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Network Models of Epidemic Spread: Applications and Analysis

Abstract

Over the past century, mathematical epidemiology has grown to be one of the triumphs of
applied mathematics and mathematical biology. It has drawn influence and insight from a variety of
related fields, including mathematics, physics, chemistry, biology, ecology, and social science, among
others. With tools ranging from simple ordinary differential equation models to highly complex
stochastic simulations, mathematical models of epidemic spread have had significant theoretical
and practical impacts. In the past two decades, the development of network science as a discipline
has lead to a new modeling paradigm in mathematical epidemiology. Networks can capture aspects
of social structure that are critical to disease spread, allowing for models that balance parsimony
and complexity.

In this dissertation, I consider questions of model construction, analysis, and application that
are united under the framework of modeling epidemics on networks. In Chapter 2, we consider an
existing low-dimensional model of an SIS disease on a network. We perform a bifurcation analysis
of the model to determine the epidemic threshold and derive asymptotic approximations of the
endemic equilibrium under two parameter regimes. As well, we perform sensitivity analysis on the
results for the endemic equilibrium with respect to network parameters, and find implications for
public health interventions that are in line with previous studies.

Chapters 3 and 4 both model processes of social dynamics using adaptive networks, or net-
works whose edges change dynamically over time. In Chapter 3, we introduce an SEIR model
on a heterogeneous, clustered network with random link activation/deletion dynamics. With this
framework, we develop realistic mechanisms for social distancing policies using piecewise constant
activation/deletion rates for edges in the network. These mechanisms are able to produce rich qual-
itative behavior and provide insight into what makes for an effective social distancing intervention.
Chapter 4 extends this examination of changing social behavior. I introduce a novel dynamical
process where random link activation/deletion occurs on a bipartite network where individuals
connect to mixing locations and consider its implications for the corresponding unipartite contact

network. This new process is analyzed in conjunction with an SIS-type disease spreading on the



contact network. Furthermore, I consider the implication for seasonal social dynamics, including
how separate sources of seasonality (transmission and social behavior) impact how disease dynamics

unfold.
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CHAPTER 1

Introduction

Mathematical epidemiology has been an extremely active and impactful branch of mathematical
biology in the past century. Rather than modeling biological systems for their own sake, epidemi-
ological models are invaluable for public health practitioners and have saved an untold number of
lives. Models have been applied to numerous infectious diseases; some examples include malaria
(Ross, 1915), measles (London and Yorke, 1973), influenza (Ferguson et al., 2006), and recently
COVID-19 (Ferguson et al., 2020). Mathematical models of epidemic spread have always sought
to balance realism with complexity and tractability. Early modeling approaches included simple
compartment models (e.g. Kermack and McKendrick (1927)) which continue to find use today,
while increasingly abundant computing power has led to complex agent-based simulation models
(e.g. Eubank et al. (2004)) in recent decades.

The trade-off between realism and complexity is underscored by the features that make each
modeling approach successful. Compartment models elucidate the fundamental mechanisms of dis-
ease spread, and their analysis has spawned many essential epidemiological indicators (see Section
1.1). However, these models often require strong simplifying assumptions that limit their effective-
ness in the face of real-world epidemics; one particularly notable assumption that a population is
well mixed. Conversely, agent-based simulations can describe individual behavior in great detail,
which leads to more accurate, data-driven predictive models which have become indispensable to
public health scientists and policymakers. However, the level of detail can obfuscate some of the
underlying mechanisms of a particular epidemic’s spread, and the computational requirements can
make exploring the parameter space of a given model prohibitively expensive.

With the development of network science in recent decades, a new and influential modeling
paradigm has emerged. Network-based models of epidemic spread offer something of a compromise
between compartment models and agent-based simulations (see Kiss et al. (2017) or Pastor-Satorras

et al. (2015) for an overview of network models of epidemics). Many network models can capture
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the complexity of social structure addressed explicitly by agent-based simulations in the framework
of dynamical systems (similar to compartment models). Studies on mixing patterns (Read et al.,
2008) and social networks (Christakis and Fowler, 2010; Salathe et al., 2010) reinforce that a central
aspect of social structure is heterogeneity in the number of contacts an individual has, and that
other network characteristics play a role as well. As such, the construction of a network under
consideration plays an integral role in how an epidemic unfolds. Gaining a deeper understanding
of the effects of this structure is the theme of this dissertation.

Chapters 2 through 4 of this dissertation cover three modeling projects that explore how het-
erogeneity in network structure and the dynamics of social behavior influence the trajectory of
an epidemic. Each chapter is intended to be published as a standalone academic paper. Chap-
ter 2 was published in the Bulletin of Mathematical Biology (Corcoran and Hastings, 2021) with
Alan Hastings. Chapter 3 began as a project with John Michael Clark at the American Institute
of Mathematics summer school “Dynamics and data in the COVID-19 pandemic,” and has been
submitted for review. Chapter 4 is currently in preparation for submission. As the topics of each
chapter share related foundations, in the remaining sections of this chapter I provide the necessary
background for the rest of this dissertation. In Section 1.1, I cover the basics of compartment
models; in Section 1.2, I present some essential features of networks that play a role in epidemic
spread; in Section 1.3, I introduce the pairwise model, which is the foundational network model on

which all three chapters rely.

1.1. Compartment Models

For much of the twentieth century, compartment models (introduced by Kermack and McK-
endrick (1927), see Diekmann and Heesterbeek (2000) for an overview of modern approaches) have
been the foundation of mathematical epidemiology. Compartment models track how an infec-
tious disease progresses through a population by categorizing individuals in terms of their con-
dition relative to the disease natural history. Compartment models exhibit some flexibility as a
framework—models can be stochastic or deterministic, and take place in discrete or continuous
time. In the remainder of this section, deterministic, continuous-time models are considered. Two

of the most common compartment models are the SIR (susceptible-infectious-recovered) and SIS
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F1GURE 1.1. Compartment diagrams for an (a) SIR and (b) SIS disease. Compart-

ments are labeled for susceptible (S), infectious (I), and recovered (R) subpopula-

tions, and arrows indicate the direction and rate of transfer between compartments.
(susceptible-infectious-susceptible) models. In both models, susceptible individuals may have a
disease transmitted to them, become infectious, and eventually recover. With the SIR model, in-
dividuals gain long-term immunity upon recovery and move to the recovered compartment. With
the SIS model, no long-term immunity is gained by recovery, and individuals become susceptible
to contracting the disease again. Compartment diagrams for the two models are shown in Figure
1.1, along with rates of transfer between compartments. The corresponding system of differential

equations for the SIS model (Fig. 1.1b) are

(1.1) S = —7SI/N ++I,

(1.2) I =7SI/N —~I,

where 7 is the transmission rate and + is the recovery rate. Without vital dynamics (i.e. the total
population N is fixed), the system satisfies the conservation equation S + I = N, which allows
the SIS model to be written with a single equation. The system may have two steady states:
the disease-free equilibrium / = 0 and the endemic equilibrium I = N(1 — 7/7). The endemic
equilibrium exists and is stable when the basic reproductive number Ry = 7/v > 1. If Ry < 1, the
disease-free equilibrium is stable. Examples of solution trajectories of the SIS model can be found

in Figure 1.2b.
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FIGURE 1.2. Solution trajectories for the (a) SIR and (b) SIS models. Both pop-
ulations have N = 100 individuals, and are initialized with I(0) = 1 infectious
individuals. For both models, 7 = 2.5 and v = 1.

For the SIR model (Fig. 1.1a), the corresponding system of differential equations is

(1.3) S = —7SI/N,
(1.4) I =7SI/N —~I,
(1.5) R=~I.

An epidemic occurs if Ry = 7/ > 1, however as all infectious individuals eventually move to the
recovered compartment, as t — oo, we have I — 0. Examples of solution trajectories of the SIR
model can be found in Figure 1.2a. A critical epidemiological quantity with the SIR model is the
final size of the epidemic Ru.. Writing (1.3) as S 4+ 751/N = 0 and multiplying by exp (%) , it
follows that S exp (%) is constant with respect to time, with the constant being determined by
the initial number of susceptibles S(0). Assuming that there are no recovered individuals at the
beginning of the epidemic (R(0) = 0) and that there are no infections at the end of the epidemic

(Seo + Roo = N), the final size Ry, can be determined from the implicit equation

(1.6) N—Rm—smmm<—j%>.

A critical assumption made by the simple SIR and SIS models is known as the homogeneous

mixing assumption: any individual can come into contact with another. This is reflected in the
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transmission term 7571 /N in both models, where 71 is the total rate at which infectious contacts are
formed and S/N is the proportion of those contacts which are made with a susceptible individual.
While the homogeneous mixing assumption can be useful for certain populations, it is clear that in
many cases social contacts are complex, varied, and structured. In rolling back this assumption to

improve epidemiological models, new mathematical tools have to be introduced.

1.2. Networks

With the removal of the homogeneous mixing assumption, network topology is required to
define the structure of individual contacts. Characterization of this structure reflects the distinct
lineages of network science; some concepts and metrics are derived from traditional graph theory in
mathematics, while others are born from modern applications in physics, computer science, ecology,
and social science (see Newman (2010) for an overview). Construction of the networks themselves is
a separate challenge, and many random graph creation algorithms have been proposed that satisfy
certain network properties. For network models of epidemics, both graph metrics and network
generation are crucial pieces of the field.

Graphs are the mathematical objects that underpin contemporary network science. A graph
is a collection of N nodes (or vertices) connected by E edges (or links). The exact connectivity
structure of a graph can be detailed by its adjacency matrix A: an N x N matrix with entries
a;; = 1 if nodes i and j are connected by an edge and a;; = 0 otherwise. Though this exact
characterization appears in some network models of epidemics (Van Mieghem (2011), for example),
for large networks it can be unavailable or of a prohibitive size for computational purposes. With
many network models, the vital quantification of structure is the degree distribution. The degree of
a node is the number of neighbors (or equivalently edges) to which it is connected, and the degree
distribution of a network details the proportion of nodes of a given degree: py = Ni/N where
Ny, is the number of nodes of degree k. In the context of epidemics on networks, many important
properties can be derived from the degree distribution. Perhaps the most critical is the average

degree of the network, defined as

N
(1.7) (k) = kps.
k=0



(a) (b)
FIGURE 1.3. Simple diagrams of (a) a connected triple and (b) a triangle that occur
in networks.
Higher moments of the degree distribution can be calculated similarly, as (k™) = Z]k:V:O k"pg. These
higher moments are particularly relevant in Chapter 2, where network motifs are approximated in
terms of these moments. Perhaps the most concrete use of these moments is the average number

of connected triples (Fig. 1.3a) per node (counted twice), which is given by

N
(1.8) (B> — k) =) k(k— py.

k=0
This formula can be made sense of from a combinatorial perspective by recognizing that each
degree i node is the center of 2(;) = i(i—1) triples (when counted twice). As Section 1.3 will show,
connected triples play an important role in disease transmission on networks.
From a computational perspective, a useful and elegant characterization of the degree distri-
bution can be made using probability generating functions (see Wilf (2006) for a comprehensive
treatment). The probability generating function (or PGF) is a power series whose coefficients

correspond to the proportion of nodes in a network with a given degreel:

(1.9) G(z) = Zpkxk.
k=0

The machinery of generating functions are used in Chapter 3 and extensively in Chapter 4, in
particular the property that differentiating with respect to z and evaluating at x = 1 can retrieve
the moments of the degree distribution. In those chapters, networks that change dynamically

1Characterizing the PGF as an infinite series is standard notation; we consider p; = 0 when ¢ is greater than the
maximum degree of the network.
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Ficure 1.4. Examples of (a) Erdés-Rényi, (b) Watts-Strogatz, and (c) bipartite
networks. Examples of both the Erdds-Rényi and Watts-Strogatz networks have
N = 25 nodes. For the Erdos-Rényi network, p = 0.2 and for the Watts-Strogatz
network, ¢ =4 and p = 0.2.

through time are considered; thus pg is time-dependent, and the generating function takes a two

variable form
(1.10) Glz,t) => pr(t)a*.
k=0

An advantage of this formulation is that the time evolution of the degree distribution can be
described with partial differential equations for the PGF.
The final network metric that warrants introduction is the clustering coefficient, which is defined

as three times the ratio of triangles (Fig. 1.3b) to connected triples:

3 - Number of Triangles

1.11 = .
( ) ¢ Number of Connected Triples

The clustering coefficient reflects the density of connections in a network, and clustering can have a
significant effect on epidemic spread. Moreover, the propensity for social contacts to form triangles
(i.e. high clustering coefficient) has been an observed phenomenon in real-world networks (Read
et al., 2008).

A challenge with network models of real-world systems is the difficulty of determining the exact
structure of real-world contact networks. Nonetheless, a number of algorithms for generating graphs
with given statistical properties are well-known. Two common random graphs that are used in this
dissertation are Erdés-Rényi random graphs (Erdés and Rényi, 1959; Gilbert, 1959) and Watts-

Strogatz (“small-world”) networks (Watts and Strogatz, 1998). Erdds-Rényi random graphs are



formed by taking N nodes and considering all possible pairs and connecting them independently
with probability p (Fig. 1.4a). The degree distribution for Erdés-Rényi random graphs tends to the
Poisson distribution for large N. Watts-Strogatz networks are formed by placing N nodes in a ring
and connecting each node to its ¢ nearest neighbors (with ¢ being even), and then independently
rewiring each edge with probability p (Fig. 1.4b). If an edge is rewired, the “first” node of the
pair is randomly connected to another node in the network. Notable features of Watts-Strogatz
networks are short average path lengths and relatively high clustering for suitable values of p.
Another common method for generating networks is the configuration model (Molloy and Reed,
1995). With configuration model networks, the degree distribution and number of nodes is specified
in advance. Nodes are randomly assigned a degree from the distribution and given the corresponding
number of half-edges. Half-edges are then connected at random (forming the edges of the network)
until no half edges remain. While configuration models offer great flexibility in the ability to fit an
observed degree distribution, they lack some features of empirical social networks, as the clustering
coefficient vanishes in the large N limit (Newman, 2010). Nonetheless, they are some of the most
widely-used random graphs, and play an important role in constructing networks in Chapters 2
through 4.

Finally, two other network concepts play an important role in this dissertation. First, bipartite
networks are used in Chapters 3 and 4 to generate contact networks on which the epidemic spreads.
Bipartite networks (Fig. 1.4c¢) consist of two disjoint sets of nodes .4 and B, and every edge connects
a node in A to a node in B. Bipartite networks find a natural application in representing a social
mixing network. One set of nodes represents individuals, and the other set of nodes represents
mixing locations or social groups. A contact network where the epidemic unfolds can be formed by
connecting two individuals if they both have an edge to the same mixing location—the resulting
contact network between individuals is the unipartite projection of the bipartite network onto
the set of individuals. The unipartite contact networks formed this way can exhibit significant
heterogeneity and clustering (see Newman et al. (2001) for properties that can be derived with
probability generating functions). Second, adaptive networks are the central focus of Chapters 3
and 4. Up until this point, only networks whose edges do not change over time (static networks)

have been addressed. Adaptive networks (see Gross and Blasius (2008) for an overview) allow



for the edge structure of the network to evolve through time. In particular, the dynamics of the
network structure and the disease transmission dynamics unfold on comparable timescales, and
can lead to rich qualitative dynamics. Adaptive network models allow us to study phenomena not
captured by static networks, and as such network dynamic processes are applied in Chapters 3 and

4 to model changing social dynamics resulting from public health interventions.

1.3. Pairwise Models

With the concepts of networks established, combining network topology and disease dynamics
is the final step in constructing models for epidemics on networks. Chapters 2 through 4 all rely on
pairwise models, which are mean-field models for a stochastic transmission (and recovery) process
unfolding on a network. As one might expect, individuals are represented by nodes and potential
disease-transmitting contacts are represented by edges. At any point in time, each individual
has a status determined by the disease natural history. For example, with an SIR model, each
individual can be in one of the three states, while with an SIS model, each individual can be in
one of two states. In a network with N nodes, this means that there are a total of 3" possible
states for the entire network with an SIR disease, and there are 2V possible states for an SIS
disease. If transmission and recovery are modeled as Poisson processes, the disease dynamics form
a continuous-time Markov chain with m” — dimensional state space where m is the number of
possible states for each individual node.

By solving the Kolmogorov equations of the system, the probabilities of the network being in
each state at a given time can be found. Through a process known as “lumping” (Simon et al., 2011;
Taylor et al., 2012), these equations can be arranged and combined to yield differential equations
for the expected number of nodes in each state. Bracket notation is used to denote the expected
number of nodes in each state, i.e. [S] for the expected number of susceptible nodes, [I] for the
expected number of infectious nodes, and [R] for the expected number of recovered nodes. The
transmission process depends on the expected number of susceptible-infectious pairs [SI], which
necessitates equations for the expected number of pairs in each possible state. These equations

depend on the expected number of triples in each state, the equations for which depend on higher-

order motifs. For an SIS disease on a static network, the system is as follows (Eames and Keeling,



2002):

(1.12) [S] = —BIS1] +~[1],

(1.13) [1] = BS1] - ~[1],

(1.14) [SS] = —2B[SSI] + 27[S1],

(1.15) [S1) = B([SSI) — [IS1] — [ST]) +~([11] - [ST]),
(1.16) [11] = 28([ISI] + [ST]) — 2~[I1],

where (3 is the rate at which ST pairs transmit the infection? and « is the recovery rate. The
full system requires evolution equations for the expected number of triples [SSI] and [[SI], and
higher-order motifs, though the equations are rarely written. The number of nodes N being fixed
leads to the conservation equation [S] 4 [I] = N. Furthermore, for a static network the pairs obey
the conservation equation [SS] + 2[SI] + [II] = N(k), where (k) is the average degree, and N (k)

is twice the number of edges in the network. The equations for SIR dynamics on a network are

similar:
(1.17) [$] = —B[S1],

(1.18) [1] = BSI] — (1],

(1.19) [SS] = —28[SS1],

(1.20) [S1) = B([SSI] — [IS1] - [ST]) = ~[S1],
(1.21) (1) = 2B([IST] + [SI]) — 2y[I1].

Equations for the expected number of recovered nodes [R] and pairs involving them [SR], [IR], [RR]
are not necessary, as [R] can be determined from the conservation equation [S]+ [I] + [R] = N.
Useful heuristics for understanding the derivation of the SIS model (1.12)-(1.16) and the SIR
model (1.17)-(1.21) are compartment diagrams for the expected number of nodes and pairs in each
state (Fig. 1.5). Like the diagrams for simple compartment models in Figure 1.1, the transfer

2The transmission rate 7 in the simple compartment models and the transmission rate 3 in the pairwise models are
slightly different characterizations, but are related by 7 = 8NN.

10
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Ficure 1.5. Compartment diagrams for the pairwise models of (a),(c) SIR and
(b),(d) SIS diseases. Diagrams for the expected number of nodes in each state are
shown in (a) and (b). Diagrams for the expected number of pairs of nodes in each
state are shown in (c) and (d). Note that when connecting the pairwise models
to these diagrams, the order of the pairs does not matter (e.g. the [SI] and [IS]
compartments are modeled by the [SI] equation).
from the [S] to [I] compartments depends on the (expected) number of susceptible-infectious pairs.
In simple compartment models, this is the product SI, while in the pairwise models, it defined
explicitly in network terms as [SI] (Figs. 1.5), which requires tracking the expected number of
pairs and necessitates compartments for the pairs of all states. The rates of transfer between
pair compartments can be determined from the transmission and recovery processes, yielding the
diagrams in Figures 1.5¢ and 1.5d. Again, transmission between pairs depends on triples, which
necessitates further compartment diagrams to arrive at the full pairwise SIR and SIS models.
At this point, the dependence of the pairwise models on triples and higher-order motifs war-
rants comment. Though further equations are omitted in (1.12)-(1.16) and (1.17)-(1.21), for the
exact dynamics (in terms of expectation) they are required. This makes the full pairwise models

prohibitively large for any sort of analysis. The most common approach to overcome this limita-

tion is to approximate the expected number of triples in terms of lower-order state variables and

11



network metrics. Known as triple approximations (Keeling, 1999), these assumptions close the full
pairwise models forming dynamical systems of manageable size. Chapter 2 analyzes a system that
is closed by a triple approximation developed in House and Keeling (2011) and Simon and Kiss

(2016), while Chapters 3 and 4 use a novel closure based on one introduced in Keeling (1999).

1.4. Description of Chapters

The remaining three chapters of this dissertation are united by their consideration of pairwise
models of epidemics on networks. A low-dimensional model of an SIS disease on a network was
introduced by Simon and Kiss (2016), termed the “super compact pairwise model.” In their article,
Simon and Kiss derived a well-performing triple closure but did not analyze the epidemic threshold
or the endemic equilibrium of the model (though they noted that both presented fruitful future
directions). In Chapter 2, bifurcation analysis is done to find the epidemic threshold, and asymp-
totic techniques are employed to find accurate approximations of the endemic equilibrium in two
regimes of transmission and recovery rates. Moreover, a sensitivity analysis of the approximations
of the endemic equilibrium suggests public health conclusions related to screening versus contact
tracing in line with existing work, though from a network structure perspective.

Chapters 3 and 4 both concern adaptive network models and are strongly influenced by the
COVID-19 pandemic. Chapter 3 uses a simple process of network dynamics known as random link
activation/deletion (Kiss et al., 2012) to model the effects of social distancing and lockdown policies
in conjunction with an SEIR (susceptible-exposed-infectious-recovered) disease on a network. Two
mechanisms for social distancing are introduced using piecewise constant activation and deletion
rates, and effects on the overall outcome of the epidemic are measured. Significantly, the severity
of an intervention and the threshold prevalence to trigger it are found to have a greater impact on
the outcome than the length of time over which the intervention occurs. Chapter 4 develops a novel
process for network dynamics which occur on a bipartite mixing network, while disease dynamics
occur on the corresponding unipartite contact network. Leveraging probability generating functions
to determine the effects of the process on the contact network, this chapter introduces a realistic

adaptive network process inspired by now-ubiquitous mobile phone mobility data. This process is
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also used to analyze seasonality in disease patterns, separating periodicity in transmission dynamics

from social contact dynamics.
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CHAPTER 2

A Low-Dimensional Network Model for an SIS Epidemic:

Analysis of the Super Compact Pairwise Model

2.1. Introduction

In the past few decades, network-based models of epidemic spread have become a central topic
(Kiss et al., 2017; Pastor-Satorras et al., 2015) in epidemiology. Their ability to capture mathe-
matically the complex structure of transmission interactions makes them an invaluable theoretical
paradigm. Mathematically, a network is modeled as a graph consisting of a set of nodes that are
connected by a set of links (called edges). In the context of epidemiology, typically nodes represent
individuals, and edges represent interactions that can transmit the infection. Used in conjunction
with compartment models, the disease natural history determines the number of possible states an
individual node might be in at any point in time. When disease spread is modeled as a continuous
time Markov chain, the network size and disease natural history can lead to high dimensional state
spaces. For example, in a network with N nodes where individual nodes can be in m possible
states, the size of the state space for the network is m” . Efforts to describe this process with a sys-
tem of ordinary differential equations are similarly hampered by size—the Kolmogorov equations
governing this system are exact, but prohibitively large. Thus, an important goal in network-based
modeling has been to find a (relatively) low-dimensional system that accurately approximates the
underlying high-dimensional system.

Many approaches (Barnard et al., 2019; Karrer and Newman, 2010; Miller et al., 2012; Pastor-
Satorras and Vespignani, 2001; Pastor-Satorras et al., 2015) in recent years have sought to introduce
models with systems of a manageable size. Pairwise models (Eames and Keeling, 2002; House and
Keeling, 2011; Keeling, 1999) have been a popular and fruitful approach to this question. Derived

from the Kolmogorov equations and exact in their unclosed form (Taylor et al., 2012), pairwise
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models consider the evolution of not just the expected number of nodes in a given state, but also
pairs and triples of nodes. The dynamical variables are of the form [A] (the expected number of
nodes in state A), [AB] (the expected number of pairs in state A — B), and [ABC] (the expected
number of triples in state A — B — C'). Higher-order groupings of nodes are also considered but
rarely written, as dimension-reduction efforts often focus on approximating the expected number of
triples in terms of pairs and individual nodes. Pairwise models have been successful with a variety
of different network types, with models developed for networks with heterogeneous degree (Eames
and Keeling, 2002), weighted networks (Rattana et al., 2013), directed networks (Sharkey et al.,
2006), and networks with motifs (House et al., 2009; Keeling et al., 2016) to name a few. Moreover,
pairwise models have been developed for a variety of disease natural histories, with particular focus
on SIR (susceptible-infectious-recovered) and SIS (susceptible-infectious-susceptible) models.

In this chapter, we consider an SIS pairwise model for networks with heterogeneous degree.
SIS dynamics are used to model diseases where no long term immunity is conferred upon recovery,
leading to their frequent application to sexually transmitted infections such as chlamydia or gon-
orrhea (Eames and Keeling, 2002). Contact networks for diseases of this type frequently involve
heterogeneity in the number of contacts for individuals, and thus node degree becomes an essential
concept. The degree of a node in a network is the number of edges to which the node is con-
nected, and thus the number of potential infectious contacts. In this way, heterogeneous networks
can capture complex disease dynamics. An essential tool when working with such networks is the
degree distribution, defined by p; which is the probability a randomly selected node has degree k.
The degree distribution has played an important role in dimension reduction approximations for
pairwise models.

For the SIR-type diseases, accurate low-dimensional models have been derived from the pairwise
family using probability generating functions (Miller et al., 2012), complete with conditions for
finding the final size of the epidemic. Despite the successes of the SIR case, the dimension reduction
techniques in Miller et al. (2012) do not apply to the SIS case. Instead, the development of
low-dimensional models of SIS-type disease spread on networks have relied on moment closure
approximations. Under the assumption of a heterogeneous network with no clustering, House and

Keeling (2011) introduced an approximation reducing the system size from O(N?) to O(N), where
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N is the number of nodes in the network. Termed the compact pairwise model (CPW), it has
shown good agreement with stochastic simulations despite its considerably smaller size. However,
the number of model equations still grows as the maximum degree of the network, making its
application challenging for large networks with significant degree heterogeneity. Perhaps the most
successful model in reducing the number of equations of the CPW for SIS-type diseases is the
super compact pairwise model (SCPW) (Simon and Kiss, 2016). The system consists of only four
equations, with network structure being encoded to the model through the first three moments
of the degree distribution. While Simon and Kiss demonstrated excellent agreement between the
CPW and the SCPW, bifurcation analysis of the model and an explicit formula for the endemic
steady state remain to be done.

This chapter sets out on that analysis of the SCPW model. A common point of investigation
among models of SIS-type diseases is the disease-free equilibrium (DFE) that loses stability as a
relevant parameter passes a critical value known as the epidemic threshold (Bogund and Pastor-
Satorras, 2002; Pastor-Satorras and Vespignani, 2001, 2002). The epidemic threshold serves as a
dividing point between two qualitatively different types of outbreaks. Below the epidemic threshold,
any outbreak will die out; above the epidemic threshold, the system converges asymptotically to
a stable equilibrium where the disease remains endemic in the population. Many studies follow
the “next generation matrix” approach for the basic reproduction number Ry (van den Driessche
and Watmough, 2002) to characterize the epidemic threshold. We follow a more conventional
bifurcation analysis to derive the epidemic threshold and offer a proof that the system undergoes a
transcritical bifurcation, as one might expect. Perhaps more importantly, the SCPW’s small fixed
number of equations presents an excellent opportunity to investigate the endemic equilibrium for
SIS models on heterogeneous networks, which has been heretofore inhibited by large system size.
We present a novel asymptotic approach to approximating the endemic equilibrium, leveraging the
low-dimensionality of the model. Furthermore, the approximations allow us to perform a sensitivity
analysis, investigating how the endemic equilibrium responds to changes in network parameters.
The results presented further our understanding of the SCPW model specifically, and suggest
potential new avenues in the challenging problem of analytically determining the nontrivial steady

state of pairwise models of SIS-type diseases.
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The chapter is structured as follows: in Section 2.2, we nondimensionalize the model and reduce
the number of equations to 3 to facilitate computations. In Section 2.3, we derive the epidemic
threshold and show that the system undergoes a forward transcritical bifurcation. In Section 2.4,
we tackle the endemic steady state that emerges through the bifurcation. We use asymptotic
methods to approximate the size of the endemic steady state under two regimes—the system near
the epidemic threshold and the system far away from the epidemic threshold—and give examples of
the efficacy of these approximations on prototypical networks. Finally, we examine the implications
of these two approximations. In line with existing studies (Eames and Keeling, 2002), we find that
control measures for reducing the prevalence at the endemic equilibrium may require different

tactics depending on the regime.

2.2. Model

Pairwise models of SIS-type diseases provide a network-based analog of the classical SIS model
(Diekmann and Heesterbeek, 2000).The essential characteristics of pairwise models of SIS epidemics
are dynamical equations for not just the expected number of nodes in each state, but also pairs
and triples of nodes. At the node level, [S] and [I] are the expected number of susceptible and
infectious nodes respectively. At the pair level, [ST] is the expected number of connected pairs
of susceptible and infectious nodes, while [SS] and [/I] are the expected numbers of connected
susceptible-susceptible and infectious-infectious pairs respectively. The full pairwise model (Eames
and Keeling, 2002) further requires equations for the expected number of triples ([SSI] and [IS1])

and higher motifs as well:

(5] = (1] - B[ST],

(1] = BISI] —11],
[S1) = y([I1] = [ST]) + B([SST] — [IS1] — [S1)),
[SS] = 2v[S1] — 28[SS1],

[11) = —2~[11] + 2B([IS1] + [S1]).
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The CPW closes the system by approximating the expected number of triples as

Sy — 51

[ASI] ~ [AS)[ST1 2 572,

where A € {S, I} and S; and S are the first and second moments of the distribution of susceptible

nodes; that is

S1=) k[Si] = [SS] +[SI], S2=)_ K?[Skl,
k k

where [Si] is the expected number of susceptible nodes with degree k. Unfortunately So cannot
be expressed exactly in terms of [S],[I],[SI],[SS], and [II] only, so the SCPW model offers an
approximation that depends on these variables and moments of the degree distribution.

The SCPW model derived in Simon and Kiss (2016) is given as

(2.1) [S] = ~y[1] — BIST],
(2.2) 1] = BISI] — A1)
(2.3) [ST) = »([I1] - [S1]) — B[ST] + BISI]([SS] — [ST))Q,
(24) [SS] = 24[S1] - 28[S1][SS)Q,
(2.5) [11] = —2+[11] + 28[SI] + 28[S1)%Q,
where
Q= 1 (%%«W%%Mmﬂ+%%ms—%»_l>7W:[$W+wﬂ
ns[S] ns((k%) — (k)?) ’ s]

(k™) is the nth moment of the degree distribution, /3 is the transmission rate, and + is the recovery
rate. Here, the quantity Q serves as an approximation of (So — S1)/S7. As well, the quantities

[S], [1], [SI], [SS], [I1] satisfy conservation equations
(2.6) [S]+ ] =N,
(2.7) 2[SI] + [SS] + [1I] = (k)N.
We note that (k)N is twice the number of edges, and in (2.7) the term 2[SI] accounts for

both S — I and I — S pairs. With the goal of performing bifurcation and asymptotic analyses in

mind, nondimensionalizing the SCPW model is a natural first step. To do so, we will rearrange
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the equations (2.3)-(2.5) so that the network parameters (k), (k?), (k%) are consolidated into more

workable constants. First, we rewrite () as

_ a[s] A
2 @= 5T+ (ss)2 TSI+ 58]
where
(2.9) o= BV R 5 K) = (KR

(k?) — (k)

A natural nondimensionalization of this system is to scale the number of nodes and links in each

’ (k2) = (k)?

state to the proportion of nodes and pairs in each state: v = [S]/N,w = [I|/N,z = [SI]/((k)N),y =
[SS]/({(kYN),z = [II]/({k)N). As well, a natural rescaling of time is T' = t/~, which prompts the
defining of the transmission-recovery rate ratio 6 = (/~. The introduction of § consolidates the
two epidemiological parameters § and v into a single nondimensional parameter, so any changes
to epidemiology of the disease will be captured in ¢ alone. With these substitutions, the system

(2.1)-(2.5) becomes

(2.10) b =w — (k)o,
(2.11) W = (k)dz — w,
(2.12) i:z—(5+1)x+$-m+55-w,
(2.13) y:%_ﬁ'm_%&x?y’
2 2
(2.14) z:—zz+2ax+2<2‘f~(;’fy)2+255‘xiy,

where the dot notation is defined to represent the derivative with respect to the nondimensional

time variable %. The conservation equations (2.6) and (2.7) become

(2.15) v+w=1,
(2.16) 2r+y+z=1,
respectively.
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At this point, the conservation equations can be used to reduce the system to 3 equations.
However, the elimination of different equations for different analyses will be convenient. For char-
acterizing the bifurcation undergone by the disease-free equilibrium (DFE), it is convenient to work
with variables that are 0 at the DFE. For approximating the endemic steady state using asymptotic
methods, the most parsimonious equations will make the algebraic manipulation required easier.
Thus, we will work with slightly different (but equivalent) characterizations of (2.10)-(2.14) in the

sections that follow.

2.3. Epidemic Threshold

To derive the epidemic threshold, we consider the stability of the DFE in terms of the epi-
demiological parameter 6. We will show that as § increases through a critical value §., the DFE
loses stability. Typically as the DFE loses stability, an asymptotically stable endemic equilibrium
emerges. The SCPW is no exception, and here we derive the epidemic threshold, with a proof that
the system undergoes a transcritical bifurcation (and thus an endemic equilibrium emerges) when
0 = J. included in Appendix Section 2.5.1.

First, we use the conservation equations (2.15) and (2.16) to eliminate equations (2.10) and

(2.13). The resulting system is

(2.17) W = (k) — w,
L S e
= =22 g <fl—_xw—)f>2 v2

Though ostensibly a messier choice of equation reduction, we note that at the DFE, [I] = [SI]| =

[II] =0, so w=x = z = 0. The notation

w Fi(w,z,2)
(2.20) x=|i| = |Fwurz2)| =FXx)
z Fy(w,z,2)
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will be convenient moving forward. To determine the stability of the DFE, we compute the Jacobian
at x=0:
-1 (k)o 0
O‘+B)5—(5+1) 1
(k)

0 20 -2

(2.21) DF = | 0 (

A straightforward computation shows that

s_ () (k) _

(k)

We can write DF as a block triangular matrix as

(2.22)

1 A
DF = ,

0 B

where the dimensions A and B respectively are 1 x 2 and 2 x 2. The properties of determinants
of block matrices tell us that the eigenvalues of DF are —1 and the eigenvalues of B, which will
determine the stability of the DFE.

We appeal here to the trace-determinant theorem, which tells us the eigenvalues £ of the 2 x 2

matrix B are given by

V/(Tx(B))? — 4 Det(B)
2 2 ‘

First, we observe that these eigenvalues are real, as
(2.23) Tr(B)? — 4Det(B) = (5(k — 1) +1)* 4 86,

which is clearly positive. As a consequence, for the DFE to be stable we must have Tr(B) < 0 and

Det(B) > 0. The determinant can be written

(2.24) Det(B) = 2(1 — 6k),

and is thus positive if and only if § < 1/k. Moreover, if § < 1/k, then
Tr(B) < (k—1)/k—3=-2-1/k < 0.
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Therefore, we conclude that the DFE is stable for § < 1/k and unstable for 6 > 1/k. Thus, the

epidemic threshold is the critical value of the bifurcation parameter 0 :
(2.25) 0c =

Notably, this threshold value is identical to that of the CPW as shown in Kiss et al. (2017). However
the type of bifurcation that occurs here remains to be shown, and also that an asymptotically stable
endemic steady state emerges. To prove this, we apply a theorem of Castillo-Chavez et al. (2004)
in Appendix Section 2.5.1. We note that both the CPW and SCPW models are approximations to
the true SIS dynamics on a network, so while (2.25) is a good approximation of the true epidemic
threshold, it may not be appropriate in some cases. For instance, (2.25) is greater than zero for
networks with a power law degree distribution (py ~ k~%) with d > 3 in the large network limit
(N — o0). However, exact results show that the true epidemic threshold is zero in the large network

limit (Chatterjee and Durrett, 2009).

2.4. The Endemic Equilibrium

With the existence of an endemic steady state established, we turn to the question of finding
an approximate analytic expression. In general, this is a difficult proposition with epidemic models
on networks owing to the frequently high-dimensional nature of the dynamical systems. An exact
closed-form expression for the endemic equilibrium of the SCPW model requires solving a system
of polynomial equations in multiple variables, which we do not attempt here. However, with
asymptotic techniques, a workable approximation can be derived for two cases of §: near the
epidemic threshold (6 = §.), and far away from it (§ >> d.). We do not have a good approximation
in the intermediate case. Two challenges are apparent. First, how to eliminate equations to
facilitate asymptotic expansions of the equilibrium and second, the choice of small nondimensional
parameter in each case.

Unlike in Section 2.3, the most parsimonious characterization of (2.10)-(2.14) is desirable. So
we eliminate (2.11) and (2.14) with the conservation equations. To promote the finding of a small

nondimensional parameter, we rewrite the resulting system using § = 4. - 6% and incorporate the
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constants o = (k)d,, A = ad./(k), i = BS.. With these substitutions, the system becomes

(2.26) z}zl—v—a(séx,

) ) § vx(y — x) d x(y —x)
2.2 =1y i St B ? AR Akt
(2.27) x Y <3+556>x+)\56 @+ ,u(sc P
(2.28) joow—on 2 YW 5,0 7y

exry)? Py

At the endemic equilibrium, v = & = y = 0. We can solve (2.26) for v and substitute into (2.27)
and (2.28). With some rearrangement of terms and a little algebra (and adding (2.28) to (2.27))

we arrive at the system of polynomial equations that determines the endemic steady state:

2
0= <f§) (1—y—2z)(z+y)° - % (Oex(z + ) + Aa® + pa(z + y))
(2.29) + Aoz = P(2,y),
2
230 0= (%) G- Out et ) + Aoy = Qoo

Note that in (2.30), we have dropped a factor of x that corresponds to the DFE. For the endemic
steady state, we are interested in knowing the prevalence when the system is at equilibrium: w*.
We use the following procedure to approximate the solution:

(1) Express 6./9 in terms of a small parameter.

(2) Use the Implicit Function Theorem to linearize P(z,y) = 0 as

around a point (Z,7) that is mathematically and/or biologically justified for the given
regime.

(3) Expand z,y, and other relevant quantities in terms of the small parameter.

(4) Substitute the expansions into Q(z,y) = 0 and obtain a regular perturbation problem and
find an asymptotic solution for the equilibrium value x, which approximates x*.

(5) Apply the relation w* = (6./8) lox* to obtain an asymptotic series for the prevalence at

the endemic equilibrium.
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We describe the results of this procedure for each case in the remainder of this section—the details

of the computations are included in Appendix Section 2.5.2.

2.4.1. Case 1: Near the epidemic threshold (§ ~ ¢.). When 0 = ., an endemic steady
state has just emerged, so we can view this equilibrium as a small perturbation to the steady state

x =0,y = 1. Therefore we set n = 1 —0./9 as a small parameter. In terms of this small parameter,

(2.29) and (2.30) become

0=(1-n)?*1-y—2x)(z+y)?
(2.31) — (1 —n) (0ex(z +y)* + A2® + pa?(z + y)) + Aoz?,

(2.32) 0=(1-n*@=+y)?—(1—n) A\y+pyz+y)+ rozy.

Linearizing P(z,y) = 0 about this point gives

Oc
(2.33) y~1—<2+1_77)x.
Expanding
55 2 3

(2.34) 2+1_n:2+(5c(1+77+77 +O0(n°)),
(2.35) o =z + 1 + 22m” + O(1),
we have

Y~ (1 — (2 + 5c)x0) — (56.1:() + (2 + (56)1’1)77
(2.36) — (8o + (24 8wz + ex1)n* + O(nP).

Substituting into (2.32) and equating coefficients to 0, we find an n-order expansion of the approx-

imate equilibrium value z* as

* 1 2
(2.37) SRS VI S (5c?7+0(n )-
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F1GURE 2.1. Exact (numerical) and approximate endemic equilibrium prevalence
in the § ~ §, regime for (a) a bimodal (two degree) network with 5000 degree
3 nodes and 5000 degree 5 nodes and (b) a configuration-model network with a
Poisson degree distribution with 10,000 nodes and (k) = 10. Moments of the degree
distribution for the bimodal network (a) are (k) = 4, (k?) = 17,(k®) = 76, with
6. = 0.31, and higher moments of the degree distribution for the Poisson network
(b) are (k?) ~ 110, (k*) ~ 1309, with §. = 0.1. Solid lines denote stable equilibria,
while dashed lines denote unstable. The equilibrium with w* = 0 is the DFE.

Using the relation w* = 172" = oz" + O(n), we have

* g 2
(2.38) N et - 5Cn+0(n )-

To demonstrate the efficacy of this approximation, we compare the approximation (2.38) to
the actual endemic equilibrium using bifurcation diagrams (Fig. 2.1). We consider two example

configuration model random networks (Molloy and Reed, 1995) with N = 10,000. In Figure 2.1a,
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a bimodal (two degree) network is considered with 5000 degree 3 nodes and 5000 degree 5 nodes.
In Figure 2.1b, a network with a Poisson degree distribution (with average degree (k) = 10) is
considered. As is clear in both examples, the agreement between the actual and approximate
endemic equilibrium is quite good near the epidemic threshold. Interestingly, the approximate
value of w* is greater than the exact value for the bimodal network and less than the exact value
for the Poisson network. We suspect that this is due to network structure and higher order terms
in the asymptotic expansion, which we have not computed. An analogous situation is found in the

6 >> ). case.

2.4.2. Case 2: Far away from the epidemic threshold (§ >> ¢.). For § >> ¢., when
the system is far from the epidemic threshold, our small parameter of choice is ¢ = d./d. We can

rewrite (2.29) and (2.30) in terms of this parameter:

0=e*(1—y—2z)(z+y)*
(2.39) — e (0ex(z +y)? + Aa® + pz(z +y)) + Ao,

(2.40) 0=c*(x+y)* ey +uy(z+y)) + \oxy.

When § >> 4., the transmission rate 3 is large relative to the recovery rate . Thus, we expect the
disease to affect much of the population, and consequently there will be very few remaining [SS]
links, and therefore y ~ 0.

Solving P(¢,0) = 0 for ¢ yields
- g2 — A
2824 (0, + p)e — Ao’

(2.41) (¢)

and slope of the linearization is then

RGO (= NE2+ (Bt p)e— o)
(242) V) = = 6.0) T 2 (4 5N — M2 51— 20))"
(2.43) g~ b — )
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Next, we seek to expand y in terms of € only. The relevant expansions for ¢, 1, and = are

(244) ¢(€) = gg =+ TE =+ 0(6 ),

Ao 1 2024 36cp + (BN + 20) + p?
2.4 = 1_ e ==
(2.46) z(g) = 20 + 716 + 226” + O(£?).

To ease the writing of coefficients, we let ¢, and v, refer to the coefficients on % for the

respective series. From this, it follows that

y =~ (Yo120)e ! + (Y121 + Yoz — -161)

(2.47) + (122 + 120 + o1 — o102 — o1 )e + O(?).

Substituting into (2.40), and equating the coefficients to 0, we find that we need the coefficients up
to order €% in order to find a 2 order expansion of the approximate equilibrium value of *. The

result is

e+ p—o
4 e THTO 2

(2.48) rt~ —e g2 + O(e%).

1
o Ao2
Finally, as w* = oe~'2*, we arrive at an e—order approximation for size of the endemic steady

state as
(2.49) w* 1+ S e+ O(?).
o

As with the § ~ 0. case, we compare the approximation (2.49) to the actual endemic equilibrium
in Figure 2.2 for the same networks as previously described. Again, the agreement is quite good,
even for relatively small values of 4. In this case, the approximation for the endemic equilibrium
also provides an approximation to the epidemic threshold. Whether this approximation is an
overestimate or underestimate of the exact threshold depends on network structure. If (k?) >
(k)? + (k), the approximation is an overestimate. On the other hand, if (k%) < (k)2 + (k), the
approximation being an overestimate or underestimate depends on the relationship between (k?)

and the other two moments.
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FIGURE 2.2. Exact (numerical) and approximate endemic equilibrium prevalence
in the § >> J. regime for (a) a bimodal (two degree) network with 5000 degree
3 nodes and 5000 degree 5 nodes and (b) a configuration-model network with a
Poisson degree distribution with 10,000 nodes and (k) = 10. Moments of the degree
distribution for the bimodal network (a) are (k) = 4, (k?) = 17,(k®) = 76, with
6. = 0.31, and higher moments of the degree distribution for the Poisson network
(b) are (k?) ~ 110, (k*) ~ 1309, with §. = 0.1. Solid lines denote stable equilibria,
while dashed lines denote unstable. The equilibrium with w* = 0 is the DFE.

2.4.3. Sensitivity Analysis. With any model of infectious disease, its implications in pre-
venting or mitigating spread should be considered. For network models, some pharmaceutical and
non-pharmaceutical interventions can alter the contact network structure in the effort to contain
or mitigate outbreaks (Salathé and Jones, 2010). For an SIS-type disease, particularly when con-

tainment is impossible, one such goal may be to decrease the size of the endemic equilibrium. To

that end, we examine the sensitivity of our approximations of w* to network parameters in the
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TABLE 2.1. Partial Derivatives for § ~ 0§,

ow* L (k%)

Ok lszs, (k) —2(k2) + (k)
ow* B (k)

(k) ls=s, (k) — 2(K?) + (k3)
ow*

k) |5zs, !

SCPW model. One benefit of explicit asymptotic expressions for the endemic equilibrium is that
sensitivity analyses are straightforward to implement.

For a fixed §, we have a three-dimensional parameter space. To visualize these parameter
combinations, we use two-dimensional heat maps taken at slices of the third network parameter. In
this case, we have decided to look at several fixed values of (k3), and draw sensitivity heat maps in
the variables ((k), (k?)). Further complicating matters is the fact that moments of a distribution are
subject to many inequalities which restrict the domain of the sensitivity heat maps. Two natural
restrictions to include are the results of Jensen’s Inequality and the Cauchy-Schwarz Inequality

respectively:

(k?)

Y

(k)?,

(k%)? < (k%) (k).

IN

For a fixed value of (k®), these restrictions give a wedge-shaped feasible region of ((k), (k?)). We plot
the sensitivities for (k%) = 20,100, and 400 to display a range of possible parameter combinations.

In the § ~ J. case, calculating the partial derivatives is straightforward. To compute the
sensitivities, we evaluate the partial derivatives at the epidemic threshold: § = §.. Table 2.1 shows

*

the expressions for these sensitivities, and Figure 2.3 shows corresponding plots. Clearly g% <0

and % > 0, with more extreme values near the upper-right corner of the feasible region.
For the 6 >> §. case, the partial derivatives (Table 2.2) all depend on a factor of 1/4, so

the choice of § for computing sensitivities does not affect the relative magnitudes of the partial
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FIGURE 2.3. Sensitivities (a) % and (b) % for the § ~ 6. approximation. White

denotes regions of the ((k), (k%)) plane outside of the feasible region. Sensitivities
are evaluated at § = 4.

TABLE 2.2. Partial Derivatives for § >> 4.

ow* (k%2 +3(k)2(k)? — 2((k)3 (k%) + (k3)®) 1
olky ((k2)2 — (k3) (k)2 5
ow'_2((k) — (R)) (k) (K?) — (k) 1

o(k?) ((k2)2 — (k3) (k)2 5

ow* (k)2 - (k%))? 1

k3 (k22 — (k3)(k))2 6

derivatives. For convenience, we select 6 = 1.5. The sensitivity plots in Figure 2.4 show that

% >0, % < 0, and 86(115% > 0, with the greatest sensitivity near the curve (k?)2 = (k®)(k),

though the large magnitude appears to be due to the partial derivatives being undefined there.
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FIGURE 2.4. Sensitivities (a) %, (b) %, and (c) % for the 6 >> 4. approxi-
mation. White denotes regions of the ({(k), (k?)) plane outside of the feasible region.
Sensitivities are evaluated at § = 54...

A significant observation from these sensitivities is that % and % change signs depending
on the regime considered. If the goal of an intervention is to reduce the size of the endemic
equilibrium, near the epidemic threshold, this can be accomplished in principle by increasing (k)

or decreasing (k?), which will in effect increase 6. as well. This is intuitive, as an effort to push

the system below the epidemic threshold would also decrease the endemic equilibrium for a fixed
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0. However, in the § >> . regime, the system is far from the epidemic threshold, and reducing
the size of the endemic equilibrium can be accomplished by decreasing (k) or increasing (k2). This
suggests that containment and mitigation strategies that depend on altering the structure of the

contact network may require different goals in terms of the moments of the degree distribution.

2.5. Discussion

In this chapter, we have analyzed the super compact pairwise model presented in Simon and
Kiss (2016). A non-dimensional version of the model was considered, and a bifurcation analysis
was performed demonstrating that the SCPW and CPW models share an epidemic threshold.
Moreover, we derived approximate formulas for the endemic equilibrium in two regimes: when
the transmission/recovery ratio is near the epidemic threshold, and far away from it. While the
asymptotic techniques used here are ad hoc, similar techniques may prove fruitful in other low-
dimensional models of infectious disease spread on networks. However, an exact expression for the
endemic equilibrium remains elusive.

Before explaining the advantages of our approach, we acknowledge two limitations of our ap-
proximation. First, approximations of the endemic equilibrium for diseases between the two regimes
is lacking. Second, while the examples of simulated networks show good agreement between the
exact and approximate prevalence, we have not quantified the approximation error generally. As
such, there may be types of networks for which our approximation of the endemic equilibrium is
less accurate or inappropriate.

Our approximation of the endemic equilibrium is very useful in providing a more detailed look
into the interactions of the moments of the degree distribution as they relate to the size of an
outbreak. This has implications for disease control measures, particularly those that work by
altering the contact network structure. Our results suggest that for SIS-type diseases, strategies
to contain (near the epidemic threshold) or mitigate (far away from the epidemic threshold) an
outbreak may require different goals. In the mitigation scenario where the prevalence is high,
measures might be employed that decrease the first moment (k) of the degree distribution. In effect,
this may mean initiatives aimed at reducing the number of contacts of individuals alone. On the

other hand, in the containment scenario where the prevalence is low, decreasing the second moment
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(k%) may be efficient. When couched in degree distribution terms this goal is hard to conceptualize,
but using probability generating functions (Newman et al., 2001) one can show that (k2) is the
average number of first and second neighbors of nodes in the network. Thus, measures that reduce
both the contacts of individuals and their partners are effective in this scenario. This suggests the
importance of contact tracing. We note that the sensitivities also suggest that increasing (k?) in
the high prevalence case and increasing (k) in the low prevalence case may lead to a reduction of
the size of the endemic equilibrium, though it is not clear why from a biological perspective.

Our results complement the findings of Eames and Keeling (2002), who observed that the effec-
tiveness of two common control measures, screening and contact tracing, depend on the prevalence
at the endemic equilibrium. Screening, which targets and treats individuals, is efficient when the
prevalence is high. Contact tracing, which targets and treats individuals and their partners, if
efficient when the prevalence is low. Unlike this chapter, Eames and Keeling implement these mea-
sures through epidemiological parameters (rather than through changing network structure). In
this way, our results can be viewed as a network-structure analog for their conclusions and confirm
that control measures appropriate in a network setting can be found. Further work in this area

may include investigating this phenomenon with alternative models of SIS diseases on networks.

Appendix

2.5.1. Bifurcation Analysis. We begin with Theorem 4.1 from Castillo-Chavez et al. (2004),
referring to the specific conditions that will be relevant for this analysis. Consider a system of ODEs

with a parameter ¢ :

d
(2.50) d{ =F(z,4), F:R"xR—R"andF e C2R"xR).

Assume that 0 is an equilibrium for all values of ¢. Assume further that D, f(0,0) = <g£? (0, 0))
is the linearization matrix of (2.50) around the equilibrium 0 and with ¢ = 0, and zero is a simple
eigenvalue of this matrix with all other eigenvalues having negative real parts. Assume as well that

this matrix has a nonnegative right eigenvector w and left eigenvector v corresponding to the zero
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eigenvalue. Let Fj be the kth component of f and

Z” 0% Fy,
ki, j=1
o 0% Fy,
2.52 b= i~ (0,0).
(2.52) gzjlukw 52,9600

If a < 0 and b > 0, then when ¢ changes from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally
asymptotically stable.

We apply this theorem to (2.17) — (2.19), where the equilibrium occurs at w = z = z = 0.
Moreover, we define a bifurcation parameter ¢ = § — J., so ¢ = 0 corresponds to § = J., and
a% = %. For consistency with previously established notation, we will treat § as our parameter,

with ¢ increasing through 0 as ¢ increases through .. The Jacobian given in (2.21) when w =

0,=0,z=0, and § = 4. is

1 (kY. O
0 20, —2

and the characteristic polynomial is given by

(2.54) 0=¢8E+1)(€—(-2—4dc)).

The left and right eigenvectors (v and w respectively) corresponding to the eigenvalue £ = 0 are

C

(2.55) v = [0 ) 1} ,W = [<k> 51 1}T.

To compute a and b, it is convenient to express (2.51) and (2.52) in matrix-vector form:

(2.56) a=w"!(2Hy + H3)w,
oJ
(2.57) b= v%(o, dc)W,
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where Hy and Hjs are the Hessians of F> and Fj respectively at 0. These Hessians are

— 0660 -
om0 00 0
ad, ~ ad. B
(2.58) H, = W —2 — 234, 1) Hy=10 4 0
0 ade 0 00 0
i (k) i
Thus,
r 206, T
0 — 0
200, ) 200, W
_ 1 e Y- Q0c 1
«
0 == 0 1
(k) 1
- _2£ —
(k) oos
~ Q0c
= [<;€> 51 1} 206, — 48 +
(k)
20
L (k) i
~ Q Q@
= 2a—2a—48/6. + 2 +2—
P2 2
1 - [ (k%)
(o) 55 0)
( <<k> (k)
_ ()
(2.59) =—4 < B )
As (k3) > (k), it follows that a < 0.
The computation for b is simpler. We note that
0 (k) 0
oJ
7 — -1 _
0 2 0
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Thus
b:[o 2 1} 0 6;'—1 0f |61

0 (K)ot 0
:[o 2 1} 0 o;1(0;t—1) 0
0 20,1 0

(2.61) =251, 1) +25, 1 =252 > 0.

Finally, as a < 0 and b > 0, we conclude that as ¢ increases through d., a positive, asymptotically

stable equilibrium emerges, which is the endemic equilibrium.

2.5.2. Asymptotic Approximations of the Endemic Equilibrium. The full derivations
of the approximations (2.38) and (2.49) are presented in this appendix.
2.5.2.1. Near the epidemic threshold (6 =~ ¢6.). We begin with (2.31) and (2.32) and seek the

linear approximation of P(x,y) = 0 at (0,1). We compute

O o (1 -y~ 2)(w+9) ~ (x+9)?)
(2.62) — (1 =n) (e(z +y)(Bz +y) + 2Az + pz(3z + 2y)) + 3Xoz?,
(2.63) O = (=) (2o +) = e + (1= n)(a+9)(2 — 52— 30)

The slope of the linear approximation is then

— —n)2 — —
(2.64) _0P/oz _ 2(1—n) 502(1 n) P ¢ ’
P[0y |01y —(1—=mn) 1—n
and thus we approximate
(2.65) ~1+ | —-2— S x
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We now expand x as x = o + x1n + ... and 1‘5_07] =6.(1+n+n?+...) as a geometric series.
Incorporating these with (2.65), we get the approximate expansion of y as
y~1-— (2+6c(1+77+7]2+...)) (zo 4+ 11+ 22m* . .)
=1—(2+dc)xo — (dexo + (2 + dc)x1)n
(2.66) — (6eo + Oy + (24 8)a2)n? + . ..

For easier bookkeeping, define y, to be the coefficient of n® in (2.66). As well, the following

expansions will prove useful:

(2.67) z? = x% + 2z0z1m + (22 + 2wox2)n® + ...,
(2.68) v2 = y8 + 2y0v1m + (i + 2y0y2)n® + ...,
(2.69) zy = oyo + (Toy1 + T1Y0)N + (Toy2 + T1Yy1 + T2y0)0 + - ..

Now, we apply (2.66)-(2.69) to (2.32) yielding

0=(1-2n+n% (2§ + 2zoyo + ¥§ + 2(zox1 + Toy1 + 1Yo + Yoy1)n + - - .)
— (1 =n) (Ayo + pyo(zo + yo) + (Ay1 + p(zoyr + 1Yo + 2yoy1))n +...)

(2.70) + Ao (zoyo + (zoy1 + x1yo)n +...).
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Equating the O(1) terms to zero, we have

0 = x5 + 2xoy0 + Y5 — Mo — (o + o) + Aozoyo
= (1= (1+80)0)* = M1 — (2 + b)x0)
— (1 = (2 + d¢c)wo) (1 — (1 — dc)zo)
+ Aozo(1 — (2 + 60)z0)
=1—2(1+6)xo+ 28 — A+ N2+ 6e)xo — (1 — (34 20.)x0)
— (14 6.)(2 + 0.)x2 + Noxg — Ao(2 + 6.)
=1=XA=—p)+ Ao+ A2+ )+ u3+25.) —2(1+6.)) xo
+ (1= (14 3)(2+6.) — Ao (2 +6.)) 2]
=0 [Ad + A2+ 6c) + (3 + 26.) — 2(1 + )
(2.71) (1= p(1+6:)(246.) — Ao(2 + 6.)) o) -

where we avail ourselves of (2.22) for the last equality. For the solution were interested, we have

xozoandyozl.

We rewrite (2.70) as

0=00—-2n+n) A+ (x1+2y1)n+...)
(A=) A+ p+ Ay +pler+2y))n+..)

(2.72) + Ao (zin+...).
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Equating the coefficients of the O(n) terms to zero gives

0=—-242z1+2y1 + (A +p) — Ay1 + p(x1 + 2y1)) + Aoxy
=—242x1 —2(2+)x1 + 1+ A2+ dc)xq
— (w1 = 2(2+ dc)x1) + Aoy

= 142 (2= 22400 + M2+ 0.) — p(l — 2(2+6.)) + Ao)

(2.73) =—1+x1 (Ao + pde+ p — de) .
Thus,

1
(2.74) 1

SN+ pbe+p— 6
Now that we have a first order approximation of x, we obtain an first order approximation of the

endemic equilibrium:

o
w = X
1—n

*

—o(l+n+n*+.. ) xo+zin+...)

(2.75) = ox1n+ O(n?).
and thus
(2.76) w* g n+ Omn?).

%)\04—#50%—#—50

2.5.2.2. Far away from the epidemic threshold (6 >> 0.). We begin with (2.39) and (2.40) and

seek the linear approximation of P(z,y) = 0 at (¢,0) where ¢ is given by (2.41). We compute

oP
= —2e%(z +y)(3z +2y — 1)

(2.77) — £ (6:(32% + 4wy + y*) + 2)x + px(3z + 2y)) + 2 02?,
oP

(2.78) o = (—26z(z+y) - pa? —e(x +y)(5x + 3y — 2)).
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The slope of the linear approximation is then

0P/  —2220(3¢ — 1) — 326:0° + 3A + 3ud? + 2A0
OP/Oy |50 £ (=20c9? — u¢? — ¢(5¢ - 2))
—(e* =)o

P(—e(20c + p1) — €2(5¢ — 2))

= (e=N@e+e(c+p)— o)
(2.79) (g2 —e(p+5A) + 220 — A(20 + p)) = vie).

Thus, the linear approximation at (¢, 0) is

(2.80) y =z —9).

We now expand v and ¢ in powers of ¢ :

P(e) = Y_1e7t + 4y + Ofe)

B Ao 1 262+ 36p 4 o(BA + 20) +
(2:81) T %4200 (2. + p — 20)2 +06),
od(e) = 1 + poe + 0(63)
1 dctH—0 o 3
(2.82) =—¢ + oz © + O(e?).

Now, we expand x as well and reorganize to express y as a power series in ¢ :

Y (@b,le_l +z/10+...) ((330+:U161+:17252+...) — (¢15+¢252+...))
= h_130e ! + (Vo121 + oz — Y_161)
(2.83) + (V1w + thow1 + Yrzo — (Yo1¢2 + Pod1)) € + O(7).

For easier bookkeeping, we define y, to be the coefficient of ¢ in (2.83). Again, the following

expansions will prove useful:

(2.84) 2% = 2% 4 2zox1e + (23 4 2wow0)e® + .. .,
(2.85) v’ =y_1e 4+ 2y ayoet + (U0 + 2y-1y) -
(2.86) Ty = Toy_1e " + (xoyo + x1y—1) + (Toy1 + z1yo + 2y—1)e + .. ..
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We now apply (2.83)-(2.86) to (2.40) and multiply by ¢, yielding

0=2¢? (yzla_Q + (2y_1yo + 2xoy_1)e !

+ (2§ + oyo + T1y—1 + Y5 + 2y-1y1)
+2 (woz1 + oY1 + 1Yo + T2y—1 +Y-1y2 + Yoy1) e+ ...)
—&® (uy? 172 + (Ay—1 + p(zoy—1 + 2y—130))e "
+ Ayo + p(zoyo + 21y—1 + Y3 + 2y—11)
+ (Ay1 + p (zoyr + T1yo + 2y—1 + 2y-1y2 + 2yoy1))e
+(Ayz + 1 (Toy2 + T1y1 + Tayo + T3y—1 + Y5 + 2y-1y3 + 2y0y2) )e>
4.
+eXo (zoy—167" + (zoyo + 21y—1) + (Toy1 + T1Y0 + T2y—1)e
+ (woy2 + T1Y1 + T2y + T3Y—1)E”

(2.87) + (zoy3 + 1y + Toy1 + T3yo + Tay_1)e° . .. )-

Equating the O(1) terms to zero, we have

(2.88) 0= Aoxoy_1 — py>, = xi(Aop_1 — p2y),

and thus z¢p = y_1 = 0. Equating the O(g) terms to zero, we have

(2.89) 0=y + Ay—1 + ml@oy—1 + 2y—1%0) + Ao (zoyo + T1y-1),

which is seen to be trivially satisfied as a result of (2.88). Therefore, we look to the O(g?) terms

to determine x;. Equating those coefficients to zero leads to

0 = 2y_1y0 + 270y—1 — Ayo — u(ToYo + T1Y—1 + Y5 + 2y_191)
+ Ao(zoy1 + 1Yo + T2y—1)
= —Ayo — Hy3 + Aoz1yo

(2.90) = —t_1(v1 — ¢1)(A — pp—11 + (pp—1 — Ao)z1).
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Of the two solutions to this equation, we are interested in 1 = ¢; = 1/, which in turn implies
that Yy = 0.

Looking now for z3, we equate the O(g3) coefficients to zero:
0 = 2§ + oyo + T1y—1 + Y + 2y—111
— Ay1 — p(Zoy1 + 1Yo + T2y—1 + 2y—1y2 + 2Yoy1)
(2.91) + (Toy2 + 1y1 + Z2y0 + T3Y—1).

which is also trivially satisfied as all terms either cancel with another or contain a factor of xg,y_1,

or yo. Thus, we turn to O(¢?) to determine 3. Equating the coefficients to zero gives

0 = 2(zoz1 + Toy1 + T1Y0 + Tay—1 + Y—1Y2 + Yoy1) — A2
— p(zoy2 + z1y1 + T2yo + w3y—1 + Yt +2y_1y3 + 2y0y2)
+ Ao (zoys + z1y2 + T2y1 + T3Yo + Tay—1)

(2.92) = y1(—p(z1 +y1) + Aoxa).

The solution we’re interested in for xo comes from gy; = 0, which can be expressed in terms of xo as

(293) 0 = w,1($2 — gf)g),
and thus

de+p—0
(2.94) To = ¢y = VR

At this point, we have a second order expansion of the approximate equilibrium x* :

1 0, —
o Ao

(2.95) z*
Now with the relation w* = Zx*, we conclude that

(2.96) w* ~ 1+ e+ O(?).
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CHAPTER 3

Adaptive Network Modeling of Social Distancing Interventions

3.1. Introduction

The global COVID-19 pandemic has upended modern life an placed and enormous epidemio-
logical, economic, and social burden on the world’s resources. The gravity of events has brought
the need for epidemiological modeling into sharp focus. As the pandemic spread around the world
in the absence of a vaccine, non-pharmaceutical interventions including social distancing, quaran-
tine, and lockdown measures proliferated, and bringing these interventions into modeling efforts
has remained paramount.

In recent years, network-based models of epidemic spread have become an increasingly popular
paradigm (Kiss et al., 2017; Pastor-Satorras et al., 2015), and network science generally has been
recognized for its potential to contribute solutions to the current crisis (Eubank et al., 2020). Most
network models represent individuals as nodes in a network, and their contacts as edges connecting
the nodes. Moreover, many models assume that the network is static—that the edges between
nodes don’t change over time—and thus the epidemic spreads from node to node across these
edges. Among static network models, pairwise models (Eames and Keeling, 2002; Keeling, 1999)
are both frequently used and well-studied. Pairwise models track not only the number of nodes
in a given state, but pairs, triples, and higher order motifs as well (Fig. 3.1). An advantage of
pairwise models is that in their full form, they exactly model (in expectation) the continuous time
Markov chain formulation of epidemic spread on a network (Taylor et al., 2012).

Pairwise models have been successfully applied to a number of disease natural histories and
different network types. Two important network features that play a role in the theory of pairwise
models are degree heterogeneity and clustering. The degree of a node in a network is the number
of edges to which it is connected, and the degree distribution is the probability distribution of

selecting a random node with a given degree. The degree distribution plays a fundamental role
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in many network models, and is particularly powerful when described as a probability generating
function. The clustering coefficient is the ratio of triangles to connected triples in the network.
While clustering is an important component of network structure, it has not widely been incorpo-
rated to pairwise models. We acknowledge two major benefits of models that incorporate degree
heterogeneity and clustering. First, including degree heterogeneity and/or clustering as modeling
consideration affects epidemic dynamics in a nontrivial way (House and Keeling, 2011; Keeling,

1999) and second, both have been shown to be features of realistic contact networks (Read et al.,

2

(a) (b) (c)

Ficure 3.1. Diagrams of network structures whose evolution is modeled by the
pairwise model: (a) node in state A, (b) pair in state A — B, (c) triple in state
A-B-C.

Although static networks model some forms of complexity well, an important aspect of real-
world contact networks is that some connections change in response to disease dynamics or public
health measures. By relaxing the static network assumption, dynamic or “adaptive” network
models (Gross and Blasius, 2008) can capture both the dynamics of the network and the epidemic
dynamics on the network. A number of models have been recently proposed that describe a variety
of network dynamic processes. Gross et al. (2006) introduced a model of edge rewiring, where
susceptible individuals break connections with infectious individuals and reconnect to susceptible
individuals at random. A related model of adaptive dynamics is “relational exchange” (Scarpino
et al., 2016), where an node in contact with an infectious node are rewired to a susceptible node.
Another model for network dynamics is random link addition/deletion (Kiss et al., 2012) where
individuals break and form new contacts at constant rates. Their approach is notable for its

intuitiveness as a simple dynamic model, and also its use of probability generating functions as a
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tool to describe network dynamics. A related model is link addition/deletion on a fixed network
(Shkarayev et al., 2014; Tunc et al., 2013), where individuals can temporarily deactivate contacts
with infectious individuals, and reactivate them when their contact is not infectious. While much of
the focus of the adaptive network literature has been involved in analyzing the resulting dynamical
systems, particularly for SIS-type diseases, some works have focused specifically on the role of
network dynamics in controlling or mitigating epidemic spread (Sélley et al., 2015; Youssef and
Scoglio, 2013).

Network models in general offer a compromise between two other common modeling techniques:
compartment models and agent-based simulations. They are able to capture more complex contact
structure than simple compartment models, while offering analytical tractability that many agent-
based simulations lack. Despite this, models of non-pharmaceutical interventions have tended to
favor simulation or compartment models (Ahmed et al., 2018; Davey et al., 2008). In the early
stages of the COVID-19 pandemic, complex individual-based simulations offered major insights
about the effectiveness of non-pharmaceutical interventions (Ferguson et al., 2020). However, the
high computational cost can make investigating the impacts of intervention policies with a large
number of parameters a challenging endeavor. Network models, especially those with a relatively
small number of equations, can offer broad insights at reduced cost. While some models of social
distancing have incorporated contact network structure as a major consideration (Glass et al., 2006;
Valdez et al., 2012), differential equation network models of such interventions are uncommon.
Adaptive network models in particular can offer a new perspective on questions surrounding social
distancing and other non-pharmaceutical interventions made pressing by the COVID-19 pandemic.

In this chapter, we develop simple, novel mechanisms to incorporate social distancing into
a network model of epidemic spread, using COVID-19 as the central case study to investigate
the impact of a range of interventions. First, we develop a pairwise SEIR model with random link
activation/deletion dynamics—that is edges are added and deleted at constant rates independent of
the epidemic dynamics on the network. Furthermore, the model incorporates degree heterogeneity
and clustering, which offers increased realism over simpler network or compartment models. To
apply the model, we use bipartite mixing networks to generate large heterogeneous, clustered

contact networks coupled with disease dynamics given by epidemiological parameters estimated
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for COVID-19. Next, we develop two mechanisms of social distancing using piecewise constant
link activation and deletion rates. The first is a single intervention event, where the average
number of contacts decreases, is held constant, and then recovers; the second allows for multiple
interventions which restart depending on the prevalence of the disease. While we investigate the
implications of these policies for COVID-19 on a specific type of heterogeneous, clustered network,
both the adaptive network model and the social distancing schemes are more generally applicable
to a variety of networks and epidemiological parameters. Finally, we consider the public health
implications of the latter model, finding that certain intervention parameters are more important

than others in achieving an effective reduction in overall infections.

3.2. Model

To begin construction of the full model, we consider SEIR dynamics on a static network.
Pairwise equations for an SEIR epidemic can be found in Keeling et al. (1997) and Rand (1999).
Model variables include the expected number of susceptible, exposed, infectious, and recovered
nodes ([S], [E], [I] and [R] respectively) as well as the expected number of pairs in each state. For
example, [S9S] is the expected number of connected pairs of susceptible nodes, while [S1] is the
expected number of connected pairs of susceptible and infectious nodes. The expected number

of connected triples is also considered ([SSI],[ESI], [IS1]), though differential equations for these
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variables are not written. The full SEIR pairwise model is

(3.1) [S] = —B[S1],

(3.2) [E] = BST] - nlE],

(3.3) [1] = n[E] = (1],

(3.4) [SS] = —28[SS1],

(3.5) [SE] = B[SSI) — BIESI] —n[SE,

(3.6) (ST = n[SE] - B[ST] — BIISI] —+[S1],

(3.7) [EE] = 28|ESI] — 2n[EE],

(3.8) [ET) = BIISI] + BIST] + n[EE] — (v +n)[E],
(3.9) [11] = 2n[ET] — 24[11],

where (3 is the transmission rate, =y is the recovery rate, and 7 is the rate at which exposed individuals

become infectious. The nodes and edges also obey conservation equations
(3.10) N =[S+ [E] + [I] + [R]
and

(EYN = [SS] + [EE] + [II] + [RR]

(3.11) +2([SE] + [SI] + [SR] + [EI] + [ER)] + [IR))

where N is the number of nodes and (k) is the average degree of the network. We note that with
the conservation equations, we do not need terms of the type [AR] to determine the evolution of
[, [E], [1], and [R].

The full model requires dynamical equations for triples of the form [AST] and higher order motifs
as well, leading to a system that is prohibitively large for analysis. To make the model tractable,
we approximate the expected number of triples [ASI] in terms of pairs and individual nodes, thus

closing the system (3.1)-(3.9). An approximation of this kind is referred to as a triple closure. For
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triples of the type A — S — I, House and Keeling (2011) give a triple closure approximation as

N (K2 = k)ISK [, N (k) [AT]
(312) i)~ SISt (1 0+ ors s i )

where [Ag] is the expected number of nodes in state A with degree k and ¢ is the clustering

coefficient. Using the network degree distribution probability generating function and introducing
new dynamical variables, they develop an SIR model for heterogeneous, clustered networks. In
Appendix Section 3.4.1, we derive an analogous heterogeneous, clustered SEIR model complete with
link activation and deletion. However, the model complexity induced by (3.12) is not necessary to
accurately capture the combined epidemic and network dynamics, and thus a simpler triple closure
will suffice.

A simple yet useful assumption is that degree and state are independent, and thus [A;] = pi[A]

where py, is the proportion of nodes with degree k. With this assumption, the resulting triple closure

becomes:
_ (k* — k) [AS][ST] N [AI]
&1 st~ S S5 (1= o+ o)
where (k) = Z,]gv;(f kpy, and (k? — k) = i\:)l(k? — k)pr. We note that if a homogeneous degree

distribution is assumed, the closure reduces to clustered closure from Keeling (1999).

With the static model closed, we now incorporate the effects of network dynamics. Kiss et al.
(2012) introduced a simple model of network dynamics, termed random link activation/deletion
(RLAD). In this model, independent of epidemic dynamics nonexistent edges are added to the
network (or activated) at a constant rate o and existing edges are removed from the network
(or deleted) at a constant rate w. Ignoring epidemic spread and looking at the effects of activa-

tion/deletion only, the equation for edges of type [AA] is

(3.14) [44] = a ([A]([4] — 1) — [A4]) — w[AA]
and for type [AB] we have

(3.15) [AB] = o ([A][B] — [AB]) — w[AB].
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Next, we have to consider the effect of activation/deletion on the now time-dependent network
quantities: degree distribution moment terms (k)(t), (k* — k)(¢) and the clustering coefficient ¢(t).
Following the example of Kiss et al. (2012), dynamical equations for the first two can be easily
derived by finding the partial differential equation for the degree distribution generating function

N

(3.16) g(@,t) =Y pr(t)a”.

-1
k=0

The Kolmogorov equations describe the evolution of pg(t), the proportion of degree k nodes at time

t:

(3.17) pr=a(N —k)pe-1 — (a(N =1 = k) + wk) pp + w(k + 1)pr+1-

With some straightforward algebra, we derive a partial differential equation for the degree distri-

bution generating function;

(3.18) % =(zr—1) <a(N —1)g— (ax —|—w)§i) :

The network quantities (k) and (k> — k) can be computed from the generating function as (k) =

g:(1,t) and (k? — k) = g..(1,t). Then, from (3.18) we derive the dynamical equations

(3.19) (k) = a(N —1) — (a + w)(k),

(3.20) (k2 = k) = 20(N — 2)(k) — 2(ov + w) (k> — k).

The clustering coefficient is defined as the ratio of triangles to connected triples in the network.
To compute ng, we start with the Kolmogorov equations for gk (t), the probability that there are k

triangles in the network at time ¢;

(3.21) e = a(L = 3(k — 1))qr—1 — (a(L — 3k) + 3wk)qr, + 3w(k + 1)qr41
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where L = N(k? — k)/2 is the number of connected triples. From this we derive the differential

equation for the expected number of triangles (T') as
(3.22) (T) = aL — 3(a + w)(T),

and compute the equation for the clustering coefficient ¢(t) :

(3.23) ¢ =3a— <a+w+2a(]\7—2)<k2<k_>k>> 0.

Finally, we have a full set of equations for a pairwise SEIR for a heterogeneous, clustered network

with random link activation and deletion:

(3.24) 5] = —B[S1],

(3.25) [E] = BIST) — n[E),

(3.26) [1] = n[E] —~[1],

(3.27) [SS] = —28[SST] + a[S]([S] — 1) — (o + w)[SS],

(3.28) [SE] = B[SSI] - BIEST] - n[SE] + a[S][E] — (a +w)[SE],
(3.29) [ST) = n[SE] — B[ST) = BIST] = ~[ST] + a[S][T] — (a+w)[ST],
(3.30) [EE] = 28|ESI| — 2n[EE] 4 a|E|([E] — 1) — (o + w)[EE],

[EIT] = BlISIT) + BIST] + n[EE] - (v +n)[E1]

(3.31) + a[E][S] — (o + w)[ET],

(3.32) [11] = 2[EI] — 24[11] + o[I]([I] = 1) — (a + w)[IT],
(3.33) (k) = a(N = 1) — (a + w)(k),

(3.34) (k2 = k) = 2a(N — 2)(k) — 2(a + w) (k> — k),

(3.35) ¢ =30 — <a+w+2a(N—2)<k2<k> k>> b,
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where

_ (K -ksSusn (. N [SI]

(3.36) ST = = 1g] (1 PO [SMI])’
_ (W -k [SE|[ST) (, . N [EI]

(3.37) BSI = s ) (1 P [EHI>’
_E-RSIE () G N

(3.38) [1S1] = (k)2 [S] (1 ¢+¢<k‘> [1]?

To demonstrate the validity of this model, we test it against numerical simulations (Fig. 3.2) on a
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FiGUurE 3.2. Comparison of the model to simulation. 100 trials were run on a
unipartite contact network generated from a bipartite network with Poisson degree
distributions and N = 500, M = 125, \ = 4. Initial conditions are [E]y = [I]op =
10, [S]p = 480, [R]p = 0. Epidemiological and network parameters are Ry = 2.4,n =
1/5,7 = 1/10,a ~ 2.3 x 107%,w = 3.4 x 107°. Individual simulations are shown
in light gray with the mean in black. Model results are (a) [I](t), red circles, (b)
[R](t), green circles.

heterogeneous, clustered network—the construction of which is described in Section 3.2.1. Clearly,

the model (3.24)-(3.35) is in excellent agreement with the simulations.
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FIGURE 3.3. Example contact network (b) and its degree distribution (c) generated
from a bipartite mixing network (a). Degree distributions for the individuals and
mixing locations are Poisson (as described in Section 3.2.1) with N = 200, M = 50,
and A = 2. For (c), the horizontal axis is node degree and the vertical axis is the
proportion of nodes.
3.2.1. Network and Epidemiological Parameters. The goal of this chapter is to investi-
gate social distancing policies through random link activation/deletion dynamics, which are con-
trolled by the activation and deletion rates @ and w. Moreover, in building intervention schemes

in Section 3.3 new parameters are introduced. In order to consistently compare the efficacy of

intervention schemes, network and epidemiological parameters are held the same across schemes.
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As such, we restrict our attention to a particular heterogeneous, clustered network and epidemi-
ological parameters that are plausible for COVID-19. For completeness, other network types and
epidemiological parameters are considered in Appendix Section 3.4.2.

A consistent challenge of network models is constructing realistic contact networks. In par-
ticular, degree heterogeneity and significant clustering are observed in real world social networks
(Read et al., 2008). To construct such a contact network, we consider a bipartite mixing network
(Eubank et al., 2004) with N individuals and M mixing locations (Fig. 3.3a). Two individuals
are in contact if they both connect to the same mixing location, so we form a contact network as
the unipartite projection of the bipartite mixing network (Fig. 3.3b). To introduce degree hetero-
geneity, we construct a bipartite mixing network where both individuals and mixing locations have
Poisson degree distributions (Newman et al., 2001). The average individual degree A and average

mixing location degree u are related by
(3.39) N = My,

so only N, M, and X are needed to characterize this network. Using generating function techniques

(Newman et al., 2001), we compute

(3.40) (k) = %V,
(3.41) (k? — k) = Gj)z MO+1),
(3.42) ¢ = A1+1

for the unipartite contact network, which exhibits both degree heterogeneity (Fig. 3.3c) and cluster-
ing. Unless otherwise specified, the networks in this chapter are generated using N = 10,000, M =
2,500, and A = 4. We acknowledge that though we use a bipartite mixing network to generate a
heterogeneous, clustered unipartite contact network, our network dynamics are limited to the con-
tact network. Mobility networks (Chang et al., 2021) have been used to great effect for COVID-19,

and suggest a fruitful path forward for bipartite network dynamics.
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Numerous recent studies have estimated important epidemiological quantities for the spread of
Sars-CoV-2, including the length of the incubation period, the length of the infectious period, and
the basic reproduction number Ry. We choose the plausible estimates in line with recent studies’:
average incubation period of 5 days (Linton et al., 2020; Zhang et al., 2020), average infectious
period of 10 days (You et al., 2020), and Ry = 2.4 (Anastassopoulou et al., 2020; Li et al., 2020).
To incorporate these into the model, we note that 1/n and 1/ are the average lengths of the
incubation and infectious periods respectively, and thus n = 0.2, = 0.1. We do not derive Ry for
the model (3.24)-(3.35), but instead consider the basic reproduction number for a heterogeneous,
clustered population from Miller (2009), which is given as the series

K-k B =k B
(3.43) Bo= 5" 55" <5+~y> T

Ignoring higher order terms, we can compute 3 from (3.43) when Ry = 2.4 With these parameters,

we plausibly model the spread of COVID-19 through a moderately sized heterogeneous, clustered
population in the following sections, while introducing various social distancing interventions to

mitigate or control the epidemic.

3.3. Analysis of Interventions

Social distancing and lockdown measures have been used to curb the spread of infectious diseases
throughout history, and are some of the most ubiquitous non-pharmaceutical interventions in the
current COVID-19 pandemic. Many compartment-based models that incorporate social distancing
do so in a phenomenological manner through the transmission rate, but adaptive network models
present an opportunity to describe a social distancing mechanism in a fundamental way. A simple
model of such interventions can be naturally characterized by the link activation/deletion process.
During periods of social distancing and lockdown, individual contacts break; during periods of re-
laxation of the measures, individual contacts form. In this section, we develop two social distancing
schemes (Fig. 3.4). Both social distancing schemes begin when the prevalence [I](t) reaches some
specified threshold level. For the simple intervention scheme, contacts break as the intervention
is implemented, then contacts stay fixed as the intervention is in place, and finally contacts form

11t is worth noting that at the time this chapter was written, these represented the most recent estimates. Subsequent
studies and the emergence of variants of SARS-Cov-2 have altered some estimates of the epidemiological parameters.
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FIGURE 3.4. Schematic of the Simple and Prevalence-Dependent Interventions.

Both interventions are triggered by a threshold condition, and proceed through the

described intervention until the epidemic ends and the impacts of the interventions

can be evaluated.
until they reach their pre-intervention levels. The prevalence-dependent scheme unfolds similarly,
but with two notable differences. First, after the intervention, contacts do not start forming again
until the prevalence has dropped below the threshold. Second, any time the prevalence reaches
the threshold again, the intervention restarts. This allows for multiple implementations of a social
distancing intervention throughout the course of the epidemic.

Critically, we do not treat these schemes as a mere modeling exercise, but are interested in the
impact of each intervention scheme at the end of the epidemic. We develop two simple metrics to
evaluate the effectiveness of the simple and prevalence-dependent interventions. First, we consider
each intervention’s ability to reduce the cumulative number of infections, known as the final size
of the epidemic. Second, we also consider how many infections occur above the threshold value
for prevalence. These two measures reflect two different yet crucial public health goals, and do
not necessarily agree on which interventions are the most effective. Both must be considered to

get a complete picture of an intervention’s impact. In this section, we derive these two metrics
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mathematically, and describe the simple and prevalence-dependent interventions while assessing

their overall effects.

3.3.1. Evaluation Metrics. The first measure of intervention effectiveness we introduce is
the Relative Change in the Final Size (RCFS). The final size of an epidemic is the cumulative
number of infections that occur over the course of the epidemic. In terms of the model, the final
size can be found as the limiting value of the recovered individuals [R]:

lim [R](t) = Reo.

t—o00

We compare the final size of the epidemic with no intervention R, to the final size where an
intervention has been implemented RZ. We then define the RCFS as

R _ R

.44 FS =
(3.44) RCFS e

An effective intervention will lead to a decrease in final size, so an RCFS near 0 is unsuccessful,
while an RCFS near —1 is extraordinarily successful. However, it is important to note that for
brief, intense intervention schemes, it is possible that the final size actually increases. In this case,
the network parameters change quickly, before significant disease spread, so the epidemic unfolds
on a fundamentally different static network.

While the relative change in the final size provides an overall measure of the effectiveness
of interventions, reducing cumulative infections alone is not the only public health goal that an
intervention scheme might seek to accomplish. In some schemes, a large number of infections
occur above the threshold despite a large reduction in the final size of the epidemic. This can be
particularly pernicious if the threshold represents some fixed resource such as healthcare capacity,
where a large number of infections above the threshold could lead to higher mortality and other
negative outcomes. To account for this, we compute the Cumulative Infections Above Threshold
(CIAT). Let t1,ts,... be the sequence of times when [I] = ¢N. Assuming [I] # 0 at any time in the
sequence?, the continuity of [I](t) implies that the prevalence is above the threshold on the intervals

2This assumption is made simply so that the times when I increases or decreases through the threshold alternate,
and the CIAT can be defined as a sum of integrals.
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[toi—1,t2;] for i = 1,2, 3, ... Thus, the CIAT may be defined as

toi—1

to;
(3.45) CIAT =) / [1](t) — gNdt.
i
We note that the units of CIAT are person-time—for a metric with units of population, we compute
the Average Infections Above Threshold (AIAT):

CIAT

3.46 AIAT = ————
(3.46) > i tai — taia

Using the relation [R] = v[I], equation (3.46) becomes

ATAT — 2oilR](t2i) — [R](t2i-1) N

3.47 )
( ) v tai —tai

which is convenient for computations.

3.3.2. Simple Intervention. For a simple model of social distancing, we consider a scheme
that unfolds in three successive phases, each with variable length. The effects of the intervention
scheme on the contact network are characterized through the average number of contacts (k)(t).
The intensity of the intervention can be thought of as how severely the average number of contacts
are reduced, so we introduce a severity parameter p € [0,1). The top panel of Figure 3.5 shows how
the (k) changes over time as the result of the intervention. In the first phase, as social distancing
measures are put into place, the average number of contacts decreases from its pre-intervention
level (k)o to p(k)o. In the second phase, with the measures fully in place, the average number of
contacts remains constant at p(k). In the third phase, social distancing measures are relaxed and
the average number of contacts increases to its pre-intervention level (k).

To achieve this effect in the evolution of the average number of contacts, we consider link acti-
vation rate «(t) and deletion rate w(t) functions that are piecewise constant. These rate functions
can be seen in the bottom two panels of Figure 3.5. Since contacts are only broken in the first
phase, w(t) = w* in the first phase and 0 otherwise. Since contacts are only formed in the third
phase, a(t) = o* in the third phase and 0 otherwise. As the dynamical equation for (k) (3.33) is a
first-order linear ODE, the resulting curve for (k)(¢) will be piecewise exponential, and the values of

o and w* are easily computed for a given p. Other than p, four other parameters characterize the
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Ficure 3.5. Simple Intervention. Once the intervention begins, edges are deleted
at rate w* for L days until the average number of contacts (k) drops to p(k)o. For
the next Ly days, no changes are made to the nework. Then, edges are added at
rate o for Ly days, until the average number of contacts (k) increases to back to

(K)o
simple intervention: the lengths of the three phases L;, Ly, and Lg, and the threshold proportion
of the population ¢ € [0,1) to initiate the intervention. The full simple intervention scheme can be

described as follows:

e No intervention: the epidemic spreads unabated until [/] increases through ¢N (@ = w =
0).

e Intervention Phase (length L;): intervention occurs, edges are removed at a constant rate
(0 =0,w =w").

e Holding Phase (length Lg): intervention holds, edges are neither removed nor added

(a =w=0).
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e Relaxation Phase (length Lpg): interventions are relaxed, edges are added at a constant
rate (o = a*,w = 0).

As this scheme requires five “intervention” parameters, p,q, L7, Ly, and Lg, exploring the full
impact of the interventions is difficult. To better see the effects, we consider an example scheme
where we fix two parameter values in each and allow the other three to vary. To focus on the
impact of the severity parameter p and the lengths of the intervention and relaxation phases Ly
and Lg, we set Ly = 15 and ¢ = 0.01 for the remainder of this section. Thus, the intervention
begins when infections reach one percent of the population, and the holding phase is fixed at 15
days for all interventions. The other three parameters are allowed to vary. This allows for both
abrupt and gradual implementations of interventions and relaxation of measures, and different levels
of intervention intensity. Figure 3.6 shows the prevalence of some example intervention schemes,

showing rich qualitative behavior. To assess the effectiveness of the simple intervention we plot the

1000 H 1000 it 1000

FIGURE 3.6. Example infection curves [I](¢) for the simple intervention with ¢ =
0.01. The other intervention parameters are (a) p = 0.125, Ly = 30, Lr = 90, (b)
p=10.25, L =60, Lg = 60, and (c) p = 0.5, L; = 15, Lr = 150. Solid orange curves
are [I](t) under the intervention, while dashed orange curves are [I](¢) without any
intervention. Gray dashed lines denote the starts of the intervention, holding, and
relaxation periods.

RCFS and the AIAT for a large number of parameter combinations. We allow the lengths of both
the intervention and relaxation periods L; and Ly to vary from 2 to 180 days, and consider three
different intensities p = 0.125,0.25,0.5. The results are shown in Figure 3.7.

A significant common feature of the plots in Figure 3.7a is a qualitative boundary (solid white
curve) that divides (Lj, Lr) space into two distinct classes of the resulting infection curve (for

p = 0.125, this occurs outside the boundaries of the plot). To the right of the boundary, infection
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FIGURE 3.7. Plots of the RCFS (a) and AIAT (b) for the Ly = 15 and ¢ = 0.01.

For intensities p = 0.125,0.25, and 0.5, the intervention period and relaxation period

lengths L; and Lp vary from 2 to 180 days. In (a), the solid white curve denotes

the qualitative boundary, to the right of which uniform spikes occur. The dashed

white line in the third panel denotes the boundary of the region where two spikes

occur.
curves are characterized by a single “uniform spike,” defined by an prevalence curve [I](t) with two
inflection points and a single local maximum (Fig. 3.8a). To the left of the boundary, infection
curves take the form of either a single “non-uniform spike” (Fig. 3.8b), with more than two
inflection points but only one local maximum, or multiple spikes (Fig. 3.8¢), with more than two
inflection points and multiple local maxima. For p = 0.125 and p = 0.25, only multiple spikes occur
to the left of the boundary. For small Lj, the first spike is small and the second spike is large, and
occasionally the final size of the epidemic surpasses the static case due to network alterations. As
L; approaches the qualitative boundary, the second spike becomes shorter and occurs later until
negligible. This phenomenon can also be seen in Figure 3.7b: as Lj increases, the AIAT decreases
until the second spike drops below the threshold ¢V, at which point the AIAT increases as the first
spike grows taller. For p = 0.5 on the other hand, both nonuniform spikes and multiple spikes are
possible to the left of the boundary. Multiple spikes occur in the region of (L;, L) space enclosed

by the dashed white curve, while a single nonuniform spike occurs elsewhere left of the qualitative

boundary.
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F1cuRE 3.8. Types of infection curves with the simple intervention: (a) uniform
spike, (b) non-uniform spike, (c) multiple spikes. Black dots denote inflection points.

A few other observations warrant comment. First, the length of the intervention L; appears
to be more important in determining epidemic’s final size compared to L. This is intuitive, as
the most significant changes to network structure occur during the intervention phase. Second,
as p increases, the qualitative boundary shifts generally left. This means that for less severe
interventions, single uniform spikes will occur for smaller L; values. This observation carries weight
for repeated interventions, explored in Section 3.3.3, as single uniform spikes are heavily penalized
by the ATAT. Third, nonuniform spikes occur for p = 0.5, but not for p = 0.125 or p = 0.25. We
hypothesize that there may exist some threshold p* where nonuniform spikes don’t occur below p*,

but do above p*.

3.3.3. Prevalence-Dependent Intervention. While the simple intervention scheme pro-
vides a simple yet general model of social distancing, its implementation lacks a degree of realism.
Interventions are put into place only once, and the epidemic continues, often with infections spiking
after measures begin to relax. In reality, we would expect public health measures to be responsive
to rising prevalence. Moreover, continued interventions might be triggered by some indicator, such
as case numbers, deaths, hospital capacity, etc... In this section, we adapt the intervention scheme
from Section 3.3.2 so that it may be reimplemented when a prevalence-based condition is satis-
fied, forming the prevalence-dependent intervention. We begin with two more realistic assumptions
about how a public health response might unfold. First, interventions are reimplemented any time
the prevalence increases through some threshold. Second, the relaxation phase of an intervention
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Ficure 3.9. Prevalence-Dependent Intervention. The intervention begins when

[I] = ¢N, and edges are deleted at a constant rate w* until (k) decreases to p(k)o,

at which point there is no change to the network until [I] drops below the threshold

gN. Then, edges are added at a constant rate o* until (k) returns to (k)o or [I]

increases through the threshold ¢V, at which point the intervention begins again.
doesn’t begin until the prevalence has dropped below the threshold. We incorporate these assump-
tions into a new prevalence-dependent intervention scheme. The scheme is determined by four
parameters: ¢,p, Ly, and Lg. As before, interventions begin when [I] reaches ¢/, p is the severity

of the intervention, and L; and Lp are now the maximum lengths of the intervention and relaxation

periods, which determine w* and a* as in Section 3.3.2. We can define the new scheme as follows:

e As [I] increases through ¢N, a new intervention is implemented.
e Intervention Phase: Once an intervention is implemented, edges are deleted at rate w = w*

until (k) = p(k)o.
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e Holding Phase: At the end of the intervention period, a holding period begins (o« = w = 0)
until the prevalence has dropped below the threshold ¢N. If the prevalence drops below
the threshold during the intervention period, the holding period has length 0.

e Relaxation Phase: Edges are added at rate @ = o* until (k) = (k)o, or a new intervention

is implemented.

It worth noting that compared to the simple intervention in Section 3.3.2, the intervention, holding,
and relaxation phases can all be of variable length. For instance, if the average number of contacts
(k) has not rebounded to (k)o by the time a new implementation begins, the resulting relaxation
period is shorter than Lg. Moreover, in the subsequent intervention phase, edges delete until
(k) = p(k)p and the phase is shorter than L;. In sum, while w* and o* are fixed, the average
number of contacts is never less than p(k)oy and the effective lengths of different intervention and
relaxation phases may vary. An example implementation of the prevalence-dependent scheme is
shown in Figure 3.9, which shows both holding periods of nonzero length as well as intervention

and relaxation periods that are shorter than L; and Lp respectively.
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F1cuRE 3.10. Example infection curves [I](t) for the prevalence-dependent inter-
vention. Parameters shown are (a) ¢ = 0.005,p = 0.125,L; = 60,Lr = 60, (b)
q=0.0L,p=0.5L; =15 Ly =60, (c) ¢=0.02,p=0.25L; = 30, Ly = 120. Solid
orange curves are [I|(¢) under the intervention, while dashed orange curves are [I](t)
without any intervention. Dashed gray lines denote times when [I] = ¢N.

A notable feature of the prevalence-dependent intervention is its ability to generate infection
curves with multiple spikes as the epidemic progresses. Examples of this behavior are shown in

Figure 3.10. To fully explore the intervention, we again consider the RCF'S for a variety of parameter
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FI1GURE 3.11. Relative change in final size (RCFS) for the prevalence-dependent

intervention. Each plot represents a choice of p and ¢, with L; and Ly on the axes,

ranging from 2 for 180.
combinations. Figure 3.11 shows the RCFS for different thresholds (¢ = 0.005,0.01,0.02) and
intensities (p = 0.125,0.25,0.5) as L; and Lg both vary from 2 to 180 days. Though not shown, as
with the simple intervention each case has a qualitative boundary, to the right of which infection
curves are single, uniform spikes. The most significant departure from the simple intervention
though is to the left of the qualitative boundary. In the simple case, infection curves from this region
took the form of either two spikes or a single nonuniform spike. With the prevalence-dependent

intervention, the infection curve behavior is richer.
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FIGURE 3.12. Progression of the infection curve [I](t) as L increases, showing the
shrinking of the final spike and the penultimate spike dropping below the threshold
gN. Parameters are ¢ = 0.01,p = 0.25,Lr = 90 and L; = 70 (a), 78 (b), 92 (c).
Solid orange curves are [I](t) under the intervention, while dashed orange curves are
[I](t) without any intervention. Dashed gray lines denote times when [I] = ¢gN.

The region is characterized by “waves” in the RCFS, particularly for lower values of p. The
boundaries of these waves can be described by the number of spikes that occur over the course
of the epidemic. Holding Ly fixed and increasing L; through one of these contours helps explain
the behavior of the infection curve in this region (Fig. 3.12). At the crest, the final spike peaks
just below the threshold ¢N (Fig. 3.12a). As L increases, the final spike occurs later and peaks
lower (Fig. 3.12b) and the RCFS decreases until the spike vanishes. Then, the penultimate spike
becomes the new final spike, peaking just below the threshold (Fig. 3.12¢) and the RCFS jumps up
as a new wave crests. This underscores a potential limitation of a threshold-based intervention: if a
spike does not reach the threshold and no intervention occurs, the spike occurs over a longer period
of time and more infections accumulate than if the spike had triggered an intervention. A practical
implication of this observation is that no spike in infections should go unaddressed by interventions
if the goal is only to reduce the number of cumulative infections. We also consider the ATAT
for the same parameter combinations (Fig. 3.13), though the conclusions by this metric are less
complex. For any combination of p and ¢, increasing L leads to a larger AIAT. This suggests that
when considering interventions with the same RCFS, more abrupt interventions (smaller L) are
preferable. However, an interesting observation is that the AIAT increases rapidly as the epidemic

changes from three to two spikes.
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FIGURE 3.13. Average infections above threshold (AIAT) for the prevalence-
dependent intervention. Each plot represents a choice of p and ¢, with L; and
Lp on the axes, ranging from 2 for 180.

While Figs. 3.11 and 3.13 show the overall behavior of the prevalence-dependent intervention,
by considering fixed values of L; and Lr and allowing p and ¢ to vary, we get a more pointed
perspective on the effec