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RESEARCH ARTICLE

Proteomic analysis reveals distinctive protein profiles
involved in CD8+ T cell-mediated murine autoimmune
cholangitis

Weici Zhang1,6, Ren Zhang1,2,6, Jun Zhang1,7, Ying Sun1,3, Patrick SC Leung1, Guo-Xiang Yang1,
Zongwen Shuai1,4, William M Ridgway5 and M Eric Gershwin1

Autoimmune cholangitis arises from abnormal innate and adaptive immune responses in the liver, and T cells are
critical drivers in this process. However, little is known about the regulation of their functional behavior during
disease development. We previously reported that mice with T cell-restricted expression of a dominant negative
form of transforming growth factor beta receptor type II (dnTGFβRII) spontaneously develop an autoimmune
cholangitis that resembles human primary biliary cholangitis (PBC). Adoptive transfer of CD8+ but not CD4+ T cells
into Rag1− /− mice reproduced the disease, demonstrating a critical role for CD8+ T cells in PBC pathogenesis.
Herein, we used SOMAscan technology to perform proteomic analysis of serum samples from dnTGFβRII and B6
control mice at different ages. In addition, we analyzed CD8 protein profiles after adoptive transfer of splenic CD8+

cells into Rag1− /− recipients. The use of the unique SOMAscan aptamer technology revealed critical and distinct
profiles of CD8 cells, which are key to biliary mediation. In total, 254 proteins were significantly increased while
216 proteins were significantly decreased in recipient hepatic CD8+ cells compared to donor splenic CD8+ cells. In
contrast to donor splenic CD8+ cells, recipient hepatic CD8+ cells expressed distinct profiles for proteins involved in
chemokine signaling, focal adhesion, T cell receptor and natural killer cell-mediated cytotoxicity pathways.
Cellular and Molecular Immunology advance online publication, 29 January 2018; doi:10.1038/cmi.2017.149
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INTRODUCTION

Primary biliary cholangitis (PBC) is a chronic autoimmune liver
disease characterized by the destruction of hepatic bile ducts,
cholestasis, and anti-mitochondrial Abs (AMAs), leading to
fibrosis, cirrhosis, and ultimately, liver failure.1 Accumulating
evidence implicates CD8+ cells in the pathogenesis of PBC.2,3

CD8+ T cells are directed to the mitochondrial protein PDC-E2 4

and are significantly enriched in PBC livers.5,6 Histologically,
CD8+CD57+ T cells responding specifically to the major histo-
compatibility class I epitope of PDC-E2 accumulate in the peri-
portal area in PBC.7 A previous genome-wide association study
(GWAS) revealed that the cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) gene is significantly associated with PBC;8

treatment with CTLA-4 antibody reduced hepatic T-cell infiltrates
and inhibited biliary cell damage in a mouse model.9 CD8+ T cells
also mediate biliary cell damage and cholangitis in IL-2R− /− mice
with defective T regulatory cells.10,11 We have previously reported
that dnTGFβRII mice,12 spontaneously develop wide-ranging
CD4+ and CD8+ lymphocytic liver infiltration, periportal inflam-
mation, production of specific AMAs, and biliary destruction,
which are highly similar to the histological features of human
PBC.13 Importantly, adoptive transfer of splenic CD8+ T cells
from dnTGFβRII mice into recombinase-deficient (Rag1− /−)
mice induces increased IFN-γ and TNF-α production, infiltration
of CD8+ T cells in small bile ducts, and severe PBC liver lesions,
whereas CD4 cells do not transfer disease.14
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Global analysis of protein expression has lagged global gene
expression analysis, but the SOMAscan proteomic assay over-
comes some of the technical difficulties. SOMAscan utilizes a
new generation of protein-capture SOMAmer (Slow Off-rate
Modified Aptamer) reagents constructed with chemically
modified nucleotides that greatly expand the physicochemical
diversity of large, randomized nucleic acid libraries.15,16 The
SOMAscan Assay measures native proteins in complex matrices
by transforming each individual protein concentration into a
corresponding SOMAmer reagent concentration, which is then
quantified by standard DNA techniques such as microarrays
and qPCR.17 Herein, we took advantage of SOMAscan
technology to identify differential protein expression contribut-
ing to the development of dnTGFβRII CD8+ T cell-mediated
autoimmune cholangitis.

MATERIALS AND METHODS

Mice
A dnTGFβRII colony on a B6 background (B6.Cg-Tg (Cd4-
TGFβR2)16Flv/J) is maintained at the University of California,
Davis, animal facility (Davis, CA, USA) and bred as hemi-
zygotes. C57BL/6J (B6) and B6.129S7-Rag1tm1Mom/J (Rag1− /−)
mice were purchased from Jackson Laboratory (Bar Harbor,
ME). dnTGFβRII mice were fed sterile rodent Helicobacter
Medicated Dosing System (three-drug combination) diets (Bio-
Serv, Frenchtown, NJ, USA). Sulfatrim (Hi-Tech Pharmacal,
Amityville, NY, USA) was delivered through drinking water
according to the manufacturer's instructions. All mice were
maintained in individually ventilated cages under specific
pathogen-free conditions. The experimental protocols were
approved by the University of California Animal Care and Use
Committee.

Adoptive cell transfer
For adoptive CD8+ cell transfer, mononuclear cells were
collected from the spleens of 16-week-old female dnTGFβRII
mice by density gradient centrifugation using Histopaque-
1.077. CD8+ cells were purified by positive selection with
CD8 microbeads (Miltenyi Biotec, Auburn, CA, USA). A total
of 1 × 106 purified CD8+ cells was injected intravenously into
eight- to ten-week-old female recipient Rag1− /− mice. The
spleen and non-perfused liver were harvested from the
recipients 8 weeks after adoptive cell transfer, and hepatic
CD8+ cells were purified by positive selection with CD8
microbeads, as described above.

Biological sample preparations
Whole blood was collected in EDTA-treated tubes from B6 and
dnTGFβRII mice at ages of 4 and 12 weeks. The blood was
centrifuged at 1500× g for 10 min at 4 °C to collect plasma;
CD8+ cell lysates were prepared using M-PER Mammalian
Protein Extraction Reagent (ThermoFisher Scientific,
Rockford, IL, USA).

SOMAscan proteomic profiling
Proteomic measurements were performed at SomaLogic Inc.
(Boulder, CO), using a SOMAscan assay platform. In total, 1
129 protein analytes were measured in an assay
(Supplementary Table S1) that quantifies protein abundance
over 8 logs (from femtomolar to micromolar), with excellent
reproducibility (4.6 median %CV).

Gene ontology (GO), pathway and protein interaction
analysis
The top significantly expressed proteins (qo0.01) were sub-
jected to GO, pathway and protein interaction analysis. DAVID
Bioinformatics Resources 6.718 (https://david.ncifcrf.gov/) was
used for data input, Gene Ontology and pathway analysis.
‘Count= 3’ was set as a threshold. AmiGO2 (http://amigo.
geneontology.org/amigo) and PANTHER (http://pantherdb.
org/) were used for further Gene Ontology analysis.19 KEGG
(http://www.genome.jp/kegg/) was used for pathway analysis.20

Gene Ontology-analyzed data were visualized by Revigo21

(http://revigo.irb.hr/). Protein interactions were analyzed by
STRING v1022 (http://string-db.org/) with a confidence score
fixed at 0.4 (medium level).

Immunoblotting
Splenic and hepatic CD8+ cells were purified by positive
selection with CD8 microbeads, and proteins were extracted
using M-PER, as described above. Immunoblotting was per-
formed with the SDS-PAGE electrophoresis system. Briefly,
20 μl of CD8+ cell lysate was electrophoresed on 4–12%
NuPAGE Nove Bis-Tris gels with NuPAGE MOPS SDS
running buffer and then transferred to nitrocellulose mem-
branes. Membranes were blocked in PBST containing 3% skim
milk for 2 hours at 4 °C and then incubated with primary
rabbit monoclonal antibodies against Btk, Lyn and β-Actin
(Cell Signaling, Beverly, MA, USA) overnight at 4 °C. The
membranes were washed in PBST, incubated with horseradish
peroxidase-labeled anti-rabbit antibody (Cell Signaling, Beverly,
MA, USA) and developed with SuperSignal Chemiluminescent
Substrates (ThermoFisher Scientific, Rockford, lL, USA).
Membranes were restored using Restore PLUS Western Blot
Stripping Buffer (ThermoFisher Scientific) and reprobed.
Densitometry was measured with ImageJ software. Relative
Btk and Lyn band intensity was normalized and quantified. The
housekeeping protein β-Actin was used as the control.

Statistical analysis
Quantitative data are presented as medians. Multiple compar-
ison corrections were performed using the false discovery rate
(FDR) methodology. A two-sided Student’s t-test was used to
determine significant changes in abundance (FDR corrected q
value (q)o0.05). One-way analysis of variance (ANOVA) was
used to statistically analyze immunoblotting data. A P value of
0.05 or less was considered statistically significant. Fisher’s exact
test was used to evaluate whether the proportions of the
proteins in each category differed by group.
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RESULTS

The serum protein expression profile differed in dnTGFβRII
mice compared to B6 mice
The serum protein expression profiles in 4- and 12-week-old
dnTGFβRII mice and B6 mice (n= 8 each time point) were
analyzed using the SOMAscan platform (Supplementary Table
S1). Protein abundance is shown in Figure 1a. A total of 115
proteins were differentially expressed, including 54 proteins
that were significantly increased and 61 proteins that were
significantly decreased in the serum of 12-week-old dnTGFβRII
mice compared to that of 4-week-old dnTGFβRII mice
(Figure 1b). The top 38 differentially expressed proteins
(qo0.01) were assigned to 7 functional annotation categories

(Table 1). Additionally, 87 proteins were significantly increased,
and 45 proteins were significantly decreased in the serum of
12-week-old dnTGFβRII mice compared with that of 12-week-
old B6 mice. Of those, the top 45 differentially expressed
proteins (qo0.01) were assigned to 61 functional annotation
categories (Supplementary Table S2). Only 3 overexpressed
proteins were found in the serum of 4-week-old dnTGFβRII
mice compared with that of 4-week-old B6 mice, consistent
with minimal disease in dnTGFβRII mice at this early age.23

IL18bp (Interleukin 18 Binding Protein) was increased in both
4- and 12-week-old dnTGFβRII mice. Among the differentially
expressed proteins in the serum of 12-week-old dnTGFβRII
mice vs. 4-week-old dnTGFβRII mice, seventy-eight proteins,

Figure 1 Differentially expressed proteins in dnTGFβRII mouse sera. (a) Heat map representing protein abundance in 4- and 12-week-old
dnTGFβRII mouse sera and 4- and 12-week-old B6 mouse sera by the SOMAscan platform. The samples were present in rows and
separated into 4- and 12-week-old dnTGFβRII (4w-dnTGFβRII, 12w-dnTGFβRII) and 4- and 12-week-old B6 (4w-control, 12w-control). The
proteins that presented in columns were ordered by hierarchical clustering. Red represents more abundant proteins, and green represents
less abundant proteins. (b) The number of altered serum proteins in 4- and 12-week-old dnTGFβRII sera compared to 4- and 12-week-old
B6 sera.
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including IgG, IFN-γ and IL-2 sRγ (IL-2 soluble receptor
gamma), were increased in dnTGFβRII mice but not B6 mice
(12-week-old vs 4-week-old B6 mice) (Supplementary Table

S3). Consistent with a previous proteomic study,24 the number
of protein alterations in the serum of 4-week-old and 12-week-
old B6 mice was greater than that in either 4- or 12-week-old

Figure 2 Semantic similarity-based scatterplots of GO terms of differentially expressed proteins between donor splenic and recipient
hepatic CD8+ cells. GO terms of differentially expressed proteins and the P value for each GO term, generated by DAVID Bioinformatics
Resources 6.7, were used by Revigo to produce the scatter plots. Multi-dimensional scaling was used to reduce the dimensionality of a
matrix of the GO terms’ pairwise semantic similarities. The 3 most highly significant GO terms (highlighted in red) were regulation of cell
proliferation (GO:0042127), P=2.18×10−13; enzyme linked receptor protein signaling pathway (GO:0007167), P=1.89×10−9;
transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169), P=2.92×10−9.

Table 1 The GO analysis results of serum proteins differentially expressed between 4w and 12w dnTGFβRII mice

NO Category GO Term Count Gene Symbol of Proteins

1 GO:0006468 protein amino acid phosphorylation 7 Rps6ka5, Fyn, Mapk3, Camk2d, Csk, Prkcb, Btk
2 GO:0016310 phosphorylation 7 Rps6ka5, Fyn, Mapk3, Camk2d, Csk, Prkcb, Btk
3 GO:0042127 regulation of cell proliferation 6 Hmgb1, Fgf7, Ptgs2, Fgf16, Sparc, Csk
4 GO:0006793 phosphorus metabolic process 7 Rps6ka5, Fyn, Mapk3, Camk2d, Csk, Prkcb, Btk
5 GO:0006796 phosphate metabolic process 7 Rps6ka5, Fyn, Mapk3, Camk2d, Csk, Prkcb, Btk
6 GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 3 Fgf7, Fgf16, Angpt2
7 GO:0006508 proteolysis 6 Eml2, Klk7, Rnf123, Acy1, Bmp1, Pappa

Count: the number of proteins with altered expression within the individual GO category.
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dnTGFβRII mice, indicating the magnitude of protein changes
during development in the presence and absence of
autoimmunity.

Protein expression profile of dnTGFβRII CD8+ cells after
adoptive transfer
To further understand the critical role of CD8+ cells in PBC,
we next investigated the protein expression profile of
dnTGFβRII mouse CD8+ cells before and after adoptive
transfer into Rag1− /− mice. We isolated CD8+ cells from 16-
week-old (after disease onset) dnTGFβRII mouse (donor)
spleens and transferred them into Rag1− /− mice. The protein
expression profile of CD8+ cells from the paired spleens of

donor mice and the livers of Rag1− /− mice was then analyzed
eight weeks post-transfer. In total, 254 proteins were signifi-
cantly increased, and 216 proteins were significantly decreased
in recipient liver-resident CD8+ cells compared to donor
splenic CD8+ cells. Gene Ontology assigned 199 differentially
expressed proteins (qo0.01) to 359 functional annotation
categories (Figure 2). Most of the differentially expressed
proteins participate in responses to external or internal stimuli,
the regulation of internal biological process, and the regulation
of cellular morphology and activity. The differentially expressed
proteins were involved in four functional categories, including
biological processes, molecular functions, and molecular com-
ponents (Figure 3). KEGG is a collection of manually drawn

Figure 3 Functional categories of altered proteins between donor splenic and recipient liver-infiltrating CD8+ cells. The gene symbols of
altered proteins were used by AmiGO2 and PANTHER to produce the functional categories. (a): biological process, (b): molecular function,
(c): molecular component, (d): protein class. The pie chart area represents the percentage of gene hits against total hits of the functional
category.
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pathway maps representing the present knowledge of molecular
interaction and reaction networks. Thirty-two pathways were
identified from those significantly differentially expressed
proteins using KEGG analysis (Figure 4) (Table 2).

Four pathways (chemokine signaling pathway, focal adhe-
sion pathway, T cell receptor signaling pathway and natural
killer cell-mediated cytotoxicity) closely related to CD8+ cell
functions were investigated in more detail (Table 3)
(Supplementary Figure S1). CCL17 (decreased), CCL20
(increased), CCL27 (decreased), CCL8 (increased) and CXCL1
(decreased) were the key chemokines in this pathway identified
as differentially expressed between donor splenic and recipient
hepatic CD8 cells. Mapk1, Csf2, Map2k1, Fyn and Mapk11
were increased, while IL-4, Pak7, Ptpn6, Mapk12, Icos and Il2
were decreased in the T cell receptor-signaling pathway
(Supplementary Figure S1). Icam1, Mapk1, Csf2, Map2k1,
Fyn, and Rac1 were increased, while Ptpn6, Ncr1 and Ptpn11
were decreased in the natural killer cell-mediated cytotoxicity
pathway. The altered expression of these proteins in recipient
dnTGFβRII hepatic vs. donor splenic CD8 cells suggests that
they might be involved in CD8 cell-mediated biliary patholo-
gical processes.

The protein expression profile of CD8+ cells differed among
paired donor spleen, recipient spleen and recipient liver.
We further investigated the protein expression profile in
recipient splenic CD8 cells compared to donor splenic and
recipient hepatic CD8 cells. In striking contrast to the large
number of protein expression differences between dnTGFβRII
donor splenic CD8 cells and recipient hepatic CD8 cells, there
was minimal difference between recipient splenic CD8 and
recipient hepatic CD8 cells; only 5 proteins showed decreased
expression in recipient hepatic CD8 cells compared to splenic
CD8 cells (Figures 5a and b) (Table 4), suggesting that intrinsic
alterations of dnTGFβRII CD8 cells occur in vivo, which could
predispose recipients to disease. The Lynb (an isoform of Lyn),
Lyn and Btk proteins are tyrosine kinases and are critical
for immune responses.25,26 Importantly, KEGG pathway
analysis suggested that Lyn and Btk were both involved in

the NF-κB signaling pathway, as shown in Table 5. We
therefore focused on Lyn and Btk and compared their
expression levels in splenic and hepatic CD8 cells. Due to
extremely low yields of hepatic CD8 cells compared to those of
splenic CD8 cells, two independent cell preparations were
used to compare between dnTGFβRII and B6 mice.
Immunoblotting analysis of splenic and hepatic CD8 cells
demonstrated markedly decreased expression of Lyn and Btk in
dnTGFβRII hepatic CD8 cells compared to B6 hepatic CD8
cells (Figures 5c and d).

DISCUSSION

Several murine models of autoimmune cholangitis have
attracted considerable attention because they have enabled
observations at the earliest phases of disease
development.27–31 In the work described herein, we focused
on dnTGFβRII mice, and the data indicate kinetic variations in
the serum proteomic profile in dnTGFβRII mice and B6 mice.
Comparing the differentially expressed proteins in 12-week-old
B6 mice vs 12-week-old dnTGFβRII mice to the differentially
expressed proteins in 4-week-old B6 mice vs 4-week-old
dnTGFβRII mice, only IL18bp (interleukin 18 binding protein)
was increased in both cases. Our data suggest that IL18bp may
be one of the earliest proteins affected by aberrant TGF-β
signaling in dnTGFβRII mice. IL18bp, a secreted protein, is
overexpressed in C3H/HeJ mice with Alopecia areata.32 IL18bp
binds to IL-18 (interleukin-18) and inhibits its activity.33

IL-18 is a known interferon-gamma (IFN-γ)-inducing fac-
tor. Elevated expression of IL-18, which is known to have
proinflammatory functions, has been implicated in autoim-
mune hepatitis,34 systemic lupus erythematosus,35 Crohn’s
disease, psoriasis, type-1 diabetes, rheumatoid arthritis, macro-
phage activation syndrome35,36 and autoinflammatory diseases
driven by the inflammasome.37 IFN-γ augments the gene
expression and synthesis of IL18bp38 and therefore contributes
to a negative feedback loop.36 TGF-β suppresses the production
of IL-18 and IFN-γ through regulation of the IL-18 receptor39

and the degradation of IFN-γ mRNA.40 Indeed, IFN-γ is
increased in 12-week-old dnTGFβRII mouse serum when

Figure 4 Results of the KEGG analysis of altered protein expression between donor splenic and recipient hepatic CD8+ cells. X-axis: KEGG
pathway terms. The corresponding pathway names and involved proteins are shown in Table 2. Count: the number of altered expressed
proteins. P value: Determined by Fisher’s exact test to evaluate whether the proportions of the proteins in each category differed by group.

Distinctive protein profiles of CD8 cell

W Zhang et al

761

Cellular and Molecular Immunology



compared with 4-week-old dnTGFβRII mice. Therefore, the
increase in IL18bp may be due to a chronic elevation in IFN-γ
in dnTGFβRII mice.

Bmp1 (bone morphogenetic protein 1) and Nrxn3 (neurexin
III) were decreased in both 4- and 12-week-old dnTGFβRII
serum compared to 4- and 12-week-old B6 serum. Bmp1 is a
metalloproteinase that cleaves multiple extracellular matrix
proteins and activates TGF-β by releasing it from a secreted
large latent complex (LLC).41 Since TGF-β induces Bmp1

mRNA and protein expression,42 these two proteins are
involved in a positive amplification loop.41 Thus, the decrease
in Bmp1 is due to lack of TGF-β signaling and could be a
biomarker of PBC-like disease induced by blockage of TGF-β
signaling. Nrxn3 is a protein involved in cell adhesion and the
nervous system. Forkhead box Q1 (Foxq1) directly binds to the
Nrxn3 promoter and suppresses Nrxn3 expression,43 while
TGF-β induces the production of Foxq1.44 The decreased
expression of Nrxn3 in 12-week-old dnTGFβRII mice indicated

Table 2 Thirty-two pathways identified from differentially expressed proteins between donor splenic and recipient hepatic CD8+

cells by KEGG pathway analysis

NO KEGG entry Pathway name Gene Symbol

1 mmu04060 Cytokine-cytokine receptor
interaction

Il4, Cxcl1, Csf2, Il18r1, Il22ra1, Tnfrsf13b, Tnfrsf13c, Ccl8, Kit, Il24, Tnfsf9, Ccl17, Tnfsf8,
Il10rb, Il15ra, Bmp7, Cd27, Il2

2 mmu04660 T cell receptor signaling pathway Il4, Mapk1, Pak7, Ptpn6, Csf2, Mapk12, Map2k1, Fyn, Icos, Mapk11, Il2
3 mmu04722 Neurotrophin signaling pathway Ntrk3, Mapk1, Bdnf, Mapk12, Map2k1, Bcl2, Rac1, Camk2d, Mapk11, Camk2a, Ptpn11
4 mmu05020 Prion diseases Mapk1, Notch1, C9, Map2k1, Fyn, Stip1
5 mmu04672 Intestinal immune network for Ig

production
Il4, Icos, Tnfrsf13b, Tnfrsf13c, Il15ra, Pigr, Il2

6 mmu04630 Jak-STAT signaling pathway Il4, Tyk2, Ptpn6, Csf2, Il22ra1, Il10rb, Il15ra, Jak2, Il24, Il2, Ptpn11
7 mmu04664 Fc epsilon RI signaling pathway Il4, Mapk1, Csf2, Mapk12, Map2k1, Fyn, Rac1, Mapk11
8 mmu04650 Natural killer cell mediated

cytotoxicity
Icam1, Mapk1, Ptpn6, Csf2, Map2k1, Fyn, Rac1, Ncr1, Ptpn11

9 mmu04912 GnRH signaling pathway Mapk1, Mapk12, Map2k1, Gnrh1, Camk2d, Hbegf, Mapk11, Camk2a
10 mmu04370 VEGF signaling pathway Mapk1, Mapk12, Map2k1, Ptgs2, Rac1, Mapkapk3, Mapk11
11 mmu04360 Axon guidance Mapk1, Pak7, Efnb3, Fyn, Rac1, Cfl1, Unc5d, Ephb4, Epha3
12 mmu04640 Hematopoietic cell lineage Il4, Csf2, Cd36, Cd33, Cd22, Kit, Itga2b
13 mmu04914 Progesterone-mediated oocyte

maturation
Ccnb1, Hsp90ab1, Mapk1, Mapk12, Map2k1, Plk1, Igf1, Mapk11

14 mmu04621 NOD-like receptor signaling
pathway

Hsp90ab1, Cxcl1, Mapk1, Mapk12, Ccl8, Mapk11

15 mmu04012 ErbB signaling pathway Mapk1, Pak7, Map2k1, Erbb4, Camk2d, Hbegf, Camk2a
16 mmu04062 Chemokine signaling pathway Cxcl1, Mapk1, Map2k1, Ccl20, Fgr, Hck, Rac1, Ccl8, Jak2, Ccl17
17 mmu04514 Cell adhesion molecules (CAMs) Icam1, Cadm3, Nrxn3, Icos, Pecam1, Cd22, Nrxn1, Cdh2, Jam2
18 mmu05200 Pathways in cancer Hsp90ab1, Mapk1, Fgf5, Fgf8, Fgfr3, Map2k1, Ptgs2, Bcl2, Rac1, Igf1, Kit, Fgf20, Wnt7a,

Itga2b
19 mmu05218 Melanoma Mapk1, Fgf5, Fgf8, Map2k1, Igf1, Fgf20
20 mmu04010 MAPK signaling pathway Mapk1, Fgf5, Bdnf, Fgf8, Fgfr3, Mapk12, Map2k1, Mapkapk5, Rac1, Mapkapk3, Mapk11,

Fgf20
21 mmu04114 Oocyte meiosis Ccnb1, Mapk1, Mapk12, Map2k1, Plk1, Camk2d, Igf1, Camk2a
22 mmu04810 Regulation of actin cytoskeleton Mapk1, Pak7, Fgf5, Fgf8, Fgfr3, Map2k1, Rac1, Cfl1, Fgf20, Itga2b
23 mmu04670 Leukocyte transendothelial

migration
Icam1, Mapk12, Pecam1, Rac1, Mapk11, Jam2, Ptpn11

24 mmu05214 Glioma Mapk1, Map2k1, Camk2d, Igf1, Camk2a
25 mmu04510 Focal adhesion Mapk1, Pak7, Map2k1, Fyn, Bcl2, Rac1, Igf1, Thbs1, Itga2b
26 mmu04620 Toll-like receptor signaling

pathway
Mapk1, Mapk12, Map2k1, Rac1, Mapk11, Lbp

27 mmu04916 Melanogenesis Mapk1, Map2K1, Camk2D, Kit, Camk2a, Wnt7a
28 mmu05219 Bladder cancer Mapk1, Fgfr3, Map2k1, Thbs1
29 mmu05211 Renal cell carcinoma Mapk1, Pak7, Map2k1, Rac1, Ptpn11
30 mmu04610 Complement and coagulation

cascades
C9, C4a, F9, Cpb2, Plg

31 mmu04320 Dorso-ventral axis formation Mapk1, Notch1, Map2k1
32 mmu04662 B cell receptor signaling pathway Mapk1, Ptpn6, Map2k1, Rac1, Cd22
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that defective TGF-β receptor signaling enhances, instead of
inhibits, expression of Foxq1. Of note, we focused on the
proteomic changes that may contribute to the initiation of
disease in 12-week-old dnTGFβRII mice, which display mild
portal inflammation and no obvious histological features of
liver injury in contrast to 24-week-old mice with established
disease. However, the levels of proinflammatory cytokines such
as TNF-α, IL-6 and IL-12 increased but did not reach statistical
significance (data not shown) in sera from 12-week-old
dnTGFβRII mice when compared to either 4-week-old
dnTGFβRII mice or 12-week-old B6 mice.

We also identified CD8 cell proteins that showed altered
expression between recipient liver and donor spleens. Gene
Ontology analysis (Figure 3) showed that some of these
proteins participate in responses to external or internal stimuli,
the regulation of internal biological processes, and cellular
morphology, activity and growth. The gene expression profiles
and cellular differentiation of CD8+ cells are determined by
antigen strength, co-stimulatory molecules and cytokines.45

Analysis of the ‘natural killer cell-mediated cytotoxicity
pathway’ indicates that the cytotoxicity mediated by NK cells
is enhanced. Cells isolated from mouse spleen or liver using

Table 3 The pathways related to CD8+ cells and corresponding proteins that are altered in recipient hepatic CD8+ cells in

comparison to donor splenic CD8+ cells

KEGG entry Pathway name Protein Gene Symbol Log2FC

mmu 04062 Chemokine signaling pathway Janus kinase 2 Jak2 0.034
FGR proto-oncogene, Src family tyrosine kinase Fgr 0.138
mitogen-activated protein kinase 1 Map2k1 0.085
mitogen-activated protein kinase 1 Mapk1 0.021
RAS-related C3 botulinum substrate 1 Rac1 0.053
chemokine (C-C motif) ligand 17 Ccl17 −0.051
chemokine (C-C motif) ligand 20 Ccl20 0.054
chemokine (C-C motif) ligand 27 Ccl27 −0.026
chemokine (C-C motif) ligand 8 Ccl8 0.077
chemokine (C-X-C motif) ligand 1 Cxcl1 −0.047

mmu 04510 Focal adhesion pathway mitogen-activated protein kinase 1 Mapk1 0.021
p21 protein (Cdc42/Rac)-activated kinase 7 Pak7 −0.036
mitogen-activated protein kinase 1 Map2k1 0.085
Fyn proto-oncogene Fyn 0.123
B cell leukemia/lymphoma 2 Bcl2 −0.056
RAS-related C3 botulinum substrate 1 Rac1 0.053
insulin-like growth factor 1 Igf1 0.164
thrombospondin 1 Thbs1 −0.028
integrin alpha 2b Itga2b −0.099

mmu 04660 T cell receptor signaling pathway interleukin 4 Il4 −0.021
mitogen-activated protein kinase 1 Mapk1 0.021
p21 protein (Cdc42/Rac)-activated kinase 7 Pak7 −0.036
protein tyrosine phosphatase, non-receptor type 6 Ptpn6 −0.093
colony stimulating factor 2 (granulocyte-macrophage) Csf2 0.084
mitogen-activated protein kinase 12 Mapk12 −0.036
mitogen-activated protein kinase 1 Map2k1 0.085
Fyn proto-oncogene Fyn 0.123
inducible T cell co-stimulator Icos −0.020
mitogen-activated protein kinase 11 Mapk11 0.051
interleukin 2 Il2 −0.044

mmu 04650 Natural killer cell mediated cytotoxicity intercellular adhesion molecule 1 Icam1 0.037
mitogen-activated protein kinase 1 Mapk1 0.021
protein tyrosine phosphatase, non-receptor type 6 Ptpn6 −0.093
colony stimulating factor 2 (granulocyte-macrophage) Csf2 0.084
mitogen-activated protein kinase 1 Map2k1 0.085
Fyn proto-oncogene Fyn 0.123
RAS-related C3 botulinum substrate 1 Rac1 0.053
natural cytotoxicity triggering receptor 1 Ncr1 −0.042
protein tyrosine phosphatase, non-receptor type 11 Ptpn11 −0.087

FC stands for fold change.
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CD8 beads may contain CD8+ cytotoxic T cells, CD8+

regulatory T cells, naïve CD8+ T cells, CD8+ dendritic cells and
CD8+ NKT cells. Pathway analysis indicates that cytotoxic
CD8+ cells play an important role in inducing PBC, consistent
with our previous observation that KLRG1+ CD8 cells mediate
cholangiocyte lysis.10,11 NKT cells, a specialized group of T cells
that recognize self, foreign lipids and glycolipids such as
α-GalCer presented by the non-polymorphic MHC I-like
molecule CD1d, play a critical role in immunity, tolerance

and autoimmunity in the liver.46 NKT cells accumulate in the
liver of PBC patients.47,48 NKT cells also promote PBC in
mice,49 including dnTGFβRII mice.50 NKT cells consist of two
classes: type 1 or invariant NKT (iNKT) cells express Jα24-Jα18
in humans and Vα14-Jα18 in mice, whereas type 2 cells express
a variety of TCRs recognizing CD1d.46 Both type 1 and type 2
NKT cells express NK cell stimulatory receptors, such as NK1.1
in mice and NKG2C and NKG2D in humans.46 However,
iNKT cells always down-regulate CD8 at an early stage,51 and

Figure 5 Comparison of differentially expressed proteins in splenic and hepatic CD8 cells. (a) The number of altered proteins in CD8+ cells
from dnTGFβRII donor spleen, recipient spleen and recipient liver (Po0.001, qo0.05); (b) Proteins significantly differentially expressed in
CD8+ cells from donor spleen compared to recipient spleen. The protein profiles of CD8+ cells from donor spleen compared to recipient
spleen were analyzed by SOMAscan assay. A two-sided Student’s t-test was used to determine the difference between two groups. All the
significantly differentially expressed proteins with qo0.01 are shown. Relative fluorescence units (RFUs) are directly proportional to the
amount of target protein in the initial sample, as informed by a standard curve generated for each protein-SOMAmer pair. (c)
Immunoblotting analysis of Btk and Lyn expression levels in splenic and hepatic CD8 cells. #1 and #2 indicate two sample preparations of
CD8 cell lysates. Each preparation included a pool of CD8 cells from 3–4 dnTGFβRII mice and 8–10 B6 mice. (d) Densitometry analysis
demonstrated the band density ratio of Btk (left panel) and Lyn (right panel) to β-Actin, respectively.
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CD8+ iNKT cells are seldom detected in mice.52 Therefore, the
NKT cells in our study are unlikely to be iNKT (type I NKT)
cells. It is reported that most human hepatic NKT cells are type
2 NKT cells, including CD8+ NKT cells.53 CD8+

NKT cells are present in all mouse tissues except thymus,54

and activated CD8+ T cells acquire NK1.1 expression and
preferentially reside in the liver of mice.55 CD8+ NKT cells, not
CD8+ NK1.1− cells, are able to proliferate independently from
antigen stimulation and express IFN-γ and GzmB.56 Based on
these studies, the ‘natural killer cell-mediated cytotoxicity’
pathway may be involved in CD8-mediated biliary destruction.
Type 2 CD8+ NKT cells may prime PBC-like disease in mice
and even in PBC patients. However, these hypotheses require
more experiments in vitro and in vivo to verify.

Five proteins were decreased in recipient splenic CD8+ cells
compared to recipient hepatic CD8+ cells (Figure 5). These
proteins in CD8+ cells may reflect a response to a different
microenvironment (liver and spleen) or the promotion of PBC
in mice. Lyn is a tyrosine protein kinase that plays a critical role
in the regulation of innate and adaptive immune responses.
Lyn is activated by a variety of stimuli, including BCR, CD40,

LPS, cytokines, and integrins.25 Mice without Lyn (Lyn− /−)
have circulating autoreactive antibodies,57 which are dependent
on T cells.58 Gain-of-function Lyn mutation (Lyn (up/up)
mice, which express a constitutively active form of Lyn, are
more sensitive to endotoxin in a dendritic cell- and NK cell-
dependent manner.25 Btk not only plays an important role in B
cell development and differentiation but also promotes TLR3-
triggered NK cell (CD3−NK1.1+) activation, mainly by activat-
ing the NF-κB pathway, and contributes to TLR3-triggered
acute liver injury.26 Consistent with human GWASs implicat-
ing NF-κB pathway involvement in the pathogenesis of human
PBC,59 this study highlights the importance of NF-κB signaling
mediated by Btk and Lyn in autoimmune cholangitis. However,
the functional roles of these proteins in CD8+ cells in the
pathogenesis of human PBC need to be further investigated.
Taken together, our data reveal that a critical serological
response and distinct profiles of CD8 cells may be responsible
for the development of autoimmune cholangitis.
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Table 4 Pathway analysis of proteins differentially expressed between donor splenic and recipient splenic CD8+ cells

Protein Gene Symbol KEGG Pathway

Fyn proto-oncogene Fyn mmu04510: Focal adhesion
mmu04520: Adherens junction
mmu04650: Natural killer cell mediated cytotoxicity
mmu04660: T cell receptor signaling pathway

cofilin 1, non-muscle Cfl1 mmu04810: Regulation of actin cytoskeleton
colony stimulating factor 2 (granulocyte-macrophage) Csf2 mmu04060: Cytokine-cytokine receptor interaction

mmu04630: Jak-STAT signaling pathway
mmu04650: Natural killer cell mediated cytotoxicity
mmu04660: T cell receptor signaling pathway

leukotriene A4 hydrolase Lta4h mmu00590: Arachidonic acid metabolism
polo-like kinase 1 Plk1 mmu04110: Cell cycle
glutamate oxaloacetate transaminase 1, soluble Got1 mmu00250: Alanine, aspartate and glutamate metabolism

mmu00270: Cysteine and methionine metabolism
mmu00330: Arginine and proline metabolism
mmu00350: Tyrosine metabolism
mmu00360: Phenylalanine metabolism
mmu00400: Phenylalanine, tyrosine and tryptophan biosynthesis

thioredoxin domain containing 12 Txndc12 mmu00480: Glutathione metabolism
transketolase Tkt mmu00030: Pentose phosphate pathway

Pathways were presented after manually filtering as described. Differentially expressed proteins with a q value less than 0.01 are listed.

Table 5 Pathway analysis of proteins differentially expressed between recipient splenic and recipient liver CD8+ cells

Protein Gene Symbol KEGG Pathway

Yamaguchi sarcoma viral (v-yes-1) oncogene homolog Lyns mmu04062:Chemokine signaling pathway
mmu04064:NF-kappa B signaling pathway

Bruton agammaglobulinemia tyrosine kinase Btk mmu04064:NF-kappa B signaling pathway
mmu05340:Primary immunodeficiency

Pathways are presented after manually filtering as described.
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