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Abstract
Maize is a staple food of smallholder farmers living in highland regions up to 4,000 m above sea level worldwide. 
Mexican and South American highlands are two major highland maize growing regions, and population genetic 
data suggest the maize’s adaptation to these regions occurred largely independently, providing a case study for con
vergent evolution. To better understand the mechanistic basis of highland adaptation, we crossed maize landraces 
from 108 highland and lowland sites of Mexico and South America with the inbred line B73 to produce F1 hybrids and 
grew them in both highland and lowland sites in Mexico. We identified thousands of genes with divergent expression 
between highland and lowland populations. Hundreds of these genes show patterns of convergent evolution between 
Mexico and South America. To dissect the genetic architecture of the divergent gene expression, we developed a no
vel allele–specific expression analysis pipeline to detect genes with divergent functional cis-regulatory variation be
tween highland and lowland populations. We identified hundreds of genes with divergent cis-regulation between 
highland and lowland landrace alleles, with 20 in common between regions, further suggesting convergence in 
the genes underlying highland adaptation. Further analyses suggest multiple mechanisms contribute to this conver
gence in gene regulation. Although the vast majority of evolutionary changes associated with highland adaptation 
were region specific, our findings highlight an important role for convergence at the gene expression and gene regu
lation levels as well.
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Introduction
Highland maize is cultivated in cold, mountainous regions 
worldwide, at altitudes of up to 4,000 m above sea level 
(masl) and with mean growing season temperatures below 
20 °C (Lothrop 1994; Hartkamp et al. 2000). The 
International Maize and Wheat Improvement Center 
(CIMMYT) estimates that >6 million hectares (Mha) are 
used for highland maize production worldwide, mainly 
in developing countries where it is grown by smallholder 
farmers as one of the main sources of calories in their 
diet (Lothrop 1994; Zambrano et al. 2021). Mexico (∼2.9 
Mha, 46.6%) and South America (∼0.6 Mha, 9.4%) are 
two major highland maize-producing regions and are 

geographically separated from each other. Highland maize 
landraces (open-pollinated traditional varieties) in central 
Mexico and South America have distinct morphologic 
characteristics from lowland tropical or temperate germ
plasm (Janzen et al. 2022), including purple stems, droop
ing leathery leaves, weak roots, tassels with few branches, 
conical-shaped ears (Anderson and Cutler 1942), and a 
changed biochemical response to UV radiation (Casati 
and Walbot 2005). They also have other specific character
istics that make them suitable to live in high-elevation cli
mates, including frost tolerance and improved seedling 
emergence, growth, and grain filling at low temperatures 
(Eagles and Lothrop 1994).
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These consistent differences between highland and low
land landraces indicate that highland maize has undergone 
considerable local adaptation since its introduction to 
highland environments in the past 6,200 years (Piperno 
and Flannery 2001). However, we still know little about 
the genetic basis of highland adaptation in maize: What 
genes were involved? Was adaptation driven by standing 
genetic variation or novel alleles? Is the genetic basis of 
adaptation independent between populations from differ
ent geographic regions? Recent population genetic studies 
have begun to paint a complex and divergent picture of 
highland adaptation between Mexican and South 
American maize. Genome-wide single-nucleotide poly
morphism (SNP) data show strong population structure 
in maize landraces from Mesoamerica and South 
America (Van Heerwaarden et al. 2011; Takuno et al. 
2015). Several studies using population genetic data 
(Hufford et al. 2013; Pyhäjärvi et al. 2013; Calfee et al. 
2021; Barnes et al. 2022) identified genomic loci that 
were introgressed from a wild ancestor of maize, Zea 
mays ssp. mexicana (hereafter mexicana) found exclusively 
in the highlands of central and northern Mexico (De Jesús 
Sánchez González et al. 2018), suggesting that alleles con
tributing to highland adaptation may have been acquired 
by crossing with pre-adapted relatives. Three of these loci 
have been well characterized: Inv4m (Hufford et al. 2013; 
Crow et al. 2020), mhl1 (Hufford et al. 2013; Calfee et al. 
2021), and HPC1 (Barnes et al. 2022), and the mexicana al
leles are found almost exclusively in landraces from the 
Mexican highlands. Wang et al. (2017) found no evidence 
for substantial spread of mexicana haplotypes to South 
America and Takuno et al. (2015) found <1.8% of SNPs 
and 2.1% of genes showing evidence for convergent evolu
tion between Mesoamerican and South American high
land populations. However, in a recent genome-wide 
scan with high-density SNPs, Wang et al. (2021) identified 
10,199–11,345 SNPs and 1,651–2,015 genes with evidence 
for population divergence between highland and counter
part lowland populations in Central America and South 
America, respectively, including 10.7% of SNPs, 15.0% of 
genes, and flowering time pathway showing evidence of 
convergent adaptation between Andes and Mexican high
land landrace populations. The extent of convergence in 
adaptation to highlands is important because it can indi
cate whether alleles beneficial for highland adaptation in 
one geographic region are likely to also be beneficial in an
other or whether adaptation is likely constrained by a lim
ited set of possible loci or if multiple different adaptive 
paths are available (Lee and Coop 2017; Wang et al. 2021).

Population genetic scans using SNP markers can effi
ciently discover loci that have diverged between popula
tions, indicating a potential role in adaptation. However, 
discovering mechanisms controlled by these loci remains 
a challenge. Although predicting the function of protein- 
coding variants is possible, we have little ability to predict 
the function of non-coding variants, including those affect
ing gene regulation. For example, although the 13 Mb 
Inv4m locus has been known about for more than a decade 

(Hufford et al. 2013) and appears to play a role in flowering 
time (Romero Navarro et al. 2017), the mechanisms under
lying its role remained unclear. Gene expression analysis 
can provide a link between sequence variation and mo
lecular mechanisms, particularly by discovering expression 
patterns of groups of genes that share common biologic 
functions or attributes (Maleki et al. 2020). Crow et al. 
(2020) developed two populations segregating for high
land and lowland alleles at this locus and measured gene 
expression effects of the locus across nine tissues. They 
identified 39–607 genes per tissue that were consistently 
regulated by Inv4m in both families, and gene set enrich
ment analyses suggested a role of the locus in the regula
tion of photosynthesis and several other biologic 
processes. Other studies have begun to use gene expres
sion to study the process of highland adaptation in maize 
as well. Kost et al. (2017) measured expression variation 
among landraces from three distinct elevational zones 
(highland, midland, and lowland) and identified two co- 
expression modules correlated with temperature-related 
environmental parameters. Aguilar-Rangel et al. (2017)
used allele-specific expression (ASE) to study cis-regulatory 
divergence between the highland landrace Palomero 
Toluqueño and the modern inbred B73 and identified 
2,386 genes with divergent expression caused by the differ
ent genotypes. These expression studies are limited, how
ever, in their ability to describe the complexity and genetic 
architecture of gene regulatory adaptation at the popula
tion level where evolution occurs.

In this study, we used population-level -ASE analyses to 
identify gene expression traits that have diverged between 
highland and lowland populations of Mexican and South 
American maize landraces. We selected maize landraces 
from 108 highland and lowland sites that cover broad 
growing regions of highland maize in Mexico and South 
America and crossed them with a common inbred line 
B73 to produce F1 hybrids (F1s). We planted the F1 families 
at two locations that represented highland and lowland 
environments in Mexico. Our primary objectives were to 
(1) identify genes that show evidence for adaptive diver
gence in cis-regulation between high and low elevation 
landraces in Mexico and South America; (2) identify candi
date gene pathways and functional groups that underwent 
directional selection for gene regulation during adaptation 
to highland climates; and (3) gain insights into the conver
gent evolutionary patterns of highland adaptation be
tween populations in Mexico and South America. We 
first identified thousands of genes with divergent expres
sion between highland and lowland populations, of which 
hundreds show patterns of convergent evolution between 
Mexico and South America. We then differentiated the 
two alleles of each gene using ASE and identified genes 
with divergent cis-regulation between highland and low
land alleles. We used the term convergence to define the 
repeated evolution of similar phenotypic differences be
tween highland and lowland populations in both Mexico 
and South America (Arendt and Reznick 2008). To achieve 
the population-level ASE analysis, we developed a novel 
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analysis pipeline that can accurately measure the ASE of 
each individual at the gene level using RNAseq data. We 
discovered hundreds of genes with divergent cis-regulation 
between highland and lowland landrace alleles in the 
Mexican and South American populations, respectively. 
Of these, 20 genes were in common between populations, 
suggesting a low level of convergence at the gene regula
tion level underlies highland adaptation in maize.

New Approaches
Allelic read counts are the starting point of all ASE analyses 
(Castel et al. 2015). Most ASE analyses have been done ei
ther based on individual SNPs (Shao et al. 2019; Zhou et al. 
2019; Li et al. 2021) or by integrating allelic read counts 
across SNPs within a gene (Lemmon et al. 2014; Fan 
et al. 2020). Gene-level ASE ratios are more robust because 
they are based on more total reads, and in a population 
sample, SNP-level ASE ratios cannot reliably be compared 
across individuals because many SNPs are individual specif
ic. Therefore, most existing studies using ASE have been 
based on a single F1 individual (Aguilar-Rangel et al. 
2017; Shao et al. 2019; Zhou et al. 2019; but see Lemmon 
et al. 2014 who used 29 F1s from different maize and teo
sinte parents to study the genetics of maize domestica
tion), so the generality of the discoveries to whole 
populations was unclear.

We have developed a novel analysis pipeline that can 
accurately measure ASE of each individual at the gene level 
using RNAseq data alone, and efficiently detect genes with 
common functional variation in cis-regulatory regions that 
have diverged between populations. First, we crossed 
maize landraces from 108 highland and lowland sites in 
Mexico and South America with a common inbred line 
B73 to produce F1 hybrids and took advantage of this gen
etic design to phase heterozygous SNPs of each F1 sample 
based on the B73 reference genome. Then, we extracted 
reads that were assigned to either of the two parental ori
gins at all overlapping loci with heterozygous SNPs into 
separate BAM files and counted the reads overlapping 
each gene feature in each BAM file. These gene counts 
are the allelic expressions of the maternal and paternal 
alleles of each gene, respectively. Finally, we tested for 
cis-regulatory divergence between highland and lowland 
populations in the Mexican and South American popula
tions by analyzing the average difference in landrace ASE 
(relative to B73 ASE) between F1s derived from highland 
and lowland landraces.

Our methodology can efficiently detect genes showing 
cis-regulatory divergence between populations. In add
ition, gene-level ASE ratios estimated with our method 
can be used to identify gene–trait relationships relevant 
to hybrid breeding through transcriptome-wide associ
ation studies (TWASs). In such programs, candidate lines 
are evaluated by crossing to common testers. TWAS using 
ASE can pinpoint causal gene regulatory traits underlying 
key performance traits of interest, enabling further tar
geted gene editing for genetic improvement.

Results
Geographical Origins and Population Structure 
of Maize Landraces
We selected 108 maize landraces from CIMMYT’s germ
plasm bank representing highland and lowland sites (one 
landrace accession per site) across broad geographical re
gions of Mexico and South America where maize landraces 
are cultivated (fig. 1A; supplementary table S1, 
Supplementary Material online). Individuals from highland 
(>2,000 masl) and lowland (<1,000 masl) sites were paired 
latitudinally (within 1° latitude) and chosen such that all 
pairwise distances were >50 km (fig. 1A).

We did whole-genome skim sequencing of a single plant 
of each of these 108 landraces and performed a principal 
component (PC) analysis (PCA, fig. 1B) to study the genet
ic structure of the landraces. The first two PCs separated 
the landraces into four populations (Mexican Highland, 
Mexican Lowland, South American Highland, South 
American Lowland). The genomic relationships of the 
108 maize landraces estimated here were consistent with 
Janzen et al. (2022) who used a different individual from 
each of the same landrace populations genotyped with 
DArTseq-Based SNP markers (Wenzl et al. 2004). Our re
sults were also consistent with patterns of genetic struc
ture reported by Van Heerwaarden et al. (2011) using a 
small SNP panel of 1,127 accessions of maize landraces.

Highland and Lowland Landraces Show Widespread 
Divergences in Gene Expression
We measured gene expression (total expression of both al
leles) in F1 hybrids derived from the 108 landraces de
scribed above in two leaf-derived tissues sampled from 
two locations: leaf tip and leaf base samples from a fully ex
panded leaf of a V4 plant from each F1 family in each of 
two field blocks at the highland site in Metepec, Mexico 
at 2,620 masl, and leaf tip samples from a comparably 
staged leaf from a single plant from each F1 family in a sin
gle field block at the lowland site in Puerto Vallarta, 
Mexico at 7 masl. These tissues (hereafter site:tissues) are 
labeled MetLeaftip, MetLeafbase, and PvLeaftip below. In 
each of these three site:tissues, we tested for differences 
in the expression of each expressed gene between 
highland- and lowland-derived F1s separately for the 
Mexican and South American populations, accounting 
for sampling effects due to time of collection and collec
tion team, and leveraging shared signals across site:tissues 
using multivariate adaptive shrinkage (mash; Urbut et al. 
2019). In total, we discovered 4,432 and 1,816 
(supplementary tables S2 and S3, Supplementary 
Material online, ) genes with differential expression be
tween highland- and lowland-derived F1 plants from the 
Mexican and South American continents, respectively, 
using a 5% local false sign rate (lfsr) threshold for declaring 
significance. Breaking these lists down by site:tissue, we dis
covered 1,278, 3,716, and 319 genes with divergent high
land expression in the Mexican F1 families in MetLeaftip, 
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MetLeafbase, and PvLeaftip, and 715, 1,626, and 368 genes 
with divergent highland expression in the South American 
F1 families (fig. 2A, supplementary fig. S1, Supplementary 
Material online). We detected many more genes with 
differential expression between highland and lowland 
landraces on each continent than between the Mexican 
and South American populations on average (total of 
124 genes, supplementary table S3, Supplementary 
Material online), or that were associated with latitude on 
either continent (total of 60 and 131 genes in the 
Mexican and South American populations, respectively, 
supplementary table S3, Supplementary Material online). 
However, many more genes showed significant changes 
in expression during the ∼1.5 h sampling window within 
each site:tissue (a total of 18,844 out of the 21,599 genes 
assayed across the 3 site:tissues, supplementary table S3 
and fig. S2, Supplementary Material online), suggesting 
that the transcriptome-wide consequences of elevation 
adaptation were smaller than diel expression variation 
during the course of a morning.

Among these genes with differential expression in high
land populations, a small minority were significantly asso
ciated with elevation in the F1 families of both continents. 
One-hundred and thirty-one, 429, and 30 were detected in 
both continents per site:tissue, representing 18%, 26%, and 
8% of the lesser of the number of significant genes from ei
ther continent (fig. 2A, supplementary fig. S1 and table S4, 
Supplementary Material online). However, despite being a 
relatively small overlap, this is many more than expected 
by chance (P = 2.74 × 10−25, 1.12 × 10−17, and 3.28 × 
10−12 per site:tissue, respectively), and if we relax the sig
nificance threshold, the overlap percentage grows consid
erably larger. Furthermore, of the genes with significant 
responses to elevation on both continents, both the direc
tion and magnitude of expression difference between 

highland and lowland populations was highly correlated 
(fig. 2B, supplementary fig. S3, Supplementary Material on
line). Although the estimated highland effects were posi
tively correlated for all genes (r = 0.22, 0.26, and 0.20), 
the effects of genes with significant effects in both popula
tions were much higher (r = 0.96, 0.94, and 0.97). We thus 
considered the 126, 411, and 30 genes exhibiting identical 
directional change of expression as having convergent evo
lution of gene expression between the two continents.

Because previous studies of highland adaptation in 
maize have described earlier flowering as a characteristic 
of highland landraces (Romero Navarro et al. 2017; Wang 
et al. 2021; Janzen et al. 2022), we inspected a list of maize 
of 886 flowering time genes and candidates aggregated by 
Li et al. (2016) and Swarts et al. (2016). Of these, 17 showed 
convergent expression differences in F1 families from both 
continents (table 1, fig. 2C, supplementary fig. S4, 
Supplementary Material online), including four well- 
known transcription factors and ZCN8 that contributes 
to early flowering during highland adaptation (Guo et al. 
2018). Additionally, phosphatidylglycerols have been 
linked to the regulation of flowering through the seques
tration of florigen in phloem cells (Susila et al. 2021), and 
we found 31 (false discovery rate [FDR] = 2.4 × 10−4) and 
12 (FDR = 0.27) differentially expressed genes 
(supplementary table S5, Supplementary Material online) 
labeled with the Gene Ontology (GO) term “phosphatidyl
glycerol biosynthetic process” (GO:0006655) associated 
with elevation from the Mexican and South American con
tinents, respectively, using a 5% lfsr to declare differentially 
expressed genes. All of these differentially expressed genes 
were down-regulated in the highlands in both populations, 
consistent with earlier flowering. If we relax the signifi
cance threshold, for example, lfsr = 0.2, the differentially 
expressed genes mapped to GO:0006655 and down- 

A B

FIG. 1. The Geographical origins (A) and genomic relationships (B) of the 108 maize landraces used as paternal parents of the F1 populations. MH, 
Mexican Highland; ML, Mexican Lowland; SH, South American Highland; SL, South American Lowland. In (A), the larger dots represent physical 
positions of the two field trials, and the smaller dots represent physical positions where the 108 maize landraces were collected.
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regulated in the highlands in both populations grow to 50 
(FDR = 7.8 × 10−7) and 36 (FDR = 5.9 × 10−6) with 30 in 
common (supplementary table S5, Supplementary 
Material online). These results further support Wang 
et al. (2021) finding of convergent evolution of flowering 
regulation along elevational gradients in Mexico and 
South America.

Beyond flowering regulation, the long lists of differen
tially expressed genes (supplementary table S2, 
Supplementary Material online) themselves are difficult 
to parse for insights into highland elevation. Therefore, 
to summarize these results, we tested for enrichment of 
GO categories (Wimalanathan et al. 2018) and KEGG 
(Kanehisa et al. 2021) and CornCyc (Hawkins et al. 2021)  
pathways among the lists of significant genes, measuring 
enrichment separately for up-regulated and down- 
regulated highland genes in each site:tissue. A total of 
763 GO categories, 38 KEGG pathways and 3 CornCyc 
pathways were significantly enriched in at least one site:tis
sue at a 5% FDR (supplementary table S6, Supplementary 
Material online). The most significant GO terms were 

thylakoid (GO:0009579), plastid envelope (GO:0009526), 
chloroplast envelope (GO:0009941).

Of these functional GO categories, 16 were identified in 
F1 families from both continents, and 10 of them were 
similarly enriched with up-regulated or down-regulated 
genes on both continents suggesting that the evolutionary 
changes were convergent (fig. 2D). Confirming the results 
above, categorical enrichments of the genes individually 
declared to show convergent expression evolution identi
fied 6 and 15 terms in MetLeaftip and MetLeafbase (fig. 2E, 
supplementary table S7, Supplementary Material online), 
respectively, including the terms positive regulation of 
flower development (GO:0009911) and chloroplast organ
ization (GO:0009658), and also including endoplasmic re
ticulum (ER) retention sequence binding (GO:0046923).

To explore whether the gene expression changes could 
be partially explained by alterations in cell-type composi
tions of leaf tissues, we used a set of marker genes for seven 
cell populations identified by single-cell sequencing of a 
maize leaf (Bezrutczyk et al. 2021) to estimate relative 
cell population sizes in each sample. The first two PCs of 

A B C

D E

FIG. 2. Results of gene expression analyses. (A) Numbers of differentially expressed genes between highland and lowland populations from 
Mexico and South America and common genes detected in both continents in the MetLeaftip tissue. The small inset in the overlapping region 
shows genes significant in both populations, but with opposite directions of expression change. (B) Correlation of Posterior Mean highland ef
fects between Mexican and South American population for all genes measured for gene expression and a subset of genes showing evidence of 
convergent evolution (highlighted in red) in the MetLeaftip tissue. (C ) Expression of flowering-related genes in the Mexican Highland (ML), 
Mexican Lowland (ML), South American Highland (SA), and South American Lowland (SL) populations in the MetLeaftip tissue. These 
flowering-related genes are identified by looking for overlapping between the convergent genes and maize flowering time candidate genes ag
gregated by Li et al. (2016) and Swarts et al. (2016). (D) FDR of 16 GO terms that are significant in both Mexican and South American populations 
across three site:tissue. The size of each triangle indicates the enrichment ratio of this GO term, defined as ratio of number of differentially ex
pressed genes in a GO category divided by the size of the category. We tested up-regulated and down-regulated differentially expressed genes 
separately and triangles and upside-down triangles represent up-regulated and down-regulated GO categories, respectively. (E) GO categorical 
enrichments of the genes individually classified as having convergent expression evolution in MetLeaftip and MetLeafbase.
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our cell population scores clearly separated the three site: 
tissues (fig. 3A), and the scores explained significantly 
more variation among samples than expected from ran
dom subsets of genes (fig. 3B), suggesting that these 
gene sets captured meaningful variation, even if the precise 

identities of the cell populations are not clear. The first PC 
of the cell population scores of the MetLeafbase sample 
were also unevenly distributed across the field, suggesting 
spatial variation in leaf anatomy or developmental stage. 
However, within each range of the field the highland and 

Table 1. Seventeen Flowering-related Genes that Showed Convergent Expression Differences Between Highland- and Lowland-derived F1 Families From 
Mexican and South American Populations.

Gene ID Gene Name Chr Position (bp) Description Expression changes in  
highland genotypes

References

Zm00001d022088 MADS67 7 169,844,061 MADS-transcription factor 67 Up Li et al. (2016)
Zm00001d010752 PEBP8/ZCN8 8 126,880,531 Phosphatidylethanolamine-binding protein8 Up Swarts et al. (2016)
Zm00001d038725 PEBP7/ZCN7 6 163,368,049 phosphatidylethanolamine-binding protein7 Up Swarts et al. (2016)
Zm00001d010987 RAP2 8 136,009,216 rap2—rap2.7 orthologue (transcription factor) Down Swarts et al. (2016)
Zm00001d025099 10 103,947,429 Up Li et al. (2016)
Zm00001d016506 cl27878_1 5 165,302,124 Down Li et al. (2016)
Zm00001d048474 MADS1/ZMM5 9 156,960,598 transcription factor Down Swarts et al. (2016)
Zm00001d049543 CCA1 4 34,070,590 Down Swarts et al. (2016)
Zm00001d051951 4 175,147,743 Down Li et al. (2016)
Zm00001d014990 RUP1 5 71,267,717 repressor of UV-B photomorphogenesis homolog1 Down Li et al. (2016)
Zm00001d015293 5 82,992,330 Up Li et al. (2016)
Zm00001d005814 2 189,518,235 Down Li et al. (2016)
Zm00001d040323 CAL2 3 38,197,170 calmodulin2 Up Li et al. (2016)
Zm00001d022558 7 180,004,346 Up Li et al. (2016)
Zm00001d023833 10 23,764,459 Down Li et al. (2016)
Zm00001d046935 9 111,766,412 Down Li et al. (2016)
Zm00001d012119 JMJ11 8 168,442,999 JUMONJI-transcription factor 11 Up Li et al. (2016)

NOTE.—Position (bp) represents starting physical position of a gene (bp; B73 AGPv4).

A C

B

FIG. 3. Cell type proportion inference. (A) Each point represents a single RNA sample, colored by the site:tissue and positioned according to its 
coordinates on the first two PC axes of the projections onto seven sets of cell-type-specific genes identified by Bezrutczyk et al. (2021) in maize 
leaves. (B) The highest point in each column shows the standard deviation of the cell-type projection scores within each tissue. Box plots show 
the distribution of 200 randomized projection scores based on random sets of genes. (C ) Distributions of the PC1 coordinates for the 
MetLeafbase samples, separated by population and range of the field.
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lowland samples from the Mexican population were clear
ly differentiated, and highland and lowland samples from 
the South American population were also clearly differen
tiated across 3/5 of the field (fig. 3C), suggesting that there 
were consistent anatomical differences between highland 
and lowland leaves. These anatomical differences likely 
cause the appearance of differential expression because 
different cell populations express genes at different levels.

We attempted to control for these anatomical differ
ences when testing for differential expression between high
land and lowland accessions by including the cell 
population scores as covariates. In these models, the num
ber of differentially expressed genes and enriched GO terms 
dropped significantly (a total of 648 genes and 0 GO terms 
were significant for elevation in the Mexican population, 
and a total of 1,182 genes and 68 GO terms were significant 
for elevation in the South American population, 
supplementary table S8, Supplementary Material online) 
suggesting that anatomical differences were the primary 
driver of expression differences observed above, at least 
for the Mexican population. However, the differential ex
pression of flowering-related genes remained significant 
even after accounting for these anatomical differences.

Development of a Novel Allele–Specific Expression 
Analysis Pipeline to Identify Genetic Loci Underlying 
Morphologic and/or Transcriptomic Differences 
Between Highland and Lowland Landraces
The gene expression analysis results above point to a di
verse set of expression traits associated with highland 
adaptation in Mexican and South American landraces; 
however, the genetic architecture of these differences re
mains unclear. Although differential gene expression ana
lyses can detect differences in thousands of expression 
traits, it remains possible that a small number of genetic 
loci might be responsible for most of these changes 
(Crow et al. 2020). On the other hand, differences in ex
pression between the two allelic copies of each gene in 
each F1 individual can only be caused by differences in 
the local cis-regulatory region around each gene (Sun 
and Hu 2013), as trans-acting regulatory elements will im
pact both alleles. Therefore, we used ASE (defined as the 
ratio of landrace allelic count to B73 allelic count) to 
scan the genome for genes that have undergone diver
gence in the cis-control of gene expression between high
land and lowland landraces.

To resolve major challenges (supplementary text, 
Supplementary Material online) for ASE detection across 
individuals at the gene level when only RNAseq data are 
available, we took advantage of our genetic design involv
ing the 108 F1 hybrids all crossed to the same tester line 
B73 (fig. 4). We developed a novel analysis pipeline for dir
ectly counting allelic reads at the gene level in each F1 in
dividual. Briefly, our pipeline included three parts: First, we 
identified a set of high-confidence SNPs between any of 
the landrace parents and B73 from our low-coverage 
whole-genome sequencing (WGS) data. Next, we used 

the RNAseq data to genotype and phase these SNPs within 
each F1 sample. Finally, we counted the number of reads 
confidently assigned to either the B73 reference or land
race genome, accounting for allelic mapping bias using 
the WASP algorithm (Van De Geijn et al. 2015). Full details 
are available in the Materials and Methods.

To assess the reliability of our pipeline, we performed 
three validation analyses. First, the distribution of 
log2ASE ratios across all genes was approximately symmet
ric around zero for each sample, suggesting that we did not 
have strong reference bias toward the B73 allele 
(supplementary fig. S5A, Supplementary Material online). 
In contrast, less stringent filtering of SNPs led to strong ref
erence allele bias (supplementary fig. S5B, Supplementary 
Material online). Second, the ASE values from our real 
data had much more variation than expected by counting 
variance alone, suggesting the observed variation is due to 
biology (supplementary fig. S6, Supplementary Material
online). Finally, the correlation of ASE between samples 
collected from two different individuals from the same 
F1 family was high for genes in genomic regions where 
the two individuals shared the same haplotype but 
much lower for genes in genomic regions where the two 
individuals did not share the same haplotype 
(supplementary fig. S7, Supplementary Material online). 
Full details are available in the supplementary results, 
Supplementary Material online.

Detection of Differential cis-regulation of Landrace 
Alleles Between Highland and Lowland Landrace 
Populations
We tested for cis-regulatory divergence at the population 
level between highland and lowland alleles in the Mexican 
and South American populations by comparing ASE ratios 
among samples for each gene. We refer to this as differen
tial ASE (DASE) analysis. In total, we identified 341 and 260 
genes (fig. 5, supplementary tables S9 and S10, 
Supplementary Material online) with DASE between 
highland- and lowland-derived F1 plants from the 
Mexican and South American continents, respectively, in 
at least one site:tissue by meta-analysis using a 5% lfsr 
threshold. The number of genes that were significantly dif
ferentiated in ASE between highland and lowland land
races on each continent was slightly higher than the 
number of genes that were differentially expressed be
tween the Mexican and South American populations on 
average (249, supplementary table S10, Supplementary 
Material online) and was much higher than the number 
of genes that were associated with latitude on either con
tinent (17 and 23 in the Mexican and South American po
pulations, respectively, supplementary table S10, 
Supplementary Material online). However, more genes 
showed significant changes in ASE during the ∼1.5 h sam
pling window within each site:tissue (760 genes across the 
3 site:tissues, supplementary table S10, Supplementary 
Material online), which was consistent with our observa
tions in the gene expression analysis above.
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Subsequently, we inspected the three loci with known 
genetic differentiation between highland and lowland land
races in Mexico: Inv4m, mhl1, and HPC1. There were 13 and 
2 DASE genes detected inside the Inv4m and mhl1 regions in 
the Mexican population, but only one gene with weak evi
dence (lfsr = 0.03) in the mhl1 region in the South American 
population (fig. 5). This is consistent with our knowledge 
that the mexicana-to-maize introgression mainly happened 
in Mexican highlands (Hufford et al. 2013; Pyhäjärvi et al. 
2013; Wang et al. 2017; Crow et al. 2020; Calfee et al. 
2021). The differences of landrace ASE were not significant 
in the HPC1 gene in either population.

Beyond the genes detected in the genomic regions that 
have been characterized (Hufford et al. 2013; Pyhäjärvi 
et al. 2013; Crow et al. 2020; Barnes et al. 2022), the remain
ing genes with differentiated cis-regulation between high
land and lowland landrace alleles had not been reported in 
previous studies and were distributed through all ten chro
mosomes with no obvious clustering (fig. 5). We compared 
this list of genes (i.e., DASE), to the genes previously iden
tified with differential gene expression (i.e., DE), between 
highland and lowland landraces. Of the 4,432 and 1,816 
DE genes detected in the Mexican and South American 
populations, respectively, roughly 70% (3,364 and 1,235) 
were successfully assayed for ASE (supplementary fig. 
S8A, Supplementary Material online). One-hundred and 
sixty-eight and 91 genes were detected in both differential 

gene expression analysis and differential allele-specific ana
lysis (supplementary fig. S8B, Supplementary Material on
line), which account for 50% and 35% of the total numbers 
of DASE genes detected in the two populations and are 
many more than expected by chance (P = 8.67 × 10−49, 
2.27 × 10−47 for Mexican and South American popula
tions, respectively).

Convergent cis-regulatory Evolution Between 
the Mexican and South American Populations
Among these genes that were significantly differentiated in 
ASE between highland and lowland populations (fig. 5, 
supplementary table S9, Supplementary Material online), 
20 were significantly associated with elevation in the F1 

families of both continents, representing 8% of the lesser 
of the number of significant genes from either continent 
(fig. 6A, table 2). However, despite being a relatively small 
overlap, this is many more than expected by chance (P = 
8.74 × 10−6). In addition, each of the 20 genes showed 
the same direction of changes of ASE between highland 
and lowland populations in both continents and the esti
mated highland effects of the 20 genes (r = 0.93) were 
much more highly correlated between continents than 
that of all measured genes (r = 0.12, fig. 6B). Therefore, 
we classified these 20 genes as showing convergent cis- 
regulatory evolution between the two continents.

FIG. 4. The analysis pipeline for gene-level allelic read count. AGPv4, B73 reference genome version 4; bams, bam files; LR, landrace; MH, Mexican 
Highland; ML, Mexican Lowland; SH, South American Highland; SL, South American Lowland; WGS, whole-genome sequencing.
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To understand the biologic functions of the 20 DASE 
genes that were significantly associated with elevation in 
both continents, we searched their annotation from the 
Gramene database (Tello-ruiz et al. 2022) and their charac
terized function from maizeGDB (Woodhouse et al. 2021). 
Five of them have gene names from the maizeGDB, and 
at least three of them are transcription factors (table 2). 
The gene Zm00001d041711 encodes auxin binding protein 
1 (ZmABP1), which binds auxin and is a receptor for 
a number of auxin responses (Sauer and Kleine-Vehn 
2011). The genes Zm00001d027874, Zm00001d028936, and 
Zm00001d040775 encode nuclear transcription factor Y sub
unit A1 (NFYA1), bZIP-transcription factor bZIP52, and 
GATA-transcription factor GATA27, respectively. These 
transcription factors and transcription factor families 
play important roles in plant development, growth, and 
abiotic stress responses (Zhang et al. 2016; Guo et al. 
2021; Zhang et al. 2021; Li et al. 2022).

For each of the 20 genes that showed consistency in both 
expression scales and directions in the two continents (fig. 6C, 
table 2), we performed a PC analysis of the landraces based on 
SNPs called from the WGS data. We analyzed eight genes with 
more than ten SNPs each and found that landraces were 

separated by elevation for at least six genes. Highland land
races from Mexico and South America were clustered to
gether for ABP1, Zm00001d046218, Zm00001d041719, and 
Zm00001d021306 and showed divergence for Zm 
00001d021580 and bZIP52 (fig. 6D).

Identifying Links Between DASE and DE
While cis-regulatory variation should contribute to the to
tal gene expression variation among samples, other sources 
of variation due to developmental, environmental, or trans- 
regulatory variation may dominate the gene expression 
variation for many genes (Liu et al. 2019). We observed gen
erally positive correlations between log2ASE and 
log2Expression for most genes in each site:tissue 
(supplementary fig. S9, Supplementary Material online). 
The correlation between log2ASE and log2Expression in
creased when we accounted for technical factors (sampling 
group, order of sampling, and block), and cell type compos
ition. However, for the majority of genes, log2ASE only ex
plained a few percent of the total expression variation.

As several of our candidate genes for cis-regulatory 
adaptation are transcription factors, we used the 

A

B

FIG. 5. Manhattan plots showing the local false sign rate (lfsr) of the meta-analysis with mash for detecting differential ASE between highland and 
lowland landraces in the (A) Mexican and (B) South American F1 populations, expressed as −log 10 (lfsr). The lfsr is analogous to a FDR but more 
stringent (Stephens 2017). Each dot represents a gene. The dashed line in each plot indicates the significant level at lfsr < 0.05. Blue dots under 
each locus name highlight genes within the three prior-identified loci: HPC1, Inv4m and mhl1. Mex, Mexican F1 population; SA, South American 
F1 population.

9

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac239#supplementary-data
https://doi.org/10.1093/molbev/msac239


Hu et al. · https://doi.org/10.1093/molbev/msac239 MBE

MaizeGRN data set (Zhou et al. 2020) which contains 
predicted gene regulatory networks for ∼2,000 tran
scription factors based on co-expression results across 
multiple maize data sets. For each transcription factor 
network, we used goseq as described above to test 
whether the network was enriched for up- or down- 
regulated genes between highland and lowland popu
lations. A total of 216 networks were significantly 
enriched in the Mexican population and 55 in the 
South American population in at least one site:tissue 
(supplementary table S11, Supplementary Material

online). However, we did not find any examples of 
these networks with transcription factors for which 
we observed significant divergence in cis-regulatory al
leles in either population.

Discussion
Complex Process of Maize High-elevation Adaptation
Previous studies have demonstrated substantial differ
ences in phenotype (Anderson and Cutler 1942; Eagles 
and Lothrop 1994; Janzen et al. 2022) and gene expression 

A

C

D

B

FIG. 6. Results of ASE analyses. (A) Numbers of genes showing cis-regulatory divergence between highland and lowland populations from Mexico 
and South America and common genes detected in both continents. (B) Correlation of estimated highland effects between Mexican and South 
American populations for all genes measured for ASE and a subset of 20 genes showing evidence of convergent evolution (highlighted in red). (C ) 
ASE values of 8 of the 20 convergent genes in the Mexican Highland (ML), Mexican Lowland (ML), South American Highland (SA), and South 
American Lowland (SL) populations. The 8 genes were selected based on a threshold of >10 SNPs from the landrace parents in each of the 20 
convergent genes. (D) PC analysis of the landraces based on SNPs called from the whole-genome sequencing data for each of eight genes with 
more than ten SNPs.
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(Kost et al. 2017; Aguilar-Rangel et al. 2017; Crow et al. 
2020) between highland and lowland maize. However, 
the genetic architecture of regulatory variants that control 
these phenotypic and expression traits is still unclear and 
cannot be directly determined either with analyses of se
quence variation or differential gene expression analysis. 
Differential gene expression studies cannot identify how 
many independent loci across the genome control expres
sion of these genes because a single locus could plausibly 
affect the expression of every other gene in the genome 
by altering processes like cellular physiology, tissue anat
omy, or organismal level development. ASE, in contrast, 
as studied in the maize highland adaptation context by 
Aguilar-Rangel et al. (2017), is not sensitive to these trans- 
regulatory mechanisms because the two alleles of a gene 
are always observed in the same cellular environment. 
Therefore, most genes identified by Aguilar-Rangel et al. 
(2017) are likely controlled by distinct functional variants 
in cis to each gene. However, as this study used only a sin
gle highland and a single lowland genotype, it is unclear 
which of the cis-regulatory differences they observed are 
common in highland populations and which may be un
ique to this particular lineage.

Therefore, we used population-level ASE analysis, which 
allows us to count at least a lower bound of the number of 
independent genetic loci that have diverged between high
land and lowland populations. Of the 13,632 genes we suc
cessfully assayed for ASE in at least one site:tissue, 341 and 
260 genes (fig. 6A) showed significantly differential allele- 
specific regulation between highland and lowland popula
tions in Mexico and South America, respectively, and these 
genes were distributed across all 10 chromosomes with no 
obvious clustering (fig. 5). It is reasonable to expect more 
DASE genes would be detected if all the 36,207 expressed 
genes in maize (Hoopes et al. 2019) were analyzed across 

multiple tissues. Moreover, all leaf tissues were sampled 
∼4 h after sunrise in the morning, and other genes might 
show divergent patterns at other times of the day, or under 
different weather conditions. Furthermore, as our DASE 
analysis cannot detect functional variants in protein se
quence or activity, for example, transcription factor 
DNA-binding affinity or other trans-regulatory variants, 
our list of candidate regulatory variants is clearly an under
estimate of the total genetic architecture underlying high
land adaptation. For example, recent studies have 
estimated that 70% or more of total expression variation 
in any gene is caused by trans-effects, not cis-effects (Liu 
et al. 2019). While some of these trans-effects may be 
caused by cis-effects on upstream genes, we have likely un
derestimated the number of functional variants that differ 
between highland and lowland maize populations.

Evolutionary Patterns of Maize Highland Adaptation 
in Mexico and South America
We found a small proportion of genes for which differen
tial gene expression and/or ASE were detected in both the 
Mexican and South American populations (fig. 2A, 
supplementary fig. S1, Supplementary Material online). 
Even when assaying higher level processes through GO cat
egories or KEGG pathways, we found little evidence of 
shared patterns among the loci with gene expression diver
gence. Takuno et al. (2015) investigated the molecular ba
sis of convergent adaptation in maize to highland climates 
in Mesoamerica and South America and found limited evi
dence for convergent evolution at the nucleotide level. 
Using high-depth resequencing data to investigate demo
graphic change during highland adaptation, Wang et al. 
(2017) detected introgression from mexicana- 
to-maize landraces in the highlands of Mexico, 

Table 2. Twenty Genes with Convergent Highland cis-regulatory Evolution in Both the Mexican and South American Populations.

Gene Model Gene Name Chr Position (bp) Description

Zm00001d032370 1 224,157,746 Co-chaperone protein p23-1
Zm00001d021306 7 148,361,780 ER lumen protein retaining receptor B
Zm00001d010995 8 136,175,479 Thylakoid membrane protein TERC, chloroplastic
Zm00001d046218 9 72,602,369 Protein NDL1
Zm00001d030623 1 149,354,547 Solute carrier family 40 member 3, chloroplastic
Zm00001d016736 5 174,721,846 2-Cys peroxiredoxin BAS1-like, chloroplastic
Zm00001d041711 ABP1 3 134,550,012 Auxin binding protein1
Zm00001d021580 7 156,778,841 Transducin/WD40 repeat-like superfamily protein
Zm00001d027874 NFYA1 1 16,038,734 Nuclear transcription factor y subunit a1
Zm00001d052769 4 200,157,142 Thioredoxin H-type 5
Zm00001d050238 4 75,293,161 Unknown
Zm00001d028936 bZIP52 1 52,167,612 bZIP-transcription factor 52
Zm00001d041719 3 134,955,964 Heat shock protein 90-6 mitochondrial
Zm00001d040775 GATA27 3 64,946,021 C2C2-GATA-transcription factor 27
Zm00001d021654 7 159,175,708 Unknown
Zm00001d016553 5 167,128,735 F-box/kelch-repeat protein
Zm00001d043070 MAGI104405 3 188,315,697 Ubiquitin-conjugating enzyme E2-17 kDa like
Zm00001d032383 1 224,766,461 Phosphoenolpyruvate/phosphate translocator 2, chloroplastic
Zm00001d030892 1 166,128,618 Unknown
Zm00001d026326 10 143,599,140 F-BOX PROTEIN 2

NOTE.—Position (bp) represents starting physical position of a gene (bp; B73 AGPv4).
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Guatemala, and the southwestern United States, but 
found no evidence for substantial spread of mexicana hap
lotypes to South America. Consistent with these results, 
our analysis of two loci shown to have adaptively intro
gressed from mexicana into highland Mexican maize, 
Inv4m and mhl1, finds evidence of DASE in the Mexican 
population but not in the South American population (ex
cept one gene with very weak evidence detected in mhl1, 
fig. 5). Together, both our new results and previous studies 
suggest that the loci underlying adaptations to highlands 
were largely distinct and support the model of predomin
antly independent evolution to the highlands in Mexican 
and South American maize landraces.

Nonetheless, the small but significant overlap of conver
gent genes detected from either differential gene expression 
or differential ASE in both continents suggests convergent 
evolution plays a non-negligible role in highland adaptation. 
While the genetic basis of convergence at the expression level 
is not clear from differential expression data alone, conver
gence at the cis-regulatory level implies functionally similar 
local regulatory alleles differentiating highland and lowland 
accessions on both continents. There are three possible me
chanisms of convergent adaptation: independent mutation, 
shared ancestral standing variation, or spread throughout 
subpopulations via geneflow (Lee and Coop 2017). Of the 
eight genes that showed convergent cis-regulatory evolution 
between the two continents based on differential ASE ana
lysis and of which we had sufficient data from the low- 
coverage genome sequencing to measure local genetic rela
tionships among samples, at least four clustered by elevation 
with no clear separation between Mexican highland and 
South American highland individuals (fig. 6D), suggesting a 
potential homogenization of the two highland populations 
through gene flow, consistent with observations of (Wang 
et al. 2021) where the majority of shared loci between 
Mexican and Andes highland landraces were due to migra
tion. In addition, we also found at least two genes for which 
accessions clustered by elevation (fig. 6D), but Mexican high
land and South American highland individuals clustered sep
arately from each other. This suggests different haplotypes 
have arisen and/or spread independently in the two highland 
populations but that these two haplotypes likely have a simi
lar biologic function in each continent. However, our data 
cannot distinguish whether these haplotypes contain inde
pendent causal mutations, or both have captured the same 
variant segregating in the ancestral population. Therefore, 
both our results and those of Wang et al. (2021) suggest con
vergent evolution plays a role in maize highland adaptation, 
and that this adaptation likely occurred through a combin
ation of migration or the repeated recruitment of standing 
variants, and new mutations.

Applications and Limitations of Population-level ASE 
Analyses in Evolutionary Genetics and Plant Science
Most prior studies of ASE have been based on SNP-level al
lelic counts in single individuals (Aguilar-Rangel et al. 2017; 
Shao et al. 2019; Zhou et al. 2019). Although observing ASE 

in an individual demonstrates that two cis-regulatory al
leles differ functionally from each other, we cannot con
clude from one individual that the populations that 
these individuals came from have diverged in cis- 
regulatory function until we have replicated the ASE re
sults across multiple independently derived F1s. Lemmon 
et al. (2014) pioneered this approach in maize, demon
strating cis-regulatory divergence in many genes relative 
to its wild relative teosinte. Our experimental design was 
similar to Lemmon et al. (2014), except we used many 
more parental lines and crossed each to a common 
tester genotype (B73) to facilitate comparisons among 
all landrace alleles. In an ASE analysis, the tester allele is 
effectively a blocking factor used to control for all trans- 
regulatory variation and so any reference should be ap
proximately equivalent unless cis-trans interactions differ 
greatly among populations. As in this earlier study, we 
did not focus on discovering all functionally variable 
cis-regulatory alleles, but instead on identifying alleles with 
large changes in frequency between highland and lowland 
populations, as a signature of selection on gene regulation 
at this locus. In some cases, the divergence may represent 
a sweep of a particular haplotype (e.g., Inv4m, mhl1 are 
candidates for this), in other cases divergence may be 
more polygenic even for a single gene, with an increase in 
frequency of multiple (potentially unrelated) haplotypes 
with similar cis-regulatory function. Detailed investigation 
of these alternatives will require a closer look at individual 
samples with higher coverage genome sequencing.

Although our experimental design was optimized for 
discovering loci with divergent cis-regulatory activity be
tween populations, it lacks power to describe the down
stream effects of these loci on other traits. As the 
functional alleles are necessarily in a heterozygous state 
in each F1 plant (because all landraces were crossed to a 
common tester), for any locus, we only observe individuals 
that are either heterozygous or homozygous for one allele 
—we never observe individuals homozygous for both alle
lic states, and therefore cannot observe the full phenotypic 
effect of substituting alleles. The phenotypic differences 
that we observe are expected to be half of the effect we 
could see if the loci were homozygous, but may be much 
less if the landrace allele is recessive. This likely explains 
why we do not see strong correlations between ASE and 
phenotypic traits. Even for the expression of a gene itself, 
cis-regulatory haplotypes often explain only a small per
centage of the expression variation (Liu et al. 2019) due 
to the large number of sources of trans-regulatory effects. 
This is likely true in our study as well. We see evidence of 
large trans-effects caused by the time of day and changes 
in tissue composition across samples (fig. 3A, B), and 
after correcting for these sources of variation the correla
tions between ASE and gene expression do increase 
(supplementary fig. S9, Supplementary Material online). 
Many of these trans-effects may ultimately be caused by 
cis-effects on other genes, potentially at other times or 
stages of development, but those effects cannot be discov
ered in our experiment itself. Further study of the biologic 
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roles of the cis-regulatory alleles we discovered here will re
quire isolating them in other genomic backgrounds and 
replicating their effects in homozygous states.

Finally, although we have designed our experiment to 
answer questions about regulatory divergence among po
pulations, we believe similar strategies could be used to 
identify gene–trait relationships relevant to hybrid breed
ing schemes. Hybrids dominate many key crops including 
maize. In such programs, candidate lines are evaluated by 
crossing to common testers. Experimental methods for as
saying gene-level ASE as we have used here could be used 
for TWASs in such hybrid populations. TWAS using ASE 
can pinpoint causal gene regulatory traits underlying key 
performance metrics, enabling further targeted gene edit
ing work and breeding.

Materials and Methods
Plant Materials
One-hundred and eight maize landraces (supplementary 
table S1, Supplementary Material online) from highland 
and lowland sites of Mexico and South America were cho
sen from the CIMMYT’s germplasm bank: 28 accessions 
from high-elevation sites (>2,000 masl) and 28 accessions 
from low elevation sites (<1,000 masl) of Mexico, and 26 
accessions from high-elevation sites (>2,000 masl) and 
26 accessions from low elevation sites (<1,000 masl) of 
South America. The landraces were paired latitudinally 
and East-West of the continental divide (fig. 1A), such 
that both landrace accessions of a pair collected from 
the same 1° of latitude bin and all pairwise distances be
tween accessions were >50 km. Each of the 108 maize 
landraces was used as a pollinator to cross with the inbred 
line B73 to produce 108 F1 families. Crosses were per
formed at Curtiss Farm at Iowa State University and in 
Columbia, Missouri, and an approximately balanced set 
of successful F1 families of each type (Highland/Lowland 
and Mexico/South America) were chosen from each site.

Field Experimental Design and Leaf Sample Collection
The F1 families were planted at two locations in Mexico: 
Puerto Vallarta and Metepec. Puerto Vallarta is located 
at 20°40’N 105°16’W and represents a lowland environ
ment at ∼7 masl. Over the course of the year, the tempera
ture typically varies from 16 °C to 32 °C. Metepec is 
located at 19°14’N 99°35’W and represents a highland en
vironment at ∼2,620 masl. Over the course of the year, the 
temperature typically varies from 7 °C to 27 °C. At each of 
the two locations, a randomized complete block design 
with two replications was used for the field trial design. 
The two landraces from the same latitudinal band were 
planted in consecutive 20 kernel rows.

Leaf tissue was sampled at the V4 developmental stage 
(collar of the fourth leaf became visible) from within 5 cm 
of the tip of the leaf blade (leaf tip) and within 5 cm of the 
leaf blade base (leaf base) at both locations from a ran
domly selected healthy-looking plant in the interior of 

each row. Both fields were sampled 4 h after sunrise and 
all samples were taken within 90 min. Approximately 
20 mg of tissue was sampled, placed into a 2-ml centrifuge 
tube, flash frozen in liquid nitrogen, and stored at −80 °C 
until RNA extraction. Leaf tissues of the 108 landrace par
ents were collected, placed on ice, and transported to the 
laboratory where tissue was lyophilized and ground 
through bead beating or mortar and pestle prior to DNA 
isolation.

RNA Extraction, Library Preparation and Illumina 
Sequencing of F1 Hybrids
Leaf tissue was ground using stainless steel beads in a SPEX 
Geno/Grinder (Metuchen, NJ, USA). mRNA was extracted 
using oligo (dT) beads (DYNABEADS direct) to extract 
polyadenylated mRNA using the double-elution protocol. 
We prepared strand-specific mRNA-seq libraries using the 
Breath Adapter Directional sequencing (BrAD-seq) proto
col (Townsley et al. 2015) with random priming and 14 
polymerase chain reaction cycles. Samples were quantified 
using the Quant-iTTM PicoGreen dsDNA kit, and then 
normalized to 1 ng/μl. We multiplexed 96 samples for se
quencing and sequenced each on 2–4 lanes of an Illumina 
HiSeq X platform generating 150 nucleotides (nts) 
paired-end (PE) sequences. Trimmomatic version 0.39 
(Bolger et al. 2014) was used to remove the BrAD-seq 
adapters remnants and bases with an average base quality 
value below 15 within 4-bp sliding windows of each read. 
Entire reads were removed if the remaining length was 
<36 nt.

Differential Gene Expression Analysis in Gene 
Expression Data
RNAseq reads of the F1 families were aligned to B73 AGPv4 
using the STAR software version 2.7.2a (Dobin et al. 2013) 
and the STAR 2-pass method with default parameters 
(Engström et al. 2013). We counted reads at each locus 
using featureCounts v2.0.1(Liao et al. 2014) with default 
parameters. We filtered the raw count matrix separately 
for each tissue and estimated effect sizes for elevation of 
origin in each tissue separately, then combined evidence 
across three single-tissue analyses by meta-analysis to iden
tify the union set of genes differentially expressed in at 
least one tissue. In detail: First, in each single-tissue analysis, 
we removed F1 samples with fewer than 2 million mapped 
reads filtered genes using the filterByExpr function from 
EdgeR (Robinson et al. 2010), requiring at least 10 samples 
in one population-by-elevation class group to have at least 
32 reads. This reduced the gene expression matrices of 
MetLeaftip, MetLeafbase, and PvLeaftip to 18,369 genes 
× 160 samples, 20,401 genes × 164 samples, and 18,079 
genes × 110 samples, respectively. A total of 21,599 genes 
were assayed in at least one site:tissue, and 16,851 genes 
in common among all the three tissues after filtering.

Then, for each tissue separately, we calculated normal
ization factors using the calcNormFactors function in 
EdgeR, normalized to log2(counts per million) and 
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estimated weighting factors with voom (Law et al. 2014). 
To perform voom processing, for each tissue, we specified 
a linear model accounting for Block (in Metepec samples 
only), the sampling team (three teams sampled tissue in 
parallel), sampling time (expressed as a cubic polynomial 
of the order in the field, separately for each of the three 
sampling teams), the interaction of Population (Mexico 
or South America) and Elevation class (Highland or 
Lowland parental landrace), and the interaction of 
Population and Latitude of the parental landrace.

Next, we re-fitted the linear model described above 
using lmFit in limma (Ritchie et al. 2015) taking the preci
sion weights estimated by voom into account. We used 
the eBayes function to perform empirical Bayes moder
ation of the t-statistics. We extracted the estimated aver
age difference in log2(counts per million) between 
highland- and lowland-derived F1s for each population 
separately from fit$coefficients and the standard errors 
of these estimates as sqrt(fit$s2.post)*fit$stdev.unscaled.

Finally, we performed a meta-analysis of the elevation 
effects of each gene across three tissues, accounting for 
correlations of measurements among conditions using 
the multivariate adaptive shrinkage (mash) method imple
mented in mashr package 0.2.50 (Urbut et al. 2019) on the 
estimated effect sizes and standard errors calculated 
above. This produced a union set of genes with evidence 
of a difference in the average expression between highland 
and lowland F1s in any condition. We used the 21,599 
genes with estimated elevation effects in at least one 
site:tissue for the meta-analysis, setting input effect sizes 
and output results to NA for genes not assayed in a par
ticular site:tissue. We ran mashr with the mash_estimate_
corr_em to estimate a residual correlation matrix, passing 
both the canonical covariance matrices (cov_canonical) 
and data-driven covariance matrices (cov_ed, with inputs 
from cov_pca pasted on the genes significant at an lfsr of 
0.05 in at least one condition).

Gene Set Analysis in Gene Expression Data
We ran gene set enrichment analyses on gene lists discov
ered by the meta-analysis across tissues, separately for the 
Mexican and South American populations, using the goseq 
function of the goseq R package (Young et al. 2010). We 
began with a list of 12,035 GO categories (Wimalanathan 
et al. 2018), 137 KEGG pathways (Kanehisa et al. 2021), 
and 556 CornCyc pathways (Hawkins et al. 2021), and 
then filtered for categories with between 10 and 1,000 as
sayed genes in a particular site:tissue. We ran the enrich
ment analyses separately for up- and down-regulated 
genes selected with by lfsr < 0.05 in each site:tissue. We ac
counted for biased probabilities of detection as a function 
of expression and gene length using the nullp function 
with bias.data set to the log of the average counts per 
gene across all samples in that site:tissue, including only 
genes that passed the expression filter described above.

We assessed convergence in each site:tissue at the gene 
level by selecting genes with lfsr < 0.05 for effects of 

elevation separately in the Mexican and South American 
populations and filtering for genes where the Posterior 
Mean effect size estimate had the same size in both popu
lations. We assessed convergence at the gene set level 
based on Benjamini–Hochberg adjusted P-values <0.05 
in the test of either up-regulated or down-regulated genes 
for both populations. A hypergeometric test was used for 
convergence assessment based on numbers of detected 
genes in each population and in both populations for 
each site:tissue.

Assessment of Cell Composition Variation Among 
Samples
We used single-cell expression data from Bezrutczyk et al. 
(2021) to estimate cell composition in each sample. This 
data set included 200–900 marker genes with enriched ex
pression in 7 cell types (5 classified as mesophyll and 2 as 
bundle sheath). We calculated a projection score for each 
of our samples against each of the 7 cells as the weighted 
sum of mean-centered expression of the marker genes 
(weighted by the avg_log2FC in the specific cell population 
in the reference data set). This is closely related to the OLS 
method for estimating cell type proportions in single-cell 
expression data (Avila Cobos et al. 2020), but less restrict
ive because we do not assume that all cell populations in 
our samples are represented in the reference data set. 
We summarized variation in cell type composition across 
samples using a PCs analysis of the seven projection scores.

To assess the reliability of the projection scores, we re- 
calculated the scores 200 times after randomly assigning 
the marker gene identities to random expressed genes 
and measuring the total variation explained by the real 
or permuted scores across samples.

We assessed whether the projection scores representing 
cell composition variation could account for some of the 
differential expression observed between highland- and 
lowland-derived F1s by including the seven projection 
scores as additional covariates in the design matrices for 
the differential expression analyses derived above.

Whole-genome Sequencing and Variant 
Identification From the Landrace Parents
As variant calling from RNAseq libraries is notoriously dif
ficult due to: (1) allelic imbalance, as most variant callers 
assume the true frequency of each allele is 50%, (2) highly 
variable sequencing coverage across loci, negating depth 
filters from variant calling software, and (3) mapping diffi
culties due to spliced reads, we used low-coverage WGS 
data of the landrace parents to identify a set of high- 
confidence genic SNPs to use for ASE quantification.

DNA was extracted from parental landrace leaf tissue 
using the CTAB method. The tissue was collected from 
the same male plant used to produce the F1s that were 
used for RNA sequencing. Sample concentrations were 
quantified using Qubit (Life Technologies), and 1 μg of 
DNA was fragmented using a bioruptor (Diagenode) 
with cycles of 30 s on, 30 s off. Fragments of DNA were 
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then prepared for Illumina sequencing. (1) DNA fragments 
were repaired with the End-Repair enzyme mix (New 
England Biolabs). (2) A deoxyadenosine triphosphate was 
added at each 3′ end with the Klenow fragment (New 
England Biolabs), and (3) Illumina Truseq adapters 
(Affymetrix) were added with the Quick ligase kit (New 
England Biolabs). Between each enzymatic step, DNA 
was washed with sera-mags speed beads (Fisher 
Scientific). Finally, samples were multiplexed using 
Illumina compatible adapters with inline barcodes and li
braries were sequenced with Illumina HiSeq X platform 
generating 150 nt PE sequences, resulting in an average 
of 9,862,996 properly paired reads/library, corresponding 
to an average of ∼1.2× coverage. Reads were aligned to 
version 4 of the B73 reference genome (Jiao et al. 2017) 
with BWA-MEM version 0.7.17 (Li and Durbin 2009). 
High-confidence SNPs between any landrace and B73 
were identified with Analysis of Next Generation 
Sequencing Data (ANGSD) version 0.931-2 (Korneliussen 
et al. 2014) using the following parameters: angsd -GL 2 
-P 20 -uniqueOnly 1 -remove_bads 1 -only_proper_pairs 
1 -trim 0 -C 50 -minMapQ 20 -mminQ 20 -SNP_pval 
1e-6 -doMaf 2 -doMajorMinor 4 -doSaf 1. SNPs outside 
of annotated exons in the B73 genome were excluded.

As the landrace parents were outbred, their genomes 
are heterozygous and the ∼1× WGS reads will likely not 
detect ∼50% of the SNPs carried by each parent and 
passed on to the F1 individuals. Given the size of the maize 
genome, achieving sufficiently high coverage for each indi
vidual for comprehensive SNP discovery would have been 
prohibitively expensive. However, SNPs relative to the ref
erence genome (B73 AGPv4) that are relatively common in 
the population (e.g., >2% frequency) are likely to be se
quenced by multiple reads across all 108 WGS libraries. 
This includes a large number of SNPs where the B73 allele 
is rare which will be observed in nearly every landrace. In 
total, we identified 53,891,495 high-confidence SNPs in 
exonic regions across the 108 landraces, providing a large 
set of candidate SNPs to test for ASE in the RNAseq data.

Per-sample Detection of ASE-tagging SNPs without 
Biasing ASE Ratios
Although the WGS-derived SNPs are likely real in the 
whole population, only SNPs that are heterozygous in a 
particular F1 individual are useful for ASE quantification. 
Including the same set of fixed loci in ASE counts across 
samples will severely bias allelic read counts for a gene be
cause all reads from both alleles will be assigned to the 
same allele. We therefore used the RNAseq data to geno
type each F1 individual at all WGS-derived SNPs.

Using WGS-derived SNPs alleviates the issue of confi
dent SNP detection, but genotyping using RNAseq data 
for ASE applications still presents challenges: 

1) When a small number of reads cover an SNP (e.g., 
when in a low-expressed gene) one allele will fre
quently drop-out due to sampling error even if there 
is no actual allelic imbalance. In our experimental 

design, we know that every locus contains at least 
one copy of the B73 allele (as B73 was the female 
parent). While loci where only the landrace allele 
was observed are almost certainly heterozygous 
and therefore informative for ASE, keeping these 
loci would bias the genes estimated ASE ratio to
ward the landrace allele, because the opposite loci 
(where only the B73 allele is detected) would be dis
missed as apparently homozygous. We therefore 
kept only SNPs where both the B73 and the landrace 
allele were observed to prevent biased ASE ratios.

2) When a large number of reads covers an SNP (e.g., 
when in a high-expressed gene), the low rate of se
quencing errors present in Illumina data can gener
ate false-positive heterozygous calls. Including these 
loci in the ASE analysis will severely bias ASE ratios 
toward the B73 allele (because most sequencing er
rors will be away from the reference and therefore 
look like low-expressed non-B73 alleles.

3) Mismatches relative to the reference can cause am
biguous or incorrect read-mapping, biasing ASE ra
tios. We used the WASP algorithm (Van De Geijn 
et al. 2015) implemented in the STAR software ver
sion 2.7.2a to identify reliably mapped reads. WASP 
uses an allele swapping and RNAseq remapping strat
egy to filter out reads with mapping biases, and the 
STAR-WASP algorithm assigns a multilocus geno
type to each individual read for all SNPs it overlaps.

RNAseq reads of the F1 families were aligned to B73 
AGPv4 using the STAR software version 2.7.2a and the 
STAR 2-pass method was used with default parameters. 
For each F1 sample separately, alleles were counted at 
WGS-derived loci using ASEReadCounter from GATK ver
sion 4.0.11.0. To minimize the impact of the above issues 
on downstream ASE analyses, we kept only SNPs for 
each sample where both alleles were detected, the total 
number of reads covering the SNP was at least 10, and 
the absolute value of the log2ASE ratio: log2(ALT)- 
log2(REF) was <2. We applied these filters to each SNP 
in each RNAseq sample.

Identifying Regions of IBD Between Plants From the 
Same F1 Family
We used the heterozygous SNP calls from each RNAseq 
sample to identify regions of IBD between the three plants 
per F1 family (two plants from two blocks in Metepec and 
one plant from Puerta Vallarta). For each F1 family, we 
compared RNAseq samples of two tissues from the same 
plant in Metepec and of two plants from two blocks in 
Metepec/Puerta Vallarta for the same tissue. For each 
pair of RNAseq samples, we divided each chromosome 
into 20 blocks with equal numbers of SNPs from the 
WGS data, and in each bin counted the number of hetero
zygous sites identified in common between the two sam
ples. We then divided this number by the minimum 
number of heterozygous sites identified in each sample 
separately. This percentage of common sites was generally 
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bimodal across bins, reflecting the inheritance of the two 
paternal alleles in the sibling plants. We fit a Gaussian mix
ture distribution to these percentages for each sample 
with k = 2 using the normalmixEM function from the mix
tools package (Benaglia et al. 2009) to classify each bin into 
either IBD (if the posterior probability of the bin being in 
the higher probability class was >90%), not-IBD (posterior 
probability < 10%), or ambiguous.

Gene-level Allelic Read Counts for F1 Samples
While SNP-level allelic expression counts can document al
lelic imbalance in a single sample, to identify genes with 
common allelic imbalance at the population level we com
bined the information across SNPs in the same gene into a 
single ASE ratio per gene per sample. Gene-level ASE ratios 
should be more robust because they are based on more to
tal reads, and in a population sample SNP-level ASE ratios 
cannot reliably be compared across individuals because 
many SNPs are individual specific.

To combine SNP-level allelic expression counts into 
gene-level allelic expression, we used the WASP algorithm 
(Van De Geijn et al. 2015) implemented in STAR-WASP 
(Dobin et al. 2013). Therefore, we extracted reads that 
were assigned either REF or ALT genotypes at all overlap
ping loci into separate BAM files, and then counted the 
reads overlapping each gene feature in each BAM file using 
featureCounts v2.0.1 (Liao et al. 2014). These gene counts 
are the allelic expressions of the maternal and paternal al
leles of each gene, respectively.

Differential Allele-specific Expression Analysis
Using the gene-level allelic read counts, we analyzed the 
average difference in landrace ASE (relative to B73 ASE) be
tween F1s derived from highland and lowland landraces. 
We modeled this landrace elevation effect separately for 
three tissues: the leaf tip and leaf base tissues from the 
Metepec field (MetLeaftip, MetLeafbase), and the leaf tip 
samples from the Puerta Vallarta field (PvLeaftip). We 
then performed a meta-analysis across three tissues to 
identify the set of genes with divergent allelic expression 
between highland and lowland F1s in any condition.

First, in each single-tissue analysis, we removed F1 sam
ples with fewer than 2 million mapped reads and genes in 
which fewer than 10 samples had at least 32 
ASE-informative reads in each of the 4 populations. This 
stronger filter was necessary for the ASE analysis because 
genes with few reads are informative for total expression 
analyses (i.e., low expressed), but uninformative for ASE. 
For each gene in each F1 sample, we calculated the 
log2ASE ratio as log2(landrace counts)—log2(B73 counts), 
where landrace and B73 are actually paternal and maternal 
alleles, respectively. This resulted in data sets of size: 10,886 
genes × 160 samples for MetLeaftip, 12,747 genes × 164 
samples for MetLeafbase, and 9,178 genes × 110 samples 
for PvLeaftip. A total of 13,632 genes were assayed in at 
least one site:tissue, and 8,605 genes were in common 
among all the three tissues after filtering.

We expected that the precision of these log2ASE ratios 
would vary strongly among genes and samples due to the 
expression of each gene, the number of informative SNPs, 
and the sequencing depth of each sample. This heteroske
dasticity would reduce the efficiency of standard tests for 
differential expression (similarly to the effect of counting 
variance on total expression in RNAseq samples). We 
therefore developed an adaptation of the voom algorithm 
for modeling the expected variance of each data point. For 
each tissue, we specified the same linear model accounting 
for Block, sampling group, order in the field, the inter
action of Population and Elevation class, and the inter
action of Population and Latitude of the parental 
landrace as described above in the total expression ana
lysis. We used the lmFit function in limma version 3.42.2 
(Ritchie et al. 2015) to fit this model to the log2ASE ratios 
of each gene and extracted the estimate of the residual 
standard deviation of each gene. In this step, all genes 
with zero counts from either allele were set to missing (gi
ven zero weights) because a zero log2ASE ratios implies 
equal allelic expression, whereas zero counts is a complete 
lack of information about the actual allelic ratio. Next, we 
used the lowess function to fit a smoothed trend to the 
square root of residual standard deviations extracted 
above as a function of an average normalized total count 
of each gene (in log2 scale). Finally, we used this trend 
line to predict the variance of each observation in the 
data matrix as a function of the total read count (land
race + B73) of that gene in that sample.

Next, we re-fitted the linear model above using lmFit, 
this time including the inverse of the estimated variance 
matrix as precision weights, again setting the weights of 
points with zero total counts to zero. We used the 
eBayes function to perform empirical Bayes moderation 
of the t-statistics. We extracted the estimated average 
difference in log2ASE between highland- and lowland- 
derived F1s for each population separately from fit$coef
ficients and the standard errors of these estimates as 
sqrt(fit$s2.post)*fit$stdev.unscaled.

Finally, based on the observed effect sizes and corre
sponding standard errors of each gene of three single- 
tissue analyses, we performed a meta-analysis using mashr 
(Urbut et al. 2019) to identify a union set of genes with evi
dence of a difference in the average landrace ASE between 
highland and lowland F1s in any condition following the 
same procedure of total expression analysis. In this ana
lysis, the mash results suggested the correlation in true ef
fect sizes was close to 1 across all three site:tissues. We 
therefore used the overall lfsr across all three site:tissues 
as a measure of significance, and did not break results 
down by site:tissue. We assessed convergence in each 
site:tissue at the gene level using the same method as de
scribed in the gene expression analysis.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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