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Abstract: It is commonly assumed that asexual lineages are short-lived evolutionarily, yet many
asexual organisms can generate genetic and phenotypic variation, providing an avenue for further
evolution. Previous work on the asexual plant pathogen Phytophthora ramorum NA1 revealed
considerable genetic variation in the form of Structural Variants (SVs). To better understand how SVs
arise and their significance to the California NA1 population, we studied the evolutionary histories
of SVs and the forest conditions associated with their emergence. Ancestral state reconstruction
suggests that SVs arose by somatic mutations among multiple independent lineages, rather than
by recombination. We asked if this unusual phenomenon of parallel evolution between isolated
populations is transmitted to extant lineages and found that SVs persist longer in a population if their
genetic background had a lower mutation load. Genetic parallelism was also found in geographically
distant demes where forest conditions such as host density, solar radiation, and temperature, were
similar. Parallel SVs overlap with genes involved in pathogenicity such as RXLRs and have the
potential to change the course of an epidemic. By combining genomics and environmental data,
we identified an unexpected pattern of repeated evolution in an asexual population and identified
environmental factors potentially driving this phenomenon.

Keywords: asexual reproduction; parallel evolution; Phytophthora ramorum; Structural Variants;
forest pathology

1. Introduction

Asexuality in eukaryotes presents a challenge to the diversification of genotypes, yet many asexual
eukaryotic lineages persist, showing considerable genetic diversity, and have the ability to adapt to
novel and changing environments [1–7]. Genetic variation in asexual organisms arises from various
modes such as rare sexual recombination or cryptic meiosis [8], horizontal gene transfer (HGT) [9],
and somatic mutations [6]. In the case of somatic mutations, large scale somatic mutations known as
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Structural Variants (SVs) can create alterations to the contents of the genome, which may lead to major
effects on the phenotype [10,11].

Phytophthora ramorum (Stramenopiles Peronosporales), an oomycete plant pathogen, is an asexually
reproducing organism able to colonize and persist in new ecosystems. The pathogen consists of four
known, asexually propagating lineages introduced to the United States and Europe. The Phytophthora
ramorum NA1 lineage, the causal agent of Sudden Oak Death (SOD), found in California has devastated
natural forest lands since the mid-1990s [12–14]. The pathogen has a heterothallic mating system
likely derived from a sexual population [15–17]. However, only a single mating type, A2, has been
identified in California forests and its sexual reproduction has never been observed in nature [18].
Instead, asexual propagules produced during warm and spring rain conditions occur each year,
accounting for the vast majority of infections locally and at landscape scales [19]. Previous studies
of the California NA1 lineage employing microsatellite markers have shown higher than expected
observed heterozygosity under the Hardy–Weinberg equilibrium and have revealed an accumulation
of identical multilocus genotypes (MLGs). These findings are consistent with asexual reproduction
and the absence of recombination [20].

Though P. ramorum NA1 propagates asexually, associations with distinct plant species have been
connected with alterations in genomic regions, gene expression, and phenotypic traits of P. ramorum
isolates [11,21,22]. The pathogen has a wide host range and infects over 100 species of plants [23], both
wild and ornamental (e.g., Quercus spp., Umbellularia californica, Sequoia sempervirens, Rhododendron
spp., and Camellia spp.), causing leaf lesions and/or branch dieback [12,19,23–25]. During its infectious
stage in the trunks of the non-transmissive Quercus spp hosts, P. ramorum is known to permanently
form chromosomal aberrations and phenotypic changes [10]. Upon closer inspection of the genetic
mutations involved, it was shown that the same haplotypes increased in copy number between isolates
from different hosts. This phenomenon was termed Host-Induced Phenotypic Diversification (HIPD)
and was presumed to occur when the pathogen interacts with non-transmissive hosts such as species
of Quercus [21]. Structural Variants were shown to occur in P. ramorum cultured from Rhododendron
spp. and other non-Quercus hosts, albeit at a lesser extent, suggesting that a similar phenomenon
may occur when P. ramorum associates with “transmissive hosts”. Alternatively, the possible use
of fungicides in ornamentals could be in part responsible for the generation of Chromosomal Copy
Number Variation (CCNV; a type of SV) [11]. In addition to CCNVs, there are other classes of SVs
such as deletions, amplifications, inversions, and translocations that are ubiquitous in the P. ramorum
genome, and are only detectable by genome sequencing. Such mutations are common in the genus
Phytophthora and have also been identified in P. infestans [26], P. capsici [27], and P. cinnamomi [28].
How SVs are generated in transmissive hosts and whether these mutations are transmitted to future
generation of P. ramorum NA1 has yet to be determined.

Extensive ecological studies have identified biotic and abiotic factors in the forest that influence
the demography (e.g., survival and pathogen spread) of P. ramorum NA1. The distribution of hosts
in forest ecosystems are known to drive population size expansion and pathogen survival. On the
main transmissive hosts such as California bay laurel (U. californica) and tanoak (Notholithocarpus
densiflorus), the pathogen produces infectious spores responsible for cross-scale spread and disease
intensification [29,30]. During the summer, the survival of the pathogen also depends on host
density and forest composition [31,32]. Hence, U. californica and N. densiflorus are considered the
most epidemiologically relevant host for P. ramorum and collectively the abundance of both species
has the greatest predictive capacity for forecasting spread and disease emergence [12,19,24,31,33].
When precipitation increases, especially during the spring, sporangia form on infected leaves and
release zoospores that are transmitted via rain splash and wind [31,32]. Though abundant during
spring, survival is reduced by higher temperatures, and correlated with canopy cover (a proxy for
sun exposure) [31,32]. Because the pathogen population is affected by host density, temperature, solar
radiation and precipitation, these environmental variables may also be involved in the generation of
new genetic material in P. ramorum NA1 and their contribution to extant lineages.
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We explore the molecular, evolutionary, and environmental conditions associated with the
emergence of parallel or functionally similar SVs across different populations of asexual P. ramorum
NA1. We hypothesized that SVs were either generated somatically or by recombination between
individuals. Second, we asked if SVs are transmitted to extant lineages or were evolutionarily short
lived. Third, we asked if epidemiologically relevant factors are likely driving the generation of parallel
SVs. We tested a set of environmental variables known to be involved in the survival or spread of
the pathogen. Parallel SVs could have the potential to affect the biology of the pathogen as they
repeatedly arise in genes coding for pathogen effectors and genes that are upregulated during in planta
interactions with N. densiflorus. Our findings not only reveal how genetic variation in an asexual
organism is generated at the molecular and ecology levels, but also suggest that an underlying process
other than chance drives genetic diversity in regions of the genome related to pathogenesis. Therefore,
our results may provide the basis for future studies of adaptation in the asexual P. ramorum to its new
forest environment and forecasting of future outbreaks.

2. Materials and Methods

2.1. Isolates and Phenotyping

A total of 78 P. ramorum isolates from California were examined to analyze the evolution of SVs
and their association with environmental conditions (Table S1). Forty-seven of the isolates were used
to study population structure throughout coastal California (Figure 1). Sonoma Co. and Monterey Co.
isolates with geographical coordinates were used in the genomic–environmental association analysis.
Isolates were previously used in population genetic and phenotypic research [10,11,34–39].

Since the “non-wild type” (NWT) phenotype is associated with SVs [10], we focused on this
character trait to identify isolates that are likely to have SVs. One hundred and two isolates from Sonoma
Co. and 92 isolates from Big Sur forests of Monterey Co. (from here identified as “Monterey Co.” for
clarity) were phenotyped in culture as previously described [10,11]. NWT is defined by a 25% smaller
diameter compared to the average WT cultures or at least 15% deviation in radius within a 45◦ section
of the colony. “Wild-type” (WT) colonies usually have a uniform growth pattern. Phenotyping was
repeated twice and cultures were maintained and harvested as in Kasuga et al., 2016 [10].

2.2. DNA Extraction and Libraries

Genomic DNA extraction followed the method cited in Kasuga et al., 2016 [10]. Paired-end libraries
with a 350 base pair insert size were made for each isolate according to the manufacturer’s instructions
for TruSeq DNA LT Sample Prep Kit (Illumina, Inc, San Diego, United States). Collection and sequencing
information for each isolate can be found in Table S1. Sequences were deposited in NCBI-SRA (accession:
PRJNA558041 and PRJNA559872).

2.3. Microsatellite Analyses

The population structure of P. ramorum NA1 was first reconstructed using microsatellite
markers [34–36] and were compared to results from the SNP phylogeny. The 42 isolates were genotyped
using six microsatellite loci (Table S2), PrMS39a, PrMS39b, PrMS45, PrM43a and PrMS43b [40] and locus
64 [41] using primers and thermal cycling conditions previously described [36,40,41]. Successful PCR
amplifications were verified on 1.5% agarose gels and PCR products were subsequently sized on
an ABI PRISM 3130xl sequencer (Applied Biosystems, Foster City, United States) using Rox 500 as
size standard. Allele size assignments were performed using Genemarker (SoftGenetics LLC, State
College, United States). Allelic data were formatted for the program GenAlex6 [42] which was used to
identify identical MLGs among the 42 isolates. To illustrate the genetic variation among unique MLGs,
a neighbor-joining tree was constructed based on Nei’s genetic distance, Da [43] using the program
POPULATIONS 1.2.30 [44]. The tree was visualized using Nei’s genetic distance to identify points of
reticulation. The microsatellite network was visualized on the program SplitsTree4 [45].
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2.4. SNP Calling

To reconstruct the genealogy of the Phytophthora ramorum NA1 California population, we called SNP
markers using the most complete genome assembly of the pathogen. P. ramorum has a diploid genome
with an estimate of 10–12 pairs of chromosomes (unpublished, C. Brasier, Forest Research— Forestry
Commission UK). The most complete genome assembly is of isolate ND886 and has an unphased
genome assembly of 302 contigs and is 60.2 MB. The size of the contigs ranges from 1.6 MB to 177 bp [38].
Reads were aligned and filtered using the protocol in Malar C et al. (2019a) [38]. Loci where at least 2/3
of ND886 samples and 3/4 of the Pr1556 samples had consensus were retained for analysis. ND886 was
isolated from an ornamental host and was used for the reference genome. Pr1556 was isolated from
a forest environment and was used in many SV analyses [10,11]. To eliminate SVs that could interfere
with phylogenetic reconstruction, TitanCNA [46] was used to identify and mask SVs. Scripts for all the
analyses shown in this paper have been deposited at https://github.com/jdyuzon/pramNA1-CApop.
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Figure 1. Maps of California counties where P. ramorum isolates were collected. Longitude and latitude
are shown on the x- and y-axis. (a) Left panel shows the counties outlined in white where isolates
used in the phylogeny (Figure 2, and Figure 4) were collected. Red triangles refer to Sonoma Co. and
Monterey Co. which are zoomed in on the (b) top right and (c) bottom right panels. Red circles indicate
plots where non-wild type (NWT) isolates were collected, and blue circles show where wild type (WT)
isolates were collected. Isolates collected from (b) Sonoma Co. and (c) Monterey Co. plots where used
in the environmental association study (Figure 6).

The genomes of asexual organisms can have higher levels of heterozygosity than expected
compared to sexual lineages [47,48]. When calling polymorphic sites, 237,057 fixed heterozygous
sites interfered with the identification of SNPs potentially useful to describe P. ramorum population
structure. To obtain phylogenetically informative SNPs, loci with a majority of homozygous sites and
at least one heterozygous site were retained, assuming that the probability of a SNP to occur multiple
times at the same genomic location was low. Phylogenomic reconstruction of diploid organisms can be
problematic because of the ambiguity of markers in heterozygous regions. However, since P. ramorum

https://github.com/jdyuzon/pramNA1-CApop
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NA1 is asexual and a recently established population, we assume that the SNP markers are less likely
to be homoplasic. Next, we filtered out loci that were at least 50 bp within proximity to each other,
which is less than the average density of fixed heterozygous SNPs (approximately every 250 to 300 bp).

Relationships based on the final SNP calls were reconstructed (Figure 1a) on SplitsTree4 using the
Splits Decomposition method [45] to identify any discordances that may indicate recombination among
isolates or sequencing error. In Splitstree4, if alternative relationships are present in the evolutionary
history of a set of taxa, these relationships would be represented as reticulation and the phylogeny
would appear as a network rather than a bifurcating tree.

2.5. Structural Variant Calling

To further identify which alleles are affected by SVs, the phased ND886 genome assembly [38]
was used to call SVs. In the phased ND886 genome assembly [38], there are 345 haplotype blocks
and 222,892 phased variants across 302 contigs (60.2 MB). The largest haplotype block is 1.5 MB with
7265 phased variants. Reads were binned to either of two FASTA files containing haplotype 1 and
haplotype 2 of the phased genome assembly of ND886 [38] using BBSplit [49]. Reads were aligned to
their best haplotype match using bwa aln [50] and files were then merged using SAMtools (version 1.3.1,
Cambridge, United States) [51,52].

SVs were called using read depth, split-read, and paired-end methods. Copy number variants
were called using the read depth method of TitanCNA [46]. SV calling using TitanCNA followed
the protocol in Malar C et al. (2019a) [38]. Similarly, BAM files were analyzed using paired-end-and
split-read-aware prediction methods of Delly with post-filter [53] and LUMPY [54].

For the final SV set, SV calls between the different callers were compared. To confirm SVs within
an isolate, SV calls from TitanCNA were filtered for regions with at least four supporting heterozygous
sites. SV intervals were merged based on the average distance separating intervals. We observed
that large SVs seen in the TitanCNA graphs were comprised of disjointed intervals in the text files.
Therefore, we assumed that intervals that were close to each other within an isolate were actually
from a larger SV. For all SV callers, regions that had both amplification and deletion calls with at least
0.5 fraction overlapping intervals were removed from the dataset. We assumed that amplifications
and deletions could not possibly occur at the same site within the same isolate. However, we also
assumed that one isolate could have complex mutations of amplification or deletion, and translocation,
inversion or insertions. Therefore, amplifications and deletions that overlapped with translocations,
inversions, or insertions were retained and are represented in our inferences. ND886 and Pr1556 were
controls for SV analysis, therefore SVs called by TitanCNA, Delly and/or Lumpy that overlapped with
SVs called in ND886 and Pr1556 were filtered and removed. Since isolate Pr102 is associated with
a non-transmissive host [12], which could introduce bias, normal states were assumed for this isolate.
All SVs from TitanCNA were kept, whereas Lumpy and Delly calls were only kept if they overlapped
with one other caller. SV calls for isolates were compared at the population level and SVs that had
a 0.8-fraction overlap were assumed to be in the same locus. SV loci that had at least two SVs, even if
they belonged to different types (e.g., amplification and translocation or amplification and deletion)
were retained.

2.6. Test of Asexual Evolution

Somatic mutations and recombination between individuals were assessed to understand whether
P. ramorum can generate genetic variation by occasional sexual recombination in a predominantly
asexual system. First, recombination between individuals was tested to detect meiotic recombination.
Linkage disequilibrium was summarized with the r2 statistic in PLINK [55] for all 716 SNPs.
Second, phylogenetic reconstruction using the Splits Decomposition method on Splitstree4 [45]
was used to identify any major discordances in the unphased and phased phylogeny. Third, the
phylogeny of each phased contig was reconstructed using phased SVs with heterozygous sites.
If haplotypes A and B of isolates were mixed with each other, this would suggest recombination.
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If haplotypes A and B formed separate and distinct clades, this would be a signature of an asexual
population. If the alleles clustered together by isolate in a phylogeny, this would suggest somatic
mutation by gene conversion.

2.7. Phylogenetic Reconstruction and Ancestral State Reconstruction

The shape of a tree can be influenced by character traits if these traits are involved in selection
which can be mediated by estimating a character’s state on the tree’s branching process [56]. A joint
model of tree reconstruction and trait change was employed to estimate the tree and trait dwelling
times and transitions between states. We used the Birth–Death Serial Sampled (BDSS) model [57] with
tips dated by year (Table S1). The alignment consists of the same SNPs of the phylogenetic network that
was represented as two unphased nucleotides. To represent invariant sites, we set constant weights for
A, C, G, and T (27421982, 32889740, 32791456, and 27520622), which were not represented in the original
alignment. The SNP and SV branch-rate priors were under an uncorrelated lognormal clock, and we
used the GTR SNP substitution model. Using bModelTest [58], an unnamed substitution model nested
in the GTR model was identified as the best match for our dataset. We used an asymmetric model
for SV substitution in which the following rates were set to zero: deletion to normal, translocation to
amplification, and deletion to amplification. The root was weighted by a fixed vector assuming that it
started at a normal state. Six independent runs were performed on BEAST v1.8.0 [59] with BEAGLE
3.0.2 [60] for 20,000,000 generations, sampling every 10,000 iterations.

To assess how long an SV persisted in the population, we implemented fast stochastic mapping,
which estimates dwelling times for the population [61,62]. We therefore refer to dwelling times as
“persistence times”. The first 10% of trees were discarded. All SV persistence times and mutation
counts chains converged with high Effective Sample Size (ESS, independent samples from the posterior
distribution) that rarely fell below 200 and never below 100. From the combined log files, mean
persistence times and mutations counts were calculated for each SV. For example, persistence times of
amplifications were longer than translocation and deletion persistence times. SV loci were clustered
in a K-means analysis based on persistence times and mutation counts. Optimal number of clusters
were calculated using the Silhouette Method using R packages factoextra and cluster [63,64]. Isolates
with SVs were also grouped using the same clustering method for SV loci.

Trees for independent runs were combined using logcombiner with the first 10% of trees removed
followed by a resampling of every 50,000 trees, which were summarized using common ancestor
heights on TreeAnnotator 1.8.0. With the fixed tree, the complete SV history on all branches [65] was
estimated. The SV branch-rate prior and substitution model are the same as before with the root
assumed as beginning at the normal state. The analysis was run for 10,000,000 generations. The first
20% of trees were removed with resampling every 50,000th iteration. Only 160 trees were generated
from a single run on BEAST v1.8.0 because of a computational burden in summarizing per branch
persistence times and mutation counts using custom scripts. Trees files from the complete history
analysis were post-processed using scripts generously provided by Jiansi Gao, UC Davis. These scripts
generated 158 phylogenies for 158 SV. From these trees, we were able to count the number of parallel,
transmissive, and parallel–transmissive SVs.

From the full history, each branch was tested for greater persistence times compared to all
branches in the phylogeny. To create the null distribution for each SV, average persistence times
were calculated from the posterior distribution of the population of all branches. Some branches
did not have a persistence time for certain SV types (e.g., no deletion persistence times because the
observed SV is an amplification) or no transition (e.g., transition occurred earlier in the history on
a prior branch), therefore all missing data and infinite values were removed. A Mann–Whitney U-test
was performed for each branch in comparison to the average persistence time of all branches and
to calculate the p-value. All SVs within a branch with a p-value less than 0.05 were counted after
Bonferroni correction. Custom genomic analyses scripts can be found in the GitHub repository:
https://github.com/jdyuzon/pramNA1-CApop.

https://github.com/jdyuzon/pramNA1-CApop
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2.8. Environmental Sampling and Modelling

To examine the association of phenotype and genotype with environmental conditions,
environmental data were compared to NWT phenotype and SV content. Of the 78 isolates, only
22 isolates from Monterey Co. and 27 isolates from Sonoma Co. had full climate and forest structure
data associated with their plots. These climate data were collected from BioClim [66] and PRISM
from the 30 year normal which is approximately the duration of the epidemic. Stem density, and
elevation at the plot level (500 m2) were collected in the field. To test if NWT/WT phenotypes can be
explained by environmental conditions, a generalized linear model with a binomial distribution and
logit link was constructed. The independent variable were pairwise comparisons of environmental
conditions associated with isolates from Monterey Co. and Sonoma Co. Similarity in environmental
conditions between demes were represented as a Jaccard’s distance using the package philentropy [67]
in R statistical software. A random effect was included for isolate identity. We also investigated
the relationships between NWT/WT phenotype and SV content. A generalized linear model with
a binomial distribution and logit link was used to test for phenotype in response to the number of
parallel SVs, total SVs, amplifications, translocations, and deletions. SV types were highly correlated,
so separate models were constructed. To know if environmental conditions predict the number of
parallel mutations, we again calculated the Jaccard’s distance between all pairwise comparisons of
environmental variables associated with isolates from Monterey Co. and Sonoma Co. Similarity
in environmental conditions was used in generalized linear models (with a hurdle Poisson distribution
and log link) as independent variables with the number of parallel SVs between pairs of isolates
as the response variables. Isolate identity was included as a random effect. Model adequacy and
convergence are shown in plots comparing the observed response variable “y” to simulated datasets
“yrep” (posterior predictive checks) and trace plots.

2.9. Association with Genomic Features

To determine genes and repetitive regions that may be affected by SVs (effectors, repetitive
elements, and other genes identified using the ND886 transcriptome in culture), a Fisher’s Exact test
was used to establish whether the number of overlapping base pairs between SVs and genomic features
were less than or greater than expected, given the number of SV base pairs that overlap with the genomic
feature. The SVs, genomic features, and reference genome included both haplotypes. The in planta
transcriptome is of MK1461 (isolated from U. californica found in San Mateo Co.) inoculated onto N.
densiflorus (unpublished, M. Garbelotto, Forest Pathology and Mycology Lab— UC Berkeley) and was
used as a reference for the Fisher’s Exact test.

To assess whether the identified SVs had biological relevance for the pathogen, genic regions
excluding repetitive elements and effectors were subjected to Gene Ontology (GO) enrichment and
compared to the genome. First, genes were annotated using InterProScan (version 5.31-70.0, Cambridge,
United Kingdom) [68]. GO enrichment was performed using GOstats [69] with the annotated genome
as background, and p-values were adjusted using a false discover rate [70].

A Fisher’s exact test was used to determine if SV mutation counts and persistence times were
associated with isolate host or substrate. To construct the contingency table, isolates were identified as
originating from common or uncommon hosts and sources. The second grouping was based on the
K-means analysis of SV counts and persistence times.

3. Results

3.1. SNP Markers Confidently Reconstruct the Phylogeny of P. ramorum NA1

In order to determine the mode by which SVs develop in parallel evolution, accurate reconstruction
of genetic relationships is required between demes as well as between individuals. To this end, we
mapped reads of 42 isolates (Table S1) to the unphased ND886 genome, leading to the detection
of only 716 polymorphic SNPs out of the 237,773 heterozygous SNPs called in the P. ramorum
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population. Therefore, 237,057 loci (99.7%) were fixed heterozygous loci, representing phylogenetically
uninformative heterozygosity in the ancestral strain. In total, 716 polymorphic heterozygous SNPs
were used to reconstruct the phylogeny (Figure 2a,b). Read coverage ranged from 30X to 145X when
aligned to the unphased genome (Table S1). Eleven SNPs distinguished the closely related isolates
Pr710 and Pr745 from each other. While phylogenetic analysis showed 85 synapomorphic SNPs,
these results successfully confirmed previous studies of the California P. ramorum NA1 population by
Croucher et al., 2013 [36], and Mascheretti et al., 2008 [34] and 2009 [35]. Specifically, in the earliest
diverging clade of the two major clades, five isolates were from Marin Co., Sonoma Co. (7), and
Santa Cruz Co. (3). Isolates from the Big Sur region in Monterey Co. formed a clade separate from
the rest of the population (Figure 2b). Though the phylogeny has only 716 markers with 85 shared
SNPs, our ancestral state reconstruction methods, as with other Bayesian inference methods, take into
account uncertainty, thus providing robust distinctions between isolates for the reliable identification
of genetic relationships.

In order to confirm that taxon groupings were non-erroneous and that no interference
in evolutionary signal could be attributed to technical errors, we examined conflicts in the SNP
phylogeny using a phylogenetic network approach. Genetic homoplasy can confound phylogenetic
reconstruction because shared mutations that arose multiple times may lead to erroneous taxon
groupings. In addition, high-throughput sequencing is subject to technical errors and can interfere
with evolutionary signals. To determine if the SNP markers used to reconstruct the genealogy of
the population had limited homoplasy and to check for technical errors, we used the splits network
representation to visualize any discordance in the phylogeny. In total, 97.8% of branches were resolved
and replicate sequences of controls ND886 and Pr1556 formed closely related groups (Figure 2a, b).

In order to generate a phylogenetic reconstruction for estimation of SNP mutation rates from
the time calibration of the serial sampling, we employed a Bayesian inference method (Figure 2b).
This phylogenetic analysis revealed an estimated mutation rate of 1.87 to 4.44 × 10−9 mutations per
bp per year, close to mutation rates of eukaryotes, which ranges from 10−8 to 10−9 [71–75]. Since
our samples have known collection dates (Table S1), the trees estimated by BEAST v1.8.0 were time
calibrated and automatically rooted.

Next, we checked for sequencing errors or SNP accumulation during culture that can potentially
hide true genetic relationships in the phylogenetic tree by estimating technical and biological error in
the ND886 and Pr1556 controls. Among the three sequencings of ND886, June 2016, July 2017, and
August 2017, we found no nucleotide variation except at two positions with missing information.
For Pr1556, there were three SNP differences that separated 2015 and 2017 sequencing results. The
three SNPs were heterozygous and showed the same nucleotide substitutions between July and August
2017, indicating that mutations generating these SNPs likely occurred during strain culture.

We then compared the phylogenetic network (Figure 2a) to the microsatellite tree (Figure S1),
since microsatellite markers were the only genetic markers used to date to characterize the population
structure of P. ramorum NA1. Among the 42 isolates analyzed, 33 MLGs were obtained by microsatellite
genotyping. One MLG was shared by five isolates (Pr120, Pr451, Pr486, MK649a and Pr1556), one
MLG was shared by three isolates (HMG2017, Pr237 and Pr1612), and three MLGs corresponded to
three pairs of isolates (MK649b and MK548; BS96 and Pr438; JLSP04-43 and Pr93). The microsatellite
network tree (Figure S1), constructed from the allelic variation at six microsatellite loci (Table S2),
showed a high level of genotypic similarities (31.9%) and the phylogenetic structure was difficult
to discern compared to the SNP phylogeny (Figure 2a,b) and previously published results [34–36].
Given the small sample size and number of markers, the microsatellite data could not reconstruct
relationships between isolates in the California population.
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Figure 2. Phylogenetic reconstruction of P. ramorum NA1 in California. (a) Splitstree graph using SNPs
indicates resolved relationships and discordances as links between branches; (b) phylogeny using
BEAST v1.8.0 under the Birth–Death serial sample model. Node labels are the posterior probabilities
of node height and line color represent posterior support of SNP mutation rate. Isolate identification
numbers are followed by the California county of origin and naming conventions are consistent with
previous publications. The first letters of the identification number represent the original project or the
collector (e.g., BS = Big Sur project, and MMWD = Marin Municipal Water District). Pr1556 and ND886
served as controls during sequencing and the dates following their name indicate the time they were
sequenced (e.g., August 2017).
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3.2. SNPs and SVs Support Asexual Evolution

Multiple mechanisms, such as somatic mutation and recombination (HGT and meiosis), can
give rise to genetic variation spanning multiple base pairs such as SVs. To establish the mode
of reproduction in P. ramorum, we first inspected the 716 SNP markers used for the population
genealogy. We tested whether there was recombination indicating intraspecies genetic exchange
between individuals by using r2 as a statistic for linkage disequilibrium. For the unphased dataset, r2

on average equaled 1.0 across the whole genome, including all loci with SNPs, which is consistent
with asexual reproduction. Asexual reproduction was further supported by minimal discordance
in the SNP genealogy of P. ramorum NA1. Only polymorphic SNPs (716) were used for phylogenetic
network analysis on Splitstree4 (Figure 2a) and further phylogenetic analyses (Figure 2b, Figure S2).
The SNP dataset showed minimal discordances except near main branches connecting all isolates, thus
indicating that the SNP markers supported an asexual mode of reproduction.

We next sought to compare the phylogeny of genetic variants with that of population genealogy,
since congruence between phylogenies would support somatic mutation as the source of genetic
variation while incongruence would support genetic variation caused by recombination. However,
insufficient SNPs were identified in the genetic variants to permit fine scale phylogenetic analysis
necessary to identify the mechanism generating new mutations. To address this issue, we instead
compared the location of these SV mutations on haplotypes. This analysis revealed 158 regions with
140 amplifications, 13 translocations, and 5 loci with a combination of amplifications and translocations
or deletions. Further analysis of the haplotype relationships (H1, haplotype 1; H2, haplotype 2) of
these SVs did not show any allele combination in a Hardy–Weinberg equilibrium equation rejecting
recombination (e.g., H1H1, H1H2, and H2H2; Figure 3). Instead, allele combinations showed H1/H2
change to H1/H2H2 (H2 amplified, Supplementary File S1). Occasionally (12/158 genetic variants), we
saw both alleles amplified (e.g., H1/H2H2, H1H1/H2, H1H1/H2H2 (H1 and H2 amplified)). In the
twelve cases where both haplotypes were affected by SVs, SVs occurred in isolates (e.g., Pr455 and
BS2014-584) with elevated mutation counts (median values 24.14 and 0.15 for high and low mutation
counts, respectively; Mann–Whitney U test p-value = 8.6 × 10−4). Together, the SNP phylogeny on
Splitstree, high Linkage Disequilibrium, and the absence of Hardy–Weinberg equilibrium support
somatic mutations as the mechanism generating genetic variation.
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Figure 3. Processes that lead to genetic variants include somatic mutations and recombination.
Three hypothetical scenarios are shown: (a) Normal state [no Structural Variants (SVs)]; (b) SV
arising from somatic mutation; and (c) genetic variation (arising from recombination between
individuals). Three individuals are represented (e.g., Ind 1, 2, and 3) and their corresponding
haplotypes (H1 and H2). Haplotypes: H1, black; H2, white. Green brackets, genomic regions with
variation; red lines, hypothetical SNPs that distinguish haplotypes. (b) Individuals with somatic SVs
(e.g., amplification, assuming duplication occurs by tandem duplication) show an increase in haplotype
(H1H1/H2, H1/H2H2, or H1H1/H2H2). (c) Genetic variants from recombination are likely to have
allele combinations representing genotypes found in a Hardy–Weinberg equation (i.e., H1/H1, H1/H2,
and H2/H2).
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3.3. Persistence of SVs in the Population is Associated with Host and Mutation Load

In order to estimate the frequency of transmission of SVs to future generations of the population,
the persistence times (the length of time an evolutionary lineage spends in a particular trait state),
and the number of times each SV independently arose in the tree were calculated using ancestral
state estimation. From the stochastic mapping analysis in BEAST v1.8.0, the genome-wide mutation
rate for SVs varied from 2.5 × 10−4 to 8.9 SVs per year. The duration of persistence times for each
branch (represented by the length of the blue lines) were the average values taken from the posterior
distribution of 100 trees (Figure 4). For example, the subtending branch of BS2016-10 had a longer
average dwelling time in comparisons of SV persistence times in the posterior distribution to all
other branches and their 100 simulated persistence times. A Mann–Whitney U-test was performed
between the two distributions of the test branch and the population branches. Branches leading to
isolates Pr1537 and Pr1652 also had longer persistence times in the amplified state than other branches
(Figure 2). Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 25 
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Figure 4. Ancestral state reconstruction of SVs indicates patterns of parallelism and estimates
of persistence time. Example phylogeny testing duration of persistence time comes from SV117.
The legend in the top left corner indicates the SV type (blue for amplifications, and green for normal
state). The branch lengths correspond to time in years. Branches leading to Pr1652, Pr1537, and
BS2016-10 had longer persistence times in the amplification state compared to branches leading to
Pr223, Pr486, Pr455, Pr218, and MR176. Pie charts at each internal node indicate the posterior estimate
of the SV ancestral state.

Previous research showed that the non-transmissive host Quercus causes genomic aberrations
in P. ramorum [10]. To determine if isolate host association is correlated with SV count and
persistence times, we performed Fisher’s Exact test. First, isolates were categorized by their
collection from either common hosts and sources, or from uncommon hosts and host tissue (Table S1).
Common substrates are defined as hosts and substrates that the pathogen frequently associates with
such as Umbellularia californica, Notholithocarpus densiflorus twigs, Rhododendron, Camellia, and stream
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water. Uncommon sources are hosts and substrates that the pathogen can infect but are not the main
sources of transmission (e.g., Osmorhiza berteroi, Frangula californica, Choisya ternata, N. densiflorus
bark). Second, a K-means clustering analysis (Figure 5a–c) identified two groups of amplifications and
deletions (Figure 5a,c): Cluster 1 represented isolates with a particular genetic background where SVs
had high persistence times and low mutation counts; Cluster 2 isolates had SVs with low persistence
times and elevated mutation counts. Amplifications had the highest persistence times (2.4 to 11.33%
of the phylogeny) of all the SVs and were more frequent in the population (16.38 to 44.08 mutations
towards amplified state; Figure S2). Therefore, we assessed the significance of differences in persistence
times of amplifications between the two clusters (Figure 5d,e) and found that isolates with higher
persistence times and low mutation counts were 16/20 times from common sources, whereas elevated
mutation counts and low persistence times were associated with isolates from unusual hosts and host
tissue (Table 1). These results suggest that isolates from uncommon sources may have more SVs, but
that these mutations do not persist in the population. Isolates from common hosts have relatively few
SVs, but these mutations are transmitted to extant lineages.
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Figure 5. SV persistence times and mutation counts of isolates. K-means clustering grouped isolates
with SVs into (a) two groups of amplifications, (b) six groups of translocations, and (c) two groups
of deletions. Each point represents an isolate with their corresponding persistence time (scaled by
branch length) vs. mutation count. Numbers of clusters were determined by the Silhouette Method.
Significant differences in mutation counts (d) and persistence times (e) were examined for the two
clusters in the K-means analysis of amplifications. The two clusters of amplifications represent isolates
with higher persistence times (1.1%) and lower mutation counts (0.2, Cluster 1), and isolates with lower
persistence times (0.7%) and higher mutation counts (24.1, Cluster 2).

Table 1. Fisher’s Exact test comparing host association to SV persistence times and counts. Columns
represent common and uncommon hosts (U. californica, N. densiflorus) and sources (twig, leaf, bark,
stream water) of P. ramorum. Isolates with high persistence times and low mutation counts are in Cluster
1; isolates with low persistence times and high mutation counts are in Cluster 2. Odds ratio = 13.8 and
p-value = 0.023.

Cluster
Host/Source

Common Uncommon

1 16 4
2 1 4
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3.4. Stress-Related Environmental Conditions Drive SV Parallelism

Extensive studies of NA1 as an invasive pathogen have shown that forest conditions tightly
control the survival and expansion of the population [19,24,29–32,76] and have the potential to drive
the evolutionary trajectory. To identify geographic locations that may have isolates with SVs, plots were
samples where NWT phenotype were previously identified (Figure 1b,c). NWT isolates are known to
have SVs and are characterized by irregular growth in culture [10]. First, the NWT phenotype was
tested for association with different types of SVs (amplification, translocation, deletion, all SVs, and
parallel SVs, Table 2). The phenotypes of cultured P. ramorum NA1 isolates were scored as previously
defined by Kasuga and co-workers (2016) [10]. The sample size for Monterey Co. was 92 isolates and
102 isolates for Sonoma Co. Thirty-six of the 102 isolates (35.29%) from Sonoma Co. and 15 of the
92 (14.71%) isolates from Monterey Co. showed the NWT phenotype. Since SV types are strongly
correlated with each other, individual models were made for each type. We found that deletions
(DELno.) had the highest positive relationship with NWT phenotype (Figure S5a) and in a model
comparison (Table 1), these SVs consistently had Bayes Factors >10 that ranged from Strong to Decisive
(Jeffreys, 1961). The results of this phenotype by genotype analysis suggest that accumulation of
deletions or other SV mutations results in an NWT phenotype and not parallel SVs.

Although NWT phenotype did not explain parallel SVs, we continued to ask if variables related
to population expansion or survival could drive a repeated genetic response. We compared conditions
that imposed stress on P. ramorum survival (e.g., solar radiation and minimum temperature during the
coldest month) with variables involved in disease spread (e.g., spring and winter precipitation and
elevation) to infer the environmental conditions associated with repeated evolution. First, a generalized
linear model (GLM) framework in which environmental conditions were the independent variables
and the number of parallel SVs were the response variables was constructed (Figure 6). All SVs except
three translocations (excluded from all analyses) were parallel between Sonoma Co. and Monterey
Co. sub-populations (Figure 6a). The coefficient estimates with credible intervals that did not traverse
zero indicated greater confidence that these environmental parameters were drivers of parallelism.
Moreover, Jaccard’s distance in minimum temperature during the coldest month was negatively
correlated with the number of parallel SVs, thereby indicating that as conditions between counties
become more similar, the number of parallel SVs increases.

Tree density of the main hosts, N. densiflorus and U. californica, also predicted the probability of
genetic parallelism (Figure 6a). This factor was categorized under survival and transmission depending
on the stage of pathogen life cycle and season. Since other conditions associated with population
expansion were not explanatory variables of parallel SVs, our results suggest that conditions imposing
stress on survival drive genetic parallelism. Jaccard’s distance for solar radiation was correlated with
convergence in minimum temperature of the coldest month, so a second model with solar radiation and
all other parameters except minimum temperature was tested. The correlation coefficient of similarity
for solar radiation during the hottest month (“sun_radiation_Aug”) also indicated an association with
parallel SVs. Bayes factor comparing both models was not significant (1.66), thus indicating that
neither model performed significantly better than the other. Second, independent variables related
to population expansion in the pathogen and survival under binomial models were also used to test
for convergence of the NWT phenotype (Figure 6b). Similarity in spring precipitation predicted the
probability of NWT isolates in both regions. Results suggest that the number of parallel SVs increased
as environmental conditions involved in pathogen survival became more similar between Monterey
Co. and Sonoma Co. (Table 1 and Figure 6a) and the generation of NWT isolates are driven by
environmental variables involved in the pathogen’s population expansion (Figure 6b).



Microorganisms 2020, 8, 940 14 of 22

Table 2. Posterior parameter estimates from generalized linear models (binomial distribution with a logit function) of NWT/WT phenotype in response to SV types
and their counts (amplification/AMPno., translocation/BNDno., deletion/DELno., all SVs/SVno., and parallel SVs with higher persistence times/Parallel SIG_SV).
Median values of coefficients for each county are shown and the 95% Credible Intervals. Bayes factors are calculated for each model relative to an alternative model.

Count by SV Type Monterey Co.:
Coef. Est.

Monterey
Co.: 5%

Monterey
Co.: 95%

Sonoma Co.:
Coef. Est.

Sonoma
Co.: 5%

Sonoma
Co.: 95%

Bayes Factor Relative
to Model/ AMPno.

Bayes Factor Relative
to Model/ BNDno.

Bayes Factor Relative
To Model/ DELno.

Bayes Factor Relative
to Model/ SVno.

Bayes Factor Relative to
Model/ Parallel SIG_SV

AMPno 0.08 −0.01 0.22 0.10 0.03 0.21 — 27.86 0.06 0.82 9.19 × 1014

BNDno −0.39 −1.97 0.80 0.31 −0.48 1.47 0.04 — 0.00 0.03 3.10 × 1013

DELno 2.89 0.35 5.72 1.55 0.37 3.02 15.51 489.51 — 13.05 1.47 × 1016

SVno 0.07 −0.01 0.21 0.10 0.03 0.21 1.19 35.03 0.08 — 1.21 × 1015

Parallel SIG_SV 0.35 −0.25 1.08 0.35 −0.25 1.07 0.00 0.00 0.00 0.00 —
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Figure 6. Correlation coefficients between forest environmental factors and genetic parallelism or phenotype. Posterior parameter estimates from Bayesian generalized
linear hurdle Poisson models of parallel SVs in response to Jaccard’s distance of environmental factors (a). Posterior parameter estimates from a generalized linear
model with a Bernoulli distribution (logit link function) of Jaccard’s distance between environmental conditions associated with NWT phenotype (b). Jaccard distance
of environmental variables are calculated as the difference between Monterey Co. and Sonoma Co. First model (top panels) includes minimum temperature of the
coldest month (bio 6), precipitation of the coldest quarter (bio19), N. densiflorus and U. californica stem density (LIDE.UMCA), precipitation during Spring (Springppt),
Elevation, and a hurdle probability (hu). Second model (bottom panels) includes the same parameters, except solar radiation during August (sun radiation Aug)
replaces minimum temperature during the coldest month. Bayes factor comparing both models was not significant (1.66).
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Model performance was validated using posterior predictive checks, and by inspection of the
Markov chain trace plots. For all models, the observed response variable (“y”) was within the range
of the simulated response variable (“yrep”). The estimates of the coefficients converged, as shown in
the Markov chain trace plots (Figure S3) supporting model adequacy. Models associating genotype
with phenotype were ranked according to their performance in comparison to all other models.
Deletions showed the strongest correlation, while translocation and parallel SVs were the worst.
Posterior predictive checks and Markov chain trace plots show that these models adequately predicted
the proportion of NWT/NWT and NWT/WT or WT/WT pairs, and that the models had converged for
the correlation coefficients (Figure S4).

3.5. SVs are Associated with Genes Involved in Pathogenesis

Given that new mutations can potentially alter pathogen behavior at the population level, we
therefore tested if parallel SVs intersect with genic regions involved in pathogenesis. To this end, we
counted base pair overlaps between parallel SVs and differentially up-regulated genes in P. ramorum
associated with N. densiflorus infection were counted from an RNAseq analysis. Results of a Fisher-exact
test showed that the odds of a parallel SV base pair overlapping with a base pair that was up-regulated
in the pathogen during N. densiflorus infection was 1.15:1 (p-value < 2.2 × 10−16). Similarly, these SVs
also overlapped with RXLRs (1.11:1), CRNs (1.95:1), and genic regions (1.12:1) greater than expected
(p-value < 2.2 × 10−16) except for repetitive regions (odds ratio 0.60 and p-value < 2.2 × 10−16, Table 3).

Notably, the SV data set had a significant overlap with effector RXLRs (i.e., containing the amino
acid motif arginine (R), any amino acid (X), leucine (L), and arginine (R) required for transport into
the plant host cell [77,78]. Specifically, 27 amplification SV loci overlapped with 121 RXLRs, one of
which also contained a translocation. The left-tailed test showed that the overlap between SVs and
genomic features was greater than expected. The 16 SV loci with greater persistence times/mutation
counts overlapped with 22 RXLRs, 43 WY domains, 234 repetitive regions, and 984 genic regions.
These findings strongly suggest that SVs can potentially alter the pathogenic phenotype of P. ramorum.

Since parallel SVs can also potentially be associated with biological, molecular, or chemical
functions in the pathogen, we performed a GO enrichment test of parallel SVs with longer persistence
times against the whole genome of P. ramorum NA1 as background and found that pathogenesis, DNA
binding/modification, motility, cell wall modification, and fertilization GO terms were over-represented
among genes that overlap with parallel SVs (Supplementary File S2).

Table 3. Fisher’s exact test between parallel SVs with highest persistence times and genes up-regulated
in P. ramorum NA1 when infecting N. densiflorus, pathogenicity genes (putative RXLRs and CRNs),
genic regions, and repetitive regions. A contingency table was constructed showing the number of
base pairs found in both the SV region and genomic feature (second column), unique to the genomic
feature (third column), unique to the SV region (fourth column), and found in neither significant SV
region nor genomic feature (fifth column). The odds ratio and p-value of the Fisher’s exact test is also
shown in the sixth and seventh column, respectively.

Genomic Feature Intersect SV and
Genomic Feature

Unique to
Genomic Feature Unique to SV Neither SV Nor

Genomic Feature Odds Ratio p-Value

N. densiflorus
RNAseq 58534 1095221 2635487 56523374 1.15 <2.2 × 10−16

RXLR 12691 243686 2681330 57374909 1.11 <2.2 × 10−16

CRN 1850 20319 2692171 57598276 1.95 <2.2 × 10−16

Genes 2200663 46065733 493358 11552862 1.12 <2.2 × 10−16

Repeats 459449 14743843 2234572 42874752 0.60 <2.2 × 10−16

4. Discussion

With the combined analyses of genomic and environmental data, we were able to demonstrate
another process of asexual evolution by somatic mutation and parallel evolution in the NA1 clonal
lineage of P. ramorum. Parallel evolution at the genotypic level is defined as the independent evolution
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of homologous loci [79,80]. In addition, we have characterized the likelihood that parallel SVs persist
in the population. Moreover, our results exemplified that these parallel SVs are likely a consequence
of forest ecology and could interfere with biological function (e.g., pathogenicity, stress response,
carbohydrate metabolism; Supplementary File S2) in isolates of P. ramorum.

Phylogeny confirmed SVs were somatic mutations and occurred on multiple lineages
independently. After examining the linkage disequilibirum for all SNP markers, high levels of
heterozygosity, and minimal discordance in a phylogenetic network there was no evidence for
sexual recombination. Asexual reproduction in Phytophthora ramorum NA1 not only confirms
that SVs are somatic mutations but that these mutations are undergoing an unusual process of
parallel evolution. Genetic parallelism is an unusual phenomenon that draws the attention of
evolutionary biologists and most studies indicate that these processes are usually not associated with
genetic drift or chance mutations, but rather phenotypic evolution and selection from environmental
parameters [81,82]. Our results showed that SVs transmitted to extant lineages and had the potential
to change pathogenicity but, as of yet, we do not know the adaptive significance for this pattern
in P. ramorum NA1. Future research examining SV’s association with pathogenicity-related phenotypes
may reveal how the pathogen is adapting to its new range.

Parallel SVs are likely to be transmitted to extant lineages based on their genetic background.
Our findings indicated that hosts unfamiliar, though potentially transmissive by supporting sporulation,
to P. ramorum increased the generation of SVs and decreased their persistence (Table 2). Instead,
isolates or lineages associated with common hosts (e.g., U. californica and N. densiflorus) had SVs
which persisted longer in the population. Our estimates of persistence times could be affected by the
population demographics. For example, at the forefront of a range expansion following founder effects,
allele surfing could increase the frequency of certain alleles, including SVs, that would not have been
retained by natural selection [83]. However, our examination of several demes that are undergoing
parallel evolution supports that population demographics is not the main driver of longer persistence
times of SVs. Whether SVs transmitted to extant lineages are therefore under positive selection requires
further research.

Repeated evolutions of SVs arose in locations where environmental parameters that influence
pathogen survival are converging. First, parallel SVs were associated with similarity in minimum
temperature during the coldest month, host stem density, and solar radiation between Monterey Co. and
Sonoma Co. This was reflected in previous phenotypic studies of the pathogen and P. ramorum’s disease
cycle in California. P. ramorum growth and survival are severely affected by lower temperatures [84].
Second, forest composition, such a similarity in relative U. californica stem density and N. densiflorus
stem density, determines survival and not just disease spread [19,24,31,32], and these factors were
unsurprisingly correlated with parallel SVs. Third, UV radiation and sun exposure affect growth,
survival, and sporulation [32,84]. Thus, convergence in solar radiation, temperature, and host density
are likely possible drivers of parallel SVs.

Structural variants (SVs) found in the NA1 population may have altered the biology and ecology
of the pathogen. Some regions of the genome affected by SVs have been shown to be upregulated when
the pathogen infects N. densiflorus and such regions are generally involved in pathogenicity in many
microbes (RXLRs [26], and carbohydrate metabolism [85]). Gene Ontology (GO) terms connected with
motility (e.g., ciliary plasm and cell projection part) suggested that new mutations also affect spore
motility. Oomycetes produce motile zoospores that have two flagella, which are involved in dispersal
of the pathogen [86]. Oddly, fertilization terms were also identified with SVs. However, mutations
associated with fertilization GO terms might indicate the loss of meiotic genes which corresponds
with asexual reproduction in the P. ramorum NA1 population. Future research might be able to link
repeated evolution and SVs to phenotypic change and adaptation related to pathogenicity, stress
response, motility, and carbohydrate metabolism. The parallel SVs overlapping with RXLRs and genes
upregulated during N. densiflorus infection would provide a starting point for subsequent investigation
of individual genes that contribute to survival and pathogenicity.
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The “non-wild type” (NWT) is the only easily scorable phenotype of P. ramorum NA1 and is
associated with SVs. However, NWT was found to be most strongly correlated with the number of
deletions, a type of SV, and not with parallel SVs. Dale and coworkers (2019) [22] found that loss of
heterozygosity through deletions was prevalent in P. ramorum including in the NA1 lineage. We only
identified one case out of four deletions classified as copy number neutral loss of heterozygosity
(deletion at contig_74: 147088–149087 and amplification at contig_74_alt: 91020–148058) in our final
dataset. Results suggested that at least for P. ramorum NA1, loss of heterozygosity arose in the
population but did not persist long and did not likely transmit to future generations of the P. ramorum
NA1 population. These results support Muller’s ratchet [87], the accumulation of slightly deleterious
mutations, is likely driving the extinction of isolates or branches in the phylogeny that have elevated SV
counts. Therefore, it is possible that deletions and NWT are a byproduct of a mechanism that generates
SVs or new mutations in P. ramorum NA1. Perhaps other phenotypes (whether easily detected or not)
are associated with parallel SVs. However, previous phenotypic studies have focused on variation
between the four lineages (NA1, NA2, EU1, and EU2) or hardly detected phenotypic variation within
the P. ramorum NA1 population [84,88,89].

5. Conclusions

By combining whole genome sequencing, phylogenetic inference, and ecological data, we were able
to identify how genetic variation is generated in an asexual organism at the DNA level to the landscape
level. P. ramorum NA1 was found to be strictly asexual and mutations arose somatically. Structural
Variants were distributed on multiple independent lineages in locations where forest conditions are
similar. Depending on their genetic background, these mutations are likely to shape P. ramorum NA1′s
evolutionary trajectory. These mutations intersected with putative RXLRs and occurred in regions of
the genome associated with pathogenesis, suggesting the potential for the emergence of new strains
that could alter the course of the epidemic. Whether genetic parallelism and persistence of SVs are
adaptive in their new environment requires additional research. Our findings provide a starting
point for further hypothesis testing of environmental conditions shaping genomic architecture and
phenotypic adaptation in P. ramorum NA1, and have broader implications for forest management.
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