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Abstract

Large spatial‐scale effects of climate extremes on gross primary production 
(GPP), the largest terrestrial carbon flux, are highly uncertain even as these 
extremes increase in frequency and extent. Here we report the impacts of 
spring warming and summer drought in 2012 on GPP across the contiguous 
United States (CONUS) using estimates from four GPP models: Vegetation 
Photosynthesis Model (VPM), MOD17A2H V006, Carnegie‐Ames‐Stanford 
Approach, and Simple Biosphere/Carnegie‐Ames‐Stanford Approach. VPM 
simulations are driven by Moderate Resolution Imaging Spectroradiometer, 
North American Regional Reanalysis climate data, and C3 and C4 cropland 
maps from the United States Department of Agriculture Cropland Data Layer 
data set. Across 25 eddy covariance flux tower sites, GPP estimates from 
VPM (GPPVPM) showed better accuracy in terms of cross‐site variability and 
interannual variability (R2 = 0.84 and 0.46, respectively) when compared to 
MOD17 GPP. We further assessed the spatial and temporal (seasonal) 
consistency between GPP products and the Global Ozone Monitoring 
Experiment‐2 solar‐induced chlorophyll fluorescence over CONUS during 
2008–2014. The results suggested that GPPVPM agrees best with solar‐induced
chlorophyll fluorescence across space and time, capturing seasonal 
dynamics and interannual variations. Anomaly analyses showed that 
increased GPP during the spring compensated for the reduced GPP during 
the summer, resulting in near‐neutral changes in annual GPP for the CONUS. 
This study demonstrates the importance of assessing the impacts of different
types and timing of climate extremes on GPP and the need to improve light 
use efficiency models by incorporating C3 and C4 plant functional types.



1 Introduction

Terrestrial ecosystems play a major role in the global carbon cycle, offsetting
approximately 25–30% of the CO2 emitted by human activities since the 
1950s (Le Quéré et al., 2009). Gross primary production (GPP), the amount of
CO2 sequestered by vegetation through photosynthetic assimilation before 
accounting for respiratory losses, is the largest component of the global 
terrestrial carbon flux (Beer et al., 2010). Therefore, a small fluctuation in 
GPP could have significant impact on atmospheric CO2 concentrations. 
However, the composition, structure, and functioning of terrestrial 
ecosystems are expected to be substantially altered by increases in the 
duration or/and frequency of climate extremes such as droughts, heatwaves,
or intense precipitation events (Frank et al., 2015). It is a major challenge to 
understand and project the response of terrestrial ecosystems to climate 
extremes (Reichstein et al., 2013). In particular, droughts, together with the 
frequently co‐occurring heatwaves, are among the most widespread natural 
disasters and could have large impacts on annual GPP, ecosystem respiration
(ER), and net carbon balance (Frank et al., 2015; van der Molen et al., 2011).

The impacts of climate extremes, especially heatwaves and droughts, on 
GPP have been thoroughly investigated for selected events (Ciais et al., 
2005; Parazoo et al., 2015; Wolf et al., 2016; Yuan et al., 2016). However, 
how climate extremes affect the carbon cycle is still poorly known at the 
landscape, regional, and global scales (Pan & Schimel, 2016). To investigate 
the impacts of climate extremes on GPP at ecosystem and landscape scales, 
three approaches have been separately or jointly applied: eddy covariance 
(EC) flux tower measurements (von Buttlar et al., 2017; Welp et al., 2007), 
remote sensing data (Hilker et al., 2014), and biogeochemical models 
(Zscheischler et al., 2014). Since the 1990s, the EC flux tower method has 
provided directly observed evidence for the seasonal changes of terrestrial 
carbon fluxes, which increases our understanding of the underlying 
mechanisms of terrestrial ecosystem responses and their feedbacks to 
climate extremes at the site scale (Reichstein et al., 2007). However, in situ 
EC sites are limited by their relatively moderate‐size footprints of 
observation and the number and distribution of FLUXNET sites are limited, 
making it difficult to assess the impacts of climate extremes on the carbon 
cycle at regional, continental, and global scales. The GPP data derived from 
EC flux towers (GPPEC), though limited in their spatial coverage, are currently 
the best available data to validate GPP estimates from process‐based and 
data‐driven GPP models. In contrast, optical and microwave remote sensing 
data provide larger scale insights into the vegetation structure, including leaf
area index and light absorption by canopy (J. M. Chen, 1996; Disney et al., 
2006; Ollinger, 2011). Recently, solar‐induced chlorophyll fluorescence (SIF) 
data have been derived from satellite‐based observations to estimate GPP, 
as it is tightly linked with photosynthesis (Frankenberg et al., 2011; Porcar‐
Castell et al., 2014). However, SIF has a very weak signal and accounts for 
about 2% of the total light absorbed by vegetation. Satellite‐retrieved SIF 



measurements have comparatively large amounts of noise, and the recent 
SIF data products are often aggregated in temporal and spatial domains 
resulting in a coarse spatial and temporal resolution (monthly, 0.5° × 0.5° 
for Global Ozone Monitoring Experiment‐2, GOME‐2; Joiner et al., 2013). The 
coarse spatial resolution of SIF data products limits its application because 
0.5° gridcells (~50 km at Equator) are often highly heterogeneous. A final 
approach uses terrestrial biosphere models to estimate GPP and ER for a 
variety of ecosystems at multiple scales. However, the reliability of these 
models is constrained by input data sets, model parameters, and model 
structures (Schaefer et al., 2012; Schwalm et al., 2010). Hence, a synthesis 
and comparison of the different approaches can reveal the shortcomings of 
individual approaches and help to reach a more reliable assessment of the 
multiple‐scale responses of ecosystems to climate extremes (Pan & Schimel, 
2016).

In 2012, the Contiguous United States (CONUS) experienced an abnormally 
warm spring and dry summer (Hoerling et al., 2014; Knutson et al., 2013). 
Record‐breaking temperatures were observed across 34 states during spring 
and a severe summer drought followed, especially across the Great Plains 
and the Midwest Corn Belt. The 2012 U.S. drought was reported as one of the
worst droughts since 1988 and had a comparable magnitude and spatial 
extent of those during the 1930s and 1950s (Hoerling et al., 2014; Rippey, 
2015). Impacts of this spring warming and summer droughts on terrestrial 
carbon fluxes in CONUS have been investigated, using the data from EC flux 
tower sites, GPP from the MOD17 data product, and net ecosystem 
production (NEP) from CarbonTracker (CTE2014 and CTE2015; Wolf et al., 
2016). They found that the losses of NEP in the summer were offset by an 
unusually large increase of NEP in spring, resulting in a small gain of annual 
NEP over CONUS (0.11 pg C). They also reported that the decrease in GPP 
during summer was much larger than the increase of spring GPP, resulting in
a moderate loss of annual GPP (−0.38 pg C) over CONUS in 2012. However, 
there are large uncertainties among the various GPP products (Schaefer et 
al., 2012); for example, the MOD17 GPP product has large uncertainties in 
croplands (Turner et al., 2006; Xin et al., 2015). Therefore, there is a need to 
evaluate various GPP models and their GPP data products, which will help us 
to better understand and assess GPP responses to spring warming and 
summer drought in 2012.

In this study, we analyzed GPP data products from four GPP models: (1) the 
Vegetation Photosynthesis Model (VPM; Xiao, Hollinger, et al., 2004; Xiao, 
Zhang, et al., 2004), which has been well validated at both site (Dong et al., 
2015; Doughty et al., 2018; Jin et al., 2013; Wagle et al., 2015) and regional 
scales (Zhang, Xiao, Jin, et al., 2016; Zhang et al., 2017) in previous studies. 
In this study, we modified the model for cropland by separating C3 and C4 
crops with detailed Cropland Data Layer (CDL) data; (2) MOD17 (Running et 
al., 2004), which is also used to evaluate the 2012 spring warming and 
summer drought impact on GPP in Wolf et al. (2016); (3) Simple 



Biosphere/Carnegie‐Ames‐Stanford Approach (SiBCASA)‐GFED4 (van der 
Velde et al., 2014), and (4) CASA‐GFED3 (van der Werf et al., 2006, 2010). 
SiBCASA‐GFED4 and CASA‐GFED3 models are biosphere models used in 
CarbonTracker Europe (CTE2014; van der Laan‐Luijkx et al., 2017) and 
CarbonTracker (CT2014; Peters et al., 2007), respectively, which provided 
the prior biosphere carbon fluxes (NEP, GPP‐Respiration) in the two carbon 
tracker systems. We evaluated the GPP estimations from the four data sets 
with in situ GPP data from EC flux tower sites and SIF data from GOME‐2. The
objectives of this study are threefold: (1) to demonstrate the potential of 
differentiating C3 and C4 croplands for improving GPP estimates (using VPM 
as an example) and validate the GPP estimates against FLUXNET data; (2) to 
quantify and understand the spatial‐temporal consistency of GOME‐2 SIF 
data and GPP estimates from various models; and (3) to assess the impacts 
of spring warming and summer drought on GPP at the pixel, biome, and 
continental scales.

2 Materials and Methods

2.1 VPM

We used the VPM model (Xiao, Hollinger, et al., 2004; Xiao, Zhang, et al., 
2004) to estimate GPP from 2008 to 2014 over CONUS. We followed the 
original model framework but further differentiated between C3 and C4 
croplands, since C3 and C4 crops have different maximum light use 
efficiencies (εmax). The National Agricultural Statistics Service (NASS) CDLs 
from the United States Department of Agriculture (USDA) were used to 
calculate the area percentages of C3 and C4 croplands within each 500 m 
pixel over individual years (Boryan et al., 2011). According to the USDA 
report, the major C4 crop‐types included corn, sorghum, sugarcane, and 
millet, and other crop‐types were considered as C3 croplands. The GPP of 
each pixel was estimated by area‐weighted averaged GPP (equation 1), 
which was derived from area fraction maps of C3 and C4 croplands and 
MCD12Q1 land use data sets:

(1)

where fC3 and fC4 were the area fraction of C3 and C4 crops inside each 
cropland pixel, respectively. APARchl is photosynthetic active radiation (PAR) 
absorbed by chlorophyll in the canopy and is estimated from enhanced 
vegetation index (EVI; Huete et al., 1997) as following:

(2)

This equation was modified from the previous model version (Xiao, Hollinger,
et al., 2004; Xiao, Zhang, et al., 2004) and has been applied in generating a 
global GPP product (Zhang et al., 2017). The coefficients 0.1 and 1.25 were 
used to adjust for sparsely vegetated or barren land and have been 
evaluated using the SIF data.



The maximum light used efficiency values for C3 croplands (εmax‐C3) and C4 
croplands (εmax‐C4) were specified as 0.035 mol CO2 mol−1 PAR (~1.8 
g·C·m−2·day−1·MJ−1·(PAR)), and 0.053 mol CO2 mol−1 (PAR) (~2.7 
g·C·m−2·day−1·MJ−1·(PAR)) (1.5 times larger than C3 types), respectively (Li et 
al., 2013). Tscalar and Wscalar are the temperature and water regulation factor 
and calculated as

(3)

(4)

where T is the air temperature, derived from the NCEP/North American 
Regional Reanalysis (NARR) climate data. Tmin, Tmax, and Topt represent the 
minimum, maximum, and optimum temperatures for photosynthesis, 
respectively, which are biome‐specific and assigned values as in Zhang, 
Xiao, Jin, et al. (2016). LSWImax is the maximum land surface water index 
(LSWI) within the plant growing season, and we applied a temporal 
smoothing method using nearby 4 years (2 years before and 2 years after) to
eliminate potential bias (Zhang et al., 2017).

2.2 Input Data Sets for VPM Simulations in CONUS During 2008–2014

Regional simulations of VPM model require climate, vegetation indices, and 
land cover data. Here we briefly describe the input data sets used: (1) 
NCEP/NARR reanalysis meteorological data, (2) Moderate Resolution Imaging
Spectroradiometer (MODIS) surface reflectance and land cover data, and (3) 
NASS CDL data.

2.2.1 NCEP/NARR Climate Data

The NCEP/NARR data were downloaded from (http://www.esrl.noaa.gov/psd). 
It contains meteorological variables such as air temperature, precipitation, 
and downward shortwave radiation from 1979 to present at a spatial 
resolution of 32 km and a temporal resolution of 3 hr. The original 3‐hourly 
NARR data were aggregated into daily data by calculating the maximum, 
mean, and minimum air temperature in a day (°C) and the cumulative sum 
of downward shortwave radiation in a day. The resulting daily data were 
further aggregated to 8‐day intervals (following the MODIS 8‐day temporal 
resolution) by calculating the maximum, mean, and minimum temperature 
(°C) and the cumulative sum of downward shortwave radiation within an 8‐
day period. We also interpolated these climate variables (32‐km spatial 
resolution) to 500 m using the same algorithm reported in a previous 
publication (Zhang, Xiao, Jin, et al., 2016). As previous studies have shown, 
the NARR downward shortwave radiation is systematically overestimated, so 
we adjusted it by applying a correction factor of 0.8 as proposed in a 
previous study (Jin et al., 2015).



2.2.2 MODIS Surface Reflectance and Land Cover Product

The latest version of MODIS surface reflectance product, MOD09A1 V006, 
was used to calculate EVI (Huete et al., 1997) and LSWI (Xiao, Zhang, et al., 
2004). A temporal algorithm was applied to EVI to gap‐fill the missing data or
bad‐quality data (Zhang, Xiao, Jin, et al., 2016).

The MODIS land cover product (MCD12Q1 V005) provides annual global 
maps of land cover at 500‐m spatial resolution during 2001–2013 (Friedl et 
al., 2010). We used the MCD12Q1 data at 2013 to represent year 2014. The 
International Geosphere‐Biosphere Programme land cover classification 
scheme in the MCD12Q1 is used in this study (see Figure 1a). The 
International Geosphere‐Biosphere Programme land cover map was then 
used to derive biome‐specific model parameter information for VPM 
simulations.

2.2.3 USDA NASS CDL Data Set

Annual national CDL data sets with a spatial resolution of 30 m were 
available for our study period (2008–2014; 
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). 
The CDL data sets contain over 100 cropland types and have very high 
classification accuracies for most crops (over 90% accuracy for major crop 
types such as soybean and corn; Boryan et al., 2011). For the VPM 
simulations, annual CDL data sets in 2008–2014 were aggregated to 
generate data layers at 500‐m spatial resolution that represent the ratio of 
C3 and C4 vegetation within individual 500‐m gridcells for each year (Figure 
1b). The C4 cropland layer included corn, sorghum, sugarcane, and millet, 
and all other crops were C3.



2.3 Evaluation of GPP Estimates During 2008–2014 From VPM

2.3.1 GPP Data From EC Flux Tower Sites

EC data from the FLUXNET2015 data set were used to assess GPPVPM. We 
used 25 FLUXNET sites across CONUS according to their data availability 
during 2008–2014, for which a summary about these sites is shown in Table 
1 and Figure 1a. The FLUXNET2015 data set used a standard workflow to 
process the data from the EC flux tower sites 
(http://fluxnet.fluxdata.org/data/). The net ecosystem exchange of CO2 
between ecosystems and the atmosphere was gap‐filled and then partitioned
into GPP and ER using two methods, the nighttime‐based and the daytime‐
based approaches (Lasslop et al., 2010; Reichstein et al., 2005). We 
calculated average daily GPPEC as the average of daily GPP estimated by the 
two methods. Then, we calculated 8‐day average GPPEC by aggregating the 
average daily GPPs. For each 8‐day interval, only the shortwave radiation 
and net ecosystem exchange observations with more than 75% of good 
quality, gap‐filled data were kept.



We evaluated the seasonal and cross‐site performance of GPPVPM across 
biomes at 8‐day and interannual scales. We classified the land cover maps 
into four major types: forest (FOR), grassland (GRA), cropland (CRO), and 
others (OTH) based on the MCD12Q1 landcover data. The evergreen 
needleleaf forest, evergreen broadleaf forest, deciduous broadleaf forest, 
decidous needleaf forest, and mixed forest were lumped together as forest. 



Grassland and cropland were the same classification scheme as MCD12Q1, 
while all the other land cover types, such as savannas, shrublands, wetlands,
and sparsed vegetated area, were considered as OTH. To examine the ability
of the model to capture the interannual variability of GPP, we compared the 
anomaly of annual GPP for GPPEC and GPPVPM. Specifically, we compared 
GPPVPM and GPPMOD17 to the anomaly between GPPEC in each site year and 
average GPPEC over all the site years for each site. The slope, root mean 
square error (RMSE), and R2 of the regression models were used to evaluate 
the difference between modeled and eddy covariance‐derived GPP.

2.3.2 SIF Data From the GOME‐2

SIF is a very small amount of energy emitted by plants and has been 
demonstrated to be highly correlated with GPP (Guanter et al., 2014; Wagle 
et al., 2016; Zhang, Xiao, Jin, et al., 2016). In this study, we used the monthly
GOME‐2 SIF data (V26) during 2008–2014 (Joiner et al., 2013). GOME‐2 
measurements are in the ultraviolet and visible part of the spectrum (240–
790 nm) with a high spectral resolution between 0.2 and 0.5 nm and with the
footprint size of 80 × 40 km2. SIF is retrieved using a principle component 
analysis method in the 734 to 758 nm spectral window which overlaps the 
second peak of the SIF emission. The retrievals are quality‐filtered and 
aggregated into 0.5° grids and a monthly interval (Joiner et al., 2013).

2.4 Inter‐Comparison of GPP Estimates Among VPM and Other Three Models

We compared GPPVPM with the latest version of MOD17 GPP product (Running 
et al., 2004), MOD17A2H V006 (GPPMOD17) at both site and regional scales. 
GPPMOD17 is estimated at a spatial resolution of 500 m and a temporal 
resolution of 8 days, which matches the spatial and temporal resolutions of 
GPPVPM. MOD17 is also a LUE model and simulates GPP as the product of 
APARcanopy and light use efficiency (εg). εg is determined by εmax and scalars 
that capture environmental limitations such as vapor pressure deficit (VPD) 
and air temperature. εmax values are specific for different biome types (e.g., 
forest, shrub, grass, crop; Running et al., 2004), but the product does not 
account for the differences of εmax between C3 and C4 croplands, and εmax for 
croplands is substantially too low (Turner et al., 2006; Xin et al., 2015).

We also compared GPPVPM with GPP simulated by CASA‐GFED3 (GPPCASA). 
CASA estimates Net Primary Productivity (NPP) based on the light use 
efficiency method (Monteith, 1972, 1977) and further estimates GPP with an 
assumption GPP = 2 * NPP. εmax for predicting NPP in CASA is set uniformly 
(0.55 g·C·MJ−1·PAR) for different biomes (Potter et al., 1993, 2012; Randerson
et al., 1996). The CASA‐GFED3 GPP product used a calibrated εmax for the 
Midwestern region, which was derived from crop yield observations, 
meteorological data, and remotely sensed FPAR (Lobell et al., 2002), and 
thus corresponds with much higher GPP values (roughly 45%) over the 
Midwestern United States (Hilton et al., 2015). GPPCASA is used to generate 
prior biogenic CO2 fluxes for the CarbonTracker system (Peters et al., 2007) 



at a spatial resolution of 1° × 1.25° every 3 hr. We resampled the data into 
1° × 1° and aggregated them into monthly values in this study.

The GPP estimates by the SiBCASA‐GFED4 model (GPPSiBCASA; van der Velde et
al., 2014) were also compared with regional GPPVPM. GPPSiBCASA is used to 
generate prior biogenic CO2 fluxes in the Carbon Tracker Europe system (van
der Laan‐Luijkx et al., 2017). SiBCASA combines the biophysical and GPP 
components from the Simple Biosphere model (version 2.5) with the 
heterotrophic respiration (RH) from CASA model and calculates the exchange 
of carbon, energy, and water at a temporal resolution of 10 min and at a 
spatial resolution of 1° × 1° (Schaefer et al., 2008; van der Velde et al., 
2014). GPP is calculated for both C3 and C4 plants by implementing a 
modified version of the C3 enzyme kinetic model (Farquhar et al., 1980) and 
the C4 photosynthesis model (Collatz et al., 1992). The C4 distribution map 
used in SiBCASA is a static map with the mean C4 fraction in global 1° × 1° 
grids (Still et al., 2003). The aggregated monthly GPPSiBCASA data are used for 
the comparison.

The impact of climate extremes on the GPP and SIF over the CONUS was 
evaluated using the four GPP data sets and GOME‐2 SIF data. The seasonal 
cycle and anomaly of GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA, and SIF in the year 
2012 were compared to that in the baseline year (the average of the year 
2008, 2009, 2010, 2013, and 2014). The uncertainty range of the anomaly 
was calculated as the standard deviation of the anomaly between 2012 and 
selected different baselines. We randomly chose at least 3 years from the 
year 2008, 2009, 2010, 2013, and 2014 to calculate the baseline, so there 
are 16 options (  +  ). As GPPSiBCASA, GPPCASA, and SIF data sets have a 
spatial resolution of 1.0° × 1.0°, both GPPVPM and GPPMOD17 data sets (500‐m 
spatial resolution) were aggregated to 1.0° × 1.0°. The SIF data (0.5° × 0.5°)
were also aggregated to 1.0° × 1.0°. We then used the area‐weighted 
method to calculate annual total GPP (pg C per year) and average SIF over 
CONUS.

3 Results

3.1 Seasonal Dynamics and Interannual Variation of GPP at Flux Tower Sites

GPPVPM agreed reasonably well with the seasonal dynamics and peak values 
of GPPEC at most sites (Figure 2). The coefficients of determination (R2) varied
from 0.32 (US‐SRC site) to 0.96 (US‐Ne2 and US‐UMB). GPPVPM showed very 
high accuracy for the cropland sites relative to GPPMOD17 (see Figure 2 and 
Table 1). At the US‐Ne1 and US‐Ne2 maize sites, the regression between 
GPPVPM and GPPEC show a high R2 value (>0.95) and a low RMSE value (<2.0 
g·C·m−2·day−1), while the regression between GPPMOD17 and GPPEC shows a 
moderate R2 value (~0.50) and a large RMSE value (7.0 g·C·m−2·day−1; Table 
1).



At the 8‐day scale, GPPVPM agrees better with GPPEC than does GPPMOD17, and 
GPPVPM effectively captures the seasonal dynamics of GPP for all the four 
biomes (Figures 3a and 3b). For croplands, GPPMOD17 shows significant 
underestimation with a slope of 0.37, while GPPVPM presents only slight 
underestimation with a slope of 0.97. The improvement in GPPVPM is most 
prominent in these C4 cropland sites, such as US‐Ne1 and US‐Ne2 (Figure 2 
and Table 1), with peak value of GPPVPM and GPPEC in the growing season that 
are larger than 20 g·C·m−2·day−1, while that of GPPMOD17 is less than 10 
g·C·m−2·day−1. Across all 25 sites, GPPVPM explains about 84% of the seasonal 
dynamics of GPPEC with RMSE of 1.7 g·C·m2·day−1, while GPPMOD17 only 
explains only about 55% with a RMSE value of 2.6 g·C·m−2·day−1.



The interannual variation of GPPVPM was best for croplands, followed by 
forest, grasslands, and other biomes (Figure 3c). In addition, the anomaly of 
annual GPPVPM in croplands, grasslands, and forest biomes has much higher 
consistency with GPPEC than does GPPMOD17 (Figures 3c and 3d). In other 
biomes (five sites), both GPPVPM and GPPMOD17 had relatively low accuracy.

3.2 Spatial–Temporal Consistency Between Model‐Based GPP and SIF Over 
CONUS in the Baseline Years and Drought Year 2012

We compared the spatial distribution of maximum monthly mean GPP 
(g·C·m−2·day−1) from the four GPP products and annual maximum monthly 
mean SIF in the baseline year and drought year 2012 at 1° × 1° resolution 
(Figures 4a–4j). The maximum monthly mean GPP in 2008, 2009, 2010, 
2013, and 2014 were used as baseline year. The three GPP products (GPPVPM, 
GPPCASA, and GPPSiBCASA) and SIF show the peak photosynthesis in the 
Midwestern corn‐belt region (Figures 4a–4j), which was consistent with the 
results reported by Hilton et al. (2017). GPPMOD17 did not have such a spatial 
pattern for maximum monthly GPP because it did not include higher 
photosynthetic capacity for C4 vegetation as did the other three models 
(VPM, CASA, and SiBCASA). Compared to the baseline years, most of 



gridcells had lower GPP and SIF values during the drought in 2012. The 
correlation analysis (Figures 5a–5d and 5e–5h) showed that the maximum 
monthly GPPVPM and SIF have the strongest linear relationship, followed by 
SIF/GPPSiBCASA, SIF/GPPCASA, and SIF/GPPMOD17.



For annual total GPP, all four GPP products showed very similar spatial 
patterns with SIF, with relatively high annual GPP (>1,500 g·C·m−2·year−1) in 
the forested Southeastern United States and low annual GPP in the western 
regions where grasslands and deserts are dominant (Figures 4k–4t). In 2012, 
GPPVPM had a decrease in the Midwestern corn‐belt region and Great Plains 
and an increase in the eastern temperate forest region, which is consistent 
with the spatial patterns of SIF. Annual GPPMOD17 had an obvious decrease in 
the Midwestern corn‐belt area but a slight increase in the eastern forest area
in 2012. Annual GPPSiBCASA had no significant differences between the baseline
and drought year 2012. Annual GPPCASA had large increases in both the 
Midwestern corn‐belt region and temperate forest area. The correlation 
analysis (Figures 5i–5l) showed that annual GPPVPM had a stronger linear 
relationship with SIF (R2 = 0.94) in the baseline years than SIF/GPPSiBCASA (R2 =
0.76), SIF/GPPCASA (R2 = 0.75), and SIF/GPPMOD17 (R2 = 0.70). We found similar 
results for the drought year 2012 (Figures 5m–5p), which suggested that the 
models performed similarly during baseline and drought years.

GPP estimates from all models had a high correlation with SIF (>0.9) in the 
wetter eastern region but a low correlation in the dry western region, partly 



due to the very low SIF signal and relatively large signal‐to‐noise ratio 
(Figures 6a–6h). The percentages of the total number of gridcells with a 
Pearson correlation coefficient larger than 0.9 in the baseline year were 
~65% for SIF/GPPVPM, ~55% for SIF/GPPCASA, ~50% for SIF/GPPMOD17, and ~47%
for SIF/GPPSiBCASA (Figures 6i–6l). The four GPP models had no obvious 
differences in simulating the seasonal dynamics of GPP between the baseline
year and drought year 2012 (Figure 6).

The histograms of the slope values (GPP = a × SIF + b) among these four 
GPP models differed substantially. The slope values for the SIF/GPPVPM were 
concentrated between 4 and 7 g·C·mW−1·nm−1·sr−1 (~53% of all gridcells), 
while that for SIF/GPPMOD17 were between 2 and 5 g·C·mW−1·nm−1·sr−1 (~60% 
of all gridcells). The slope values for the SIF/GPPCASA and SIF/GPPSiBCASA were 
more evenly distributed than that of SIF/GPPVPM. Sun et al. (2017) found the 
GPP‐SIF relationship is consistent across different vegetation types when 
comparing SIF with GPPEC, but it is more divergent when comparing SIF with 
modeled GPP because of the systematic GPP biases. The GPP‐SIF slope for 
the four GPP products in this study is also divergent over CONUS, but the 
VPM GPP‐SIF slope is more convergent than the other three models (Figure 
7).



3.3 Spatial–Temporal Consistency of GPP and SIF Anomalies Over CONUS in 
2012

To evaluate the impacts of spring warming and summer drought on GPP in 
2012, we compared the anomalies of GPP from GPPVPM, GPPMOD17, GPPSiBCASA, 
and GPPCASA to the anomalies of SIF in the spring, summer, and the entire 
year at 1° × 1° (latitude and longitude) resolution (Figure 8). The anomalies 
of GPP and SIF were calculated as the differences between year 2012 and 
the baseline year. The baseline year was calculated as the average of 2008, 
2009, 2010, 2013, and 2014. Geographically, the anomaly of all the four GPP
products and SIF showed very interesting spatial patterns at the seasonal 
and annual scales (Figure 8).



In the spring season, the middle and eastern CONUS experienced an 
increase in GPP anomaly while western CONUS experienced a decrease, 
which was consistent with the spatial pattern of SIF anomaly (Figures 8a–8e).
The magnitudes and spatial extent of GPP anomaly vary among the four GPP 
models. For GPPVPM and GPPMOD17, the large increases in GPP (larger than 100 
g·C·m−2·season−1) occurred mostly in the Southern Great Plains and part of 
the Midwestern corn‐belt region. For GPPCASA, large increases in GPP occurred 
mostly in the Midwestern and Southeast regions. The correlation analyses 
between GPP products and SIF (Figures 9a–9d) showed that GPPVPM and SIF 
had the strongest linear relationship (R2 = 0.67), followed by SIF/GPPMOD17 (R2 
= 0.58), SIF/GPPCASA (R2 = 0.56), and SIF/GPPSiBCASA (R2 = 0.48).



In the summer season, most regions in CONUS experienced decreased GPP 
and SIF associated with drought (Figures 8f–8j). The Great Plains and 
Midwestern corn‐belt regions experienced the largest reductions in GPP 
(larger than 150 g·C·m−2·season−1). The spatial extents of decreased GPP in 
GPPVPM and GPPMOD17 were greater than those in GPPSiBCASA and GPPCASA. GPPVPM, 
GPPCASA, and GPPSiBCASA displayed strong increases in the southeast regions, 
which was consistent with the spatial pattern of SIF anomaly. Overall, GPPVPM 
(Figures 9e–9h) agreed best with SIF (R2 = 0.71), followed by SIF/GPPCASA (R2 
= 0.50), SIF/GPPMOD17 (R2 = 0.45), and SIF/GPPSiBCASA (R2 = 0.19).

For the entire year, annual GPPVPM, GPPMOD17, and GPPSiBCASA mainly decreased 
in the western United States and corn‐belt regions, and annual GPP 
increased mainly in the eastern and southern forest area, which was 
consistent with the spatial pattern of SIF (Figures 8k–8o). Only GPPCASA 
reported strong increases in GPP in the corn‐belt region. The correlation 
analysis showed that none of the four GPP products agreed well with the 
spatial pattern of annual mean SIF anomaly at the annual scale, with R2 
values varying from 0.14 to 0.27 (Figures 9i–9l).

When aggregated over the entire CONUS by season, the four GPP products 
and SIF clearly showed an increase in GPP in the spring and a reduction in 
the summer, indicating the warm spring and droughty summer had opposite 
effects on GPP (Figure 8 and Table 2). The spring warming led to an increase 
in GPP by 0.25–0.48 pg C per season, where GPPCASA showed the largest 
increase and GPPSiBCASA showed the least. During the summer, the four GPP 
products showed a decrease in GPP by 0.21–0.42 pg C per season, where 
GPPCASA decreased the most and GPPSiBCASA decreased the least. The annual 



total GPPVPM and GPPCASA had an increase of 0.11 and 0.18 pg C per year, 
while the annual total GPPMOD17 and mean SIF had a decrease of 0.12 pg C per
year and 0.12 mW·m−2·nm−1·sr−1. The annual total GPPSiBCASA remained neutral
in 2012.

3.4 Impacts of Spring Warming and Summer Drought on GPP by Biomes in 
2012

To quantify the impact of spring warming and summer drought on GPP 
across biomes, we calculated total GPP from the four models for the four 
main biomes. In the spring of 2012, all four models showed increased GPP for
the four biomes (Figure 10 and Table 3), and the nonforest experienced a 
stronger increase in GPP than forest. In the four models, CASA showed a 
larger increase in GPP in the spring than other three models in the four 
biomes, while SiBCASA showed the lowest increase in GPP over most biomes.
For the drought summer, all four models showed strong decreases in GPP, 
and the grassland and cropland experienced the strongest decrease, 
followed by other biomes. Among the four models, MOD17 showed the 
largest decrease in GPP in the summer, while SiBCASA showed the least 
decrease. For the entire year, grassland and cropland experienced a 
decrease in GPP, while forest and other biomes experienced an increase or 
no change.





4 Discussion

4.1 Improving GPP Estimates of C3 and C4 Croplands

Accurate estimation of cropland GPP is important for food production and 
security. The MOD17 GPP data products have been widely used for crop 
studies (Guan et al., 2016; Xin et al., 2015). However, several studies have 
reported that the MOD17 data product substantially underestimates GPP in 
croplands. One reason is that εmax for croplands in the MOD17 model is too 
low (~1.04 g·C·MJ−1; Turner et al., 2006; Wagle et al., 2016; Xin et al., 2015). 
Site‐level studies have indicated that the typical εmax for C3 crops range from 
1.43 to 1.96 g·C·MJ−1 (T. Chen et al., 2011; Kalfas et al., 2011; Yuan et al., 
2015) and εmax for C4 crops range from 2.25 to 4.06 g·C·MJ−1 (Xin et al., 2015; 
Yuan et al., 2015). Several model comparison studies have also showed that 
both process‐based GPP models and LUE models have poor performance 
when estimating GPP in croplands (Schaefer et al., 2012; Verma et al., 2014).
Recently, Guanter et al. (2014) used GOME‐2 SIF to estimate GPP in 
croplands using the linear relationship between SIF and tower‐based GPP at 
flux tower sites, and they found these SIF‐based GPP estimates in croplands 
were 50–60% higher than GPP estimates from the ecosystem models over 
the U.S. Corn Belt. In this study, our εmax values for C3 croplands (1.80 



g·C·MJ−1) and C4 croplands (2.7 g·C·MJ−1) were based on previous site‐level 
studies (Li et al., 2013; Xin et al., 2015). The improved ability of VPM to 
capture the seasonal dynamics and interannual variability of croplands was 
partly attributed to more appropriate choices of εmax values.

Another reason for the large error in estimating cropland GPP by the MOD17 
and other models can be attributed to the fact that we have very limited 
knowledge on the spatial distribution of the C3 and C4 croplands within 
individual 500‐m MODIS pixels and their temporal dynamics over years 
(Reeves et al., 2005; Still et al., 2003; Wang et al., 2013). However, in this 
study we used the fine‐resolution, annual CDL cropland maps. The results 
demonstrated the potential of annual C3/C4 cropland maps at high spatial 
resolution to improve cropland GPP estimates from the individual pixel to 
country‐wide scales. Although there are several existing global C3/C4 maps, 
they are relatively coarse in spatial resolution and produced only for a 
specific year. An early study developed a static C3/C4 fraction map with a 
spatial resolution of 1° × 1° by defining the favorable climate zones for C3/C4 
and combing the global spatial distribution of crop fractions and national 
harvest area data for major crop types (Still et al., 2003). Another study 
developed a global distribution map of croplands and pastures at a 5 by 5 
min (~10 km) spatial resolution in 2000 by combining agricultural inventory 
data and satellite‐derived land cover data (Ramankutty et al., 2008). 
Recently, several studies made very limited progress in mapping C3 and C4 
plants (both croplands and grasses) when using remote sensing data and 
simple algorithms (Foody & Dash, 2007; Wang et al., 2013). The 
development of CDL data sets include the use of satellite‐based imagery, 
supervised image classification methodology, and numerous high‐quality 
ground truth data collected to help determine the multispectral rules from 
time‐series imagery that best predicted the land cover category. For 
grasslands, it was reported that there was a strong linear relationship 
between the percentage of C3 grass and the season‐long cumulative 
vegetation index (Foody & Dash, 2007). These phenological features and 
time‐series MODIS data were used to classify C3 and C4 grasslands in the 
Great Plains (Wang et al., 2013). Given the importance of C3 and C4 plant 
function types in estimating GPP, it is important for the remote sensing 
community to increase its effort in mapping C3 and C4 croplands and 
grasslands at site, regional, and global scales.

4.2 The Timing and Location of Climate Extremes and Their Impacts on 
Terrestrial Ecosystems

Climate extremes such as heatwaves and droughts can reduce vegetative 
growth, trigger large‐scale tree mortality, and turn terrestrial ecosystems 
from carbon sinks into sources (Ciais et al., 2005; Yuan et al., 2016). The 
warm spring and hot and dry summer in 2012 over CONUS offered a unique 
opportunity to investigate several major questions on the impacts of climate 
extremes on terrestrial carbon cycle at the regional and continental scales 
(He et al., 2018; Sippel et al., 2016; Wolf et al., 2016). Many studies have 



reported that terrestrial ecosystems in CONUS have served as carbon sinks 
in recent decades (Hurtt et al., 2002; Pacala et al., 2001), ranging from 0.30 
to 0.58 pg C per year during the 1980s and 1990s, which accounts for 30% 
of fossil‐fuel emissions from the United States. Wolf et al. (2016) analyzed 
MOD17 GPP data and NEP data from CTE2014 during 2001–2012 and 
reported that the increase of NEP in the spring compensated for the loss of 
NEP in the summer, which resulted in a small carbon sink (0.11 pg C per year
in 2012) for CONUS. This result suggests the importance of assessing the 
impacts of climate extremes, which depend on timing, duration, and location,
on terrestrial carbon budgets at the annual and continental scales (Sippel et 
al., 2017; von Buttlar et al., 2017).

Wolf et al. (2016) analyzed MOD17 GPP data in 2001–2012 and reported that
GPP loss in summer in 2012 over CONUS was twice as large as the increase 
in GPP in the spring of 2012, resulting in a large annual loss of GPP (−0.38 pg
C). Though we used a different baseline, our analysis of MOD17 GPP data in 
2008–2014 also shows that the decrease in GPP in the summer of 2012 was 
substantially larger than the increase in GPP in the spring of 2012, resulting 
in large annual loss of GPP (−0.12 pg C; Figure 8). However, the results from 
GPPVPM, GPPSiBCASA, and GPPCASA showed that the GPP increase in the spring is 
close or slightly larger than GPP loss in the summer of 2012, the annual GPP 
anomaly ranging from 0.01 (GPPSiBCASA), to 0.11 (GPPVPM), to 0.18 pg C 
(GPPCASA), while the GOME‐2 SIF anomaly showed a decrease in 2012 (Figure 
7). The differences in modeling GPP responses to spring warming and 
summer drought among these four models are likely to affect our 
understanding of the responses of ER to spring warming and summer 
drought. As NEP is the sum of GPP (carbon gains) and ER (carbon losses), the
large decrease in GPP (e.g., −0.38 pg C per year in 2012, GPPMOD17) from the 
previous study (Wolf et al., 2016) implied a slightly larger decrease in ER, 
which could then result in a small carbon sink (0.11 pg C per year in 2012). 
In addition, since CASA‐GFED3 and SiBCASA‐GFED4 are the biosphere 
models used by CarbonTracker (CT2014) and CarbonTracker Europe 
(CTE2014) to generate prior biosphere carbon fluxes, the spatial‐temporal 
differences in GPP distribution, magnitude, and anomaly from these two 
models are likely to affect CarbonTracker and CarbonTracker Europe outputs.
Previous studies have reported that atmospheric CO2 inversions are sensitive
to the land surface prior fluxes, especially at fine scales and the areas with 
sparse or no available observations (Peylin et al., 2013; Zhu et al., 2014). 
Therefore, methods to incorporate more reliable carbon flux estimates from 
atmospheric CO2 inversions is critically needed for us to better understand 
the terrestrial carbon cycle.

4.3 Differential Responses to Climate Extremes Across Biomes

Numerous studies have reported the negative impacts of high temperature 
and droughts on vegetation productivity (Ciais et al., 2005; Welp et al., 2007;
Wolf et al., 2016; Yuan et al., 2016). Short‐term drought or heatwaves lead 
to stomatal closure, membrane damage, and disruption of photosynthetic 



enzyme activities, all of which reduce GPP. If plants experience continuous 
drought, they may respond to drought stress by structural or physiological 
adjustments such as decreased leaf area index, changes in the root‐shoot 
ratio, or changes in leaf angle (Frank et al., 2015). But different species have
adopted different strategies to deal with water stress. These strategies can 
be broadly classified as dehydration tolerance or dehydration avoidance 
(Bacelar et al., 2012). Plants with a dehydration tolerance strategy usually 
grow rapidly when water is available but will senesce and/or become 
dormant during drought. Plants with a dehydration avoidance strategy tend 
to grow more slowly and maintain greenness during drought by increasing 
water extraction from the soils and reducing water loss from transpiration. 
Our study showed that the impacts of spring warming and summer drought 
on the change in GPP varied across biomes (Figure 10). This change was not 
only due to the characteristics (timing, magnitude) of the heatwaves and 
drought at specific regions (Figure 11), but also species‐specific plant 
drought responses and strategies (von Buttlar et al., 2017; Wolf et al., 2013).
Our results show that grasslands experienced the largest reduction in GPP 
while forests had the largest increase. This difference may be explained by 
the observation that grasslands are drought sensitive and more susceptible 
to heatwaves and droughts as they have less accessibility to soil water 
(shallow roots) and higher turnover rates (Frank et al., 2015). Trees usually 
have deeper roots and better access to soil water, thus forests are 
considered to be less affected by heatwaves and drought (Frank et al., 2015;
van der Molen et al., 2011; Zhang, Xiao, Zhou, et al., 2016). Grasslands 
occur in the most severe drought‐affected areas, while most forests are in 
the northwestern and eastern part of CONUS, which were either not affected 
by the 2012 drought or were classified as abnormally dry (D0) by the U.S. 
drought monitor (Figure 11). Cropland systems are different from natural 
systems by the frequent human intervention (e.g., irrigation or changing 
planting date). Consequently, the impacts of climate extremes on croplands 
are expected to be highly modulated by human management (Lobell et al., 
2012; van der Velde et al., 2010). However, cropland over the Corn Belt, the 
most important crop area in the United States, is mainly rainfed (Leng et al., 
2016), leading to a similar GPP response to drought for cropland and 
grasslands.



4.4 Uncertainties and Remaining Issues

The uncertainty of ecosystem models remains a challenge for carbon cycling 
research. Extreme climate events were found to dominate the global 
interannual variability of GPP (Zscheischler et al., 2014). At present, most 
ecological models do not accurately represent the responses of major 
ecosystem processes to climate extremes and do not accurately track the 
interannual variability of GPP (Reichstein et al., 2013). For example, previous
studies indicated that improving GPP estimates for most models requires 
better representation of water stress effects on photosynthesis (Schaefer et 
al., 2012; Verma et al., 2014; Yuan et al., 2014). In this study, VPM, MOD17, 
and CASA are all light use efficiency models, but use different water 
regulation scalars. VPM uses a water‐related vegetation index (LSWI) as the 
water constraint, MOD17 uses VPD, and CASA uses the evapotranspiration 
supply/demand ratio (actual evapotranspiration/potential 
evapotranspiration). LSWI is found to be a good indicator of soil moisture 
when taking all the biomes into consideration (Zhang et al., 2015). However, 
it may not work well for forested areas because of the lower spectral 
sensitivity to water stress (Sims et al., 2014). VPD represents the impacts of 
atmospheric dryness on vegetation photosynthesis because stomatal 



conductance changes with VPD. However, soil moisture also plays an 
important role in regulating GPP by affecting leaf cell turgor pressure or 
stomatal conductance, thereby directly affecting photosynthesis (Hashimoto 
et al., 2013; Leuning et al., 2005). The evapotranspiration ratio requires well 
simulated hydrologic fluxes in soils where additional information (e.g., soil 
texture, soil/rooting depth) is required. This information is usually not easy to
collect and comes with uncertainties. Therefore, more effort is needed to 
quantify the model uncertainties and improve model structure.

Since SIF can be directly observed from space, has a very good relationship 
with GPP (Guanter et al., 2014; Wagle et al., 2016; Zhang, Xiao, Jin, et al., 
2016), and is a good indicator of agricultural drought (Sun et al., 2015), we 
used SIF as a reference to which we compared the impacts of spring 
warming and summer droughts on vegetation photosynthesis. However, we 
acknowledge that GOME‐2 SIF has some uncertainties, especially in the 
western part of CONUS (Figure 6) due to the relatively large signal‐to‐noise 
ratio (Zhang, Xiao, Jin, et al., 2016). SIF retrievals from recently launched 
satellites (OCO‐2, Sentinel‐5 Precursor, and FLEX‐Fluorescence Explorer) with
higher spatial resolutions and observations tailored for SIF may improve our 
understanding of the impacts of climate extremes on vegetation.

In this study, we only considered the impacts of climate extremes on 
terrestrial ecosystems within a year. However, droughts may affect 
terrestrial ecosystems across months or even years, depending upon plant 
functional types (Frank et al., 2015; von Buttlar et al., 2017). Extreme events
could cause plant functional loss, changes in the community structure of 
ecosystems, increased wildfires, and pest and pathogen outbreaks, all which 
may necessitate a long recovery period (van der Molen et al., 2011). Further,
species' response to climate extremes vary widely, and some impacts could 
persist long after extreme events (Rammig et al., 2014). Analysis of the 
responses of terrestrial ecosystems to climate extremes should be 
conducted over the next few years.

5 Conclusions

The spring warming and summer drought of 2012 across CONUS had 
substantial impacts on the terrestrial carbon cycle and offered a unique 
opportunity to investigate the responses of photosynthesis (GPP) and 
respiration processes at large scales. We presented an improved VPM model 
that incorporates C3 and C4 croplands and can better capture the seasonal 
dynamics and interannual variation of GPP than the MOD17 product when 
these models are compared to GPPEC data from EC flux tower sites. Spatial‐
temporal comparisons among GOME‐2 SIF, GPPMOD17, and GPPVPM products 
during 2008–2014 showed strong consistency between GOME‐2 SIF and 
GPPVPM data products. Anomaly analyses of (1) annual GPP from four models 
(VPM, MOD17, SiBCASA, and CASA) and (2) GOME‐2 SIF data between the 
baseline years (2008, 2009, 2010, 2013, 2014) and drought year 2012 
suggested that increased GPP during the warm spring compensated for 



decreased GPP during the dry and hot summer, resulting in close to net 
neutral changes in annual GPP. The results from this study clearly highlight 
the importance of assessing the impacts of co‐occurring climate extremes at 
seasonal and annual scales over large spatial domains. Our results 
demonstrate the need to further improve GPP models, which could increase 
the accuracy and reduce uncertainties in GPP estimates of terrestrial 
ecosystems.
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