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REVIEW / SYNTHESE

Satellite cell proliferation and skeletal muscle
hypertrophy

Gregory R. Adams

Introduction

Abstract: Satellite cells are small, mononuclear cells found in close association with striated skeletal muscles cells (myo-

fibers). These cells appear to function as reserve myoblasts. A critical role for these cells in the process of muscle regener-

ation following injury has been clearly established. In that role, satellite cells have been shown to proliferate extensively.
Some of the progeny of these cells then fuse with each other to form replacement myofibers, whereas others return to qui-
escence, thereby maintaining this reserve population. In response to injury, activated satellite cells can also fuse with dam-
aged but viable myofibers to promote repair and regeneration. It has also been observed that satellite cells are activated
during periods of significantly increased muscle loading and that some of these cells fuse with apparently undamaged my-
ofibers as part of the hypertrophy process. The observation that the inactivation of satellite cell proliferation prevents most
of the hypertrophy response to chronic increases in loading has lead to the hypothesis that a limitation to the expansion of
myofiber size is imposed by the number of myonuclei present. Recent evidence suggests that a potential limitation to

muscle hypertrophy, in the absence of a reserve supply of myonuclei, may be the inability to sustain increases in ribo-
somes, thereby limiting translational capacity.

Key words: myonuclei, stem cells, translational capacity.

Résumeé : Les cellules satellites sont de petites cellules mondeaslebseries en association intime avec des cellules
musculaires stiies (myofibres). Les cellules satellites semblent jouer le de myoblastes d€ serve. D'apre des &udes
solides, elles jouent un ke critique dans le processus dejeaeration musculaire da suite d’une blessure. Au cours de ce
processus, on aabli que leur nombre augmentait beaucoup. Parmi les nouvelles cellules, quelques-lUnmissent
pour former des myofibres de remplacement pendant que les autrésassivknt et retournent dans la population de re
serve. En raction aune blessure, les cellules satellites a@w@euvent s’unit des myofibres Isees mais encore viables
pour en faciliter la rparation et la rgeneration. Selon destades, les cellules satellites sont acéiseau cours des’ fedes
d’entrdnement musculaire intense et quelques-unes d’entre elles s'unisdesatrayofibres apparemment saines dans le
processus de I'hypertrophie. Comme l'inactivation de la praifien des cellules satellites efghe pratiquement toute la
manifestation de I'hypertrophie enpense da surcharge musculaire, on scguel’hypothése suivante : I'accroissement
des dimensions de la fibore musculaire est lingitg le nombre de noyaux de fibres musculaires en place. Bates &u-
des feentes sur la limitation potentielle de I'hypertrophie musculaire, les ribosomes n’augmentent pas lelreactisite
sence d'une‘ierve de noyaux de fibres musculaires disponibles, ce qui limite leur capacitaduction.

Mots clés : noyaux de fibres musculaires, cellules souches, capdeiteaduction.

[Traduit par la Rdaction]

dence suggests that, in vivo, these multinucleated myofibers
are permanently differentiated and therefore incapable of
mitotic activity (e.g., cell division) (Chambers and Mcder-

mott 1996; Hughes and Schiaffino 1999; Stockdale and Holt-

The constitutive cell type of skeletal muscle tissue is thezer 1961). In addition to a complement of non-myogenic
myofiber. Mature mammalian myofibers are multinucleatedcells (fibroblasts, immune cells, etc.), myofibers are ac-
cells formed via the fusion of individual myoblast cells dur- companied by satellite cells. Satellite cells were originally
ing development (Cossu and Biressi 2005). To date, evinamed based on their anatomical relationship to the myo-

fiber, i.e., in close association with the myofibers. Satellite

Received 28 March 2006. Accepted 9 May 2006. Published on cells are undifferentiated myogenic cells present within the
the NRC Research Press Web site at http://apnm.nrc.ca on basal lamina of myofibers. These cells appear to be a pop-

8 December 2006. ulation distinct from the myoblasts that fuse during myo-
G.R. Adams. Department of Physiology and Biophysics, fiber development (Cossu and Biressi 2005). A convincing
Medical Science | D335, University of California, Irvine, case can be made that these cells represent a muscle stem
CA 92697, USA (e-mail: gradams@uci.edu). cell population (Collins and Partridge 2005). The nature of
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satellite cells and, in particular, the degree of heterogeneitgid not develop any force in response to stimulation
within this population of cells, is an area of intensive study(lrintchev et al. 1997; Wernig et al. 2000). However, these
(Wagers and Conboy 2005). For the purposes of this reauthors found that the provision of cultured myoblasts re-
view, the umbrella term “satellite cell” will be used to de- sulted in significant muscle regeneration, including the abil-
note the population of cells present within the muscleity to generate force. Interestingly, in those same studies,

contributing to myofiber regeneration. undamaged irradiated muscles demonstrated a small but sig-
nificant deficit in function over time that was also rescued
Satellite cells and muscle regeneration by the injection of cultured myoblasts.

In aggregate, the muscle regeneration literature indicates

Numerous lines of evidence indicate that, in response tgnat satellite cell populations endogenous to the damaged
muscle injury, myofiber regeneration results from the activ-y scle are responsible for the repair and replacement of
ities of_satellite cells. In response to i_njury, satellite cells canjamaged myofibers. The critical nature of this role for satel-
fuse with damaged but viable myofibers to promote repaifjte cells has been established, in part, using irradiation as an
(Robertson et al. 1990, 195621993). Satellite cells can also eyperimental tool. To date, results from the literature sug-
initiate the de novo formation of myofibers within the basz_il gest that intact, mytotically competent, stem cell populations
lamina of cells that have actually been destroyed by the ing tside of damaged muscles do not appear to contribute to

jury (Robertspn et al. 1990; Sabourin and _RUd”iCk_i 2000,gpstantial levels of regeneration in the absence of experi-
Schultz 1989; Schultz and McCormick 1994; Zammit et al.jyenta| interventions to promote this process, i.e., this does

2002). not appear to be a naturally occurring process (Washabaugh
The critical, obligatory, nature of satellite cell contribu- et al. 2004). However, in the context of experimental and
tions to muscle regeneration was clearly established with sgor) clinical settings, the potential for myoblast transplanta-
lective irradiation (e.g., Robertson et al. 18p2The results  tion has made great strides and holds the promise of future
from a number of studies using muscle injury models indi-treatments for diseases such as muscular dystrophy (Skuk
cate that relatively modest doses of radiation, below thesnd Tremblay 2003).
threshold of what is generally required to induce overt cellu-
lar injury in vivo, will interfere with the regeneration of .
skeletal muscle (e.g., Gulati 1987; Lewis 1954; Pagel an(§ate"Ite cells and muscle hypertrophy
Partridge 1999; Rathbone et al. 2003). Since there is an ab- There have been a number of studies that have demon-
sence of overt cellular damage accompanying such expastrated that the muscle hypertrophy process appears to in-
sures to irradiation, it has been postulated that the failure ofolve the addition of nuclei to existing myofibers (e.g.,
myofibers to regenerate was a result of damage to DNASalleo et al. 1983; Schiaffino et al. 1972, 1976; Snow
which would prevent satellite cell proliferation (Robertson 1990). In light of the historical findings indicating that irra-
et al. 1992). It would follow then that mature, permanently diation prevented muscle regeneration, a number of investi-
differentiated, mammalian myofibers would not appear to beyators were stimulated to study the impact of this treatment
the locus of the radiation-induced mitotic failure (Chamberson the phenomenon of muscle hypertrophy. The results of
and Mcdermott 1996; Stockdale and Holtzer 1961). such studies have uniformly indicated that previous irradia-
In light of the random nature of radiation-induced dam-tion can prevent some or all of the hypertrophy normally in-
age, the inhibitory effects of radiation on muscle regeneraduced by increased muscle loading (Adams et al. 2002;
tion are proposed to be a result of the incapacitation ofhelan and Gonyea 1997; Robertson et al. 898&bsenblatt
satellite cell mitotic activity via the prevention of DNA rep- and Parry 1992, 1993; Rosenblatt et al. 1994). For example,
lication as opposed to the inactivation of specific genes. Ira series of papers published by Rosenblatt and colleagues
support of this theory, Roth and Oron (1985) were also abldave shown that, in response to functional overload (surgical
to prevent muscle regeneration via the pharmacological infemoval of synergist muscles), irradiated myofibers do not
hibition of mitosis using Vinblastine. More recently, Yan hypertrophy or increase their myonuclear number, but do al-
and colleaugues reported that the irradiation of mouséer their myosin heavy chain (MHC) isoform profile from a
muscles prevented satellite cell proliferation and identifiedfaster to a slower phenotype (Rosenblatt and Parry 1992,
the failure to induce expression of E2f transcription factors,1993; Rosenblatt et al. 1994). We recently reported that the
which are critical for expression of proteins necessary forcells of irradiated muscles respond to functional overload
DNA replication, as a key factor in this failure (Yan et al. with a number of cellular and molecular changes that indi-
2003). cate that signaling pathways and intracellular processes as-
A number of studies have pointed to the critical require-sociated with muscle hypertrophy appear to be intact and
ment for a supply of satellite cells endogenous to the muscléinctioning appropriately (Adams et al. 2002). In spite of
for regeneration (Alameddine et al. 1989, 1994; Robertsoivhat appeared to be appropriate initial cellular and molecu-
et al. 1992). As an example, studies by Alameddine andlar responses, these irradiated muscles failed to add myonu-
coworkers (1989, 1994) have demonstrated that the proviclei or to hypertrophy. As part of that study we found that
sion of autologous satellite cells to muscles that had beethe ability of irradiated muscles to increase oxidative ca-
damaged and irradiated was able to rescue much of theacity is intact, indicating that this was not a limiting factor
muscle regeneration with regard to both morphology andor hypertrophy. Similarly, Li et al. (2006) recently reported
function. Similarly, studies have found that, after extendedhat muscle irradiation treatment does not appear to prevent
periods of recovery, muscles that were damaged and irradRNgIOgenesis.
ated showed only the deposition of a fibrotic component and A number of studies involving resistance exercise training

© 2006 NRC Canada



784 Appl. Physiol. Nutr. Metab. Vol. 31, 2006

have observed increases in satellite cell activity and (or) th@eriod of protein synthesis to reestablish the myonuclear—
addition of myonuclei in both animals and humans (e.g.myofiber size ratio in the absence of further cell replication
Cabric et al. 1987; Kadi et al. 1999; Kadi and Thornell events (Nader et al. 2005; Rommel et al. 2001).
2000). Similarly, the results from studies using hormonal Along these same lines there is evidence that some degree
interventions, such as testosterone treatment, which inducsf hypertrophy can be observed in previously irradiated
hypertrophy also indicate that satellite cells participate viamuscles as well. In a study involving long-term overloading
the provision of additional myonuclei (Herbst and Bhasinand irradiation of skeletal muscles in rats we found that, in
2004). However, the majority of the intervention studiesthe initial period, there was a small but significant increase
conducted specifically to assess the obligatory nature oh the mass and myofibrillar protein content of irradiated
the contribution of satellite cells to the hypertrophy processmuscles (Adams et al. 2002). During the first 15 days of in-
have used the synergist ablation model. This method of increased loading, the DNA content of the irradiated muscles
ducing compensatory hypertrophy is most likely chosen bealso increased by a small but significant amount. This sug-
cause it is the animal resistance exercise model thajests the possibility that a small number of satellite cells
produces the most robust levels of mechanical stress angithin the irradiated muscles may have been able to com-
therefore extensive hypertrophic responses. However, it iplete mitosis. These cells may have been either undamaged
generally acknowledged that this model involves some inhy the irradiation treatment or were able to affect repair of
flammation in the early stages. This suggests the possibilityheir DNA (Mozdziak et al. 1996). Alternatively, this in-
that the obligatory nature of satellite cell contributions tOcrease in muscle DNA may have represented an influx of
hypertrophy may be unique to this model. However, incells from outside of the irradiated muscles. There were
contravention to this caveat, Li et al. (2006) have reportegyiso indications that the small degree of hypertrophy seen in
that an endurance-running protocol could induce skeletahe irradiated muscles may have been supported by a popu-
muscle hypertrophy in mice, and that previous irradiationjation of satellite cells that was quiescent but committed to
prevented the hypertrophy response. In addition, Bartongitferentiation without the need to proliferate. This source
Davis et al. (1999) have reported results demonstratingould contribute a finite supply of new myonuclei to over-
that satellite cells contribute significantly to muscle hyper-jpaded myofibers. In support of this possibility, we have
trophy induced by the overexpression of insulin-like previously reported that some of the earliest molecular level
growth factor | (IGF-I). In that study, the authors reportedchanges seen in overloaded muscles are indicative of myo-
that irradiation prevented a significant portion of the hyper-genic differentiation rather than proliferation (Adams et al.
trophy response, but that it had no impact on specific forcer999). Myogenic cell differentiation that proceeds prolifer-
of mouse muscles, providing an additional indication thatation has also been observed in response to muscle injury
irradiation does not directly impact myofiber function. (Grounds et al. 1992; Rantanen et al. 1995; Yablonka-
Taken together the results from a large body of literatureReuveni 1995).
indicate that irradiated myofibers adapt in a manner similar
to non-irradiated myofibers with regard to most processeg
intrinsic to the myofiber, such as the qualitative expression
of contractile protein isoforms, but that they are unable to The literature regarding a potential role for satellite cells
generate more than a modest increase in the quantity of prin aging-related muscle atrophy, i.e., sarcopenia, has been
tein accumulated in the myofibers. The common findingless clear than the relationship of satellite cells to muscle re-
from studies of muscle hypertrophy following irradiation generation or hypertrophy. Studies have indicated that aging
has provided a consistent observation of decreased or absatues not appear to depress the inherent ability of satellite
cell proliferation, presumably due to a failure to add myonu-cells to activate in response to various perturbations (Chak-
clei from the satellite cell pool. In contrast to findings in ravarthy et al. 2000; Conboy et al. 2005; Dedkov et al.
mammals, in avian muscles, irradiation appears to prever003; Putman et al. 2001). We recently reported that, in the
stretch-induced cellular proliferation, but prevents only amuscles of both young and old rats, cyclin D1 mRNA levels
relatively small proportion of the hypertrophy induced by (potentially indicating increased cell-cycle activity) in-
stretching the muscles (Lowe and Alway 1999). creased following acute resistance exercise (Haddad and
It is important to note that there appears to be Som@\dams 2006). However, there was a significant delay in the
threshold level of muscle hypertrophy that is sensitive tocyclin D1 response of the older muscles. This observation
the requirement for the addition of myonuclei. It has beenappears to be in accord with in vitro studies demonstrating
observed in human studies that moderate levels of muscle lag in the proliferative responses of satellite cells from
hypertrophy can occur in the absence of significant level§iged muscles (Schultz and Lipton 1982).
of myonuclear incorporation (e.g., Kadi et al. 2004). It Some of the confusion with regard to the impact of aging
seems quite logical that the relationship between myofibeon satellite cell function, particularly the maintenance of
size and myonuclear number would have a fairly wide rangenyonuclear number, may partly stem from the lack of a
(e.g., Barton-Davis et al. 1999). There would be an apprecielear understanding of how the myonuclear domain changes
able metabolic and resource expense associated with theith age. This, in turn, could be a result of the diversity of
constant shedding of nuclei or activation of satellite cell pro-methods used to quantitate the myonuclear domain (see
liferation in response to moderate fluctuations in muscleBrack et al. 2005). Recently, Brack et al. (2005) provided a
loading. It also seems reasonable to expect that, after a peemprehensive analysis of changes in both myonuclear do-
riod of rapid satellite cell or myoblast cell line activity (i.e., main and satellite cell abundance in the muscles of mice.
proliferation, differentiation, and fusion) there would be aThey found that there were fiber-type-specific declines in

atellite cells and sarcopenia
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satellite cell number that appeared to be related to reduceabtably different. This suggests that the insult imposed by
numbers of myonuclei per unit length and hence to increasthe radiation treatment did not affect the ability of the myo-

in nuclear domain size. Early in the aging process, theyibers and their myonuclei to initiate adaptive responses.
found that decreases in myonuclei per unit muscle lengtitHowever, as the period of loading progressed there were ob-
preceded sarcopenia in larger muscle fibers. This findingrious changes in intracellular signaling that were negatively
lead these authors to speculate that the age-related decreadfected by irradiation. In particular, components of intracel-

in myofiber size may actually be a compensatory responskilar signaling pathways associated with the regulation of
to an inadequate capacity for myonuclear replacement tprotein translation returned to baseline in the irradiated

maintain nuclear domain size. This concept contrasts wittmuscles, but they remained elevated in the contralateral
observations of muscle inactivity induced by the silencingmuscles. For example, in irradiated muscles, the activating
of neural signaling in which muscle atrophy precedes the dephosphorylation of the p70 ribosomal S6 kinase (S6K1) was

cline in myonuclear number (Zhong et al. 2005). initially increased, but declined to resting levels after 3 d
(Adams et al. 2002). S6K1 phosphorylation is known to be
Satellite cell identification initiated by interventions that induce muscle hypertrophy,

It should b ted that th latively | b such as resistance exercise or growth-factor stimulation,
f s”ou fe note | al ert?] atreha re ablvey arge nurg %Fig. 1) (Adams et al. 2002; Baar and Esser 1999; Haddad
of cell surface molecules that have been proposed ag i'adams 2002, 2004, 2006).

markers of satellite cells (myogenic precursor cells, side

population cells, etc.) (see Cossu and Biressi 2005). Most S0K1 is a critical component of signaling that induces an
likely, the identification of satellite cells using various INcréase in the translational apparatus, i.e., ribosomal RNA

markers is in some way conditional, relative to the state O](rRNA)' proteins, "fmd elongation factors (Fig. 1) (Dufner
the tissue, thereby rendering the interpretation of the litera2Nd Thomas 1999; Ruggero and Sonenberg 2005). Current

ture on satellite cell behavior and regulation difficult to in- NINKING is that S6K1 increases the transcription of rRNA
terpret at times. via the activation of an unknown kinase which, in turn, acti-

vates the rRNA transcription factor UBF (upstream binding
. . factor) (Hannan et al. 2003). Hannan et al. demonstrated that
Adding myonuclei and compensatory effects of S6K1 activity are important for the hypertrophy of
hypertrophy non-proliferating cardiomyocytes, indicating that the impor-
Accepting the premise that there is a threshold level ofance of S6K1 for hypertrophy is separate from proliferation
compensatory muscle hypertrophy, above which the additiofelated processes. Similarly, the phenotype of S6K-deficient
of myonuclei becomes necessary, the next question becomg¥ce indicates that S6K1 is important for the regulation of
“Why?”. In response to a chronic increase in loading, themyofiber size, but does not appear to be involved with cell
task confronting the affected myofibers is simply to increaseproliferation (Ohanna et al. 2005).
the compliment of various cellular (and extracellular) com- In addition to S6K1, another regulatory step related to
ponents that the cells routinely synthesize to maintain cellutranslation was also inhibited as a result of irradiation. Irra-
lar homeostasis. This contrasts with the case of muscldiation resulted in a failure to maintain hyperphosphoryal-
regeneration in which the loss of myofibers, or portionstion of the eukaryotic initiation factor 4E binding protein
thereof, renders the requirement for cellular proliferation in-(4E-BP1) (Adams et al. 2002). The hyperphosphorylation of
tuitively obvious. 4E-BP1 is critical for increased translation of mMRNAs with
In an attempt to shed light on this question we conducted’ cap structuring (Fig. 1) (Ruggero and Sonenberg 2005).
a long-term (3 month) study in rats using bilateral leg
muscle overloading (soleus and gastrocnemius ablation) i . .
conjunction with unilateral leg irradiation (Adams et al. plypertrophy and translational capacity
2002). In that study, we assessed cellular- and molecular-level Interestingly, in overloaded irradiated muscles, another
changes induced by overloading in an attempt to identifykey point of divergence involved an increase in total RNA
loading-sensitive processes altered by the irradiation treapresent in muscles (Adams et al. 2002). Since the bulk of
ment. Since the control was the contralateral non-irradiatedRNA present in skeletal muscle is ribosomal (>85%), large
muscle from the same animal, a differential responsehanges in this measure are generally accepted as being in-
would clearly be a function of the irradiation treatment.  dicative of alterations in the translational capacity of the tis-
As noted above, in the irradiated muscles, we observed aue (Hannan et al. 1998). In non-irradiated contralateral
small increase in myofibrillar protein in the early stages ofmuscles, a continuing overloading stimulus resulted in an
the treatment. However, beyond this minor early adaptationgxtended anabolic state evidenced by the sustained increase
the hypertrophy response was essentially abrogated by tie RNA. However, in irradiated muscles, subject to the same
irradiation treatment. The results of that study also indicatedoading, the elevation in total RNA was not sustained. The
that the inhibition of the hypertrophy response was not retime course of S6K1 phosphorylation and RNA content sug-
lated to the ability to produce mRNA in general or muscle-gests that changes in regulation, including signaling via
specific mRNAs since, for example, the conversion fromS6K1, were altered by irradiation (Fig. 2). Interestingly, the
fast to slow MHC expression was actually accentuated irchanges in the expression of various loading-sensitive
the irradiated muscles. mRNAs did not demonstrate this pattern of abrupt diver-
During the initial period of increased loading (e.g., 3-7 d)gence (Adams et al. 2002).
we observed that the various cellular- and molecular-level An additional mechanism for the regulation of rRNA pro-
responses of irradiated and contralateral muscles were nduction involves changes in the phosphorylation of retino-
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Fig. 1. In skeletal muscle, signaling via the Akt—=mTOR pathway is sensitive to growth factors (e.g., IGF-I) and mechanical loading. Akt—
MTOR signaling can promote increased protein synthesis in a number of ways, including an increase in the initiation of translation (de-
creased 4E-BP1 inhibition via hyperphosphorylation) and increasing translational capacity (increased S6K1 activity). This pathway can also
promote anti-catabolic processes via decreased ubiquitin-mediated protein degradation (inhibition of the FOXO transcription factor) and
possibly via decreased apoptosis. In studies using irradiation to inhibit loading-induced muscle hypertrophy, the phosphorylation of S6K1
and the hyperphosphorylation of 4E-BP1 were both negatively effected by irradiation (Adams et al. 2002). This suggests that the require-
ment for additional myonuclei may involve the ability to chronically up-regulate translational capacity. Akt, protein kinase B or Rac-1;
PDK1, 3-phosphoinositide-dependent protein kinase-1; mTOR, mammalian target of rapamycin (also called RAFT-1, FRAP, RAPT-1);
4E-BP1, eukaryotic initiation factor 4 binding protein-1 (also called PHAS-1); S6K1, p70 S6 kinase; GSK3, glycogen synthase kinase-3;
FOXO, member of the forkhead transcription factor family; Atrogen-1, a ubiquitin E3 ligase; MuRF-1, muscle ring finger 1 (ubiquitin E3
ligase); BAD, regulator of programmed cell death, pro-apoptotic; Bcl2, regulator of programmed cell death, anti-apoptotic.
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blastoma (Rb) gene products (Hannan et al. 1998). Nader @ the mTOR pathway (e.g., S6K1 and 4E-BP1 phosphoryl-

al. (2005) recently presented convincing evidence that thistion), elevated cyclin D1 expression was not sufficient to

mechanism may be in operation during in vitro myotubepromote increases in rRNA. Along these same lines,

growth. In that study, increases in cyclin D expression parHannan et al. (2003) reported that rapamycin inhibited in-

alleled the phosphorylation and inactivation of Rb duringcreases in rRNA in cells that harbored functionally inacti-

serum-induced increases in myotube size in the absence wated Rb . These authors concluded that increased S6K1
continuing nuclear addition. These authors found that thectivity was required to produce an increase in rRNA

inhibition of MTOR via rapamycin prevented myotube (Fig. 1).

growth and the increase in cyclin D expression.

It is interesting to note that cyclin D1 expression oftengatellite cells and translational capacity
parallels the increase in total RNA present in skeletal

muscles during increased loading. For example, in a recent The observation that signaling associated with the regula-
study, we found that just two bouts of resistance exercise reion of translation, as well as translational capacity itself, is
sulted in an increase in RNA and that there was a significandown-regulated as a result of irradiation, indicates that the
correlation between total RNA and cyclin D1 mRNA ex- addition of myonuclei may play a critical role in this aspect
pression in the muscles from both young € 0.43,p =  of the cellular responses to increased loading.

0.0001) and oldr¢ = 0.24, p = 0.009) rats (Haddad and  Parallel changes in RNA and muscle size have been ob-
Adams 2006). However, in preparation for this review, weserved in both animals and humans (e.g., Adams et al.
conducted analysis of the RNA — cyclin D1 relationship 2002; Haddad et al. 2005). The amount of RNA, and there-
from our previous paper involving irradiation (Adams et al. fore ribosomal RNA, present in skeletal muscles decreases
2002). We found that there was a significant correlationprecipitously as an initial response to a decrease in muscle
between RNA and cyclin D1 in the non-irradiated musclesactivation and loading (e.g., Haddad et al. 2003). In the
(r2 = 0.35,p = 0.0001), but not in the irradiated overloaded case of acute muscle unloading, this would be expected to
muscles (2 = 0.07,p = 0.12). There was, however, a very result in a rapid decrease in the protein synthetic capacity
robust increase in cyclin D1 expression in the irradiatedof the muscle most likely accounting for a portion of the ob-
overloaded muscles. Cyclin D1 mRNA expression in the ir-served atrophy (Haddad et al. 2003). Interestingly, we found
radiated muscles was increased 3- to 7-fold at time pointshat relative to ambulatory controls total RNA levels were
when total RNA levels were at baseline values. This apdepressed in the atrophied muscles of spinal cord injury pa-
pears to suggest that, in the absence of increased signalifignts and that just two bouts of resistance exercise could in-
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Fig. 2. Increased muscle loading in the absence (A) or presence (B) of irradiation to incapacitate satellite cell proliferation. Anabolic sti-
muli result in an increase in activity in the Akti-mTOR pathway (see Fig. 1). In this circumstance, mTOR activates S6K1, leading to an
increase in protein translational capacity as evidenced by a sustained increase in total RNA. In muscles that were not irradiated, increased
loading (synergist ablation) resulted in a sustained increase in S6K1 phosphorylation, which induced a large increase in total muscle RNA
content (A). However, if prior to overloading muscles were exposed to radiation to prevent satellite cell proliferation, the increase in S6K1
phosphorylation and RNA content could not be sustained, thereby preventing most of the hypertrophy response (B) (Adams et al. 2002).
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itiate the normalization of this parameter (Bickel et al.template DNA. Accepting the premise that multinucleated
2003). myofibers and their nuclei are post-mitotic, an increase in
One of the primary limitations that might be imposed by the number of copies of the DNA must come from a source
the bulk amount of DNA present in a given myofiber is the external to the myofiber, most likely via the progeny of sat-
ability to sustain large increases in transcription. (Montagnegllite cells.
2000). This limitation may not be particularly critical, since  As reviewed by Booth et al. (1998), there is evidence that
the translation of mRNA is subject to potential amplification a general increase in translational efficiency occurs at the
via multiple translation events, i.e., concurrent translationonset of muscle hypertrophy. However, sustained increases
via polyribosomes, allowing for the production of many pro-in protein production appear to require substantial increases
teins from one transcript. In contrast, transcripts such as riin the translational machinery. For example, in the hypertro-
bosomal RNA (rRNA) and transfer RNAs (tRNA) are final phying heart, early adaptations include an increase in trans-
gene products, thus their mass production requires manhkational efficiency and an acceleration of the synthesis of
DNA templates (Gregory 2001; Montagne 2000). The num-new ribosomes (Nagatomo et al. 1999; Siehl et al. 1985).
ber of copies of rRNA and tRNA genes can only be in- In general, under steady-state conditions, there is a rela-
creased via the acquisition of additional copies of thetively constant relationship between the amount of DNA
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