Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

Mathematical treatment of isotopologue and isotopomer speciation and fractionation in
biochemical kinetics

Permalink

https://escholarship.org/uc/item/0x8927iX

Author
Maggi, F.M.

Publication Date
2009-12-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0x8927jx
https://escholarship.org
http://www.cdlib.org/

Mathematical treatment of isotopologue and isotopomer speciation
and fractionation in biochemical kinetics

Federico Maggi‘and William J. Riley**

!School of Civil Engineering, The University of Sydney, Sydney 2006, NSW,
Australia; “Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA.

* W.R.’s work was supported by Laboratory Directed Research and Development
(LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.



X-2 F. MAGGI AND W.J. RILEY:

Abstract.

We present a mathematical treatment of the kinetic equations that describe
isotopologue and isotopomer speciation and fractionation during enzyme-
catalyzed biochemical reactions. These equations, presented here with the
name GEBIK (General Equations for Biochemical Isotope Kinetics) and GEBIF
(General Equations for Biochemical Isotope Fractionation), take into account
microbial biomass and enzyme dynamics, reaction stoichiometry, isotope sub-
stitution number, and isotope location within each isotopologue and isotopomer.
In addition to solving the complete GEBIK and GEBIF, we also present and
discuss two approximations to the full solutions under the assumption of biomass-
free and enzyme steady-state, and under the quasi-steady-state assumption
as applied to the complexation rate. The complete and approximate approaches
are applied to observations of biological denitrification in soils. Our analy-
sis highlights that the full GEBIK and GEBIF provide a more accurate de-
scription of concentrations and isotopic compositions of substrates and prod-
ucts throughout the reaction than do the approximate forms. We demonstrate
that the isotopic effects of a biochemical reaction depend, in the most gen-
eral case, on substrate and complex concentrations and, therefore, the frac-
tionation factor is a function of time. We also demonstrate that inverse iso-
topic effects can occur for values of the fractionation factor smaller than 1,
and that reactions that do not discriminate isotopes do not necessarily im-

ply a fractionation factor equal to 1.
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1. Introduction

Isotopes are widely used in environmental sciences since the magnitude of isotopic en-
richment can often be linked with specific processes, and therefore can be used to bet-
ter understand movement and turnover of chemical compounds within the ecosystem.
For example, Perez et al. [2006] have observed an average NoO enrichment of —74%
from nitrification processes and —23%q from denitrification in forested soils. The cur-
rent mathematical treatment of isotopic effects in biochemical kinetics used to interpret
isotopic signatures is based on the pioneering work by Mariotti et al. [1981], which has
been used in several interpretations of isotopic signature observations [e.g., Van Breukelen
et al., 2005; Elsner et al., 2005]. However, this framework has three major limitations:
() the reactions are considered to be first order and exclude the concurrent enzyme and
biomass dynamics; (i7) the reaction stoichiometry is not explicitly taken into account;
(1) isotopologue and isotopomer speciation are not considered. Removing these limita-
tions could improve the interpretation of isotopic signatures and, in a broader context,
our understanding of biochemical reactions. In this work we present general equations
for biochemical kinetics and isotope speciation and fractionation that address these three
limitations.

The first aspect that we include in our treatment is related to the reaction order. Bio-
chemical reactions are widely accepted to occur with order between zero and one, such
as in the Michaelis-Menten reaction type [Laidler, 1965]. In this reaction type, the re-
actants bind to an enzyme to form an activated complex which then releases the final

products. The Michaelis-Menten framework, however, assumes a constant enzyme con-
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centration and no biomass dynamics. This assumption, also used in recent analytical
studies [e.g., Thullner et al., 2008], may lead to incorrect interpretation of isotopic signa-
tures in instances where microbial biomass contributes substantially to the reaction rate
via enzyme production. Evidence of the importance of biomass dynamics in relation to
reaction velocity has been discussed by Mauclaire et al. [2003]. In that work, however,
the chemical reaction performed by the biomass was not explicitly linked to the enzyme
dynamics. To circumvent these limitations, we explicitly take into account simultaneous
enzyme and biomass dynamics under the assumption of transient kinetics as introduced
in [Maggi and Riley, 2009] and discussed earlier in Northorp [1980].

The second important aspect we implement in our mathematical treatment is the stoi-
chiometric relationships between reactants and products. Taking into account the reaction
stoichiometry is necessary to derive rate constants which mirror the specific velocity of a
reaction, and to maintain isotope mass balance along the reaction pathway.

The third aspect introduced in this work is the description of isotopologue and iso-
topomer kinetics and speciation. More specifically, the location at which an isotope
substitution occurs in a product can be used to track which substrate has been con-
sumed and how the product was synthesized during a biochemical reaction. Isotopomer
detection has been applied in only a few experimental observations due to the rather
complicated techniques involved [e.g., Toyoda et al., 2005; Well et al., 2006]. However, to
our knowledge, there is no general approach aimed at modeling kinetic isotopic effects in
enzyme-catalyzed reactions in which isotopomer substrates and products intervene simul-
taneously. To this end, we characterize isotopomer reactions by introducing the number

and locations of each isotopic substitution within reacting molecules, and we model iso-
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topomer product speciation and fractionation using partitioning coefficients in addition
to the stoichiometric coefficients.

The equations presented here have general applicability to describing the components’
concentration and isotopic effects and, ideally, could be used in any enzymatically-
controlled reaction regardless of the number of substrates, products, microbial strains,
and enzymes. Under suitable assumptions, these general equations can be treated in two
simplified forms: the first introduces the biomass-free and enzyme-invariant approxima-
tion; the second introduces the quasi-steady-state approximation in solving for enzyme-
substrate complexation. We demonstrate applications of these equations using isotopic
observations of NyO production and consumption from the experiments by Mariotti et al.

[1981] and Menyailo and Hungate [2006].

2. General Equations for Biochemical Isotope Kinetics (GEBIK)
To present the kinetic equations describing isotope kinetics in biochemical reactions, we
first introduce the notation used to define the isotopic expression of a molecule, and we

next present examples to help the reader throughout the remainder of the paper.

2.1. Notation

We define S and P to be the generic substrate and product molecules that are consumed
and produced during a reaction, respectively, and the italic character S and P to be the
concentrations of S and P. Both S and P molecules contain at least one isotopic expression
of the tracer atom used to assess the isotopic effect of a reaction. For simplicity, we limit
to two the number of isotopic expressions for a tracer element, though the notation can

be applied to any number of isotopic expressions. For instance, if the carbon element is
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used as a tracer, both S and P contain at least one C atom, which can appear in not
more than two isotopic forms, e.g., 12C and 3C. We use the left subscript notation to
indicate the total number of tracer atoms, and the left superscript to indicate the number
of isotopic substitutions in the same molecule. In this way, °S means that the substrate
molecule S contains , atoms of tracer (rare plus abundant), and that ® atoms have been
substituted with the rare isotopic expression of the tracer. The condition 0 < b < a has
to be satisfied. For example, if the rare stable nitrogen isotope '°N is used in the reaction
BNMNO — NMN, both substrate 1S and product P have a = 2 nitrogen atoms, b = 1
atom being substituted with the rare isotope °N. Note that our notation of the chemical
reactions takes into account the mass and molar balance of the isotope tracers but not of
other elements. This approach, however, does not affect our mathematical treatment of
isotope kinetics and fractionation.

Substrates and products appear in a chemical reaction with specific stoichiometric coef-
ficients. When chemical reactions comprise combinations of reactants and products with
various isotopic expressions, the stoichiometric coefficients are functions of the isotope
substitution number. If z, and y,; are the stoichiometric coefficient for ZS substrate and

4P product, we can write

a (&
S ats - Yur
b=0 d=0
For example, in the reaction 1*NO3 + ®NO; — “NNO, our notation becomes ?S+1S—
1P, with g = x; = 1 for both isotopologue reactants of the same substrate with substi-

tution number b = 0 and b = 1, and with y; = 1 for P and yy = y» = 0 because the

reaction does not comprise production of )P = “N,O and 2P = N,0.
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The tracer element in a multiatomic molecule with multiple atoms of the same tracer
may occupy diverse locations, i.e., it can have different isotopomer expressions. We indi-
cate the location of the tracer element with a Greek symbol as right superscript, so that
the isotopomer reactants °S? and ?S” will be different expressions of the same isotopologue
bS. Isotopomers only exist when 1 < b < a and a > 2. The substitution location has to be
specifically defined depending on the number of tracer atoms a, number of substitutions
b, and molecule structure. For multiatomic molecules that are symmetric with respect
to tracer position, there is no need to specify the substitution position when b = 1. For
example, one substitution of deuterium D = ?H in the symmetric methane molecule CDHj
does not require the use of the right superscript. In the case that b = 2, the substitution
location has to be specified, while for CHD3 and CDy it is not required. For example,
two D substitutions in CDsH, can occur in adjacent or non-adjacent locations. Using this

notation, the reaction

CDQHQ + 202 — HQO -+ DQO + COQ,

can be written as 2S° — 9P +2P, where the 3 expression in 2S” defines only one of the two
methane forms (either with adjacent or non-adjacent D atoms). The location of D in the
two isotopologue water molecules produced on the right-hand side of the reaction has not
been indicated because D is present in only one water molecule at saturation, and because
the water molecule is symmetric. For asymmetric and multiatomic molecules with 1 <
b < a and a > 2, definition of the substitution location is always required. For instance,

the isotopomers of the (asymmetric) nitrous oxide molecule N,O are 33 = 1N4NO and

157 =MN'NO.
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When the isotopomer products are asymmetric molecules, a number of isotopomer re-
actions should be written, each describing production of a different isotopomer from the
same reactants. A convenient way to take into account isotopomer formation is to intro-
duce a partitioning coefficient, u, linked to each isotopomer expression, and generalized

as

D)L §) S ol

b=0 g d=0 v

where ), and 27 are expressed over the possible combinations of locations for b and
d substitution numbers, with ZA/ u, = 1. For example, using N isotopes as tracers, the

isotopomer reactions

14NO§ +15 NO; N 141\1151\1()7
14NO§ +15 NO; N 15N14NO,
can be written as one reaction in which each isotopomer product is multiplied by its

partition coefficient as

0 + 18 — uslP? 4 u, 3P,

with uy =1 — ug.
More generally, the tracer element does not necessarily occur in only one substrate
and one product. If ng substrates react releasing np products, each having an isotopic

expression of the tracer element, then we can write

ns 4 np  Cp
DD D S = DD D e vay PR (2)

j=1b;=0 B; h=1dp=0
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For instance, consider the *O and ®O tracers in the reaction CH,*0+1°0, — H,*¢0
+ C'0™0; in this case the reaction can be written as 151 49 Sy — 9P, + 3P, with two
substrates and two products without indication of the substitution location because all

molecules are symmetric.

2.2. Isotope balances

Regardless of the number of reacting substrates and released products, the principle of
mass conservation relative to the tracer isotopes has to be satisfied within a multimolecular
and multiatomic reaction. Using the notation introduced in Eq. (2), the following isotope

balances have to hold

nsg 4 np cp

Z Z Z Lo; Aj = Z Z Z Uy, Ydp, Chs (3a)
j:l bJZO B] h=1 thO Yh

ng aj np cp

Z Z Zmba‘ bj = Z Z Zu'Yh Yay, dn- (3b)
J=1 6,0 3, =1 dn0

2.3. Biochemical reactions

Biochemical kinetic reactions are often catalytic reactions in which one or more sub-
strates, S;, bind to an enzyme, E, to form a reversible activated complex, C, which
releases one or more products, P, and free, unchanged enzyme. This representation of
biochemical enzymatic reactions was proposed in 1913 and is known as Michaelis-Menten
kinetics [Laidler, 1965]. This approach is generalized in this section to account for sub-
strate and product isotopologue and isotopomer expressions, and for the stoichiometric
relationships among them. To this end, we consider m reactions, each describing the

reaction among reactants with different isotopic expressions and the release of products
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with different isotopic expressions. Generalizing Eq. (2) for a set of m reactions, and

using the Michaelis-Menten complexation framework, we obtain for each reaction

aji 310)

ng

B —
3 Sy e )
J=1b5=0 Bj; @

np  Chj

G20 S5 S, SP +E, (4b)

h=1dp;=0 Yhi

where 7 = 1, ..., m identifies the reaction, j identifies the substrate, h identifies the product,
and ki), ko), and ks(;) are the rate constants indexed for each of the m reactions. The
value of m has to be consistent with the number of combinations between stoichiometric
coefficients (z and y), number of tracer atoms in substrates and products (a and c),
number of substitutions (b and d), and number of different locations of the substituted

atoms (8 and ), see Ezample 1.

e Ezample 1. Consider the N and N isotopes in the reaction 2 NO; —N,O which
comprises one or multiple isotopologue reactants of one substrate (i.e., 7 = 1) and one

product (i.e., h = 1). The m = 4 isotopologue and isotopomer reactions are

2 “NO; — 1N,0, (5a)
“NO; + "NO; — "N'NO, (5b)
“NO; + ®NO; — NMNO, (5¢)

2 NO; — “N,0, (5d)

while their symbolic representation using Eqs. (4) is
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ky(1)

205 LtE——C, 290 4, (6a)

ka(1)

k1 (2)
0§+ 1S+ B Cy 2, 1,lP9 1 0 lPY + B, (6b)

2(2)

kq(3)

2S+E<k—>Cg —9,2p 4+, (6¢)
2(3)

where the reaction in Eq. (6b) describes both isotopomer products P? and P7. Notice that
the isotopomer treatment introduced with the partition coefficients ug and u, = (1 — ug)
allows us to eliminate biochemical reactions, decrease the number of rate constants and,

therefore, simplify the kinetic equations as shown in the following examples.

2.4. Generalized kinetic equations

In the Michaelis-Menten approach described above, the total enzyme concentration was
assumed to be constant over time, and, under the quasi-steady-state hypothesis applied
to the concentration of C, the kinetic equations describing S and P could be written in
a simplified form. In a recent work, Maggi and Riley [2009] have coupled the Michaelis-
Menten equations describing chemical kinetics with the Monod kinetics [Monod, 1949
describing biomass dynamics, under the assumption that the enzyme concentration is
proportional to the biomass concentration and that the reaction is not in quasi-steady
state. This approach, described in Maggi and Riley [2009] under the name of transient
Michaelis-Menten-Monod kinetics, is generalized here to describe the kinetics of biomass
and enzyme-mediated isotopologue and isotopomer speciation and fractionation.

We assume that the system is closed to mass transfer; therefore the total mass of each
tracer in S, C, and P in Eq. (4) is conserved through time. In addition, we assume that

the total enzyme concentration (free plus bound in the complexes C;), is proportional to
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the biomass concentration, B, through the enzyme yield coefficient, z, as zB. Assuming
that the initial concentrations of all complexes and products in Eqs. (4) are zero at time
t = 0, the following molar conservation law for the chemical components in each reaction

and mass conservation low for biomass and enzyme can be written

bji oBji bji oBji
bsP)  bsh

Ty

+ Ci(t)+
LGl
Chi

np
dh' Yhi
E : E : E :u'Yhiydhi chZPh

h=1 dp;=0 Yp;

ji

(7a)

Chi )

np
Z Z Zu’Yhiydhi

h=1 dp;i=0 Yni
zB(t) = E(t) + i Ci(t), (7b)
i=1
with the coefficients x;,, > 0, yg,, > 0 and u,,, > 0 in Eq. (7a), and with E(t) in Eq.
(7b) being the free enzyme concentration at time ¢. Equation (7b) states that the m
reactions are coupled to each other via the complexes C; (the number of complexes equals
the number of reactions), thereby introducing competitive substrate consumption.

The rate of change of each substrate S; for each isotopic expression b; and 3;, each
complex C;, and each product P, for each isotopic expression ¢, and dj in Egs. (4) can
be expressed as a function of the rate constants ki), ko(;) and ks(;), and as a function of
the product of the reactants’ concentrations. This product also defines the reaction order.
For reactions with multiple reactants, however, there exists no first-principle method to
determine the reaction order, that is, how many reactants and to which power (in some
cases the stoichiometric coefficients) have to be used in writing the kinetic equations
[McNaught and Wilkinson, 1997; Atkins, 1998]. In isotopic applications, the number of

reactants may become exceedingly large due to their isotopologue expressions, therefore
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taking the product of each reactant concentration to the power of their stoichiometric
coefficient may lead to incorrect description of the reaction order. An empirical rule that
we propose here is to describe chemical kinetics in terms of the concentration of the two
most limiting reactants. This rule returns kinetic equations that are analogous to the
classic Michaelis-Menten kinetics. We assume therefore that the substrate kinetics are
always determined by the enzyme concentration E (required for the reaction) and the
reactant with the lowest concentration within each of the m reactions. We define by S,
the most limiting reactant substrate among 4 Sﬁ 7 in the ith reaction of Egs. (4). For
example, the limiting reactants in the isotopologue reactions of Egs. (5b) and (5¢) are E
and "NOj3 .

For each substrate j, activated complex ¢, product h, enzyme E, and biomass B, we

can write the following kinetic equations

Sﬂﬂ _
g be (ko) Ci — ki) ESi), (8a)
d(],- —
T = ki) ES; — [kogy + ka)]Ci, (8b)
d[dh P’Yh
dE dB dC;
@ 2P bt} d
a Cdt dt’ (8d)
P"/h
— YZZZ Ch — uB. (8e)
dn  Yh

The enzyme dynamics in Eq. (8d) are obtained by taking the first derivative of the
mass conservation law in Eq. (7b). Equation (8e) describes microbial biomass dynamics
by means of multiple Monod kinetics, with Y the yield coefficient expressing the biomass

gain per unit of released product and p expressing the biomass mortality rate [Monod,
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1949]. Because B is assumed to increase in response to the release of the products P, and
because enzyme and biomass concentrations are linearly dependent, Eq. (8d) implies that
the enzyme is synthesized at the same rate as biomass growth and deteriorates at the same
rate as microbial death. The kinetic equations presented above do not imply any specific
assumption on where complexation occurs exactly, that is, whether enzyme-substrate
binding occurs inside, outside, or within the cell membrane. It is assumed, rather, that
Egs. (8) describe the reactions as they occur at scales much larger than the cell scale and
that, therefore, the enzyme concetration is the bulk concetration. This approach, though
simplifying the enzyme dynamics, improves the original Michaelis-Menten formulation by
which the total enzyme concentration, £+, C;, was assumed constant over time and not
linked to any microbial biomass dynamics [Haldane, 1930]. Finally, biomass is assumed
to not immobilize substrates or products for cell maintenance or incorporation into new
biomass and, therefore, no fractionation was assumed to occur within the biomass.

Egs. (8) are presented here for only one microbial functional group and one enzyme.
However, the same biochemical system can be further generalized to include any number
of microbial group and for multiple enzymes for each function group.

Egs. (8) cannot be solved analytically and must therefore be solved numerically. Ap-
proximate solutions to Egs. (8) are possible under specific assumptions that are discussed
later.

We refer to Egs. (8) as the General Equations for Biochemical Isotope Kinetics

(GEBIK).
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3. General Equations for Biochemical Isotope Fractionation (GEBIF)
In this section we introduce the equations describing the isotopic composition of the

components within a biochemical system and the isotopic effects produced by the reaction.

3.1. Isotopic ratio and isotopic composition

The isotopic composition of the components in the biochemical system of Eqgs. (4) can
be defined in different ways depending on the definition of isotopic ratio. Three definitions
are described here: (i) isotopic ratio relative to each component in the system, each with its
isotopic expression, with respect to the concentration of its most abundant isotopologue;
(1) isotopic ratio relative to the mass of the tracer element in each component; and (ii7)
isotopic ratio relative to the mass of the tracer element in the accumulated substrates and
products.

The isotopic ratio in definition (i) relative to each component in the system can be
calculated from the ratio between the concentration of that component (with substitution
numbers 0 < b; < a; and 0 < dj < ¢x) and the concentration of its most abundant

isotopologue expression (i.e., with b; = 0 and dj, = 0) as

bi ~8;

o a;S‘J<t)

Sbj,ﬁj( ) = gsjj(t) ) (9&)
th’Yh(t)

Kk [

Pay oy (1) = —éhPh ok (9b)

where each concentration is computed from the GEBIK Egs. (8). The double star (**) is
the marker used to differentiate the isotopic ratios in this definition from the other defini-
tions. For instance, if one wished to assess the isotopic ratio of NoO product from nitrate
NOj reactant using N as a tracer, the ratio ' N*NO/*N,0 can be calculated from Eq.

(9b), while the isotopic ratio »NO; /!*NO; can be calculated from Eq. (9a). However, it
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is not currently possible to experimentally assess with ease the number and substitution
locations in a specific molecule with mass spectrometry analyses. More specifically, NoO
can occur with four isotopic expressions as described in Eqs. (5). Mass spectrometry can
return the mass of >N and N in N,O but does not indicate how N and !N are dis-
tributed among the fours isotopic expressions of NoO. For comparison with experimental
data, therefore, it may be convenient to use the isotopic ratios expressed as functions of
the mass of the tracer element of definition (i7).

The isotopic ratios in definition (i7) for the relative mass of the tracer element in each
component within the system requires the molecular weight of each substrate, % M s;, and
product, % Mp, , accounting for the substitution numbers b; and dj,, respectively. Defining
the atomic weight of the abundant isotope with p, and of the rare isotope with ¢ > p, the

isotopic ratios become

ZZ[’MS a]ysjﬁ] )

b; 0 @

Yy e @iy gy

bj#a; B

szdhq L)

dn#0 'Yh

>y i, S Sy 0]

dpF#ch Yh

(10a)

RS (1) =

Ry, (1) = (10b)

where star (*) is introduced to differentiate the isotopic ratios defined here from the other
definitions. Equations (10) can generally be used for comparison with mass spectrometry
data if the various j substrates and h products can be separated with ease. If this

is not possible, a convenient way to interpret isotopic compositions from experimental
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observations is to compute the cumulative isotopic ratios relative to the tracer element as
in definition (ii).

Definition (iiz) for the cumulative isotopic ratios relative to the mass of the tracer
element can be derived from Egs. (10) by accumulating the mass of the tracer element in

all isotopologue substrate and product expressions as

ZZZ% 557 (1)

j bj#0 ﬂg

Sy pi:as%
J bjFa; Bj
ZZZJ’” P ()

Rp(t) = — 270 o . (11b)

S} SpaCE v

h dp#en T

Rs(t) = (11a)

Egs. (11) become equal to Egs. (10) if there is only one substrate (j = 1) and one product
(h = 1). For practical reasons, and for the higher degree of generalization, we will use
definition (iii) of the isotopic ratios in the remainder of the paper keeping in mind that,
nevertheless, definitions (i) and (i) can also be used. An application of Egs. (11) is
shown in Example 3.

It is common to describe the isotopic composition in % relative to a standard, Ry, as
0 = (R/Rsq — 1)1000. Using the isotopic ratios of Egs. (11), the isotopic compositions

become
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Similar definitions of isotopic compositions can be derived using the isotopic ratios in Eqgs.

(9) and Egs. (10).

e Example 3. For the biochemical system used in Ezample 1 with S = NO; and P =

N,O, the isotopic ratios of Egs. (11) are

15/63 15(t)
14/62 9S(t)’
15/45 LP(t) + 30,46 2P(t)
28,/44 9P(t) + 14/45 L P(t)’

Rs(t) = (13a)

Rp(t) =

(13b)
where JP(t) = 1PP(t) + 1P7(t). The concentration of each component can be calculated

using the GEBIK Egs (8).

3.2. Fractionation factor
The isotopic ratio of the product in Eq. (11b) can be used to define the instantaneous

isotopic ratio, I Rp(t) as

dng  d[Z P”h( )]

IPIPPRAL

h  dp#0

TRelt) = i "

ISP i, i

h dp#en T
where the rate of change d[% P)"(t)]/dt is defined in GEBIK Eq. (8c) for each product,

each with an isotopic expression of the tracer element. The ratio IRp(t) describes the
isotopic ratio of the increment of product concentration relative to the mass of tracer
element over the infinitesimal time interval dt.

Combining Eq. (14) with the cumulative isotopic ratio of the substrate Rg(t) of Eq.
(11a) as proposed in Mariotti et al. [1981], we obtain the fractionation factor relative to

the tracer element
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at) = I;;g). (15)

Equation (15) describes the most general case of bulk isotopic effects which the tracer
element is subject to in biochemical reactions of the type in Eq. (4).

Because of their general applicability, we refer to the isotopic ratios in Eq. (11), the
instantaneous isotopic ratio of Eq. (14), and the fractionation factor in Eq. (15) as the
General Equations for Biochemical Isotope Fractionation (GEBIF). Two applications of

GEBIF are shown in Fxample 4 and 5 to calculate the fractionation factor a.

e Fxample 4. For the biochemical reactions in Example 1 we calculate the instantaneous

isotopic ratio of the product using Eq. (14) as

_15/45 d[}P] +30/46 d[3P]
28/44 d[9P] + 14/45 d[3P]
165 23 kg(2)Ca(t) 4 45 k(3)C3(1)

109 )
161 45 kg(l)Cl(t) + 22 kg(g)CQ(t)’

(16)

with d[3P(t)]/dt = d[PP(t)]/dt + d[;P7(t)]/dt. The rate of change of the product con-
centrations are written using the GEBIK equations.

In a similar way, we compute the isotopic ratio of the substrate, Rg, using Eq. (11a),
which is already given in Eq. (13a) of Example 3. Substituting Eq. (13a) and (16) into

the definition of a(t) in Eq. (15) we obtain

aft)

_ 693 [23 k3(2)02 (t) + 45 kg(g)Cg (t)] (I)S(t) (17)
1
1

71345 kyy Oy (1) + 22 ks Ca ()] 1S(2)”

o Fxample 5. If we simplify Example 1 by using only the first and third reactions, that

is, excluding the isotopomer reaction ¢+ = 2, then we obtain
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IRp(t) = 161 kyp) (1) 1)
693 k33 Cs(t) 95(2)
a(t) = T13ks) C1(t) 15(8)” "

Equations (17) and (19) show that the isotopic effects are not steady, but rather change

over time with the ratio of complex and substrate concentrations.

4. Approximate GEBIK and GEBIF

GEBIK and GEBIF fully characterize the reaction rate, speciation, and fractionation
(i.e., the isotopic effect) of each component in a biochemical reaction taking into account
the number of substrates and products, isotopologue and isotopomer expressions, and the
enzyme and biomass dynamics. Nonetheless, a number of assumptions allow us to derive
simpler, approximate forms of GEBIK and GEBIF. In the following sections we present
two mathematical treatments corresponding to: (i) the biomass-free and enzyme-invariant
(steady state) assumption (BFEI); and (ii) the quasi-steady state assumption (QSS) in
which the complex concentrations C; are assumed to be constant (dC;/dt = 0) [Haldane,

1930; Laidler, 1965].

4.1. Biomass-Free and Enzyme-Invariant (BFEI) treatment

In instances where the biomass and enzyme concentrations are not appreciably changing
in time, we can assume that biomass dynamics is negligible and that the total enzyme
concentration is constant. These assumptions are referred here to as biomass-free and

enzyme-invariant (BFEI). The mass conservation laws of Eq. (7b) simplify to

Ey=E(t)+ Y _Ci(t), (20)
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and the GEBIK equations become

d[ei s —
[J—] beﬂ k2 )C z)ESz]a (21&)
dCi
T ki) ES; — [ko@iy + ks3] Ci, (21b)
d th’Yh

Z u%zydmk?’ (21C>
dFE dC-
- _ _ i 21d
dt zl: dt ’ (21d)

with FE(t) = E, — > Ci(t) in Egs. (21a) and (21b). Equation (21d) states that the
rate of change of the free enzyme concentration depends only on the rate of change of
total complex concentration. The isotopic ratios and fractionation factor can be written

following Eqgs. (11), Eq. (14), and Eq. (15)

4.2. Quasi-Steady-State (QSS) treatment
The quasi-steady-state (QSS) treatment of chemical kinetics, originally proposed as the
Haldane-Briggs assumption [Haldane, 1930; Laidler, 1965], assumes that complexation of
C; is very fast during the early stage of the reactions, and that, afterwards, C; does not
appreciably change in time. This assumption implies that, after the initial phase,
dC; dE

~ — 22
7 0 and i 0, (22)

from the mass conservation law in Eq. (20).

We apply here the quasi-steady-state assumption to the BFEI treatment of Section 4.1.
Taking into account that the free enzyme concentration is a function of each complex, C;,
as stated in the mass conservation law of Eq. (20), we can write the rate of change of

each complex as
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p=1

which leads to

EyS;

S+ K (14—2%)
pti P

where K; = ko) + ks;)]/ki) is equivalent to the Michaelis-Menten constant for the ith

C; ~ (23)

reaction, and S; is the most limiting reactant in the same reaction.
Using the quasi-steady-state assumption of Eq. (22) and the solution for the complexes
C; of Eq. (23) we can write approximate GEBIK equations that also include the BFEI

and QSS assumptions as

g i S (24a)
dt — S,
Sz + Kz ]- + Z F
p#i P
d[dsplzh] m u%.ydh.kg(-)Eog‘
< ~ 17Chi O ’ 24b
DY (24)

The instantaneous isotopic ratio of product, I Rp(t), and substrate, Rs(t), can be cal-
culated using the above kinetic equations. Next, these ratios can be used to calculate the

fractionation factor o defined in Section 3.2.

5. Isotopic effects
The GEBIK equations are used to define the instantaneous cumulative isotopic ratio,
I Rp, and the fractionation factor, . Consequently, the BFEI and QSS approximations of

GEBIK have important consequences on how the isotopic effects are described in GEBIF,
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and introduce characteristics which are analyzed in this section by means of simple ex-
amples.

When the full GEBIK equations are used, the fractionation factor « calculated using
the GEBIF equations is always expressed as a nonlinear combination of the substrate and
complex concentrations (see Ezxample 4 and Ezxample 5 in which S and C appear both
at numerator and denominator). Because substrates and complexes are time varying,
the fractionation factor « is a function of time and not necessarily constant. When the
BFEI and QSS assumptions are used to solve the GEBIK equations, the isotopic effects in
GEBIF do not depend on the complex concentrations. In this instance, two scenarios are
possible depending on the reaction structure. If more than one isotopologue expression
of the same substrate is present in one or more reactions, the isotopic effects are always
nonlinear combinations of the substrate concentrations, that is, a is again a function of
time. This feature is shown below in Fzxample 6, in which the isotope tracer appears with
two expressions in the second reaction (i.e., in reactants $5(t) and {S5(¢)). Conversely, if
only one isotopic expression is present in each reaction, then the isotopic effects are always
constant, that is, « is strictly a function of the rate constants and it does not depend on
the substrate concentration or time. This characteristic is shown in Example 7, in which
each reaction comprises exclusively one isotopologue expression of the same reactant, i.e.,
only 95(¢) in reaction i = 1 and only }S(¢) in reaction i = 3.

The full GEBIK and GEBIF equations demonstrate that the isotopic effects (fractiona-
tion and enrichment) are a function of time. When a biochemical reaction can be described
with the BFEI and QSS approximations of GEBIK and GEBIF, the isotopic effects are

either time changing or constant depending on the structure of the reaction. The GEBIK
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and GEBIF equations, regardless of whether they are solved under the full treatment
or the BFEI-QSS approximations, show an additional important property. Normally, if
corresponding rate constants in m isotopologue reactions have identical values, the m
reactions are assumed not to produce fractionation and, therefore, the value of the frac-
tionation factor is expected to be o = 1. In contrast, our mathematical approach shows
that a reaction that does not lead to fractionation may have aw # 1. We demonstrate this

property in Example 8.

o Ezample 6. Consider the reactions in Eqs. (6) of Ezample 1

k1(1)

N k
298 4+E—C; - IP +E,
ko(1)
@, Ka(2
0S+1IS+E— Cy =2 uslP’ + 0 lP7 +E,
ko(2)
RION k
2(3)

Under the BFEI and QSS assumptions, the GEBIK and GEBIF equations become
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d@r] ks() Eoi S
a 1S 1S
K (141
09 + 1< o K3>
a7 ugks(2)EolS
e oS 18
Ky (142 4+ 12
15+ 2( + K, + Kg)
d3P7) (L= up) P
dt ug dt ’
dzr] ks () Eoi S
dt S 1S

1 o=
S+ K3 <1+K1 +K2)
15/63 15(t)

Rs(t) = 14/62 95(t)’
]Rp(t) _ @ [23 kg(g)Kg + 45 kg(g)KQHS(t)
161 45 ky1) K25 (t) + 44 k3(2)Kl}S( )’
ot) = 1386 [23 ka(a) K3 + 45 ka3 K,]9S(t) (26)
713 45 kyg KQ‘QS( ) + 44 k3 VEK1S(t)

Equation (26) shows that, in this case, « is not a function of the complex concentrations
in contrast to the results shown in Ezamples /4 and Example 5. However, « is a function

of time because reactants 95(¢) and 15(t) appear in more than one reaction.

e Fxample 7. Take again the system in Fxample 6 but consider only the first and the

third reactions, that is, the rate constants k() = ko(2) = k) =0

1‘1(1)

205+ E— ¢ -2 ) 9P +E,

ko(1)

k1<3>

21+ E— 03 -2 ks 2P +E.

ka(3)

The GEBIK and GEBIF equations written under the BFEI and QSS assumptions become
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d@r] ks() Eo S
. AN
K1+
1S+ 1 < + Kg)
dgr] ks EotS

de AN
1S + K <1+ 1—)

K
15/63 15(t)
14/62 95(t)’
330 k(s K11
161 kg1 K508
1386 kaz) K

_ , 28
“ T 18 ke K (28)

IRp(t) =

Notice that the fractionation factor of Eq. (28) does not depend on the substrate concen-

tration but is constant over time in contrast to Ezample 6.

e FExample 8. Consider the fractionation factor derived using the full GEBIK and GEBIF
as in Fxample 4 and Fxample 5. Assuming that the rate constants ks have the same value

in the three reactions, the fractionation factors can be calculated as

693 [23Cs (1) + 45 Cy(£)] 95(1)
) = 213 450, (1) + 20(1)] 15(0)° (29)
oty — 593 Cs(0)95() (30)

C TG4 18(t)
In both reaction schemes « is a function of time and not necessarily equal to 1. Similarly,
consider the fractionation factor derived from GEBIK and GEBIF under the BFEI-QSS
approximations of Example 6 and Example 7; assume the rate constant ks have the same

value in the corresponding reactions, and the Michaelis-Menten equivalent concentrations
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are K1 = Ky = K3. Under these constraints, the fractionation factors become, for Fxample

6 and Fxample 7, respectively

1386 [23 +45] 95(1)

) = 713 15 9500 + 44 150)" (31)
1386

_ 1586 2

‘T T (32)

It is clear that « is not necessarily equal to 1 when corresponding rate constants have
identical values in m isotopologue reactions, that is, when reactants identically react in
each reaction regardless of the isotopic expressions. However, depending on the reaction

structure, o may either be time-varying or constant as shown above.

6. Application of GEBIK and GEBIF to denitrification

In this section we describe the application of the full GEBIK and GEBIF equations and
their approximations solved under the BFEI and QSS assumptions to describe the deni-
trification reactions of NyO production and consumption. To this end, the experimental
observations in soil samples by Menyailo and Hungate [2006] and Mariotti et al. [1981]
provide the necessary constraints to the model and, at the same time, show non-common
inverse isotopic effects (i.e., NoO consumption in Menyailo and Hungate [2006]). Similar
inverse effects were observed for O during N,O production [Toyoda et al., 2005], during
N, fixation [Yamazaki et al., 1987|, and during intermediate NO; — N,O in-cell redox
reactions [Shearer and Kohl, 1988]. However, the data density in these experiments could
not be used to constrain the parameters involved in the GEBIK and GEBIF presented
here. The use of Manyailo and Hungate’s and Mariotti’s and co-worker experiments is

aimed to illustrate the main features of the two forms of GEBIK and GEBIF presented
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in Section 2, 3 and 4, whereas a detailed interpretation of the experiments can be found

in Menyailo and Hungate [2006] and in Maggi and Riley [2009].

6.1. Experimental data

The experimental data used in this application were collected from incubated soils tests
of N,O production from NO; [Mariotti et al., 1981; Menyailo and Hungate, 2006], and
N,O consumption into Ny [Menyailo and Hungate, 2006]. In both experiments, the bulk
§®N-NO; and 6'°N-N,O were measured during N,O production using N,O-reductase
acetylene inhibition. The §'N-N,O were measured with no additional treatment during
N5O consumption. During NoO production, the isotopomer speciation of the asymmetric
molecules "NNO and MN!NO were not assessed. However, in a similar experiment
of NyO production from NOj, [Well et al., 2006] measured the signature of the two
isotopomers in soils treated with moisture saturation ranging from 0.55 to 0.85. Their
analysis showed that the average isotopomer speciation was 50.225% as “N!NO and
49.775% as PNMMNO with a very small standard deviation across the water saturation
treatments. We will use these values for the partitioning coefficients introduced in the
GEBIK and GEBIF equations.

The numerical solution of the kinetics of each system component was obtained with an
explicit finite difference technique. Model calibration was carried out using N>O concen-
tration and 6N measured in both N,O production and consumption tests. For these
applications, the enzyme yield coefficient was arbitrarily set at z = 0.01 knowing that the
ratio /B is small, while the microbial death rate was set at ;4 = 107 s™! knowing that
it ranges between 1077 s7! and 1.15 107% s7! [e.g., Salem et al., 2005; Kim, 2006]. The

enzyme yield coefficient and the mortality rate were held identical in the No,O production



F. MAGGI AND W.J. RILEY: X-29

and consumption tests assuming that there is only one function group of denitrifying bac-
teria in these tests. The remaining parameters (highlighted in brackets in the first column)
were obtained by calibration using the software package PEST (Parameter ESTimation,
Papadopulos & Associates Inc., www.sspa.com/pest). Table 1 summarizes the parameters
used and calibrated for these experiments. Calibration of the rate constants was carried
out in a way such to satisfy the conditions ki) >ki(2), ko1) =ka(2), and kzy >k in
the full GEBIK equations, and the condition ks1) >k in the GEBIK equations solved
under BFEI and QSS assumptions. These conditions were imposed on the basis of the

higher energy barrier required in reactions involving molecules with heavier isotopes.

6.2. N3O production

N5O production from NOj can be described by the reactions

ky(1) K
298 +E—C - 0P +E,
ko(1)
0 1 N k3(2) 13 1Dy

2(2)

where production of 3P = »N,O from {S = »NO; was excluded due to its scarcity.
The isotopomer partitioning coefficients ug = 0.5022 and v, = 1 — ug = 0.4978 were
derived from the experiments presented in Well et al. [2006]. The full GEBIK and GEBIF

equations describing NoO production are
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ans dis
Eit | 2l — ki) PSE] + Eit s
dis
Eit = = ko) C2 — ki1 SE,
dc
d_tl = kl(l)(l)SE (k2(1) + k3 )Cl’
dc
2 = alSE — (low + kw)Ca
dppr
[dt ] = k3 C’17
d[LP?
[Zt e
AP 1 —ugd[3P7

dE dB dC; dC,

a A At dt’
0 1 pp 1 py

dt dt dt dt
165 1P
Rp(t) = 2
() = 151 1P +315 9P’
F 154 kg(g)Cg + 315 k3(1)01’
15519
) = 1755
693 ks(2)Cs 05

t) = T
) = 1305 Ty, Cr + 652 ko) G5 19"

with 3P(t) = 3PP(t) + 1P (t) in Eq. (34j).

For the same system, the GEBIK and GEBIF equations under the BFEI and QSS

approximations are
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d[}S] dgpP] 1 djPr7
—_9 S 35
dt dt  uy dt (352)
d[3S5] 1 d[3P”]
= b
dt ug dt (35b)
dBP] ks BEdS (35
dt AN
9IS+ Ky [ 1+ -
18 + 1 ( + KZ)
AP ugkse) EorS (35d)
at AN
Ky (1+ %
1S + 2 < + Kl)
dt o up dt ’
165 k) K11
IRp(t) = 35¢
P =333 kg(1) K205 + 154 kg K115 (350)
693 ka9 K199 (350)

a(t) = .
(*) 1395 kg(l)KQ(l)S + 682 k3(2)KI%S

Relatively to the experiments by Menyailo and Hungate [2006], NoO product concen-
trations and §'°N values predicted from the full and approximate forms of the GEBIK
and GEBIF equations are relatively similar (Figure (1a) and (1b)). The fractionation
factor (Figure 1c) is not constant in both forms of GEBIF owing to the mixed reaction in
which S and 1S produce the isotopomers P? and JP”. Notice that the Michaelis-Menten
constants K, approximate well 4.5 mmol NO; kg_ ., reported in Li et al. [1992] (Table
1). The values of K, smaller by about 2 mmol NOy kgs_olil, may reflect differences in
experimental setup. Interestingly, the K; and K, values obtained by calibration of the
BFEI-QSS approximation of GEBIK and GEBIF are very similar to the values calculated
a posteriori with the rated constants of the full GEBIK and GEBIF.

The full and approximate forms of the GEBIK and GEBIF applied to the experimental
data from Mariotti et al. [1981] predict very well the concentrations of NyO and NO; and

d°N (Figure 2). In this case, the full GEBIK and GEBIF approach performs better than
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the approximate forms, but the differences in accuracy are relatively small. It is important
to observe that the values of rate constants obtained by calibration on this experiment
have very similar values to those obtained from data by Menyailo and Hungate [2006],
thus signifying that the model can capture the reaction kinetics consistently.

As evidenced in Figure 1c and 2¢, the fractionation factor « is time varying in both full

and approximate forms of GEBIK and GEBIF.

6.3. N,O consumption

N>O consumption can be described by the following reactions

14N20 — 14N2,
14N15NO N 14N15N,

15N14NO N 14N15N

which can be rewritten using the generalized notation in Eqs. (4) as

ki) k

9S+E =G 0P +E, (37a)
2(1)
kl 2) 3 9

1S9 4+E = ¢, B IP+E, (37h)
ko(2)
k1(3) 3(3)

ST+ E = o ;%8 2P+ E, (37c)

ka(3)

where 9S =N,0, Sﬁ =MNINOQ, 1S7 =I°NMNO, 9P = Ny, and 3P = PNMN. Here, we
have not considered the substrate 2S5 ='°N,O due to its scarcity. In addition, we have
not specified the isotopic substitution in the Ny product of the second and third reactions

because Ny is symmetric.
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Assuming that the second and third reactions in Eqgs. (37b) and (37c) have identical
reaction rates (ki) = ki(2), ko) = ko(2), and ks(s) = ks(2)), the full GEBIK and GEBIF

equations describing the reactions in Eqgs. (37) are

d[gf l_ ko) C1 — ki) 39S E, (38a)
d%fﬁ] — ko) (s — ki 1S7E, (38b)
d%fv] = ko(2)Cs — ky2)257 E, (38¢)
% — ky3SE — (Kaqr) + ka)C, (384)
dd_? = Ky (2357 E — (koz) + ksz))Co, (38e)
dd—C:’ = kl(g)ést — (k2(2) + k3(2))C'3, (38f)
d[ﬁf] ~ ke Ch, (38g)
d[if] = Ka(a)(Cy + Cs). (38h)

dE dB dC; dC; dCs

dE _ dB _dey 38i
a At At dt dt’ 5
dB  _ (djP] = d[}P] i
E_Y( a Tar )M (38)
15 3P(t)
_ k
Rp(t) 14 1P(t) +29 §P(t)’ (359
15 (Cy + C3)k
IRp(1) = (Ca + C3)ks(o) ’
29 Cikyr) + 14 (Co + Cs)ksa)
165 39
Pl — 5 38l
st) =155 1S +31595’ o5
7 (Cy + Cs)kaa[45 0S + 22 1S
o(t) (Ca + C3)ks2)[45 35 + 22 3.5] (38m)

T 11 [29 Ciks) + 14 (Co + C)kygy] 45

The same equations with the BFEI and QSS approximations are
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d2s] ks(1) Eo3S

dt - _OS K 1Sﬂ 157 (39&)
1422
2 + 1 + K2 + K2 )
dt 1S
398 + K, ( + 2= —l— >
LG ka0 E 57
d[357] ~ 3(2)~02 (39¢)
dt 16y 1 K 1+°S+1Sﬁ
2 2 K K,
d gP d[gS]
= — 39d
dt dt ’ (39d)
dypP  d[ps’]  d[3S7]
dat ~ dt  dt (39%)
15 P
Rp(t) = ———2 39f
p(t) 141P 429 9P’ (39F)
15K1k3(2)%5
IRp(t) = 39
P( ) 29K2k3(1)88 + 14K1k3(2)55’ ( g)
465 %S
= h
Rs(t) 14[63 95 + 31 19]’ (39h)
14 K1ka(9 (63 OS 31 1S

" 31[29K;ks 95 + 14K k) 5]

where K3 has been substituted with K3 because the rate constants in the third reaction
have been assumed to equal those of the second reaction. In addition, 1S = 158 4+ 157
has been taken in Egs. (39g), (39h), and (39i).

The full GEBIK and GEBIF equations capture the NoO and §'°N values with higher
accuracy as compared to the GEBIK and GEBIF equations solved under the BFEI and
QSS approximations (Figure 3a and Figure 3b). Also in this case the fractionation factor
is not constant, as shown in Egs. (38m) and (39i). The variability of a obtained from
the GEBIF equations solved under BFEI and QSS is small as compared to that obtained
from the full solution of GEBIK and GEBIF (see insert in Figure (3c)), but has a strong

impact on the curvature of §'°N in Figure (3b). Also in this case, we observe that K;
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and K, values calculated a posteriori with the full GEBIK and GEBIF are very similar to
those calibrated under the QSS and BFEI approximations, and differ only slightly from
values reported in the literature [e.g., Li et al., 1992].

With respect to the specific interpretation of the NoO consumption experiment, it is
important to notice the capability of the full GEBIK and GEBIF equations to predict
inverse isotopic effects that result in d[0'°N]/dt < 0 after ¢ = 80 h (Figure 3b). Inverse
isotopic effects arose when the substrate was almost completely consumed and converted
into complex. From around time £ = 90 h, the small amounts of the complex being
transformed back into the substrate controlled its isotope signature and led to a signature
close to the initial composition. Finally, it is important to notice that inverse isotopic
effects in the full GEBIK and GEBIF equations do not necessarily imply a > 1 (Figure
3c). This property of GEBIK and GEBIF is a unique consequence of the transient kinetics,

that is, complexation was not assumed to be a steady state process.

7. Conclusion

We have presented an original mathematical treatment of isotopologues and isotopomer
speciation and fractionation that integrates the Michaelis-Menten kinetics with the Monod
kinetics for biomass and enzyme dynamics, and that accounts for (1) non-steady complex-
ation; (2) reaction stoichiometry; and (3) number of isotope substitutions and location
within the molecule. We have also developed and tested two mathematical simplifications
to the full mathematical treatment by introducing the biomass-free and enzyme-invariant
assumption, and the quasi-steady-state assumption for the complexation.

The full representation of isotope kinetics presented here produced the most accurate

predictions of observed concentrations in denitrification experiments, and showed the
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unique capability to predict variable and inverse isotopic effects as compared to previous
mathematical approaches. The full GEBIK and GEBIF equations demonstrated that: (i)
microbial biomass and enzyme dynamics substantially improve modeling of biochemical
isotopic kinetics; (ii) isotopic effects are always time-dependent because they are linked to
the substrate and complex concentrations; (#:7) inverse isotopic effects can be modeled only
assuming transient kinetics, i.e., when the complexation is not assumed in quasi-steady
state; (iv) inverse isotopic effects may occur also for values of the fractionation factor
smaller than 1; and (v) a biochemical reaction that does not fractionate isotopes does not
necessarily imply a fractionation factor equal to 1, the characteristic which depends on
the reaction structure.

More generally, the mathematical treatment presented here suggests that isotopic mea-
surements have the potential to help improve the mathematical understanding of the
kinetics of biologically-mediated chemical reactions. However, we recognize that a more
comprehensive experimentation into isotopic effects, such as simultaneous measurements
of substrate, product, and biomass concentrations, and the components’ isotopic com-
position, is equally important to fully understand the dependence of isotopic effects on

otherwise unobservable interactions with non-steady complexes.
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Figure 1. (a) observed and predicted N,O concentration, and (b) observed and pre-
dicted N,O isotopic composition during NyO production from NO;. (c) fractionation
factor calculated with the full and BFEI-QSS approximate solutions of GEBIK equations.
Experimental data are redrawn from Menyailo and Hungate [2006]. The acronyms BFEI
and QSS define, respectively, the biomass-free and enzyme-invariant approximation, and

the quasi-steady-state approximation.



X -42 F. MAGGI AND W.J. RILEY:

20 w w w 100 w w w 0.975
(a) O NO,, experiment (b) O Experiment
O N,O, experiment SES:E_BFEI_QSS (C)

— NOj, GEBIK-BFEI-QSS
ng er e N,O, GEBIK-BFEI-QSS] 75H 0.97
X IS = = =NO,, GEBIK
© E;] N,O, GEBIK 5
€ a -°
E | b

50
5 10 D[]Q ] 5 0.965
g Z
= 3
5} Ze)
o

257 \
5 0.96 ]
@)

GEBIF-BFEI-QSS
GEBIF
i i i 0955 L i I
0 200 400 600 800 0 200 400 600 800
Time [h] Time [h]

Figure 2. (a) observed and predicted NoO concentration, and (b) observed and pre-
dicted NOj isotopic composition during NyO production from NOj3. (c) fractionation
factor calculated with the full and BFEI-QSS approximate solutions of GEBIK equations.
Experimental data are redrawn from Mariotti et al. [1981]. The acronyms BFEI and
QSS define, respectively, the biomass-free and enzyme-invariant approximation, and the

quasi-steady-state approximation.
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Figure 3. (a) observed and predicted NoO concentration, and (b) observed and pre-
dicted N,O isotopic composition during NoO consumption into Ny. (c¢) fractionation factor
calculated with the full and BFEI-QSS approximate solutions of GEBIK equations. Ex-
perimental data are redrawn from Menyailo and Hungate [2006]. The acronyms BFEI
and QSS define, respectively, the biomass-free and enzyme-invariant approximation, and

the quasi-steady-state approximation.



Table 1. Summary of parameters used in the GEBIK and GEBIF equations in the cases of full solution and
approximate BFEI-QSS solution for the experiments of N2O production and consumption from Menyailo and
Hungate [2006] (M&H2006) and Mariotti et al. [1981] (M1981). The parameters in parentheses in the first column
were calibrated, the value z = 0.01 was assigned arbitrarily under the assumption that E/B is small, p = 10651
was chosen within the range of values reported in Kim [2006] and Salem et al. [2005], while So, Bo, and Ey were
determined from the experiments. The reference isotopic ratio Rs;q = 2.305 - 10~2 was used. The parameters K
and Ko within *-* in the full solution of GEBIK were calculated a posteriori as K = (ka+ks)/k1 for comparison
with K7 and K> of the BFEI-QSS approximate solution of GEBIK. The values of the parameters k; (z), ko2(7) and
k3 (i) are expressed with a precision of four digits owing to the model sensitivity to these values.

N2O production N2O consumption
Solution of GEBIK Full BFEI-QSS Full BFEI-QSS
Experiment from M&H2006 M1981 M&H2006 M1981 M&H2006 M&H2006
(k1)) [mmol~! kggoii s™1] -107° 2.5833  2.0872 - - 6.8606 -
(k1(2)) [mmol~! kgeop s~ -107C 2.5176 1.9489 - - 6.6418 -
(kaqry) 571 1076 9.7848  6.3234 - - 15.2727 -
(ko)) [s71] 1076 2.9413  1.3275 - - 14.6963 -
(ksy) 571 -10—6 3.3650  3.0910  4.0319  2.5334  3.8023 3.4542
(k3(2)) [s71] 1076 3.2914  3.0127  3.8911  2.5294  3.7935 3.4376
(K1)  [mmol kg__}] *5.09%  *4.51* 4.65 4.65 *2.78* 2.27
(K2)  [mmol kg__; *2.4TF  *2.23* 2.24 2.32 *2.78* 2.26
Y) [mg mmol 1] 95.39 64.44 - - 305.41 -
z [mmol mg~1!] 0.01 0.01 - - 0.01 -
w [s71] 10-9 10~ - - 10-¢ -
So [mmol kg 1] 27 14.8 27 14.8 55 55

-1

Bo [mg kg__ ;] 312.42 13.45 - - 212.18 -
Eg [mmol kg__ ;] - - 27.80 1.716 - 30.71
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