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ABSTRACT OF THE DISSERTATION 

 

IP3-Mediated Ca2+ Signaling Deficit in Monogenic and Sporadic Forms of Autism Spectrum 

Disorders 

By 

Galina Schmunk 

Doctor of Philosophy in Biomedical Sciences 

University of California, Irvine, 2017 

Professor John Jay Gargus, Chair 

 

Autism spectrum disorder (ASD) affects 2% of children and is characterized by impaired 

social and communication skills together with repetitive, stereotypic behavior. The 

pathophysiology of ASD is complex due to genetic and environmental heterogeneity, 

complicating the development of therapies and making diagnosis challenging. Growing evidence 

supports a role of disrupted Ca2+ signaling in ASD. I developed and applied a high-throughput 

fluorometric imaging plate reader (FLIPR) assay to monitor agonist-evoked Ca2+ signals in 

human primary skin fibroblasts. My results indicate that IP3 -mediated Ca2+ release from the 

endoplasmic reticulum in response to activation of purinergic receptors is significantly depressed 

in subjects with sporadic, as well as rare syndromic forms of ASD. This was apparent in Ca2+ 

signals evoked by G protein-coupled receptors and by photoreleased IP3 at the levels of both 
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global and local elementary Ca2+ events, suggesting fundamental defects in IP3R channel activity 

in ASD.  

Given the ubiquitous involvement of IP3R-mediated Ca2+ signaling in neuronal excitability, 

synaptic plasticity, gene expression and neurodevelopment, I further expanded my findings to a 

murine model of FXS. Activation of the IP3 cascade via plasma membrane metabotropic 

receptors did not reveal any Ca2+ signaling deficits in neurons from mice with the FMR1 gene 

deletion. Glial cells from FXS mice did not demonstrate any sizable difference in response to 

GPCR activation, or IP3 UV flash uncaging as compared with wild type. Finally, mouse 

fibroblasts from FXS mice assayed with the high-throughput screen FLIPR, analogous to what 

was used on the human skin fibroblasts, did not reveal any difference in the IP3-mediated Ca2+ 

release compared with wild type mice. These findings highlight divergence between animal 

models and human conditions, and show inadequacy of the murine model in studying the effect 

of the FMR1 gene mutation on IP3 signaling cascade.  

In conclusion, my findings suggest that deficits in IP3-mediated Ca2+ signaling represent a 

convergent function shared across the spectrum of autistic disorders – whether caused by rare 

highly penetrant mutations or sporadic forms – and hold promise as a biomarker for diagnosis 

and novel drug discovery. This work also highlights potential pharmaceutical targets, and 

identifies Ca2+ screening in human skin fibroblasts as a promising technique for early detection 

of individuals susceptible to ASD.  
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Chapter 1. Introduction 

1.1 Autism spectrum disorder. 

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with three core 

behavioral features: 1) qualitative impairment in social skills, 2) delayed or disordered language 

and communication skills, and 3) restricted and repetitive behaviors. With the May 2013 

publication of the American Psychiatric Association Diagnostic and Statistical Manual (DSM-

5), all autism subtypes, including Asperger’s Disorder and Pervasive Developmental Disorder 

Not Otherwise Specified (PDD-NOS) were merged into one umbrella diagnosis of ASD 

(Association 2016). The symptoms are highly variable and often co-exist with other 

neuropsychiatric disorders, such as developmental delay, epilepsy, hyperactivity, and attention 

deficit hyperactivity disorder (ADHD). The most recent report from the Centers for Disease 

Control and Prevention estimates ASD prevalence to be 1 in 68 of children (Blumberg and 

Bramlett 2013), a sharp 29% increase from the preceding estimate of 1 in 88 in 2008 and a 64% 

increase from 1 in 110 in 2006. ASD prevalence estimates vary by gender and racial/ethnic 

group, with boys being more than 4 times more affected than girls, and non-Hispanic white 

children being 30% more likely to be diagnosed with ASD than non-Hispanic black children 

and 50% more likely than Hispanic children (Autism and Developmental Disabilities 

Monitoring Network Surveillance Year 2010 Principal Investigators 2014). 

Symptoms of autism typically start between the second and third year of life and cause 

problems of a wide range in various areas of development. The symptoms and severity vary 

widely across autistic individuals, complicating diagnosis of this complex spectrum 
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encompassing many phenotypes and co-morbidities, and giving rise to a tragic “diagnostic 

odyssey” that delays diagnosis, and hence treatment, until the typical mean age of 5yrs (Pringle 

et al. 2012). Early diagnosis is critical for optimal intervention (Anderson, Liang, and Lord 

2014; MacDonald et al. 2014), and accurate diagnosis is crucial in order to exclude other 

potential conditions which may require different therapies. However, objective quantifiable 

biochemical markers of this disease have been very hard to come by, delaying the age of 

diagnosis.  

Diagnosis of ASD is made based on questionnaires and behavioral tests, relying on parent 

observations and comprehensive evaluation by psychologists, pediatricians, psychiatrists, and 

speech therapists (for a recent review, see (Constantino and Charman 2015)). ASD diagnosis for 

research studies is stricter, more complex, time consuming and quantitative, but even at this 

most refined level ASD remains a group of developmental disorders that are only behaviorally, 

not yet pathophysiologically, defined (Filipek 2013).  

There is a great need for new therapeutics targeted against the core deficits in ASD (Ghosh et 

al. 2013). Currently there are no approved pharmaceutical drugs to target communication and 

social deficits and repetitive behavior. Currently available treatments focus on non-core 

symptoms of ASD and other co-morbidities, such as seizures, ADHD, depression, and sleep 

disorders. Drug development has proven to be problematic because of our limited understanding 

of the pathophysiology of ASD, the heterogeneity of symptoms, current lack of physiologically 

defined biomarkers and difficulties in modeling the disease in vitro and in vivo. 
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1.2 Genetic architecture of ASD. 

The high heritability of ASD, calculated from concordance for monozygotic and dizygotic 

twins and siblings, ranges from 50% to 90% (Bailey et al. 1995; Folstein and Rutter 1977; De 

Rubeis and Buxbaum 2015), suggesting that information about the molecular basis of the 

disease may be hidden in DNA sequence variations. That, and an unusually high incidence of 

the disorder in several monogenic syndromes, led many scientists in the field to believe that a 

handful of “autism genes” may be found, contributing to the development of so-called 

monogenic models of ASD. Monogenic risk models assume that one highly penetrant de novo 

gene mutation, or a limited number of moderately penetrant mutations, are sufficient to cause 

ASD. The causal role of single genes is most obvious in rare, highly penetrant Mendelian 

(monogenic) syndromes. Among monogenic syndromes that are highly co-morbid with ASD, 

significant early discoveries included the identification of the FMR1 gene as a cause of fragile 

X syndrome (FXS) (Fu et al. 1991), the MECP2 gene as a cause of Rett syndrome (Amir et al. 

1999), and demonstration that mutations in either TSC1 (hamartin) (Slegtenhorst et al. 1997) or 

TSC2 (tuberin) (Consortium 1993) genes cause tuberous sclerosis syndromes 1 and 2 (TSC1 

and TSC2). Our understanding of the etiology of ASD has been greatly advanced by studies of 

syndromic forms of ASD caused by rare single gene mutations (Wang, Berry-Kravis, and 

Hagerman 2010; Yu and Berry-Kravis 2014; Ghosh et al. 2013). These individual syndromes 

are rare, each accounting for less than 1% of all ASD cases. However, high co-morbidity with 

ASD, ranging from 40% to 80% (de la Torre-Ubieta et al. 2016), makes them attractive models 

for studying ASD. Indeed, recent advances in our understanding of FXS, Rett syndrome, and 

TSC provided insight into the pathophysiology of these conditions, offered a tractable system 
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for better understanding of the underlying molecular mechanisms and genetic architecture of 

ASD, and the development of animal models that can be extrapolated into other forms of ASD. 

Here I will concentrate on two particular syndromic forms of ASD, fragile X and tuberous 

sclerosis syndromes, because a large proportion of the work in this thesis was conducted using 

these monogenic forms of ASD. 

FXS is the most common monogenic cause of ASD (Coffee et al. 2009), and is a widely used 

and well characterized model of ASD. It results from large (>200) expansion of a CGG repeat 

on the fragile X mental retardation (FMR1) gene, resulting in methylation and translational 

silencing of its corresponding protein, the fragile X mental retardation protein (FMRP). FMRP, 

being a polyribosome-associated RNA binding protein, has been shown to affect the translation 

of several hundreds of mRNA transcripts (Darnell et al. 2011), each with their own 

“downstream” biology. The loss of FMRP leads to substantial cognitive functional impairment 

and intracellular signaling defects both in humans and in mice. Several FMR1 knockout mouse 

lines are available, providing a platform for behavioral testing and as a source of tissues and 

cells.  

Another important syndromic form of ASD is TSC, caused by dominant mutations in one of 

two genes, hamartin (TSC1) or tuberin (TSC2) and leading to ASD-like behaviors, seizures, 

intellectual disability, brain tumors and characteristic skin lesions. The protein products of these 

two genes heteromultimerize to regulate mammalian target of rapamycin (mTOR), an 

integrative regulator of Ca2+ signaling and mitochondrial function created by a large 

multidomain protein kinase that regulates cell growth and metabolism in response to 

environmental signals (Ramanathan and Schreiber 2009).  
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 Rapid development of sequencing technologies made it possible to dramatically decrease 

costs of DNA sequencing – dropping from ~$500 million for the first sequenced human genome 

to $1,000 per full genome sequence (https://www.genome.gov/27565109/the-cost-of-

sequencing-a-human-genome/). The era of gene hunting in different diseases thus began. The 

possibility to sequence and analyze billions of base pairs both cheaply and accurately allowed 

the performance of large-scale, unbiased genome-wide searches necessary for complex 

heterogeneous disorders such as ASD and permitted the identification of hundreds, if not 

thousands of genes implicated in ASD. A handful of other monogenic syndromes have been 

identified, together with over 800 individual genes contributing to susceptibility for autism 

(Anney et al. 2010; Uddin et al. 2014; O’Roak, Vives, Girirajan, et al. 2012; O’Roak, Vives, Fu, 

et al. 2012). These findings indicate that although one highly penetrant mutation is enough to 

cause ASD (Geschwind and State 2015; O’Roak et al. 2011), this is very rare, and the number 

of potentially contributory genes is too large to be of diagnostic utility. Although highly 

heritable, the polygenic pattern of ASD inheritance (De Rubeis and Buxbaum 2015) implies that 

heterogeneous, weakly penetrant genetic variants – either arising de novo or inherited from 

parents – act in combination with environmental risk factors to cause ASD (Gaugler et al. 2014; 

Klei et al. 2012). The field has thus begun to migrate from the study of single genes and 

monogenic disorders, such as FXS and TSC, to envisaging how numerous susceptibility factors 

may converge on a common functional signaling pathway, such as excitation/inhibition (Bateup 

et al. 2013; Gibson et al. 2008; Nelson and Valakh 2015; Rubenstein and Merzenich 2003), 

synaptic transmission (Deng, Sojka, and Klyachko 2011; Gilman et al. 2011; Südhof 2008) or 

Ca2+ homeostasis (Group and Consortium 2013; Laumonnier et al. 2006; Palmieri et al. 2010; 
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Schmunk and Gargus 2013) to exert their deleterious effects. This has led to a convergence 

hypothesis (Zeida´n-Chulia et al. 2013; Lu et al. 2012; Sakai et al. 2011), proposing that key 

hubs within signaling pathways may be a point of convergence for many of the mutated genes. 

The largest GWAS to date of single nucleotide polymorphisms (SNPs) in a European cohort of 

over 30,000 psychiatric cases and a similar number of control subjects revealed that alterations 

in several common Ca2+ channel genes are associated with five neurological disorders, 

including schizophrenia, bipolar disorder, major depression, ADHD and ASD (Group and 

Consortium 2013). Only 4 of the ~25,000 human loci were associated with neuropsychiatric 

disease at “genome-wide significance” — with a probability of chance false positive association 

being less than 5 in 100 million (p<5×10-8). Among them were genes encoding Ca2+ channel 

subunits – CACNA1C, and the accessory Ca2+ channel subunit CACNB2. Mutations in the 

CACNA1C gene are associated with Timothy syndrome – an autosomal dominant syndromic 

disease involving heart, brain, immune and skin cells. Remarkably, over 80% also have ASD 

(Splawski et al. 2004; Splawski et al. 2006). The voltage-gated Ca2+ channel family where 

CACNA1C belongs is well-recognized to cause channelopathy diseases. Two close paralogs of 

this gene, CACNA1S and CACNA1A, also have highly penetrant, simple dominant mutant 

alleles that cause, respectively, the skeletal muscle diseases hypokalemic periodic paralysis and 

malignant hyperthermia (Maclennan and Zvaritch 2011), and the neurological diseases 

hemiplegic migraine, episodic ataxia and spinocerebellar ataxia (Gargus 2009; Pietrobon 2010) 

Furthermore, numerous genetic studies have implicated “weak” genetic mutations in Ca2+ 

channels and Ca2+-associated proteins with increased susceptibility to ASD (Gargus 2009; 

Palmieri et al. 2010; Lawrence et al. 2010; Lu et al. 2012; Ripke et al. 2013; Zeida´n-Chulia et 
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al. 2013). Those “weak” loci do not neatly segregate with ASD in a family, but instead appear 

to contribute susceptibility to ASD pathogenesis. The first example of such a paralog is the gene 

CACNA1H. In families with familial ASD, several affected subjects are observed to carry the 

mutant allele, however, not all with the allele manifest diagnosable ASD. The “risk allele” 

simply is shown to cluster in such cases of familial ASD (Splawski et al. 2006). CACNA1G, 

another Ca2+ channel alpha subunit paralog, was found to be associated with ASD in male 

multiplex families in the Autism Genetic Resource Exchange cohort (Strom et al. 2010). The 

same family of voltage-gated Ca2+ channels was again found to contain SNPs in CACNA1I and 

CACNA1C in a subsequent larger study (Lu et al. 2012). Several sequencing studies have 

identified exon-disrupting copy-number variations in a Ca2+ channel accessory subunit 

CACNA2D3 among recurrent CNV hotspots in ASD (Girirajan et al. 2013), and identified de 

novo rare alleles in alpha subunit loci CACNA1D and CACNA1E as “top de novo risk 

mutations" for ASD (O’Roak, Vives, Girirajan, et al. 2012). Table 1.8.1 summarizes Ca2+ 

channels and their subunits in which mutations have been implicated in ASD.  

Taken together, these findings strongly implicate Ca2+ signaling as an emerging molecular 

target implicated in pathogenesis of ASD.  

1.3 Ca2+ signaling. 

Ca2+ signaling is one of the most universal and ancient of cellular signals (Berridge 1997a). It 

is a versatile and well-preserved biological messenger system, known to regulate an array of 

cellular functions ranging from membrane potential, ion transporters, kinases, transcription 

factors and even cell morphology. Deregulation of intracellular Ca2+ signaling outside of its 



   
 

	

	

10 

normal spatial and temporal boundaries can lead to detrimental downstream changes in Ca2+-

dependent signaling processes and ultimately cellular death. Intracellular Ca2+ signaling events 

govern and orchestrate cellular functions ranging from conception (Berridge 1993) to necrosis 

and apoptosis (Berridge, Lipp, and Bootman 2000).  

Ca2+ homeostasis and signaling events are tightly regulated by an exquisite array of Ca2+-

permeable ion channels, transporters, and exchangers located in the plasmalemmal and 

intracellular membranes, as well as a plethora of regulatory/accessory proteins and molecules 

(Berridge 2016; Berridge 2009; Berridge, Lipp, and Bootman 2000). A combination of these 

proteins and factors unique for each cell type provides highly customizable “Ca2+ toolkit” for 

downstream signal transduction, catering to the specific needs of each cell. This variety ensures 

that the speed, amplitude, duration, and spatial-temporal pattern of intracellular Ca2+ events 

tailor to each cell’s unique and dynamic physiological needs.  

Ca2+ passively enters the cytoplasm across the plasma membrane and is cleared from the 

cytoplasm to a level far below extracellular levels by a host of ion pumps and carriers driven by 

metabolic energy. Intracellular Ca2+ concentration is kept between 50 and 100 nM by a host of 

Ca2+ pumps located on the plasmalemmal and ER/SR membranes and by Ca2+-binding proteins. 

The cytosolic Ca2+ concentration is ~10,000 fold lower than concentrations of 2 mM found 

extracellularly, or 0.5-1.0 mM within the lumen of ER/sarcoplasmic reticulum (SR). The 

resulting concentration gradients create a strong driving force for Ca2+ flux into the cytosol. 

Cytosolic Ca2+ signals thus originate by the release of Ca2+ from organellar stores through 

intracellular ion channels and by extracellular Ca2+ entering through ion channels across the 

plasma membrane.  
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The intracellular Ca2+ stores can be rapidly released via intrinsic ER channels, the inositol 

1,4,5-trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs). Once released, this 

Ca2+ activates a host of kinases, ion channels and transcription factors, and then is resequestered 

via the ER’s Ca2+ ATPase pump (SERCA) and cleared out of the cell via plasma membrane 

Ca2+ ATPase (PMCA) (Di Leva et al. 2008). 

Given that proper functioning of the Ca2+ signaling pathway is critical for many cellular 

functions, it is not surprising that perturbations in this system cause profound downstream 

defects. Disrupted functioning of ER Ca2+ release channels is observed in several cognitive 

disorders including Alzheimer’s (Stutzmann et al. 2004; Ito et al. 1994; Stutzmann et al. 2006), 

Huntington’s disease (Bezprozvanny 2011), and amyotrophic lateral sclerosis (Van Den Bosch 

et al. 2006).  

1.4 IP3 Ca2+ signaling. 

IP3Rs are a family of Ca2+-permeable ion channels ubiquitously and predominantly expressed 

in the ER membrane of nearly all known cells (for an exhaustive review see (Foskett et al. 

2007)). Functional IP3Rs are tetramers, with each subunit consisting of a large cytosolic N-

terminus, six transmembrane domains containing the ion channel pore, and a short cytosolic C-

terminus (Foskett et al. 2007). In mammals, the IP3R family is comprised of three separate gene 

products (IP3Rs types 1-3) and a number of splice variants (Foskett et al. 2007). At the protein 

level, IP3R isoforms are 60-80% homologous, and their functional domains are similar. 

However, different isotypes have different affinity for IP3 and Ca2+, and are differentially 

modulated by ATP, cAMP and protein kinases. Different forms of IP3Rs exhibit distinct and 
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overlapping expression patterns with most cell types expressing more than one isoform.  

IP3-mediated Ca2+ signal transduction is typically initiated by stimulation of cell surface 

receptors linked to the activation of phospholipase C isoforms β or γ (PLC- β/γ) (Berridge 

1993). PLC-β is activated following stimulation of G-protein coupled receptors linked to the 

heterotrimeric Gq family proteins (GPCRs) (Berridge 1997a), whereas PLC-γ is turned on by 

phosphorylation in response to tyrosine kinase-linked (Clandinin, DeModena, and Sternberg 

1998) cell surface receptor stimulation. Activation of PLC leads to the generation of inositol 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) following hydrolysis of phosphatidylinositol 

4,5-bisphosphate (PIP2). IP3 liberated from the inner leaflet of the plasmalemma diffuses into 

the cytoplasm and binds to IP3Rs located in the ER membrane. The IP3R forms a Ca2+ -

permeable channel in the membrane of the ER, and its opening allows the release into the 

cytosol of Ca2+ sequestered within the ER (Berridge 1997b; Bootman, Berridge, and Lipp 1997; 

Parker and Yao 1996). Opening of the IP3R channel requires binding of IP3 together with Ca2+ 

to receptor sites on the cytosolic face. Gating by Ca2+ is biphasic, such that small elevations of 

cytosolic Ca2+ induce channel opening, whereas larger elevations cause inactivation 

(Bezprozvanny, Watras, and Ehrlich 1991; Foskett et al. 2007). The positive feedback by Ca2+ 

underlies the process known as Ca2+-induced Ca2+ release (CICR), whereby Ca2+ is released in a 

regenerative manner that may remain restricted to a cluster of IP3Rs, producing local Ca2+ 

signals known as Ca2+ puffs (Fig. 1..1) (Yao, Choi, and Parker 1995), or may propagate 

throughout the cell as a saltatory wave involving the recruitment of multiple puff sites by 

successive cycles of Ca2+ diffusion and CICR. Thus, IP3-mediated Ca2+ signaling represents a 

hierarchy of Ca2+ events of differing magnitudes (Lipp and Niggli 1996; Parker, Choi, and Yao 
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1996), and the spatial patterning and distribution of IP3Rs is critical to proper cellular function 

(Fig. 1.9.1). The spatial and temporal localization of Ca2+ signaling ensures high specificity of 

cellular responses. 

In the mammalian brain, different isoforms of IP3Rs have distinct expression patterns 

depending on the brain region and developmental state. IP3R type 1 is predominantly expressed 

in neurons, especially in Purkinje cells in the cerebellum. IP3R type 3 demonstrates 

predominantly a neuronal pattern of expression that does not overlap with the IP3R1. For 

instance, Purkinje cells in the cerebellum are highly enriched in IP3R1, but have low or 

undetectable levels of IP3R3, but granule cells of the cerebellum and many regions of the 

medulla display moderately high levels of IP3R3, whereas IP3R1 is virtually undetectable in 

these regions. IP3R1 expression levels are the highest in cerebellar Purkinje neurons, where IP3-

mediated Ca2+ signaling is necessary for induction of long-term depression (LTP), a candidate 

mechanism for the cellular basis of motor learning (Inoue et al. 1998). Interestingly, cerebellar 

dysfunction has been repeatedly implicated in the pathogenesis of ASD (Wang, Kloth, and 

Badura 2014). 

In neurons, IP3R-mediated Ca2+ release is involved in crucial functions – including synaptic 

plasticity and memory (Inoue et al. 1998; Rose & Konnerth 2001), neuronal excitability 

(Hernandez-Lopez et al. 2000; Stutzmann, LaFerla, and Parker 2003), neurotransmitter release 

(Li et al. 1998; Diamant, Schwartz, and Atlas 1990), axon growth (Gomez and Spitzer 1999) 

and long-term changes in gene expression (Li et al. 1998) - highlighting the central integrating 

position played by IP3Rs (Patterson, Boehning, and Snyder 2004). IP3-induced Ca2+ response in 

neurons propagates along the dendrite as a wave and is different from action potential-induced 
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Ca2+ fluctuations in both temporal and spatial aspects. Unlike brief spike-evoked Ca2+ signals 

that occur throughout the cell, IP3-mediated events start at a local proximal dendrite and then 

spread to the soma as a Ca2+ wave. This was first observed in hippocampal neurons (Shirasaki, 

Harata, and Akaike 1994; Jaffe and Brown 1994). Subsequently, IP3-mediated Ca2+ waves were 

observed and characterized in other brain regions – cortical pyramidal neurons and midbrain 

dopamine neurons, suggesting a ubiquitous role of IP3 signaling throughout the brain 

(Morikawa et al. 2000; Larkum et al. 2003).  

In the cerebellum, IP3-mediated Ca2+ release is critical for induction of long-term depression 

(Khodakhah and Armstrong 1997), a form of synaptic plasticity, which is thought to be an 

important cellular mechanism for motor learning and coordination. In cerebellar Purkinje cells 

that are especially enriched in IP3Rs, repetitive parallel fiber stimulation triggers metabotropic 

glutamate receptor (mGluR) activation and subsequent IP3-mediated Ca2+ release from the ER 

(Takechi, Eilers, and Konnerth 1998; Yuzaki and Mikoshiba 1992). Because both IP3 and Ca2+ 

are required for the initial IP3R activation, some cytoplasmic Ca2+ is necessary. If the 

concentration of IP3 is high, even low basal Ca2+ concentration is enough, however, at lower IP3 

concentrations an additional source of Ca2+ is required. This dual requirement for the two 

messengers is met by two inputs to the Purkinje neurons: the climbing fiber input strongly 

depolarizes Purkinje cells to generate a Ca2+ signal via plasmalemmal channels, whereas 

parallel fiber inputs activate the mGluRs to produce IP3. Thus maximal activation of Ca2+ 

release via IP3Rs depends on the timing of co-activation and serves as a coincidence detector for 

these two types of inputs (Sarkisov and Wang 2008). Consistent with the role of IP3R1 in 

cerebellar long-term depression (LTD), LTD is completely abolished in mice with a genetic 
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deletion of IP3Rs (Inoue et al. 1998). 

In cortical pyramidal neurons IP3R activation is a key signaling hub downstream of mGluRs 

(Inoue et al. 1998; Berridge 1993), where it leads to a brief hyperpolarization followed by a 

more prolonged depolarization (El-Hassar et al. 2011; Stutzmann, LaFerla, and Parker 2003). 

The initial outward current results from the opening of small conductance Ca2+-activated K+ 

channels (Chandy et al. 1998; Köhler et al. 1996). This current is proportional to the Ca2+ signal 

amplitude (Stutzmann, LaFerla, and Parker 2003); and can be triggered directly by intracellular 

uncaging of IP3 (El-Hassar et al. 2011; Stutzmann, LaFerla, and Parker 2003). As a result, IP3-

evoked Ca2+ release transiently hyperpolarizes the cell and briefly depresses neuronal 

excitability, leading to a reduction in firing frequency (Stutzmann, LaFerla, and Parker 2003). 

Suppressed IP3-mediated Ca2+ release from the internal stores diminishes the inhibitory K+ 

conductance, and produces neuronal hyperexcitability (Repicky and Broadie 2009; Bateup et al. 

2011), consistent with observations following mGluR stimulation of ASD-model neurons 

(Repicky and Broadie 2009; Bateup et al. 2011). 

In hippocampal CA1 slices, brief pre-treatment with group 1 mGluR agonists has been shown 

to facilitate the induction of long-term potentiation (LTP), that manifests in an enhanced 

magnitude and stability of LTP (Cohen and Abraham 1996). However, stronger activation of 

the group 1 mGluRs induces LTD (Palmer et al. 1997; Oliet, Malenka, and Nicoll 1997). 

Application of a group 1 mGluR agonist acutely reversibly depressed excitatory postsynaptic 

currents (EPSCs) in rat slices. Intriguingly, this effect was age-dependent and strongest in 

neonatal rats, as the EPSCs were significantly decreased in adolescent animals (day 12-30) and 

almost completely abrogated in adults (age >80 days) (Baskys and Malenka 1991), highlighting 
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an important neurodevelopmental role played early in life by the IP3 Ca2+ signaling. 

1.5 Neurological and physiological consequences of genetic deletion of IP3Rs in mice  

1.5.1 IP3R type 1. 

Genetic manipulation of a gene of interest in laboratory rodents has long been an invaluable 

tool in determining that gene’s function. Knockout mouse models of all three IP3R isoforms 

have been generated, with the most studied being the ITPR1 knockout. Mice with homozygous 

deletion of ITPR1 suffer from severe ataxia and epilepsy and most of them die in utero or 

before the weaning age (Matsumoto and Nagata 1999; Matsumoto et al. 1996). Interestingly, the 

in utero lethality rate was reduced when the genetic background was shifted from widely used 

C57Bl/6 to CD-1 strain. After birth, the IP3R1 knockout mice exhibit truncal ataxia on postnatal 

day 7 and tonic-clonic epileptic seizures starting on postnatal day 13 or 14. Anti-convulsants 

such as pentobarbital eliminate the seizures, while leaving ataxia intact, suggesting distinct 

features responsible for each phenotype. Neuroanatomical analysis of the IP3R1 knockout brains 

has shown no detectable malformations in the cerebellum with Purkinje cell numbers, with 

morphological properties and arborization all being unaffected (Matsumoto and Nagata 1999). 

Electrophysiological studies further failed to reveal any abnormalities in the membrane 

excitability of Purkinje cells, the number or strength of parallel fiber or climbing fiber inputs. 

However, subsequent studies demonstrated that LTD was completely abolished in Purkinje cells 

(Inoue et al. 1998). Cerebellar LTD is commonly accepted as a molecular basis of cerebellar 

motor learning and the development of motor coordination, suggesting that the lack of IP3R1 is 

responsible for the ataxic phenotype of the knockout mice.  
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IP3R1-deficient mice also show impairments in hippocampal synaptic plasticity. In the CA1 

hippocampal neurons of IP3R1 knockout mice, the mean magnitude of the LTP or LTD induced 

by a standard tetanus of low-frequency stimulation (standard protocol for LTP and LTD 

induction, respectively) were unaffected in the knockout animals. However, when a short 

tetanus (10 pulses at 100 Hz) was used to induce LTP, the mean magnitude of the resulting LTP 

was significantly greater in mutant mice than in wild-type mice (Fujii et al. 2000). 

Depotentiation (DP) and LTP suppression are also attenuated in the CA1 hippocampal neurons 

of IP3R1 knockout mice (Fujii et al. 2000). These results suggest that, unlike in Purkinje cells, 

in hippocampal CA1 neurons the IP3R1 is involved in LTP, DP, and LTP suppression but is not 

essential for LTD. In addition, deletion of IP3R1 results in a lack of heterosynaptic LTD in the 

CA1 region of the hippocampus, indicating the contribution of IP3R1 to input specificity. 

Whereas homozygous IP3R1 mice demonstrate these profound phenotypes, heterozygous 

mice demonstrate only subtle motor coordination deficits, observed when tested with a rotarod 

(Ogura, Matsumoto, and Mikoshiba 2001). 

1.5.2 IP3R type 2. 

IP3R type 2 receptor in the brain is predominantly expressed in astrocytes (Zhang et al. 2014). 

ITPR2 loss in astrocytes was reported to lead to the apparent loss of all astrocytic Ca2+ signaling 

(but also see (Srinivasan et al. 2015)), however, it was not accompanied by any gross deficits in 

behavioral (Petravicz, Boyt, and McCarthy 2014) or neurological functions (Petravicz, Fiacco, 

and McCarthy 2008; Agulhon, Fiacco, and McCarthy 2010). Interestingly, contrary to Petravicz 

et al. findings that used astrocyte-specific ITPR2 knockout, a global knockout of the receptor 
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was associated with depressive-like behavior in mice, presumably mediated by a lack of ATP 

signaling from astrocytes (Cao et al. 2013). Another study implicated a role of the IP3R2 

signaling in synapse elimination, again mediated by astrocytic ATP release (Yang et al. 2016). 

Moreover, other groups have demonstrated an apparent effect of ITPR2 knockout on cortical 

plasticity in response to whisker stimulation, possibly through perturbed release of d-serine 

from astrocytes (Takata et al. 2011), potentiation of visual responses in excitatory neurons of 

the primary visual cortex (Chen et al. 2012), and modulation of neural network activity (Wang 

et al. 2012). Astrocytic Ca2+ signaling mediated via IP3R2 was implicated in K+ uptake by 

astrocytes, leading to decreased extracellular K+ concentrations and as a result hyperpolarization 

of neurons and reduced excitatory synaptic activity. In conclusion, the vast majority of ITPR2 

knockout studies concentrated on astrocytes as a predominant cell type expressing this receptor 

in the brain. However, the apparent discrepancy between findings from studies utilizing cell- 

type specific and global knockouts suggest that the role of IP3R type is not limited to astrocytes, 

and may play a role in more subtle neurological functions fine-tuning brain activity.  

In 2014 the presence of homozygous missense ITPR2 mutations was identified in five human 

subjects from a consanguineous family. Interestingly, anhidrosis (inability to sweat) and severe 

heat intolerance as a result were the only reported phenotype in these patients. Upon clinical 

investigation, no other abnormalities were observed, with body growth, as well as teeth, hair, 

nails and skin all normal. No neurological abnormalities were reported, suggesting that at least 

in humans the complete loss of IP3R2 does not lead to any detrimental consequences beyond 

inability to produce sweat (Klar et al. 2014). 
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1.5.3 IP3R type 3. 

From the standpoint of neurophysiology, mice with a genetic deletion of ITPR3, dubbed a 

“mouse with bad hair and poor taste”, are largely unexciting (Tordoff and Ellis 2013). IP3R3 

regulates hair shedding in mice (Sato-Miyaoka et al. 2012) and is responsible for the tufted 

locus – a locus responsible for irregular hair growth pattern – of the BTBR mouse model of 

polygenic autism with several sporadic mutations (Tordoff and Ellis 2013; Ellis, Tordoff, and 

Parker 2013). It would be tempting to suggest a causative link between the ITPR3 mutation and 

the autism phenotype in the BTBR mice, however the currently available scientific evidence 

indicates that the role of IP3R3, at least in mice, is limited to the taste perception and hair loss 

only.  

1.6 IP3 Ca2+ signaling and its disruption in neurological diseases 

1.6.1 Spinocerebellar ataxia. 

A straightforward example of dysregulation of IP3-mediated Ca2+ signaling is seen in 

spinocerebellar ataxias (SCA), a group of neurodegenerative disorders characterized by 

problems in coordination of movement affecting legs, hands, and eyes. While there are many 

types of SCA, several of them have strong connection to Ca2+ signaling abnormalities that 

eventually funnel onto an IP3 pathway. One unifying feature of this group of neurodegenerative 

disorders is widespread Purkinje cell death mediated by dysregulated IP3-mediated Ca2+ 

signaling. Heterozygous deletions in ITPR1, a gene encoding IP3R1, were identified in several 

unrelated families affected with SCA types 15 (SCA15) (Van De Leemput et al. 2007), an 

autosomal dominant disease. The same study showed that the affected patients with confirmed 
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ITPR1 deletion had decreased amounts of IP3R1 at a protein level, unlike a family member who 

does not carry the deletion, suggesting haploinsufficiency and decreased function of IP3R in the 

pathogenesis of the disease. A large deletion and a point mutation in ITPR1 were subsequently 

identified in two additional families (Hara et al. 2008), solidifying the causative pathogenic role 

of ITPR1 haploinsufficiency in SCA. Gene mutations causative for SCA16 were mapped to a 

locus overlapping with that of SCA15, that also contains ITPR1 heterozygous deletion (Iwaki et 

al. 2008). It is worth noting that SCA16 was initially mapped to chromosome 8q (Miyoshi et al. 

2001), but later additional studies established the linkage to 3p, where ITPR1 resides, making 

SCA16 and SCA15 virtually the same disorder (Bezprozvanny 2011). Additional heterozygous 

missense mutations in ITPR1 have been identified in SCA29 (Sasaki et al. 2015; Huang et al. 

2012), which is clinically distinguished from SCA15 by early onset of symptoms. 

SCA type 2 and 3 (SCA2 and SCA3) are autosomal dominant disorders that are caused by an 

expansion of unstable CAG repeats that encode polyglutamine tract expansions (polyQ) in 

genes encoding ataxin 2 and 3, respectively. Multiple lines of evidence suggest perturbed Ca2+ 

release from the ER in both of these disorders. Pull-down and co-immunoprecipitation have 

revealed that the mutated ataxin-2 specifically associates with the COOH-terminal domain of 

IP3R1, while the wild type form of it did not form such associations (Liu et al. 2009). In lipid 

bilayer experiments, the mutated attaxin-2 increased the sensitivity of IP3Rs to IP3, dramatically 

increasing its activation. In cultured Purkinje cells, expression of mutant ataxin-2 also facilitated 

Ca2+ release in response to mGluR activation. Finally, prolonged treatment of mutant mice with 

dantrolene, an antagonist of the ryanodine receptor, another channel on the ER that magnifies 

IP3-initiated Ca2+ release, ameliorated Purkinje cell loss in cerebellum and improved 
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performance in aged mice on the rotarod test (Liu et al. 2009). Similar results were obtained 

with a mutant ataxin-3 protein, suggesting that the polyglutamine repeat on ataxin proteins may 

be a unifying theme in several types of ataxia and it contributes to its pathogenesis by 

facilitation of binding to IP3R and increase in its sensitivity to IP3 (Chen et al. 2008).  

1.6.2 Huntington’s disease. 

In Huntington’s disease, a pathophysiological polyglutamine (polyQ) expansion in a protein, 

huntingtin, enhances its binding to the COOH-terminus of IP3R1 and sensitizes it to IP3 

(Bezprozvanny 2011). This gives rise to larger Ca2+ signals that disrupt neuronal function and 

induce cell death. In a mouse model of Huntington’s disease, the increase in IP3-mediated Ca2+ 

release decreases ER store Ca2+ levels, leading to overactivation of store-activated Ca2+ entry 

and subsequent striatal synaptic loss (Wu et al. 2016). Genetic ablation of IP3R1 and chemical 

treatment with Li+, which leads to decrease in IP3 signaling, reduce accumulation of mutant 

huntingtin proteins and ameliorates spine loss (Wu et al. 2016; Sarkar et al. 2008; Bauer et al. 

2011).  

1.6.3 Alzheimer’s disease. 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that progressively 

destroys neurons leading to a sharp decline in cognitive abilities. AD is driven by a release of 

soluble β-amyloid (Aβ) that forms Aβ oligomers toxic to neurons. Sustained upregulation of 

intracellular Ca2+ levels was shown to initiate the disease early on and exacerbate the core 

features from amyloid plaque formation to synapse loss (for reviews, see (Mattson and Chan 

2001; Stutzmann 2007)). Disrupted IP3-mediated Ca2+ signaling is a well-documented 
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contributing factor in this process, both in familial and sporadic forms. Sporadic forms of AD 

are more common among AD patients, have poorly defined etiology and strike later in life (>65 

years). The familial form of AD (FAD) is an early-onset, less common form of the disease, 

contributing to less than 10% of reported cases. FAD is caused by an autosomal-dominant 

mutations in presenilin 1 (PS1), presenilin 2 (PS2), or amyloid precursor protein (APP) genes 

(Campion et al. 1999), with the mutations in presenilins being responsible for the majority of 

FAD cases. Despite relatively rare occurrence, the genetically defined architecture of FAD 

makes it a tractable model for studying this highly heterogeneous condition. Moreover, 

regardless of the type, AD progression follows the same steps in both familial and sporadic 

forms, with accelerated development in the FAD form. Mutant PS1 is the most common cause 

of FAD. The presenilin protein is a catalytic subunit of the gamma secretase complex located on 

the ER membrane that generates Aβ by cleaving APP. The first proposed mechanism of PS1 

pathogenicity is that its mutant form cleaves APP preferentially into a longer and more 

amyloidogenic Aβ42 form. Another role of the PS mutant protein in the pathophysiology of 

FAD is to increase Ca2+ release from the intracellular stores, contributing to cytotoxicity and 

neuronal death (Mak et al. 2015; Stutzmann et al. 2004; Leissring et al. 1999). This effect has 

been shown in cultured neuronal-like PC12 cells expressing mutant PS1 (Guo et al. 1996), in 

cultured primary neurons from PS1 knockin mice (Chan et al. 2000; Guo et al. 1999) and in 

brain slices from young, adult, and aged mutant PS1 knockin mice (Stutzmann et al. 2006). The 

exact mechanism of such increases is still debated, but proposed causes include abnormal 

elevation of the ER Ca2+ stores (Leissring et al. 2001), gain-of-function enhancement of IP3R 

gating by presenilin proteins (Mak et al. 2015), and enhanced ryanodine receptor recruitment 
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consequent to initial IP3R activation (Stutzmann et al. 2006). Cheung et al. have shown that 

several FAD PS mutations have a gain-of-function effect on IP3Rs, leading to a high open 

probability burst mode of these channels, thus enhancing Ca2+ signaling (Cheung et al. 2010). 

There are two important implications of such increased sensitivity. Under normal physiological 

conditions (when PS is not mutated), the mean channel open time is too short (~10 ms) to 

recruit neighboring IP3Rs and RyR and induce Ca2+-induced Ca2+ release. However, given that 

in the presence of the mutant PS the IP3R channel has a propensity to dwell in a longer open 

time with burst activity (>200ms), the resulting Ca2+ release will recruit spatially segregated 

RyR, inducing CICR. As a result, the initial increase in Ca2+ store release will be further 

amplified by downstream players and will lead to cytotoxicity. Secondly, taking into 

consideration IP3R’s sensitivity to both IP3 and Ca2+, the channel’s increased sensitivity to IP3 

potentiates the channel’s opening in response to increase in intracellular Ca2+ due to RyR 

activation, leading to a self-propagating loop. Consistent with this, in mutant PS mice increasing 

basal intracellular Ca2+ via RyR is enough to induce IP3R-mediated Ca2+ release (Goussakov, 

Miller, and Stutzmann 2010).  

To further support the calciumopathy phenotype in AD, exaggerated IP3-mediated Ca2+ 

signaling was observed in non-neuronal cells from symptomatic (Hirashima et al. 1996; Ito et 

al. 1994) and pre-symptomatic AD patients (Etcheberrigaray et al. 1998), as well as in neurons 

from mouse models of AD (Stutzmann et al. 2004).  

Both familial and sporadic forms of AD are believed to be caused by pathologic actions of Aβ 

protein oligomers. Among other cytotoxic effects of Aβ that are beyond the scope of the present 

introduction section, the role of Aβ is to stimulate the IP3 production to release Ca2+ from the 
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ER (Mattson and Chan 2001). The neurotoxic effect of Aβ oligomers via Ca2+ release from the 

intracellular stores was demonstrated with a bath application of Aβ to neuronal cultures 

(Ferreiro, Oliveira, and Pereira 2004). Pre-incubation of cells with dantrolene or xestospongin 

C, inhibitors of RyRs and IP3Rs, respectively, prevented Ca2+ release and protected cells from 

the apoptotic cell death. A different set of experiments on human neuroblastoma SH-SY5Y cell 

culture produced similar results, demonstrating Ca2+ release from intracellular stores upon bath 

application of Aβ that was partially blocked by caffeine, an IP3R antagonist (Jensen et al. 2013). 

Interestingly, when these experiments were done on permeabilized chicken DT40 TKO cells 

that are void of any IP3Rs, the Ca2+ release in response to Aβ remained and was not different 

from the WT DT40 cells (Jensen et al. 2013), implicating other molecular players besides 

IP3Rs. Another line of evidence supporting the cytotoxic effect of Aβ was obtained from 

injecting oligomers directly into frog oocytes. Such injections of Aβ led to Ca2+ increase due to 

both Ca2+ entry across the plasma membrane and Ca2+ release from intracellular stores (Demuro 

and Parker 2013). In these experiments, Ca2+ release could be inhibited by application of 

caffeine, heparin, or pretreatment with pertussis toxin that blocks G-protein-mediated activation 

of phospholipase C. Furthermore, incubation of oocytes with lithium to block the inositol 

monophosphatase enzyme involved in de novo synthesis of inositol and hence depleting the 

inositol phospholipid pools rescued oocytes from Aβ-mediated cytotoxicity and death, as did 

co-injection with EGTA to buffer intracellular Ca2+ levels (Demuro and Parker 2013). These 

findings establish that one of the roles of the Aβ in the pathogenesis of AD is in its ability to 

evoke intracellular Ca2+ release. Sustained and prolonged increase in intracellular Ca2+ levels is 

neurotoxic and leads to neuronal cell death and, as a result, memory loss. An important 
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confirmation of the Ca2+ signaling disruption in the AD came from in vivo findings that genetic 

reduction of IP3R1 in several mouse models of familial AD reduces pathogeniety of the 

condition (Shilling et al. 2014).  

1.7 Conclusions 

In light of the crucial roles of IP3-mediated Ca2+ signaling in regulating normal neuronal 

development and function, as well as in pathogenesis of several neurological diseases, I 

hypothesize that the IP3 receptor acts as a signaling ‘hub’ where many genes that are altered in 

ASD converge to exert their deleterious effect. My overall goal was to investigate if IP3-

mediated Ca2+ signaling is altered in ASD and to elucidate downstream consequences of such 

abnormalities relevant to ASD phenotypes. 
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 1.8 Tables 

 
 

Table 1.8.1 Ca2+ channels and Ca2+ channel subunits implicated in ASD. 

 

Protein Description Normal function Disease association 

CACNA1C 
Voltage-regulated L-type 
calcium channel, alpha 1C 

subunit 

Regulates entry of Ca2+ into 
excitable cells: muscle 

contraction, 
hormone/neurotransmitter release, 

gene expression, cell cycle 

Timothy Syndrome, 
ASD, psychiatric 

diseases 

CACNA1D Voltage-regulated calcium 
channel, alpha 1D subunit 

High-voltage activated, long-
lasting calcium activity 

Sinoatrial node 
dysfunction and 
deafness, ASD, 

psychiatric diseases 

CACNA1E 
Voltage-regulated R-type 
calcium channel, alpha 1E 

subunit 

High-voltage activated, rapidly 
inactivating 

ASD, psychiatric 
diseases 

CACNA1F 
Voltage-regulated L-type 
calcium channel, alpha 1F 

subunit 

Regulates entry of Ca2+ into 
excitable cells: muscle 

contraction, 
hormone/neurotransmitter release, 

gene expression, cell cycle 

ASD and X-linked 
congenital stationary 

night blindness 

CACNA1G 
Voltage-regulated T-type 

calcium channel, alpha 1G 
subunit 

Regulates entry of Ca2+ into 
excitable cells: muscle 

contraction, 
hormone/neurotransmitter release, 

gene expression, cell cycle 

ASD; intellectual 
disability; juvenile 
myoclonic epilepsy 

CACNA1H 
Voltage-regulated T-type 

calcium channel, alpha 1H 
subunit 

Regulates neuronal and cardiac 
pacemaker activity 

Familial autism; 
childhood absence 

epilepsy 

CACNA1I 
Voltage-regulated T-type 
calcium channel, alpha 1I 

subunit 

Characterized by a slower 
activation and inactivation 

compared to other T-channels  

Possibly implicated 
ASD 

CACNA2D3 
Voltage-regulated calcium 

channel, alpha 2/delta 3 
subunit 

Accessory calcium channel 
subunit; regulates entry of Ca2+ 

into excitable cells 
ASD 

CACNA2D4 
Voltage-regulated calcium 

channel, alpha 2/delta 4 
subunit 

Accessory calcium channel 
subunit; regulates entry of Ca2+ 

into excitable cells 

Gene deletion along 
with CACNA1C leads 

to ASD 

CACNB2 Accessory calcium channel 
beta-2 subunit  

Contributes to the function of 
calcium channels. Modulates 

voltage dependence of activation 
and inactivation and controls 

trafficking of the calcium channel 
family.  

ASD, psychiatric 
diseases 
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1.9 Figures 

 

Figure 1.9. 1 Local and global Ca2+ signaling events 

Hierarchical organization of Ca2+ signals; from fundamental single-channel events ('blips'; A), 

to elementary events ('puffs'; B) and global waves (C). Cartoons on the left illustrate the 

proposed spatial organization of IP3R channels in the ER membrane that gives rise to these 

events, and traces at right are representative experimental fluorescence traces of blips, puff and 

wave. Note differences in amplitude and time scales.  
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Chapter 2. Ca2+ signaling abnormalities in human subjects with various monogenic and 

sporadic forms of ASD 

2.1 Introduction 

Autism Spectrum Disorder (ASD) is a common complex polygenic disorder characterized by 

difficulties in social interaction, communication and restricted, repetitive behaviors. The 

symptoms and severity vary widely across autistic individuals, complicating diagnosis of this 

complex spectrum and giving rise to a tragic “diagnostic odyssey” that delays diagnosis, and 

hence treatment, until the typical mean age of 5yrs (Pringle et al. 2012). Diagnosis of ASD is 

made based on questionnaires and behavioral tests, relying on parent observations and 

comprehensive evaluation by psychologists, pediatricians, psychiatrists, and speech therapists 

(Constantino and Charman 2015). The current lack of biomarkers and molecular targets makes 

diagnosis, study and treatment of ASD a challenging task. Moreover, early diagnosis is critical 

for optimal intervention (Anderson, Liang, and Lord 2014; MacDonald et al. 2014), and accurate 

diagnosis is crucial in order to exclude other potential conditions which may require different 

therapies.  

A wealth of genetic data now implicate a host of genes encoding ion channels and associated 

intracellular Ca2+ signaling proteins in the molecular architecture of ASD (Group and 

Consortium 2013; Lu et al. 2012; Palmieri et al. 2010; Schmunk and Gargus 2013), placing Ca2+ 

homeostasis at a central node. Cytosolic Ca2+ homeostasis involves ion flux from intracellular 

organellar stores, as well as transport across the plasma membrane. Diseases of the intracellular 

organelles are an emerging area of medicine. Several prototypes are already well developed for 
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neurogenetic diseases of mitochondria and the lysosomes (Lim, Li, and Raben 2014; Valenti et 

al. 2014; Wallace, Fan, and Procaccio 2010; Weinreb 2013), and increasing evidence implicates 

the ER (Roussel et al. 2013). Ca2+ release from IP3Rs has been shown to be altered in cognitive 

disorders including Alzheimer’s (Smith et al. 2005; Stutzmann et al. 2004) and Huntington’s 

diseases (Bezprozvanny 2011), and IP3Rs have recently been identified among the genes affected 

by rare de novo copy number variations in ASD patients (Gilman et al. 2011). I focus on Ca2+ 

signaling as a compelling potential root defect in the disorder, in light of the growing genetic 

evidence supporting its role in susceptibility to ASD (Group and Consortium 2013; Lu et al. 

2012; Palmieri et al. 2010; Schmunk and Gargus 2013) , and its ubiquitous participation in 

cellular functions as diverse as neuronal excitability (Hernandez-Lopez et al. 2000; Stutzmann, 

LaFerla, and Parker 2003), neurotransmitter release (Li et al. 1998; Diamant, Schwartz, and 

Atlas 1990), cell secretion (Berridge and Patel 1968; Fain and Berridge 1979), gene expression, 

and apoptosis (Pinton et al. 2008; La Rovere et al. 2016).  

2.2 Materials and Methods 

2.2.1 Materials. 

Fluo-8 AM was purchased from AAT Bioquest, diluted in DMSO (Sigma D2650) to a stock 

concentration of 2 mM and frozen as 25 µl aliquots until needed. On the day of the experiment 

the Fluo-8 AM solution was thawed and diluted with an equal volume of 20% Pluronic F-127 

(Molecular Probes, P6867) prepared in DMSO. Adenosine triphosphate (ATP), adenosine 

diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP) were purchased 

from Sigma Aldrich, diluted in water to a stock concentration of 100 mM and frozen as 50 µl 
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aliquots until needed. MRS 2365 (supplied pre-dissolved at a concentration of 10mM) was 

purchased from Tocris. Ionomycin was purchased from Life Technologies, diluted in DMSO to 1 

mM and frozen as 10 µl aliquots until needed.  

2.2.2 Subject fibroblast cell lines. 

All methods were carried out in accordance with relevant guidelines and regulations, and all 

experimental protocols were approved by UCI Institutional Review Board (IRB) review. Skin 

fibroblast cultures were obtained from sporadic ASD subjects enrolled into the UCI Center for 

Autism Research and Translation (CART). All CART-derived cell lines reported here were from 

subjects who were referred with a clinical diagnosis of ASD. Three such subjects had Prader-

Willi syndrome and are classified as such. CART subjects underwent a full day of testing to 

develop their deep phenotype, including skin biopsy, all obtained with informed consent and 

assent. Age-appropriate research-grade ADOS and IQ tests were administered, followed by a set 

of high-density EEG studies, a sleep study and preparation for a follow-up at home 5-day sleep 

study with accelerometers and app-assisted parent sleep and behavior logging. Metabolomic 

studies of blood, urine, saliva and volatile metabolites in breath were obtained, as well as blood 

from the subject and family members for whole genome sequencing. Only those subjects with 

validated ADOS scores in the “Autism” or the “Autism Spectrum Disorder” ranges were selected 

for study (Table 2.5.1). Fibroblast cell lines were established from punch skin biopsy (2-3 mm) 

explants and frozen at passage 5 in liquid nitrogen for long-term storage. 

Primary, untransformed skin biopsy fibroblast cultures from neurotypical controls and 

monogenic forms of ASD (fragile X syndrome, tuberous sclerosis, Rett, and one with Prader-
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Willi syndrome) were obtained from Coriell cell biorepository. 

Fibroblast were cultured in Dulbecco’s Modified Eagle’s Media (Gibco, 11965-092) 

supplemented with 20% (v/v) fetal bovine serum without antibiotics at 37 °C in a humidified 

incubator gassed with 95% air and 5% CO2, and used for up to 15 passages. Cells were studied at 

passages 10-15. For Ca2+ signaling studies, cells were detached with Ca2+- and Mg2+-free 0.25% 

trypsin-EDTA (Life Technologies), harvested in normal growth media and sub-cultured on 

FLIPR 96 well plates for 2 days to provide standardized conditions prior to imaging studies.  

2.2.3 High-throughput Ca2+ imaging. 

Skin fibroblasts were seeded in clear-bottom black 96-well plates (Greiner Bio One T-3026-

16) at 1 x 104 cells per well and grown to confluency. On the day of the experiment, cells were 

loaded by incubation with 2 µM of the membrane-permeant Ca2+ indicator Fluo-8 AM (Takada, 

Furuya, and Sokabe 2014) in standard buffer solution (130 mM NaCl, 2 mM CaCl2, 5 mM KCl, 

10 mM glucose, 0.45 mM KH2PO4, 0.4 mM Na2HPO4, 8 mM MgSO4, 4.2 mM NaHCO3, 20 mM 

HEPES and 10 µM probenecid, pH 7.4 at the room temperature) with 0.1% fetal bovine serum 

for 1 h at 37 °C, then washed with a Ca2+ -free HBSS solution (120 mM NaCl, 4 mM KCl, 2 mM 

MgCl2, 10 mM glucose, 10 mM HEPES, 1 mM EGTA, pH 7.4 at the room temperature) once. 

The solution was replaced with 100 µl of fresh Ca2+ -free HBSS solution in each well and cells 

were allowed to equilibrate for 5 minutes prior to assay with a fluorometric imaging plate reader 

(FLIPR; Molecular Devices, Sunnyvale, CA). A basal read of fluorescence in each well (470–

495 nm excitation and 515–575 nm emission, expressed in arbitrary units; AU) was read for 2 

seconds at 0.4 s exposure time. Next, 100 µl of 2x ATP (to 100 µM final concentration) or 100 µl 
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of 2x ionomycin (to 1 µM final concentration) in Ca2+ -free HBSS was added to a given well. 

Only a single recording was obtained from each well. Ionomycin-induced fluorescence changes 

from wells without prior addition of ATP were used to normalize ATP-evoked responses. 

Recordings were performed in triplicate. Each experiment was repeated on at least two 

independent days. 

2.2.4 Whole-cell Ca2+ imaging. 

Cells seeded in glass-bottomed dishes were loaded for imaging using membrane-permeant 

esters of Fluo-8 and caged i-IP3 (ci-IP3 (Smith, Wiltgen, and Parker 2009; Ellefsen et al. 2014)). 

Briefly, cells were incubated at room temperature in HEPES-buffered saline (2.5 mM CaCl2, 

120 mM NaCl, 4 mM KCl, 2 mM MgCl2, 10 mM glucose, 10 mM HEPES) containing 1 µM ci-

IP3/PM for 45 mins, after which 4 µM Fluo-8 AM was added to the loading solution for further 

45 minutes before washing three times with the saline solution. [Ca2+]i changes were imaged 

using a Nikon Eclipse microscope system with a 40x (NA=1.30) oil objective. Fluo-8 

fluorescence was excited by 488 nm laser light, and emitted fluorescence (l > 510 nm) was 

imaged at 30 frames sec-1 using an electron-multiplied CCD Camera iXon DU897 (Andor). A 

single flash of UV light (350-400 nm) from an arc lamp focused to uniformly illuminate a region 

slightly larger than the imaging field was used to uncage i-IP3, a metabolically stable 

isopropylidene analogue of IP3, which evoked activity persisting for a few minutes. Image data 

were acquired as stack .nd2 files using Nikon Elements for offline analysis. Fluorescence signals 

are expressed as a ratio (ΔF/F0) of changes in fluorescence (ΔF) relative to the mean resting 

fluorescence at the same region before stimulation (F0). Recordings were performed in triplicate, 
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and the measurement outcomes were compared using Mann-Whitney test.  

2.2.5 Imaging local Ca2+ events. 

For experiments studying local Ca2+ signals, cells were incubated at room temperature in 

HEPES buffer containing 1 µM ci-IP3/PM and 4 µM Cal-520 for one hour (Ellefsen et al. 2014), 

washed and further incubated with 10 µM EGTA AM for an hour. Cells were then washed three 

times and remained in buffer for 30 min to allow for de-esterification of loaded reagents. 

[Ca2+]i signals were imaged using the Nikon Eclipse microscope system described above, but 

now utilizing an Apo TIRF 100x (NA=1.49) oil objective. The imaging region on the camera 

sensor was cropped to 128 x 512 pixels (20.48 x 81.92 µm) to enable rapid (129 frames per 

second) imaging. Cal-520 fluorescence (l> 510 nm) was excited by 488 nm laser light within an 

evanescent field extending a few hundred nanometers into the cells. Image acquisition and 

processing was as described above for whole-cell imaging, except that local events were 

identified and analyzed using a custom-written algorithm based on MatLab (Ellefsen et al. 2014).  

2.2.6 Western blot analysis.  

Cell lines were grown in triplicates and lysed in mammalian protein extraction reagent 

(Thermo Scientific) with complete mini protease inhibitor cocktail tablets (Roche) and 

phosphatase 2 inhibitor cocktail (Sigma-Aldrich). Lysates were subsequently centrifuged at 

14,000 rpm for 15 minutes at +40C. Protein levels in the cell lysate were measured using the 

Bradford method (Bradford 1976). 20 µg of protein was loaded per well with 5% β-

mercaptoethanol on 3%–8% gradient tris-acetate gels with tris-acetate SDS running buffer 

(Invitrogen) and separated by electrophoresis at 130V. Proteins were transferred at 50 mA for 6 
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hours to 0.2 µm nitrocellulose membranes, which were blocked in 5% nonfat milk in tris-

buffered saline supplemented with 0.1% tween-20 for 1 hr. Membranes were probed overnight at 

+40C with the following primary antibodies: rabbit polyclonal anti-IP3R1 (Millipore, AB5882), 

rabbit polyclonal anti-IP3R2 (LifeSpan Biosciences, LS-C24911), mouse monoclonal anti-IP3R3 

(BD Transduction Laboratories, 610312), rabbit polyclonal anti-IP3R1/2/3 (Santa-Cruz 

Biotechnology, sc-28613), rabbit polyclonal anti-beta actin (Abcam, ab8227). Membranes were 

then incubated, as appropriate, with goat anti-rabbit (1:5,000, Sigma-Aldrich) or goat anti-mouse 

(1:5,000, Sigma-Aldrich) HRP-conjugated secondary antibodies for 1 hr. Bands were visualized 

by an ImageQuant LAS 4000 imager (GE Healthcare) using peroxidase substrate for enhanced 

chemiluminescence (ECL Prime; Amersham). Levels of protein expression were quantified via 

densitometry analysis using ImageJ, and are expressed normalized to actin levels. 

2.2.7 Data processing and analysis. 

The peak change in fluorescence amplitude (ΔF) in each well was normalized to the basal 

fluorescence of that well before stimulation (F0) after subtraction of the camera black offset 

level. Mean ATP responses from triplicate wells were further normalized to the triplicate-

average ΔF/F0 of the ionomycin response from each corresponding cell line from the same plate 

to express the ATP-releasable Ca2+ pool as a proportion of the total cellular Ca2+ store content. 

To mitigate plate-to-plate and day-to-day variability, mean ATP/ionomycin responses for each 

cell line from individual wells were divided by the ATP/ionomycin ratio of a reference cell line 

(GM03440) (mean of triplicates) included on each plate. All data are presented as mean + 1 

s.e.m.. Mann-Whitney test was used to determine statistical significance of the findings.  
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OriginPro 2015 (Origin Lab Corp., Northampton, Massachusetts) was used for data analysis 

and graph plotting.  

2.3 Results 

2.3.1 Agonist-induced Ca2+ signaling is depressed in FXS and TS fibroblasts. 

To screen for defects in IP3-mediated signaling associated with ASD, I used a fluorometric 

imaging plate reader (FLIPR) to monitor cytosolic Ca2+ changes in fibroblasts (Table 2.5.1) 

loaded with the Ca2+-sensitive fluorescent indicator Fluo-8. Primary skin fibroblasts derived 

from five FXS males and five ethnicity- and age-matched unaffected male donors were grown to 

confluency on 96 well plates. Cells were stimulated by application of ATP to activate purinergic 

P2Y receptors (Fine, Cole, and Davidson 1989; Solini et al. 1999) and thereby evoke GPCR-

mediated intracellular Ca2+ release through IP3Rs. Recordings were made in Ca2+ -free 

extracellular solution to exclude complication from Ca2+ influx through plasmalemmal channels. 

Different concentrations of ATP were applied to individual wells containing FXS and matched 

control cells. Fig. 2.6.1a (top panel) illustrates representative results, showing smaller ATP-

evoked Ca2+ signals in FXS cells. To determine whether differences in ATP-evoked signals may 

result from differences in filling of ER Ca2+ stores, I recorded signals evoked in separate wells 

by application of 1 µM ionomycin in Ca2+ -free medium to completely liberate all intracellular 

Ca2+ stores (Fig. 2.6.1a, lower panel). No significant difference was observed between mean 

ionomycin-evoked Ca2+ signals in FXS and control cells (Fig. 2.6.1b), suggesting that there is no 

systematic defect in ER Ca2+ store filling in FXS cells. To normalize for differences in store 

content among different cell lines and experimental days, I expressed ATP-evoked signals as a 
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percentage of the ionomycin response obtained in parallel measurements in the same 96 well 

plate for each given cell line. Mean normalized Ca2+ signals evoked by 100 µM ATP were 

significantly depressed in all five FXS fibroblast lines in comparison with their matched controls 

(Fig. 2.6.1c). A similar depression was observed at lower concentrations of ATP, pooling data 

across all 5 FXS and control cell lines (Fig. 2.6.1d). These results were consistently reproducible 

across different experimental days and matched cell pairs (total of 12 paired trials).  

I further extended these findings to another genetic disorder with high co-morbidity with 

ASD, tuberous sclerosis (TS), caused by mutations in either of two distinct and independent 

genes – hamartin (TSC1) or tuberin (TSC2). Fig. 2.6.2 shows data obtained by FLIPR screening 

in the same way as performed for Fig. 2.6.1. Three cell lines derived from TS patients 

demonstrated a consistent and highly significant deficit in ATP-evoked Ca2+ signals as compared 

with matched controls (Figs. 2.6.2 a,b,c), but without any appreciable difference in intracellular 

Ca2+ store content as assessed by ionomycin application (Fig. 2.6.2a, lower panel). These 

findings were consistently replicated on different experimental days (total of 6 paired trials). 

The diminished Ca2+ signals in FXS and TS cells could result from lower expression levels 

of IP3R proteins. To investigate this, I performed western blot analysis on four cell lines selected 

as showing pronounced defects in Ca2+ signaling (FXS-2, FXS-4, TS1-B, and TS2), together 

with three matched control lines (Ctr-2, Ctr-3, Ctr-4), using antibodies specific to type 1, 2 and 3 

IP3Rs as well as a non type-specific antibody (Fig. 2.6.3a). My results showed an overall slight 

decrease in IP3R expression across all isotypes in FXS and TS cells relative to their matched 

controls (Fig. 2.6.3b). However, in all cases the depression of IP3R expression was much smaller 

than the corresponding depression of Ca2+ signaling as measured in the FLIPR experiments, and 
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there was little or no correlation between IP3R expression and Ca2+ signaling in the TS and FXS 

cells after normalizing relative to their matched controls (Fig. 2.6.3b).  

2.3.2 Optimizing and expanding the FLIPR assay to include CART subjects. 

For this part of the project, I decided to capitalize on a rich database of patients with sporadic 

ASD, as well as several forms of monogenic syndromes that were recruited through University 

of California Center for Autism Research and Translation (CART). All enrolled patients undergo 

a whole day of testing, including confirmation of the ASD diagnosis using a gold standard, 

Autism Diagnostic Observation Schedule (ADOS) test, deep phenotyping and genome-

sequencing. Before running the Ca2+ screening assay on the newly obtained fibroblast cultures, I 

sought to evaluate the extent to which factors including the source, culture initiation, and storage 

conditions of fibroblast cell lines might affect the FLIPR Ca2+ signaling results. The same patient 

who had previously provided cell line GM24529 to Coriell cell biorepository was enrolled and 

re-biopsied at CART. The resulting cell line (AU0239-0201) was derived from the same 

individual with a two-year interval between sampling. Cell cultures were initiated, maintained 

and stored independently either at CART, exactly as for all of the other sporadic ASD samples; 

or at the Coriell cell biorepository, as were a majority of syndromic ASD cell lines and all of the 

controls. When run simultaneously on the same plate, both cell lines demonstrated closely 

similar responses to ATP that were not statistically different when normalized to the ionomycin 

response (Fig. 2.6.4).  

Next I wanted to determine if CART sporadic ASD patients demonstrate a similar deficit in 

Ca2+ signaling as FXS and TS patients. Representative fluorescence traces illustrating ATP 
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responses in fibroblasts from two neurotypical controls and one with FXS, as well as one from 

an enrolled subject with typical, sporadic ASD are shown in Fig. 2.6.5a. The grey dashed line 

shows the fluorescence signal change upon addition of vehicle only. I quantified fluorescence 

signals as a ratio (ΔF/F0) of the fluorescence change (ΔF) at each well, after subtracting the 

change resulting from addition of vehicle alone, relative to the basal fluorescence (F0) before 

stimulation. Fig. 2.6.5b shows ΔF/F0 values (mean of measurements from three plotted replicate 

wells) from these cell lines in response to 100 µM ATP.  

Peak ionomycin response amplitudes, normalized to the basal fluorescence (ΔF/F0) from the 

same ASD and control cells as shown in Fig. 2.6.5d were closely similar in ASD and control cell 

lines. To account for any differences between individual cell lines in the Ca2+ store filling across 

different 96-well plates and different days and to keep the data consistent with the previous 

findings, I present all ATP-induced Ca2+ signals as a percentage of the ionomycin response 

evoked in parallel wells on the same plate (Fig. 2.6.5e). Ca2+ signals with amplitudes comparable 

to that evoked by ATP were obtained with 100 µM uridine triphosphate (UTP), an agonist that, 

like ATP, primarily activates P2Y receptors (Fig. 2.6.5f). 

In order to parse types of P2Y receptors responsible for the ATP-mediated Ca2+ release, I 

used several purinergic agonists. While UTP evoked a robust and consistent Ca2+ response (Fig. 

2.6.6a), diphosphates – adenosine diphosphate (ADP) and uridine diphosphate (UDP), and MRS 

2365, a selective P2Y1 agonist, all failed to evoke appreciable Ca2+ signals at concentrations of 

100 µM (Fig. 2.6.6). These data suggest that the receptors being activated by the FLIPR 

screening procedure are of the P2Y2, or a combination of P2Y4 and P2Y11, receptor class 

(Burnstock et al. 2016; Erb and Weisman 2012), concordant with reported expression of P2Y2 
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and P2Y4 in human dermal fibroblasts (Solini et al. 2003). 

In addition to normalizing ATP-evoked Ca2+ signals relative to ionomycin responses, I 

further sought to mitigate the day-to-day variability typical of high-throughput functional screens 

such as FLIPR (Elkins et al. 2013) by expressing ionomycin-normalized responses from each 

cell line as a percentage of the mean response in triplicate measurements from a “reference” cell 

line (the control line GM03440) included on the same plate. I chose this cell line as a reference 

because it demonstrated a robust Ca2+ response and had a low passage number (P4) at the time of 

deposition at Coriell cell biorepository, similar to the passage number (P5) at which CART-

derived cells were frozen down. Moreover, this line has been widely used in >20 published 

studies (Coriell 2016). Normalizing to the reference cell line reduced day-to-day variability in 

ATP-evoked Ca2+ responses among individual cell lines by an average of 38%, measured using 

three different cell lines each run on four independent days. For each run a mean value was taken 

from triplicates and the variability between runs was calculated as the coefficient of variation 

(CV: standard deviation divided by the mean across the four runs). Respective values of CV for 

the three lines before and after normalization were: 0.81/0.33 (59% reduction in variability); 

1.21/1.08 (11% reduction); 0.44/0.24 (45% reduction).  

2.3.3 ATP-evoked Ca2+ signals are depressed in fibroblasts from other monogenic and 

sporadic ASD subjects. 

Monogenic syndromes represent just a small fraction of all ASD cases, with the majority 

being sporadic, or polygenic (for a review, see (de la Torre-Ubieta et al. 2016)). To determine 

whether the IP3-signaling defect I observe is a common feature of ASD, or is unique to single-
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gene mutations, I decided to expand my observations to fibroblasts from subjects with sporadic 

forms of ASD as well as two further monogenic syndromes (Prader-Willi syndrome, PWS; and 

Rett syndrome, Rett). Fig. 2.6.7 presents ATP-evoked Ca2+ responses in fibroblasts from 

multiple sporadic ASD subjects as well as those from control, PWS, FXS, TSC and Rett 

syndromes, after normalizing each as a percentage of the Ca2+ response to the mean reference 

cell line included in each plate. Data points (dots) show measurements from individual subjects 

as means of triplicates; grey bars indicate means of N subjects with error bars showing ± 1 s.e.m. 

Consistent with my previous findings, ATP-evoked Ca2+ responses in cells from individuals with 

PWS and Rett were, on average, substantially reduced (to about 33% and 62%) as compared 

with the mean response in cells from control neurotypical individuals.  

Most importantly, the mean response from cell lines from sporadic ASD subjects was also 

considerably depressed relative to controls (Fig. 2.6.7). A majority of the ASD cells gave very 

small or no detectable responses, and all control cells gave responses above the mean of the ASD 

cells. One ASD cell line consistently gave remarkably discrepant ATP responses, with a mean 

amplitude close to that evoked by ionomycin (75%) and almost seven times greater than the 

control average (Fig. 2.6.7, circled data point). That subject was shown to carry a chromosomal 

deletion and for the present I exclude that cell line from the statistical analysis. The mean 

response of the remaining 22 cell lines from subjects with sporadic ASD was 28% ± 7% s.e.m. of 

the reference cell line as compared to 87% ± 14% for the controls; a reduction to about 31%. 

However, despite the smaller average response, Ca2+ signal amplitudes among the cell lines from 

subjects with sporadic ASD displayed a much wider spread than the controls, and six of the ASD 

subjects had cell responses that overlapped those of the controls. This high variability and 
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skewed, non-normal Gaussian distribution points to considerable heterogeneity of Ca2+ signaling 

among the cohort of sporadic ASD subjects.  

2.3.4 ROC curves discriminate between ASD subjects and controls. 

To assess the robustness of the difference between cell lines from subjects with sporadic 

ASD and controls, I generated receiver operating characteristic (ROC) curves (Fig. 2.6.8); a 

metric that is widely used to evaluate parameters to separate affected from unaffected individuals 

for diagnostic purposes (Metz 1978; Hanley and McNeil 1982). The ROC curve expresses the 

accuracy of a test in terms of two measures – sensitivity and specificity – in this case comparing 

the Ca2+ signaling assay against the ADOS assessment as a ‘gold standard’ for diagnosis of ASD. 

Thus, sensitivity refers to the proportion of subjects who are correctly identified by the assay as 

having ASD (true positive): a highly sensitive test best assures that affected people will be 

identified. Specificity refers to the true-negative rate: here, the proportion of subjects without 

ASD who are correctly identified as not having the condition. At any given Ca2+ signaling value, 

the sensitivity and the specificity are calculated from a ratio of people who are disease positive 

(true positive) or disease negative (false positive) at that threshold. For example, it is apparent 

from Fig. 2.6.7 that a low Ca2+ signal cutoff value would exclusively capture subjects with ASD, 

but would not capture all of the affected subjects. As the signaling cutoff is increased, more ASD 

subjects are captured, so the sensitivity increases, but the number of unaffected controls captured 

increases, thereby decreasing the specificity. The ROC curve therefore essentially describes the 

compromise between sensitivity and specificity of a test at varying threshold cutoff values. 
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After sorting all subjects by their Ca2+ signaling normalized to the reference cell line (as was 

done for Fig. 2.6.7), I generated an ROC curve by plotting sensitivity (true positive rate) against 

1-specificity (false positive rate) at each test value for individuals with syndromic ASD (FXS, 

TSC1 and TSC2, Rett and Prader-Willi syndromes) as shown in Fig. 2.6.8a. The area under the 

ROC curve (AUC) is a useful tool to compare the utility of a biomarker. It represents the overall 

probability that the correct diagnostic status (ASD vs unaffected in my case) will be accurately 

identified in a randomly chosen individual, with an AUC of 1 having a perfect predictive value 

and 0.5 being no better than random. The ROC generated for syndromic ASD resulted in a robust 

AUC of 0.86, a value considered an excellent discriminant in predicting disease status (Hosmer 

and Lemeshow 2000).  

Notably, my current cohort of subjects with sporadic ASD yielded an ROC curve (Fig. 

2.6.8b) closely resembling that of syndromic ASD, with a similar AUC of 0.83. An ROC curve 

pooling individuals with both syndromic and sporadic ASD (Fig. 2.6.8c) yielded an AUC of 

0.84. The similarity of my findings between sporadic ASD subjects and those with diverse 

monogenic syndromes suggests a common underlying signaling deficit across different forms of 

ASD. Using a cutoff value at 40% of the “reference” cell-normalized ATP-evoked Ca2+ signal 

achieved 73% sensitivity and 100% specificity for discriminating between pooled ASD subjects 

and controls, irrespective of their genetic background (Fig. 2.6.8c). These findings indicate that 

Ca2+ signaling may be a new promising biomarker target in ASD. 

 

2.3.5 IP3-induced Ca2+ release is reduced in FXS and TS cells. 

 The FLIPR screen is a high-throughput, low-resolution Ca2+ signaling assay that allows 
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investigation of many different cell lines at the same time, however, it provides little information 

on how those signals may be arising and what is the difference between individual cells’ 

responses. To discriminate whether the observed deficits in ATP-induced Ca2+ signals in ASD 

cell lines arose through defects in any of the intermediate steps from binding to purinergic GPCR 

receptors to generation of IP3, or at the level of IP3-mediated Ca2+ liberation itself, I 

circumvented upstream GPCR signaling by loading cells with a caged analogue of IP3 (ci-IP3) 

(Smith, Wiltgen, and Parker 2009). UV flash photolysis of ci-IP3 to photorelease physiologically 

active i-IP3 then allowed us to directly evoke Ca2+ liberation through IP3Rs in a graded manner 

by regulating flash duration and intensity to control the amount of i-IP3 that was photoreleased.  

I chose one cell line from a FXS patient and one cell line from a patient with TS. Fig. 2.6.9a 

illustrates images obtained by epifluorescence microscopy of FXS and control fibroblasts loaded 

with Fluo-8 and caged i-IP3 by incubation with membrane-permeant esters of these compounds. 

Fig. 2.6.9b shows superimposed fluorescence ratio (ΔF/Fo) traces measured from several 

representative FXS-2 (GM09497) and matched control Ctr-2 (GM02912) cells in response to 

uniform photolysis flashes. Concordant with my observations of defects in ATP-induced global 

Ca2+ signals, global cytosolic Ca2+ responses evoked by equivalent photorelease of i-IP3 in these 

FXS cells were smaller than in control cells (Fig. 2.6.9c); and displayed a longer time to peak 

(Fig. 2.6.9d) and slower rate of rise (Fig. 2.6.9e). Similar results were obtained from two other 

FXS-Ctr cell pairs (FXS-1/Ctr-1: 20.7±3.9/44.6±12.2 %ΔF/F0, FXS-3/Ctr-3: 

20.1±4.8/156.8±17.3). Moreover, I observed a consistent proportional depression of Ca2+ signals 

for different relative UV flash strengths corresponding to photorelease of different i-IP3 

concentrations (25% flash strength, pooled FXS response 61% of control; 50% flash, 65% of 
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control; 100% flash, 74% of control: n = 13-17 cells for each flash duration). 

TS cells also showed depressed and slowed Ca2+ responses to photoreleased i-IP3. 

Measurements from the matched TS1-B (GM06149) and Ctr-3 Ctr-3 (GM03440) cell lines (Fig. 

2.6.9f) revealed a pronounced deficit in average Ca2+ signal amplitudes (Fig. 2.6.9g); and again 

the time to peak was lengthened (Fig. 2.6.9h) and the rate of rise slowed (Fig. 2.6.9i). These 

differences were apparent employing two different relative UV flash strengths (15% flash 

strength, TS response 18% of control; 25% flash, 20% of control: n = 13-15 cells for each flash 

duration). 

2.3.6 IP3 signaling is affected at the level of local events. 

IP3-mediated cellular Ca2+ signaling is organized as a hierarchy, wherein global, cell-wide 

signals, such as those discussed above, arise by recruitment of local, ‘elementary’ events 

involving individual IP3R channels or clusters of small numbers of IP3Rs (Yao and Parker 1993; 

Yao, Choi, and Parker 1995). I therefore imaged these elementary events to elucidate how 

deficits in the global Ca2+ signals in FXS and TS cells may arise at the level of local IP3R 

clusters. I selected one FXS (FXS-3) fibroblast line, one TS1 (TS1-B) line, and a common 

control (Ctr-3) cell line matched to both. Ca2+ release from individual sites was resolved utilizing 

total internal reflection fluorescence (TIRF) microscopy of Cal-520 (a Ca2+ indicator that was 

shown to be superior to Fluo-8 in detecting local Ca2+ signals (Lock, Parker, and Smith 2015)), 

in conjunction with cytosolic loading of the slow Ca2+ buffer EGTA to inhibit Ca2+ wave 

propagation (Dargan and Parker 2003). This technique captures in real time the duration and 

magnitude of the underlying Ca2+ flux, providing a close approximation of the channel gating 
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kinetics as would be recorded by electrophysiological patch-clamp recordings (Parker and Smith 

2010). Ca2+ release evoked by spatially uniform photolysis of ci-IP3 across the imaging field was 

apparent as localized fluorescent transients of varying amplitudes, arising at numerous discrete 

sites widely distributed across the cell body (Fig. 2.6.10a). Representative fluorescence traces 

illustrating responses at several sites (marked by large circles in Fig. 2.6.10a) are shown in Fig. 

2.6.10b; and Figs. 2.6.10c,d respectively illustrate the time course and spatial distribution of 

selected individual events.  

To quantify differences in elementary Ca2+ events between the cell lines I utilized a custom-

written, automated algorithm (Ellefsen et al. 2014) to detect events and measure their amplitudes 

and durations (Fig. 2.6.10e) A striking difference between control and ASD lines was apparent in 

the numbers of detected sites, with control cells showing on average 97 sites per imaging field, 

whereas FXS and TS cells showed only 12 and 29 sites, respectively (Fig. 2.6.11a). However, 

this could be a secondary effect of under-counting the number of release sites with very small 

Ca2+ release. The mean frequency of events per site appeared higher in control cells than in both 

FXS and TS cells (Fig. 2.6.11b), but quantification was imprecise because many sites, 

particularly in the FXS and TS cells, showed only a single event. Using the latency between the 

UV flash and first event at each site as an alternative measure of the probability of event 

initiation (Dickinson, Swaminathan, and Parker 2012; Shuai et al. 2007) showed no significant 

difference among FXS, TS and control cell lines (Fig. 2.6.11c). Mean event amplitudes were also 

similar among the three cell lines (Fig. 2.6.11d). A second key difference between the control 

and FXS and TS cells was apparent in the durations of the local events. In all cell lines event 

durations were statistically distributed as single-exponentials, as expected for stochastic events. 
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However, the time constants fitted to these distributions were appreciably shorter in FXS and TS 

cells as compared with control cells (Fig. 2.6.11e).  

2.4 Discussion 

I report abnormalities of IP3-mediated Ca2+ signaling in several distinct genetic models that 

display high co-morbidity with ASD – FXS, two genetically-distinct forms of TS (TS1 and TS2), 

Rett, and PWS. I also extend those findings to reveal a corresponding deficit in IP3-mediated 

Ca2+ release in cells from subjects with sporadic ASD, where each subject likely carries a unique 

sampling of genetic risk alleles. Ca2+ responses evoked by agonist stimulation of GPCR-

mediated IP3 signaling were significantly smaller in fibroblasts derived from subjects with ASD, 

as compared with matched control cell lines. By using a high throughput assay to measure Ca2+ 

signals evoked by ATP in fibroblasts from subjects with ASD and controls, I was able to derive 

an ROC curve that can discriminate subjects with ASD from unaffected controls with high 

sensitivity and specificity. Notably, this approach identifies subjects with highly heterogeneous 

sporadic forms of ASD as well as a spectrum of homogeneous monogenic syndromes caused by 

“major effect” mutations, and does so similarly well with both, pointing to a common signaling 

defect in the ubiquitous IP3-mediated Ca2+ signaling pathway. Even though the number of 

subjects used in this study was modest and the results need to be replicated with larger cohorts of 

ASD subjects and neurotypical controls, it serves as a proof of principle for the prospective 

utility of such testing. 

 In contrast, I found no significant differences in Ca2+ liberation evoked by application of the 

Ca2+ ionophore ionomycin, indicating that the diminished responses to IP3 do not result from 
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diminished ER Ca2+ store content. Moreover, Ca2+ signals evoked by intracellular uncaging of i-

IP3 were depressed in FXS and TS cell lines, pointing to a deficit at the level of Ca2+ liberation 

through IP3Rs and not solely because of diminished GPCR-mediated production of IP3. Finally, I 

conclude that the depression of Ca2+ signals cannot be attributed entirely or substantially to 

reduced expression of IP3R proteins, because mean agonist-evoked Ca2+ responses across four 

FXS and TS lines were about 22% of matched controls, whereas western blots showed mean 

IP3R levels to be about 80% of controls and uncorrelated with the extent of Ca2+ signaling 

depression in these different cell lines.  

By resolving Ca2+ liberation during ‘elementary’, local signals evoked by photoreleased IP3 

(Yao, Choi, and Parker 1995), I further demonstrate that defects in global Ca2+ signaling in these 

distinct ASD-associated models are reflected at the level of Ca2+ release through individual and 

small clusters of IP3Rs. In both FXS and TS cell lines I observed fewer sites of local Ca2+ release 

as compared to a control cell line, and the durations of these events were shorter. Because 

functional sites are comprised of clusters of small numbers of individual IP3Rs, the amplitude of 

the fluorescence signal at a site depends on the channel permeability, together with the number 

of active channels in the cluster (Yao, Choi, and Parker 1995). I observed similar amplitudes of 

local Ca2+ signals across the cell lines, suggesting that the Ca2+-permeation properties and cluster 

organization of IP3Rs are not appreciably affected in FXS and TS. However, the shorter average 

duration of local events points to a modulation of IP3R gating kinetics, and would lead to an 

overall decrease in amount of Ca2+ released over time. Compounding this, I found the numbers of 

local Ca2+ release sites within a cell to be dramatically lower in FXS and TS cells as compared 

with control cells (respectively, 87% and 70%), although it is possible that the short duration 
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events observed in the mutants may have contributed to undercounting their release sites. Taken 

together, these findings on local IP3-mediated Ca2+ signals indicate that the deleterious effects of 

single gene mutations are manifest at the level of the functional channel gating of IP3Rs.  

Fibroblasts are primary, untransformed cells that are readily obtained by skin biopsy. A 

patient-derived, cell-based assay such as I describe here has potential as a biomarker for early 

detection of children susceptible to ASD, before behavioral symptoms appear and when an 

earlier intervention has a better chance of improving outcome (Anderson, Liang, and Lord 2014; 

MacDonald et al. 2014). Although several blood-based biomarkers with high specificity and 

sensitivity have been proposed for ASD (Zaman et al. 2016; Pramparo et al. 2015; West et al. 

2014), they are not currently suitable for high-throughput screening, and may be subject to 

alteration due to medication regimen, diet, lifestyle changes or other variables that would 

potentially complicate the read-out.  

The current practice of testing new ASD treatments in biologically and behaviorally 

heterogeneous populations of ASD subjects is widely acknowledged to impede the identification 

of new drugs that would be effective in only a specific subgroup of “responders” (Berry-Kravis 

et al. 2012; Lozano, Martinez-Cerdeno, and Hagerman 2015). Therefore, there is hope that a set 

of biomarkers could independently stratify patient populations into distinct, biologically 

meaningful endophenotypes (Loth et al. 2016) to enable more robust clinical trials. Although 

limited to a modest cohort of subjects, my results already hint at such a stratification of Ca2+ 

signal amplitudes among sporadic ASD subjects, which exhibit a much greater spread of 

signaling responses than controls, with a majority giving almost no response whereas others 

exhibit signals overlapping the control range. 
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2.5 Tables 

Table 2.5.1 Skin fibroblast information for ASD subjects and controls.  

Controls are defined as apparently healthy individuals without any known 

neurodevelopmental disorders (Coriell cell biorepository). Cell lines starting with “GM#” were 

purchased from the Coriell cell biorepository; cell lines starting with “AU#” were established by 

UCI CART. The ASD diagnosis was established based on the results of administered appropriate 

version of ADOS. PDD-NOS = Pervasive Developmental Disorder-Not Otherwise Specified. 

Ca2+ signals are presented as percentage of the reference cell line (GM03440). 

 

ID Sex Age Ethnicity Status Ca2+ signal ID Sex Age Ethnicity Status Ca2+ signal ID Sex Age Ethnicity Status Ca2+ signal

Monogenic  ASD Sporadic ASD Control

GM09497 M 28 Caucasian FXS 33.4 AU0001-0201 M 29 Caucasian Autism 82.5 GM00498 M 3 N/A Healthy 104.8
GM05848 M 4 Caucasian FXS 10.8 AU0027-0201 F 24 Caucasian Autism 115.5 GM01863 M 46 Caucasian Healthy 58.5
GM05185 M 26 Caucasian FXS 11.7 AU0027-0202 M 21 Caucasian Autism 22.9 GM02185 M 36 Caucasian Healthy 107.8
GM05131 M 3 Caucasian FXS 25.3 AU0078-0202 F 36 Caucasian Autism 96.3 GM02912 M 26 Caucasian Healthy 64.3
GM04026 M 35 Caucasian FXS 31.4 AU0120-0202 M 15 Asian Autism 24.2 GM03440 M 20 Causasian Healthy 100.0
GM04024 M 29 Black FXS 113.0 AU0197-0201 M 17 Hispanic PDD-NOS 38.9 GM04505 F 20 N/A Healthy 110.6
GM21890 M 19 N/A PWS 82.7 AU0197-0202 F 14 Hispanic PDD-NOS 22.6 GM05659 M 1 Caucasian Healthy 40.8
GM16548 F 5 Caucasian RETT 34.2 AU0236-0203 F 12 Caucasian Autism Spectrum 7.2 GM07492 M 17 Caucasian Healthy 44.7
GM07982 F 25 Caucasian RETT 75.6 AU0237-0201 F 13 Caucasian Autism 686.6 GM07753 M 17 N/A Healthy 214.6
GM06149 M 17 Caucasian TSC1 49.2 AU0239-0201 F 16 Caucasian Autism 21.3 GM08399 F 19 N/A Healthy 62.9
GM06148 M 43 Caucasian TSC1 34.3 AU0239-0203 F 6 Caucasian Autism Spectrum 0.5 GM23973 M 19 Caucasian Healthy 42.7
GM06121 M 22 Caucasian TSC2 22.8 AU0243-0201 M 2 Caucasian Autism 0.5 GM23976 M 22 Caucasian Healthy 93.0

AU0240-0203 M 12 Caucasian PWS 2.4 AU0245-0201 F 20 Caucasian Autism 68.4
AU0244-0201 M 19 Caucasian PWS 24.8 AU0245-0202 F 18 Caucasian Autism Spectrum 28.0
AU0250-0202 M 11 Caucasian PWS 16.4 AU0249-0202 F 10 Caucasian Autism 16.7

AU0251-0202 M 8 Hispanic Autism 40.6
AU0251-0203 M 5 Hispanic Autism 22.8
AU0252-0201 M 4 Asian Autism 20.6
AU0254-0201 M 5 Hispanic Autism Spectrum 0.3
AU0254-0202   F 3 Hispanic Autism 0.3
AU0256-0201 M 5 Caucasian Autism 0.2
AU0256-0202 M 3 Caucasian Autism 0.1
AU0257-0202 M 3 Asian Autism 1.2
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2.6 Figures 

Figure 2.6. 1 Ca2+ responses to extracellular application of ATP in Ca2+-free solution 

are depressed in human skin fibroblasts from FXS patients as compared with 

matched controls. 

 (a) Representative FLIPR traces showing response to various concentrations of extracellular 

ATP (top panel) and to the Ca2+ ionophore ionomycin (lower panel) in control (Ctr) and FXS 
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cells loaded with the Ca2+ indicator Fluo-8. Traces show fluorescence in arbitrary units, and 

each recording was obtained from a separate well. (b) Peak Ca2+ responses to 1 µM ionomycin 

in five control and five FXS cell lines. Bars show mean and s.e.m. of triplicate measurements. 

(c) Cells from five FXS cell lines (grey bars) and matched controls (black bars) were stimulated 

with 100 µM ATP in Ca2+-free solution to stimulate Ca2+ release from intracellular Ca2+ stores. 

Recordings were performed in triplicate, averaged, and normalized with respect to 

corresponding ionomycin responses in Ca2+-free solution. n=3 in each group. (d) Normalized 

Ca2+ responses to various concentrations of ATP derived by combining results from 5 FXS and 

5 matched controls. All data in this and following figures are presented as mean ± s.e.m.; * = p-

value <0.05; ** = p <0.01 calculated from a two-sample Student’s t-test. 

Cell line numeration corresponds to Coriell IDs as follows: FXS-1 (GM05848), Ctr-1 

(GM00498), FXS-2 (GM09497), Ctr-2 (GM02912), FXS-3 (GM05185), Ctr-3 (GM03440), 

FXS-4 (GM04026), Ctr-4 (GM02185), FXS-5 (GM05131), Ctr-5 (GM05659). 
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Figure 2.6. 2 Ca2+ responses to extracellular application of ATP in Ca2+-free solution 

are strongly depressed in human skin fibroblasts from TS1 and TS2 patients 

compared with matched controls. 

 (a) Representative FLIPR traces showing response to various concentrations of extracellular 

ATP (top panel) and to the Ca2+ ionophore ionomycin (lower panel) in control (Ctr) and TS cells 

loaded with the Ca2+ indicator Fluo-8. (b) Peak Ca2+ responses to 1 µM ionomycin in three 

control and three TS cell lines. Bars show mean and s.e.m. of triplicate measurements. (c) Three 

cell lines from TS patients (grey bars) and matched controls (black bars) were stimulated with 
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100 µM ATP in Ca2+-free solution to stimulate Ca2+ release from intracellular Ca2+ stores. 

Recordings were performed in triplicate, averaged, and normalized with respect to corresponding 

ionomycin responses in Ca2+-free solution. (d) Normalized Ca2+ responses to various 

concentrations of ATP derived by combining results from three TS and three matched controls. 

n=3 replicates in each group. All data in this and following figures are presented as mean ± 

s.e.m.; * = p-value <0.05; ** = p <0.01 calculated from a two-sample Student’s t-test.  

Cell line numeration corresponds to Coriell IDs as follows: FXS-1 TS1-A (GM06148), Ctr-6 

(GM01863), TS1-B (GM06149), Ctr-3 (GM03440), TS2 (GM06121), Ctr-2 (GM02912). 
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Figure 2.6. 3 IP3R protein level expression in FXS, TS and control cells.  

(a) Representative immunoblots of IP3R proteins in skin fibroblast cell lines FXS-2, Ctr-2, 

FXS-4, Ctr-4, TS1-B, Ctr-3 and TS2. Aliquots of protein lysates from cell lines grown in 

triplicates were subjected to SDS-tris-acetate electrophoresis and then immunoblotted with the 

indicated antibodies. All IP3R bands ran at a molecular mass of about 270 kD. Actin was used a 

loading control. The leftmost lane typically showed weak transfer onto the blot, and was 

excluded from quantitative analysis. (b) Scatter plot showing IP3R expression levels in TS and 

FXS cell lines determined by western blotting versus the mean ATP-evoked Ca2+ signals in 

these cells relative to matched control cells. Different symbols represent different cell lines 

(TS2, downward arrow; TS1-B, circle; FXS-2, upward arrow; and FXS-4, square), and different 

colors represent IP3R expression levels as determined using antibodies for type 1 (black), type 2 

(red), type 3 (blue) IP3Rs, and a non type-specific antibody (green). All data are normalized 

relative to matched control cells. Solid lines are regression fits to data for IP3R1 (black), IP3R2 

(red), IP3R3 (blue), and total IP3Rs (green). The grey dashed line represents a one-to-one 

relationship between normalized Ca2+ signal and normalized IP3R expression.  

Cell line IDs correspond to Coriell numeration as follows: FXS-2 (GM09497), Ctr-2 

(GM02912), Ctr-3 (GM03440), FXS-4 (GM04026), Ctr-4 (GM02185), TS1-B (GM06149), TS2 

(GM06121). 
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Figure 2.6. 4 Ca2+ response in two different fibroblast cell lines derived from the 

same patient. 

 (a) Peak amplitude (ΔF) Ca2+ response to 100 µM ATP normalized to the basal fluorescence 

(F0) before stimulation. The data were calculated by subtracting vehicle addition peak response 

from peak trace value of each corresponding cell line. Bar graphs show mean of triplicate 

measurements. The cell line GM24529 was established by Coriell cell biorepository (Camden, 

New Jersey). The same patient was re-biopsied at CART, UC Irvine, and a cell culture 

(AU0239-0201) was established from an explant. Both cell lines were thawed from a liquid 

nitrogen long-term storage, passaged and plated for high-throughput Ca2+ signaling in parallel. 

(b) Peak amplitude Ca2+ response to 1 µM ionomycin normalized to the basal fluorescence 

before stimulation. (c) Peak ATP response for each cell line from (a) normalized to that of 

ionomycin response from (b). Bar graphs show mean of triplicate measurements from 

individual wells. Data points represent individual triplicate responses. 
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Figure 2.6. 5 Representative Ca2+ responses to extracellular application of 

purinergic agonists and ionomycin in absence of extracellular Ca2+ in fibroblasts 

from ASD subjects and controls. 

(a) Representative FLIPR traces showing changes in Fluo-8 fluorescence over the basal 

fluorescence (ΔF/F0) in response to extracellular application of 100 µM ATP to fibroblast cell 

lines from two controls (black; GM03440 and grey; GM02912), one FXS (red; GM09497) and 

one sporadic ASD subject (green; AU0027-0202). Fluorescence changes ΔF are presented as a 

% change from the basal fluorescence F0. The grey dashed line represents the artifactual 

fluorescence change resulting from addition of vehicle alone to the ASD cell line. (b) Peak 
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amplitudes (ΔF) of Ca2+ responses to 100 µM ATP normalized to the basal fluorescence (F0) 

before stimulation in control cell lines (black and grey), FXS (red) and a sporadic ASD line 

(green). Bar graphs show mean of triplicate measurements after subtracting the artifactual signal 

resulting from addition of vehicle alone to each corresponding cell line. Data points represent 

individual triplicate responses. (c) Representative FLIPR traces showing changes in 

fluorescence over the basal (ΔF/F0) in response to extracellular application of 1 µM ionomycin 

to control (black and grey traces), FXS (red) and ASD (green) cell lines. (d) Mean peak Ca2+ 

responses (ΔF) to 1 µM ionomycin normalized to the basal fluorescence (F0) before stimulation 

in control cell lines (black and grey), FXS line (red) and an ASD line (green). Bar graphs show 

mean of triplicate measurements. Data points represent individual triplicate responses. (e) Mean 

peak ATP responses for each cell line from (b) expressed as a percentage of the mean 

ionomycin response from (d) in that cell line. (f) Mean peak responses evoked by addition of 

100 µM UTP to each cell line as a percentage of the of ionomycin response for that cell line. 
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Figure 2.6. 6 Representative Ca2+ responses to extracellular application of different 

purinergic receptor agonists in absence of extracellular Ca2+ in fibroblasts from 

control and ASD patients. 

(a) Representative FLIPR traces showing change in fluorescence over the basal (ΔF/F0) in 

response to extracellular application of 100 µM UTP in control (black and grey traces), FXS 

(red) and sporadic ASD (green) cells loaded with the Ca2+ indicator Fluo-8. Grey dashed line 

represents fluorescence response of the ASD line to a vehicle addition alone. Ca2+-free buffer 
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contains 1 mM EGTA. (b) Representative FLIPR traces showing insignificant response to 

extracellular application of 100 µM ADP. Color legend is the same as in (a). (c) Representative 

FLIPR traces showing minimal response to extracellular application of 100 µM UDP. (d) 

Representative FLIPR traces showing response to extracellular application of 100 µM MRS 

2365.  
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Figure 2.6. 7 Ca2+ response in fibroblasts from subjects with sporadic ASD as well as 

from controls and those with syndromic ASD. 

Average Ca2+ response in skin fibroblasts from unaffected neurotypical controls (Ctr), Prader-

Willi syndrome (PWS), fragile X syndrome (FXS), tuberous sclerosis syndrome 1 and 2 (TSC), 
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Rett syndrome (Rett) and from subjects with sporadic ASD (ASD). N below each cell line 

represents number of individuals tested. The star symbol represents the reference control cell 

line (GM03440). Peak Ca2+ response (ΔF/F0) divided by the peak ionomycin response (ΔF/F0) 

was normalized to the mean value of the reference cell line (GM03440) run on the same FLIPR 

plate. Bar graphs show mean +/- s.e.m. for each group. Data points represent responses from an 

individual. Circled data point (AU0237-0201) was excluded from the average and statistics. * = 

p-value < 0.05, *** = p < 0.001, Mann-Whitney test. 
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Figure 2.6. 8 Receiver operating characteristic (ROC) curves for ATP-evoked Ca2+ 

signaling in ASD. 

(a) ROC curve results for syndromic ASD cell lines (N=15) and unaffected neurotypical 

controls (N=12). Sensitivity (the true-positive rate) was plotted against (1-specificity) (the false-

positive rate) for each value of Ca2+ signaling response normalized to a reference control cell 

line (the data are the same as in Fig. 2.6.7). Only subjects with known identified genetic 

syndromes co-morbid with ASD (FXS (N=6), Rett (N=2), PWS (N=4), TSC (N=3)) were used 

to generate the curve. Area under the curve (AUC) is shown in each graph. (b) ROC curve 

results for sporadic ASD subjects (N=23) and unaffected neurotypical controls (N=12). (c) ROC 

results for Ca2+ signaling in sporadic and syndromic ASD cohorts combined from (a) and (b). 

Numbers in % reflect Ca2+ signaling cutoff values (presented as % of the reference cell line) to 

illustrate how different threshold values influence specificity and sensitivity of the ROC curve. 
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Figure 2.6. 9 Ca2+ release evoked by photoreleased IP3 is depressed in FXS and TS 

cells.  

(a) Representative frames taken from image sequences of control (top) and FXS fibroblasts 

(bottom) loaded with Fluo-8 and stimulated by photorelease of i-IP3. Increasing cytosolic 

[Ca2+] (increasing fluorescence ratio %F/F0) is depicted on a pseudocolor scale, as indicated 

 



   
 

	

	

65 

by the color bar. Time-stamps indicate time from beginning of the record; the photolysis flash 

was delivered at 3 s. The monochrome panels on the left show resting fluorescence before 

stimulation to indicate cell outlines. (b) Superimposed traces of representative global single-

cell Ca2+ responses to uncaging of i-IP3 in FXS (red) and control fibroblasts (black). Traces 

represent average fluorescence ratio signals (%F/Fo) throughout regions of interest 

encompassing the whole cell. Arrow indicates time of the UV flash. Data are from the cell 

pair labeled as FXS-2/Ctr-2 in Fig. 2.6.1c. (c) Mean peak amplitude of Ca2+ responses is 

significantly depressed in FXS cells relative to matched controls. (d) Mean latency from time 

of photolysis flash to peak IP3-evoked Ca2+ response is prolonged in FXS fibroblasts. (e) 

Mean rate of rise of Ca2+ fluorescence signal (peak amplitude / time to peak) is reduced in 

FXS cells as compared with control cells. Data in (c-e) are from 13 control cells and 14 FXS 

cells. (f-i) Corresponding traces (f), and mean values of amplitude (g), latency (h) and rate of 

rise (i) derived from cells labeled as Ctr-3 and TS1-B in Fig. 2.6.2c. Data are from 11 TS cells 

and 12 matched controls. 
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Figure 2.6. 10 Local IP3-evoked Ca2+ events.  

(a) Resting Cal-520 fluorescence of a control fibroblast (b) (outlined) imaged by TIRF 

microscopy. Circles mark all sites where Ca2+ release events were identified within a 40 sec 

imaging record following photorelease of i-IP3 in a 128 x 512 pixel (20.48 x 81.92 µm) imaging 

field. Larger circles mark sites from which traces in (b) were obtained. Representative traces 
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from sites numbered in (a). Dots underneath the traces mark events arising at that particular site; 

unmarked signals represent fluorescence bleed-through from events localized to adjacent but 

discrete sites. Arrow indicates the timing of the UV flash. (c) Examples of individual events 

shown on an expanded timescale to better illustrate their kinetics. (d) Surface intensity plot of 

three individual puffs near their peak times. (e) A single Ca2+ event shown on an expanded scale 

to illustrate measurements of peak amplitude and event duration (tauo) at half-maximal 

amplitude.  
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Figure 2.6. 11 IP3-mediated Ca2+ signaling in FXS and TS fibroblasts is impaired at 

the level of local events.  

Data are from 17 FXS-3 cells, 17 TS1-B cells, and 16 control cells (Ctr-3) matched to both 

experimental groups. Open black squares in a-d represent mean measurements from individual 
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cells; histograms and error bars are overall means + 1 s.e.m. across all cells in each group. (a) 

Total numbers of Ca2+ release sites detected within cells during 40 s imaging records following 

uniform photorelease of i-IP3. (b) Mean event frequency per site, calculated from the number of 

events observed per site throughout the recording period. (c) Mean latencies following the 

photolysis flash to the first event at each site within a cell. (d) Mean amplitudes of all events 

within each cell. (e) Distributions of event durations (at half maximal amplitude) derived from 

all events identified in FXS (open diamonds), TS (stars) and control cells (black squares). The 

data are fit by single-exponential distributions with time constants to of 15 ms (both FXS and 

TS) and 32 ms (control). Outcomes were compared using two-sample Mann-Whitney test. * = 

p-value <0.05; ** = p <0.01, n/s – non-significant. 
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Chapter 3. IP3-mediated Ca2+ signaling in central nervous system and peripheral tissue 

cells from a mouse model of FXS  

3.1 Introduction 

My previous findings described in Chapter 2 provide strong evidence that Ca2+ release 

through IP3Rs is decreased in skin fibroblasts from human patients with monogenic models and 

sporadic forms of ASD. Given crucial roles played by IP3-mediated Ca2+ release in the brain, I 

wanted to investigate if the same signaling abnormality is present in neurons.  

The IP3R is a key signaling hub in the canonical metabotropic glutamate receptor (mGluR) 

pathway in neurons (Inoue et al. 1998; Berridge 1993). Although a complex array of downstream 

signals (Lüscher and Huber 2010) arising from mGluR activation has been previously reported in 

FXS (Bear, Huber, and Warren 2004; Repicky and Broadie 2009; Nakamoto et al. 2007), the role 

of downstream Ca2+ release at the level of IP3Rs in ASD has not been determined at a molecular 

level.  

The role of mGluR signaling gained a lot of attention when Mark Bear at Massachusetts 

Institute of Technology postulated a “mGluR theory of Fragile X” (Bear, Huber, and Warren 

2004). This theory postulates that disrupted mGluR signaling underlies the pathogenesis of the 

disorder, and that hyperactivation of the group 1 mGluR receptors phenocopies a wide array of 

biological landmarks of FXS. As a continuation of my previous work, I wanted to expand my 

findings on molecular deficits in IP3-mediated Ca2+ signaling in humans with FXS to investigate 

if metabotropic signaling in the mouse model of FXS also manifests in decreased Ca2+ release 

from the ER. 
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3.2 Materials and Methods 

3.2.1 Materials. 

DMEM (cat. # 11995-065) was purchased from Life Technologies, Neurobasal-A (cat. # 

12349-015), B-27 supplement (cat. # 17504-044) and GlutaMax (cat. # 35050-061) were from 

Gibco/Thermo Fisher Scientific. 2.5% Trypsin (cat. # 25-054CI) was from Cellgro. DNase (cat. 

# D4527-10KU) was from Sigma-Aldrich. NPEC-caged-(1S,3R)-1-Amino-1,3-

dicarboxycyclopentane (ACPD; cat. # 3331), (RS)-α-Methyl-4-carboxyphenylglycine (MCPG; 

cat. # 0336) were from Tocris. Fluo-8AM, Cal-520AM and Cal-630AM were purchased from 

AAT Bioquest, diluted in DMSO/Pluronic to a stock concentration of 2 mM and frozen until 

needed. Adenosine triphosphate (ATP) was purchased from Sigma Aldrich, diluted in water to a 

stock concentration of 100 mM and frozen as 50 µl aliquots until needed. Ionomycin was 

purchased from Life Technologies, diluted in DMSO to 1 mM and frozen as 10 µl aliquots until 

needed. GCaMP6f was obtained from the University of Pennsylvania Vector Core (Chen et al. 

2013). 

3.2.2 Postnatal neuronal cultures. 

All experiments were performed in accordance with and approved by the Institutional 

Animal Care and Use Committee (IACUC) at the University of California, Irvine. FVB.129P2-

Pde6b+ Tyrc-ch Fmr1tm1Cgr/J mice were used. Females heterozygous for the FMR1 gene were bred 

with wild type males to generate male littermates that were either hemizygous or wild-type for 

the FMR1 gene. Postnatal day 0-2 male mouse pups were used to initiate cortical 
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neuron/astrocyte co-cultures. On the day of the dissection, mouse pup tails were cut for 

genotyping, and male pups that were either wild-type or knockout for FMR1 gene were used. 

Primers were ordered from Integrated DNA Technologies: FXS primer: 5’-CAC GAG ACT 

AGT GAG ACG TG-3’ (forward), WT primer: 5’-TGT GAT AGA ATA TGC AGC ATG TGA-

3’ (forward). 

Brains were dissected in ice-cold dissection media (4.2 mM NaHCO3, 1 mM pyruvate, 20 

mM HEPES, 5.33 mM KCl, 0.44 mM KH2PO4, 137 mM NaCl, 0.33 mM Na2HPO4*7H2O, 5.55 

mM d-glucose, adjusted pH to 7.3.), and meninges were carefully removed. Cortices were 

dissected, minced and placed into 450 µl of ice-cold dissection media. 50 µl of pre-warmed 2.5% 

trypsin was added, and the mixture was incubated at 370C for 15 minutes. 20 µl of DNase was 

added to the mixture and incubated for additional 5 minutes. 1 ml of the plating media was added 

to inactivate the trypsin, and after the brain tissues settled to the bottom, the media was carefully 

aspirated. Brain tissue was re-suspended in 1 ml of plating media and triturated with three fire-

polished glass Pasteur pipettes with decreasing size 8-10 times to dissociate the cells. After cells 

were transferred to 50 ml conical tubes using a strainer, they were plated at 60,000/well in 0.5 ml 

plating media in the center part of a 35 mm glass bottom dish that was pre-treated with 0.1 

mg/ml poly-d-lysine for 1 hour.  

In 2-4 hours, the plating media was carefully aspirated and replaced with 2 ml of the 

maintenance media. 1 ml of media was changed twice a week. Neuronal cultures were used 

between day 14 and day 21 in vitro.  
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3.2.3 Mouse fibroblast cultures. 

Postnatal day 0-2 male mouse pups were euthanized through decapitation. A section of skin 

from a flank was placed in ice-cold dissection media and cut into 1 mm pieces. 4-6 pieces of skin 

were placed into each well of a gelatin-coated 6-well plate. 200 µl DMEM + 10% FBS were 

carefully added to each well and explants were allowed to attach to the bottom of the well before 

adding additional 2 ml of media. Proliferating fibroblasts grow out of the explants and on 

average reach confluency after 7-10 days in culture before being harvested in Ca2+- and Mg2+-

free 0.25% trypsin-EDTA (Life Technologies) and sub-cultured at 1:4 ratio. Fibroblasts were 

cultured in Dulbecco’s Modified Eagle’s Media (Gibco, 11965-092) supplemented with 10% 

(v/v) fetal bovine serum with penicillin/streptomycin at 37 °C in a humidified incubator gassed 

with 95% air and 5% CO2, and used for up to 10 passages. For Ca2+ signaling studies, cells were 

detached with Ca2+- and Mg2+-free 0.25% trypsin-EDTA, harvested in normal growth media and 

sub-cultured on FLIPR 96 well plates for 2 days to provide standardized conditions prior to 

imaging studies.  

3.2.4 Single-cell Ca2+ imaging. 

Neuronal/astrocytic co-cultures grown in glass-bottomed 35 mm imaging dishes were loaded 

for imaging using membrane-permeant esters of Cal-520. Briefly, cells were incubated at room 

temperature in ACSF (1.8 mM CaCl2, 140 mM NaCl, 5 mM KCl, 0.5 mM MgCl2, 0.4 mM 

MgSO4, 0.4 mM KH2PO4, 0.6 mM Na2HPO4, 3 NaHCO3, 10 mM glucose, 10 mM HEPES, 

adjusted to pH 7.35 with NaOH) containing 4 µM Cal-520 AM for 45 minutes before washing 

three times with the ACSF solution. [Ca2+]i changes were imaged using a Nikon Eclipse 
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microscope system with a 40x (NA=1.30) oil objective controlled by Nikon NIS Elements 

software. Cal-520 ot GCaMP6f fluorescence was excited by 488 nm laser light, and emitted 

fluorescence (l > 510 nm) was imaged at 30 frames sec-1 using an electron-multiplied CCD 

Camera iXon DU897 (Andor). An arc lamp was used to emit a single flash of UV light (350-

400 nm) focused to uniformly illuminate a region slightly larger than the imaging field to uncage 

the extracellular caged agonist ACPD, which evoked activity persisting for tens of seconds. 

Image data were acquired as stack .nd2 files using Nikon Elements for offline analysis. 

Fluorescence signals were expressed as a ratio (ΔF/F0) of change in fluorescence (ΔF) relative to 

the mean resting fluorescence at the same region before stimulation (F0). Measurement outcomes 

were tested for statistical significance using the Mann-Whitney non-parametric test.  

A Hamamatsu W-View Gemini beam splitter was used for simultaneous Cal-630 and 

GCaMP6f recordings. Cal-630 fluorescence was excited by 561 nm laser light, and GCaMP6f 

fluorescence was excited at 488 nm. Emitted fluorescence was imaged with a Nikon quad filter 

cube at 30 frames sec-1 using a CMOS camera (Hamamatsu Orca Flash 4.0LT). Cal-630 

fluorescence was recorded at l > 635 nm, and GCaMP6f fluorescence was collected at l < 550 

nm filters using the beam splitter. Recordings were binned by 2x2 pixels (512 x 1024 pixels, 

166.4 x 332.8 µm resolution).  

3.2.5 High-throughput Ca2+ imaging. 

Dissociated cortical cultures from newborn mouse pups were seeded in clear-bottom black 96 

well plates (Greiner Bio One T-3026-16) at 1 x 105 cells per well and grown for five days at 

37°C in a humidified incubator gassed with 95% air and 5% CO2. To promote neuronal cell 
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survival, cells were cultured in Neurobasal-A medium supplemented with serum-free B-27. To 

promote astrocytic cell survival and proliferation, cells were plated and maintained in DMEM 

supplemented with 10% FBS. On the day of the experiment, cells were loaded by incubation 

with 2 µM of the membrane-permeant Ca2+ indicator Fluo-8 AM (Takada, Furuya, and Sokabe 

2014) in ACSF for 1 h at 37 °C, then once washed with a Ca2+ -free HBSS solution (120 mM 

NaCl, 4 mM KCl, 2 mM MgCl2, 10 mM glucose, 10 mM HEPES, 1 mM EGTA, pH 7.4 at room 

temperature). The solution was replaced with 100 µl of fresh Ca2+-free HBSS solution in each 

well and cells were allowed to equilibrate for 5 minutes prior to assay with a fluorometric 

imaging plate reader (FLIPR; Molecular Devices, Sunnyvale, CA). A basal read of fluorescence 

in each well (470–495 nm excitation and 515–575 nm emission, expressed in arbitrary units; 

AU) was read for 2 seconds at 0.4 s exposure time. Next, 100 µl of 2x ATP (to 100 µM final 

concentration), 100 µl of 2x DHPG (to 100 µM final concentration), or 100 µl of 2x ionomycin 

(to 1 µM final concentration) in Ca2+-free HBSS was added to a given well. A single recording 

was obtained from each well. Ionomycin-induced fluorescence changes from wells without prior 

addition of agonists were used to normalize agonist-evoked responses. Recordings were 

performed in triplicate.  

3.3 Results 

3.3.1 Optimizing neuronal culture conditions.  

Choosing a model system is a crucial first step for studying ASD-specific molecular deficits, 

as many signaling pathways will critically depend on when, where, and what cell type is studied. 

Stages of neurodevelopment are modulated dynamically by many factors, including gene 
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expression patterns throughout the fetal and early postnatal life, the predominant types of 

neurons present at different stages, the ratio of glial/neuronal cells, as well as neuromodulators 

and hormones. Several studies have attempted to answer the questions of when ASD 

susceptibility genes converge during development and which brain regions are most vulnerable 

to these changes. As a guide, I used two recent studies that remarkably advanced this field. One 

study mapped ASD risk genes onto co-expression networks that represent developmental courses 

and transcriptional profiles in fetal and adult cortices (Parikshak et al. 2013). In this study, 

multiple ASD risk-enriched modules strongly correlated with glutamatergic neurons in upper 

cortical layers, predicting that specific disruption of cortical-cortical connectivity is more likely 

to affect core ASD phenotypes such as social behavior. Genes that were combined into 

independent clusters revealed predominant expression peaks evident throughout fetal 

development and early postnatal stages. Interestingly, several modules that included ion channels 

and plasma membrane receptors were highly correlated with ITPR1 gene expression and were 

enriched in late fetal/early postnatal life. Another independent study demonstrated a similar 

pattern of convergence of ASD vulnerability genes and precisely mapped it onto cortical layer 

5/6 neurons, the innermost layer of neurons (Willsey et al. 2013). They identified the mid-fetal 

stage (post conception week 10-24 in humans) as a point of convergence in expression for high-

risk ASD genes. Moreover, layer 5/6 projection neurons of the midfetal stage are among the first 

cortical neurons to form synaptic connections, and it is these early neural circuits that may be 

particularly vulnerable to a variety of genetic perturbations and related functional disturbances 

that may all ultimately increase the risk for ASD. 
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Several studies have been published that attempted to translate mammalian 

neurodevelopment across species (Workman et al. 2013; Clancy et al. 2007; Semple et al. 2013). 

Based on different models used to extrapolate ages, human mid-fetal stage translates into mouse 

post-conception day 17 (Clancy et al. 2007; Workman et al. 2013) to postnatal day 0 (Semple et 

al. 2013). Late fetal development in humans can be roughly translated into early postnatal life in 

mice. I therefore decided to use cortical neurons from postnatal days 0-2 mice to capture 

dynamic expression changes taking place in this vulnerable developmental stage. In mice, this is 

the period when intense gliogenesis occurs, thus providing sources for both neurons and 

astrocytes in the same dish that support robust and healthy neuronal cultures. This fact allows 

culturing without a feeder layer, thus minimizing any variation that may arise from combining 

cells from different animals and genotypes. To minimize any inter-litter variations, I bred female 

mice heterozygous for the FMR1 gene with wild-type males that produced male mouse pups that 

were either hemizygous or had a wild-type copy of the FMR1 gene in the same litter. Cultured 

neurons obtained with this protocol (Beaudoin et al. 2012) demonstrate great survival and 

develop extensive axonal and dendritic connections. By day 12-17 in vitro, these neurons had 

characteristic morphologies and expressed appropriate axonal markers (tau, tuj1; not shown). 

They develop robust and mature network connections, suggesting functional excitatory inputs. 

Moreover, these cultures are amenable to gene manipulations such as transfection.  

3.3.2 Ca2+ measurements in neuronal cultures. 

Postnatal cortical cells yield robust cultures in vitro in part because they provide an astrocytic 

feeder layer along with neurons that supports survival and maturation of neuronal cells. By day 
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12 in vitro, astrocytes proliferate robustly and create a nearly confluent monolayer of cells on top 

of which neurons reside. These glial cells support the culture by secreting growth and signaling 

factors, as well as by regulating neuronal activity via neurotransmitter reuptake mechanisms. 

This results in culture conditions that mimic in vivo conditions in terms of the cell type 

composition. However, during the imaging process it creates certain challenges as many 

neuronal cells reside on top of astrocytes, thus masking the fluorescence signal and complicating 

analysis. The problem can be easily circumvented by delivering a Ca2+ indicator specifically in 

neurons, thus making all other cell types practically “invisible” for the purposes of Ca2+ imaging. 

Luckily, a large library of genetically-encoded Ca2+ indicators that can be expressed under 

different promoters has been developed (Chen et al. 2013). In 2013, a new generation of highly 

sensitive protein Ca2+ sensors called GCaMP6 was shown to outperform previous versions of 

other sensors in mice in vivo as well as in cultured neurons (Chen et al. 2013). They were shown 

to reliably detect single action potentials and record Ca2+ transients in neuronal processes and 

single dendritic spines. More importantly for the purposes of this project, they can be specifically 

and selectively expressed using a commonly used viral delivery method, adeno-associated virus, 

under a neuron-specific promoter synapsin. In such configuration, the viral particles will infect 

and integrate into the host’s DNA in all cells in the culture, but only cell types with an active 

synapsin promoter will produce the target protein.  

Thus, I set out to test this new Ca2+ sensing protein and compare it with the commonly used 

synthetic dyes that I have previously used to image global and local events in human skin 

fibroblasts. I chose the fast version of GCaMP6, as it was shown to have a dissociation constant 

(Kd=375 nM (Chen et al. 2013, supplementary information)) similar to that of dyes commonly 
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used in our lab, such as Cal-520 AM (Kd=320 nM, https://www.aatbio.com/products/21130) and 

Fluo-8 AM (Kd=389 nM, https://www.aatbio.com/products/21081). I used 

AAV1.Syn.GCaMP6f.WPRE.SV40 viral delivery vector to infect neuronal cultures and to 

specifically target gene expression to neuronal cells only (Kügler, Kilic, and Bähr 2003). After 

the initial viral particle titration step with 1:2,000, 1:20,000 and 1:200,000 dilutions, I established 

that the 1:20,000 dilution gave the most consistent results in terms of GCaMP6f expression (data 

not shown). The infection was performed at day 7-14 in vitro, and the protein expression was 

studied between days 14 and 21 in vitro. Neuronal cultures were routinely inspected using light 

microscopy before the infection and prior to any imaging experiments. Under these conditions, I 

was able to achieve healthy cultures with the majority of neurons showing low-level basal 

fluorescence with the characteristic expression pattern of a cytosolic indicator having no 

evidence of nuclear expression (Fig. 3.5.1(a) and 3.5.2 (a)).  

To compare the performance of synthetic dyes and the genetically-encoded Ca2+ sensor 

GCaMP6f, I incubated cells expressing GCaMP6f with 4 µMof Cal-630AM, a red-shifted Ca2+ 

sensor, and subjected the cells to trains of field electric stimulation at 70 mV at different 

frequencies. The resulting action potential-induced Ca2+ transients in the same cell detected by 

GCaMP6f or Cal-630 were recorded simultaneously using a dichroic beam splitter. As expected, 

GCaMP6f localized to neurons only and could be distinguished from Cal-630 fluorescence by an 

exclusively cytoplasmic expression pattern. In contrast to GCaMP6f, Cal-630 loaded 

indiscriminately into both neuronal and glial cells. At resting conditions, astrocytes had very low 

basal fluorescence with bouts of spontaneous Ca2+ waves spreading across the imaging field. 

These events were observed as slow, large increases in fluorescence intensity evident in the Cal-
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630 traces, but absent from the GCaMP6f traces (Fig. 3.5.1 (b), cell #4). GCaMP6f was excellent 

at registering slow, large events in neurons, such as the ones caused by high-frequency field 

stimulation (Fig. 3.5.1 (c)). These data demonstrate the wide dynamic range and large 

signal/basal ratio properties of the GCaMP6f sensor. However, even the fast version of this 

indicator appeared to be too slow to reveal fast events, such as those caused by low-frequency 

electric stimulation (Fig. 3.5.1 (d) demonstrates a zoomed-in portion of the full-length trace from 

Fig. 3.5.1 (b)). Therefore, my data show that the synthetic dye Cal-630 excels at reporting fast, 

transient spikes caused by single action potentials, compared to the traces of GCaMP6f that are 

barely distinguishable from the baseline noise, and where individual Ca2+ spikes cannot be 

resolved (Fig. 3.5.1 (d), the GCaMP6f trace is offset for clarity). These results are consistent with 

the previous findings from our group in that GCaMP6f is inferior to small molecule dyes in 

detecting small events, either by the virtue of losing fast events, or by perturbing the Ca2+ 

signaling itself (Lock, Parker, and Smith 2015). However, while GCaMP6f is inferior in 

detecting fast, transient local events, it is excellent at detecting large, slow events happening in 

neurons, especially in neuronal/astrocytic co-cultures without “contaminating” the signal from 

underlying glial cells. 

Next I wanted to compare the performance of the two indicators with slower Ca2+ wave 

responses that arise from activation of metabotropic receptors. I used an NPEC-caged analogue 

of trans-1-amino-1,3-dicarboxycyclopentane (ACPD) that can be transformed into a biologically 

active form upon UV light stimulation to selectively activate metabotropic glutamate receptors 

without complications from activating ionotropic glutamate receptors. Consistent with my 

previous findings on action potential-induced Ca2+ spikes, GCaMP6f could discriminate between 
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neurons and astrocytes, and again the amplitude of individual spikes appeared dampened 

compared with the Cal-630 recordings (Fig. 3.5.2 (b)). One brief UV flash was sub-optimal in 

eliciting a Ca2+ response, however, in GCaMP6f-expressing neurons it lead to an abrupt drop in 

fluorescence signal, presumably due to photobleaching (Fig. 3.5.2 (c)). After a short train of four 

UV flashes, neurons responded with a characteristic Ca2+ wave originating in proximal dendrites 

and spreading into the soma, as previously reported (Nakamura, Nakamura, and Ross 1999). 

Comparison of the waveforms from the GCaMP6f and Cal-630 recordings (Fig. 3.5.2 (d); the 

GCaMP6f trace was offset to overlay the Cal-630 trace) suggested that the two indicators are 

similarly effective in reporting a slow Ca2+ rise. Since the signal-to-noise ratio measured with the 

two indicators is similar, it appears that GCaMP6f is as effective in detecting global 

metabotropic signals as synthetic dyes, but has the advantage of allowing the selective targeting 

to neurons, without a complicating signal from the glial cells.  

Based on these results, I decided to use genetically encoded GCaMP6f indicator for imaging 

slow Ca2+ waves in neurons, and employ synthetic dyes for any recordings of non-neuronal cells 

or for fast events.  

3.3.3 mGluR-mediated Ca2+ signaling events in cortical neurons from FXS and wild-

type mice.  

The goal of the experiments presented in this chapter was to determine if Ca2+ signaling 

abnormalities reported in human skin fibroblasts from patients with FXS are recapitulated in 

mammalian neurons with a similar lack of functional FMR1 protein. Neurons are architecturally 

complex cells, where spatial origin of the signal greatly influences downstream events. After 
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optimizing the culturing conditions and choice of indicator, I then went on to investigate whether 

the Ca2+ signaling abnormality observed in human skin fibroblasts from patients with FXS was 

also present in mouse neurons with the FMR1 gene deletion. IP3 signaling in neurons can be 

stimulated by activation of plasma membrane metabotropic receptors. To stimulate IP3-mediated 

Ca2+ release in neurons, I used UV flash uncaging of the broad-spectrum mGluR agonist trans-

ACPD, or bath application of the selective group 1 mGluR agonist, DHPG. Photoreleased ACPD 

elicited Ca2+ waves originating in proximal dendrites that propagated bidirectionally and 

frequently invaded the soma (Fig. 3.5.3 (a)), consistent with previous reports (El-Hassar et al. 

2011; Hagenston, Fitzpatrick, and Yeckel 2008). Ca2+ waves were blocked by (RS)-α-Methyl-4-

carboxyphenylglycine (MCPG), a non-selective group I/group II metabotropic glutamate 

receptor antagonist, suggesting that the effect of ACPD is on metabotropic, not ionotropic, 

glutamate receptors (data not shown). 

 UV uncaging of ACPD under identical conditions elicited responses in neurons from FMR1-

/y and FMR1+/y mice that did not differ in their amplitude (Fig. 3.5.3 (c)), nor time after the UV 

flash to reach the peak amplitude (Fig. 3.5.3 (d)).  

One possible explanation for these discrepancies between my findings in human skin 

fibroblasts and mouse neurons may lie in differential expression of of IP3 receptor types. 

Fibroblasts express predominantly type 2 and 3 IP3Rs, whereas neurons primarily express type 1. 

Thus, astrocytes that express mainly type 2 IP3Rs may be better translatable to my previous 

findings in human skin fibroblast. To test this hypothesis, I measured IP3-mediated Ca2+ release 

using the same co-cultures that were rich in glial cells. Cells were loaded with Cal-520 and 

stimulated with extracellular agonists of mGluR receptors – cACPD and DHPG. Astrocytes 
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responded robustly to both of these agonists, however, again the amplitude of the response was 

not different between genotypes (Fig. 3.5.4). Finally, I used caged IP3 to bypass the mGluR 

signaling pathway and activate IP3Rs directly. This method also gives greater flexibility in the 

size of the elicited response. I used three different UV flash durations to stimulate sub-maximal 

and maximal responses to determine if there is a difference in the peak amplitude response or 

sensitivity to IP3 in mouse astrocytes. Similar to my results with extracellular agonists, Ca2+ 

responses to photoreleased IP3 in wild-type astrocytes were undistinguishable from the FMR1-/y 

cells (Fig. 3.5.5).  

3.3.4 High-throughput FLIPR assay on mouse cell cultures. 

Methodological differences in how Ca2+ signaling is being imaged may account for the 

apparent discrepancies between the human and mouse cells. To probe this idea, I decided to use 

the high-throughput Ca2+ screening assay, FLIPR, to closely replicate imaging conditions used 

on human fibroblasts from the previous chapter. Cortical cells from newborn mice were plated 

on a 96-well plate and were allowed to grow for five days in neuronal maintenance media to 

promote neuronal cell survival. ATP (100 µM final concentration) was applied to activate cell-

surface purinergic receptors and induce subsequent IP3 production and Ca2+ release. Ca2+-free 

extracellular medium supplemented with 1 mM EGTA was used to exclude Ca2+ entry across the 

cell membrane. Averaged fluorescence traces from three independent wells illustrating ATP 

responses in neurons from FMR1-/y or FMR1+/y mice are shown in Fig. 3.5.6. I quantified 

fluorescence signals as a ratio (ΔF/F0) of the fluorescence change (ΔF) at each well relative to 

the basal fluorescence (F0) before stimulation and further normalized it to the ionomycin 
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response to account for any possible differences in the ER store filling. Fig. 3.5.6 (b) shows 

mean ΔF/F0 values from these cells in response to 100 µM ATP normalized to ΔF/F0 of the 

ionomycin response (1 µM). FXS neuron-enriched cultures demonstrated slightly greater 

response to ATP compared with that of wild-type neurons. Extracellular stimulation with 100 

µM DHPG demonstrated even greater increase in Ca2+ signaling in FXS neurons (Fig. 3.5.6 

(c,d)) 

Similarly to initiation of the neuron-enriched culture, I generated a cortical culture that was 

enriched with astrocytes by culturing the cells in DMEM + 10% FBS media that is 

accommodating for astrocyte growth and proliferation. Analogous to the results of neuron-

enriched cultures, Ca2+ responses in glial cells from knockout animals were more robust 

compared with those from wild-type mice (Fig. 3.5.7). 

Another possibility was that the Ca2+ signaling deficits observed in human cells are specific 

to peripheral tissues such as skin fibroblasts, and do not mimic signaling machinery in the central 

nervous system. Therefore, I decided to test mouse skin fibroblasts with the high-throughput 

Ca2+ assay, thus fully replicating my early experiments on human skin fibroblasts from patients 

with FXS. 100 µM ATP applied to each individual well with mouse skin fibroblasts in the 

absence of extracellular Ca2+ elicited a robust response. Fig.3.5.8 (a) shows fluorescence traces 

averaged from six independent wells in response to the agonist addition, and Fig. 3.5.8 (b) 

demonstrates that response normalized to the corresponding ionomycin response. As can be seen 

from the data, fibroblasts from the FMR1-/y did not differ in their response to ATP from the cells 

obtained from wild-type mice. Clearly, murine fibroblasts, not only their glia and neurons, differ 

from human cells.  



   
 

	

	

85 

3.4 Discussion 

Here I report Ca2+ signaling results on dissociated cortical neurons, astrocytes and fibroblasts 

obtained from a mouse model of FXS. This work was done because it was previously discovered 

that non-neuronal (fibroblast) cells from human patients with FXS display a pronounced and 

consistent Ca2+ signaling deficit arising at the level of IP3 receptors. However, no murine cell 

type recapitulated the human findings.  

IP3-mediated Ca2+ release is an important neuronal signaling mechanism implicated in 

regulation of many neuronal functions, such as neuronal firing rates and short- and long-term 

plasticity. It is mobilized in response to activation of various metabotropic neurotransmitter 

receptors, including group 1 mGluRs. Normally, stimulation of mGluRs in dendrites triggers 

increased local protein synthesis, ultimately resulting in AMPA receptor internalization and 

slowing of net synaptic maturation through mGluR-mediated LTD. The mGluR theory of FXS 

postulates that absence of FMRP overactivates the mGluR-mediated signaling pathway, and thus 

leads to features associated with FXS. Moreover, multiple studies from different groups in Fmr1 

knockout mice with pharmacological or genetic reduction of mGluR function showed correction 

of many of these abnormalities, further demonstrating that mGluRs play a significant role in the 

pathophysiology of FXS, at least in mice (Dölen et al. 2007; Darnell and Klann 2013; Yan et al. 

2005). Despite the fact that overactivation of these receptors has long been implicated in 

pathophysiology of FXS, surprisingly little is known about the resulting Ca2+ release upon 

activation of these receptors. My findings described in Chapter 2 on human skin fibroblasts show 

that IP3-mediated Ca2+ release is depressed in response to P2YR activation. Extrapolating these 

findings to mouse neurons from the same disorder suggests that Ca2+ release from the ER 
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downstream of the mGluR signaling would be decreased, contrary to the widely reported 

increased activity at the level of the plasma membrane receptor. However, data in this chapter 

suggest that the mGluR-mediated Ca2+ signaling is not diminished in neurons and astrocytes 

from Fmr1 KO mice, consistent with previous reports on overactivated mGluR signaling in the 

mouse model of FXS (Yan et al. 2005; Osterweil et al. 2010). 

Extracellular activation of the mGluRs with broad mGluR agonist t-ACPD and specific 

group 1 agonist DHPG did not reveal deficits in the Ca2+ release in mouse neuronal or glial cells. 

A high-throughput Ca2+ assay demonstrated increases in the Ca2+ signaling pathway in response 

to activation of the IP3 signaling pathway with two metabotropic agonists, ATP and DHPG in 

mouse cortical cultures, whereas no changes were observed in mouse skin fibroblasts. 

Several factors could contribute to this seeming discrepancy. First, the human condition 

primarily arises from a pathogenic expansion of a CGG repeat on the X chromosome. The 

number of repeats predicts the pathology: in unaffected individuals with less than 40 repeats the 

5’UTR portion of the FMR1 gene is unmethylated, and the protein product is expressed 

normally. If the number of repeats exceeds 200, the FMR1 becomes fully methylated and 

produces no protein. The mouse model represents a full genetic deletion, ultimately leading to 

the same phenotype at the protein level, yet it fails to capture any other possible mechanisms 

associated with the CGG expansion and gene methylation. The process of gene silencing in the 

human full mutation patients is assumed to be a static and uniform process in all cells of the 

body, across all developmental ages. However, one study has recently found that it may not 

faithfully represent the reality. Induced pluripotent stem cells (iPSCs) derived from fibroblasts 

from FXS patients did not necessarily replicate the CGG repeat length, the FMR1 methylation 
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status or the protein expression level in the original fibroblasts. In some cases, the resulting 

iPSCs had reduced number of repeats, affecting epigenetic status of the FMR1 gene promoter 

and ultimately altering neuronal differentiation of the resulting cell lines (Sheridan et al. 2011). 

Thus the FMR1 knockout mouse model may not be appropriate for studying the condition at the 

epigenetic level, and may also influence many signaling pathways, such as IP3 signaling. 

Another possible explanation is the difference between the mouse and human proteomes. The 

laboratory mouse, the premier model organism for studying mammalian organism functions in 

biomedical research, shares a large proportion of its protein-coding genes with humans. Yet, the 

two mammals differ in significant ways. A massive recent mouse genome mapping study 

demonstrated that the expression pattern of many mouse genes show considerable divergences 

from their human orthologues (Yue et al. 2014). Since the FMR1 protein has been shown to 

interact with at least hundreds of mRNA target transcripts in the brain (Brown et al. 2001; 

Darnell et al. 2011), it is likely that at least some of these targets will vary significantly from 

mouse to human, thus creating divergent expression profiles of these gene targets downstream of 

the FMR1 regulation. Specificity and versatility of the IP3 signaling pathway is ensured by a rich 

network of interacting proteins (Prole and Taylor 2016) that (1) may or may not be shared among 

humans and mice, and (2) may or may not be equally regulated by FMR1 expression. A well-

designed computational study could be capable of capturing those divergent protein interaction 

pathways in two different organisms and would serve as a good roadmap for guiding future 

studies on FXS and the translation between the two organisms. However, such a project is out of 

scope of the current work.  
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Relevant to this work, several recent FXS clinical trials have failed, including those targeted 

at reducing the mGluR signaling activity (Berry-Kravis et al. 2016; Jeste and Geschwind 2016). 

A list of possible explanations for this failure is long and includes the limitations of the outcome 

measures, the age of participants, and improvement of subtle changes that can only be seen in 

small subtypes of the heterogeneous population (Mullard 2015). However, the validity of using 

mouse models for modeling complex neurodevelopmental disorders such as ASD may also be 

questioned. For example, while the commonly used FXS mouse model replicates many 

behavioral and cellular phenotypes of FXS in humans, such as repetitive behavior, 

hypersensitivity to stimuli and dendritic spine morphology, it fails to convincingly replicate other 

symptoms, such as cognitive impairments and sociability seen in human patients (Kazdoba et al. 

2014).  

In this work, I demonstrate that at least one signaling deficit that exists in human cells is not 

present in the mouse model of FXS. Intriguingly, this signaling pathway is immediately 

downstream of the major signaling cascade commonly implicated in the mouse model pathology 

– mGluR. Given that the latest treatments were targeted at reducing the overactive mGluR 

signaling seen in mice, in human patients they may have further reduced already diminished IP3-

mediated Ca2+ release downstream of mGluRs, thus making those interventions counter 

constructive. 

Clearly, more work is needed to further understand the FXS Ca2+ signaling phenotype in 

human models of the disease, but my current findings suggest that the field of the FXS may be 

better served if such research is done on human, not mouse cells.  
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3.5 Figures 

Figure 3.5. 1 Comparison of Ca2+ transients recorded with Cal-630 and GCaMP6f in 

mouse cortical neurons in vitro.  

(a) Images of neurons loaded with the Ca2+ dye Cal-630 (red) and expressing GCaMP6f (green) 

composited from averaged frames of a video reveal the expression of GCaMP6f and loading of 

Cal-630. (b) Representative traces of fluorescence response (F/F0) from four cells from (a) of 

Cal-630 and GCaMP6f in response to 10 spikes at 1, 2, 4, 6, and 10 Hz given at 10, 30, 45, 60, 

and 80 sec. Note different y-axis scale for cell #1. (c) Cell #1 from (a) and (b) is shown to 
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demonstrate a much larger ΔF/F0 change in GCaMP6f compared with Cal-630 in response to a 

train of 10 spikes of 70 mV at 1, 2, 4, 6, and 10 Hz (each train is represented by arrows with the 

frequency noted in brackets) (d) GCaMP6f has smaller amplitude response to a train of action 

potentials at 1 and 2 Hz stimulation. The GCaMP6f trace (green) is offset -5 Y units for clarity of 

representation.  
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Figure 3.5. 2 Comparison of Cal-630 and GCaMP6f performance in response to 

field stimulation and metabotropic activation of mGluR receptors.  

(a) Images of neurons loaded with the Ca2+ dye Cal-630 (red) and expressing GCaMP6f (green) 

composited from averaged frames of a video reveal the expression/loading patterns of each 

indicator (b) Traces from simultaneous recording of Cal-630 (red) and GCaMP6f (green) signal 

in response to field stimulation-induced train of action potentials. Cal-630 signal from neuron #1 

in (a) is “contaminated” by a slow wave response from an underlying astrocyte also loaded with 

Cal-630. The GCaMP6f expression is limited to neuronal cells only, thus the resulting signal 

does not reflect Ca2+ changes from glial cells. (c) Traces derived from neuron #2 from (a) that 
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responded to uncaging of 100 µM of cACPD. UV flashes of different durations are depicted by 

arrows. Photobleaching of GCaMP6f signal in response to the strong UV flash is seen as an 

abrupt decrease in the signal level after the first flash. (d) An enlarged part of the trace from (c; 

grey dashed outline) showing kinetics of the metabotropic response. Note that the GCaMP6f 

signal was offset to overlap the Cal-630 signal.  
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Figure 3.5. 3 UV uncaging of t-ACPD induces Ca2+ release in proximal dendrites of 

cortical neurons.  

(a) Averaged image of a cortical mouse neuron expressing GCaMP6f from the whole recording 

with 5 regions of interest (ROI). (b) Traces illustrating the wave formation and spread in 

different ROIs of a cortical neuron from (a). The first event (red trace) occurs at the distal 

dendrite and is independent of the Ca2+ wave invading the soma. Ca2+ wave in response to 200 

ms UV pulse uncaging induced a wave at position 3 (blue trace) that did not spread to position 2 

(green trace), but initiated a somatic Ca2+ release (position 4, black) that spread further onto the 

position 5 (magenta). (c) Mean peak amplitude of somatic Ca2+ response does not differ 

statistically between FXS and WT neurons (p-value>0.05). (d) Mean latency from time of 
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photolysis flash to peak Ca2+ response is not different between FXS and WT neurons. All data 

are presented as mean ± s.e.m. Individual data points represent responses from single neurons.   
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Figure 3.5. 4 Metabotropic Ca2+ response in astrocytes from WT or FXS mice.  

(a) Mean peak amplitude of Ca2+ release in response to UV flash photolysis of 100 µM ACPD is 

not depressed in FXS cells relative to WT controls (p-value > 0.05). (b) Mean peak response to 

bath application of 100 µM of DHPG does not differ in astrocytes from WT or FXS mice (p-

value > 0.05). All data are presented as mean ± s.e.m..  
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Figure 3.5. 5 Ca2+ release in mouse astrocytes evoked by photoreleased IP3.  

IP3-mediated Ca2+ release evoked by different flash durations of the UV flash induced peak 

responses of similar amplitude in cultures of confluent astrocytes from WT or FXS mice. Ca2+ 

responses were recorded and averaged across a confluent monolayer of the cells. All data are 

presented as mean ± s.e.m. Data points represent responses from individual recordings.   
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Figure 3.5. 6 Representative Ca2+ responses to extracellular application of 

purinergic agonists in absence of extracellular Ca2+ in cultures enriched in neurons 

from WT or FXS P0 mice.  

(a) Averaged FLIPR traces from three independent wells showing changes in Fluo-8 

fluorescence over the basal fluorescence (ΔF/F0) in response to extracellular application of 100 
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µM ATP to neuron-enriched cultures. Lines represent mean values ± s.e.m.. (b) Peak amplitudes 

(ΔF) of Ca2+ responses to 100 µM ATP normalized to basal fluorescence (F0) before stimulation 

are expressed as a percentage of the mean ionomycin response in neurons from WT mice (grey) 

or FXS (red). Bar graphs show mean of triplicate measurements after subtracting the artifactual 

signal resulting from addition of vehicle alone. Data are presented as mean ± s.e.m.. (c) 

Averaged FLIPR traces showing changes in Fluo-8 fluorescence over the basal fluorescence 

(ΔF/F0) in response to extracellular application of 100 µM DHPG to neuron-enriched cultures. 

(d) Peak amplitudes (ΔF) of Ca2+ responses to 100 µM DHPG normalized to the basal 

fluorescence (F0) before stimulation are expressed as a percentage of the mean ionomycin 

response in neurons from WT mice (grey) or FXS (red). Bar graphs show mean of triplicate 

measurements after subtracting the artifactual signal resulting from addition of vehicle alone. 

Data are presented as mean ± s.e.m.. 
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Figure 3.5. 7 Representative Ca2+ responses to extracellular application of 

purinergic agonists in absence of extracellular Ca2+ in cultures enriched in 

astrocytes from WT or FXS P0 mice. 

(a) Averaged FLIPR traces from three independent wells showing changes in Fluo-8 

fluorescence over the basal fluorescence (ΔF/F0) in response to extracellular application of 100 
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µM ATP to glia-enriched cultures. Lines represent mean values ± s.e.m.. (b) Peak amplitudes 

(ΔF) of Ca2+ responses to 100 µM ATP normalized to the basal fluorescence (F0) before 

stimulation are expressed as a percentage of the mean ionomycin response in astrocytes from 

WT mice (grey) or FXS (red). Bar graphs show mean of triplicate measurements after 

subtracting the artifactual signal resulting from addition of vehicle alone. Data are presented as 

mean ± s.e.m.. (c) Averaged FLIPR traces showing changes in Fluo-8 fluorescence over the 

basal fluorescence (ΔF/F0) in response to extracellular application of 100 µM DHPG to 

astrocyte-enriched cultures. (d) Peak amplitudes (ΔF) of Ca2+ responses to 100 µM DHPG 

normalized to the basal fluorescence (F0) before stimulation expressed as a percentage of the 

mean ionomycin response in astrocytes from WT mice (grey) or FXS (red). Bar graphs show 

mean of triplicate measurements after subtracting the artifactual signal resulting from addition of 

vehicle alone. Data are presented as mean ± s.e.m.. 
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Figure 3.5. 8 Representative Ca2+ responses to extracellular application of ATP in 

absence of extracellular Ca2+ in skin fibroblasts from WT and FXS P0 mice.  

(a) Averaged FLIPR traces from six independent wells showing changes in Fluo-8 fluorescence 

over the basal fluorescence (ΔF/F0) in response to extracellular application of 100 µM ATP in 

WT fibroblasts (black) and FXS cells (red). Lines represent mean values ± s.e.m.. (b) Peak 

amplitudes (ΔF) of Ca2+ responses to 100 µM ATP normalized to the basal fluorescence (F0) 

before stimulation from WT mice (grey) or FXS (red). Bar graphs show mean of triplicate 

measurements after subtracting the artifactual signal resulting from addition of vehicle alone. 

Data are presented as mean ± s.e.m..  
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Chapter 4. Discussion and implications of this work 

ASD is a broad, umbrella diagnosis for a heterogeneous group of conditions encompassing 

several neurodevelopmental problems, along with many phenotypes and co-morbidities. Here I 

demonstrate that patient-derived fibroblasts from subjects with monogenic syndromes with high 

prevalence of ASD (FXS, TSC1, TSC2, Rett, and Prader-Willi syndromes) display depressed 

Ca2+ release evoked by purinergic receptor activation of IP3 signaling. I further extend these 

findings to fibroblast cell lines from patients with sporadic ASD without any known genetic 

mutations. This Ca2+ signaling defect was identified in 85% of the subjects with sporadic ASD, 

suggesting that dysregulation of IP3 signaling constitutes a nexus where genes altered in ASD 

converge to exert their deleterious effect. This decrease is not due to the defective activation 

and/or signaling from the membrane-bound receptors, but results from decreased IP3R activity, 

since the intracellular uncaging of i-IP3 leads to similarly dampened response. Using the optical 

patch-clamp technique, I discovered that these changes may be attributed to decreased 

functioning of elementary single or clustered IP3Rs at the molecular level. The mean open time 

in human FXS fibroblasts was about one half that in wild type cells, and the numbers of 

definable release sites were reduced. These results suggest that the IP3Rs, although carrying no 

mutations themselves, are functionally altered at the level of single (or small clusters of) 

channels in these three distinct ASD models. 

4.1 Downstream consequences of diminished IP3 Ca2+ signaling. 

In neurons, IP3-mediated Ca2+ signaling is activated through agonist stimulation of Gq-

coupled receptors such as 5HT2A or mGluR1/5 receptor subtypes found on the plasma 
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membrane. IP3R-mediated Ca2+ release in neurons is involved in crucial functions, including 

synaptic plasticity and memory (Inoue et al. 1998; Rose and Konnerth 2001), neuronal 

excitability (Hernandez-Lopez et al. 2000; Stutzmann, LaFerla, and Parker 2003), 

neurotransmitter release (Li et al. 1998; Diamant, Schwartz, and Atlas 1990), axon growth 

(Gomez and Spitzer 1999) and long-term changes in gene expression (Li et al. 1998), 

highlighting the central integrating position played by IP3Rs (Patterson, Boehning, and Snyder 

2004). Both spatial and temporal features of Ca2+ signals are crucial for the reliable signal 

initiation and propagation. Large signals that propagate to the soma can carry information from 

dendritic synapses, activating certain genes and transcription factors in the nucleus; while 

smaller events confined to a single synapse regulate neuronal properties at the dendritic level. 

Ca2+ release from the ER dynamically regulates activity-dependent membrane excitability 

through the opening of small conductance Ca2+-activated K+ channels (Chandy et al. 1998; 

Köhler et al. 1996). This current is proportional to the Ca2+ signal amplitude (Stutzmann, 

LaFerla, and Parker 2003) and underlies spike-frequency adaptation, a phenomenon where 

accumulating intracellular Ca2+ reaches sufficient levels to activate hyperpolarizing K+ currents 

and transiently suppress membrane excitability. As a result, IP3-evoked Ca2+ release transiently 

hyperpolarizes the cell and briefly depresses neuronal excitability, leading to a reduction in firing 

frequency (Stutzmann, LaFerla, and Parker 2003). Suppressed IP3-mediated Ca2+ release from 

the internal stores, as I report in diverse models of ASD, is thus expected to diminish the 

inhibitory K+ conductance, and as such would tend to produce neuronal hyperexcitability, 

consistent with observations in several models of ASD (Repicky and Broadie 2009; Bateup et al. 

2011).  
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Depression of IP3-mediated Ca2+ signaling may further disrupt neurodevelopment through 

separate mechanisms. IP3Rs have been shown to be central participants in autophagy (Cárdenas 

et al. 2010; Criollo et al. 2007; Hamada et al. 2014; Vicencio et al. 2009). Decreased levels of 

autophagy result in defective synaptic pruning, which have been repeatedly associated with ASD 

in humans and mouse models (Tang et al. 2014). Promotion of autophagy also rescues behavioral 

defects in mouse models of ASD (Tang et al. 2014). The role of mitochondria energy-deficient 

endophenotype has long been an active line of investigation in a subset of patients with ASD 

(Gargus and Imtiaz 2008; Filipek et al. 2003), and several studies have shown a link between 

IP3-mediated Ca2+ release and mitochondrial function (Pinton et al. 2008; Cárdenas et al. 2010; 

La Rovere et al. 2016; Decuypere et al. 2011). Under normal basal conditions, low-level 

constitutive IP3R-mediated transfer of Ca2+ from the ER to mitochondria maintains optimal 

cellular bioenergetics (Cárdenas et al. 2010). This ongoing transfer supports normal cellular 

bioenergetics by maintaining oxidative phosphorylation and ATP production. In its absence, 

cells undergo an energy crisis; oxidative phosphorylation is compromised, ATP levels fall and 

AMPK-dependent, mTOR-independent autophagy is induced as a mechanism to enable the cell 

to survive. Reduced mitochondrial activity likely has adverse consequences for normal 

neurodevelopment and neuronal function, resulting from ATP deficiency and its effects on 

membrane potential and neurotransmitter release, as well as production of excess reactive 

oxygen species (ROS).  
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4.2 Ca2+ signaling screen as a biomarker for ASD. 

The recent development of mouse models for ASD has greatly improved our understanding 

of the condition. Laboratory mice can provide valuable information about neuronal networks and 

synaptic function in primary neurons, as human neurons are largely unavailable for laboratory 

research. A great deal of ASD animal work has been concentrated on the mouse model of FXS, a 

syndromic form of ASD in humans. Since Mark Bear coined his mGluR theory of FXS in 2004 

(Bear, Huber, and Warren 2004), it has taken a central role in the FXS research field. The theory 

explains several cellular and molecular deficits occurring in a FXS brain by a hyperactive 

signaling arising from the enhanced group 1 mGluR activation. The mouse model turned out to 

be highly amenable to correction of many deficits with pharmacological and genetic mGluR 

reduction. Three pharmacological companies – Novartis, Roche and Seaside Therapeutics (that 

had partnered with Roche) launched independent clinical trials on mGluR antagonists in humans. 

All of them failed to meet their primary endpoints. 

The IP3R is a key signaling hub in the canonical metabotropic glutamate receptor pathway in 

neurons (Inoue et al. 1998; Berridge 1993), and according to the mGluR theory of FXS (Bear, 

Huber, and Warren 2004), the overactive mGluR signaling cascade underlies the pathogenesis of 

the disorder. Surprisingly, not much is known about Ca2+ signaling release in response to 

activation of the mGluR in FXS. In Chapter 2, I demonstrate that human skin fibroblasts from 

patients with FXS have pronounced signaling deficits at the level of IP3Rs, which led me to 

hypothesize that Ca2+ release resulting from activation of metabotropic receptors would be 

decreased in neurons from a mouse model of FXS. However, my findings in Chapter 3 

demonstrate that mouse neurons did not replicate this signaling deficit. Furthermore, neither 
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mouse astrocytes nor skin fibroblasts from FXS mice demonstrated this signaling abnormality. In 

conclusion, the mouse completely fails as a model for the IP3R defect I observe in human FXS 

cells, providing a possible explanation for recent failures of several clinical trials for this disease. 

My findings tap into an important but often overlooked topic of divergence in signaling 

pathways between species ((Yue et al. 2014; Seok et al. 2013), but also see (Takao and 

Miyakawa 2015)). The mouse brain is not simply a mini-version of a human brain, and this fact 

may explain poor success rates in translation between preclinical studies on rodents to clinical 

studies in humans, especially in the neurological field. This is well exemplified by the recent 

failures of two clinical FXS drug trials (Mullard 2015), and >100 failed clinical trials of 

Alzheimer’s disease therapies (Schneider et al. 2014), all of which showed promise in mouse 

models.  

At present, a strong emphasis is put on mapping behavioral defects seen in humans onto 

rodents and then correcting them in the mouse models. A different (and perhaps better) approach 

would be to refine biochemical or biophysical functional biomarkers as molecular readouts for 

validating drug targets in human cells. Biomarkers of ASD have long been sought in the hopes 

that they might improve outcomes for these patients and their families. A high-throughput Ca2+ 

signaling assay such as the one I describe here may potentially serve as a molecular target for 

future drug discoveries. Indeed, the promise of cell-based approaches to ASD is underscored by 

the now well-established utility of going directly to human disease cells for drug discovery in 

instances where animal models are lacking; as was the case for cystic fibrosis where novel 

therapeutics were identified based on high throughput screening of patient cells for correction of 
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a patient’s cellular biomarker phenotype (Van Goor et al. 2009; Van Goor et al. 2011; Davis, 

Yasothan, and Kirkpatrick 2012). 

My study opens the prospect that a skin biopsy sample could become a functional cellular 

diagnostic and surrogate clinical trial outcome end-point measure, much as long has been the 

case for neurogenetic encephalopathies caused by defects in mitochondria, lysosomes and 

peroxisomes (Kudoh, Velkoff, and Wenger 1983; Waterham and Ebberink 2012; Ye and Hoppel 

2013; Saada 2011). Using this cell-based assay, novel or repurposed candidate drugs could be 

rapidly screened to evaluate their efficacy on a subject’s cells prior to their enrollment in a 

clinical trial, hopefully improving the prospects for children with autism and their families. 

4.3 Limitations and future directions. 

Although human skin fibroblasts have advantages as a model cell system to study ASD, the 

central pathology of ASD lies in neuronal dysfunction. To truly understand the disease 

pathogenesis these studies need to be extended to examine IP3/Ca2+ signaling in neurons. Results 

in skin fibroblasts cannot be directly extrapolated to IP3-mediated signaling in neurons, given 

that fibroblasts predominantly express type 3 IP3Rs whereas neurons predominantly express type 

1 IP3Rs (Zhang et al. 2014). Nevertheless, because expression levels of all three isotypes of 

IP3Rs are only slightly diminished in FXS and TSC fibroblasts, I conclude that the pronounced 

depression of Ca2+ signaling does not result from diminished expression of a specific isotype. 

Instead, the depressed Ca2+ signals likely result from modulatory effects on IP3R function, which 

might extend across different isotypes.  
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Recent advances in stem cell biology and the advent of somatic cell reprogramming now 

enable the generation of patient-derived induced pluripotent stem cells (iPSCs) that can be 

differentiated in vitro into neurons, glia and other cell types (Takahashi and Yamanaka 2015). A 

promising approach will be to utilize neuronal and glial cells derived from fibroblasts from a 

selected small set of monogenic and sporadic ASD subjects as well as matched, non-affected 

controls. This would allow a determination of how Ca2+ signaling may be altered in central 

nervous system cells from ASD subjects, how these alterations relate to the corresponding 

deficits in the fibroblasts from which the iPSC cells are derived, and provide a means to explore 

consequences for neuronal excitability.  

In recent years, several iPSC cell lines from patients with FXS have been developed by 

different groups (Urbach et al. 2010; Sheridan et al. 2011). In light of the considerable attention 

that has been devoted to the mGluR theory of FXS, including several human trials, it is 

intriguing that there have yet to be any convincing reports of mGluR-mediated signaling 

abnormalities in human cells. A first goal of future studies would be to compare IP3-mediated 

Ca2+ signals in iPSC-derived neurons from FXS, TSC1 and TSC2 human subjects, as well as 

unaffected controls. Given the ubiquity of the ER IP3/Ca2+ signaling pathway across all cells of 

the body, and decades of experience with other organellar diseases, it is reasonable to expect that 

the deficits I observed in fibroblasts from ASD subjects would be reflected in neuronal function; 

however, that remains to be experimentally determined, and will be a critical achievement. The 

correlation between Ca2+ signaling deficits in neurons vs. fibroblasts among different subjects 

would reveal the extent to which neuronal deficits can be inferred from measurements in 

fibroblasts, and whether similar correlations hold true across different monogenic and sporadic 
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cases of ASD. If such correlation exists, it would greatly support the view that Ca2+ signaling 

deficiencies may play a causative role in ASD pathogenesis and provide an enormously powerful 

tool to dissect the underlying mechanisms. 

4.5 Concluding remarks. 

In conclusion, my findings indicate that ER IP3R signaling is affected in three distinct 

monogenic genetic models of ASD as well as a majority of cases of sporadic ASD, pointing to 

the ER as a functional “hub” where different cellular signaling pathways merge to contribute to 

the pathogenesis of ASD. In addition to its role in Ca2+ homeostasis, the ER serves as a key 

integrator of environmental stressors with metabolism and gene expression, as it mediates a host 

of broad ranging cell stress responses such as the heat shock and unfolded protein responses 

(Brostrom and Brostrom 2003). Because of the ubiquitous nature of IP3R signaling and its 

diverse roles in almost all cells of the body, deficits in IP3-mediated Ca2+ signaling may not be 

limited to neurological correlates of ASD, but may also explain other characteristic ASD-

associated heterogeneous symptoms, such as those of the gastrointestinal tract (McElhanon et al. 

2014; van De Sande, van Buul, and Brouns 2014) and immune system (Ziats and Rennert 2011; 

Wei et al. 2011). Furthermore, since the ER serves as a sensor of a host of environmental 

stressors, this same mechanism may contribute to the known environmental component to the 

ASD phenotype, and holds the potential to reveal relevant stressors. In this light it can be seen to 

integrate a matrix of ASD associated risk factors. Ca2+ screening in skin fibroblasts, which are 

routinely acquired as clinical specimens, may thus offer a promising technique in conjunction 
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with behavioral testing for early detection of ASD, as well as their potential use for high-

throughput screening of novel therapeutic agents.  
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