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Abstract8

Fiber-reinforced elastomeric isolators (FREIs) have been proposed as a cost-effective solution for9

expanding the use of seismic isolation to normal-importance structures. By using lightweight fiber10

reinforcement and eliminating the attachment plates, FREIs reduce cost while improving the iso-11

lation efficiency and reducing tensile stresses in the rubber. However, the flexural flexibility of12

the fiber allows cross-sectional distortions (i.e., warping) to occur, which significantly impacts the13

stability of these devices. This paper evaluates the buckling of rectangular, circular and annular14

FREIs, taking into account shear warping effects. A planar buckling theory previously proposed15

by the authors is adapted for the three-dimensional problem, and effective warping rigidities and16

warping-related areas are derived for the above bearing geometries, accounting for rubber com-17

pressibility. To assess the adequacy of the proposed buckling theory and derived warping proper-18

ties in predicting the buckling of FREIs, a parametric finite element study is conducted. The critical19

load predictions of the proposed analytical formulation are found to be in excellent agreement with20

those of the numerical simulations. It is shown that traditional estimations of the buckling load that21

neglect warping are significantly unconservative. Finally, design recommendations and resources22

are provided for practice-oriented applications.23
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INTRODUCTION26

Elastomeric isolators consisting of thin rubber layers interleaved by reinforcement layers are vul-27

nerable to buckling under compressive loads due to their high flexibility in shear. Haringx’s buck-28

ling theory (1949), originally developed for helical springs and solid rubber rods, was adopted by29

Gent (1964) to study the buckling of thin rubber blocks bonded to steel plates, and has now be-30

come widely accepted to evaluate the stability of traditional steel-reinforced elastomeric isolators31

(SREIs) (Kelly and Konstantinidis 2011). Haringx’s buckling load is given by:32

PH
cr =
−PS +

√
P2

S + 4PS PE

2
(1)

where PS = GA = the shear rigidity, PE = π
2EI/h2 = Euler’s critical load, and EI = the bending33

rigidity. In the context of SREIs, GAb and ẼIb should be used instead, where GAb = GA(h/tr) = the34

shear rigidity of the multilayer bearing, ẼIb = ẼI(h/tr) = the effective bending rigidity of the mul-35

tilayer bearing, ẼI = the effective bending rigidity of a single rubber layer, h = total height of the36

bearing, and tr = total height of rubber. Haringx’s buckling load is derived from a one-dimensional37

beam theory which assumes that cross-sectional planes remain plane after deformation, but not38

orthogonal to the deformed axis, therefore allowing for shear deformations. This is suitable for39

SREIs where the steel plates are thick and very rigid in bending, and thus prevent cross-sectional40

distortions. However, this is not the case when the reinforcement is flexible in bending, as in the41

case of fiber-reinforced elastomeric isolators (FREIs), and cross-sectional warping due to trans-42

verse shear (i.e., shear warping) needs to be accounted for.43

The first study concerning the buckling behavior of planar elastomeric bearings accounting for44

the impact of reinforcement flexural flexibility is by Simo (1982). Later, Kelly (1994) introduced45

an alternative formulation, which was later extended by Tsai and Kelly (2005a, 2005b). Both for-46

mulations, despite yielding significantly different results, predicted an important reduction in Pcr47
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with respect to Haringx’s buckling load estimate. Recently, the stability of short beams accounting48

for shear warping has been revisited in (Montalto and Konstantinidis, "Buckling of short beams",49

submitted, J. Eng. Mech., ASCE). A buckling formulation was derived from the consistent lin-50

earization of a fully geometrically nonlinear planar beam accounting for warping where the finite51

deformation field was posed as that of a constrained director Cosserat rod. The resulting theory52

generalizes the one by Kelly and Tsai, and accounts for warping effects as well as axial shorten-53

ing of the element. Its applicability to FREIs was verified using a parametric finite element study54

of infinite strip isolators, where the predictions of the analytical formulation were shown to be55

in excellent agreement with results from the numerical simulations. This study also provided a56

comparison with respect to previous buckling formulations that account for warping.57

The buckling formulation presented in (Montalto and Konstantinidis, "Buckling of short beams",58

submitted, J. Eng. Mech., ASCE), as well as the earlier one by Kelly and Tsai, make use of an ef-59

fective isolator warping rigidity and warping-related cross-sectional areas. These were derived for60

an infinite strip bearing by Tsai and Kelly (2005a) accounting for fiber extensibility, and extended61

in (Montalto and Konstantinidis, "Buckling of short beams", submitted, J. Eng. Mech., ASCE)62

to also consider rubber compressibility. Both of these results are based on the usual kinematic63

assumptions of a parabolic bulging shape and linear variation of displacements through the thick-64

ness of the rubber layer, and the assumption that normal stresses in the rubber are dominated by65

the pressure, leading to the so-called pressure solution. The warping properties of an infinite strip66

bearing were also derived by Pinarbasi and Mengi (2008, 2017) using an approximate formulation67

based on a modified Galerkin method which uses weighted averages of displacements and stresses68

through the layer thickness, and does not depend on the assumptions cited before; reinforcement69

flexibility and rubber compressibility were considered. Despite recognition of the significant effect70

of warping on the mechanical response of FREIs since their inception (Kelly 1999), warping for71

bearing geometries other than infinite strip has been unexplored thus far (Van Engelen 2019).72

The present study investigates the warping response of three-dimensional FREIs and the im-73

pact of warping on their stability under compressive loads. First, the buckling theory presented74
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in (Montalto and Konstantinidis, "Buckling of short beams", submitted, J. Eng. Mech., ASCE) is75

revisited, and the necessary modifications to apply it to three-dimensional elements are described.76

In particular, warping distortions vary depending on the cross-sectional geometry of the element,77

and thus a specific warping function for each geometry is proposed. Then, the effective warping78

rigidity and warping-related cross-sectional areas are derived for rectangular, circular and annular79

bearings following the assumptions of the pressure solution. Rubber compressibility is accounted80

for, but fiber extensibility is neglected based on results from previous studies on planar infinite strip81

bearings which indicate negligible impact of this parameter on their warping properties and sta-82

bility (Pinarbasi and Mengi 2008, 2017; Montalto and Konstantinidis, "Buckling of short beams",83

submitted, J. Eng. Mech., ASCE). The use of the cited buckling theory together with the derived84

warping properties is evaluated on the basis of a three-dimensional parametric finite element study85

for unbonded FREIs. Recommendations for the estimation of the buckling of FREIs are given and86

design resources are provided to aid the practical implementation of these results.87

BUCKLING THEORY88

Planar Formulation89

The buckling of a planar beam accounting for nonuniform shear warping and axial shortening was90

presented in (Montalto and Konstantinidis, "Buckling of short beams", submitted, J. Eng. Mech.,91

ASCE). The beam with reference configurationB ⊂ R2 such thatB = A×[0, h], with cross section92

A ⊂ R and height h ⊂ R is assumed to lie in the xz plane such that its line of centroids is aligned93

with the z axis in the undeformed configuration (see Fig. 1). Then, the beam deforms according to94

the displacement field u with x and z components given by:95

ux = v(z) uz = ∆(z) − xψ(z) − fw(x)ϕ(z) (2)

where ∆(z), v(z) = the vertical and lateral displacements of the beam’s axis, respectively, ψ(z) =96

the cross-sectional rotation in the absence of warping, and ϕ(z) = the dimensionless amplitude97

multiplier for the cross-sectional warping fw(x).98
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The following conditions are enforced to decouple the generalized stress resultants P (axial99

load), M (bending moment), and Q (warping moment):100

∫
A

fwσ∆(x) dA = 0
∫
A

fwσψ(x) dA = 0
∫
A

σϕ(x) dA = 0
∫
A

xσϕ(x) dA = 0 (3)

where σ∆(x), σψ(x), σϕ(x) = the axial stresses caused by an axial displacement, a rotation, and a101

warping deformation, respectively. These conditions impose restrictions on the definitions of the102

warping function fw(x). In the case of a homogeneous isotropic beam, such restrictions are:103

∫
A

fw(x) dA = 0
∫
A

x fw(x) dA = 0 (4)

which allow the interpretation of ∆(z) and v(z) as the average axial and transverse displacements,104

respectively, and of ψ(z) as the average rotation of the cross section.105

Based on the previous displacement field and the assumption that stresses normal and tangent to106

the cross section are linear with respect to their work-conjugate strains, the following second-order107

accurate potential can be established for the beam:108

Π(v, ψ, ϕ) =
1
2

∫ h

0



ψ′

ϕ′

γ̃

ϕ̃



⊺ 

EI 0 0 0

0 EJ 0 0

0 0 GA + P̃ −GB − P̃ fB
A

0 0 −GB − P̃ fB
A GC + P̃ fC

A





ψ′

ϕ′

γ̃

ϕ̃


− P̃(v′)2 dz (5)

where γ̃ = v′ − λoψ, ϕ̃ = λoϕ, P̃ = P/λo, and λo = 1 − P/EA = the initial stretch of the beam due109

to the application of the axial load P. Moreover, EA, GA and EI correspond to the axial, shear and110

bending rigidities as normally defined, while EJ, B, C, fB and fC are the effective warping rigidity111

and warping-related areas dependent on the definition of the function fw.112

The equilibrium equations, shown in (Montalto and Konstantinidis, "Buckling of short beams",113

submitted, J. Eng. Mech., ASCE), can be obtained by virtue of the principle of virtual work such114

that δΠ = 0. These equations along with the appropriate boundary conditions are then used to115
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obtain the critical load for the element. For a beam with fixed end conditions (i.e, no rotation or116

warping at the supports) but free to sway at the top, the normalized critical load P̄cr = Pcr/GA117

corresponds to the solution of the following quartic equation:118

P̄
{[

P̄ + λo(P̄)
]
κC(P̄) − λo(P̄) κB(P̄)

}
+ π2Ω

{
P̄

[
P̄ + λo(P̄)

]
+ κB(P̄) − κC(P̄)

}
− π4Ω2 = 0 (6)

where Ω = EI/GAh2 is the bending-to-shear stiffness ratio, while λo(P̄), κB(P̄) and κC(P̄) are:119

λo(P̄) = 1 − P̄
GA
EA

(7)

120

κB(P̄) =
(
P̄

fB

A
+ λo

B
A

)2 EI
EJ

κC(P̄) = λo

(
P̄

fC
A
+ λo

C
A

)
EI
EJ

(8)

Hereinafter, Eq. (6) will be referred to as the proposed-exact equation.121

Alternatively, the buckling load can be calculated from the approximate equation:122

Pcr ≈

√√
PS PE

1 +
(

fB
A

)2 EI
EJ

(9)

where PS = GA = shear rigidity, and PE = π
2EI/h2 = Euler’s buckling load. Haringx’s buckling123

load [Eq. (1)] can be approximated by PH
cr ≈

√
PS PE when PE ≫ PS . Then, Eq. (9) can be124

interpreted as this critical load reduced on the basis of the bending-to-warping rigidity ratio EI/EJ125

and the ratio fB/A, which measures the angular deviation of the line of action of the axial load126

P with respect to the normal to the average cross-sectional plane. Eq. (9) was shown to predict127

critical loads very close to those of Eq. (6) for infinite strip bearings (Montalto and Konstantinidis,128

"Buckling of short beams", submitted, J. Eng. Mech., ASCE). In the following, Eq. (9) will be129

referred to as the proposed-approximate equation.130

Extension to Three-Dimensional Case131

In the three-dimensional case, the beam has a cross section A ⊂ R2, assumed to be doubly-132

symmetrical, such that its reference configuration B ⊂ R3 is defined as B = A × [0, h]. In the133
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undeformed configuration, the cross section lies in the xy plane such that x and y correspond to the134

symmetry axis, while z is the centroidal axis as before. The lateral deformation is still assumed135

to occur in the xz plane, and the interpretation of the generalized displacements ∆, v, ψ and ϕ136

and the cross-sectional warping fw remains the same. Again, the cross-sectional warping function137

satisfies the orthogonality conditions in Eq. (3) [or Eq. (4) for the homogeneous isotropic case].138

The only difference is that fw is now, in general, a function of both x and y. The definition of this139

cross-sectional warping function for a two-dimensional cross section is detailed next.140

Warping function141

In three-dimensional beam theories that consider cross-sectional warping (developed for numerical142

implementation), the warping function has often been taken as that from the solution to Saint-143

Venant’s flexure problem with vanishing Poisson’s ratio ν (El Fatmi 2007; Genoese et al. 2013;144

Dikaros and Sapountzakis 2014; Lewiński and Czarnecki 2021). This leads to formulations that145

account for out-of-plane cross-sectional warping but neglect in-plane cross-sectional distortion.146

In this study, this approach is adopted and the warping function is based on the so-called Saint-147

Venant warping. However, the latter function needs to be further modified to allow the axial load,148

the bending moment and the warping moment to be decoupled for the stress distribution that occurs149

in the bearings, which differs from that of homogeneous isotropic beams.150

The Saint-Venant flexure problem consists of determining the three-dimensional linear elas-151

ticity solution to the problem of a cantilever beam subjected to tractions at its free end which are152

statically equivalent to a transverse load H acting through the centroid of the cross section. At the153

fixed end of the beam the centroidal displacement and a rotation are imposed to be zero, but no fur-154

ther essential boundary conditions are imposed. The traction boundary conditions at the free-end155

are specified in terms of the resultant transverse load H, while the point-wise tractions are assumed156

to be applied in such a way that they coincide with the stress distribution from the solution. Hence,157

this solution corresponds to that of unrestrained warping and end-effects are neglected. The prob-158

lem has been solved in classic texts [e.g., Love (1944)] in terms of displacements for common159

cross-sectional geometries, including rectangular and circular ones.160
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The Saint-Venant warping function f S V
w (x, y) can be extracted from the exact displacement so-161

lutions presented, for example, by Love (1944) as shown in (Cowper 1966; Simo 1982). However,162

under the assumption of ν = 0, a simpler approach can be adopted as illustrated next. The three-163

dimensional beam B ⊂ R3 is defined as before with a height h and a cross section A ⊂ R2 with164

boundary ∂A and normal vector v, such that B = A × [0, h]. In the undeformed configuration,165

the cross section lies in the xy plane, while the line of centroids of the beam is aligned with the z166

axis. The semi-fixed end is taken at z = 0, while tractions are applied at z = h with a resultant H167

acting in the x direction through the centroid of the cross section. The cross-sectional boundary is168

traction-free throughout the beam such that σv = 0 on ∂A.169

The exact displacement field for Saint-Venant’s flexure problem with vanishing Poisson’s ratio170

can be expressed as:171

ux = v(z) uy = 0 uz = −xψ(z) − f S V
w (x, y)

[
v′(z) − ψ(z)

]
(10)

plus a rigid-body motion which depends on the specific rotation boundary condition enforced at the172

semi-fixed end z = 0. In this case, v(z) and ψ(z) have the same interpretation as before, being the173

average transverse displacement and average cross-sectional rotation respectively, while f S V
w (x, y)174

satisfies the orthogonality conditions in Eq. (4).175

Defining the function Φ(x, y) as:176

Φ(x, y) = x − f S V
w (x, y) (11)

the strains can be written as:177

εz = −ψ
′x − f S V

w (v′′ − ψ′) γxz = Φ,x(v′ − ψ) γyz = Φ,y(v′ − ψ) (12)

with the rest of the strains being equal to zero; the notation (•),x represents the partial deriva-178

tive with respect to x. For a homogeneous isotropic material with Young’s modulus E and shear179
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modulus G, the stresses are given by:180

σz = −E
[
ψ′x + f S V

w (v′′ − ψ′)
]

τxz = GΦ,x(v′ − ψ) τyz = GΦ,y(v′ − ψ) (13)

Moreover, the traction-free boundary condition for the cross section now reads ∇Φ · v = 0 on ∂A.181

Neglecting body forces, the equations from the balance of linear momentum corresponding to182

div(σ) · ex = 0 and div(σ) · ey = 0 result in (v′′ −ψ′) = 0. Multiplying the last equilibrium equation183

div(σ) · ez = 0 by x, integrating over the cross section and making use of σv = 0 on ∂A, the184

relation −EIψ′′ = κGA(v′ − ψ) is recovered, where κ has been defined as:185

κ =

∫
A
Φ,x dA

A
(14)

Using this relation in div(σ) · ez = 0, the following is obtained:186

∇2Φ +
κA
I

x = 0 (15)

The Saint-Venant warping function can be determined by solving the elliptic problem in Eq.187

(15) over the cross section A, with the traction boundary condition ∇Φ · v = 0 on ∂A and the188

relation f S V
w = x − Φ. Additionally, the orthogonality conditions in Eq. (4) need to be enforced189

to uniquely define the solution. Following this approach, the Saint-Venant warping function is190

obtained for a rectangular cross section with width 2b in the x direction and depth 2l in the y191

direction:192

f S V
w (x, y) =

5
6

(
x3

2b2 −
3

10
x
)

(16)

For the circular and annular cross sections, we make use of polar coordinates such that x = r cos(θ)193

and y = r sin(θ). Then, the warping function for these cross sections is given by:194

f S V
w (r, θ) =

κ

1 + η2

[
r3

2b2 +

(
1
κ
−

3
2

)
(1 + η2)r −

3η2b2

2r

]
cos(θ), κ =

6(1 + η2)2

7 + 34η2 + 7η4 (17)
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where b = the exterior radius of the cross section, a = the interior radius, and η = a/b = the195

interior-to-exterior radius ratio; for a circular cross section η = 0.196

Enforcing the orthogonality conditions in Eq. (4) allows to decouple the generalized stress197

resultants P, M and Q in the case of an isotropic homogeneous beam. However, for an elastomeric198

bearing the stress distributions are not proportional to the cross-sectional deformations, and thus199

the general conditions in Eq. (3) are required. The Saint-Venant warping functions are then modi-200

fied to allow the satisfaction of these requirements. For the rectangular case we use:201

fw(x, y) =
5
6

(
x3

2b2 + ωx
)

(18)

For the circular and annular cross sections we have:202

fw(r, θ) =
6
7

(
r3

2b2 + ωr −
3η2b2

2r

)
cos(θ) (19)

where ω is a parameter that depends on the cross section and material properties, which is obtained203

from the satisfaction of Eq. (3). These warping functions are shown in Fig. 2.204

EFFECTIVE WARPING PROPERTIES205

Whereas the buckling theory assumes a homogeneous isotropic material in the element, the me-206

chanical response of an elastomeric isolator is governed by the composite action of the rubber207

and the reinforcement, producing different stress distributions than those obtained by the beam208

theory. Effective rigidities are thus required to apply the buckling theory to elastomeric isolators;209

see discussion following Eq. (1) for the analogous case of using Haringx’s theory for SREIs. The210

effective axial and bending rigidities, ẼA and ẼI, considering rubber compressibility but not rein-211

forcement extensibility have already been presented for different bearing geometries by Kelly and212

Konstantinidis (2011). In the following, the effective warping-related properties for bearings with213

rectangular, circular and annular cross section are derived.214
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Boundary Value Problem215

The effective rigidites are obtained by evaluating the mechanical response of a single rubber layer216

of thickness te using linear elasticity and following traditional assumptions regarding the deforma-217

tion of the layer and the stress distribution (Kelly and Konstantinidis 2011). Namely, it is assumed218

that vertical lines are deformed into a parabola, and that the vertical displacement varies linearly219

throughout the layer. Furthermore, it is assumed that the normal stresses are dominated by the in-220

ternal pressure p such that σx ≈ σy ≈ σz ≈ −p, while the in-plane shear stress τxy ≈ 0. This leads221

to the so-called pressure solution (Gent and Lindley 1959; Gent and Meinecke 1970; Kelly and222

Konstantinidis 2011). These assumptions have been shown to be accurate for layers of nearly in-223

compressible material bonded to nearly inextensible reinforcement when the shape factors S (i.e.,224

ratio of loaded to force-free area) are in the typical range used in elastomeric isolators (10 - 30)225

using more refined analytical solutions (Papoulia and Kelly 1996; Pinarbasi and Mengi 2008).226

Pinarbasi and Mengi (2008, 2017) showed that, for layers of nearly incompressible material227

with high shape factor bonded to reinforcement with axial rigidity values characteristic of the fiber228

in FREIs, reinforcement extensibility has a negligible influence on the effective warping rigidity229

of infinite strip bearings. Moreover, results in (Montalto and Konstantinidis, "Buckling of short230

beams", submitted, J. Eng. Mech., ASCE) indicated that reinforcement extensibility has a negligi-231

ble effect in the buckling of planar infinite strip bearings considering realistic material parameters232

and thickness of the fiber. Reinforcement extensibility is measured by the dimensionless parame-233

ter α ∝
√

Gte/E f t f S , where E f = fiber Young’s modulus, and t f = fiber thickness, while rubber234

compressibility is measured by the dimensionless parameter β ∝
√

G/K S , where K = rubber bulk235

modulus (Van Engelen et al. 2016). For a given shape factor S , the required thickness te of a three-236

dimensional layer is smaller than that of its planar counterpart. Thus, α is reduced while β remains237

the same and the influence of fiber extensibility is expected to be even lower in three-dimensional238

bearings. Therefore, the following analysis will account for rubber compressibility but neglect the239

extensibility of the fiber reinforcement.240

Following the presentation for the beam theory, it is assumed that the isolator’s axis is oriented241
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along the z direction with the mid-height of the layer located at z = 0, while the reinforcement lies242

in the xy plane (see Fig. 3). Then, the assumed displacement field is as follows:243

u(x) = u0(x, y)
(
1 −

4z2

t2
e

)
v(x) = v0(x, y)

(
1 −

4z2

t2
e

)
w(x) = − fw(x, y)ϕ

z
te

(20)

where u(x), v(x) and w(x) are the displacement fields in the x, y and z directions respectively, and244

u0(x, y) and v0(x, y) are functions to be determined based on the solution to the boundary-value245

problem. As indicated before, it is assumed that the displacement along the axis of the beam varies246

linearly. Hence, ϕ/2 corresponds to the warping amplitude at the top and bottom of the layer, while247

the term z/te provides the linear variation of the displacement explicitly. The warping function248

fw(x, y) depends on the cross-sectional geometry and is given by Eq. (18) for the rectangular case,249

and Eq. (19) for the circular and annular ones. The corresponding strain fields for the rubber are:250

εx(x) = u0,x

(
1 −

4z2

t2
e

)
εy(x) = v0,y

(
1 −

4z2

t2
e

)
εz(x) = − fw

ϕ

te
(21)

251

γxz(x) = −
(
8u0

te
+ fw,xϕ

)
z
te

γyz(x) = −
(
8v0

te
+ fw,yϕ

)
z
te

(22)

The material constitutive relation for the volumetric deformation of the rubber is given by252

tr(ε) = −p(x, y)/K, where K = bulk modulus of the rubber, leading to the equation:253

(
u0,x + v0,y

) (
1 −

4z2

t2
e

)
− fw

ϕ

te
= −

p
K

(23)

Integrating this equation through the thickness of the rubber layer, we obtain:254

2
3

(
u0,x + v0,y

)
− fw

ϕ

te
= −

p
K

(24)

The shear stresses are obtained from the material constitutive relation:255

τxz(x) = −G
(
8u0

te
+ fw,xϕ

)
z
te

τyz(x) = −G
(
8v0

te
+ fw,yϕ

)
z
te

(25)
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where G = shear modulus of the rubber.256

Now we make use of the balance of linear momentum for the rubber layer, which in the absence257

of body forces and under quasi-static conditions reads div(σ) = 0. Under the assumptions that the258

normal stresses are dominated by the pressure and that τxy is negligible in comparison to the other259

stress components, the first equation of equilibrium, corresponding to div(σ) · ex = 0, results in:260

p,x +
G
te

(
8u0

te
+ fw,xϕ

)
= 0 (26)

The second equilibrium equation, corresponding to div(σ) · ey = 0, becomes:261

p,y +
G
te

(
8v0

te
+ fw,yϕ

)
= 0 (27)

Taking the partial derivative of Eq. (26) with respect to x, the partial derivative of Eq. (27)262

with respect to y, adding them together, and substituting u0,x + v0,y using Eq. (24), we obtain the263

following equation for the pressure p(x, y):264

∇2 p −
(
12G
Kt2

e

)
p = −

12Gϕ
t3
e

(
fw +

t2
e

12
∇2 fw

)
(28)

For rubber layers with a shape factor S in the range used for elastomeric isolators (10-30), the last265

term in the parenthesis of the right-hand side of the pressure equation is at least a couple of orders266

of magnitude smaller than the leading terms and is thus neglected in the following.267

The pressure distribution on the layer due to a warping deformation is obtained from Eq. (28),268

alongside the boundary condition p = 0 on the cross-sectional boundary. This pressure distribution269

is then used to determine the effective warping rigidity and warping-related areas, following their270

definitions given in (Montalto and Konstantinidis, "Buckling of short beams", submitted, J. Eng.271

Mech., ASCE), recalling that the warping displacement has been assumed to vary linearly in the272
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rubber layer such that ϕ′ = ϕ/te and taking P/A = (∆/te)(ẼA/A):273

ẼJ =

∫
A

fw pdA

ϕ/te
(29)

274

B =
∫
A

fw,xdA C =
∫
A

(
fw,x

)2 dA (30)

275

fB =
A

∫
A

fw,x p∆dA

(∆/te)ẼA
fC =

A
∫
A

(
fw,x

)2 p∆dA

(∆/te)ẼA
(31)

where p∆ = pressure due to an axial shortening displacement ∆, and ẼA = effective axial rigidity.276

Rectangular Layer277

For the case of a rectangular cross section, we consider the layer to have a width of 2b in the x278

direction and a depth of 2l in the y direction. Therefore, the shape factor is given by:279

S =
bl

(b + l) te
=

b
te

1
(1 + ρ)

(32)

where ρ = b/l gives the in-plane aspect ratio of the bearing. Making use of the warping function280

in Eq. (18), the partial differential equation for the pressure can be restated as:281

p,xx + p,yy −

(
β

b

)2

p = −
10Gϕ

t3
e

(
x3

2b2 + ωx
)

(33)

where,282

β2 =
12Gb2

Kt2
e
=

12G
K

S 2(1 + ρ)2 (34)

The solution to Eq. (33) is obtained by assuming a single Fourier series in the x direction. The283

resulting pressure is given by:284

p(x, y) = 10GS 2(1 + ρ)2
(
bϕ
te

) ∞∑
n=1

(−1)n[6 − n2π2(1 + 2ω)
]

ξ2
nn3π3

[
1 −

cosh(ξny/b)
cosh(ξn/ρ)

]
sin

(nπx
b

)
(35)

where ξ2
n = (nπ)2 + β2. The parameter ω is obtained using Eq. (3). Albeit not shown here for285
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brevity, the first two conditions are analogous to the third and fourth conditions, and the latter two286

are used. The third condition is trivially satisfied. The fourth condition yields:287

∞∑
n=1

n2π2(1 + 2ω) − 6
n4π4ξ2

n

[
1 −

tanh (ξn/ρ)
ξn/ρ

]
= 0 (36)

Because the pressure in the rectangular layer is given in terms of an infinite Fourier series, the288

orthogonality condition for the warping function does not have a closed-form solution for ω; hence289

Eq. (36) requires to be solved numerically. In general, it depends on the ratio K/G, the in-plane290

aspect ratio ρ and the shape factor S . Numerical results for this are presented in Fig. 4.291

The effective warping rigidity ẼJ and the cross-sectional areas B and C can then be obtained292

from their definitions in Eqs. (29) and (30):293

ẼJ =
50
3

GS 2(1 + ρ)2b4

ρ

∞∑
n=1

[
n2π2(1 + 2ω) − 6

]2

n6π6ξ2
n

[
1 −

tanh (ξn/ρ)
ξn/ρ

]
(37)

294

B =
5b2

3ρ
(1 + 2ω) (38)

295

C =
5b2

36ρ
(9 + 20ω + 20ω2) (39)

For the calculation of the areas fB and fC, the pressure due to a vertical displacement ∆, denoted296

p∆, is required. This has been presented by Kelly and Konstantinidis (2011) accounting for rubber297

compressibility. When the origin of the Cartesian system is located at the centroid of the layer, this298

pressure is given by:299

p∆(x, y) = 48GS 2(1 + ρ)2
(
∆

te

) ∞∑
n=1

(−1)n

ζ2
n (2n − 1)π

[
1 −

cosh(ζny/b)
cosh(ζn/ρ)

]
cos

[
(2n − 1)πx

2b

]
(40)

where ζ2
n =

[
(2n − 1)π/2

]2
+ β2. The effective axial rigidity ẼA is given by:300

ẼA =
384GS 2(1 + ρ)2b2

ρ

∞∑
n=1

1
ζ2

n (1 − 2n)2π2

[
1 −

tanh (ζn/ρ)
ζn/ρ

]
(41)
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Using Eq. (31), the areas fB and fC are given by:301

fB =
5b2

3ρ

∑∞
n=1

[−24+(1−2n)2π2(3+2ω)]
ζ2

n (1−2n)4π4

{
1 − tanh(ζn/ρ)

ζn/ρ

}
∑∞

n=1
1

ζ2
n (1−2n)2π2

{
1 − tanh(ζn/ρ)

ζn/ρ

} (42)

302

fC =
25b2

36ρ

∑∞
n=1

[3456+(1−2n)4π4(3+2ω)2−48(1−2n)2π2(9+2ω)]
ζ2

n (1−2n)6π6

{
1 − tanh(ζn/ρ)

ζn/ρ

}
∑∞

n=1
1

ζ2
n (1−2n)2π2

{
1 − tanh(ζn/ρ)

ζn/ρ

} (43)

The previous results provide all the warping related properties needed for the estimation of the303

buckling load. However, the effective bending rigidity ẼI is also required. Accounting for rubber304

compressibility, this is given by (Kelly and Konstantinidis 2011):305

ẼI =
96GS 2(1 + ρ)2b4

ρ

∞∑
n=1

1
n2π2ξ2

n

[
1 −

tanh (ξn/ρ)
ξn/ρ

]
(44)

The critical load for the bearing can then be computed using Eqs. (6) or (9) with the previous306

effective cross-sectional properties. Fig. 5 presents the comparison between the critical load esti-307

mates of these equations as a function of the shape factor S and the width-to-height aspect ratio308

S ∗2 = 2b/h. These results verify that the proposed-approximate solution [Eq. (9)] provides close309

estimates to those of Eq. (6) for the isolator with rectangular cross section.310

Circular and Annular Layers311

For the circular and annular cases, we consider the layer to have an exterior radius of b, an312

interior radius a, and an interior-to-exterior radius ratio η = a/b; for circular cross sections η = 0.313

Hence, the shape factor is given by:314

S =
b − a
2te
=

b(1 − η)
2te

(45)
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In this case the warping function is given by Eq. (19). Then, the partial differential equation for315

the pressure [Eq. (28)] in polar coordinates becomes:316

p,rr +
1
r

p,r +
1
r2 p,θθ −

(
β

b

)2

p = −
72Gϕ

7t3
e

(
r3

2b2 + ωr −
3η2b2

2r

)
cos(θ) (46)

where the non-dimensional ratio β measuring the compressibility of the material corresponds to:317

β2 =
12Gb2

Kt2
e
=

48GS 2

K(1 − η)2 (47)

Circular Layer318

For the circular layer, the solution to Eq. (46) is given in terms of modified Bessel functions of the319

first kind of order m, referenced as Im(r):320

p(r, θ) =
144GS 2

7β2

(
bϕ
te

) {( r
b

)3
+ 2

( r
b

) ( 4
β2 + ω

)
−

[
1 + 2(4/β2 + ω)

]
I1(βr/b)

I1(β)

}
cos(θ) (48)

As before, the parameter ω defining the warping function fw(r, θ) is calculated from satisfying the321

third and fourth orthogonality conditions in Eq. (3) (equivalent to the first two conditions). The322

third orthogonality condition is directly satisfied. Then, the fourth orthogonality condition is used323

to determine ω, and the following is obtained:324

ω =
−β(12 + β2)I1(β) + 6(8 + β2)I2(β)

3β3I3(β)
(49)

The warping properties are then obtained following the same approach as for the rectangular325

layer. Using Eq. (29), the effective warping rigidity is given by:326

ẼJ =
18πGS 2b4

49β2

3 + 8ω(2 + 3ω) +
16(5 + 12ω)

β2 +
384
β4 −

24
[
8 + β2(1 + 2ω)

]2I2(β)
β5I1(β)

 (50)
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The areas B and C are calculated from Eq. (30):327

B =
3
7
πb2(1 + 2ω) (51)

328

C =
9

98
πb2(3 + 8ω + 8ω2) (52)

The calculation of the areas fB and fC requires the pressure p∆. When accounting for rubber329

compressibility, this corresponds to (Kelly and Konstantinidis 2011):330

p∆(r, θ) =
48GS 2

β2

(
∆

t

) [
1 −

I0(βr/b)
I0(β)

]
(53)

The effective axial rigidity ẼA for the circular cross section is:331

ẼA =
48πGS 2b2

β2

I2(β)
I0(β)

(54)

Hence, the areas fB and fC [Eq. (31)] are given by:332

fB =
3
7
πb2

{
β
[
8 + β2(1 + 2ω)

]
I0(β) − 4

[
4 + β2(1 + ω)

]
I1(β)

β3I2(β)

}
(55)

333

fC =
9

98
πb2

β
{
576 + 8β2(9 + 8ω) + β4[3 + 8ω(1 + ω)

]}
I0(β)

β5I2(β)

−
2
{
576 + 16β2(9 + 4ω) + β4[9 + 8ω(2 + ω)

]}
I1(β)

β5I2(β)


(56)

Similar to the case of the rectangular bearings, it is convenient to provide the effective bending334

rigidity, which corresponds to (Kelly and Konstantinidis 2011):335

ẼI =
48πb4GS 2

β2

[
1
4
−

I2(β)
βI1(β)

]
(57)

Then, the critical load for the bearing can be computed using the proposed-exact expression [Eq.336
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(6)] or the proposed-approximate closed-form solution [Eq. (9)] with the effective cross-sectional337

properties presented before. Fig. 6 shows that Eq. (9) provides excellent agreement with Eq. (6)338

for the circular bearing. In this figure results are presented in terms of the shape factor S and the339

width-to-height aspect ratio S ∗2 = 2b/h.340

Annular Layer341

Albeit common in the context of SREIs, annular FREIs have seldom been explored. Only recently342

have they been evaluated with the purpose of isolating lightweight structures and nonstructural343

components (Ghorbi and Toopchi-Nezhad 2023). Because of this and the length and complexity344

of the resulting equations, the corresponding effective warping rigidity and warping-related cross-345

sectional properties are presented in Appendix I for the interested reader. Using these properties,346

Fig. 6 shows the excellent agreement between Eqs. (6) and (9) for the critical load estimation of347

annular bearings.348

Kelly and Konstantinidis (2011) recognized that, when warping is neglected, the introduction349

of an inner hole in the bearing causes a negligible reduction in the critical pressure pcr = Pcr/A,350

and the reduction in the critical load is approximately of the same proportion as the area reduction.351

However, this is not the case when warping occurs, as illustrated in Fig. 7, where the critical352

pressure of an annular bearing has been normalized by that of a circular bearing with the same353

outer radius and layer thickness. When neglecting warping, an inner hole with η = 0.40 reduces354

pcr by no more than 15%, while the reduction for smaller holes is negligible. In contrast, when355

accounting for warping using Eq. (6) and the properties in Appendix I, even a small hole with η =356

0.1 reduces pcr as much as 35%, while for η = 0.4 this reduction is greater than 70% in some cases.357

Note that the critical load Pcr is reduced even further due to the area reduction.358

FINITE ELEMENT ANALYSIS359

The use of the proposed effective warping properties and Eq. (9) was validated by a finite ele-360

ment parametric study developed using the nonlinear FEA software Marc (Hexagon AB 2021a).361

Isolators with rectangular, circular and annular cross sections were modeled in an unbonded con-362

figuration, and the critical load estimates from the numerical models were used as a benchmark to363
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evaluate the analytical formulation. In the following, the modeling and results are described.364

Modeling365

To avoid volumetric locking and element failure due to mesh distortions, mixed-formulation low-366

order elements were used for the rubber. A three-field formulation proposed by Simo et al. (1985)367

was used; it is derived from a variational principle using the following functional:368

Π(φ, p, θ) =
∫
B

[
Ŵ(Ĉ) + U(θ) + p (J − θ)

]
dV + Πext(φ) (58)

where the fields are φ = deformation, p = pressure, and θ = volumetric strain. Additionally,369

J = det(F), where F = ∂φ/∂X = the deformation gradient, and Πext(φ) = the external potential370

energy due to the imposed body forces and surface tractions; Ŵ(Ĉ) and U(θ) are defined in the371

following. The functional Π(φ, p, θ) uses the multiplicative split of F given by:372

F̄ = θ1/3 F̂, (59)

where F̂ = J−1/3 F = isochoric part of F. The domains were discretized using Q1-P0 hexahe-373

dral elements, which use continuous piecewise trilinear interpolation for the deformation field and374

piecewise constant interpolation for the pressure and volumetric strain fields (Simo et al. 1985);375

this corresponds to element type 7 in Marcwith the constant dilation parameter activated (Hexagon376

AB 2021b). They were implemented in an Updated Lagrangian formulation.377

An additive split of the strain energy W(C̄) = Ŵ(Ĉ)+U(θ) has been assumed in Eq. (58), where378

Ŵ and U are the deviatoric and volumetric parts of the strain energy, respectively, and Ĉ = F̂T F̂379

is the modified right Cauchy-Green deformation tensor. A compressible neo-Hookean model was380

used for the rubber, whose corresponding deviatoric strain energy defined by the shear modulus G381

and bulk modulus K is given by:382

Ŵ(Ĉ) =
G
2

(
IĈ − 3

)
(60)

where IĈ = tr(Ĉ). This model is considered to represent rubber response accurately in the small to383
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moderate deformation range (principal stretches in the range of 0.5-2.0) (Treloar 2005; Steigmann384

2017), which covers the range of deformation exhibited in the numerical simulations. The follow-385

ing volumetric strain energy satisfying polyconvexity and growth conditions was used:386

U(θ) = K
(
θ2 − 1

4
−

ln θ
2

)
(61)

Only half of each isolator was modeled considering symmetry conditions (see Fig. 8); for the387

nodes lying on the plane of symmetry, no displacement was allowed perpendicular to such plane.388

Three elements were used along the height of each rubber layer. For the isolators with rectangular389

cross section, a structured mesh was applied using transfinite interpolation such that a coarser390

mesh with element width-to-height aspect ratios of approximately 4:1 was produced at the interior391

of the bearing, and a finer mesh was produced towards the edges. In the case of the circular and392

annular isolators, a two-dimensional unstructured mesh was produced over the cross section using393

Marc’s MoMmesh generator (Hexagon AB 2021a); this planar mesh was later extruded to produce a394

structured mesh over the height of the bearing. In this case, the width-to-height aspect ratio of the395

elements was maintained at 2:1 over the entire bearing. These mesh sizes were verified to achieve396

convergence of the estimated critical loads.397

The fiber reinforcement was modeled using quadrilateral membrane elements in a Total La-398

grangian formulation; this corresponds to element type 18 in Marc (Hexagon AB 2021b). These399

elements use bilinear displacement interpolation and have no flexural rigidity. Moreover, they400

have zero out-of-plane thickness and therefore the overall height-to-total rubber thickness ratio401

h/tr = 1 in the models. The fiber reinforcement material is modeled as linear elastic, defined by402

its Young’s modulus E f and Poisson’s ratio ν f . The contact between the bearing and its supports403

and the bearing with itself was modeled with a node-to-segment formulation, where the top and404

bottom supports were represented by rigid planar surfaces. Coulomb friction was used to model405

the friction between isolator and its supports with a friction coefficient µ = 1.406
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Buckling Analysis Method407

The isolator model was progressively loaded by a compressive axial load P in the range of 0.5408

to 1.5 times the critical load estimated by Eq. (9). After every ramp load increment of 5%, the409

axial load was held constant while a small lateral perturbation was applied to the model (see Fig.410

9a). This perturbation corresponded to a maximum lateral displacement uxo of 0.2 mm at the top411

support, inducing an average shear strain of 0.2% in the isolator. Based on this, the global lateral412

stiffness of the isolator Kh was measured at different axial loads. The buckling load was taken as413

the axial load at which Kh vanishes (see Fig. 9b).414

Cases415

The variable parameters in the study were the shape factor S , the width-to-height aspect ratio S ∗2,416

the in-plane aspect ratio ρ for rectangular isolators, and the interior-to-exterior radius ratio η for cir-417

cular and annular isolators. The values for these parameters included in the analysis are presented418

in Table 1; the values presented for S ∗2 are satisfied exactly, while reported S are target values and419

the actual values of the models differ slightly from those in Table 1. All the combinations between420

these parameters were considered, except those leading to less than 5 or more than 25 rubber layers421

which were deemed unrealistic for practical scenarios. Hence, a total of 100 cases were evaluated,422

50 of which were bearings with rectangular cross section and the remaining ones with circular or423

annular cross section. In all the analyses the bearing height was fixed at 100 mm, the rubber was424

modeled with a shear modulus G = 0.4 MPa and bulk modulus K = 2000 MPa, while the fiber425

reinforcement was modeled with a fiber thickness t f = 0.5 mm, Young’s modulus E f = 100000426

MPa, and Poisson’s ratio ν f = 0.20.427

Results428

The FEA results are used as a benchmark to study the adequacy of the buckling theory and the ef-429

fective warping properties derived herein. Figs. 10 and 11 present the critical loads estimated with430

the proposed-approximate formulation [Eq. (9)] normalized by the critical loads from the FEA431

models. As can be interpreted from Figs. 5 and 6, the results for the proposed-exact formulation432

are nearly identical to those of Eq. (9), and hence are not presented in the following. Figures 10433
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and 11 also present the critical loads estimated using Haringx’s theory for comparison purposes.434

The estimates using the proposed-approximate equation and Haringx’s theory have both used the435

effective properties accounting for rubber compressibility, but not fiber extensibility.436

Figures 10 and 11 show that the proposed-approximate formulation exhibits excellent agree-437

ment with the results obtained from the FEA models. The critical loads tend to be slightly underes-438

timated by the proposed formulation when the isolators have low shape factors S , associated with439

higher compressibility. Similar findings were shown for the planar bearings in (Montalto and Kon-440

stantinidis, "Buckling of short beams", submitted, J. Eng. Mech., ASCE), where it was explained441

how bearings with low S experience larger vertical deformation and lateral expansion before buck-442

ling, leading to an increase in cross-sectional dimensions that increases their critical load; this is443

not accounted for by the one-dimensional buckling formulation. However, the cross-sectional ex-444

pansion in the three-dimensional isolators occurs in two-directions and thus has a less significant445

effect in the results than for the planar infinite strip bearings. Therefore, the proposed-approximate446

formulation presents a better performance for the three-dimensional bearings than the planar ones,447

for which it was already satisfactory.448

In contrast, Figs. 10 and 11 show that Haringx’s theory can severely overestimate the buckling449

load of FREIs. This overestimation was in the range of 1.35 - 2.0 times the critical load obtained450

from the FEA models for rectangular isolators, and in the range of 1.35 - 1.75 for circular ones,451

with the error increasing with the shape factor S . For annular bearings the overprediction is greater452

and, for the cases evaluated, lies between 2.0 - 3.0 times the Pcr from the FEA models. The453

error increases again with S but also increases significantly with the relative size of the inner hole454

measured by η; this is in agreement with results presented in Fig. 7. In the case of SREIs, the455

introduction of an inner hole in a circular bearing has a negligible effect on its stability (Kelly and456

Konstantinidis 2011). However, this is not the case for FREIs. Despite not being evaluated here, it457

is expected that the introduction of a hole on rectangular FREIs would yield similar results. Interior458

holes in FREIs have been proposed to reduce the isolator lateral stiffness for applications dealing459

with lightweight structures (Van Engelen et al. 2014; Osgooei et al. 2015; Ghorbi and Toopchi-460
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Nezhad 2023). It is recognized that, despite the severe reduction in critical load, stability might461

not be an issue in those cases. However, the impact of compressive loads on the lateral behavior462

can be significant as the axial load will be much closer to the critical load than formerly expected.463

RECOMMENDATIONS FOR DESIGN464

Based on the results from the finite element analysis, the buckling theory presented in (Montalto465

and Konstantinidis, "Buckling of short beams", submitted, J. Eng. Mech., ASCE) along with the466

effective warping properties derived herein produce an adequate estimation of the critical load for467

FREIs. Therefore, it is recommended that either Eq. (6) or Eq. (9) be used to evaluate the stability468

of FREIs. The latter, however, is deemed more useful for practical application purposes due to469

its simplicity. Rubber compressibility should be accounted for in the calculation of the effective470

rigidities, especially for bearings with moderate-to-high shape factor S . Alternatively, the buckling471

load accounting for warping can be presented as:472

Pcr =
PH

cr

fR
(62)

where PH
cr is the critical load due to Haringx’s theory given by Eq. (1). This reduction factor has473

been computed using Eq. (6) for different geometric and material parameters, and is presented in474

Figs. 12 and 13 for practical implementation of these results.475

It should be noted that h/tr = 1 has been assumed thus far due to the negligible fiber thickness476

t f in comparison to the rubber thickness of a single layer te for typical FREIs. However, for some477

bearing configurations with very thin rubber layers, this might not hold. For SREIs the approach478

has been to increase the effective rigidities of a single layer (e.g., GA, ẼI, ẼJ) by the factor h/tr479

(Gent 1964; Kelly and Konstantinidis 2011); see discussion following Eq. (1). Following this480

approach, effective rigidities for the multilayer bearing [e.g., ẼIb = ẼI(h/tr)] should be used in481

Eqs. (6) and (9). Alternatively, Eq. (9) shows that this simply leads to an amplification factor482

of h/tr for Pcr calculated using the effective rigidities of a single layer presented before, and this483

approach is recommended due to the multiple effective properties required in Eqs. (6) or (9). The484
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detailed calculation of the effective warping properties and buckling load for each of the bearing485

geometries presented in this study is illustrated in Appendix II.486

CONCLUSIONS487

This study investigated the warping of three-dimensional FREIs and its impact on their buckling488

load Pcr. First, modifications necessary to apply the planar buckling theory accounting for shear489

warping previously presented by the authors were described. In particular, warping functions were490

introduced for each of the evaluated cross sections by modifying the warping displacements from491

the Saint-Venant flexure problem to allow for decoupling of the generalized stress resultants in the492

isolators. Then, effective warping properties were derived for rectangular, circular and annular iso-493

lators, following the usual assumptions from the pressure solution. In these derivations, the effect494

of rubber compressibility was included but fiber extensibility was neglected because previous stud-495

ies noted the latter to have a negligible influence on the warping properties and stability of planar496

FREIs. Using these properties, it was shown that the proposed-exact and proposed-approximate497

equations for estimating the critical load are in excellent agreement for three-dimensional isolators.498

The use of the proposed-approximate buckling formulation and the effective warping related499

properties to predict the stability of FREIs was validated through a finite element parametric study500

on the stability of rectangular, circular and annular FREIs. The results from the proposed analytical501

formulation match closely the results from the numerical simulations for all examined bearing502

geometries. Moreover, it was shown that neglecting warping effects by using Haringx’s theory503

can result in significantly unconservative estimates of Pcr for FREIs. Based on these findings,504

it is recommended that warping effects be considered when evaluating the stability of FREIs by505

using either the proposed exact or approximate buckling load equation in conjunction with the506

effective warping properties derived herein. Alternatively, figures providing a reduction factor for507

the buckling load with respect to Haringx’s theory due to warping effects have been provided to508

facilitate the practical application of these results. Furthermore, in contrast to the case of SREIs,509

introducing a hole in FREIs was found to severely reduce their stability. Therefore, caution is510

advised when introducing these modifications in the isolators.511
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APPENDIX I. EFFECTIVE WARPING PROPERTIES FOR ANNULAR LAYER512

The pressure in an annular layer is obtained from solving Eq. (46) with the boundary conditions513

p(a, θ) = p(b, θ) = 0. The pressure is given by:514

p(r, θ) =
144GS 2

7β2(1 − η)2

(
bϕ
te

) {( r
b

)3
+ 2

( r
b

) ( 4
β2 + ω

)
− 3η2

(
b
r

)
+ D1I1

(
βr
b

)
+ D2K1

(
βr
b

)}
cos(θ)

(63)

where Im(r) and Km(r) are the modified Bessel functions of the 1st and 2nd kind of order m, and,515

D1 =

[
2
(

1
2 +

4
β2 + ω

)
− 3η2

]
K1(βη) − η3

[
1 + 2

η2

(
4
β2 + ω −

3
2

)]
K1(β)

I1(βη)K1(β) − I1(β)K1(βη)

D2 = −

[
2
(

1
2 +

4
β2 + ω

)
− 3η2

]
I1(βη) − η3

[
1 + 2

η2

(
4
β2 + ω −

3
2

)]
I1(β)

I1(βη)K1(β) − I1(β)K1(βη)

(64)

Enforcing the third and fourth orthogonality conditions in Eq. (3) (and in passing satisfying the516

first and second conditions), the parameter ω from the warping function is obtained:517

ω =
W1

W2
(65)

where,518

W1 = 12η
[
β2(1 + η2) − 8

]
+ β

{
W3I2(βη)K1(β) +W4I2(β)K1(βη)

+ I1(βη)
[
W4K2(β) −W5K1(β)

]
+ I1(β)

[
W3K2(βη) +W5K1(βη)

]}
W2 = 3β2

{
8η + β

[
βI3(β)K1(βη) + I1(βη)

[
β(η4 − 1)K1(β) − 4K2(β)

]
− η3[4I2(βη)K1(β) + βηI1(β)K3(βη)

]]}
(66)

and,519

W3 = 6η3
[
8 + β2(η2 − 3

)]
W4 = 6

(
8 + β2 − 3β2η2)

W5 = β
(
η2 − 1

)[
12

(
1 + η2) + β2(1 − 8η2 + η4)]

(67)
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Using Eq. (29) for the effective warping rigidity, and Eq. (30) for the areas B and C, these520

properties are calculated as:521

ẼJ =
108πGS 2b4

49β2(1 − η)2

{(
1 + 2ω
β
+

8
β3

) [
D1I2(β) − D2K2(β)

]
−

2
β2

[
D1I1(β) + D2K1(β)

]
−

(
η4 + 2ωη2

β
+

8η2

β3

) [
D1I2(βη) − D2K2(βη)

]
+

2η3

β2

[
D1I1(βη) + D2K1(βη)

]
(68)

−
3η2

β

{
D1

[
I0(β) − I0(βη)

]
− D2

[
K0(β) − K0(βη)

]}
+

1 − η8

8
− 9η4 log(η)
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(
4
β2 + 2ω

) [
1 − η6

3
+ 3

(
η4 − η2)] + (

1 − η4) [ω (
4
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)
−

3η2

2

]}
522

B =
3π
7

b2(1 − η2)(1 + η2 + 2ω
)

(69)

523

C =
9π
98

b2(1 − η2)[3 + 3η4 + 8ω
(
1 + ω

)
+ 2η2(9 + 4ω

)]
(70)

The pressure due to an axial displacement ∆, p∆, and the effective axial rigidity ẼA have been524

presented by Kelly and Konstantinidis (2011) and are given by:525

p∆(r) =
48GS 2

β2(1 − η)2

(
∆

te

) [
1 + D3I0

(
βr
b

)
+ D4K0

(
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b

)]
(71)
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ẼA =
48πGS 2b2
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where,527

D3 =
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D4 = −
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(73)

Then, the effective warping areas fB and fC [Eq. (31)] correspond to:528
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The solution to the integral in Eq. (74), albeit available, is impractical due to its complexity, while530

the integral in Eq. (75) does not have a closed-form solution. Nevertheless, both integrals can be531

solved by numerical integration along the radial direction.532

Lastly, the effective bending rigidity for annular bearings is provided for completeness. It533

corresponds to (Kelly and Konstantinidis 2011):534

ẼI =
48πGS 2b4

β2(1 − η)2

{
1 − η2

4
+

D5

β

[
I2(β) − η2I2(βη)

]
−

D6

β

[
K2(β) − η2K2(βη)

]}
(76)

where,535

D5 =
K1(βη) − ηK1(β)

I1(βη)K1(β) − I1(β)K1(βη)
D6 = −

I1(βη) − ηI1(β)
I1(βη)K1(β) − I1(β)K1(βη)

(77)

This provides all the effective properties required to use Eqs. (6) or (9) for annular FREIs.536

APPENDIX II. EXAMPLE CALCULATIONS FOR VERIFICATION537

In Table 2, results are presented for each of the effective rigidities and warping-related areas to538

allow users to verify the proper implementation of the equations; results for the buckling loads are539

also presented. Three-cases are analyzed: a rectangular bearing with cross-sectional dimensions of540

450 mm × 650 mm, a circular bearing with diameter 600 mm, and an annular bearing with outer541

diameter 600 mm and inner diameter 120 mm. All the cases consist of 33 rubber layers with a542

thickness te = 6 mm, interspersed by 32 fiber reinforcement layers with a thickness t f of 0.5 mm.543

It is assumed that the rubber has a shear modulus G = 0.4 MPa and a bulk modulus K = 2000544

MPa. The buckling loads presented account for the amplification due to the h/tr ratio.545
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Table 1. Parameters used for buckling analysis

Parameter Value
S 10.0, 12.5, 15.0, 17.5, 20.0
S ∗2 2.0, 2.5, 3.0, 3.5, 4.0
ρa 0.5, 1.0, 2.0
ηb 0.0, 0.1, 0.2

a Only applicable for isolators with rectangular cross section
b Only applicable for isolators with circular or annular cross section

Table 2. Effective rigidities, warping properties and buckling loads for three example isolators

Parameter Rectangular isolator Circular isolator Annular isolator
b (mm) 225 300 300
ρ 0.69 - -
η - 0.00 0.20

A (mm2) 292,500 282,743 271,434
h (mm) 214 214 214
te (mm) 6 6 6
tr (mm) 198 198 198
t f (mm) 0.5 0.5 0.5

S 22.2 25 20
β 1.84 2.45 2.45

ẼA (kN) 202,951 214,863 128,766
ẼI (kN-m2) 1,381 2,327 2,148

ω -0.221 -0.256 -0.116
ẼJ (kN-m2) 5.21 8.67 55.29

B (mm2) 68,023 59,239 61,523
C (mm2) 56,444 38,378 52,872
fB (mm2) 25,090 23,067 42,301
fC (mm2) 3,885 18,569 34,949

Pcr [Eq. (6)] (kN) 3,553 4,916 2,749
Pcr [Eq. (9)] (kN) 3,713 4,876 2,770
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Figure 13. Reduction factor fR for circular (η = 0) and annular (η > 0) isolators
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