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Abstract: Macrophage activation, first generalized to the M1/M2 dichotomy, is a complex and
central process of the innate immune response. Simply, M1 describes the classical proinflammatory
activation, leading to tissue damage, and M2 the alternative activation promoting tissue repair.
Given the central role of macrophages in multiple diseases, the ability to noninvasively differentiate
between M1 and M2 activation states would be highly valuable for monitoring disease progression
and therapeutic responses. Since M1/M2 activation patterns are associated with differential metabolic
reprogramming, we hypothesized that hyperpolarized 13C magnetic resonance spectroscopy (HP 13C
MRS), an innovative metabolic imaging approach, could distinguish between macrophage activation
states noninvasively. The metabolic conversions of HP [1-13C]pyruvate to HP [1-13C]lactate, and
HP [1-13C]dehydroascorbic acid to HP [1-13C]ascorbic acid were monitored in live M1 and M2
activated J774a.1 macrophages noninvasively by HP 13C MRS on a 1.47 Tesla NMR system. Our
results show that both metabolic conversions were significantly increased in M1 macrophages
compared to M2 and nonactivated cells. Biochemical assays and high resolution 1H MRS were
also performed to investigate the underlying changes in enzymatic activities and metabolite levels
linked to M1/M2 activation. Altogether, our results demonstrate the potential of HP 13C MRS for
monitoring macrophage activation states noninvasively.

Keywords: Hyperpolarized 13C; MR spectroscopy; metabolism; macrophage activation; inflamma-
tion; innate immune response

1. Introduction

Nearly ubiquitous throughout the body, macrophages are a critical component in
maintaining our health and wellbeing, playing a central role in the innate immune re-
sponse, tissue homeostasis, and facilitation of crosstalk with neighboring cell types [1–3].
Macrophages have typically been described as having two activation states, which have
each been observed to play significant roles in various pathologies, such as autoimmune
disorders, obesity, and cancer malignancy [4–6]. Although there is still much to be under-
stood, these activation states were first generalized to the M1 and M2 dichotomy [7], and
are associated with cell-wide changes, including modulations of signaling pathways and
reprogramming of cellular metabolism [8]. Briefly, M1 describes the classical proinflam-
matory activation response, leading to subsequent tissue damage, whereas M2 activation
is associated with upregulation of anti-inflammatory pathways promoting tissue repair.
From an energetic metabolism perspective, M1 macrophages have been shown to increase
anaerobic glycolysis, while M2 use primarily aerobic oxidative phosphorylation for en-
ergy generation [9]. Reactive oxygen species (ROS) have also been reported to increase
significantly in M1-activated macrophages, including in J774a.1 cells, and are often used
as a marker of this activation state [10–16]. The activity of the arginase-1 enzyme iso-
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form, meanwhile, has been shown to significantly increase specifically in M2-activated
macrophages, serving as a robust marker of M2 activation [13,16–21].

Thus far, M1 and M2 differentiation has been largely determined using such markers
by histological, biochemical, and genotypic studies conducted on samples collected inva-
sively from the bloodstream or diseased tissues [22]. To date, no in vivo imaging method
enables differentiation between M1 and M2 activation states. Given their broad and critical
roles, such an approach could be very useful in improving our understanding of the role of
macrophages in underlying diseases, and would also allow in vivo monitoring of responses
to immunomodulatory treatments targeting macrophage activation in situ.

An investigative tool for assessment of in vivo metabolism exists in the form of 13C
magnetic resonance spectroscopy (MRS) combined with dissolution dynamic nuclear po-
larization (dDNP) of 13C-labeled probes [23], so-called hyperpolarized (HP) 13C MRS.
This technique has been used to noninvasively monitor metabolic impairment in multiple
preclinical models, including cancer, neuroinflammation, and cardiomyopathy [24–26]. Im-
portantly, the use of this technology is now expanding into the clinic, with ongoing clinical
trials on patients with brain tumor, traumatic brain injury, and prostate cancer, among
others [27–29]. Depending on the choice of 13C-labeled substrate, different metabolic path-
ways can be targeted and imaged noninvasively [30,31]. To date, two studies have used
HP 13C MRS to look at activation states of macrophages. One study described the use of
HP [6-13C]arginine to detect arginase activity in M2-like primary mouse myeloid-derived
suppressor cells (MDSCs) [32]. The authors showed that metabolism of HP [6-13C]arginine
to HP 13C urea was significantly increased in MDSCs compared to control bone marrow
cells, in line with increased arginase activity linked to M2 activation. Two other studies
on macrophage cells (J774a.1 [33] and RAW264.7 [34]) using HP [1-13C]pyruvate showed
that, after M1 activation using the toxin lipopolysaccharides (LPS), the conversion of HP
[1-13C]pyruvate into [1-13C]lactate, catalyzed by the lactate dehydrogenase (LDH) enzyme,
was significantly increased compared to nontreated macrophages. This result was linked
to, among other events, increased LDH activity and gene transcription [33]. Furthermore,
blockade of glycolysis with 2-deoxyglucose in activated cells normalized lactate label flux
rates and markedly inhibited the production of key proinflammatory cytokines [34]. How-
ever, to date, no study has directly compared M1 vs. M2 activation states in macrophages
using HP 13C MRS, and no other HP 13C probe besides HP [1-13C]pyruvate has been tested
in macrophage cell lines.

In this comprehensive study, we applied HP 13C MRS to paired M1 vs. control,
and paired M2 vs. control macrophages. Two metabolic conversions were evaluated:
(1) the conversion of HP [1-13C]pyruvate into HP [1-13C]lactate, and (2) the conversion
of HP [1-13C]dehydroascorbic acid (DHA) into HP [1-13C]ascorbic acid (AA) (Figure 1).
The first reaction is the final step of anaerobic glycolysis, while the second reaction is
modulated by ROS levels. Both reactions have previously been successfully imaged
in vivo [35,36]. In our study, we show that, for both probes, HP product-to-substrate ratios
were observed to be significantly increased in M1 macrophages compared to M2, while
control and M2 macrophages presented similar metabolic ratios. Underlying mechanisms
were investigated, and spectrophotometric assays showed that changes in HP lactate-
to-pyruvate ratios were associated with changes in LDH and pyruvate dehydrogenase
(PDH) enzymatic activities, while changes in HP AA-to-DHA ratio paralleled changes in
ROS levels.

Our study therefore shows that noninvasive differentiation of M1 vs. M2 activation
in macrophages can be achieved using 13C MRS of HP [1-13C]pyruvate and DHA at the
clinically relevant field strength of 1.47 Tesla. Upon translation to in vivo models, this
method could prove useful to evaluate the immune response and monitor the effect of
immunomodulatory treatments.
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Figure 1. Overall design. (A) Schematic of hyperpolarized 13C probes and their metabolic fates in J774a.1 macrophages. 
LDH = lactate dehydrogenase; PDH = pyruvate dehydrogenase; TCA = tricarboxylic acid cycle; GSH = glutathione; GSSG 
= glutathione disulfide; ROS = reactive oxygen species. (B) Overall experimental design of the study. Activation was 
achieved with either lipopolysaccharide (LPS, M1 activation) or interleukin-13 (IL-13, M2 activation). Control and M1/M2 
activated samples were paired for HP studies and for spectrophotometric assays. N = number of repeats. 
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M1 activation by LPS (p = 0.849), while a significant 57-fold increase in arginase activity 
was seen in M2 macrophages activated by interleukin-13 (IL-13) (p < 0.0001, N = 3, 38.255 
U/L/105 cells in M2-activated vs. 0.669 U/L/105 cells for control), as previously reported 
[37] (Supplementary Figure S1A). On the other hand, M1-activated macrophages exhib-
ited a 2.3-fold increase in ROS compared to control (p = 0.0009, N = 6), whereas no signif-
icant increase in ROS was detected in M2-activated macrophages (p = 0.7380, N = 3) (Sup-
plementary Figure S1B). The ROS increase in M1-activated macrophages is in agreement 
with previous reports [38]. The Bradford assay showed no differences in total protein con-
centration per cell between groups (Supplementary Figure S1C). 

2.2. HP [1-13C]lactate Production Is Differentially Increased by M1/M2 Macrophage Activation 
The T1 of HP [1-13C]pyruvate was calculated to be 52 s at 1.47 Tesla. Upon injection 
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tion could be detected at 183.3 ppm, with the HP [1-13C]pyruvate resonance visible at 171.1 
ppm (Figure 2A). Figure 2B shows the mean HP [1-13C]lactate signal for control, M1-acti-
vated, and M2-activated datasets over the first 40 TRs normalized to cell number. The 
buildup of HP [1-13C]lactate can be observed, demonstrating in situ metabolism. Quanti-
fication of the total sum spectra yielded a non-normalized HP [1-13C]pyruvate SNR of 6.06 
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number and volume, in comparison to control cells, HP lactate-to-pyruvate ratio was sig-
nificantly increased by 467 ± 49% with M1 activation (p = 0.0010, 4.00 ± 0.27 × 10−6 for M1-
activated cells vs. 7.06 ± 0.39 × 10−7 for control cells). In M2 macrophages, a 91 ± 36% in-
crease was observed compared to controls, but it did not reach significance (p = 0.1866, 
1.35 ± 0.24 × 10−6 for M2-activated cells) (Figure 2C). When comparing activation states, 

Figure 1. Overall design. (A) Schematic of hyperpolarized 13C probes and their metabolic fates in J774a.1 macrophages.
LDH = lactate dehydrogenase; PDH = pyruvate dehydrogenase; TCA = tricarboxylic acid cycle; GSH = glutathione;
GSSG = glutathione disulfide; ROS = reactive oxygen species. (B) Overall experimental design of the study. Activation was
achieved with either lipopolysaccharide (LPS, M1 activation) or interleukin-13 (IL-13, M2 activation). Control and M1/M2
activated samples were paired for HP studies and for spectrophotometric assays. N = number of repeats.

2. Results
2.1. M1 and M2 Activation of J774a.1 Macrophages

First, ROS and Arginase assays were performed to confirm differential M1 and M2
activation of J774a.1 macrophages, which was performed using previously established
protocols ([33] for M1 and [37] for M2). Arginase enzyme activity was unchanged with
M1 activation by LPS (p = 0.849), while a significant 57-fold increase in arginase activ-
ity was seen in M2 macrophages activated by interleukin-13 (IL-13) (p < 0.0001, N = 3,
38.255 U/L/105 cells in M2-activated vs. 0.669 U/L/105 cells for control), as previously
reported [37] (Supplementary Figure S1A). On the other hand, M1-activated macrophages
exhibited a 2.3-fold increase in ROS compared to control (p = 0.0009, N = 6), whereas
no significant increase in ROS was detected in M2-activated macrophages (p = 0.7380,
N = 3) (Supplementary Figure S1B). The ROS increase in M1-activated macrophages is in
agreement with previous reports [38]. The Bradford assay showed no differences in total
protein concentration per cell between groups (Supplementary Figure S1C).

2.2. HP [1-13C]lactate Production Is Differentially Increased by M1/M2 Macrophage Activation

The T1 of HP [1-13C]pyruvate was calculated to be 52 s at 1.47 Tesla. Upon injection
of HP [1-13C]pyruvate into activated and control macrophages, HP [1-13C]lactate produc-
tion could be detected at 183.3 ppm, with the HP [1-13C]pyruvate resonance visible at
171.1 ppm (Figure 2A). Figure 2B shows the mean HP [1-13C]lactate signal for control,
M1-activated, and M2-activated datasets over the first 40 TRs normalized to cell number.
The buildup of HP [1-13C]lactate can be observed, demonstrating in situ metabolism. Quan-
tification of the total sum spectra yielded a non-normalized HP [1-13C]pyruvate SNR of
6.06 ± 1.76 × 105, 5.33 ± 2.33 × 105, and 5.89 ± 1.25 × 105 for control, M1-activated, and
M2-activated, respectively, while the SNR of HP [1-13C]lactate for control, M1, and M2 was
1.27 ± 0.68 × 103, 2.28 ± 0.35 × 103, and 2.44 ± 0.73 × 103, respectively. When normalizing
to cell number and volume, in comparison to control cells, HP lactate-to-pyruvate ratio was
significantly increased by 467 ± 49% with M1 activation (p = 0.0010, 4.00 ± 0.27 × 10−6 for
M1-activated cells vs. 7.06 ± 0.39 × 10−7 for control cells). In M2 macrophages, a 91 ± 36%
increase was observed compared to controls, but it did not reach significance (p = 0.1866,
1.35 ± 0.24 × 10−6 for M2-activated cells) (Figure 2C). When comparing activation states,
HP lactate-to-pyruvate ratio was significantly higher by 197 ± 57% in M1-activated cells as
compared to M2-activated cells (p = 0.0008).
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Figure 2. HP [1-13C]lactate production is differentially increased by M1/M2 macrophage activation. (A) Dynamic spectra
acquired at 1.47 Tesla post HP [1-13C]pyruvate injection into M1-activated J774a.1 macrophages, and corresponding sum
spectra over 100 TRs in background. Insert shows HP [1-13C]lactate dynamics. († symmetric splitting of pyruvate due
to 1.1% 13C natural abundance in C2 position; # alanine peak; * contaminants). (B) Signal to noise ratio (SNR) of HP
[1-13C]pyruvate decay from all injections (black, left y-axis) and HP [1-13C]lactate production (right y-axis) in M1-activated
(red), M2-activated (orange), and control cells (blue) over 120 s. (C) HP lactate-to-pyruvate ratios measured in controls (blue)
and their activation pairs (M1-activated red, M2-activated orange) (Non Significant NS: p = 0.1866, ** p < 0.01, *** p < 0.001).

2.3. HP [1-13C]DHA Conversion to HP [1-13C]AA Is Increased with M1 Activation

The T1 of HP [1-13C]DHA was calculated to be 46 s at 1.47 Tesla. Following injection of
HP [1-13C]DHA, HP [1-13C]AA production could be detected at 178.8 ppm in control and
activated macrophages, while the resonance of the substrate HP [1-13C]DHA was detected
at 175 ppm (Figure 3A). The time courses of HP [1-13C]DHA and HP [1-13C]AA are shown
in Figure 3B for a control, an M1, and an M2-activated dataset. HP [1-13C]AA signal
gradually builds up as the signal from HP [1-13C]DHA decays, denoting in situ conversion.
Quantification of the total sum spectra yielded a non-normalized HP [1-13C]DHA SNR
of 2.23 ± 0.77 × 104, 3.16 ± 0.71 × 104, and 2.51 ± 1.03 × 104 for control, M1-activated,
and M2-activated, respectively, while the SNR of HP [1-13C]AA for control, M1, and M2
was 142 ± 58, 217 ± 67, and 144 ± 67, respectively. When normalizing to cell number and
volume, HP AA-to-DHA ratio was significantly increased by 88 ± 14% in M1 compared
to control (p = 0.0034, 4.53 ± 0.26 × 10−6 in M1-activated vs. 2.41 ± 0.11 × 10−6 in
control), while no significant differences were observed in M2 macrophages vs. control
(p = 0.9581, 2.19 ± 0.10 × 10−6 in M2-activated) (Figure 3C). When comparing activation
states, HP AA-to-DHA ratio was significantly higher by 107 ± 15% in M1 cells as compared
to M2-activated cells (p = 0.0122).

2.4. LDH Activity Is Increased in Both M1- and M2-Activated Macrophages, While PDH Activity
Is Decreased in M1 and Increased in M2 Activation

Interestingly, LDH enzyme activity was significantly increased by 92 ± 6% in M1-
activated macrophages (p = 0.0020, 1.57 × 10−4 µM NADH/min/µg for M1-activated
vs. 8.20 × 10−5 µM NADH/min/µg for control), and by 27 ± 6% in M2-activated
macrophages (p = 0.0300, 1.04 × 10−4 µM NADH/min/µg) (Figure 4A). In contrast,
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PDH activity was significantly decreased by 34 ± 5% in M1-activated macrophages
(9.08 × 10−4 mOD/min/µg) compared to control (1.37 × 10−3 mOD/min/µg, p = 0.0297).
Meanwhile, M2-activated macrophages showed a significant 34 ± 7% increase in PDH
activity (1.83 × 10−3 mOD/min/µg) compared to control (p = 0.0290) (Figure 4B). Spec-
trophotometric assay of glutathione (GSH) to glutathione disulfide (GSSG) GSH/GSSG
ratios with subsequent normalization to 105 cells showed no significant differences between
groups (Figure 4C).
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2.5. High Resolution 1H NMR Detects Significant Differences in Extracted Metabolites between
Control, M1, and M2 Macrophages

1H NMR spectra of extracted metabolites exhibited well-resolved peaks at 800 MHz
(Figure 5A). Multiple metabolite concentrations were observed to be significantly altered
between groups (Figure 5B), with many in agreeance with previous reports [33]. In M1-
activated macrophages, significant increases in itaconate (p < 0.0001 vs. control, p < 0.0001
vs. M2), taurine (p < 0.05 vs. control, p < 0.05 vs. M2), and succinate (p < 0.001 vs. control,
p < 0.0001 vs. M2) were measured, whereas a significant decrease in aspartate (p < 0.05
vs. control, p < 0.05 vs. M2) was detected. In M2 macrophages, significant decreases in
NAD (p < 0.01 vs. control, Non Significant (NS) vs. M1), lactate (p < 0.05 vs. control, p < 0.05
vs. M1), and choline (p < 0.05 vs. control, NS vs. M1) were observed. Additional signifi-
cant metabolite changes between M1- and M2-activated macrophages include glutamate
(p < 0.05), creatine (p < 0.05), and arginine (p < 0.05). Metabolite concentrations for each
activation group are detailed in Table 1.
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Table 1. Metabolite concentrations for control (blue), M1-activated (red), and M2-activated (or-
ange) J774a.1 macrophages, calculated from high resolution 800 MHz 1H NMR spectra of J774a.1
macrophage extracts. Concentration is reported as mean ± standard deviation. N.B.: Metabolites
with any significance between groups are underlined and italicized, with p-values for significant
differences shown in Figure 5B.

J774a.1 Non-Activated vs. Activated Metabolite Concentrations (µM)
Metabolite Control M1-Activated M2-Activated

Acetate 27 ± 12.7 26.52 ± 11.1 15.18 ± 6.58
Alanine 54.91 ± 24.3 36.48 ± 9.34 43.02 ± 7.98
Arginine 20.37 ± 7.68 26.17 ± 7.24 14.28 ± 4.75
Aspartate 76.93 ± 36.1 21.05 ± 20.89 50.57 ± 10.53
Choline 5.86 ± 2.23 13.13 ± 12.5 2.58 ± 0.72
Citrate 21.16 ± 10.57 10.03 ± 2.69 11.76 ± 2.38
Creatine 16.72 ± 7.54 22.59 ± 4.31 13.69 ± 3.45

Glutamate 111.09 ± 54.14 49.98 ± 6.89 69.95 ± 14.23
Glutamine 36.97 ± 14.99 78.15 ± 31.56 24.51 ± 7.28

Glutathione 48.79 ± 19.16 68.46 ± 26.94 46.3 ± 17.43
Itaconic acid 2.13 ± 1.74 40.27 ± 4.59 0.74 ± 0.71

Lactate 406.03 ± 83.92 748.64 ± 310.05 280.91 ± 49.32
NAD 6.2 ± 1.45 3.93 ± 1.09 2.94 ± 0.45

Succinate 4.93 ± 5.81 19.86 ± 1.4 3.38 ± 1.34
Taurine 90.85 ± 21.66 244.7 ± 92.42 113.2 ± 49.72

3. Discussion

In this study, we used the established J774a.1 mouse macrophage cell line and ap-
plied M1 [33] and M2 [37] activation protocols described in previous reports. First, we
confirmed that differential activation was successfully achieved, as shown by a signifi-
cant increase of arginase activity in M2 macrophages [20] and an increased level of ROS
in M1 macrophages [7]. Of note, we did not see a significant decrease in ROS levels in
M2-activated macrophages compared to control, as others have reported [22], likely due
to the small number of cells available for this assay. Protein concentrations per cell were
unchanged with M1 or M2 activation, justifying the normalization of all HP and spec-
trophotometric values to number of cells throughout the study. The 1H MRS results further
confirmed differential activation of macrophages. Highly significant increases in itaconate
and succinate concentrations are seen in M1 macrophages compared to control, in line
with previous reports [39], as itaconate is a well-known product of M1 polarization [40]
and a potent inhibitor of succinate dehydrogenase, which leads to succinate accumula-
tion [41]. Glutamine is higher in M1 compared to control, albeit not significantly, in line
with a previous report utilizing the identical cell line and activation protocol [33], and also
consistent with a study of LPS-induced M1 polarization utilizing a tenfold lower dosage
(10 ng/mL) [42]. The increased lactate observed in M1 compared to control and M2 is also
indicative of highly upregulated lactate production and Warburg-like effect that are specific
to M1 activation [22]. In M2-activated macrophages, the observed decrease in arginine
levels compared to M1 could be explained by increased arginine consumption through
upregulated arginase activity, though, to date, the only metabolomics study of macrophage
activation reports increased intracellular arginine concentration for both M1 and M2 [43].
It should be noted, however, that this study used primary human macrophages, which
have been shown to respond differently than established cell lines, as well as much longer
activation protocol of 72 h, which might explain the observed discrepancy [44]. A larger
metabolomics study specific to activation patterns of murine macrophage cell lines would
need to be pursued for more direct comparisons.

Here, we used an innovative approach allowing for noninvasive assessment of
metabolism, namely HP 13C MRS, and evaluated its potential to differentiate between
activation states in live macrophages. Our results show that significant differences in HP
product-to-substrate ratios of both HP [1-13C]pyruvate and HP [1-13C]DHA can be ob-
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served in differentially activated murine macrophages. The sampling of cell slurries prior
to each HP 13C MRS acquisition allowed for paired biochemical assays to be performed,
thus enabling for strong biochemical validations. The methods used may be applied in
other cell types, both from culture and primary populations.

The increased HP 13C lactate-to-pyruvate ratio observed in M1-activated macrophages
is in agreeance with previous reports [33], and congruent with the expected highly in-
creased glycolytic activity in proinflammatory macrophages [45]. This increased ratio is
also associated with a significant increase in LDH activity in the M1 group detected in
paired subsamples. In M2-activated macrophages, the HP 13C lactate-to-pyruvate ratio
was not significantly different from control, although a trend towards significance was
observed. This trend is in line with a smaller significant increase in LDH activity, which
was detected by spectrophotometric assays that are likely more sensitive than HP 13C
MRS. These results are also in agreement with previous reports showing that M2 polarized
macrophages exhibit a more modest increase in glycolytic activity compared to nonac-
tivated macrophages [46]. To further understand our HP results, it is important to look
into another common pathway for HP [1-13C]pyruvate metabolism, through PDH. In M1-
activated macrophages, our spectrophotometric results showing decreased PDH activity
compared to controls are in line with previous reports showing significantly reduced PDH
activity in M1 primary murine bone-marrow-derived macrophages [39]. Reduced PDH
activity in M1 macrophages would lead to less HP [1-13C]pyruvate entering the Krebs
cycle, shuttling this HP probe towards LDH and increased HP [1-13C]lactate production, in
line with our HP results. In M2-activated macrophages, on the other hand, we observed a
significant increase in PDH activity. This result is interesting, and reasonable given that
expression of pyruvate dehydrogenase kinase (PDK), an inhibitor of PDH, is reduced
in M2 polarization [47]. In that case, and contrary to M1, increased PDH activity may
lead to more HP [1-13C]pyruvate being shuttled into the mitochondria, thus decreasing
flux towards HP [1-13C]lactate production via LDH. This result provides an additional
explanation for the fact that HP lactate–pyruvate ratio was not significantly increased in
M2-activated macrophages, despite the increased LDH activity. It should be noted that
HP [1-13C]pyruvate metabolized through PDH can generate HP [1-13C]bicarbonate via
pyruvate decarboxylation, and measurements of HP [1-13C]bicarbonate have been used to
determine PDH flux in previous studies [48,49]. Although the spectral bandwidth in this
study was large enough to cover the resonance of HP [1-13C]bicarbonate at 163 ppm, the
signal of this metabolite was not detected, likely due to its intrinsically low level in this cell
type. Finally, in addition to enzymatic activities, the levels of steady-state lactate levels from
1H NMR might also contribute to the HP readouts through the well-documented pool-size
effect [50–52]. The observed significant decrease in 1H lactate levels in M2 macrophages
may also contribute to the reduced HP lactate levels in that group. In M1 macrophages,
lactate levels follow an increasing trend (p = 0.128), which is also in line with the HP results.
Multiple additional factors contributing to the HP readouts could be considered, including
levels of membrane transporters (e.g., MCT1) or NAD cofactor availability. However,
such measures could not be performed in this study due to the limited number of paired
samples available.

Our results show that conversion of HP [1-13C]DHA to HP [1-13C]AA was increased
in M1 macrophages, mirrored by increased ROS levels, but unexpectedly not by changes
in GSH levels or GSH/GSSG ratio. It is well known that the GSH redox system is a
mitigator of ROS [53], while also being coupled to the conversion of DHA into AA [54]:
GSH is oxidized to GSSG by DHA, which, in turn, is converted to AA. Increasing ROS
levels should theoretically deplete the available pool of GSH (and increase levels of GSSG),
leaving less GSH available for the production of AA, and thus leading to a decreased HP
AA-to-DHA ratio, as previously reported [36,55]. However, both GSH/GSSG ratios, as
detected by spectrophotometric assay, and total GSH levels, as detected by 1H NMR, were
not significantly different between M1 macrophages and control or M2. A previous study
of the same cell line also showed that the total pool of GSH as detected by 1H NMR was
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not increased post-activation by LPS [33]. Other reports using biochemical methods also
show no changes in total GSH levels with M1 activation, but do note elevated GSH/GSSG
ratio [56]. Elevated GSH/GSSG ratio can explain an increase in AA production, and may be
a compensatory effect unique to macrophages, as they endogenously manufacture ROS as
part of the immune response. Our results show that a trend to an increase in M1-activated
compared to control (p = 0.1265) and M2 (p = 0.1083) was seen, although it did not reach
significance, possibly due to the limited numbers of available paired samples (N = 3) that
were spread thinly across the numerous assays. Further work could be done with a larger
sample size to confirm the increase in GSH/GSSG ratio in M1 macrophages. Importantly,
conversion of HP [1-13C]DHA to HP [1-13C]AA can also be affected by the levels of the
glucose membrane transporter 1 (GLUT1), which is a known facilitated transporter of
DHA [57]. GLUT1 has been shown to be upregulated with M1 activation compared to
quiescent [58,59], whereas its expression is comparable between control and M2-activated
states [42,60]. These facts mirror our HP AA/DHA ratio results and could be another
possible mechanistic explanation to our observed HP data. Due to the limited number of
paired samples, however, membrane transporter expressions were not evaluated here.

The power of dynamic metabolic probing using HP 13C MR is compelling, as it
allows the measuring of previously inaccessible metabolic reactions noninvasively. HP 13C
metabolic imaging is a rapidly growing field, and is now being used in multiple clinical
trials across the globe, targeting several organs, including the brain, heart, prostate, and
kidney [28,29,61–70]. It is very likely that, given the constant improvements reported, both
on the acquisition and processing sides, this methodology will soon approach feasibility for
widespread clinical adoption. Currently, the most popular probe for hyperpolarization is
HP [1-13C]pyruvate, with some of the best polarization characteristics [52], but other probes
are continuously being investigated, opening up possibilities not explored before. While
the clinical data reported so far are highly compelling, mechanistic studies are still critically
needed to understand the relative contribution of each cell type to the detected HP signal,
especially for cells as ubiquitous as macrophages, which are found in most diseases and
most organs. Here, we performed the first study of live macrophages at a clinically relevant
field strength, and compared both M1 and M2 activation patterns. Before, the only other
study that used HP 3C MRS on activated macrophages was conducted at the high magnetic
field strength of 11.7 Tesla, and employed M1 activation only [33]. We showed that, at
clinical field strength, the spectral resolution was sufficient to enable measurements of
metabolic fluxes in live cells. Further, we demonstrated that M1 and M2 macrophages have
a different HP metabolic signature, with both HP [1-13C]pyruvate and HP [1-13C]DHA. It is
important to note that incubation with LPS and IL-13 is only one way to induce M1 and M2
activation, respectively. Other cytokines, or cytokine cocktails, could be used to induce M1
and M2 activation states (e.g., IL-14 for M2 [71], or interferon-gamma (IFN-γ) for M1 [72]),
and further studies would be needed to confirm that the HP results observed in this study
hold across activation protocols, as well as in vivo in preclinical models. Further, potential
changes in metabolism caused by the change in cellular environment from flask to NMR
tube would require additional investigation. Nevertheless, this study further establishes
HP metabolic imaging as an interesting tool to assess inflammation, and our results could
help increase the understanding of the metabolic readouts observed in vivo in preclinical
models and patients.

4. Materials and Methods
4.1. Cell Culture

J774a.1 mouse macrophages (ATCC, Manassas, VA, USA) were grown in Dulbecco’s
modified Eagle’s media (DMEM) containing 10% fetal bovine serum and 5% penicillin/
streptomycin (UCSF). M1 activation was achieved with 100 ng/mL LPS treatment for
24 h (E. coli; Sigma Aldrich), and M2 activation with 5 ng/mL of murine IL-13 for 24 h
(Peprotech), as previously described [32,36]. A control group was established with a vehicle
treatment of sterile PBS. All passage numbers used were ~4–14 to reduce the risk of genetic
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drift, and a mycoplasma testing kit (ATCC) confirmed the culture was contamination-free.
Figure 1 presents a schematic of the full experimental design.

For HP 13C experiments, cells were studied as paired samples of either M1 or M2
activation and paired controls. The definition of paired samples were as follows: three T225
flasks were split into ten T225 flasks, five of which were activated towards either M1 or M2,
and the other five with vehicle as control. The adherent macrophages were incubated with
0.04% EDTA in calcium and magnesium-free PBS solution (Cell Culture Facility, UCSF) for
approximately 10 min, collected, and then centrifuged at 125× g for 5 min. The pellet was
resuspended in 200 µL of fresh DMEM (no additives), and a 20 µL sample was taken and
washed with PBS to be saved at −80 ◦C for paired spectrophotometric assays (for all assays
except ROS). Another 20 µL sample was taken for cell counting (referred to as subsample
in the rest of this manuscript), and the remaining slurry suspension (~20 million cells) was
transferred to a 5 mm NMR tube. All injections of HP probes were done within 5 min of
cell resuspension and transfer to the NMR tube.

4.2. MR Acquisitions

A total of 24 µL of [1-13C]pyruvate (15 M pyruvic acid (Sigma Aldrich, St Louis, MO,
USA), 15 mM trityl radical (GE), 500 mM Gd-DOTA (Guerbet, Roissy, France)) or 25 µL of
[1-13C]DHA (2.2 M dehydroascorbic acid (Sigma) prepared as previously described [36])
was polarized for 1 h on a Hypersense dDNP polarizer (Oxford Instruments), then dis-
solved in 4.5 mL or 3.5 mL buffer (pyruvate buffer: 80 mM NaOH, 40 mM Tris HCl, 3 mM
EDTA in ddH2O; DHA buffer: 3 mM EDTA in ddH2O), to yield a final solution of 80 mM
or 15.72 mM, respectively. Previous formulations of [1-13C]pyruvate and [1-13C]DHA
polarized on the Hypersense polarizer achieved 13.9–27.5% and ~10% polarization, re-
spectively [55,73]. Within 20 s of dissolution, approximately 400 µL of HP [1-13C]pyruvate
(n = 3 control vs. M1-activated pairs, n = 4 control vs. M2-activated pairs) or [1-13C]DHA
(DHA: n = 6 control vs. M1-activated pairs, n = 5 control vs. M2-activated pairs) was
injected into a 5 mm NMR tube containing a ~20 million cell slurry in 200 µL DMEM.
Hyperpolarized spectra were then acquired on a 1.47 T Oxford Pulsar NMR system using a
1D pulse acquire sequence with the following parameters: flip angle = 20◦, repetition time
(TR) = 3 s, pulse type = WALTZ-4, pulse length = 4 µs, and number of scans (NS) = 100,
for a total acquisition of 5 min. Analysis was performed with Mestrenova (Mestrelab,
Santiago de Compostela, Spain) software. Signal to noise ratio (SNR) for the injected
substrates and detected products were calculated from the total summed spectra as area
under curve divided by standard deviation of the noise. Contaminants were identified via
blank experiments with hyperpolarized substrates injected into NMR tubes with media
only. Spin-lattice relaxation time T1 of each HP probe was also calculated from such blank
experiments. All HP data are represented as mean ± standard error of the mean (SEM),
and are normalized to cell number and volume of injection.

4.3. Spectrophotometric Assays

ROS levels, arginase activity, LDH activity, PDH activity, and GSH levels were mea-
sured with spectrophotometry on paired samples collected from the same flasks as the
ones used for HP experiments. ROS data of control (N = 6), M1-activated (N = 6), and M2-
activated (N = 3) were reported as fold-change from control using a commercial intracellular
ROS fluorescence assay kit (Abcam, Cambridge, UK), used according to manufacturer’s
instructions). Arginase assay (Abcam) activity of control (N = 6), M1-activated (N = 3), and
M2-activated (N = 3) was reported in units/Liter (U/L) and normalized to 105 cells per
well. An in-house LDH assay measuring the rate of NADH (Sigma) depletion for control
(N = 6) and activated groups (N = 3 for both M1 and M2) was performed and reported
as µM NADH/minute normalized to protein concentration quantified by Bradford assay
(Thermofisher, Waltham, MA, USA). A PDH assay kit (Abcam, Cambridge, UK) was used
to measure PDH enzyme activity between groups (N = 3 for each control, M1, and M2), and
reported as optical density (milliOD)/minute with normalization to protein concentration.
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GSH and its oxidized form GSSG were measured with a commercial kit (Biovision, San
Francisco, CA, USA). The total glutathione levels were first measured, then subtracted
from measured levels of GSH to obtain GSSG values, with the subsequent GSH/GSSG
ratio reported with normalization to 105 cells per well. All spectrophotometric data are
reported as mean ± standard deviation.

4.4. High Resolution 1H NMR of Extracted Cell Metabolites

Metabolites from M1-activated (N = 5), M2-activated (N = 5), and control (N = 4)
J774a.1 cells were extracted using equal parts methanol–water–chloroform, as previously
described [74]. Cold 4 ◦C saline (5 mL) was added directly to T75 flasks 2–3 times and
removed to rinse, and −20 ◦C methanol (3 mL) was subsequently added. The adherent
macrophages were scraped off into the methanol—this mixture was transferred to a clean
tube. Equal parts −20 ◦C chloroform and 4 ◦C H2O were homogenously mixed, and
the fractions separated by centrifuging at 125× g at 4 ◦C. The methanol fraction was
collected, 0.65 mM trimethylsilylpropanoic acid (TSP) (Acros Organics) added, and the
mixture lyophilized. The resultant extracts were reconstituted in 420 µL D2O, and the
samples were scanned on an 800 MHz NMR system (Bruker, Billerica, MA, USA) with a
1D NOESY presaturation sequence with TR = 3.31 s, mixing time = 50 ms, and NS = 384. A
subsequent fully relaxed scan was performed with a relaxation delay of 30 s to ensure a
time of at least 5 times the longest T1 based on literature values [75]. This spectrum was
used to generate correction factors that were then subsequently applied to all spectra to
enable absolute quantification of metabolites. Spectral processing was performed with
Mestrenova (Mestrelab, Santiago de Compostela, Spain), and a select group of metabolites
of interest previously reported in macrophage studies [33] were fitted and quantified using
Chenomx NMR Suite (Chenomx Inc, Edmonton, AB, Canada) with reference to the Human
Metabolomics Database [76]. Concentrations of quantified metabolites were normalized to
cell number and TSP reference, and reported as mean ± standard deviation.

4.5. Statistical Analyses

The sample sizes of HP experiments were determined using an 80% power calculation
of preliminary paired data between activated and nonactivated groups. All data were
tested with two-way ANOVA between activated and nonactivated, with Sidak’s multiple
comparisons test. All tests were performed with Prism 8 (GraphPad) software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11070410/s1, Figure S1: M1 and M2 activation of J774a.1 macrophages.
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