) (Figure 4).  A shallow mantle (75 

km) depth slice maximizes horizontal resolution and is most likely to reflect surface melt 

expression.  Areas of low shear-wave velocity, reaching a -2% anomaly and ~3.85 km s-1, 

underlie both the MER and Erta Ale region (Figure 2b) (Gallacher et al., 2016; Hammond et 

al., 2013) in which many 3He/4He values exceed 13 RA, indicative of plume input (Figure 2c; 

Figure 3).  Also the region of what we infer to be continental crust near the Tadjoura Gulf 

corresponds closely with a high velocity anomaly (δVs up to 0%) and lies near an area where 

S-wave receiver functions suggest thicker crust (Hammond et al., 2011).  

 A more quantitative comparison between 3He/4He and shear-wave velocities reveals 

the strength of the spatial (anti) correlation that is qualitatively apparent in Figure 2.  We 

compared the relative and absolute shear-wave velocity models with 3He/4He values at the 68 

locations where samples were collected from young lavas (Figure 2 and Supplemental 

Discussion) to ensure He isotope ratios would reflect modern mantle conditions.  Ordinary 

least-squares linear regressions of this subset of He isotope measurements and the velocities 

or velocity anomalies in log-linear space gave R2 values of 0.6 for the relative velocity model 

(Hammond et al., 2013), indicating a strong negative correlation (Figure 4a), and 0.4 for the 

absolute velocity model (Gallacher et al., 2016).  Even though the correlation with the 

absolute velocity model is only moderate, that Vs values alone predict ~40% of the variance in 

He isotope ratios is encouraging given the extreme sensitivity of He isotope ratios to slight 

contamination from non-plume sources.   
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We also conducted Monte Carlo simulations to estimate the statistical significance of 

the two-dimensional spatial correlation between the He isotope and Vs surfaces (Figure 4; 

Supplemental Discussion).  Because passive rifting, in which melting is predominantly 

decompressional, samples the chemical heterogeneities of the upper mantle (Agranier et al., 

2005), it would be expected to equally sample regions of high and low 3He/4He, meaning that 

any spatial correlation between 3He/4He and shear-wave velocities would likely be 

coincidental. We simulated this process by generating random synthetic He isotope values at 

the sample locations of young lavas, and constructing 105 simulated 3He/4He datasets for each 

velocity model suggests at most a ~1% chance that these random values would correlate as 

well with shear-wave velocities as our data do (Figure 4; Supplemental Discussion).  

 

3 Implications of spatial correlation 

Therefore, the most compelling explanation for the overall spatial coherence of 

3He/4He and shear-wave velocities is that continued deep mantle input, supplying He at 

plume-like 3He/4He values, is involved in melt production (Castillo et al., 2014).  

Furthermore, because He is a minor volatile phase, upwelling of deep mantle He – which 

could be decoupled from bulk material upwelling – implies that other deeply-sourced volatile 

phases (e.g. CO2, H2O) are also introduced into the shallow mantle, which encourages melting 

(Metrich et al., 2014) and itself could help reconcile the difference in melt content inferred 

from seismic and magnetotelluric studies (Desissa et al., 2013; Hammond et al., 2010; 

Pommier and Garnero, 2014). Regional- to continental-scale correlations between inferred 

areas of low mantle velocity and high 3He/4He ratios have previously been established 

(Halldórsson et al., 2014; Harðardóttir et al., 2018; Karlstrom et al., 2013; Newell et al., 2005; 
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Pik et al., 2006), but this is the first time that an He isoscape has been compared quantitatively 

with fine-scale tomographic velocity models, and our results highlight the unique insight to be 

gained from combining geochemical and geophysical datasets. 

The spatial coherence of 3He/4He values and shear-wave velocities suggests sustained 

plume involvement throughout the region.  However, in Afar, the He isoscape and velocity 

models suggest competing processes that encourage He isotopic homogenization with 

possible localized upwelling of deep mantle He near Erta Ale and interaction with residual 

continental crust near the Gulf of Tadjoura.  Previous studies suggest that rather than 

contemporary deep mantle upwelling, decompressional melting or localized diapiric 

upwelling from a pervasive region of anomalous composition in the upper mantle account for 

seismic and geochemical observations in Afar (Civiero et al., 2015; Hammond et al., 2014; 

Hammond et al., 2013; Rychert et al., 2012).  While this material may have originated from a 

plume, it is now isolated with minimal renewal from the deep mantle.  Interpretations of S-

wave splitting suggest a general SW-NE flow in the upper mantle (Hammond et al., 2014), 

which is consistent with (broadly) horizontal sub-lithospheric transport of stalled plume 

material.  The deep mantle He isotope signature of plume material stored in the shallow 

mantle and cut off from deep mantle renewal would be dampened over time by alpha decay 

and mixing with upper mantle and/or crustal He characterized by lower 3He/4He (Gautheron 

et al., 2005), leading to lower and possibly more homogenous 3He/4He values.  While we 

cannot say precisely how He from the deep mantle becomes mixed with that from shallower 

sources, geochemical and geodynamic observations are consistent with some combination of 

He homogenization due to dike injection into the lithosphere and incorporation of He from the 

geochemically depleted upper mantle. 
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Mixing of He from narrow dikes in the lithosphere is one method by which plume-

derived He can mix with upper mantle and crustal He (Gautheron et al., 2005), and dike 

injection is thought to accommodate much of the rift-related strain in Afar (Keir et al., 2009b; 

Kendall et al., 2005).  He isotope ratios in mantle xenoliths (Figure 3) support the argument 

that deep mantle He is now stored in the upper mantle, and petrologic studies indicate melt 

formation in the lithospheric upper mantle.  While He diffusion is slow, it does appears to be 

rapid enough to mix He between dikes and the lithosphere without the aid of other faster He 

homogenization processes (see Supplement)  

Alternatively, spreading rates in Afar are ~15 mm yr-1 compared to ~5 mm yr-1 in the 

MER(Fernandes et al., 2004), so while plume input may be sufficient to accommodate 

necessary melt extraction rates in the MER, rifting in Afar may demand a rate of melt 

extraction that cannot be accommodated by plume upwelling alone.  Instead, decompressional 

melting of the asthenospheric mantle, which would be expected to introduce He of ~8 RA, 

may supply the remaining melt.  Petrologic studies suggest that lavas younger than 9 Ma in 

Afar arise from mixing between plume and lithospheric or geochemically depleted upper 

mantle material (Deniel et al., 1994; Feyissa et al., 2017; Rooney et al., 2012), suggesting that 

3He/4He ratios of ~11 RA through much of Afar likely reflect some mixture of plume (~19 RA) 

and upper mantle He.  The region of elevated 3He/4He near Erta Ale may represent localized 

and persistent deep mantle upwelling distinct from that in the MER (Deniel et al., 1994; 

Feyissa et al., 2017), which is consistent with P-wave velocity models that indicate a small 

(~200-400 km diameter) thermal upwelling traversing the 410-660 km transition zone beneath 

this region (Civiero et al., 2015), suggesting a sustained connection between the deep mantle 

and surface.  These interpretations of the He isoscape and velocity models in Afar suggest that 
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a mantle plume may no longer play a significant role in melt generation in much of the region, 

with the notable exception of the area around Erta Ale. 

The utility of geochemistry to test geophysical models has recently been questioned 

(Foulger et al., 2015). However, the striking spatial correlation between the He isoscape and 

upper mantle shear-wave velocities in the MER and Afar implies that geochemical 

observations can help ground-truth tomographic velocity models.  Furthermore, we show that 

uniting geochemical and seismic models provides greater geodynamic insight than either 

could alone, and we propose that a mantle plume still influences melt production – and hence 

continental breakup – throughout Ethiopia and Afar, but that passive rifting processes 

accompany plume-mediated melt production in Afar. 
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Figures 

 
 

Figure 5.1. Overview map of major basaltic volcanic deposits grouped by age in Ethiopia and 
Afar and rift-zone bounding faults after Merla et al. (1973).  Purple regions represent mafic 
lavas of Pleistocene to recent ages, orange unit represents older rift basalts, and blue unit 
represents rift-flank flood basalts.  Red points indicate all sample locations used to construct 
the He isoscape, and dark red arc indicates the operational boundary between the Main 
Ethiopian Rift (MER) and Afar used in this paper.  The total 3He/4He database consists of 161 
reliable data points representing 133 unique locations.  The subset of 68 samples that could be 
positively identified as coming from Pleistocene to recent lavas (purple) was used in 
quantitative comparisons between 3He/4He and tomographic velocities. 
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Figure 5.2. (a) 75 km depth slice of relative shear velocity (dVs) from body-wave tomography 
(Hammond, et al. 2013), (b) absolute Vs averaged between 40 and 132 km from surface wave 
tomographic model (Gallacher et al. 2016), and (c) isoscape of all 3He/4He data deemed 
reliable (see Supplemental Discussion).  The color scale saturates at 18 RA.  To minimize the 
influence of numerical artifacts during the interpolation of 3He/4He data, we have greyed-out 
isoscape regions that are greater than 75 km from a He isotope measurement (see 
Supplemental Discussion).  Locations of samples taken from Pleistocene to recent lavas are 
shown in red and other sample locations in black.  In all panels, the main rift boundary faults 
are shown with thick black lines. 
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Figure 5.3.  Histogram of He isotope ratios of mantle lithosphere xenoliths (blue) show a 
distinct bimodal distribution emphasized by a probability density function estimated from the 
data (black dotted line).   
The peak centered around 8 RA matches the global value for the geochemically depleted upper 
mantle, while the peak centered at ~12-13 RA shows that the mixing of plume (~19 RA) and 
upper mantle He is pervasive, supporting the interpretation that melting of the upper mantle 
without sustained deep mantle He input would give 3He/4He values between ~8 and 15 RA. 
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Figure 5.4.  (a) comparison of 3He/4He and δVs values at He isotope sample locations, (b) 
contour plot of 2D cross correlation coefficients between He isotope surface and δVs model, 
and (c) results of Monte-Carlo simulations of zero lag cross-correlation coefficients between 
synthetic He isotope distributions and the velocity models of Hammond et al. (2013) and 
Gallacher et al. (2016).  Black curve in (a) is the exponential least-squares best fit curve of 
3He/4He greater than depleted upper mantle values (shaded region) and δVs.  Error bars show 
estimated two-sigma uncertainty, and dotted blue lines represent 95% confidence interval for 
curve of best fit.  In (b), the red point shows the location of zero lag in both latitude and 
longitude (i.e. He isotope surface and δVs latitude and longitude aligned), and the fact that this 
point is near a minimum in the correlation coefficients indicates a strong negative correlation 
between 3He/4He and δVs values.  The rectangle in black represents the latitude and longitude 
lag values that result in full overlap between 3He/4He and δVs surfaces, while the region 
within the grey curve represents 95% overlap, and that within the white curve represents 90% 
overlap.  In (c), the results of 105 Monte-Carlo simulations (see Supplemental Discussion) 
using synthetic random He isotope distributions are compared with two velocity models to 
establish a full cumulative distribution function (inset) of the zero lag cross correlation 
coefficients.  The black rectangle shows the region of enlargement, and dotted vertical lines 
indicate the values of the correlation coefficients using our dataset.  Both velocity models give 
results well within the 95% confidence interval (shaded region). 
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Chapter 5 Appendix 
 
1. Methods 

1.1 Sample selection, preparation, and analysis 

New data were generated by crushing olivine and/or clinopyroxene phenocrysts 

separated from porphyritic lavas either collected during a 2011-2012 field campaign or 

provided by P. Scarsi from the University of Pisa collection.  All samples were from the 

Ethiopian Rift, Afar, or the rift flank basalts on the northern Ethiopian Plateau.  Samples were 

prepared and analyzed according to standard procedures that are presented in detail elsewhere 

(Shaw et al., 2006).  To summarize, phenocrysts of olivine or clinopyroxene (cpx) were 

separated under a binocular microscope before ultrasonication in a 1:1 methanol:acetone bath.  

Samples were repicked following sonication to minimize adhering matrix and were loaded 

into online crushers and pumped to ultra-high vacuum overnight before being crushed in 

vacuo preferentially release He from fluid inclusions while minimizing liberation of lattice-

hosted He (which can reflect either radiogenic or cosmogenic influence; Scarsi, 2000).  

Previous stepwise crushing experiments (Hilton et al., 2011, 1995, 1993) and comparisons 

between crushing and heating of samples suggest minimal lattice bound radiogenic 4He and 

cosmogenic 3He release during crushing (Hilton et al., 1993; Marty et al., 1996; Medynski et 

al., 2013).   

A series of gas purification steps were employed to remove H2O, CO2, and other 

active gases.  He and Ne were captured on a cryogenic charcoal trap held below 20 K; He was 

subsequently released at 35 K, and the 3He/4He ratio was measured using electron multiplier 

(for 3He) and Faraday cup (4He) detectors on a MAP-215 noble gas mass spectrometer.  
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Following He analysis, Ne was released at 90 K and the 4He/20Ne ratio was used to monitor 

for leaks and to correct for minor air contamination. 

Full procedural blanks were measured prior to the crushing of each sample and 

crushing was initiated only when blanks were below ~3 x 10-10 cm3 STP He (~1.2 x 10-14 mol 

He) or showed repeatability within the level of analytical uncertainty between at least two 

repeated full procedural blanks.  The maximum level for which a sample was run was 6.8 x 

10-10 cm3 STP He (2.8 x 10-14 mol He) after three full procedural blanks agreed within 

analytical uncertainty.  The magnitude of the He blank and He amount analyzed for each 

sample were compared as one selection criterion to test data reliability (see Section 2.2). 

 

2. Data 

2.1 Data handling 

All published He isotope measurements from the rectangular region extending NE 

from 5 N, 36 E to 15.5 N, 44 E, covering the Ethiopian Rift, rift flank flood basalts, Afar, and 

select samples from the Red Sea and Gulf of Aden spreading centers were compiled from the 

dataset in (Halldórsson et al., 2014) using previously published data (Beccaluva et al., 2011; 

Halldórsson et al., 2014; Hopp et al., 2004; Marty et al., 1996, 1993; Medynski et al., 2013; 

Moreira et al., 1996; Pik et al., 2006; Rooney et al., 2012; Scarsi and Craig, 1996).  This set of 

155 3He/4He measurements was screened for data reliability and assigned confidence levels 

based on selection criteria presented in Section 2.2 below.  Of the 155 published 

measurements, 75 made on phenocrysts separated from lavas were deemed to be reliable 

(confidence level 1), and these were incorporated in the isoscape presented in Figure 2 of the 
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main text.  An additional 108 new analyses were reduced to 86 deemed reliable by more 

restrictive selection criteria (see Section 2.2).  

 We use quadrature uncertainty propagation to estimate the standard deviation of 

RC/RA values reported.  Our estimations of uncertainty, presented in Table 2 as twice the 

standard deviation, incorporate analytical uncertainty from the measurement of our reference 

standard (SIO pier air, R/RA = 1), full procedural blanks, and samples.  Due to the inherent 

difficulties in measuring isotope ratios involving scarce species like 3He (Coath et al., 2013; 

Ogliore et al., 2011), we are confident our approach gives reasonable estimates of analytical 

uncertainty. When not specified in published data, uncertainties were assumed to be at the one 

sigma level and were therefore doubled before the selection criteria were applied. 

 It is important to note that analytical uncertainty estimates for new and literature data 

reflect only the uncertainty in 3He/4He measurement and not how representative a sample may 

be of the original He source.  For example, the extremely low 3He/4He associated with highly 

radiogenic sources are typically accompanied by correspondingly low absolute uncertainties, 

such as 0.009 ± 0.0037 RA for sample E253 (Medynski et al., 2013).  However, this sample is 

clearly dominated by radiogenic He, which has overwhelmed any initial deep mantle 3He/4He 

signature, making this value unrepresentative of the underlying mantle source.  Such data are 

retained for the construction of the isoscape but are excluded from further discussion of 

mantle volatile composition. 

 

2.2 Selection Criteria 

Figure 1 presents the selection criteria used to evaluate the reliability of previously 

published (1a) and new (1b) data.  The stricter selection criteria applied to new data, for 
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which more information is available, led us to include new data of confidence levels 1 and 2 

in construction of the isoscape and subsequent interpretations.  Data from the literature 

database with confidence level 1 were combined with these new data to construct an 

exhaustive collection of reliable measurements.  When references gave a range of sample 

masses analyzed instead of a mass for each sample, the lower bound of the mass range was 

chosen to generate a conservative estimate of the amount of He analyzed. 

 

2.4 Integrity of He isotope measurements 

 Monitoring the 4He/20Ne ratio is a standard method by which potential air 

contamination, either from small pockets of trapped air in phenocrysts or from vacuum leaks 

induced by the mechanical stress of crushing, can be evaluated.  We adopt a modified air-

correction method to account for 20Ne abundance above blank levels during crushing 

(Halldórsson et al., 2014).  When 20Ne levels in the full procedural blanks were higher than in 

the corresponding samples, we disregarded the air correction (X = ∞ due to a blank-corrected 

4He/20Ne ratio of 0 in the sample) as this provided the best agreement between three replicates 

of C-426 olivines.  X values listed as N.A. in the above tables indicate samples for which the 

air correction was unnecessary. 

 The most reliable method by which the fidelity of bulk sample sets can be assessed is 

the comparison of He concentration and RC/RA value (Halldórsson et al., 2014; Hilton et al., 

2011).  The lack of a clear trend in RC/RA values at either high or low He concentrations 

(Figure S2) suggests that samples in our dataset are not being substantially affected by 

addition to, or removal of, original He.  Pre- or post-eruptive addition of radiogenic He is 

likely to lead to high He concentrations associated with low RC/RA values.  If this process 
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were widespread, it would manifest as a significant trend toward lower RC/RA values at high 

He concentrations, which is not apparent from Figure S2.  Alternatively degassing of 

magmatic volatiles and contamination can lead to a trend toward lower RC/RA values at low 

[He] as loss of He with a deep mantle signature makes the isotopic ratio of the residual He 

more sensitive to incorporation of small amounts of upper mantle/lithospheric He (Hopp et 

al., 2004).  However, such a trend is not apparent from the plot of the bulk dataset in Figure 

S2.  Plots of [He] vs. RC/RA were prepared for data from each reference (not shown) to 

elucidate any trends or biases that may indicate the measured He isotope ratios are not 

representative of the parental He and instead reflect 3He/4He modification.  No trends are 

apparent in any of the datasets, providing one line of evidence that the data – considered on 

the whole – represent the parental He source rather than alteration artifacts.   

The degree to which fluid inclusions reflect the parental volatile source can 

additionally be evaluated by comparing olivine and cpx 3He/4He ratios and [He] (figure S3). 

Fluid inclusions in olivine often represent the first fraction of volatiles trapped as a melt cools 

and are also less susceptible to later overprinting by other He sources, frequently making them 

a more reliable record of original melt composition (Hilton et al., 1995).  Therefore, the 

relationship between the volatiles in olivine and cpx can be used to further evaluate how well 

the measured He represents the pristine parental source.  The distribution of all [He] and 

RC/RA values from fluid inclusions in olivine and cpx are indistinguishable at the 95 % 

confidence level (p = 0.35; df = 50.7 for RC/RA and p = 0.26; df = 32.2 for [He] from two-

sample unpaired t-test) suggesting the dataset as a whole is likely more reflective of parental 

volatile composition than modification processes.  
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Additionally, Figure S3 compares R/RA values measured in olivine and cpx 

phenocrysts to the 1:1 line expected if all fluid inclusions in both phases incorporated He from 

the same source and experienced no subsequent He isotopic alteration.  While 3He/4He ratios 

are frequently higher for olivine than cpx, they tend to agree reasonably well, suggesting that 

major alterations in He isotope ratio and [He] are not occurring either between the time of 

olivine and cpx formation in the melt or post-eruptively due to radiogenic ingrowth or He 

loss, both processes that would preferentially lower the cpx 3He/4He ratio (Hilton et al., 1995). 

Finally, the [He], 3He/4He trajectories of coexistent olivine and cpx are shown in 

Figure S4 as a final method of evaluating data integrity.  Because radiogenic in-growth and 

shallow (low RC/RA) He incorporation during magmatic stalling would be expected to lead to 

higher [He] and lower 3He/4He ratios for cpx phenocrysts compared to olivine, we focus on 

those pairs that show a negative trajectory from olivine to cpx.  In Figure S4b we have 

relocated the olivine measurements to the origin and now consider only the differences in 

[He] and 3He/4He between olivine and cpx He measurements (the [He] and 3He/4He distance).  

This diagram makes the olivine-to-cpx trajectories clearer and emphasizes a strong negative 

trajectory for five samples.  Of these, two (R-Eth-177A and R-Eth-122B) are from the rift 

flank flood basalts, and one (B-390) is from near the region of exceptionally low 3He/4He 

ratio in Afar (see Figure 2).  Because the rift flank basalts formed around 30 Ma, they have 

had ample time for radiogenic ingrowth of 4He from U and Th decay, and because these two 

elements are more easily incorporated into the cpx lattice, their decay would be expected to 

disproportionally affect cpx He measurements.  Melting experiments of crushed powder 

residues from this region released up to 1250 x 10-9 cm3 STP/g at a 3He/4He of ~0.009 RA, 

indicating substantial accumulation of lattice-sited radiogenic 4He (Marty et al., 1996).  The 
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strong negative trajectory of sample B-390 near the inferred region of relict continental 

lithosphere in Afar is consistent with incorporation of radiogenic He, which would be 

expected to alter the [He] and 3He/4He ratio of cpx relative to those of olivine (Füri et al., 

2011). 

 

2.5 Xenolithic evidence for plume modification of lithospheric 3He/4He 

Published 3He/4He from xenoliths shows a distinct bimodal trend with one peak 

centered around the canonical upper mantle average of ~8 Ra and a second distinct peak at 

~13 Ra and only one sample between 8 and 13 Ra (Figure 3).  We take the peak at ~13 Ra as 

strong evidence that upper mantle and lithospheric He has been modified by input of plume 

He with 3He/4He ratio above 13 Ra, but the peak at ~8 Ra indicates that some regions of the 

upper mantle and lithosphere may persist largely unmodified by deep He input.  This suggests 

spatially heterogeneous mixing of He from deep and shallow sources and therefore that 

3He/4He above the upper mantle average of ~8 Ra may not necessarily provide conclusive 

evidence of modern plume input.  Rather, ratios up to ~13 Ra may result from 

decompressional melting of the plume-modified upper mantle/lithosphere.   

The diffusion of He through mineral lattices is likely to be much slower than other 

processes such as grain-boundary channelization and hydrothermal circulation, which leads to 

3He/4He ratios up to 16 RA in hydrothermal samples indicative of rapid, fluid-mediated 

transport of deep mantle He (Craig, 1977).  Estimating the length scales of He diffusion 

through olivine should therefore give a lower bound on the extent to which He from dikes and 

the surrounding lithosphere may be homogenized.  Using He diffusion parameters in olivine 

(Wang et al., 2015) and inferred upper mantle temperatures (Armitage et al., 2015; Rooney et 
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al., 2011), we estimate that, barring dramatic differences in dike and lithosphere He 

concentrations, diffusion through the olivine lattice would mix He over at least ~30 m in 30 

Myr. (τ = t2/D where t is the characteristic length-scale of diffusion, t is the time diffusion is 

allowed to operate, and D is the temperature-dependent diffusivity).  This distance while 

small, is more than an order of magnitude greater than the estimated half-width of recent 

dikes (Keir et al., 2009).  Indeed, a cluster of lithospheric xenoliths yield 3He/4He ratios 

around ~13 RA (Halldórsson et al., 2014; Scarsi and Craig, 1996), intermediate between deep 

and upper mantle values, providing evidence for the incorporation of plume He in the 

lithosphere (see Figure S6).   

 

2.6 Construction of isoscape 

A grid with 0.05° (~5 km) latitude and longitude spacing throughout the region of 

interest was used to interpolate He isotope data using a natural neighbor interpolation scheme. 

This process has the benefit of relaxing the surface to a regional mean outside the 

neighborhood of peaks or valleys in the data so that extrema do not dominate in regions with 

poor data coverage.  To minimize interpolation into such poorly constrained regions – which 

is critical to maximize the integrity of the surface – grid points greater than 75 km from a data 

point are excluded from Figure 2.  Because fluid inclusion He isotope ratios are, sensu stricto, 

a lower bound on the true parental isotope ratio, when coexistent olivine and clinopyroxene 

were both analyzed, the higher ratio (typically from olivine) was used to constrain the 

isoscape.  Comparisons between 3He/4He ratios generated from olivine and coexistent 

clinopyroxene are discussed in Section 2.4.  He isotope ratios from xenoliths were excluded 

during construction of the isoscape and subsequent comparison with Vs structure since the 
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processes that may have modified the lithospheric 3He/4He (see Section 2.5) may cause 

xenolithic 3He/4He to be less representative of true mantle structure than phenocrystic 

3He/4He. 

 

2.7 Spatial coverage 

Addition of the 86 new reliable data points to the literature database of 75 values 

dramatically improves the spatial density of He isotope ratios measured in the MER and Afar.  

Distance testing was conducted using the He isotope interpolation grid with latitude and 

longitude intervals of 0.05° to determine the distance of each grid point from the nearest point 

at which a He isotope measurement exists.  An empirical cumulative distribution function 

generated from this process indicates that, for the combined set of new and literature data, 

50% of the grid points lie within ~40 km of a He isotope measurement and 95% lie within 

~100 km.  Separate coverage analyses calculated for published data and the complete dataset 

(published and new) are summarized in Figure S5. 

 

2.8 Age cutoff for samples compared to seismic velocities 

We only consider samples from Pleistocene to Recent basalts for comparison with 

seismic velocities to avoid comparing samples that may have been displaced after eruption or 

may not represent modern mantle structure.  Geodetically determined rifting rates for Ethiopia 

and Afar vary from ~5 mm/yr in the Main Ethiopian Rift to ~15 mm/yr in Afar based on 

rotation pole location and rotation rate for the Nubian and Somalian plates (Fernandes et al., 

2004).  Therefore, lavas erupted in the earliest Pleistocene would be expected to be displaced 

from their location of eruption by no more than ~12 km in the Main Ethiopian Rift and up to 
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~ 35 km in Afar, distances that are minor considering the imperfect spatial resolution of the 

interpolated regions of the He isoscape.  Furthermore the “African Superplume” appears to be 

associated with SW to NE upper mantle flow (Hammond et al., 2014), and assuming a 

reasonable upper mantle velocity of 30 mm yr-1 implies  a maximum displacement of ~70 km 

along the strike of the rift since 2.33 Ma.  If the rift-perpendicular displacement of (the oldest) 

lavas from their location of eruption and sub-lithospheric translation of upper mantle material 

substantially affected our spatial comparisons of He isotope ratios and S-wave velocities, we 

would expect to see the He isotope anomalies elongated in the direction of spreading and 

generally be sited to the southwest of velocity anomalies.  These processes may account for 

the slight spatial disjunction of δVs and 3He/4He at Erta Ale and the inferred block of remnant 

continental crust to the northwest of the Tadjoura Gulf.  However, the reasonably good spatial 

correlation of relative velocity and 3He/4He in the Debre-Zeyit fault zone, which is nearly 

perpendicular to the spreading axis in the MER suggests that our Pleistocene age cutoff does 

not substantially bias our spatial comparisons.  

For samples displaying clearly radiogenic 3He/4He (below the sub-continental 

lithospheric mantle average of ~6 RA), we relax the age constraint to include lavas erupted 

within the last ~5 My. since these lavas are unlikely to represent mantle structures that may 

evolve over time.  Instead these samples, most of which are centered in the region of low 

3He/4He near the Tadjoura Gulf, trace the extent of continental crust capable of substantially 

lowering 3He/4He.  Such crustal blocks within the current region of rifting are likely to be 

remnants from initial rifting and therefore are long-lasting features that would be expected to 

influence upper mantle seismic velocities on similarly long timescales.  Therefore, the 

greatest concern with these samples is that rift-related extension may have displace them from 
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their place of eruption, but even assuming a regional maximum of 15 mm/yr of extension, 

these samples would be displaced by a maximum of ~75 km over 5 My., or approximately 

half the diameter of the high δVs region near the Tadjoura Gulf.  This offset would therefore 

not be substantial enough to alter the overall spatial correlation of 3He/4He and δVs. 

 

2.9 Spatial correlation between He isoscape and seismic velocity anomalies 

We employed two methods to establish a correlation between He isotope 

measurements and seismic velocity anomaly values: 1) comparison of both values at points 

where He data were measured, and 2) an evaluation of the goodness-of-fit between the He 

isotope and Vs/dVs surfaces using Monte Carlo simulations with random He isotope data.  

The first method reveals a clear correlation between 3He/4He values and their corresponding 

shear-wave velocities, established by interpolating the already densely-sampled velocity 

surfaces to the precise locations of He samples from young lavas.  In the first approach, we fit 

a generic exponential decay function of the form ae-bx (where a and b are empirically fit 

constants and x is the 3He/4He ratio) to the data because 3He/4He ratios should never equal 

zero, regardless of seismic velocity.  Fitting the data with other functions such polynomial or 

rational functions did not greatly change the degree of fit.  The limitation of this technique, 

however, is that it loses information about the spatial distribution of 3He/4He ratios and shear-

wave velocities. 

We therefore also conducted a cross-correlation analysis of the two surfaces, the 

results of which appear in Figure 3 for the Hammond et al. (2013) relative velocity model.  

Both He isotope and shear-wave velocity values were first normalized by subtracting the 

mean value and dividing by the range of the mean-subtracted values to give values between 0 
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and 1.  The global minimum near zero lag in both the x and y (longitude and latitude) 

directions indicates that the two surfaces are well correlated with high 3He/4He ratios 

corresponding to low dVs values and vice versa.  We then estimated the chances of obtaining 

a zero-lag cross-correlation coefficient at least as great in magnitude as what our datasets 

show by Monte Carlo simulations using random synthetic He isotope datasets.  For each of 

105 iterations, He isotope ratios were randomly chosen using the probability density function 

empirically defined by our measured values and assigned to the same locations as values in 

our dataset.  The empirical probability distribution generated from this simulation (Figure 3) 

suggests that the odds of a random He isotope dataset giving a zero-lag cross correlation 

coefficient at least as great in magnitude as the value for our datasets is ~1%.  We are 

therefore comfortable asserting that the degree of spatial correlation between our two datasets 

well exceeds the 95% confidence interval typically used to define statistical significance. 
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Supplemental figures 

 
 

Figure 5.S1. Selection criteria flowcharts for previously published (A) and new data (B).  
Arrows indicate if given criterion/criteria is/are true (T) or false (F).  Abbreviations used: 
[He]: He concentration; R/RA: raw 3He/4He ratio before air correction; RC/RA: 3He/4He ratio 
after air correction; sa: standard error of R/RA; sc: standard error of RC/RA.  
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Figure 5.S2.  Trends in the He isotope ratio vs. [He] plot can reveal processes altering He 
isotope ratios making them unrepresentative of parental volatile composition.  Radiogenic in-
growth of 4He is likely to lead to low R/RA values associated with high [He] (negative slope at 
high [He]) while degassing of magmatic volatiles is likely to lead to low R/RA values at low 
[He] (positive slope) due to the susceptibility of low [He] materials to shallow He 
incorporation. 
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Figure 5.S3. Comparison of RC/RA values from olivine and cpx phenocrysts.  Points would be 
expected to fall on dotted 1:1 line if no He alteration processes occurred that affected cpx 
preferentially.  Most samples fall near this line, and the majority that do not show higher 
RC/RA in olivine phenocrysts as expected.  The maximum RC/RA value for each sample 
location was used to construct the isoscape since He isotope measurements are a lower bound 
on the true parental He isotope ratio. 
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Figure 5.S4.  Visual representations of 3He/4He and [He] from coexistent olivine and cpx 
phenocrysts showing (A) the measurements of the two phases connected by lines to indicate 
the olivine-to-cpx trajectories shown in (B) where the olivine 3He/4He and [He] have all been 
relocated to the origin (green point) and the difference in RC/RA and [He] between the olivine 
and cpx phases are now plotted.  Blue points indicate positive RC/RA distance (3He/4He higher 
in cpx than olivine), and red points indicate negative RC/RA distance (3He/4He lower in cpx 
than olivine).  The points in the lower right quadrant show evidence of coupled degassing and 
shallow He assimilation or radiogenic ingrowth (see text for further discussion). 
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Figure 5.S5. Histograms (purple) and empirical cumulative distribution functions (red) of the 
distance between each isoscape grid point and the nearest He isotope analysis location for the 
literature dataset (A) and full dataset including new analyses (B).  Both A and B have the 
same axes.  The increase in spatial coverage with the addition of our He isotope contribution 
is dramatic. 
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