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Abstract

 

Vaporizable cannabis concentrates (VCCs) consumed as a liquid (vaping) or a waxy solid (dabbing) are 

becoming increasingly popular. However, their associated emissions and impacts have not been fully 

described. Mixtures containing different proportions of twelve VCC terpenoids and high-MW compounds

were heated at 100 – 500 °C inside a room-sized chamber, to simulate emissions. Terpenoids, thermal 

degradation byproducts, and ultrafine particles (UFPs) were quantified in chamber air. Air samples 

contained over 50% of emitted monoterpenes, and less than 40% of released sesquiterpenes and terpene 

alcohols. Eleven degradation byproducts were quantified, including acrolein (1.3 – 3.9 µg m-3) and 

methacrolein (2.0 µg m-3). A large amount of UFPs were released upon heating, and remained airborne for

at least three hours. The mode diameter increased from 80 nm at 100 °C to 140 nm at 500 °C, and 

particles smaller than 250 nm contributed to 90% of PM1.0. The presence of 0.5% of lignin, flavonoid and 

triterpene additives in the heated mixtures resulted in a threefold increase in particle formation rate and 

PM1.0 concentration, suggesting that these high MW compounds enhanced aerosol inception and growth. 

Predicted UFP emission rates in typical consumption scenarios (6×1011 – 2×1013 # min-1) were higher 

than, or comparable with, other common indoor sources such as smoking and cooking.
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Introduction

Legalization of medical and recreational uses of marijuana (cannabis) in several States of the USA, and in

other countries, has led to the rapid development and visibility of new cannabis products. Manufacturing 

and retail was legalized in California in January 2018, becoming the largest lawful marijuana market with

~$3B annual sales.1 A 2017 analysis of cannabis sales in Washington State revealed that, while 

combustible products still accounted for most transactions, the share of vaporizable cannabis concentrates

(VCCs, also referred to as extracts or hash oils) increased by 146% between 2014 and 2016, comprising 

21% of sales. The average content of Δ9-tetrahydrocannabinol (THC) in extracts (69%) was more than 

three times that of flower-based products (21%).2 Liquid VCCs can be consumed by vaping,3 while waxy 

concentrates can be aerosolized by direct application onto a heated surface to produce high impact, THC-

rich puffs (“dabbing”).4 On a survey of more than 6,000 current marijuana users in 12 States, a significant 

fraction reported consuming VCCs through vaping (19.4%) and dabbing (14.5%), in most cases in 

conjunction with other modes of marijuana use.5 With legalization, innovative delivering devices became 

available for use with VCCs, appealing to a growing and diverse group of consumers.3, 6 Due to their 

higher potency, VCCs are associated with more negative consequences than flower-based products, such 

as psychosis episodes and panic attacks.7 Vaping also facilitates access to cannabis by young users, and 

prompts an earlier age of onset, increasing the risks of addictive behavior.8, 9 Yet, vaping is often 

perceived as healthier than smoking, because it avoids inhalation of toxic smoke constituents.7, 10 For that 

reason, cannabis consumers in states that enacted medical marijuana laws are more likely to vape.11 

Most studies of vaping emissions have focused primarily on e-liquids containing propylene glycol (PG) 

and vegetable glycerin (VG), which are used as solvents and vapor-forming agents in nicotine-delivering 

formulations. These compounds are not typically used as the primary solvents in e-liquids containing 

THC and other cannabinoids, which are prepared instead by mixing VCCs with terpenes and other 

solvents (different from PG and VG) to decrease its viscosity.3, 12 Major constituents consumed from the 

oily or waxy VCCs include the active cannabinoids and a large amount of volatile, semi-volatile and 

polymeric materials extracted from buds, trichomes, flowers and leaves. Particularly relevant are terpenes,

terpenoids, lignans and flavonoids,13-16 which may form harmful byproducts when heated. Monoterpenes, 

sesquiterpenes, sesquiterpenoid alcohols and triterpenes are of particular concern because they are present

in large amounts,17 and their decomposition is likely to generate ultrafine particles and low molecular 

weight oxidized byproducts that irritate the respiratory system. 
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Thermal degradation of terpenoids results in byproducts from dehydrogenation, epoxidation, double bond

cleavage, allylic oxidations and rearrangements.18 Some of these byproducts become condensation nuclei 

for the formation of ultrafine secondary organic aerosol particles.19, 20 THC is present in the plant as 

tetrahydrocannabinolic acid (THCA), an inactive carboxylate, which is activated by decarboxylation upon

heating. High temperatures up to 340 – 482 °C are needed to vaporize VCCs, and are significantly higher 

than those commonly used with PG/VG formulations.21 The aerobic decomposition of PG occurs at 127 

°C, and that of glycerin at 200 – 290 °C.22 Their thermal decomposition byproducts include acrolein, 

formaldehyde and acetaldehyde, which are emitted at higher rates as the applied power of vaping devices 

increases.23, 24 A study evaluating the formation of formaldehyde and acetaldehyde in the vapor from 

heated e-liquids containing carboxylated and decarboxylated cannabinoids found that the latter emitted 

higher aldehyde levels, possibly due to the higher temperatures required for THC activation.25 Thermal 

decomposition of cannabis terpenoids was found to produce isoprene, methacrolein, benzene, 1,3-

butadiene and other compounds upon heating.12, 21 

Emissions associated with cannabis vaping and dabbing can lead to acute and chronic health effects in 

users and bystanders. On rare occasions, such emissions have led to severely toxic effects. A deadly 

outbreak of vaping product-associated lung injury (EVALI) took place in the United States between June 

2019 and February 2020. It resulted in at least 68 deaths and more than 2800 hospitalizations.26 THC-

containing products were shown to be linked to most EVALI cases.27 Vitamin E acetate (α-tocopheryl 

acetate, C31H52O3, MW 473 g mol-1), an illicit additive in THC vaping liquids, was found in many of the 

consumed products and in bronchoalveolar lavage fluid extracted from EVALI patients, and is considered

to be a key factor associated with the disease.28 Since the volatility of vitamin E acetate is very low, this 

compound was likely transported to the lung by particles produced in the inception of the THC-containing

aerosol. Mice exposure experiments showed that ultrafine aerosol particles generated by vaping were able

to deliver vitamin E acetate to the lung.29 Other low-volatility species such as methamphetamine (MW 

149 g/mol) and methadone (MW 309 g/mol), when vaped in PG/VG formulations, were also shown to be 

transported in particles smaller than 0.3 µm that can reach the alveolar regions of the lungs.30 

Despite the growing amount of research on chemical emissions from cannabis use, little is known about 

the impact of thermal degradation byproducts and ultrafine particles (UFPs) generated from heating non-

cannabinoid VCC constituents. As VCCs become more widely used, their impacts on consumers and the 

indoor environment need to be better understood. The goals of this study are to identify potentially 

harmful thermal decomposition byproducts, and to determine the concentration, particle size distribution, 
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and chemical transformations of aerosols produced from heated mixtures simulating non-cannabinoid 

VCC fractions. This study illustrates the role of UFPs as carriers of low-molecular weight species, a 

process that could deliver these chemicals deep into the user’s respiratory system, and could expose non-

users by dispersing otherwise non-volatile and semi-volatile species in the indoor environment. 

Experimental Methods

Preparation of test mixtures

Despite legalization at the State level, cannabis products, THC and other cannabinoids continue to be 

listed by the US Drug Enforcement Administration (DEA) as a Schedule 1 controlled substance. For this 

reason, our experiments did not use cannabis products nor included cannabinoids. Instead, we focused on 

concomitant substances present in VCCs, including monoterpenes (β-myrcene, d-limonene, α-pinene, β-

pinene), terpene alcohols (linalool), sesquiterpenes (β-caryophyllene, α-humulene), sesquiterpenoid 

alcohols (cedrol, α-bisabolol), triterpenes (friedelin), lignans (secoisolariciresinol), and flavonoids 

(quercetin). The reported composition of extracts and hash oils varies depending on the cannabis strain, 

process of extraction and storage conditions.13, 14, 16 

To evaluate the impact of these substances on indoor air quality after heating and decomposition, we 

studied a “full terpenoid” mixture comprising nine compounds commonly found in VCCs, and two 

separate mixtures containing the corresponding light and heavy terpenoid fractions. In addition, a 

“complex” mixture was prepared by adding a small amount (~0.5%) of high MW compounds (triterpenes,

lignans and flavonoids) to the full terpenoid mixture. Mixture compositions are shown in Table 1, with 

molecular structures shown in Figure S1 in the Supporting Information (SI). Mixing ratios were based on 

those reported in the literature.14, 16 All mixtures were prepared separately, by combining research-grade 

pure compounds (>95% purity, Sigma Aldrich), most of which were in the liquid form. 

Aerosol emission tests

Experiments were carried out by heating small volumes of the different mixtures listed in Table 1, 

consistent with typical amounts of terpenoids released during product use. In each test, 20 µL of a liquid 

mixture were applied with a syringe onto a glass Petri dish that had been pre-heated to temperatures 

between 25 and 500 °C, using a heat plate inside a 20-m3 stainless-steel environmental chamber. The Petri

dishes used in these experiments had been pre-baked at 450 °C for 4 h in a muffle furnace, to eliminate all

organic vestiges from their surface. Temperature was measured directly at the Petri dish surface with a 
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type K thermocouple connected to a data logger thermometer (Omega, Model HH309A). Due to the size 

of the chamber and the fact that it was housed inside an air-conditioned room, the chamber air 

temperature remained at room level (between 19 and 25 °C), and temperature variation due to the 

presence of the heating element was negligible. The chamber air exchange rate was 0.2 h-1, as determined 

by injection of CO2 followed by monitoring its concentration change using a EGM-4 CO2 monitor (PP 

Systems).  Two mixing fans were positioned inside the chamber at different heights, pointing at different 

angles, to ensure quick and complete mixing. 

Experiments were conducted by releasing into the chamber the emissions resulting from rapid heating 

of the different mixtures under controlled conditions (i.e., surface temperature, mixture composition 

and amount delivered). These emissions can be considered representative of those produced during 

vaping or dabbing. The method was not developed to reproduce the design and operation 

characteristics of vaping or dabbing devices, but rather to facilitate accurate measurement of the 

above-mentioned experimental parameters. Volatile/semivolatile organic compound (VOC/SVOC) 

indoor air concentrations during the first hour, and particle size distribution and concentration was 

recorded for several hours. The effect of changing the heating temperature was studied only with the 

full terpenoid mixture, which was allowed to evaporate without heating (surface temperature 25 °C), 

and by heating the surface at 100, 250, 400, and 500 °C. The effect of mixture composition was 

evaluated by heating the light, heavy fraction, and complex mixture at the highest temperature, 500 

°C.

Table 1. Composition of mixtures used in this study, expressed as mass proportion.

Compound MW Formula
log

Pvap
*

Light
terpeno

id
mixture

(%)

Heavy
terpeno

id
mixture

(%)

Full
terpeno

id
mixture

(%)

Comple
x

mixtur
e (%)

Light terpenoids 
α-Pinene 136 C10H16 0.68 11.3  – 5.2 5.2
β-Pinene 136 C10H16 0.47 14.2 – 6.6 6.5
β-Myrcene 136 C10H16 0.30 40.0 – 18.3 18.3
d-Limonene 136 C10H16 0.19 28.2 – 12.8 12.8
Linalool 154 C10H18O -0.80 6.3 – 2.9 2.9

Heavy terpenoids 
β-Caryophyllene 204 C15H24 -1.9 – 16.1 8.7 8.7
α-Humulene 204 C15H24 -2.1 – 14.2 7.7 7.6
Cedrol 222 C15H26O -4.1 – 35.1 19.1 18.9
α -Bisabolol 222 C15H26O -3.8 – 34.6 18.7 18.6
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High molecular weight compounds 
Friedelin 
(triterpene)

427 C30H50O N.V.  – – – 0.2

Secoisolariciresinol
(lignan)

362 C20H26O6 N.V. – – – 0.1

Quercetin 
(flavonoid)

302 C15H10O7 -13.6 – – – 0.2

*Pvap: vapor pressure expressed in mmHg  

N.V.: non-volatile species

Gas phase chemical characterization

In each test, gas phase terpenoids and their degradation byproducts were analyzed in three pairs of 

duplicate chamber air samples collected during the first 10 min (sample A), 10–30 min (sample B), and 

30–60 min (sample C) after the mixture was applied onto the heated surface. VOCs/SVOCs were 

collected onto Carbopack sorbent tubes (Supelco). Quantification of terpenoids and their degradation 

byproducts was carried out by thermal desorption gas chromatography mass spectrometry (TD-GC/MS) 

using bromofluorobenzene as an internal standard, following an established EPA method.31 An Agilent 

GC/MS system (model 6890/5973) was operated in electron impact mode, and was interfaced with a 

thermal desorption inlet with an autosampler (Gerstel). Calibration curves were created for VOCs/SVOCs

for which authentic standards were available. Standards for 2,5-dihydrotoluene and 6-MHO were not 

available, and were tentatively identified through a NIST database and quantified via a surrogate 

compound (toluene) by interpolating the corresponding response factor in the calibration curve of the 

surrogate. Since the toluene response factor could differ from those of other compounds, this method 

should be considered a preliminary quantification for those two compounds. Blank chamber 

measurements were also performed prior to heating the mixtures, to subtract background levels when 

applicable.

Volatile carbonyls were collected onto duplicate dinitrophenylhydrazone (DNPH)-impregnated cartridges

(Waters Corp., PN WAT037500) collected simultaneously with the VOC/SVOC samples. The collected 

DNPH cartridges were extracted with 2 mL of carbonyl-free acetonitrile (Honeywell) and analyzed by 

high performance liquid chromatography (HPLC) with UV detection (Agilent 1200), following the EPA 

TO-11 method.32 A certified mixture of DNPH derivatives was obtained from Sigma-Aldrich as standards

for analysis of formaldehyde, acetaldehyde, acrolein, acetone, propanal, crotonaldehyde, methacrolein, 

butanal, 2-butanone, benzaldehyde, m-tolualdehyde, and hexaldehyde. Calibration curves were generated 
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for quantification of each analyte using those standards. Chamber blank measurements were subtracted 

from the values obtained for the samples.

Both for TD-GC/MS and HPLC analysis, the reported values are the average of two duplicate 

determinations. Experimental uncertainties were estimated as the absolute difference of those duplicates.

A photometric monitor (2BTech, Model 202) was reading continuously ozone concentration inside the 

chamber, with a time resolution of one measurement every 10 s.

Aerosol measurements

Aerosols formed in the chamber during the heating process were measured using a Fast Mobility Particle 

Sizer (FMPS) spectrometer (Model 3091, TSI Inc., MA), an Aerodynamic Particle Sizer spectrometer 

(APS, Model 3321, TSI Inc., MA), and an Optical Particle Sizer (OPS, Model 3330, TSI Inc., MA). The 

FMPS measured concentration and size distribution of particles between 5 and 500 nm at a sampling rate 

of 1 Hz, operating at a flow rate of 10 L/min to minimize particle loss of ultrafine and nanoparticles via 

diffusion. A dedicated PM1.0 cyclone was used to remove particles larger than 1 m prior to measurement.

The APS measured the concentration and size distribution of particles between 500 nm and 20 µm at a 

sampling rate of 1 Hz. The OPS measured the concentration and size distribution of particles between 300

nm and 10 µm, also at 1 Hz. The three instruments are calibrated by the manufacturer on an annual basis. 

Prior to each experiment, the FMPS electrometers were zeroed with ultra-zero air. The APS and OPS 

were checked with ultra-zero air to confirm that the measurement was zero. Digital outputs from the three

instruments were integrated into a single file to capture the whole mass range 5 nm – 20 µm. Mass 

distribution of particles was calculated by assuming particle density as 1 g cm-3, and a sub-set of results 

was re-calculated using a lower density of 0.9 g cm-3, to evaluate the effect of particle density on particle 

number and mass concentrations. Figure S2 (SI) demonstrates good agreement among aerosol instruments

using the collected data, when measuring aerosols from the terpenoid mixtures in the above described 

conditions. 

Results and Discussion

Mixture constituents in chamber air

Chemical analysis of samples collected after heating the full terpenoid mixture at different temperatures 

confirmed the presence of the nine terpenoids in chamber air. Individual analyte chamber air 

concentrations after evaporation were in the range 16-122 µg m-3 in sample A (0-10 min), 9.1-103 µg m-3 
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in sample B (10-30 min), and 9.7-83 µg m-3 in sample C (30-60 min). The measured analyte 

concentrations in the three samples are reported in Table S1 (SI). The fraction of each compound 

quantified in sample A during each experiment is illustrated in Figure 1. Upon evaporation at ambient 

temperature without heating the surface, the amount of light terpenoids found in the air was 42%-96% of 

the respective mass released in the 20 µL aliquot. On the other hand, the heavier compounds (β-

caryophyllene, α-humulene, cedrol, and α-bisabolol) showed very low concentrations in chamber air (less 

than 5%). Because a small fraction of liquid remained on the Petri dish, we assume that the heavier 

compounds did not fully evaporate at room temperature. 

Heating at different temperatures, in the range 100 – 500 °C, evaporated all of the liquid. Upon heating, 

the airborne fraction of the light terpenoid fraction was consistently above 50% during the initial 10 

minutes (sample A), while that of heavy terpenoids remained below 40% of the hypothetical total mass 

concentration derived from complete evaporation of the delivered mixture. Such relatively low 

concentration of airborne terpenoids (comprising both gas phase and particle-bound species) is primarily 

due to compound adsorption to chamber walls, and loss due to chemical degradation in the heating 

process. Removal by ventilation during the short duration of sample A was in the order of 3%, 

considering that the air exchange rate was 0.2 h-1.

Emissions from the different mixtures were compared in experiments where the surface was held at 500 

°C, in order to compare UFP and byproduct formation under extreme but realistic conditions. Measured 

terpenoid concentrations are reported in Table S2 (SI). Heating the complex mixture, which included a 

small amount of three high MW compounds added to the full terpenoid mixture, resulted in similar 

concentrations of most compounds in chamber air with respect to the full terpenoid mixture, as shown in 

Figure 1(B). Most constituents of the light terpenoid and heavy terpenoid mixtures also maintained their 

composition when heated individually. Only linalool (a terpene alcohol) showed an increasing trend in the

following order: light terpenoid mixture (34%) < full terpenoid mixture (53%) < complex mixture (76%). 

This could be attributed to differential partitioning between aerosol particles, gas phase and indoor 

surfaces, influenced by stronger interactions (e.g., hydrogen bonding) of linalool with heavier terpene 

alcohols and high MW compounds, compared with those from monoterpenes. Due to these differences, 

the relevant partitioning parameters (Henry’s law constant and octanol-water coefficient) for linalool are 

several orders of magnitude different than those of monoterpenes.33 Similarly, the higher airborne 

concentrations of β-caryophyllene and α-humulene in the complex mixture may also be due to enhanced 

partition from indoor surfaces to aerosol particles, and are consistent with the higher PM concentration 

when the complex mixture was heated, as described in the next section.   
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An analysis of the precision achieved in the VOC/SVOC concentration determinations is presented in 

Figures S3 and S4 (SI). Duplicate measurements of the light terpenoid concentrations were consistently 

very similar, with relative deviation below 20% in most cases, with the exception of β-pinene. By 

contrast, the analytical precision for the determination of heavier terpenoids was poorer, with higher 

relative deviations (notably in the case of β-caryophyllene and α-humulene). For these reasons, trends 

observed for α-pinene, β-myrcene and limonene (e.g., as a function of temperature or mixture 

composition) can be described in more quantitative terms than those for β-pinene and the heavier 

compounds.  Compared with the magnitude of their relative experimental error, Figure 1 shows small or 

negligible changes in the concentrations of many terpenoids as a function of heating temperature, and 

when different mixtures were tested. In a few samples, the relative deviation exceeded 100% due to the 

presence of outliers, which were not considered. Outliers were determined by comparing with results 

from three duplicate measurements (samples A, B and C) in each experiment. 

Thermal degradation byproducts

Heating the mixtures at different temperatures led to evaporation, and to the formation of degradation 

byproducts. Figure 2 presents the chamber air concentration of several byproducts measured in sample A 

for several experiments where the full terpenoid mixture was heated at different temperatures, and for the 

complex, light and heavy terpenoid mixtures heated at 500 °C. These concentrations are also reported in 

Table S3 (SI). The most abundant heating byproducts included isoprene, 2,5-dihydrotoluene, 6-methyl-5-

hepten-2-one (6-MHO), benzene, acrolein, formaldehyde, acetaldehyde, acetone, methacrolein, 

valeraldehyde, hexaldehyde, and 2-butanone. Among these compounds, levels of isoprene, 2,5-

dihydrotoluene and acetone increased with temperature significantly –compared with the corresponding 

experimental uncertainties–, suggesting that these compounds were produced upon heating. Similarly, 

compounds such as methacrolein and hexaldehyde were only observed at high temperatures, for the same 

reason. Many of the byproducts described here are consistent with those reported after heating individual 

terpenoids at comparable temperatures by Meehan-Atrash et al.21 Those authors postulated a mechanism 

in which the degradation of β-myrcene, d-limonene and linalool led to isoprene, as an intermediate to the 

formation of several other oxygenated and aromatic hydrocarbons. In the case of methacrolein, the same 

authors reported formation at temperatures exceeding 400 °C, in coincidence with our observations. Our 

measured indoor air concentrations of methacrolein during the initial 10 minutes after heating (sample A) 

was 2.0 µg m-3, which is very close to the existing reference exposure levels (RELs) for this compound; 

the Texas long-term noncancer REL for methacrolein is 2.4 µg m-3.34 We also report chamber 

concentrations for acrolein (1.1-3.7 µg m-3), benzene (0.2-2.3 µg m-3) and formaldehyde (2.5-4.7 µg m-3). 
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From those, acrolein exceeded the 8-hour REL established by the California Office of Environmental 

Health Hazard Assessment (OEHHA), of 0.7 µg m-3. Benzene and formaldehyde concentration were in 

the same order of magnitude as the corresponding OEHHA 8-h RELs (3 and 9 µg m-3, respectively).35 

These comparisons of short-term chamber concentration spikes with 8-h RELs are made solely to identify

byproducts with the potential to approach or exceed health-based guidance levels. The comparison of 

RELs with predicted 8-h indoor air concentrations under different scenarios is discussed in the 

Implications section, below.
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Figure 1. Relative fraction of gas-phase terpenes measured by GC/MS in chamber air with respect to their theoretical mass concentration assuming 100% 

evaporation (A) from the full terpenoid mixture measured at room (~25 °C) and elevated temperatures (100-500 °C), and (B) from full mixture, complex mixture,

light fraction and heavy fraction mixture at 500 °C. Error bars represent the difference of two duplicate measurements.
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Figure 2. Concentrations of degradation byproducts (µg m-3) in sample A, produced (A) upon heating the full terpenoid mixture at different temperatures, and (B)

after heating the complex mix, full mix, light fraction and heavy fraction at 500 °C. Error bars represent the difference of two duplicate measurements.
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Particle formation and size distribution

A large burst of UFPs was observed immediately after evaporation of the mixtures, which remained 

largely within the ultrafine range over a 2 to 3-hour period. About 90% of the total PM1.0 (total mass of 

particulate matter with a diameter less than 1.0 µm) produced from heating the full terpenoid mixture was 

composed of particles with diameters less than 250 nm. As shown in Figure S5 (SI), very few particles 

were larger than 1.0 µm, as the curves corresponding to PM1.0 and PM2.5 almost overlap. Hence, the 

reported aerosol results correspond primarily to the FMPS measurements. 

The effect of heating temperature on UFP formation was evaluated by comparing the aerosol particle 

mass concentration in each experiment carried out with the full terpenoid mixture. When the heating plate

temperature was increased from 100 °C to 250 °C, the particle number (PN) and PM1.0 mass concentration

increased. Further heating the plate to 400 °C, and eventually 500 °C, resulted in lower PN and PM1.0 

concentrations than those measured at 250 °C (Figure 3-A). Aerosol formed by heating at the four 

different temperatures were all primarily within the ultrafine range (<100 nm), and the smaller particles 

decayed faster than the larger ones. The highest number of particles in the nucleation mode was formed 

upon heating at 250 °C. As illustrated in Figure S6 (SI), the mode diameters of particle mass distributions 

were larger than those of particle number concentrations in each experiment. The mode diameter 

increased with the increasing temperature, from 80 nm at 100 °C to ~140 nm at 500 °C.

Figure 3-B shows that heating the same amount of the heavy terpenoid fraction produced a higher PM1.0 

mass concentration than the full terpenoid mixture. By contrast, the same amount of the light terpenoid 

mixture produced about half of the mass concentration, suggesting a smaller contribution to aerosol 

formation. When heating the complex mixture, it was observed that the addition of a small amount 

(<0.5% in mass) of high MW compounds lead to a more than 3-fold increase in aerosol mass with respect

to emissions from the full terpenoid mixture. These results suggest that these additives contribute 

significantly to particle formation. Figure 4 shows that formed particles were still mostly within the UFP 

size range, with the mode diameter of mass distribution between 100 and 120 nm. 

Ozone chamber concentrations were deliberately kept very low, at just a few ppb, by removing ozone 

from incoming air using an activated carbon bed. Upon rapid increase of terpenoid concentration after 

heating each mixture, ozone levels dropped to zero, as illustrated in Figure S7 (SI). The formation of a 

large number of ultrafine particles upon heating cannot be explained by reaction of terpenoids with a 

small (< 5 ppb) residual amount of ozone. Similarly, small variations of a few degree in chamber 
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temperature recorded in different tests –in all cases within typical room values–, are not expected to affect

UFP yields significantly.
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Figure 3. Time series of PN (left) and PM1 mass (right) concentration for aerosols formed from (A) heating the full terpenoid mixture at four different 

temperatures: 100, 250, 400, and 500 °C, and (B) heating at 500 °C four different mixtures: light fraction, heavy fraction, full mixture, and complex mixture. The

background PM1.0 mass before the delivery of terpenoid mixture in each test was subtracted from the data shown in the plot.
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Figure 4. Evolution of particle number concentration (left) and mass concentration (right) of aerosols within 8-200 nm diameter range, formed from (A) heating 

the full terpenoid mixture at 500 °C, and (B) heating the complex mixture at 500 °C.
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The effect of changing particle density on the calculation of PM1.0 concentrations was explored by re-

calculating results corresponding to the full terpenoid mixture heated at 500 °C, using a density of 0.9 g 

cm-3 instead of 1 g cm-3. This heating temperature was chosen for this analysis because it was the same 

used in results plotted in Figure 3(B). The results are shown in Figures S8 and S9 (SI). A lower particle 

density could be attributed to the density of the pure liquids, which is approximately 0.85 g cm-3 for 

monoterpenes, 0.90 g cm-3 for sesquiterpenes and 0.95 g cm-3 for sesquiterpene alcohols. Using a reduced 

particle density in the PM1.0 calculation led to a linear decrease in concentrations, which is a relatively 

small effect compared with those associated with changes in heating temperature and mixture 

composition.

 Implications for users’ intake and indoor environmental quality

Heating terpenoid mixtures during vaping or dabbing may be a source of potentially harmful byproducts 

and secondary organic aerosol, primarily in the ultrafine size range. Most of the aerosol is inhaled by the 

user, and only a fraction is released to indoor air. The inhaled chemicals are effectively absorbed in the 

respiratory system, with a smaller fraction present in exhaled breath. Furthermore, part of the aerosol 

produced in each puff is directly discharged from the mouth prior to inhalation. In this study, we followed

an approach used in our previous work to estimate the retained fraction R (unitless) remaining in the 

user’s mouth and respiratory tract during vaping.24 In studies using conventional tobacco cigarettes, it was

established that between 20% and 40% of the smoke was released to indoor air.36 Here, we adopted the 

same values to represent a broad range of vaping scenarios, resulting in retention fractions of 0.6 < R < 

0.8. It should be noted that cannabis vaping patterns can be very different from tobacco smoking and, for 

that reason, this approach is only a first approximation, in the absence of more specific information. In the

case of dabbing, predicting the fraction of emissions retained by the user is even more uncertain, due to 

lack of measurements and to the diversity of devices and VCCs used. One of the few studies addressing 

dabbing emission rates described retention of approximately 2/3 of the THC available for absorption in a 

laboratory-simulated test, by accounting for the fraction collected in simulated lung traps, transfer lines 

and the aerosol source.4 In the absence of more specific information on retention factors, we used for 

dabbing the same values used in vaping (R = 0.6 to 0.8) as a first order approximation. 

The emission rates of thermal degradation byproducts generated from cannabis vaping and dabbing were 

calculated for acrolein and methacrolein, the two compounds that exceeded or were close to reference 

exposure levels in chamber air. Concentrations of other byproducts (including carcinogens such as 

benzene), measured with the TD/GC/MS and HPLC/DNPH methods, were too low to significantly 

contribute to poor indoor air quality. Levels of precursor terpenoids were much higher than typical indoor
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levels of those compounds, but they are not particularly harmful even at such high concentrations, in the 

absence of ozone. Similarly, the contribution of secondary organic aerosol PN and PM1.0 to impacts on 

users and bystanders were estimated. Table 2 summarizes predicted acrolein, methacrolein, PN and PM1.0 

emission rates (E) for cannabis vaping and dabbing, the estimated daily intake (DI) by users, and the 

increment in indoor air concentration (ΔC) expected to occur due to use of the products in two common 

scenarios. The scenarios considered were: (a) an individual vaping or dabbing at home, and (b) multiple 

simultaneous vaping or dabbing events taking place at a public venue (e.g., a bar or a dispensary). In both 

cases, the predicted ΔC correspond to an 8-h average that takes into consideration the corresponding air 

exchange rates. Details on the calculation of E, DI and ΔC are provided in the Supporting Information. 

The estimated acrolein and methacrolein emission rates reported in Table 2 can be compared with those 

determined in our previous study using nicotine/PG/VG e-liquids in conventional e-cigarettes.23 Acrolein 

E values measured from vaping nicotine/PG/VG formulations using different e-liquids, heating power and

type of vaporizer were in the range of 0.3 to 71 µg puff-1, which comprises the values reported in Table 2 

for that compound. By contrast, methacrolein emission rates are roughly one order of magnitude higher 

than those measured in nicotine vaping (0.05 to 4 µg puff-1). The predicted acrolein daily intake reported 

in Table 2 was compared with values derived from the maximum acrolein limit recommended by the 

National Institute for Occupational Exposure and Health (NIOSH) for an 8- or 10-h time-weighted 

average (TWA) exposure and/or a ceiling is 250 μg m-3. 37 Considering an average breathing rate of 15 m3 

day-1, 38 the amount of acrolein inhaled during 8 hours at the NIOSH-determined limit is 1.3 mg. This 

value is comparable (albeit higher) than the maximum predicted daily intake rates from vaping, and is 

several orders of magnitude higher than intake predicted for dabbing. No occupational guidelines exist for

methacrolein. Considering their contribution to poor indoor air quality, the predicted ΔC from vaping 

exceeded in some cases the above mentioned 8-h RELs levels for both acrolein (0.7 μg m−3) and 

methacrolein (2.4 μg m−3) in both scenarios. By contrast, contributions from dabbing were significantly 

lower, and did not exceed RELs.

The emission of secondary organic aerosol PN and PM1.0 can be compared with those reported from other 

common indoor sources, to assess the relative impact on indoor air quality. Figure 5 illustrates PN 

emission rates as a function of particle size for tobacco smoking,39-41 heated tobacco products,40-42 vaping 

(nicotine formulations),40, 41 cooking,43-46 incense use,47 wax scented candles,43 laser printers,48, 49 ironing,43 

and operation of unvented cookstoves.50 The values used to map emission rates in Figure 5 are presented 

in Table S4 (SI). Predicted emissions from heating cannabis terpenoids during vaping and dabbing were 

relatively higher than most other sources, largely exceeding the threshold of 1010 particles per minute for a
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period of at least 10 minutes suggested by Banghar et al for sources to be clearly discernible in homes.51 

Particle emitted from heated terpenoids were primarily in the ultrafine range, of comparable or relatively 

smaller size than those reported from several other sources. The highest emission rates corresponded to 

particles of size below 50 nm in experiments carried out at different heating temperatures and with 

different mixtures, as illustrated in Figure S10 (SI). 

Two significant features can be highlighted from concentration time profiles presented in Figure 3 and PN

emission rate time profiles in Figure S10:

a) For the full terpenoid mixture, heating at 250 °C resulted in a larger ultrafine particle burst than 

those recorded at lower and higher temperatures, suggesting that particle inception and growth is 

optimized at intermediate heating temperatures. For particles in the range 5-50 nm, PN emission 

rates at 250 °C were approximately 4 time higher than those at 400 and 500 °C, and even higher 

than those at 100 °C. However, these enhanced emissions at 250 °C were not observed for 

particles larger than 50 nm. As a result, PM1.0 concentrations were ~20% higher at 250 °C during 

the first hour post-heating, the period during which the smallest particles predominated.

b) Heating the complex mixture at 500 °C resulted in higher PN emission rates (EPN) than the other 

mixtures across the whole particle size range. However, the largest differences were for particles 

larger than 50 nm. On the 50-100 nm size range, EPN of the complex mixture was ~3 times higher 

than that for the full terpenoid mixture. That gap increased to >6 times for particles in the 100-

250 nm range. These higher emission rates resulted in a PM1.0 concentration of the complex 

mixture that was ~3 times higher than that generated from heating the full terpenoid mixture.     

The latter effect highlights the critical role played by high MW compounds in the inception and growth of

condensational secondary organic aerosols. The presence of a small amount of lignin, flavonoids and 

triterpenes, amounting to just 0.5% of the liquid mass, resulted in significantly higher PN formation rates 

and PM1.0 concentrations. The fact that the growth rate was highest for relatively larger particles (>50 nm)

suggests that enhanced aerosol nucleation proceeded by condensing a large number of terpenoids and 

other compounds associated with high-MW compounds. This phenomenon is likely to be induced also by 

the presence of THC, other cannabinoids, and additives such as vitamin E acetate.    
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Table 2: Predicted emission rates, daily users’ intake, and impact on indoor air quality of acrolein, methacrolein, particle number (PN) and particle
mass concentration (PM1.0) for the full terpenoid mixture heated at 500 °C.

Acrolein Methacrolein PN PM1.0

Vaping Dabbing Vaping Dabbing Vaping Dabbing Vaping Dabbing

Emission rate (E)
1 – 7

µg puff-1

1.2
µg puff-1

4 – 35
µg puff-1

6
µg puff-1

2×1012 – 2×1013

part puff-1

3×1012

part puff-1

88 – 823
µg puff-1

141
µg puff-1

Daily intake (DI)
9 – 336
µg day-1

1.4 – 5.8
µg day-1

45 – 1680
µg day-1

7 – 29
µg day-1

2×1013 – 8×1014

part day-1

4×1012 – 1×1013

part day-1

1 – 39
mg day-1

0.16 – 0.67
mg day-1

ΔC in a home
0.03 – 1.5

µg m-3

0.005 – 0.03
µg m-3

0.14 – 7.6
µg m-3

0.02 – 0.13
µg m-3

7×104 – 4×106

part cm-3

1×104 – 6×104

part cm-3

3 – 178
µg m-3

0.5 – 3.1
µg m-3

ΔC in a public venue
0.11 – 2.0

µg m-3

0.03 – 0.07
µg m-3

0.53 – 9.8
µg m-3

0.17 – 0.34
µg m-3

3×105 – 6×106

part cm-3

9×104 – 2×105

part cm-3

14 – 253
µg m-3

4.3 – 8.7
µg m-3
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