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Abstract

Locally Volume Collapsed 4-Manifolds with Respect to a Lower Sectional Curvature Bound
by
Thunwa Theerakarn
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor John Lott, Chair

Perelman stated without proof that a 3-dimensional compact Riemannian manifold which is
locally volume collapsed, with respect to a lower curvature bound, is a graph manifold. The
theorem was used to complete his Ricci flow proof of Thurston’s geometrization conjecture.
Kleiner and Lott gave a proof of the theorem as a part of their presentation of Perelman’s
proof.

In this dissertation, we generalize Kleiner and Lott’s version of Perelman’s theorem to 4-
dimensional closed Riemannian manifolds. We show that under some regularity assumptions,
if a 4-dimensional closed Riemannian manifold is locally volume collapsed then it admits an
F-structure or a metric of nonnegative sectional curvature.



Contents

Contents i
List of Figures iv
List of Tables v
1 Introduction 1
1.1 Statement of result . . . . . . . . ... 2
1.2 Outline of the proof . . . . . . . . . . .. 4
1.3 Notation and conventions . . . . . . . . . ... ... ... ... 11
2 Preliminaries 14
2.1 Pointed Gromov-Hausdorff approximations . . . . . . . ... ... ... ... 14
2.2 CF-convergence . . . . . . . . .. . ... ... 15
2.3 Alexandrov Spaces . . . . . . ... 15
2.4 Topology of Riemannian 4-manifolds with nonnegative sectional curvature . 16
2.5 Stand T?-actions . . . . . . . . ... 18
2.6 Plumbing . . . . . .. L 21
2.7 F-structures . . . . . . . . . 22
2.8 Cloudy submanifolds . . . . . . .. .. .. .. o 24
2.9 Approximate splittings and adapted coordinates . . . . . . .. .. ... ... 25
3 Standing Assumptions 30
4 The modified volume scale t 32
5 Stratifications 37
6 The local geometry of the 3-stratum 38
6.1 Adapted coordinates, cutoff functions, and local topology near 3-stratum points 38
6.2 Selection of 3-stratum balls . . . . . . . . ... L 39
7 The local geometry of the 2-stratum 40
7.1 Edge 2-stratum points and associated structures . . . . . . .. ... 40
7.2 Regularization of the distance functiondg: . . . . . . . . . .. ... L. 41

7.3 Adapted coordinates tangent to theedge . . . . . . ... ... ... L. 42



i

7.4 The topology of the edge region . . . . . . .. .. .. ... L. 43

7.5 Selection of the edge balls . . . . . . ... ... oL 43
7.6 Additional cutoff functions . . . . . .. ... Lo Lo 44
7.7 Adapted coordinates, cutoff functions, and local topology near slim 2-stratum
points . . . . e e e 44
7.8 Selection of slim 2-stratum balls . . . . .. .. ... ... o000 44
8 The local geometry of the 1-stratum 45
8.1 The good annulus lemma for 1-stratum points . . . . . . .. ... ... ... 45
8.2 Adapted coordinates, cutoff functions, and local topology near 1-stratum points 47
8.3 Selection of ridge 1-stratum balls . . . . . . .. .. ... 000 51
8.4 Selection of slim 1-stratum balls . . . . . . . . .. ... ... ... ... ... 52
9 The local geometry of the O-stratum 53
9.1 The good annulus lemma . . . . . . . ... ... Lo 53
9.2 The radial function near O-stratum point . . . . . . . . ... ... ... ... 54
9.3 Selecting the O-stratum balls . . . . . . . . .. .. ... ... .. ... ... 54
10 Mapping into Euclidean Space 56
10.1 Definition of the map £%: M — H . . . . . . . ... . ... ... .. ..., 56
10.2 Theimage of Y . . . . . . . . ... 58
10.3 Structure of £° near the 3-stratum . . . . . . . ... ... ... 58
10.4 Structure of £° near the edge 2-stratum . . . . . . . . .. .. ... ... ... 64
10.5 Structure of £° near the slim 2-stratum . . . . . . . . .. .. ... ... ... 65
10.6 Structure of £Y near the ridge 1-stratum . . . . . . . . ... ... ... ... 66
10.7 Structure of £Y near the slim l-stratum . . . . . . . .. ... ... ... ... 72
10.8 Structure of £Y near the O-stratum . . . . . . . . ... ... ... ... ... 73
11 Adjusting the map to Euclidean space 74
11.1 Overview of the proof of Proposition 11.1 . . . . . . . . ... .. ... ... 75
11.2 Adjusting the map near the 3-stratum . . . . . . .. ... ... ... ... .. 75
11.3 Adjusting the map near the edge 2-stratum . . . . . . . .. ... ... ... 76
11.4 Adjusting the map near the slim 2-stratum . . . . . . . . ... ... .. ... 78
11.5 Adjusting the map near the ridge 1-stratum . . . . . . . ... ... ... .. 79
11.6 Adjusting the map near the slim 1-stratum . . . . . . . ... ... ... ... 82
11.7 Proof of Proposition 11.1 . . . . . . . . . . . . . . .. ... .. 84
12 Extracting a good decomposition of M 86
12.1 The definition of MO-stratum = = 87
12.2 The definition of MU= . 88
12.3 The definition of M™dee 89

12.4 The definition of M2Zsim . 91



il

12.5 The definition of M?2edse . 92

12.6 The definition of M3-stratum L 93
12.7 Proof of Proposition 12.1 . . . . . . . . . ... 93
13 Decomposing M into fiber bundle components 94
13.1 Fiber bundle components without boundary . . . . . . . ... ... ... .. 94
13.2 Fiber bundle components with boundary . . . . . . ... ... .. ... ... 95
13.3 Compatibility of fibers . . . . . . .. .. .. o 96
13.4 Notation . . . . . . . . . e 97
13.5 Fiber bundle components with fibers S? or T2 . . . . . . . . ... ... ... 98
13.6 Fiber bundle components with fibers D3, S? xz, I, S* x D? or T? xz, I . . . 101
13.7 Fiber bundle components with fibers D?> or S* . . . . . . . .. ... .. ... 104
13.8 Fiber bundle components (D, ... — M; —pt) . . . . ... ... ... ... .. 106
13.9 Fiber bundle components (S*/T',... — M; — (I,0I)) . . . .. ... ... 135
14 Gluing fiber bundle components into building blocks 136
14.1 Gluing (D*,... = M; — pt) with (S®/T,... = M; = (I,0I)) . . . . . .. .. 136
14.2 Overview of the gluing strategy . . . . . . . . . . ... ... ... ... .. 137
14.3 Elementary building block of type (2,5%) . . . . . . . ... ... ... .. .. 139
14.4 Elementary building block of type (2,72) . . . . . . . . . . .. . . ... ... 144
14.5 Elementary building block of type (2,D?). . . . . . . . ... ... ... ... 156
14.6 Elementary building block of type (1,S* x D?) . . . . . ... ... ... ... 166
14.7 Combining elementary building blocks of type (2, D?) and (1,S' x D?) . . . 176
14.8 Combining elementary building blocks of type (2,5%) and (2,D%) . .. ... 180
14.9 Connected components of M — | [,(S* — M, — (X3 ,0X?)) that contains
(T? = M; — (32,0%2%)) . o 0o 185
15 Proof of Theorem 1.4 196
15.1 M contains a fiber bundle component without boundary . . . .. .. .. .. 196
15.2 M does not contain a component with 2 or 3-dimensional base . . . . . . . . 196
15.3 Boundary components of (S? — M; — (¥2,0%%)) . . . . . .. ... ... .. 197
15.4 Boundary components of (1% — M; — (X2,032)) . . .. .. ... ... ... 199
15.5 Boundary components of (S — M; — (X3,0X3)) . . ... ... ... .. .. 202
15.6 Replacing (D*,... — My — pt) with a boundary component of (S3/I,... —
M; — (I,OI)) . . . . o 203
15.7 The gluing instruction . . . . . . . . . ..o 206
15.8 Satisfying the constraints . . . . . . . . . . . ... 206

Bibliography 207



v

List of Figures

2.1  Orbit space Y* of a circle action on S? x, D? with 2 exceptional orbits on d(Y*) 19
2.2 Orbit space Y* of a circle action on S? x, D? with 1 exceptional orbit on 9(Y*) 20
2.3 Orbit space Y.* of a circle action on S? x,, D? with no exceptional orbits on d(Y*) 20

13.1 A decomposition of a fiber of (S? — N; — 9¥?) in Lemma 13.2 . . . . . . . .. 99
13.2 The decomposition of My in Lemma 13.10 . . . . . . . . .. . ... ... ... 107
13.3 Example of By C OMy in Lemma 13.30 . . . . . . . ... ... ... ... ... 114
13.4 Example of a decomposition of OMj in Lemma 13.41. OMy = B Uy AUy C. . . 118
13.5 The decomposition of M, in Lemma 13.50 case 1 when OMy = A1 Uy By . . . 123
13.6 The decomposition of 9Mj in Lemma 13.50 case 1 when 0My = (A; U Asy) Up By 124
13.7 The decomposition of 9My in Lemma 13.50 case 2 . . . . . . . . .. ... ... 124
13.8 The decomposition of My in Lemma 13.50 case 3 . . . . . . .. .. ... ... 125
13.9 Example of a decomposition of OMy in Lemma 13.64. . . . . . ... ... ... 131
13.10 Example of a decomposition of OMj in Lemma 13.67. . . . . ... . ... ... 134
14.1 A representation of an elementary of building block of type (2,5%) . .. .. .. 139
14.2 A representation of an elementary building block of type (2,7%) . . . . . . . .. 144
14.3 Tlustration in the proof of Lemma 14.14 (2) case (a)-(S* x D3) . . . . . .. .. 147
14.4 Tlustration in the proof of Lemma 14.14 (2) case (a)-(S?* x D?) . . .. ... .. 148

14.5 Tllustration in the proof of Lemma 14.14 (2) case (a)-(.5? x D?) in terms of plumbing149
14.6 Tllustration in the proof of Lemma 14.14 (2) case (a)-(D?) in terms of plumbing 151
14.7 Tlustration in the proof of Lemma 14.14 (2) case (a)-((S?x.S)x[I) in terms of
double cover . . . . .. 152
14.8 A representation of an elementary building block of type (2,D?) . . . ... .. 157
14.9 Example of the configuration of an elementary building block of type (2, D?) . . 161
14.10 An edge in the representation of an elementary building block of type (2, D?) . 162

14.11 A representation of an elementary building block of type (2, D?) . . .. .. .. 166
14.12 A representation of an elementary building block of type (1,5 x D?). . . . .. 167
14.13 A representation of a building block of type (2, D?) + (1,S' x D?*) . . ... .. 176
14.14 A representation of a building block of type (2, D?) + (1,S8* x D?) . . ... .. 179
14.15 A representation of a building block of type (2,5%) + (2,D?) . . . . . . ... .. 181
14.16 Example of an elementary building block of type (2,5%) + (2,D?) . . . . .. .. 184
14.17 Example of a representation of a building block of type (2, 5%)+(2, D?)+(1, S*x D?)185
14.18 A representation of a building block of type (2,5%) + (2, D?) + (1,S* x D*) . . 186

14.19 Attaching a component (7% — M; — (X2,0%?%)) to elementary building blocks
of type (2, D?) and (1,S' x D?) . . . . . .. 192



List of Tables

13.1 Fiber bundle components with boundary

14.1 Elementary building blocks . . . . . ..



vi
Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Professor
John Lott, for his generous support, kind guidance, and wisdom throughout my graduate
studies.

I am grateful to my dissertation committee, Professor Ian Agol, Professor Craig Evans,
and Professor Kam-Biu Luk for their valuable comments and suggestions. [ would also
like to thank Professor Richard Bamler and Dr.Ved Datar for their helpful advices and for
organizing many useful student differential geometry seminars and lectures.

I am thankful to have many wonderful teachers in my life. I would like to especially thank
my undergraduate advisors Professor Thomas Banchoff and Professor Bjorn Sandstede, and
my high school teacher Ajarn Chamrern Jiavwan for their continuing support, mentorship,
and inspiration.

Appreciation is due to the staff of the Department of Mathematics, especially Vicky Lee,
Judie Filomeo, Marsha Snow, Jennifer Pinney, and Barb Waller for their tireless efforts in
keeping the department running smoothly and for dealing with my administrative issues.

I thank my academic siblings, Patrick Wilson and Shenghan Zhang, for their friendship,
for helping me with mathematics, and for many thought-provoking conversations.

I've had a pleasant experience during the past six years because of the support and
encouragement from my friends. I thank Toon, Mangpo, Kung, Pup, Poon, Philip, P’Chao,
P’Kiew, P’Mam, P’Pim, P’Natth, P’Bier, N’Sun, N’Pop, Benson, Franco, Tao, Kevin, Grace,
Justin, Qiao, Chanwoo, Maya, Tong, J'Kim, Jeep, Bu, Beer, Toy, Toey, Gor, Ploy, and
countless others.

I thank Nok, for all her love and support through the ups and downs in these past years.

Finally, I am infinitely and forever indebted to my parents Boonchai and Siriphan, my
brother Nacs, and the rest of my family for all their love and support throughout my life.



717

Introduction

Roughly speaking, an n-dimensional Riemannian manifold M" is said to be collapsed if it
appears to have dimension less than n. Collapsed manifolds are studied under various cur-
vature assumptions such as bounded sectional (or Ricci or scalar) curvature, lower sectional
(or Ricci or scalar) curvature bound, or assuming that the metric is Einstein.

One way to precisely define collapsing is in terms of the injectivity radius. A Riemannian
manifold M is said to be collapsed with bounded sectional curvature if there is a sequence
of metrics {g;} for which the injectivity radius i; of (M, g;) converges uniformly to zero at
all points, p, as j goes to infinity, but the sectional curvature K stays bounded (independent
of p and 7). Cheeger and Gromov [5, 6] first developed the theory of collapsing by showing
that a Riemannian manifold is collapsed (in terms of the injectivity radius) with bounded
sectional curvature if and only if it admits an F-structure of positive rank. An F-structure
on a space X is a generalization of local torus actions where different tori (possibly not all
of the same dimensions) act locally on finite covering spaces of subsets of X.

Another way to define collapsing is in terms of the volume. We say that a Riemannian
manifold M is volume collapsed if there is a sequence of metrics {g;} for which the volume
of (M, g;) approaches zero as j goes to infinity. Perelman [24, Theorem 7.4] stated without
proof that a 3-dimensional compact Riemannian manifold which is locally volume collapsed,
with respect to a lower curvature bound, is a graph manifold. The theorem was used to
complete his Ricci flow proof of Thurston’s geometrization conjecture. As a part of their
presentation [12] of Perelman’s proof, Kleiner and Lott gave a proof of this theorem in [13].
Other proofs of Perelman’s theorem appear in [1, 3, 16, 29].

In this dissertation, we generalize Kleiner and Lott’s version ([13, Theorem 1.3]) of Perel-
man’s theorem to closed Riemannian 4-manifolds. In short, under some regularity assump-
tions, if a closed Riemannian 4-manifolds is locally volume collapsed then it admits an
F-structure or admits a metric of nonnegative sectional curvature. We state and discuss the
result in the next section.
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Other related works include Yamaguchi [34], where he studied global volume collapsed
4-manifolds with respect to a lower sectional curvature bound. Paternain and Petean [21]
showed that if a compact manifold M admits an F-structure then it is volume collapsed with
respect to a lower sectional curvature bound. Therefore, under some regularity assumptions,
the result of this dissertation is in fact necessary and sufficient.

This dissertation is structured as follows. In the next sections, we state and discuss the
result, then we give the outline of the proof, and set notations and conventions. In Chapter
2, we collect material that we will need. The rest of the dissertation, Chapter 3 to Chapter
15, is the proof of the result. See Section 1.2 for more details.

1.1 Statement of result

First, we define an intrinsic local scale function needed to define locally volume collapsed
manifolds.

Definition 1.1. Let M be a complete Riemannian manifold. Given p € M, the curvature
scale R, at p is defined as follows. If the connected component of M containing p has
nonnegative sectional curvature then R, = co. Otherwise R, is the (unique) number r > 0
such that the infimum of the sectional curvatures on B(p,r) equals —T%.

Definition 1.2. Let ¢, denote the volume of the unit ball in R" and let w € (0,¢,). A
complete Riemannian manifold M™ is said to be w-locally volume collapsed with respect to a
lower sectional curvature bound if for every p € M", vol(B(p, R,)) < wRy.

Suppose that we rescale the ball B(p, R,) to have radius one. Then the resulting ball
will have sectional curvature bounded from below by —1 and volume bounded above by w.
As w will be small compared to the volume of the unit ball in R”, we can say that on the
curvature scale, the manifold is locally volume collapsed with respect to a lower sectional
curvature bound.

Next, we give a definition of F-structures. Roughly speaking, an F-structure on a space
X is a generalization of local torus actions. Different tori (possibly not all of the same
dimensions) act locally on finite covering spaces of subsets of X. These local actions satisfy
compatibility conditions insuring that X is partitioned into disjoint “orbits”. The concept of
F-structures was introduced by Cheeger and Gromov [5, 6]. A graph manifold is an example
of a manifold which admits an F-structure. The following definition of F-structures is
adapted from [9]. The difference is that in this dissertation, we allow torus actions to have
fixed points.
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Definition 1.3. An F-structure on M is an open cover {U;} together with an action of a
torus T™ on U;, which is a finite normal cover of U;, with the following properties.

(1) It U;NU; 7é~®, thgn there exists a covering ;; (7”- — U;NU; and maps 75, : U;; = U,
and 7;;; : U;; — Uj so that the following diagram is commutative.

B
< Uy —2 s 1

Tiji

(—”UiﬂUj,‘—>Uj

&

—

S

That is T O Tiji = T O Mij 5 = Tij-
(2) There exists an action of a torus 7% on Uj;.

(3) There exists an n;-dimensional subtorus 773 C 7™ and a locally isomorphic group
homomorphism 7} — T™, such that m;;, is equivariant. The same holds when we

ij
replace ¢ by j.

The following theorem is the main result of this dissertation.

Theorem 1.4. Let ¢, denote the volume of the unit ball in R* and let K > 10 be a fized
integer. Fiz a function A : (0,00) — (0,00). Then there is some wy € (0,c¢q) such that the
following holds.

Suppose that (M, g) is a closed orientable Riemannian 4-manifold. Assume in addition
that for every p € M,

(1) vol(B(p, Rp)) < woRy, and

0y ’ ) ’ = ) - ' )
(2) For every w' € [wo,c4), k € [0,K], and r < R, such that vol(B(p,r)) > w'r, the
imequality
IVFRm| < A(w')r~*+2) (1.5)

holds in the ball B(p,r).

Then M admits a metric of nonnegative sectional curvature or M admits an F'-structure.

The main geometric assumption in Theorem 1.4 is the first assumption, which is a local
collapsing statement. The second assumption is a technical regularity assumption. Assuming
the second assumption allows us to work with a sequence of pointed Riemannian manifolds
which converge in the standard C¥-topology to a C¥-smooth limit rather than having a
pointed Gromov-Hausdorff convergence to an Alexandrov space limit. For the 3-dimensional
analog ([24, Theorem 7.4], [13, Theorem 1.3]) of Theorem 1.4, the second assumption arises
from the smoothing effect of the Ricci flow equation in its application to the geometrization
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conjecture. Kleiner and Lott [13] showed that the second assumption of [24, Theorem 7.4]
can be removed by using the Stability Theorem of Perelman [23] instead of the standard
CK-convergence of Riemannian manifolds and using the classification of complete, noncom-
pact, orientable, nonnegatively curved 3-dimensional Alexandrov spaces N, when N is a
noncompact topological manifold by Shioya and Yamaguchi [28] instead of the classification
of closed Riemannian 3-manifolds with nonnegative sectional curvature.

Paternain and Petean [21] showed that if a compact manifold M admits an F-structure
then it is volume collapsed with respect to a lower sectional curvature bound. Therefore,
assuming the second assumption, the statement of Theorem 1.4 is in fact necessary and
sufficient. We have the following corollary.

Corollary 1.6. With the same assumptions as in Theorem 1.4, there exists wy € (0, c4) such
that for any closed orientable Riemannian 4-manifold M, hypotheses (1) and (2) of Theorem
1.4 hold if and only if M admits a metric of nonnegative sectional curvature or M admits
an F-structure.

1.2 Outline of the proof

The proof of Theorem 1.4 is by contradiction. Assuming that the theorem is false, we get a
sequence of manifolds M which satisfy the hypotheses of Theorem 1.4 with the parameter
wo — 0, but do not admit an F-structure or a metric of nonnegative sectional curvature.
Using the standard C¥-convergence for Riemannian manifolds, we study the local geometry
and topology of M?, for sufficiently large ar. The local geometries are based on the number
of R-factors that M“ locally approximately splits off. Next, we use these local descriptions
to decompose M“ into domains which are fiber bundles. We then study all possible ways
to glue fiber bundle pieces together and give an explicit configuration of M“. Lastly, we
show that M“ admits a metric of nonnegative sectional curvature or admits an F-structure.
Hence, we get a contradiction.

For brevity, we will suppress the superscript « and refer to M® by M, assuming that «
is sufficiently large.

We will mainly follow and generalize the strategy and techniques developed by Kleiner
and Lott in [13]. However, there are some complications that arise in proving its 4-dimensional
analog. Firstly, a situation where M locally approximately splits off exactly one R-factor
is more complicated in the 4-dimensional case. This is discussed in Chapter 8 and parts of
Chapter 10 to Chapter 12. Secondly, the gluing procedure and the explicit configurations of
M are more involved in the 4-dimensional case. This is done in Chapter 13 to Chapter 15.
Lastly, one needs to recognize a meaningful structure on M from the explicit configurations,
which turned out to be F-structures.
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1.2.1 Local collapsing in terms of the volume scale

In Chapter 3, we reformulate Theorem 1.4 in terms of the volume scale and set up the
contradiction proof for the theorem.

Definition 1.7. Let ¢, denote the volume of the unit ball in R*. Fix @ € (0,¢4). Given
p € M, the w-volume scale at p is

rp(w) = inf{r > 0 : vol(B(p,r)) = wr'}. (1.8)

If there is no such r, then we say that the w-volume scale is infinite.

In terms of the curvature scale (see Definition 1.1), Hypothesis (1) of Theorem 1.4 implies
that if we rescale the ball B(p, R,) to have radius one, then the resulting ball will have
sectional curvature bounded from below by —1 and volume bounded above by wy. On
the other hand, if we rescale the ball B(p,r,(wo)) to have radius one, then Hypothesis (1)
implies that there is a large number R so that the sectional curvature on the radius R ball,
B'(p,R) in the rescaled manifold, is bounded below by —% while vol(B'(p, 1)) = wy, where
B'(p, 1) denotes a unit ball in the rescaled manifold. This means that on the volume scale, a
large neighborhood of p is well approximated by a large region of a complete 4-manifold N,,
which admits a metric of nonnegatively sectional curvature. This allows us to study a local
geometry of M. Moreover, if wy is sufficiently small, then we can say that at the volume
scale, a neighborhood of p is close in a coarse sense to a space of dimension less than four.
In this dissertation, we will work consistently on the volume scale.

1.2.2 Modified volume scale

Volume scales can fluctuate from point to point. This leads to difficulties in gluing local
models together. In Chapter 4, we replace the volume scale by a modified volume scale, the
fluctuation of which can be better controlled. We define a scale function p — t, at each
point p € M such that:

(1) v, is much smaller than the curvature scale R,,.
(2) The function p — v, is smooth and has Lipschitz constant much smaller than 1.

(3) vol(B(p,t,)) € [w't), wey], where w' < @ are suitably chosen constants lying in the
interval [wy, 4.

The existence of the modified volume scale follows from the local collapsing assumption,
the Bishop-Gromov volume comparison theorem, and an argument similar to McShane’s
extension theorem for real-valued Lipschitz functions.
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1.2.3 Implication of compactness

From Condition (1) above, we have that the rescaled manifold %]\/[ admits a metric of non-

negative sectional curvature near p. Condition (3) implies that %M , near p, looks collapsed
but not too collapsed, in the sense that the volume of the unit ball around p in the rescaled
manifold =M is small but not too small. Together with the regularity assumption (1.5) in
Theorem 1 4 and the standard compactness theorems for pointed Riemannian manifolds, we
can approximate a neighborhood of p in the rescaled manifold in two ways:

(1) For every p € M, the rescaled pointed manifold (%M ,p) is close in the pointed CK-

topology to a pointed C*-smooth Riemannian 4-manifold (N,, ) which admits a metric
of nonnegative sectional curvature.

(2) Forevery p € M, the rescaled pointed manifold (%M ,p) is close in the pointed Gromov-

Hausdorff topology to a pointed nonnegatively curved Alexandrov space (X,,x) of
dimension at most 3.

1.2.4 Stratification

Next in Chapter 5, we partition M into k-stratum points, for k € {0, 1,2, 3}, in terms of the
number of R-factors that (%M ,p) approximately splits off.

Let 0 < 81 < B2 < 3 be new parameters. At scale v,, we partition points in M as
follows:

— A point p in M is a 3-stratum point if (éM, p) is Bs-close to (R3,0) in the pointed
Gromov-Hausdorff topology.

— A point p in M lies in the 2-stratum if it does not lie in the 3-stratum and (}M ,p) is
D

Ba-close to (R? x Y, (0,*y,)) in the pointed Gromov-Hausdorff topology, where Y, is a
point, a circle, an interval, or a half-line, and *y, is a basepoint in Y},.

— A point p in M lies in the I-stratum if it does not lie in the k-stratum for k € {2,3}
and (éM ,p) is Bi-close to (R x Y}, (0, y,)) in the pointed Gromov-Hausdorff topology,
where V), is a 2-dimensional Alexandrov space.

— A point p in M lies in the 0-stratum if it does not lie in the k-stratum for k£ € {1, 2, 3}.

Furthermore, if a point p € M is in the k-stratum, then at some scale comparable to t,,
M is close in the pointed C*-topology to N, ~ R¥ x F, where F}, is given in the following
table. The structures near p in the k-stratum, for k € {0, 1,2, 3}, are discussed in Chapter
6 to Chapter 9.
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FP

Sl

52,72, D?

1| S3T, T3)T, S? x S*, RP34#RP?, D3, 5% x5, I,S* x D?,T? xg, I
D* S'x D?, S? x, D?, (8% x, D?)/Zy, w € Z, (RP? x S")xI,
(S2xSYYXI, T? x D?, T? xz, D?, BpxI, k € {1,2,3,4}

N | W

Additionally, we can transfer the projection map N, ~ R* x F, — R* to a map 7, defined
on a large ball B(p, ('), at some scale comparable to t,, where it defines a submersion.

1.2.5 Compatibility of the local structures

Once we have the local structure of M near each point, we investigate how the local structures
fit together on their overlaps. It follows from the construction of the stratification that local
structures are nearly “aligned”.

For example, suppose that p, ¢ € M are 1-stratum points with B(p, C,v,)NB(q, Cyt,) # @
for some constants C),, and C,. Provided that the Lipschitz constant of p — v, is small, we
have that v, ~ v,. Let z € B(p, Cpr,) N B(q,Cyt,). We have two R-factors at z, coming
from the approximate splittings at p and ¢. If the two R-factors do not nearly align at z,
then they generate an approximate R2-factor at z, which then transfers to an approximate
R2-factor at p. This contradicts to the assumption that p is in the l-stratum. Therefore,
the two R-factors from the approximate splittings at p and ¢ must nearly align along the
overlap. It follows that the maps 7, and 7, are “almost” affine functions of each other. This
will enable us to glue local structures near p and g together. Compatibilities between points
in other strata follow from similar arguments.

1.2.6 Gluing the local structures together

In Chapter 10 to Chapter 12, we use the compatibility of local structures to glue them
together. We mostly follow the methods in [13] in this part.

In summary, the gluing process begins with selecting a collection of points of each type
in M, {pi}ict s f0r kK € {0,1,2,3}, so that Uielk—stratum B(pi, Cjxp,) covers the k-stratum
points, for some constants C;. Next, we try to combine the maps 7,, so that we have a
global fibration structure for each type of points. This is done by defining a smooth map
&Y . M — H into a high-dimensional Euclidean space H. Components of £° are functions
of 7, and the scale function p — t,, cutoft appropriately so that they define global smooth
functions. See Chapter 10 for details.
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It follows from pairwise compatibility of the functions 7, discussed above that the image
of €% of Uiy, ... B(pi, Civy,) is a subset S C H which, at the right scale, is everywhere
locally closed in the pointed Hausdorff sense to a 3-dimensional affine subspace. Kleiner
and Lott [13] call such sets cloudy manifolds. They showed that a cloudy manifold of any
dimension can be approximated by a core manifold W whose normal injectivity radius is
controlled (see [13, Appendix B]). We use this to “upgrade” £° to a new map &' which is
C'-close to £° and is a fibration near the 3-stratum. We repeat similar adjustments near
other stratum points to obtain a map £& : M — H whose restriction to certain regions of
M give locally trivial fibrations. For example, near the 3-stratum points, £ yields circle
fibrations. See Chapter 11 for details.

Lastly in Chapter 12, we show that the fibered regions derived from £ have disjoint
interiors and are pairwise compatible. In particular, if two fibers intersect, then one of them
is contained in the other.

1.2.7 Describing the domains in terms of fiber bundle components

In Chapter 13, we describe the conclusion of Chapter 12 in terms of domains with disjoint
interiors. Each domain is a compact 4-manifold with corners which is also a fiber bundle,
with compatibility of fibers along the overlaps. Then, we study how fibers of different types
intersect. In particular, we describe possible configurations of each fiber along the overlaps in
terms of fibers of other types. We note that not all combinatorial configurations are feasible
due to topological obstructions.

The following example demonstrates the decompositions of fibers.

F4— MO
Example 1.9. Let M, be a fiber bundle component 1 where F* is the unit

pt
normal bundle of a soul of a complete noncompact orientable Riemannian 4-manifold which
admits a metric of nonnegative sectional curvature. For a classification, see Lemma 2.12.

OM, is a closed 3-manifold.

Assume that M, intersects exactly two other types of fiber bundle components:

T2 _— Mz
- 1 , a T?-bundle over a surface ¥2, and

(X20%?)

Sl X D2 E— M]
- 1 ,an S x D?bundle over an interval 1.

(1,01
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In Lemma 13.17, we show that OMy = B; U AU By where A = T? x [ is a subbundle
T2 —— M,

of the boundary of , for some 7, and B; and B, are S! x D2-fibers over
1
(X2 0%?)
SIXD2—>MJ'1 SIXD2—>MJ‘2
the endpoints of L and L , for some j; and jo. It
(1,01) (1,0I)

follows that My = 53, S x S2, or a Lens space L(|w|, 1) and My = D* +CP?*#D*, S x D3,
S? x D?, a twisted (RP? x S')-bundle over an interval (RP? x S')x1I, a twisted (S?xS")-
bundle over an interval (S%xS')x I where S?x S is the nonorientable S2-bundle over S*, or
a D%-bundle over S? with Euler number w, S? x,, D?.

More generally, 0M, still has the same decomposition OM, = B; U A U By when we

St x D* — M; T? Xz, [ — M,
replace an occurrence of a component 1l by 1l in
(1,0I) (1,0I)

the above construction. However, the topology of M, changes.

1.2.8 Gluing fiber bundle components into building blocks

Recall that we are trying to get a contradiction by showing that for large o, M = M* admits
an F-structure or a metric of nonnegative sectional curvature. In Chapter 14, we use the
decompositions of fibers from Chapter 13 to glue fiber bundle components of different types
together into building blocks and show that they admit F-structures. Later in Chapter 15,
we finish the proof of Theorem 1.4 by describing M in terms of a configuration of building
blocks and showing that M admits an F-structure.

The following example illustrates the gluing process.

Example 1.10. Assume that M consists of

. Stx D3 —V,
— three (S x D3)-bundles over a point 1| eef{t,2,3}
pt
Sl X l)2 — E/g
— two (S! x D?)-bundles over an interval 1| Be{12,23},
(L, o1)

T2 — 5 M’
— one T2-bundle over D? 1

(D2, 0D?)
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Sl M//
— and one S'-bundle over D3 1

(D*, OD?)

These components are glued together according to the following diagram

Vi
v, i
V3
Stx D3 — 1V,
where the vertices represent L] ac {1,2, 3}, the solid edges represent
pt
St x D* — FEj T M
1 , B € {12,23}, and the triangular area represents 1l
(I,00) (D2, OD2)
T? — OM’
The dashed edge is a T%-subbundle T? x I of | |- For each (S* x D?)-fiber of
oD?
S'x D* — Eg T2 — OM’
1 , its T%-boundary coincides with a T2-fiber of L |- The
(I, 01) oD?
Sl M//
union of components represented by the above figure is glued to 1 along
(D%, 0D%)
their (S! x S?)-boundaries in such a way that each T?-fiber of the dashed edge T2 x I is a
Sl M
union of S!-fibers from 1
(D?,0D?)

More generally, under the same configuration, each component in Example 1.10 has more
than one possible topological type. For example, in addition to S' x D3, each vertex can
also represent a manifold diffeomorphic to 7% x D?, D*, or a D?-bundle over S?. Instead of

T? —— M’ T? —— M’
1 , the triangular area can also represent 1 where X2 is

(D2,0D?) (£2,052)
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St — M
a surface with one boundary component. Instead of 1 , the union of the
(D3, 0D?3)
St —— M
components represented by the above figure can also attach to 1 where

(X3,0X°)
X3 is a 3-manifold such that 0X3 = 2.
1.2.9 Giving an explicit configuration and recognizing an F-structure

In Chapter 15, we finish the proof of Theorem 1.4 by describing M in terms of a configuration
of building blocks and fiber bundle components then showing that M admits an F-structure
or a metric of nonnegative sectional curvature.

The following example illustrates a construction of an F-structure on M.

Example 1.11. Let M be the manifold in Example 1.10. For simplicity, we assume that

Sl M
all fiber bundles are trivial. Let S act on { =~ (S x D?) by rotations on
(D?,0D%)
T° —— M’
S'-fibers and act trivially on D3. Similarly, let 7% act on 1 ~ (T? x D?)
(D?,0D?)

by the standard 72-action on T2-fibers and act trivially on D?. The T?-action extends to
Uas(Va U Eg) = (S' x D?) x I in such a way that 7% acts trivially on the [-factor and
acts by an extension of the standard action on the (S' x dD?)-factor. Each (S! x D?)-fiber
is the union of T2-orbits over an open interval and a single orbit of dimension one. The
T2-action restricts to an S'-action on a neighborhood of this 1-dimensional orbit. By the
compatibility of fibers, the S* action on OM” extends to the T2-action on the boundary of

M'U (Uaﬁ Vo U E@). This gives an F-structure on M.

1.3 Notation and conventions

1.3.1 Parameters and constraints

We mostly follow the notation and conventions in [13]. The proof of Theorem 1.4 involves
long constructions, many steps of which generate new constants. We will refer to these
constants as parameters. Several arguments will include a consideration of sequences of
values of parameters, which one should associate with a sequence of distinct instances of the
constructions.

Many arguments in this dissertation assert that certain statements hold provided that
certain constraints on the parameters are satisfied. Each time we refer to such a constraint,
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we will assume that the inequalities in question are satisfied for the remainder of the thesis.
Constraint functions will be denoted with a bar. For example, u < f(8,0) means that
i € (0,00) satisfies an upper bound which is a function of § and ¢. By convention, all
constraint functions take values in (0, 00).

At the end of the proof of Theorem 1.4 (Section 15.8), we will verify that it is possible
to simultaneously satisfy all the constraints that appear in the proof. Since the constraints
are of the form that one parameter is sufficiently large or small in terms of some other
parameters, we only need to consider the order in which the parameters are consider.

We follow Perelman’s convention that a condition like @ > 0 means that a should be
considered to be small, while a condition like A < oo means that A should be considered to
be large. This convention is for expository purposes only.

1.3.2 Notation

We will use the following notation for cutoff functions with prescribed support. Let ¢ €
C>(R) be a nonincreasing function so that ¢|(—s0 = 1, ¢|j1,00) = 0, and ¢((0,1)) C (0,1).
Given a,b € R with a < b, we define ®,, € C>*(R) by

Q,p(x) = d(a+ (b—a)x), (1.12)
s0 that @ p|(—o0a) = 1 and Py p|pc) = 0. Given a,b,c,d € R with a < b < ¢ < d, we define

q)a,b,c,d € OOO(R) by
Poped(®) = b —a(—7)Pca(T), (1.13)

so that (I)a,b,c,dl(—oo,a] =0, (ba,b7c7d|[b,c] =1 and (I)a,b,c,d’[d,OO) = 0.

If X is a metric space and 0 < r < R, then we denote the annulus B(x, R) — B(z,r) by
A(z,r, R). The dimension of X refers to the Hausdorff dimension.

Let (X, ) be a pointed metric space. A metric cone (C,*) of (X, ) is the union of rays
leaving the basepoint * such that the union of any two such rays is isometric to the union of
two rays leaving the origin in R2. For brevity, sometimes we write C' for the pointed metric
space (C,x).

If Y is a subset of X and ¢t : Y — (0,00) is a function, then we write N;(Y') for the
neighborhood of Y with variable thickness ¢ : Ny(Y) = U,y B(y, t(y))-

If (X,d) is a metric space and A > 0, then we write AX for the scaled metric space
(X, A\d). That is, for any two points z,y € X, the distance dyx(x,y) = Adx(z,y). We also
write Byx(p,r) C AX for the r-ball around p in the metric space A X.

A product metric space X7 x Xy will always be endowed with the distance function

d(XlxXQ)((JUl,l'z 3/1 ?/2 \/GZX1 x1,y1 + d§(2($2,yz) for (33'1,332)7 (3/1792) € X1 x Xo.
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Let X and Y be topological spaces with boundary. We denote by X Uy Y the union
X UY with the condition that X NY = 90X NaY.

Let X™ be a topological space and let k£ be a nonnegative integer. We denote the con-
nected sum X#X# ... #X by kX. When k =0, we define kX to be S™.

k copies
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Preliminaries

In this chapter, we list the material that we will need.

We refer to [25] for basics about Riemannian geometry. We refer to [2] for basics about
length spaces and Alexandrov spaces. We refer to [10, 27] for facts about 3-manifolds. We
refer to [7, 8, 17] for facts about S and T?-actions on 3 and 4-manifolds.

2.1 Pointed Gromov-Hausdorff approximations

In this section, we collect definitions and basic results about the pointed Gromov-Hausdorff
topology. We refer to [2, Chapter 8].

Definition 2.1. Let (X, *x) be a pointed metric space. Given § € [0,00), two closed
subspaces C; and Cy are d-close in the pointed Hausdorff sense if C; N B(xx,0~') and
Cy N B(*x,0~ ') have Hausdorff distance at most 9.

Definition 2.2. Let (X, *x) and (Y, %y ) be pointed metric spaces. Give § € [0, 1), a pointed
map f : (X,xx) = (Y,*y) is a 0-Gromov-Hausdorff approzimation if for every xi,z5 €
B(xx,071) and y € B(xy,d ! —§), we have

|dy (f (1), f(22)) — dx(21,22)] <6 and  dy(y, f(B(xx, 0 1)) < 6. (2.3)

Two pointed metric spaces (X, xy) and (Y, %y ) are d-close in the pointed Gromov-Husdorff
topology if there is a 6-Gromov-Hausdorff approximation from (X, xx) to (Y, xy). Although
this does not define a metric space structure on the set of pointed metric spaces, it defines
a topology which is metrizable.

A sequence {(X;, xx,)}2, of pointed metric spaces Gromov-Hausdorff converges to (Y, xy)
if there is a sequence {f; : (X, xx,) = (Y, xy)}2; of §;-Gromov-Hausdorff approximations,
where 6; — 0.

The pointed Gromov-Hausdorff topology is a complete metrizable topology on the set of
complete proper metric spaces (up to isometry). Thus, we can talk about two metric spaces
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having distance at most § from each other. In this dissertation, we only concern complete
proper length spaces, which form a closed subset of the set of complete proper metric spaces
under the Gromov-Hausdorff topology.

2.2 (CX-convergence

Definition 2.4. Given K € Z%, let (M, *y,) and (My,*),) be complete pointed C¥-
smooth Riemannian manifolds. Given § € [0, 00), a pointed CE*!-smooth map f : (M, *pr, )
— (My,*pp,) is a 0-CE approzimation if it is a 6-Gromov-Hausdroff approximation and
| f*90, — 9an|lox, computed on B(xp,d71), is bounded above by 4. Two CK-smooth
Riemannian manifolds (M, %y, ) and (My, %yy,) are said to be 6-CX -close if there is a 6-C*
approximation from (M, xyy,) to (Ma, *pr,).

We will use the following C'*-precompactness result from [13] (see also [25, Chapter 10]).

Lemma 2.5 ([13, Lemma 3.5]). Givenv,r >0, n € Z*, and a function A : (0,00) — (0,00),
the set of complete pointed CE+2-smooth n-dimensional Riemannian manifolds (M, xyr) such
that

(1) vol(B(*p, 1)) > v and
(2) |[VFRm| < A(R) on B(xp,7), for all0 < k < K and R > 0,
is precompact in the pointed C™ -topology.

The bound on the derivatives of curvature in Lemma 2.5 gives uniform C¥*l-bounds on

the Riemannian metric in harmonic coordinates. One then obtains limit metrics which are
C¥_smooth.

2.3 Alexandrov Spaces

We refer to [2] for basics about length spaces and Alexandrov spaces. In this dissertation,
all Alexandrov spaces are assumed to have a finite Hausdorff dimension.

We recall the notion of a strainer (cf. [2, Definition 10.8.9]). For facts about strainers,
we refer to [2, Chapter 10].
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Definition 2.6. Let X be an Alexandrov space of curvature bounded below by c¢. Let p € X.
An m-strainer at p of quality § and scale r is a collection {(a;, b;)}1, of pairs of points such
that d(p, a;) = d(p,b;) = r and in terms of comparison angles,

Lp(ai, b)) >m =9, (2.7)
Zp(ai,aj) > g — 9,
Zyaiby) > 5 =4,
Zy(bib) > 5 =6,
foralli,j € {1,...,m}, i # j. The comparison angles are defined using comparison triangles

in the model space of constant curvature c.

Definition 2.8. The strainer number of X is the supremum of numbers m such that there
exists an m-strainer of quality ﬁ at some point and some scale.
Lemma 2.9 (]2, Corollary 10.8.21]). The Hausdorff dimension of X equals to its strainer
number.

If (X,xx) is a pointed nonnegatively curved Alexandrov space, then there is a pointed
Gromov-Hausdorff limit C7 X = lim,\_mo(%X ,xx) called the Tits cone of X. It is a nonneg-
atively curved Alexandrov space which is also a metric cone.

Lemma 2.10 ([13, Lemma 3.10]). Givenn € Z*, let {(X;, *x,)}2, be a sequence of complete
pointed length spaces. Suppose that ¢; — 0 and r; — oo are positive sequences such that for
each i, the ball B(xx,,r;) has curvature bounded below by —c; and dimension bounded above
by n. Then a subsequence of the (X;,*x,)’s converges in the pointed Gromov-Hausdorff
topology to a pointed nonnegatively curved Alexandrov space of dimension at most n.

2.4 Topology of Riemannian 4-manifolds with nonnegative sectional curvature

Lemma 2.11 ([13, Lemma 3.11]). Let M be a closed orientable 3-dimensional C¥-smooth
Riemannian manifold with nonnegative sectional curvature. Then, M is diffeomorphic to
S3/T (where T is a finite subgroup of Isom™(S?) = SO* which acts freely on S*), T°/T
(where T is a finite subgroup of Isom™ (T®) which acts freely on T?), S'x S?, and S* xz,S* =
RP34RP3.

Wolf [33] showed that there are six orientable and four nonorientable flat closed 3-
manifolds. We follow the notation in [33]. The six orientable flat 3-manifolds are denoted
by Gi, i € {1,...,6}, where G; = T®. The four nonorientable flat 3-manifolds are denoted
by B;, i € {1,...,4}, where B; & K? x S'. The double cover of By and B, is T° and the
double cover of Bs and B, is Gs.
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Lemma 2.12. Let M be a complete connected orientable 4-dimensional C*-smooth Rieman-
nian manifold with nonnegative sectional curvature. We have the following classification of
the diffeomorphism types of M, based on the number of ends:

— 0 ends: complete compact connected orientable 4-dimensional C¥ -smooth Riemannian
manifold with nonnegative sectional curvature.

— 1 end: RY, S'x R3, T? x R2, an R2-bundle over K? K?XR? =~ T2 Xz, R?, R?-bundles
over S? S? x, R% for some w € Z, R*-bundles over RP? (S? x ,R?)/Zy for some w € Z,
the twisted R-bundle over the nonorientable S?-bundle over S* (S?xS')XR, the twisted
R-bundle over RP? x S' (RP? x S xR, and the twisted R-bundle over B; B; xR where

B; is a nonorientable compact 3-dimensional Euclidean space form fori € {1,2,3,4}.

— 2 ends: N xR where N is St x S?, S1 xz, S? X RP3#RP3, T?/T (where T is a finite
subgroup of Isom™ (T®) that acts freely on T3), or S?/T (where T is a finite subgroup
of SO(4) that acts freely on S*).

If M has two ends then it splits off an R-factor isometrically.

Proof. If M has no ends then it is compact. Thus, M is a complete compact connected
orientable 4-dimensional C¥-smooth Riemannian manifold with nonnegative sectional cur-
vature.

If M is noncompact, then by the Cheeger-Gromoll soul theorem, M is diffeomorphic to
the total space of a vector bundle over its soul, which is a closed lower-dimensional manifold
with nonnegative sectional curvature [4]. (As stated in [13], the proof in [4], which is for
C>-metric, is also valid for C*-smooth metrics.) The possible dimensions of soul are 0, 1,
2, and 3. The possible topologies of M are listed in the lemma.

The O'Neill formula (see [25, Chapter 3]) implies that every R*bundle over S* admits a

metric of nonnegative sectional curvature. Ozaydin and Walschap [20] showed that the only

R2-bundle over T? which admits a metric of nonnegative sectional curvature is the product
T? x R2.

If M has two ends then it contains a line and the Toponogov splitting theorem [32]
implies that M isometrically splits off an R-factor. The classification of closed orientable
3-dimensional C¥-smooth Riemannian manifolds with nonnegative sectional curvature was
given in [13, Lemma 3.11]. O

Lemma 2.13. Fori € {1,2}, let W; be diffeomorphic to S*x 1o D?* and let V; be a submanifold
of OW; =2 RP? diffeomorphic to S? Xz, L. Let W = W1 Ug Wy by identifying Vi and Va. Then,
W = D*(S? x S?) or D*#(S?xS?) where S?xS? is the nontrivial orientable S?-bundle
over S2.

Proof. Let Z = Wy Uy Wy where 0W; is identify with 0W, by an orientation-reversing
diffeomorphism. Then, Z is diffeomorphic to the union of two copies of S? x 1o D? along
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their boundaries. The mapping class group of RP? has one path-connected component.
Hence, there is a unique way, up to isotopy, to glue two copies of S? xi9 D? to get an
orientable manifold. In particular, dD*fibers from two copies of 9(5% X19 D?) coincide.
Therefore, Z is diffeomorphic to an S%bundle over S?. That is Z = S? x S? or S?XxS2,
where S$2x 5?2 is the nontrivial orientable S2-bundle over S2.

Consider that S?xz, I = RP3—B3. Fori € {1,2}, OW,—V; 2 RP3—(RP*-B3) =~ D3. Z
can be obtained from W by identifying OW; —V; and 0W, — V5. In other words, Z = WU D*.
Therefore, W = Z — B* = D*4#(S? x S?) or D*#(S5?x5?). O

2.5 S! and T?-actions

In this section, we list some S and T?-actions on the unit normal bundle of a soul of a com-
plete noncompact orientable Riemannian 4-manifold which admits a metric of nonnegative
sectional curvature. From Lemma 2.12, they are D*, S* x D3, a D2-bundle over S?, S% x, D?
for w € Z, a D*bundle over RP2, (S? x,, D?)/Z, for w € Z, (RP? x SY)xI, (5?xS")xI,
T? x D2, T? xz, D?, or BixI for k € {1,2,3,4}.

2.5.1 D%bundles over S?, S? x, D?, wc Z

We follow the constructions in [7] for S* and T?-actions on D*-bundles over S2.

Write S? as By U By where By and By are the upper and lower hemispheres respectively.
For i € {1,2}, we use the polar coordinates (r,y) on B; and (s,d) on D? where D? the
D*fiber of S? x,, D? r,s € [0,1] and ~,d € [0, 27).

For relatively prime integers u; and v;, we define an S'-action on B; x Df by
S' x (B; x D}) — B; x D?, (2.14)
¢ X (r,7,8,6) = (r,7 + 19, 8,6 + v;9).
If us = —uy and vy = —wuy + vy, then we obtain Y, = B; X D% Ug By X D% where G is an
equivariant pasting G : 9By x D? — 0By x D3 so that G(1,7,s,0) = (1, —7,s, —wy + 9).

The resulting manifold Y, is diffeomorphic to S? x,, D?, the D*bundle over S? with Euler
number w, i.e. w is the self-intersection number of the zero section of Y,,.

Moreover, dY,, is obtained as the equivariant union of two solid tori Y, = By x dD? Up
By x D3 where F = (:j} (1]) . Hence, 0Y,, is the Lens space L(|w|, 1) if w # 0. Yj is the
product S? x D? and 9Y, = S? x S!.
We can similarly define an effective T?-action on S? x,, D?
T? x (B; x D}) — B; x D?(¢,0) (2.15)
(r,7,8,0) = (r,y + uip + wib, 8,6 + v;¢ + t,0)
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where the intergers u;, v;, w;, and t; satisfy

U; Wi
o g | =EL (2.16)
The pasting G defined above is T?-equivariant if also wy = —w; and ty = —ww; + t;.

We describe S and T2-actions on S? x,, D? by the matrix

Up Uz W1 W2
(b v ) (217)

which satisfies certain conditions.

The full list of S'-actions on Y,, & §? x,, D? is given in [7]. Here we present a selection
that we will use. Throughout the following, ¢ = +1, n is an arbitrary integer, and pairs
(o, B;) are relatively prime with 0 < ; < ;.

(a) Suppose

d=| M . 1, /=] " fs | _ +1, and w=¢&e"| M b . (218
‘ as O3 g [ az [P ( )
Then
EQ —ex € + na —€ + na
up Uz wp w\ _ ' : (B g i ! (2.19)
v vy tp ta '

eclag —ee’ay e (B +nay) —ee” (B3 + nas)

describes actions on Y,, with the orbit space Y* ~ D3. The restriction of the above
Sl-action onto dY,, has two exceptional orbits.

“' (a2, B2) (a1, 1) (s, Bs)

Figure 2.1: The orbit space Y* of a circle action on S? x,, D? with two exceptional orbits
on O(Y))

(b) Suppose

1 |b] 1 [b]
=] M b =41, boy+p ==+1, &= , and w=¢¢" )

asz 3 1+ ar B ay B
(2.20)

Then
EQ —cx e(p + no —&(p0 +na

w o w wp) (T 0 S(B+mar)  —e(B4noy) .

V1 Vg tl t2 ‘

ee! —ee’ay ee/(|b] +n) —e”(B2 4 naw)
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describes actions on Y, with the orbit space Y* ~ D3. The restriction of the above
Sl-action onto JY,, has one exceptional orbits.

P \

Figure 2.2: The orbit space Y,* of a circle action on S? x,, D? with one exceptional orbit on

a(Yy)

(c) Suppose

b/Oél + ﬁl = :tl, b”Oél + 61 = :|:1, 8/ = 1 |b| (222)
o B
n | 01 I3} o 1 |b|
e’ = Lo and w=¢¢ Lol
Then
ey —eoy  €(b+na —e(b+ na
Uiy Uy W1 Wy _ ! ! ( 1) ( 1) (2 23)
V1 V2 tl tQ '

el —ge 86’(|b/|+n) —66"(|b”|+n)

describes actions on Y,, with the orbit space Y* ~ D3. The restriction of the above
Sl-action onto dY,, has no exceptional orbits.

5 (o1 B1)
: ——e
:- b/ b//

Figure 2.3: The orbit space Y* of a circle action on 5% X, D? with no exceptional orbits on
(YY)

2.5.2 D?

Consider D* as {(21,22) € C? : |21|*> + |22]* < 1}. Let S* act on D* by 0 € S, (2, 29) =
(€992, €79 z), for some relatively prime o, 3. The orbit space of the S'-action is (D*)* = D3.
The restriction of the action to S® = {(21, 229) : |21|*> + |22|> = 1} gives a Seifert bundle with
at most two exceptional points.

2.5.3 S'xD?

There is an S*-action on S* x D? by rotation on the S!'-factor and by the trivial action on the
D3-factor. An another S'-action on S' x D? is by rotation about an axis on the D3-factor
and by the trivial action on the S!-factor.
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2.5.4 T?x D?

There is an S*-action on 7% x D? by rotation about the origin on the D2-factor and by the
trivial action on the T2-factor. There is a T?-action on T2 x D? by the standard T?-action
on the T?-factor and by the trivial action on the D?-factor. Note that this 7T2-action also
restricts to an S'-action.

2.5.5 (S% %y, D?)/Zs, w € T

There are S' and T?-actions on the double cover (52 x, D?) of (52 x, D?)/Z, as given above.

2.5.6 (RP? x S)xI,(S?xS")xI

There is an S'-action on the double cover (S? x S') x I of (RP? x S')xI and (S?xS*)x[
by an Sl-action on the S* x S2-factor and by the trivial on the I-factor.

2.5.7 T? X7 D?

There are S* and T?-actions on the double cover T? x D? of T? xz, D? as given above.

2.5.8 BixI,ic {1,234}

The double cover of B; and By is T3. There are S and 7?-actions on the double cover 7% x [
of B;xI,i € {1,2}, by an action on the T3-factor and by the trivial action on the I-factor.

The double cover of B; and By is Go. Gs is a T?-bundle over S! which admits a T?-action.
There is a T%-action on the double cover G2 x I of B;xI, i € {3,4}, by a T?-action on the
Go-factor and by the trivial action on the I-factor.

2.6 Plumbing

We refer to [7, 17] for notation and basics about plumbing.

Definition 2.24. Given two D*-bundles n; : D* — Y, — M, and 1, : D?> — Y5 — M, over
surfaces My and M,, we define a plumbing Y,[1Y5 of Y] and Y5 as follows.

Choose 2-disks B; C M; and B, C M; and the bundles over them, & and & respectively.
Since they are trivial bundles, there are natural identifications p; : By x D? — & and
o : By x D* — &. Consider the reflection ¢ : By x D* — By x D?, t(z,y) = (y, ) and define
the homeomorphism f : & — & by f = ustp;'. Pasting n; and 1, together along & and &
by the map f is called plumbing.

The resulting manifold of a plumbing is a 4-manifold with corners that may be smoothed.
It is independent of the choices involved [17].
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2.6.1 Equivariant plumbing

Fintushel [7] showed that a plumbing of D?*-bundles over S? can be done equivariantly with
the S* and T™2-actions given in Subsection 2.5.1.

Lemma 2.25 ([7]). LetY,, andY,, be D*-bundles over S* constructed as in Subsection 2.5.1.
Recall that we can write Y,,, = B11 X D11 UgBi2x Dig and Y,, = By X Dy Ug By X Dj
where Bjy, and Djy, are 2-disks and G is an equivariant pasting.

Then, we may equivariantly plumb together Y, andY,, by identifying Bs1 X Dy with
Bio x Dyo. The resulting manifold Y,,,00Y,, has an induced S*-action and T?-action.

2.7 F-structures

We refer to [5, 6, 9] for basics about F-structures.

The following definition is adapted from [9]. The difference is that we allow torus actions
to have fixed points.

Definition 2.26. An F'-structure on M is an open cover {U;}; together with an action of
T™ on U;, which is a finite normal cover of U;, with the following properties.

(1) If U;NU; # @, then there exists a covering m;; : (72-]- — U;NU; and maps 7,5, : U;; = U,
and 7;;; : Ui; = U; so that the following diagram is commutative.

7 Tijg
Tijyi K

PR

Ul<—’UiﬂUj,‘—>Uj

it

)
7 N

That is T O Tiji = M5 O Tij 5 = Tij.
(2) There exists an action of 7™ on Uj;.

(3) There exists an n;-dimensional subtorus 77 C T™4 and a locally isomorphic group
homomorphism TZ’]“ — T, such that m;;; is equivariant. The same holds when we
replace 7 by j.

Definition 2.27. The orbit of a point p in M is the minimal invariant set containing p.
An F-structure is said to have positive rank if all orbits are of positive dimension, i.e., the
action of T™ on Uj is fixed point free, for all Us;.

In this dissertation, we do not assume that F'-structures have positive rank.

Definition 2.28. If every finite normal covering 7; : U; — U; in Definition 2.26 is trivial,
then the F-structure is called a T-structure.
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A graph manifold is an example of a manifold which admits a T-structure.

Example 2.29. Let {X?} be a collection of surfaces with boundary. For each i, let U; &
Y2 x S1. For each boundary component o; of X2, identify the boundary component o; x S* of
U; with a boundary component o; x S* of U}, for some j, where o, is a boundary component
of ¥;, by an element of SLy(Z). The resulting manifold X is a graph manifold.

For each 4, let S act on U; by rotation on the S'-factor and by the trivial action on
¥2. On an overlap U; N U; = S x S, the two S'-actions from U; and U; do not necessary
coincide. However, if they do not coincide, then they generate a T?-action on U; N U;. This
T?-action extends to a T?-action ¢ on a neighborhood of U; NU; so that ¢|y, agrees with the
S'-action on U; and ¢y, agrees with the S'-action on U;. In the case that the T2-action on
U;NU; is not effective, i.e., the orbits are 1-dimensional, we can pass to a quotient to get an
effective S'-action on U; N U;. As a result, X admits a T-structure.

In this example, we have 2-dimensional torus actions on the overlaps and 1-dimensional
torus actions elsewhere. The method used to construct a T-structure in this example is a
typical technique for constructing an F-structure.

The following lemma says that a plumbing of two D?*bundles over a surface admits a
T-structure (see also [15] for a similar argument).

Lemma 2.30. For k € {1,2}, let X} be a D*-bundle over a surface ¥3. The plumbing
X,0X, admits a T-structure. If 3% and X3 are closed surfaces, then (X,0X5) is a graph
manifold and the restriction of the T-structure to 0(X,0X5) is a T-structure of positive
rank.

Proof. For k € {1,2}, the principal S'-bundle of D? — X} — %2 gives local S'-actions on
X where S! acts on each D?-fiber by rotations about the center and acts trivially on 2.
Y22 x {0} is the set of fixed orbits and the restriction of the local S'-actions on X, are free.

Recall the plumbing construction of X;00X,. Let B C X2, k € {1,2}, be 2-disks. Let
¢ : D?x B} — D2x B3 be a map switching the fibers and the bases. That is ¢(D?,-) = (-, B3)
and ¢(-, Bf) = (D3,-). Then, X;0X, = X; Uy X3 where D? x B? C X; and D3 x B C X
are identified by ¢. The local S'-actions on X}, k € {1,2}, can be chosen so that they
restrict to an S'-action on D} x B}.

Let Y = D? x D3 be the plumbing location in X;00X,. There exists a T?-action on Y
whose restriction to (D3, ) coincides with the S'-action on D? x B? C X; and restriction to
(-, D2) coincides with the S'-action on D2 x B2 C X,. The local S'-actions on X; and X,
and the T2-action on a neighborhood of Y together give a T-structure on X;X5.

It follows from the plumbing construction that 9(X;0X5) is a graph manifold in the case
that X2 and 2 are closed surfaces. From the above construction, the T-structure on X;0X,
restricts to a T-structure of positive rank on 0(X;0X5). O
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Paternain and Petean [21] showed that a connected sum of two manifolds which admit a
T-structure also admits a 7T-structure.

Lemma 2.31 (|21, Theorem 5.9]). Suppose X and Y are n-dimensional manifolds, n > 2,
which admit a T-structure. Then X#Y also admits a T-structure.

The proof of [21, Theorem 5.9] is by constructing new local tori actions in a neighborhood
of the connected sum region. Therefore, the same proof also applies to manifolds X and Y
which admit an F-structure such that at least one finite normal covering (as in Definition
2.26) is trivial.

Corollary 2.32 ([22]). Suppose X and Y are n-dimensional manifolds, n > 2, which admit
an F-structure such that at least one finite normal covering (as in Definition 2.26) is trivial.
Then X#Y also admits an F'-structure.

2.8 Cloudy submanifolds

Kleiner and Lott [13] introduced the notion of a cloudy submanifold as a subset of a Euclidean
space which looks roughly close to an affine subspace of the Euclidean space to use in their
proof of [24, Theorem 7.4]. As a reference, we give the definition of a cloudy submanifold as
appeared in [13, Appendix B].

Definition 2.33 ([13, Definition 20.1]). Suppose C, ¢ € (0,00), k € Z*, and H is a Euclidean
space. A (C,0) cloudy k-manifold in H is a triple (S,S,r), where S C S C H is a pair of
subsets, and r : S — (0, 00) is a (possible discontinuous) function such that:

(1) For all z,y € §, Ir(y) — r(x)|] < C(|lx —y| +r(x)).

(2) For all z € S, the rescaled pointed subset (ﬁg ,x) is d-close in the pointed Hausdorff
distance to (%Ax, x), where A, is a k-dimensional affine subspace of H.

The following lemma says that every cloudy submanifold has a smooth “core” that comes
with a smooth submersion.

Lemma 2.34 ([13, Lemma 20.2]). For all k, K € Z%, ¢ € (0,00), and C' < oo, there is
ad =0k K,e,C) > 0 with the following property. Suppose (§, S,r) is a (C,9) cloudy k-
manifold in a Fuclidean space H, and for every x € S, we denote by A, an affine subspace
as in Definition 2.33. Then there is a k-dimensional smooth submanifold W C H such that

(1) For every point x € S, the pointed Hausdor(f distance from (ﬁg, x) to (ﬁVV, x) is
at most €.

(2) W C N..(S).
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(3) W N N,.(S) is properly embedded in N,(S).

(4) The nearest point map P : N,.(S) — W is a well-defined smooth submersion.

2.9 Approximate splittings and adapted coordinates

In their proof of [24, Theorem 7.4], Kleiner and Lott [13] introduced approzimate R-splittings
and related concepts to capture the notion of a pointed metric space approximately splitting
off an R¥-factor. In this section, we collect basic properties of approximate splittings and
related concepts that we will need in this dissertation. For more details of approximate
splittings including the proofs of statements in this section, we refer the readers to [13,
Section 4].

2.9.1 Splittings
We recall the notion of splitting of a metric space.

Definition 2.35. Let X be a metric space. A product structure on X is an isometry
a: X — Xy X Xo. A k-splitting of X is a product structure a : X — X; x X5, where X is
isometric to R*. A splitting is a k-splitting for some k. Two k-splittings o : X — X7 x X, and
B X — Y] xY; are equivalent if there are isometries ¢; : X; — Y; such that 8 = (¢1, ¢2) o v

Definition 2.36. Suppose that j < k. A j-splitting o : X — X7 x X3 is said to be compatible
with a k-splitting 8 : X — Y; x Y, if there is a j-splitting ¢ : Y7 — RJ x R¥7 such that « is
equivalent to the j-splitting given by the composition

X 2 vixy, @ (R RF) x ¥ 2RI x (RFT x Y)). (2.37)

Lemma 2.38 ([13, Lemma 4.4]). (1) Suppose o : X — R¥ xY is a k-splitting of a metric

space X, and B : X — R X Z is a 1-splitting. Then either (8 is compatible with c,

or there is a 1-splitting v : Y — R X W such that B is compatible with the induced
splitting X — (R* x R) x W.

(2) Any two splittings of a metric space are compatible with a third splitting.

2.9.2 Approximate splittings

Definition 2.39. Given a nonnegative integer k£ and 0 € [0,00), a (k,d)-splitting of a
pointed metric space (X, xx) is a 6-Gromov-Hausdorff approximation (X, *x) — (X1, *x,) X
(Xo,%x,), where (X1, *x,) is isometric to (R¥, xgx). (We allow R* to have other basepoints
than 0.)

The following definitions are approximate versions of equivalence and compatibility of
splittings.
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Definition 2.40. Suppose that « : (X, *x) — (X1, *x,) X (X2, *x,) is a (4, 61)-splitting and
B (X, xx) — (Y1,%y;) X (Ya, %y, ) is an (k, 0)-splitting. Then

(1) « is e-close to p if j = k and there are e-Gromov-Hausdorff approximations ¢; :
(X, *xX;) = (Y, xy,) such that the composition (¢1, ¢2) o av is e-close to 3, i.e., agrees
with 8 on B(xx, e ') up to error at most €.

(2) a is e-compatible with B if 7 < k and there is a j-splitting v : (Y1, %y;) — (R7 xgs) X
(R*J, %gr—;) such that the (j,d,)-splitting defined by the composition

X 2o yixy, &9 (R7 x R¥7) x Y, 2RI x (RF7 x Y5). (2.41)

is e-close to «.

Lemma 2.42 ([13, Lemma 4.10]). Given § > 0 and C' < oo, there is a &' = §'(6,C) > 0
with the following property. Suppose that (X, *x) is a complete pointed metric space with a
(k,d")-splitting . Then for any x € B(xx, (), the pointed space (X, ) has a (k,0)-splitting
coming from a change of basepoint of c.

2.9.3 Approximate splittings of Alexandrov spaces

The next lemma shows that the notions of having a good strainer and having a good ap-
proximate R¥-splitting are essentially equivalent for Alexandrov spaces.

Lemma 2.43 ([13, Lemma 4.15]). (1) Given k € Z* and 6 > 0, there is a ' = (k,0) >0
with the following property. Suppose that (X,xx) is a complete pointed nonnegatively
curved Alexandrov space with a (k,d')-splitting. Then xx has a k-strainer of quality 0
at a scale 67+

(2) Givenn € Z* and § > 0, there is a 0' = (n,d) > 0 with the following property. Suppose
that (X, *x) is a complete pointed length space so that B(xy, %) has curvature bounded
below by —d0" and dimension bounded above by n. Suppose that for some k < n, *x
has a k-strainer {p*}_, of quality &' at a scale %. Then (X, *x) has a (k,0)-splitting
¢ (X, *x) = (RF x X', (0,%xx/)) where the composition mgr o ¢ has ™ component
dx (p},*x) — dx(p] ;)

2.9.4 Compatibility of approximate splittings

The following lemma states that the nonexistence of an approximate (k- 1)-splitting implies
that approximate j-splittings are approximately compatible with k-splittings for j < k.

Lemma 2.44 ([13, Lemma 4.17]). Given j <k <n € Z" and B, Bxs1 > 0, there are num-

bers 5 = 5(]7 ku n, 5[;7 ﬁk+1) > 07 6] = /8](37 k7n7ﬁl/§7 /8k+1) > 07 and Bk = ﬁk(]? k?”?ﬁ]/w Bk+1) >
0 with the following property. If (X, *x) is a complete pointed length space such that
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(1) The ball B(xx,0~ ') has curvature bounded below by —d and dimension bounded above
by n, and

(2) (X,*x) does not admit a (k+ 1, fxy1)-splitting,
then any (j, B;)-splitting of (X, *x) is B;,-compatible with any (k, By)-splitting.

2.9.5 Overlapping cones

Recall that a pointed metric space (X, *x) is a metric cone if it is a union of rays leaving
the basepoint *, and the union of any two rays 7, and -, leaving * is isometric to the union
of two rays 71, 72 C R? leaving the origin 0 € R2.

The following lemma says that an existence of two cone points implies a 1-splitting.

Lemma 2.45 ([13, Lemma 4.19]). If (X, *x) is a conical nonnegatively curved Alexandrov
space and there is some x # xx so that (X,x) is also a conical Alexandrov space, then X
has a 1-splitting such that the segment from xx to x is parallel to the R-factor.

The following lemma is an approximate version of Lemma 2.45.

Lemma 2.46 ([13, Lemma 4.20]). Givenn € Z* and 6 > 0, there is a &' = §'(n,0) > 0 with
the following property. If

(1) (X,*x) is a complete pointed length space,
(2) x € X has d(*x,x) =1, and

(3) (X, xx) and (X, z) have pointed Gromov-Hausdorff distance less than o' from conical
nonnegatively curved Alexandrov spaces CY and CY’, respectively, of dimension at
most n,

then (X, ) has a (1,0)-splitting.
2.9.6 Adapted coordinates

Definition 2.47 ([13, Definition 4.21]). Suppose 0 < ¢’ < 6, and let a be a (k, d’)-splitting
of a complete pointed Riemannian manifold (M,*ys). Let ® : B(xa,071) — R* be the
composition B(xps,671) = R¥ x Xy — R*. Then a map ¢ : (B(%as, 1), %a) — (R¥, ¢(%pr))
defines a-adapted coordinates of quality ¢ if the following holds.

(1) ¢ is smooth and (1 + §)-Lipschitz.

(2) The image of ¢ has Hausdorff distance at most ¢ from B(¢(xy),1) C R¥.
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(3) For all m € B(*y,1) and m’ € B(*y,07") with d(m,m’) > 1, the unit-length initial
velocity vector v € T,, M of any minimizing geodesic from m to m’ satisfies

o(m') — d(m)

ng(’U) - d(m m/)

< 0. (2.48)

We say that a map ¢ : (B(xa, 1), %y) — (R¥,0) define adapted coordinates of quality & if
there exists a (k,d)-splitting « such that ¢ defines a-adapted coordinates of quality ¢, as
above. Likewise, (M, x),) admits k-dimensional adapted coordinates of quality § if there is a
map ¢ as above which defines adapted coordinates of quality §.

We will refer to the following lemma as the existence of adapted coordinates.

Lemma 2.49 ([13, Lemma 4.23]). For alln € Z* and § > 0, there is a 0’ = 0'(n,d) > 0
with the following property. Suppose that (M,xy) is an n-dimensional complete pointed
Riemannian manifold with sectional curvature bounded below by —(6')? on B(*y, 37), which
has a (k,d")-splitting . Then there exist a-adapted coordinates of quality 9.

We will refer to the following lemma as the uniqueness of adapted coordinates.

Lemma 2.50 ([13, Lemma 4.28]). Given 1 < k < n € Z* and € > 0, there is an € =
€'(n,€) > 0 with the following properties. Suppose that

(1) (M,*p) is an n-dimensional complete pointed Riemannian manifold with sectional
curvature bounded below by —(€)* on B(*p, %).

(2) a: (M, *p) — (R x Z,(0,%2)) is a (k,€)-splitting of (M, *py).
(3) ¢ : B(M,%pr) — (RF,0) defines a-adapted coordinates of quality € on B(xar,1).
(4) Either

(a) ¢o: B(M,%p) — (R¥,0) defines a-adapted coordinates of quality € on B(xp, 1),
or

(b) ¢ has (1 + €)-Lipschitz components and the following holds:
For every m € B(xy, 1) and every j € {1,...,k}, there is an m/; € B(xay, %) with
d(mj,m) > 1 satisfying (2.48) (with ¢ replaced by ¢o), such that (mge o a)(m})
lies in the €'-neighborhood of the line (mrr o a)(m) +Rej, and (77 0 a)(m’;) lies in
the €'-ball centered at (w7 o a)(m).

Then ||¢p1 — ¢allcr < € on B(xp, 1).

The next lemma shows that approximate compatibility of two approximate splittings
leads to an approximate compatibility of their associated adapted coordinates.
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Lemma 2.51 ([13, Lemma 4.31]). Given 1 < j < k < n € Z* and ¢ > 0, there is an
¢ =€ (n,e) > 0 with the following properties. Suppose that

(1) (M,*p) is an n-dimensional complete pointed Riemannian manifold with sectional
curvature bounded below by —(€)* on B(*p, %).

(2) oy is a (4, €)-splitting of (M, *p) and oy is a (k, €)-splitting of (M, ).
(3) ay is €'-compatible with as.

(4) ¢1: (M, *pr) — (R7,0) and ¢y : (M, %pr) — (R¥,0) are adapted coordinates of quality
€ on B(*p, 1), associated to oy and as, respectively.

Then there exists a map T : R¥ — RJ, which is a composition of an isometry with an
orthogonal projection, such that ||¢1 — T o ¢a|lcr < € on B(xpr, 1).

By rescaling, we can define adapted coordinates on a ball of any specified size, and the
results of this subsection will remain valid ([13, Remark 4.35]).
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Standing Assumptions

We now start the proof of Theorem 1.4. The proof is by contradiction.

Lemma 3.1. If Theorem 1.4 is false then we can satisfy Standing Assumption 3.2, for an
appropriate choice of A'.

Lemma 3.1 implies that if we can get a contradiction from Standing Assumption 3.2, then
we have proven Theorem 1.4. Recall from Definition 1.7 that if w < w’ then r,(w) > r,(w’).

Standing Assumption 3.2. Let K > 10 be a fized integer and let A’ : (0,00) x (0,00) —
(0,00) be a function.

We assume that {(M®*, g*)}°2, is a sequence of connected closed Riemannian 4-manifolds
such that

(1) For all p € M®, the ratio %gﬁ of the curvature scale at p to the é—volume scale at p
15 bounded below by c.

(2) For all p € M*, &' € [é,@;), integer k € [0,K], and C € (0,a), we have that
IVFRm| < A'(C,w")r,(w') =+ on B(p, Cry(w')).

(3) Each M* does not admit a metric of nonnegative sectional curvature or an F'-structure.

Proof. Suppose that Theorem 1.4 is false. Then for every positive integer «, there is a
manifold (M?, g%) which satisfies the hypothesis of Theorem 1.4 with the parameter wq set
to w§ = g1, but M® does not admit a metric of nonnegative sectional curvature or an
F-structure.

First, we claim that for every p®* € M, we have that rp.(1/a) < Rye. If not, then for
some p* € M*, rpa(1l/a) > Rpa. From the definition of . (1/c),

1 1
vol(B(p®, Rpa)) > ER‘*Q > 4 (3.3)

14 16@4 Pa

which contradicts our choice of wy.
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Therefore, e (1/a) < Rya. Then

(e (1/a))! = VOl (B e (1/0))) < VOl B, ) < Rl (30
Thus, P
m > 2. (3.5)

We then have that {(M®*, g*)}°, satisfies condition (1) of Standing Assumption 3.2.

Next, we show that condition (2) of Standing Assumption 3.2 holds, for an appropriate
choice of A’. First, consider that it suffices to just consider C' € [1, ) because a derivative
bound on a larger ball implies a derivative bound on a smaller ball. For w' € [é, 04), we
have

Crpe (W) < arpe(l/a) < Rye. (3.6)

Then,
vol(B(p®, Crye(@'))) > vol(B(p®, rpe(0'))) = @’(rpa(w/))4 = 074@'(Crpa(@'))4 (3.7)
Put w’ = C~*w’. We have that

(e}
Wy

- v <a (3.8)

Hypothesis (2) of Theorem 1.4 implies that
[V*Rm| < A(w)(Crye (@)~ #+ (3.9)

on B(p*, Crpe(w')). Hence, condition (2) of Standing Assumption 3.2 will be satisfied, for
C € [1,a), if we take
A(C, ") = max A(C*a")C~*+2), (3.10)

0<k<K
- [l

Standing Assumption 3.2 will remain in force until Chapter 15 where we will get a
contradiction to the Standing Assumption.

For simplicity, we will suppress the superscript a. We will refer to M“ simply just by
M. By convention, each of the statements made in the proof is to be interpreted as being
valid provided that « is sufficiently large without being mentioned explicitly.

Remark 3.11. We note that for a fixed w € (0,¢4), conditions (1) and (2) of Standing
Assumption 3.2 imply that for large «, the following holds for all p € M“:

(1) Lo > a.

rp(W) —

(2) For each integer k € [0, K] and each C € (0, ), we have [V*Rm| < A'(C, @)r, (@)~ *+2)
on B(p, Cry(w)).
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The modified volume scale ¢

In this chapter, we introduce a smooth scale function v : M — (0,00), which we call the
modified volume scale. Next, we show that v is like a volume scale in the sense that there
is lower bounds on volume at scale r. This allows us to make use of C¥-paracompactness
arguments at scale v. The advantage of v over a volume scale is that the Lipschitz constant
of v can be made arbitrarily small. This will allow us to glue local structures together in
later chapters.

Lemma 4.1 ([13, Lemma 6.1]). Suppose X is a metric space, C' € (0,00), and l,u : X —
(0,00) are functions. Then, there is a C-Lipschitz r : X — (0,00) satisfying | < r < u if
and only if

I(p) — Cd(p, q) < u(q) (4.2)

for all p,q, € X.

Proof. We repeat the proof in [13] here for completeness. Clearly, if such an r exists then
(4.2) must hold.

Conversely, suppose that (4.2) holds and define r : X — (0, 00) by

r(q) = sup{i(p) — Cd(p, q)}. (4.3)

peX
Then, [ < r < wu. For ¢q,q € X, since l(p) — Cd(p,q) > l(p) — Cd(p,q) — C(q,q'), we obtain
r(q) > r(¢) — Cd(q,q"), from which it follows that r is C-Lipschitz. H

Let A > 0 and w € (0, c4) be new parameters where ¢4 is the volume of the unit ball in
R*. Put

, w
= —_—. 4.4
YT o 2A ) (44)
Corollary 4.5. There is a smooth A-Lipschitz function ¢ : M — (0,00) such that for every
p € M, we have

57(1) < ¥(p) < 2, (w) (46)
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Proof. Let I : M — (0, 00) be the w-volume scale and let u : M — (0,00) be the w'-volume
scale. We first verify (4.2) with parameter C' = % To argue by contradiction, suppose that
for some p,q € M, we have I(p) — 3Ad(p,q) > u(g). In particular, d(p,q) < %l(p) and
u(q) < I(p). Hence, B(p,l(p)) C B(g, (1+2A7Y)(p)) C B(p, (1 +4A71)I(p)). Tt follows that

vol(B(q, (1 +207)(p)) = vol(B(p. 1(p)) = wl*(p) = 20/(1 + 24 (). (4.7)

For any ¢ > 0, if « is sufficiently large, then the sectional curvature on B(p, (1 +4A~1)I(p)),
and hence on B(q, (1 + 2A71)I(p)) is bounded below by —c?l(p)™2. As u(q) < I(p) <
(1+2A7Y)I(p), the Bishop-Gromov inequality implies that

w'u(q)* _ _vol(B(g,u(q)) , vol(Blg,(1+ 2A71)(p)))

% o % 14+2A-1 (4’8)
/ sinh®(cr) dr sinh®(cr) dr / sinh®(cr) dr
0 0 0

- 2w'((1+ 2A7)i(p))*

—  pl42ad '

/ sinh®(er) dr

0
Then,
¢ (@)4 263(1 + 241
c

®) > (4.9)

% - 14+2A71 s ’
/ sinh®(cr) dr / sinh”(cr) dr
0 0

c3 xt

4 [ sinh?(cr) dr
(0,1 + 2A7"], taking c sufficiently small gives a contradiction.

Since the function z — tends uniformly to 1 as ¢ — 0, for x €

By Lemma 4.1, there is a %-Lipschitz function r on M satisfying [ < r < u. The corollary
now follows from [13, Corollary 3.15]. O

Notation. From now on, we will denote t(p) by t,.

The next lemma shows C¥-compactness at scale t. The following lemma is a 4-dimensional
analog of [13, Lemma 6.10].

Lemma 4.10.

(1) There is a constant W = @(w') > 0 such that vol(B(p,t,)) > w(t,)* for every p € M.

(2) For everyp e M, C < oo and k € [0, K], we have

P

1
IVFRm| < 2¥724/(C,w')e; 2 on the ball B (p, §Ctp> : (4.11)
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(3) Givene > 0, for sufficiently large o and for everyp € M, the rescaled pointed manifold
(éM“,p) is e-close in the pointed C¥ -topology to a complete C*-smooth Riemannian
4-manifold which admits a metric of nonnegative sectional curvature. Moreover, this
manifold belongs to a family which is compact in the pointed C¥ -topology.

Proof. (1) As v, <r,(w’), the Bishop-Gromov inequality gives
vol(B(p, 5%))  _ vol(B(p,rp(w))) _ w'(ry(w'))*
_ ' - 1 - 1 .
/mm) sinh®(r) dr / sinh®(r) dr / sinh®(r) dr
0 0 0

(4.12)

Then,

inh®(r)d
vl(B.3)  w [ s

. 4.13)
1 4 — 1 c 4 (
(3%) /o sinh?®(r) dr (T@))

A 4
A
Because / sinh®(r) dr = T + h.o.t where the higher order terms are positive, we have
0
that — A'h?’()d SE
at — S —. s
yeA inh*(r)dr 2 7 us,
1(B(p, L !
e (a1
2 4/ sinh®(r) dr
0
Therefore,
w/
vol(B(p, tp)) = vol(B(p, tp/2)) = T (t,)", (4.15)
64/ sinh®(r) dr
0

which gives (1).

The proof of (2) is the same as the proof of [13, Lemma 6.10 (2)] and the proof of (3) is
similar to the proof of [13, Lemma 6.10 (3)]. O

Next, we extend Lemma 4.10 to provide C*-splitting. The next lemma is a 4-dimensional
analog of [13, Lemma 6.16].

Lemma 4.16. Given ¢ > 0 and 0 < j < 4, provided § < d(e,w’), the following holds. If
pe M, and ¢ : (%M,p) — (R7 x X, (0,%x)) is a (J,6)-splitting, then ¢ is e-close to a (j,¢€)-
splitting gg: (éM, p) — (R x )/5, (0,%%)), where X isa complete CX-smooth Riemannian

(4 — j)-manifold which admits a metric of nonnegative sectional curvature, and $ 15 €-close
to an isometry on the ball B(p,e™') C %M, in the CE*1-topology.
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Proof. The proof is similar to the proof of [13, Lemma 6.16]. ]

Let 0 > 0 be a new parameter. In the next lemma, we show that if the parameter w
is small then the pointed 4-manifold (éM ,p) is Gromov-Hausdorff close a space of lower

dimension. The next lemma is a 4-dimensional analog of [13, Lemma 6.18].

Lemma 4.17. Under the constraint w < w(o, A), the following holds. For every p € M, the
pointed space (%M, p) is o-close in the pointed Gromov-Hausdorff metric to a nonnegatively
curved Alexandrov space of dimension at most 3.

Proof. Suppose that the lemma is not true. Then there exist o, A > 0 so that there

is a sequence w; — 0 and for each i, a sequence {Ma(ivj)jpa(ivj)}j?’il so that for each j,

(ﬁM o(13) | p*(©9)) has pointed Gromov-Hausdorff distance at least o from any nonnega-
p(i:]

tively curved Alexandrov space of dimension at most 3.

R a(i,j) R a (4,5
Lj/%ooasj%oo. Hence, —Z i
Tpa(i,j) (w ) ‘Cpa(i,j)
we can find some j = j(i) so that R e > itesm. We relabel M@i) a8 M and
p*BIM) as pi. Thus, we have a sequence {M? p'}>°, so that for each i, (éM’,pZ) has

For each fixed 1,

— 00 as j — oo. Thus,

pointed Gromov-Hausdorff distance at least o from any nonnegatively curved Alexandrov

space of dimension at most 3, and the curvature scale at p’ is at least it,. In particular,

a subsequence of {(%M i p")}32, converges in the pointed Gromov-Hausdorff topology to a
pl

nonnegatively curved Alexandrov space (X, z) of dimension 4. Hence, there is a uniform

vol(B(pi,Qrpi))

lower bound on @t

As rpi(w;) < 2ty the Bishop-Gromov inequality implies that

wi(rp, (@)t vol(B(p' rpu(@:)))  vOl(B(p', 2vp,))

T (w;) - rpi(mi) - 1 ] <418)
/ i sinh®(r) dr / s sinh®(r) dr /0 sinh”(r) dr
0 0
That is
1(B(pt. 2 1 <rpi(”j’i)>4
vollBu, 41‘1)1)) = s (/ sinh?(r) d?") e )Qtpi (4.19)
(thz) 0 pt i

1
< 4w, / sinh®(r) dr.
0

Since w; — 0, we get a contradiction. m
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From now on, we will assume that the constraint
w < w(o, ) (4.20)

is satisfied. In particular, the conclusion of Lemma 4.17 always holds.



37

757

Stratifications

In this chapter, we define a stratification of Riemannian 4-manifolds, based on the maximal
dimension of a Euclidean factor of an approximate splitting at a point. Refer to Chapter 2
and [13, Section 4] for the definition and facts about an approximate splitting of a pointed
Riemannian manifold.

Let 8,4 € {0,1,2,3,4} be new parameters such that 0 = fy < 81 < 2 < f5 < 4. Recall
that the parameter o has already been introduced in Chapter 4.

Definition 5.1. A point p € M belongs to the k-stratum, k € {0,1,2,3,4}, if (%M,p)
admits a (k, B)-splitting, but does not admit a (7, 3;)-splitting for any j > k.

We note that every point has a (0, 0)-splitting. Thus, every point p € M belongs to the
k-stratum for some k € {0,1,2,3,4}.

Lemma 5.2. Under the constraints B4 < B, and o < @, there are no 4-stratum points.

Proof. The proof is similar to the proof of [13, Lemma 7.2]. Let ¢ > 0 be the minimal
distance, in the pointed Gromov-Hausdorff metric, between (R*,0) and a nonnegatively

curved Alexandrov space of dimension at most 3. Taking 8, = ¢ = ¢, the lemma follows
from Lemma 4.17. 0

Let A € (35, 00) be a new parameter.

Lemma 5.3. Under the constraint A > A(B3), if p € M has a 3-strainer of size %tp and

quality % at p, then (%M, p) has a (3, %ﬂg))—splittmg éM — R3. In particular, p is in the
3-stratum.

Proof. The lemma follows directly from Lemma 2.43. O]

Definition 5.4. A 2-strainer point p € M is in the slim 2-stratum if there is a (2, 35)-splitting
(éM,p) — (R?* x X, ((0,0),*x) where diam(X) < 10°A.
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The local geometry of the 3-stratum

In the next fews chapters, we study the local geometry and topology near points in different
strata. We also introduce adapted coordinates, cutoff functions, and ball coverings associated
with different types of strata. In this chapter, we consider the 3-stratum.

6.1 Adapted coordinates, cutoff functions, and local topology near 3-stratum
points

In this chapter, let p denote a point in the 3-stratum. Let ¢, : (éM, p) — (R3 x X, (0,xx))
be a (3, f3)-splitting.

Lemma 6.1. Under the constraint f3 < B and o < @, diam(X) < 1.

Proof. The proof is similar to the proof of [13, Lemma 8.1]. Suppose that the lemma is
false. Then, there is a subsequence {M® } of the sequence {M*} and p; € M, such that
with 83 =0 = %, the map ¢,, : (%%M“j,pj) — (R* x X, (0,xx,)) violates the conclusion of
the lemma, i.e. diam(X;) > 1. There is a Gromov-Hausdorff sublimit (My, poo) of {M“},
which is a nonnegatively curved Alexandrov space of dimension at most 3, and a limiting
3-splitting ¢oo : (Moo, Poo) = (R* X X, (0,%x..)). The only possibility is that dim(M.,) = 3,

O 18 an isometry, and X, is a point. This contradicts the diameter assumption. O]

Let ¢3.stratum > 0 be a new parameter.

Lemma 6.2. Under the constraint 3 < 33(§3_5tratum), there is a ¢,-adapted coordinate n, of
quahty C3-stratum OT B(P, 200) C (%Ma p)

Proof. The lemma follows from the existence of adapted coordinates (see Lemma 2.49). [

Definition 6.3. Let (, be the smooth function on M which is the extension by zero of
D9 0 |1p)-
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Lemma 6.4. Under the constrains 3 < 33, G3stratum < S3-stratum, and o < T, np|n;1(B(07100))
is a fibration with fiber S*. In particular, for all R € (0,100), \77;1\[0, R] is diffeomorphic to

St x B(0, R).
Proof. The proof is similar to the proof of [13, Lemma 8.4]. O

6.2 Selection of 3-stratum balls

Let M be a new parameter, which will become a bound on intersection multiplicity of balls.
The corresponding bound M will describe how big M has to be taken in order for assertions
to be valid.

Let {pi}icls o P€ @ maximal set of 3-stratum points of M with the property that the
collection {B(p;, 5tp,)} is disjoint. We write ¢; for (.

i613—stratum

Lemma 6.5. Under the constraints M > M and A < A, the following holds.

(1) Uiersonnn B(pisty,) contains all 3-stratum points.

(2) The intersection multiplicity of the collection {supp(()} is bounded by M.

1€13 stratum

Proof. The proof is similar to the proof of [13, Lemma 8.5].

(1). Since {p; }icty raram 1S @ maximal set of 3-stratum points of M so that { B(pi, 5tp.) tic s woramum
is disjoint, if p is a 3-stratum point, then B(p, %tp) N B(p;, %tpi) =+ &, for some i € I3 gratum-
In particular d(p,p;) < %tpA—I— %tpi. As p ;—) t, is A-Lipschitz, |t, —t,,| < Ad(p,p;) <
A (%tp + %tpi). That is Lé < :7’; < ig If we assume that 1 + %A < 1.01, then

3
;T”i € [0.9,1.1]. Thus d(p,pi) < v, so p € B(p;,t,,). It follows that J;c;,  B(pi,tp,)
contains all 3-stratum points.

(2). From the definition of (;, if ¢3 stratum 18 sufficiently small, then supp(¢;) C B(p;, 10t,,).
Suppose that there exists p € M such that p € ﬂjvzl B(pi,, 10tpij) for distinct i;’s. We
relabel {i;}7L, so that B(p;,,t,, ) has the smallest volume among all B(p;,, 10tpij)’s.

If 10A is sufficiently small, then we can assume the for all j, % < :p—J < 2. Hence, the N

Piy

disjoint balls {B (Pi; tpy,) ., lie in B(p;,, 100, ). By Bishop-Gromov volume comparison,

100
. h3 d
< V01<B(pi171?0tm1)) S/0 sinh” () r‘
vol(B(pir; 3%,)) /
0

(6.6)

=

sinh®(r) dr

This proves the lemma. O
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The local geometry of the 2-stratum

In this chapter, we study the local geometry and topology of 2-stratum points. We also
introduce adapted coordinates, cutoff functions, and ball coverings associated with the 2-
stratum.

7.1 Edge 2-stratum points and associated structures
In this section we study points p € M where the pair (M, p) looks like a half 3-dimensional
Euclidean space with a base point lying on the boundary. Such points define a 2-edge set E.

Recall from Definition 5.4, p € M is a slim 2-stratum point is there is a (2, 53)-splitting
(éM, p) — (R* x X, (0,%x)) where diam(X) < 103A. In this section, we show that any
2-stratum point, which is not a slim 2-stratum point, is not far from F.

We also introduce an approximate 2-edge set E’, which consists of points where the edge
structure is of slightly lower quality than that of E. This is a technical tool to define a
smooth distance function near points in E.

Lemma 7.1. Given € > 0, if B2 < B4(¢) and o < G(€) then the following holds. If (%M, P)
has a (2, Ba)-splitting then there is a (2, €)-splitting (%M, p) = (R x Y, (0,xy)) where Y is
an Alexandrov space with dim(Y) < 1.

Proof. The proof is similar to the proof of [13, Lemma 9.1]. O

Let 0 < B < B and 0 < 0 < op be new parameters.
Definition 7.2. A point p € M is an (s, t)-edge 2-stratum point if there is a (2, s)-splitting
1
F,: (t—M,p) — (R* x Y, (0,xy)) (7.3)
P

and a t-pointed-Gromov-Hausdorff approximation

Gy (Y, xy) — ([0,C],0), (7.4)
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with C' > 200A. Given F, and G,, we put

Qp,=(IdxG,)oF,: <%M,p) — (R* x [0,C],(0,0)). (7.5)

p

We let E denote the set of (fg,og)-edge 2-stratum points, and E’ denote the set of
(Bgr, o )-edge 2-stratum points. Note that £ C E’. We will refer to elements of E as edge
2-stratum points.

We emphasize that in the definition above, ), maps the basepoint p € M to (0,0) €
R? x [0, C].

Lemma 7.6. Under the constraints g < By, 0 < Ggr, and B3 < Bs, no element p € E'
can be a 3-stratum point.

Proof. The proof is similar to the proof of [13, Lemma 9.6]. O

Lemma 7.7. Given € > 0, if fp < B(e,N), op < Tp(e,A), Be < Br(Be,om), op <
or(BE,op), and A < A(e, A) then the following holds.

Forp e E, if Q, is as in Definition 7.2 and @p : (R% x [0,C],(0,0)) — (%LM,p) is a

quasi-inverse for Qp,, then @p(B(O, 100A) % 0) is §-Hausdorff close to E'NQ,*(B(0,100A) x
[0, 100A]).

Proof. The proof is similar to the proof of [13, Lemma 9.7]. ]

Part (1) of the next lemma states that 2-stratum points are either slim 2-stratum points
or lie not too far from an edge 2-stratum point. Part (2) says that F is coarsely dense in E'.

Lemma 7.8. Under the constraints Bg < B(A), op <owp(A), Be < Br(Be,op), op <
or(Be,op), B2 < By(A, BE), 0 <T(A,0r), and A < A(A), the following holds.

(1) For every 2-stratum point p which is not in the slim 2-stratum, there is some ¢ € E
with p € B(q, Aty).

(2) For every 2-stratum point p which is not in the slim 2-stratum and for every p' €
E' N B(p,10Av,), there is some q € E with p' € B(q,t,).

Proof. The proof is similar to the proof of [13, Lemma 9.10]. O

7.2 Regularization of the distance function dg

Let dg be the distance function from E’. In this subsection, we will apply the smoothing
results from [13, Section 3.6]. The resulting smoothing of dg will define part of a good
coordinate in a collar region near F.

Let ¢z > 0 be a new parameter.
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Lemma 7.9. Under the constraints Bpr < Bp/(A,cg) and op < Tp/(A, ), there is a
function pg - M — [0,00) such that if ng = P2~ then:

(1) We have
PE’ dp

T T

< <p (7.10)

(2) In the set ng [5,10A] N (dTE)_l [0,50A], the function pg: is smooth and its gradient

lies in the <gr-neighborhood of the generalized gradient of dg:.
(3) ppr — dg is sgr-Lipschitz.
Proof. The proof is similar to the proof of [13, Lemma 9.12]. ]

7.3 Adapted coordinates tangent to the edge

In this section, p € E will denote an edge 2-stratum point and (), will denote a map as in
Definition 7.2.

Let ¢yedge > 0 be a new parameter. Applying Lemma 2.49, we get:
Lemma 7.11. Under the constraint By < Bp(A, So-edge), there is a Qp-adapted coordinate
1
Ny : <t—M, 0) D B(p,100A) — R? (7.12)
P

Of quahty $2-edge -
We define a global function ¢, : M — [0, 1] by extending
(P_on,—sasa04 ©7p) - (Pgaga 0 ner) + B(p, 100A) — [0, 1] (7.13)

by zero.

Lemma 7.14. The following holds:
(1) ¢, is smooth.

<2> Under the constraints 53 < B3_<g3—stratum); A < K(giﬁ—strzanuma A); BE’ < BE/ (§3—stratum7 A);
op < T /(Sastratums D), B < Bg(Bs, B, 08, S3stratum ), O < 01 (53, BEr, O, S3-stratum ) »
S < ?E’(g?)—stratum); and $2-edge < ?2—edge(§3—stratum); Zf T € (npvnE’)il(B(QlOA) X
[%A, 10A]) then x is a 3-stratum point, and there is a (3, Bs)-splitting ¢ : (éM, x) —
(R3,0) such that (n,,ne) : (%M, 1) — (R3 ¢(x)) defines d-adapted coordinates of
quality S3 stratum 0N the ball B(x,100) C %M

Proof. The proof is similar to the proof of [13, Lemma 9.20]. O
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7.4 The topology of the edge region

In this section, we study the local topology of a suitable neighborhood of an edge 2-stratum
point p € E.

Lemma 7.15. Under the constraints By < Bp/(A), op < Ge(A), Bg < Br(Be,om,w'),
op < 05(Be,08), Sedge < Socdge(A), spr < Spr(A), A < A(A), and o < T(A), the map n,
restricted to (n,, ne) " (B(0,4A) x (—00,4A))) is a fibration with fiber diffeomorphic to the
closed 2-disk D?.

Proof. The proof is similar to the proof of [13, Lemma 9.21]. ]

7.5 Selection of the edge balls

Let {p; }ier,.. e D€ a maximal set of edge 2-stratum points with the property that the collec-
tion {B(pi, Aty,) bicly oy 15 disjoint. We write ¢; for ¢,

Lemma 7.16. Under the constraints M > M and A < A(A), the following holds.
(1) Uzelg_edge B(pi, Aty,) contains E.

(2) The intersection multiplicity of the collection {supp(¢;)} is bounded by M.

i€I2»edge

Proof. The proof is similar to the proof of Lemma 6.5. O]

The next lemma is a useful covering of the 2-stratum points.

Lemma 7.17. Under the constraint A < A(A), any 2-stratum point lies in the slim 2-stratum
or lies in |J B(pi, 3At,,).

72612—edge

Proof. The proof is similar to the proof of [13, Lemma 9.25]. O

The next lemma will be used later for the interface between the slim 2-stratum and the
edge 2-stratum.

Lemma 7.18. Under the constraints B < Bp(A, Bs), Soedge < S2-cdge(A, B3), and A < A(A),
the following holds. Suppose for some i € Iy eqge and q € B(p;, 10At,,) we have

ne(q) <BA,  |np,(q)] < BA. (7.19)

Then either p; belongs to the slim 2-stratum, or there is a j € Iy.cqge such that ¢ € B(p;, 10At,,)
and [, (q)] < 2A.

Proof. The proof is similar to the proof of [13, Lemma 9.26]. ]
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7.6 Additional cutoff functions

We define two additional cutoff functions for later use:

C?—edge =1- q)%,l o Z Cz (720)
iEIQ—edge
and
Cer = (Po.24,03488,94 ©NE) - C2-edge- (7.21)

7.7 Adapted coordinates, cutoff functions, and local topology near slim 2-
stratum points

In this section we discuss the local geometry and topology of the slim 2-stratum points.

Let p denote a point in the slim 2-stratum and let ¢, : (éM, p) = (R? x X, (0,%x)) be
a (2, 32)-splitting with diam(X) < 103A. Let G.gim > 0 be a new parameter.

Lemma 7.22. Under the constraint By < oA\, Soglim), the following holds.
(1) There is a ¢p-adapted coordinate n, of quality saqim on B(p, 10°A) C (%M, D).
(2) The cutoff function

(CI)—9~105A7—8~105A,8~105A,9'105A) O Mp (7-23)

extends by zero to a smooth function ¢, on M.

Proof. This lemma follows from the existence of adapted coordinates (see Lemma 2.49). [

Let 1, and ¢, be as in Lemma 7.22

Lemma 7.24. Under the constraints By < Bo(Sostim, A, w') and Gogim < So-slim(A), n, 1o}
is diffeomorphic S* or T?.

Proof. The proof is similar to the proof of [13, Lemma 10.3]. O

7.8 Selection of slim 2-stratum balls

Let {pi }ier, ., be a maximal set of slim 2-stratum points with the property that the collection
{B(pi, 5tp.) Yicty o is disjoint. We write ¢; for .

Lemma 7.25. Under the constraints M > M and A < A(A), the following holds.

(1) Uien, . B(pi, 10°Avy,,) contains all slim 2-stratum points.

(2) The intersection multiplicity of the collection {supp((;) Vier, ... s bounded by M.
Proof. The proof is similar to the proof of Lemma 6.5. O]
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The local geometry of the 1-stratum

In this chapter, we study the local geometry and topology near points in the 1-stratum. We
start with a general lemma about 1-stratum points.

Lemma 8.1. Given € > 0, if f; < 3,(¢) and o < G(€) then the following holds. If (%M, P)
has a (1, B1)-splitting then there is a (1,€)-splitting (%M, p) = (R xY,(0,%y)), where Y is
an Alexandrov space of dimension at most 2.

Proof. The proof is similar to the proof of [13, Lemma 9.1]. ]

8.1 The good annulus lemma for 1-stratum points

Let og,0; > 0,T; € (A, 0), and T} > 1 be new parameters. In the next lemma, we show
that at an appropriate scale larger than t, a neighborhood of a 1-stratum point p is well
approximated by a model geometry in two different ways: firstly by R x N,, where N, is a
3-manifold with nonnegative sectional curvature, in the pointed C¥-topology, and secondly
by R x CrN, where CrN,, is the Tits cone of IV, in the pointed Gromov-Hausdorff topology.

Lemma 8.2. Let p be a I-stratum point. Under the constraints T} > T;(él,aR,Tl,w’),
pr < B,(01,w"), and o <@, there is r), € [Y1t,, Tit,] so that the following holds.

(1) (%M, p) is 61-pointed Gromov-Hausdorff close to R x CrN, where CpN,, is the Tits

cone of a complete CX-smooth Riemannian 3-manifold N, with nonnegative sectional
curvature.

(2) (%M, p) is op-pointed Gromov-Hausdorff close to R x Z, where Z, is a complete C* -

smooth Riemannian 3-manifold with nonnegative sectional curvature and (Z,,*z,) is
or-pointed Gromov-Hausdorff close to CrN,,.

(3) The ball B(p, 7‘;) C M is diffeomorphic to R x N,,.
(4) The ball B(xz,,1) C Z, is diffeomorphic to N,.
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1
(5) The distance function from p has no critical points in A(p, —2 05T ) C M.

(6) The distance function from xz, has no critical points in A(*Zp, 550 1) C Zp.

Proof. Suppose that the conclusion (1) is not true. Then for each j, if we take T} = j Yy, it is
not true that conclusion (1) hold for sufficiently large o. Hence, we can find a sequence o; —
oo so that for each j, (M, p,,) provides a counterexample with T} = jT;. We can assume
further that there are sequences o; — 0 and ] — 0 so that for each le. € [Tivy,, 7 1ty
there is a (1, 4])-splitting ¢; : (%%Maj,paj) — (R x Y}, (0,%y;)) where Y; is an Alexandrov

J
space of dimension at most 2 but there is no 3-dimensional Riemannian manifold N; with
nonnegative sectional curvature such that conclusion (1) holds.

Additionally, we assume that (7 is sufficiently small (as a function of w’) so that by
Lemma 4.16, there is a (1, j71)-C*-splitting ¢, : (#Maj,paj) — (R x Zj,(0,%z,)) where
@
Z; is a complete C®-smooth Riemannian 3-manifold with nonnegative sectional curvature
and ¢; is j~'-close to an isometry on the ball B(p,,,j) C =M in the C**-topology.
o

For notational simplicity, we relabel (%MO@., Pa;) as (Mj,p;) and write t; for Tpa, -
o

By Lemma 4.10, there is a subsequence of {( j:Pj) Y32, converging in the pointed CE-

topology to a complete C¥-smooth 4- dlmenswnal Riemannian manifold (M., ps), Which
admits a metric of nonnegative sectional curvature, with a 1-splitting (R x N, (0,%y)) for
some complete C¥-smooth Riemannian 3-manifold N with nonnegative sectional curvature.
By the compatibility of approximated splittings (Lemma 2.44), (Z;,%z,) — (N, *y) in the
pointed C¥-topology.

R x N is asymptotically conical. Thus, there exists A > 0 such that for all A > X,
(+(R x N), (0,xy)) is ——pomted Gromov-Hausdorff close to its asymptotic cone CT(R x N )
= Rx C’TN Because N is also asymptotically conical, X' can also be chosen so that ( N,xn)
is %Gt-pointed Gromov Hausdorff close to Cr V.

By critical point theory, large open balls in R x N are diffeomorphic to R x N itself and
large open balls in N are diffeomorphic to N. Hence, there exists A’ > 103 max(T;, ) so
that for any X € (3, 2)\'), there are no critical points of the distance function from (0, xy)
in A((0, *n), 75\ a/\”) C R x N and there are no critical points of the distance function
from xxy in A(Gky, 7z A", aX”) € N. Consequently, B((0,*y), ") is diffeomorphic to R x N
and B(xy, A”) is diffeomorphic to N.

As (t— M;,p;j) — (R x N,(0,xx)) in the pointed C¥-topology, for large j, there are
no critical points of the distance function in A(pj, )108 ,A"t;) € M; and B(pj, N't;) C M;

is diffeomorphic to B((0,%y),\”) € R x N. Similarly, as (Z;,*z,) — (N,*y) in the
pointed C*-topology, for large j, there are no critical points of the distance function in
A(*ZJ, 25N C Zj and B(p;, \") C Z; is diffeomorphic to B(xy, \") C N. Taking i =Nt
gives a contradiction. O]
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8.2 Adapted coordinates, cutoff functions, and local topology near 1-stratum
points

Definition 8.3. We call a 1-stratum point p such that Cr N, is a point, i.e., N, is compact,
a slim I-stratum point. Otherwise, we call p a ridge 1-stratum point.

For each 1-stratum point p, apply Lemma 8.2 to get 31, o, and a scale 7’11, € [Ty, Tty
for which the conclusion of the lemma holds. Let gp : (£M,p) = (R x X, (0,%x,)) be the
(1, 1 )-splitting from the conclusion (1) of the lemma and let Op (5 M,p) = (RxZ,,(0,%7,))
be the (1, og)-splitting from the conclusion (2) of the lemma. ’

Let ¢g > 0 be a new parameter. Let d(, ) be the distance function from (0,%z,) in
R x Z, and let 7 : R x Z, — R be the projection to the R-factor.

Lemma 8.4. Under the constraint o < or(Sr), there exists a function Vo4, ) : R x Z, —
[0,00) such that:

1) (s, 15 CE-smooth on A((0,%z,),0.7,10) C R x Z,,.

(
(2) ||¢0*zp O*Zp ||oo < QR

(3) ¥ (0x2,) — A(0z,) - R X Zp = [0, 00) is sg-Lipschitz.
(4)

4) For every T € [—0.5,0.5] and p € [1,5], (W,w(oy*zpﬂ_l({T} x [0, p]) is diffeomorphic to
the normal bundle vS where S C N, is a soul, if N, is noncompact, or to N, itself if
N, is compact.

Proof. If o is sufficiently small, R x Z, will be pointed-close to the cone R x C7N,,. Hence,
we can apply the same arguments as in the proof of [13, Lemma 11.3] for the proof of parts
(1), (2), and (3).

(4). For any 7 € [—0.5,0.5], we have that 7='(7) = {7} x Z, and dfzp = d%07*zp) — 728
bounded away from 0 when A(xz,,0.7,10) C {7} x Z,. From parts (1) to (3), if o is suffi-

ciently small, h := , /w(z()’*) — 72‘ 12, is a smooth approximation of d*z,, on A(xz,,0.8,7) C
{7} x Z,. We apply the same arguments as in the proof of [13, Lemma 11.3 (4)] but use [13,
Remark 11.4] instead of the Schoenflies theorem. We have that h~1([0, s]) for s € [0.6, 6] is
diffeomorphic to the normal bundle S where S C N, is a soul, if IV, is noncompact, or N,
itself if N, is compact. O

Let d, be the distance function from p in (:x M, p). The following lemma gives a smooth
p
approximation of d,.
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Lemma 8.5. Under the constraint 6, < 61(sg), there is a function ¢, : XM — [0,00) such
P
that

(1) @y is smooth on A(p,0.1,10) C - M.

(2) pr - deoo <SR
(3) Yp —dy: ,,%M — [0, 00) is sg-Lipschitz.

Proof. The proof is similar to the proof of [13, Lemma 11.3]. ]

The next two lemmas show that under appropriate constraints, 7, and 7, are compatible
after a scaling.

Let ¢iidge > 0 be a new parameter.

Lemma 8.6. Under the constraint 81 < B,(Siriage; T}), there is a ¢,-adapted coordinate 7,
of quality 1iage on B(p,10T)) C (éM, p) where ¢, is a (1, p1)-splitting of (%M, D).

Proof. The lemma follows from the existence of adapted coordinates (Lemma 2.49). [

Lemma 8.7. Under the constraints $1 < B,(sr, B2, T1,Y}), T1 > T1(B2), and Girigee <
Siovidge (Sr)s 570p 15 a dp-adapted coordinate of quality <p on B(p,10) C (T%M,p). Put n, =
p P
Proof. Let €1, €5, €3 > 0 be parameters internal to this proof.
Consider that 5], : (éM,p) — (R x X,(0,*x)) is a (1, ;)-splitting. Thus, 25,, has
tp

distortion comparable to 8, on B1 ,,(p, 8;'). Then, ¢, has distortion comparable to ;—’{Bl
tp p p

on By (p, ;—Eﬁfl). Since 7, € [Y1tp, Tit,), if By is sufficiently small (as a function of Ty, 17,
Tp .
and €), then %¢, is a (1, e;)-splitting for (&M, p).
P p
Assume that (T%M ,p) has a (2, e5)-splitting. By the equivalence of a good approximate
p

splitting and a good strainer (see Lemma 2.43) and because % > Ty, if € < &(f2) and
T, > Y1(f;), then there is a (2, 8;)-splitting of (%M, p). This is a contradiction. Therefore,
(T%M, p) does not have a (2, €2)-splitting.

By the compatibility of approximate splittings (see Lemma 2.44), if €, €3, and op are
sufficiently small (as functions €3), then ;—’{qﬁp is e3-compatible with ¢,,. From the uniqueness of
P

adapted coordinates (see Lemma 2.50), if ¢i_iqee and ez are sufficiently small (as functions of
SR), %l is a ¢p-adapted coordinate of quality ¢z on B(p,10) C B(p, 10T, %) C (M, p). O

The following lemma describes the local topology of a neighborhood of a 1-stratum point.
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Lemma 8.8. Under the constraints s < <r, 6, < 01(Sr), 0r < Or(sr), if p is a ridge
1-stratum point, i.e. CpN, is not a point, then the map n, restricted to (n,, ¥,) *((—0.5,0.5)x
0,5]) is a fibration with fiber diffeomorphic to D?, S* x D?, S? xz, I, or T? xz, I.

If p is a slim 1-stratum point, i.e. CrN, is a point, then the map n, restricted to
7];1(—0.5,0.5) 1s a fibration with fiber diffeomorphic to a closed orientable connected Rie-
mannian 3-manifold with nonnegative sectional curvature.

Proof. Let ¢, : (T%M, p) = (RxZ,, (0,%z,)) be the (1, og)-splitting that satisfies the previous
lemmas. Let 7 : Rx Z, — R be the projection to the R-factor. From the definition of adapted
coordinates in Definition 2.47, if oz and g are sufficiently small, then 7, is C'-close to 7o ¢.
Since ¢ is C**-close to an isometry, the generalized gradients of d(g.) o ¢ will be close to
the generalized gradient of d;, in ¢, 1((0.6,10)) where the gradients are taken with respect to
the metric on %M Hence by Lemma 8.6 and Lemma 8.7, if ¢z and 9, are sufficiently small,

Y00 © ¢ will be C'~close to 9, in the region 1, *((0.6,10)).
For ¢ € [0, 1], define a map f*: (n,,1,) ' ((—0.6,0.6) x [0,10)) — R? by

ft = (tnp + (1 - t)(?T © ¢)a t¢p + (1 - t)(w(o,*zp) © (b)) (8'9)

Let F @ (np,v) *((—0.6,0.6) x [0,10)) x [0,1] — R* be the map with slices {f*}ieo,1).
By the C'-closeness discussed above, we can apply [13, Lemma 21.1] to conclude that
(Nps p) 1 ({7} % [0, 5]) is diffeomorphic to (77,1/1(07*217))_1({7} x [0,5]) for any 7 € [—0.5,0.5].

Finally, we claim that the restriction of 7, to (n,,,) " ((—0.5,0.5) x [0,5]) is a proper
submersion to (—0.5,0.5), and is therefore a fibration. The properness follows from the
fact that (n,,1,) 1((—0.5,0.5) x [0,5]) is contained in a compact subset of the domain of
(Mp, ¥p). Dn,, is nonvanishing by the definition of adapted coordinates. If og, g, and d; are
sufficiently small, D7, is almost parallel to the R-factor in the approximate splitting. Also,
the angle between D), and the R-factor in the approximate splitting is contained in the
interval [2 — 2tan"'(%), % + 2tan~!(})]. In particular, {Dn,, Di,} is linearly independent
at points on the boundary with (n,,,) € (—=0.5,0.5) x {3}. As a result, 7, is a submersion
with fiber diffeomorphic to (7, ¢o.) ' ({T} % [0,5]).

(m, ¥0.) ({7} x [0,5]) is diffeomorphic to the normal bundle #S where S C N, is a
soul. If N, has 2 ends, then CrN, = R. If §; < d1(€), then there is a 2-strainer at p of
quality € at scale e !. By Lemma 2.43 and because :—’1' > T, if e <& (B2) and Ty > T1(Bs),
then there is a (2, 52)-splitting for (éM, p). This ispa contradiction. Hence, Cr N, has at

most one end.

By the classification of complete connected orientable 3-dimensional C¥-smooth Rieman-
nian manifolds with nonnegative sectional curvature (see [13, Lemma 3.11}), if N, has one
end, then N, is diffeomorphic to R3, S! x R? S? xz, R, or T? Xz, R. If N, has zero ends,
i.e. N, is compact, then N, is diffeomorphic to a closed connected orientable Riemannian
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3-manifold with nonnegative sectional curvature. Therefore, (7,%,) ({7} x [0,5]) is diffeo-
morphic to D?, S' x D?, S? xz, I, or T? Xz, I if C7N, is not a point. Otherwise, 7 *(7)
is diffeomorphic to a closed connected orientable Riemannian 3-manifold with nonnegative
sectional curvature. O

Define a smooth cutoff function ¢, : M — [0, 1] by extending

- 1
D _0.98,-0.80,0.88,094 ©Tp 1 (B(p,10T;) € —M) = R (8.10)

Tp

by zero. We note that A < T;. Therefore, the conclusions of Lemma 8.4 to Lemma 8.8 hold
for all point p where ¢, > 0.

Lemma 8.11. Under the constraints op < og(So-sim, B2), L1 > Y1(So-stim, B2), and Y| >
T (So-stims B2), if q € ¢, ([=5,5] x A(xz,, 5 3 5)) then q belongs to the 2-stratum or 3-stratum

and there is a smooth map n, such that fnq 15 an adapted coordinate for (éM, q) of quality

S2-slim -

Proof. Let q € ¢,'([—5,5] x A(xz,,3.5)). Let ¢, >0 for i =1,...,6 be parameters internal
to this proof.

Recall that there is a (1,0x)-splitting ¢, : (xM,p) — (R X Z,,(0,%z,)) of (M, p).
From Lemma 2.42, if o < Gg(€;), then there is a (1, €;)-splitting 5 of (T%M, q) coming from

a change of basepoint of ¢,. If €; < € (€2), then there is a 1-strainer {a],a; } of quality €
and at a scale é

Let (t,y) = ¢p(q) € [=5,5] x A(xz,,3,5). Let af = ¢, (t,%z,) € +M and let a3 =
P
¢, ' (x) where z is the point on the ray from (t,+z,) passing through (¢,y) with the distance
equal to 2dz(xz,,y). If o is sufficiently small, then d._(q, ay) >+ and da(g,a5) > 3
T Tp
Since ¢ comes from a change of basepoint of ¢,, we have that ¢,(af), ¢,(q), and ¢,(a;)
approx1mately ahgned along the R-factor in R x Z,. Therefore, the comparison angles
Aal qay Aal qag éal qa, , and Aal qa, are arbltrary close to % if o is sufficiently small.
In particular, if or < Tr(e3) and € < €(e3), then {(a,a;)}2, 1s a 2-strainer for (-xM, q)
p

of quality €3 at a scale at least %. If €3 < €3(€4), then there is an approximate 2-splitting
of (T%M ,q) with an adapted coordinate 7 of quality 4. Note that the i-th component of 7

approximates dﬁM(a;r,q) d L w(a; 7')'

If €3 < €3(es5), then {(a;, a; ) # , is a 2-strainer (%M, q) of quality €5 with scale at least
%. If €5 < &(Ba,¢6) and T > T1(fBy, €5, ¢6), then (éM, q) has a (2, B2)-splitting a with

an adapted coordinate v of quality €5. Consider that the i-th component of v approximates
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diy(af,q) —diy(af, ) = s (dlM(a;r,q) —day,(af, )) Therefore, if T > T (eg) then
%ﬁ also approximates d 1 y,(a;", ¢) —d L M( ,+). From Lemma 2.50 and the proof of Lemma

2.49 (see [13, Lemma 4.23]), if ¢4, < 64(§2_Shm) and €5 < €(S2.slim ), then :—:ﬁ is an adapted
coordinate for (é]\/[ ,q) of quality ¢ gim- O

8.3 Selection of ridge 1-stratum balls

Let {pi}ier, e P @ maximal set of ridge l-stratum points with the property that the
collection B(p;, 3—10Atpi)i hrtage is disjoint. Write ¢; for (.
Lemma 8.12. Under the constraints M > M and A < A(A), the following holds.

(1) Uieh.m-dge B(p;, %Atpi) contains all ridge 1-stratum points.

(2) The intersection multiplicity of the collection {supp((;) bier,. .. 5 bounded by M.
Proof. (1). The proof is similar to the proof of Lemma 6.5(1).

(2). From the definition of ¢,, in (8.10), if g is sufficiently small then we are ensured
that supp((,,) C B(p;, At,,). Suppose that for some ¢ € M, we have ¢ € ﬂ;vzl B(pi,, Atpij)
for distinct i;’s. We relabel so that B(p;,, %Atpil) has the smallest volume among the
B(pijatp¢j>7s'

Note that {B(p;, 30Atpz)}lell sage 18 @ disjoint collection. If A < A(A), then we can
assume that for all j, 3 1 <™ <9 Hence, the N disjoint balls {B(pi;, 30Atpl )}jvzl lies in

le

B(pi,, 100At,, ) and by Bishop-Gromov volume comparison

100A
: 3
vol(B(pil,looAtpil)) _ /o sinh”(r) dr
( ( 1730 Pl)) /30 Sinh3(r>dr
0

(8.13)

The upper bound of the right-hand side does not depend on A. This proves part (2) of the
lemma. [

Denote \,, =
by extending

. M —[0,1] for each i € Iy iqge

- 1
Cop, = (Pran,, 122, 482,490, © Ap¥p,) - (‘I’o.gxm,b\pi 0 Tlp,) : t_M - R (8.14)

Pi

by zero.
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8.4 Selection of slim 1-stratum balls

Let {pi }ier, ., be a maximal set of slim 1-stratum points with the property that the collection

B(p, %Atpi)ie 1., 1s disjoint. Write ¢; for ¢,

Lemma 8.15. Under the constraints M > M and A < A(A), the following holds.
(1) Uier, ... B(pi, 15Aty,) contains all slim 1-stratum points.

(2) The intersection multiplicity of the collection {supp((;) }ier, ., @S bounded by M.
Proof. The proof is similar to the proof of Lemma 8.12. O
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The local geometry of the O-stratum

Points in the O-stratum are defined by a process of elimination, i.e. they are points that are
not k-stratum points for k € {1,2,3}, rather than by geometric structure. In this chapter,
we discuss the local geometry and topology of the 0-stratum. We show in Lemma 9.1 that M
has conical structure near every point. We then use this to define radial and cutoff functions
near O-stratum points. This chapter is an analog of [13, Section 11].

Let 6o > 0 and Yy, Y(, 70 > 1 be new parameters.

9.1 The good annulus lemma

The next lemma states that for every point p in M, there is a scale at which a neighborhood of
p is well approximated by a model geometry in two different ways: firstly by a nonnegatively
curved 3-manifold in the pointed C*¥-topology, and secondly by the Tits cone of this manifold
in the pointed Gromov-Hausdorff topology.

Lemma 9.1. Under the constraint Y > Tg(cso, Yo,w'), if p € M then there exists rg €
[Tor,, Tht,] and a complete CX-smooth Riemannian 4-manifold which admits a metric of
nonnegative sectional curvature N, such that:

(1) (%M, p) is dg-close in the Gromov-Hausdorff topology to the Tits cone CrN, of N,.

(2) The ball B(p,ry) C M is diffeomorphic to N,.

(3) The distance function from p has no critical points in the annulus A(p, 1—(1)07“2, 7“2).

Proof. The proof is the similar to the proof of [13, Lemma 11.1]. ]
Remark 9.2. If we that the parameter ¢ of [13, Lemma 6.18] to be small then we can ad-

ditionally conclude that Cr N, is pointed Gromov-Hausdorff close to a conical nonnegatively
curved Alexandrov space of dimension at most three.
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9.2 The radial function near 0O-stratum point

For every p € M, we apply Lemma 9.1 to get a scale 7”2 € [Tor,, Tir,| for which the conclusion
of Lemma 9.1 holds. In particular, (rioM ,p) is dp-close in the pointed Gromov-Hausdorff
p

topology to the Tits cone Cr N, of N,,, where N, is a complete Riemannian 4-manifold which
admits a metric of nonnegative sectional curvature.

Let d,, be the distance function from p in (rioM , D). Let Sostratum > 0 be a new parameter.
P
Lemma 9.3. Under the constraint 5y < 6o(So-stratum), there is a function Mp TLOM — [0, 00)
p
such that:
(1) mp is smooth on A(p,0.1,10) C 5 M.
P

(2) ||np - dp”oo < C0-stratum -
(3) 77]7 - dp : TLOM — [07 OO) 18 gO—stratum‘LipSChitZ.
P

(4) mp is smooth and has no critical point in 1,*([0.2,2]), and for every p € [0.2,2], the
sublevel set 1,'([0, p]) is diffeomorphic to either the closed disk bundle in the normal
bundle vS of the soul S C Ny, if N, is noncompact, or to N, itself if N, is compact.

(5) The composition ®oa0308090M, extends by zero to a smooth cutoff function (, : M —

[0,1].
Proof. The proof is similar to the proof of [13, Lemma 11.3] except that for (4), [13, Re-
mark 11.4] is used instead of the Schoenflies theorem. [

9.3 Selecting the 0-stratum balls

The next lemma has a statement about an adapted coordinate for the radial splitting in
an annular region of a O-stratum ball. We use the parameter ¢;.iqqe for the quality of this
splitting. We note that there is no a priori relationship to ridge 1-stratum points. The use
of this parameter will simplify the later parameter ordering.

Lemma 9.4. Under the constraints oy < gO(ﬁlagl-ridge); To > To(B1), B < By (S1oridge), and
So-stratum < SO-stratum (Si-ridge), there is a finite collection {p;}iciy mmm Of POINES in M so that
the following holds.

(1) The ball {B(pi,r),)}Yiclymmaam ore disjoint.
7"0.
(2) If ¢ € B(p;, 107‘22_), for some i € Iystratum, then 7“2 < 207‘21_ and % > 2—10’1"0.
(3) For each i € lyspratum, €very q € A(pi, %rgi,rgi) belongs to the 1-stratum, 2-stratum,

,,,0
or 3-stratum, and there is a (1, By)-splitting of (éM7 q), for which *in,. is an adapted

2
coordinate of quality Si_ridge-
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(4) Uieryoone B(piy 5579.) contains all 0-stratum points.

(5) For each i € Iystratum, the manifold N, has at most one end.

Proof. The proof is similar to the proof of [13, Lemma 11.5].

55
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Mapping into Euclidean Space

In this chapter, we first construct a smooth map £° : M — H from M into a high-dimensional
Euclidean space H by using the ball collections and the geometrically defined functions from
Chapter 6 to Chapter 9. We then study the behavior of £° near the different strata.

10.1 Definition of the map £°: M — H

Let Ip be a copy of the index set Iiqge. For each i € I} iqge, Wwe denote the corresponding
copy of i in Ip by ip. Let index sets I, and Ig be singletons I, = {t} and Iy = {E'}
respectively.

Let H=p
- 1= [t U IE'/ U [P U IO—stratum U [1—slirn U [l—ridge U IQ—slim ) [2—edge U [3—stratum7

.1 Hi where
— H; is a copy of R when ¢ = t,
— H; is a copy of R@® R when ¢ € Iy stratum U L1-stim U L1-ridge U 157 U Ip,
— H; is a copy of R? ® R when i € I5 gim U Io.cdge, and
— H; is a copy of R* ® R when i € 5 gratum-
We also define
— Hostratum = Dic To-ctrarum i
— Higim = @jeq, . His
= Hividge = Bicy, . His
— Hygim = @y, Hi

- Hyese = Drey, H,
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- H3—stratum - @iel&stratum Hi7

- Q=H

o QZ = HO—stratum D Hl—slim D Hl—ridge D H2—slim S HQ—edge
- Q3 = HO—stratum S Hl—slim S Hl—ridge S¥ H2—slim

- Q4 = H()—stratum D Hl—slim S Hl—ridge

- Q5 = Hospratum © Higlim

- Qﬁ = HO—stratuma and

— M Qi = Qi mi=m,;: H— Qy, m : H— Qj are the orthogonal projections, for
1<i<j<6.

If x € Q;, we denote the projection to a summand H; by 7y, (z) = x;. When i # v, we write
H; = H @ H! ~ R* @ R where k; € {1,2,3}, and we denote the decomposition of z; € H;
into its components by z; = (z},2)) € H. & H]'. We denote the orthogonal projection onto
H; and H]' by 7y and gy, respectively.

Recall that in Chapter 6 to Chapter 9, we define adapted coordinates 7, and cutoft
functions ¢, corresponding to points p € M of different strata types. If {p;} is a collection
of points used to define a ball cover, as in Chapters 6 to Chapter 9, then we write n; for n,,
and ¢; for ¢,,. For i € I'\{t}, we also define a new scale parameter R; as follows:

— If i € Ipspratum, then we put R; = 7)), where 7} is as in Lemma 9.1.

Di
— If i € [1.glim U I1sidge, then we put R; = v,,. 1; :=1,,. Recall that 7, = ;"%ﬁpi.
Py

- Ifie ]2—slim U ]2—edge U ]3—stratum7 then we pUt Rz = Tp,;-

If i € Ip, then we put R; = v, n; = Ap, ¢y, and ¢ = Cy, -
— Ifi = F’', then R; = t. Note that unlike the other cases, R; is not a constant.

The component £ : M — H; of the map £ : M — H is defined to be v when 7 = t, and

(RiniGi, RiG;) (10.1)
otherwise.

In the rest of the chapter, we study the behavior of £ near the different strata. In
Chapter 11, we will use these information to adjust £° slightly to get a new map £ which is
a submersion in different parts of M.
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10.2 The image of &°
Let x = £E%p) € H. The components of z satisfy the following inequalities:
e >0 (10.2)

and for every i € I'\{t},
z] € [0, R;] and |z}| < ¢, (10.3)
where
([ 0.9A when i € I_gim,
0.9A  when i € I iqge,
49\,  when i€ Ip,

¢ =14 9A when i € Ip, (10.4)
9-10°A when i € Ipgim,
9A when @ € Iy edge,
9 when ¢ € I3 stratum-

\

Lemma 10.5. Under the constraint A < A(M), there is a number Qo = Qo(M) so that for
allp e M, |DEY| < Q.

Proof. The lemma follows from the definition of £°. O]

10.3 Structure of £° near the 3-stratum

Define B
A = U {ml <8}, A= U {Imi| <7} (10.6)
1€13 stratum 1€13 stratum
and N B
S) = E&%A), S; = E%AY). (10.7)

In this section, we show that on a scale which is sufficiently small compared to t, the
pair (S1,51) C H is a cloudy 2-manifold. This is roughly because, on a scale which is small
compared to t, near any point in A;, the map &Y is well approximated in the C'-topology by
an affine function of 7;, for some i € I3 gratum- We refer to Section 2.8 and [13, Appendix B|
for the definition and properties of cloudy manifolds.

Let ¥1,T; > 0 be new parameters. Define ry : S — (0,00) by putting ri(z) = v, for
some p € (%) 1(z) N A;.
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Lemma 10.8. There is a constant 1 = Qy(M) so that under the constraints 3, < il(Fl,
M), Bz < B3(Ba; T'1, X1, M), Saspratum < Sasoratum (Ba; T't, X1, M), Ba < By(Ba, T'1, X1, M, A),
Sostim < S2-slim (81, ['1, 21, ML A), Goedge < Saedge(B1, 1, X1, M, A), Bp < B (Be, 1,51, M,
A), g <Spr (B, T1, 21, M, A), Siridge < f_Lridge(54,F1, Y, M A), B < ﬁ_1(54,r1, ¥, M, A),
So-stratum < So-stratum (B4, I'1, 21, M), To > To(B4,['1, X1, M, A), and A < A(By, Iy, X1, M, A),
the following holds.

(1) The triple (Sy, S1,71) is a (2,T1)-cloudy 3-manifold.

(2) The affine subspaces {Ay}zes, inherent in the definition of the cloudy 3-manifold can
be chosen to have the following property. Pick p € Ay and put x = E%(p) € Sy. Let
A2 C H be the linear subspace parallel to A, (i.e., Ay = A +x) and let mgo : H — A
denote orthogonal projection onto AS. Then

|IDEL — ma9 0 DEY|| < Ty (10.9)

and
QM Joll < [(mag 0 DE) (W) < o] (10.10)

for every v € T,M which is orthogonal to ker(m 40 o Dé’g).
(3) Given i € I3 gtratum, there is a smooth map <SA'ZQ : (B(0,8) C R®) — (H))* such that
IDEY|| < R (10.11)

and on the subset {|n;| < 8} C &M, we have

1 1
=& — (g, =E o,
HR,L (n?Rl 1077>
Furthermore, if x € Sy, then there are some i € I3 gtratum and p € {|n;| < 7} such that
x=E%p) and AL = Im(Id, 2 (DED).m))-

<T. (10.12)

Cl

The parameters €1, €5 > 0 will be internal to this section, which is devoted to the proof
of Lemma 10.8. Until further notice, the index ¢ will denote a fixed element of I3 g atum-

We put J = {j € I/{t} : supp(¢;) N B(p;, 10R;) # &}.
Sublemma 10.13. Under the constraints B3 < B3(B1, €1)s Sstratum < Ca-stratum (04, €1), B2 <
52(547617A)7 S2.slim < E2—slim(ﬁ47€17A); C2-edge < fgedge(ﬁzl,EhA); Br < 5E/(54,€1,A); Spr <
?E/(/847_617A); §1—ridge < fl—rid&e(ﬁ%elaA)) ﬂl < 61(ﬂ4a617A); SO-stratum < EO—stratum(ﬁ4aA)7
To > Yo(Bs,€1,A), and A < A(By, €1, ), the following holds.

For each j € J, there is a map Ty; : R® — R¥ which is a composition of an isometry and
an orthogonal projection, such that on the ball B(p;, 10) C %M, the map n; is defined and
satisfies

< e (10.14)

R.
Hﬁﬂj — (Tij omi) "
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Proof. As we are assuming the hypothesis of Lemma 5.2, there are no 4-stratum points.
If 7 € I3 tratum, then the same arguments as in the proof of [13, Lemma 12.12] apply.

Suppose that j € Iogim U loedge- Then, d(p;,p;) < 10R; + 105ARj. Since R; and R; are

A-Lipschitz, f;&%il}\ < }% < 11t110§ AAK\. In particular, if A < A(A), then % is arbitrary close

to 1 and d(p;, p;) < 10°AR;. From Lemma 2.42, for any € > 0, if By < By(e, A), then the
(2, B2)-splitting of (5-M, p;) gives a (2, ¢)-splitting of (7-M, p;). This means that there is

a map from B L (i, %) with the distortion comparable to €. By scaling, this gives a map
J

from BR%M(pi, %%) with the distortion comparable to %e. Hence, for any ¢ > 0, if € < €(¢’)
and A < A(¢, A), then there is a map from B E v (i, 5) with the distortion comparable to
¢’. In other word, there is a (2, ¢')-splitting of <Ri¢M’ pi). Since p; is a 3-stratum point, there
is no (4, B4)-splitting at p;. By the compatibility of approximate splitting (Lemma 2.44), for
any €’ > 0, if € < @(By,€") and By < B4(B4, €”), then the (3, 35)-splitting of (R%_M, pi) is €’-
compatible with the (2, ¢')-splitting of (RLM ,p;) from the above scaling and translation. By
Lemma 2.51, if B3, B2, €”, G3-stratum) S2-slim; S2-edge are sufficiently small (as functions of €;), then
the conclusion of the sublemma holds. In summary, the sublemma holds for j € 5 gjimUI2-edge
if A, B2, So-lim, S2-edge are sufficiently small (as functions of 4, €1, and A) and B3, S3.stratum are
sufficiently small (as functions of , and €;).

The case j € I is the same as in the proof of [13, Lemma 12.12]. If Sz, A and ¢z are
sufficiently small (as functions of 84, €1, A) and B3, ¢3 stratum are sufficiently small (as functions
of B4 and €;), then we can apply Lemma 2.44 and Lemma 2.51 to deduce the conclusion of
the sublemma.

Suppose that jp € Ip. Then, supp((;) N B(p;, 10R;) # @. There is ¢ € B(p;, 10R;)
such that ¢j,.(q) = Gy, (¢) > 0 for the corresponding j € Iiriage- That is ¢y, (q) € (1.1,4.9)

and 7,, € (—1,1). In particular, if A < A(A, ), then ¢ is in the region where there is a
(2, Ba)-splitting of (é]\/[ ,q). If A and B (as functions of A) are sufficiently small, then there

is an approximate 2-splitting for (}M ,p;) of arbitrary quality. If A is sufficiently small, ~-

q Pj

is arbitrary close to 1. Hence, there is an approximate 2-splitting for (}M ,p;) of arbitrary
?j

quality. The same arguments as in the first case imply that the conclusion of the sublemma

holds if A, 52, Go.qiim are sufficiently small (as functions of A and €;) and (3, S3.stratum are
sufficiently small (as functions of ;).

Next, suppose that j € Iiriqge U [isim- Note that supp((;) C B(ps, Atvy,). Then,
d(pi, p;) < 10t,, + Ar,,. Since v is A-Lipschitz, [t,, —t,,| < Ad(p;, p;) < A(10t, + Avy,)). If
A < A(A), then
a function of A), then the (1, 8;)-splitting of (%M ,pj) gives an approximate 1-splitting of
(%M ,p;) with arbitrary quality. By the same argument as in the first case, the conclusion

Z is arbitrary close to 1 and d(p;, p;) < 2At,,. If B; is sufficiently small (as
J
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of the sublemma holds if A, 81, ¢iriqge are sufficiently small (as functions of 4, €, and A)
and f3, ¢3.stratum are sufficiently small (as functions of 5, and €7).

Lastly, the case j € Ipsiratum is the same as in the proof of [13, Lemma 12.12]. The con-
clusion of the sublemma holds if A, 81, 53, So-stratum; S3-stratum are sufficiently small as functions
of B4 and €. O

We retain the hypothesis of Sublemma 10.13.

For j € J, the cutoff function (; is a function of the ;s for j' € J, i.e., there is a smooth
function ®; € C°(R7) such that ¢;(-) = ®;({n;(:)jes}). The H;-component of +&° can be
written as

1 R; R; R, R;
Eé’f = (ﬁmé‘j, ﬁ(j) = (ﬁ.”ﬂ' (P50 {nyties), = - (Pj0 {ﬂj'}j'eJ)) : (10.15)

1

Let 7 : R®* — H be the map so that the Hj-component of F° o n;, for j € J, is
obtained from the preceding formula by replacing each occurrence of 7; with the approxi-
mation Rii/(]}j on;). That is

J

T Fw) - (mw- (@j ({RET(u)})) R, ({%T(u)})) - (1016

whose H.-component is a constant function R;, and whose other componenets vanish. We
then have

I R; R; R;
— F¢ = | (Ti0om) - | D, —Tivon; ,— D — T, om; .
Ri]:j on (( 7O M) ( j ({Rj’ j/ o1 }j’ej>> R, ({Rj' . }j’eJ))

(10.17)
Sublemma 10.18. Under the constraints e; < €,(€a, M), T > To(e2, M), and A < A(ez, M),

1

R,foom

< € (10.19)

1
—&0 _
HRi o

on B(p;, 10) C R%_/\/l.

Proof. The proof is the same as the proof of [13, Sublemma 12.17] except in the case jp €
JNIp.

Suppose that jp € J N Ip. The only relevant arguments of ®; are when j° = jp and
J' = J € Iiridge corresponding to jp € Ip. Hence, from (10.15), in this case we can write

()

1 R; R;
EEJQP - ( ép Njp - q)jp(nj777jp)7 % ) (I)jp(njvnjp)> : (10'20)
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From (10.17), we also have

_}0 on; = ( Tijp (u) - @;5 < ~Tij 01i, 55— Tijp © Th‘) 0 (fﬂj o Niy 55— Lijp © m))

R RJP R; R] RjP
(10.21)
Thus, the first component of - 50 — _}—0 o is
R; R; R;
A= "En. & (n;,n50) — (Tijp o) - @ (—1TZ o iy ——Tj; oni) : (10.22)
Ri Jp\'13> ' 1Jp JP Jp R_y J ij JpP
By (10. 14) =T}, on; = se; for some 0 < s < 1. Then,
R; R;
A= (Tij, omi £ ser) - @5, (05, mjp) — (Tigp 0 mi) - Py 7. Lij o1 7 Tige © 1 (10.23)
j ip
R; R;
= (Tigp 0 mi) - { Pip (0 i) = P \ 35 Tig 0 i o Tige 0 i | | % 52D (1,71
j ip

So,

Al < W Tigp o mall - 1D®

R; R;
’(773‘777jp) - <ET” o i, Rfﬂjp o m) ' +eal|®,,]  (10.24)
J

P

1

Ri 2 Rz 2\ 2
< kil T ol - | D®; o |
—61((ij) +(Rj)) T ol 1D | + a2,

Recall that j € Iiqge is chosen so that p; and p;, are the same point. In particular,

R; R;
i = 4 We then have
Rjp R

R;
Al < 61F|’Ejp omill - [[D®jp || + €| Py - (10.25)

P

Since jp € J N Ip, we have that d(p;,p;) < 57" -+ 10R; < 5Ar,, + 10t,,. If A is sufficiently

Tp,

small (as a function of A), then o is arbltrary close to 1. Using the fact that ®; has explicit
J

bounds on its derivatives of order up to 2, if ¢; < € (e2) then |A| < €.

Next, we compute a bound for ||[DA||. Consider that

R; R;
DA = =55, (0, m5) Dnjp + 550 (@5 (0, 0 ) (10.26)
R; R;
-, (Eﬂj O i, R_‘Tz'jp °© 77@') D(Tijp o 1;)
J P

R; R;
— (Tijp o mi) D ((I)jP (R Tij o mi, R—Tz‘jp o m))

Jp
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= q)jP (njv an)(D(EjP © ni) + 361) + ((Ejp © ni) + SEI)D(Q)J'P(”J" njp))
R; R;
- q)jp (R ,Tz] © 7, R_,Tijp © Th) D(EJ'P © 771)
J JpP
R; R;
— (Tijp omi) D <(1’gp (R T;j o i, R—jPTz'jp o Th)) -
So,
R; R;
DAl < ([D(Tijp o i)l || (055 m5p) — Pip | - Tij © Mis 5 Tijp © i (10.27)
Rj RjP

JP

R; R;
+ | T 0 mill HD(‘I’jp(Uj,mp)) - D (‘I)jp (ETU © i, 75— Tijp © ﬁz)) H
7
+ e ([P | + |1 DDy [])

R;
<e (Tijp 0 m)[[[ DDy |

jp

+ HTijP o il HD((I)jp(njanjp)) - D (q)jP (R T35 © ms, R_,Tijp © 771)> H
9 JP

+ea (||| + DDy, [)-

Consider
R; R;
D(®;(n;,njp)) — D (<I> (R T onz,R—TijPom» (10.28)
ip
= D®;,(n;,n5,) - {Dnj, D, }*
R; R; R; R;
— Do, Ty o iy =T} i D(Tij omn;), = D(T3; )}
e (R o g T o) - (DT o). DTy 0m)
:Dq)jp(nj77]jp>'{Dnj’Dan}T
R; R; R;
— D, | T om, —Ti:, 0 D .D T
JP(Rj jomn R, ip © ) { 77]+3€1R 77JP+SEIR]P}
So,

R; R;
‘D(q)jp(nja 77jp)) - D <<I’yp <R Tij o ni, Rfﬂjp o 7h)> H
jp
R;
|D%;, . (10.20)

] HDz(I)jPH ||{D77j7 Dan}H + ElR-
Jp Jp

By substituting (10.29) into (10.27) and by the same argument for |A|, we have that if € is

sufficiently small (as a function of €3) then ||[DA|| < €2. Consequently, || A||cr < €.

§€1

The second component of 7 — —.7-"0 on; is

R, R, R;
B = Rgp ((I)jP (771'777]'13) - (I)jP (R T O i, R_,TijP ° 77%)) : (10'30)
v JP
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By a similar calculation as the calculation for A,

By T
R

JP

Bl <
Bl < -3

HD(I)J'PH = €1HDCI>]'PH, (10'31)

and

1pB| < fr. (

2 (g N0 1D, Dy} + e 10, )

R

JpP P

= 1| D*,, [[[[{ Dy, Dy I + e[| DD, || (10.32)

If €1 <€ (e2), then ||Bl|c1 < €2. Therefore,

10 _ 110 oo
ng]P R'L.F]P OT]Z Cl < 62. D

Sublemma 10.33. Given ¥ € (0,15), suppose that |n;(p)] < 8 for some p € M. Put

x=E%p). For any q € M, if E%q) € B(z,XR;), then |n;(p) — n;(q)] < 20%.
Proof. The proof is the same as the proof of [13, Sublemma 12.21]. O]

The rest of the proof of Lemma 10.8 is same as the proof of [13, Lemma 12.7].

10.4 Structure of £° near the edge 2-stratum

Recall that Q2 = HO—stratum S Hl—slim S Hl—ridge ) H?—slim D HQ—edgea and T - H — QQ is the
orthogonal projection.

Define

A= | {nl<stme<sa), A= |J {nl<7dme <78}, (10.34)

Z‘612—edge ieIQ-edge

and
Sy = (m 0 EY)(Ay), Sy = (my 0 E)(Ay). (10.35)

Let ¥y, Ty > 0 be new parameters. Define ry : Sy — (0, 00) by putting r5(2) = Syt for some
p e (7T2 9) 50)71(1') N AQ.

The analog of Lemma 10.8 for the region near edge 2-stratum points is:

Lemma 10.36. There is a constant Qy = Qy(M) so that under the constraints ¥y < So(I,
M); §2—edge < ?2-edge(ﬁ37F2,22aMaA>; Coslim < E_Q—Slim(ﬂ?nFQuZQaM)A); BE < 6E(637 FQ:
Yo, MLA), op < 0p(Bs,T9, X0, MyA), By < By(83,T2, 82, M, A), Siidge < Siridge(5s,
Ly, X, MLA), B1 < B1(B3, T2, Xo, M, A), Sostratum < So-stratum (B3, ['a, o, M, A), To >
To(53, 2, Lo, M, A) and A < A(B3, T2, X9, M, A), the following holds.
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(1) The triple (Sa, Sa,73) is a (2,Ts)-cloudy 2-manifold.

(2) The affine subspaces { Az }res, inherent in the definition of the cloudy 2-manifold can be
chosen to have the following property. Pick p € Ay and put x = (w9 0 E%)(p) € Sy. Let
AY C Qs be the linear subspace parallel to A, (i.e., Ay = A2+x) and let mpo : H — A
denote orthogonal projection onto A°. Then

| D(m5 0 %), — ma0 0 D(my 0 E°),|| < T (10.37)

and

Qy[Joll < [[(mag 0 D(mz 0 €%)p) ()| < Qv (10.38)
for every v € T,M which is orthogonal to ker(m40 o D(my 0 E°),).

(3) Given i € Iseqge, there is a smooth map £0: (B(0,8A) C R) — (H!)* N Qy such that
IDEY|| < QR; (10.39)

and on the subset {|n;| < 8A,ng < 8A}, we have

1 1
Lroet— (nL&von
ot (g on)

< Ts. 10.40
i 2 (10.40)

Cl

Furthermore, if v € Sy, then there are some i € Ieqqe and p € {|n;i| < TA, np < TA}
such that x = (w5 0 £%)(p) and AY = Tm(1d, - (DEY)y,(p))-

Proof. The proof is similar to the proof of Lemma 10.8. m
10.5 Structure of £Y near the slim 2-stratum

Recall that Q3 = Ho stratum @ Hi-slim ® Hividge ® Hostim, and w3 : H — ()3 is the orthogonal
projection.

Define
A= | {Iml<8-10°8}, Ay= |J {nl <7104}, (10.41)
i€ 1o glim 1€12.¢lim
and _ _
Sz = (m30E")(A3), Sz = (m30&%)(43). (10.42)

Let Y3,I's > 0 be new parameters. Define r3 : Sy — (0, 00) by putting r3(x) = X3¢, for some
pE (7T3 ¢} 50)_1(1') N Ag.

The analog of Lemma 10.8 for the region near slim 2-stratum points is:
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Eemma 10.43. There is a constant )3 = (23(/\4) so that under the constraints Y3 <
ZS(F?); M); So-slim < fleim(/B?n Fg, 237 M7 A); /32 < BZ(ﬁS) F37 E?n M, A)7 S1-ridge < fl—ridge(ﬁ?);
£3723>MaA)7 61 < 51(537F37_E3>M7A); SO-stratum < fo-stratum(ﬁ&r&237M7A); TO >
To(F3, 3, X3, M, A), and A < A(B3, '3, X3, M, A), the following holds.

(1) The triple (Ss, Ss,73) is a (2,Ts)-cloudy 2-manifold.

(2) The affine subspaces { Az }res, inherent in the definition of the cloudy 3-manifold can be
chosen to have the following property. Pick p € Az and put x = (w30 E%)(p) € Ss. Let
AY C Q3 be the linear subspace parallel to A, (i.e., Ay = AY+1x) and let mao : H — A9
denote orthogonal projection onto A%. Then

| D5 0 £°), = mag 0 Dl 0 £%) | < T (10.44)

and
Qg Hlvll < [l(mag © D(ms 0 £%),) (v)]] < Qo] (10.45)
for every v € T,M which is orthogonal to ker(m40 o D(m3 0 E°),).
(3) Given i € Ingm, there is a smooth map E° : (B(0,8 - 105A) C R) — (H!))* N Q5 such

that
IDEY|| < QsR; (10.46)

and on the subset {|n;| < 8- 10°A}, we have

1 1
e (s )

Furthermore, if v € Ss, then there are some i € Io.gim and p € {|n;| < 7-105A} such
that & = (w30 %) (p) and A = TIm(Id, % (DE).m))-

<Ty. (10.47)

Cl

Proof. The proof is similar to the proof of Lemma 10.8. O

10.6 Structure of £° near the ridge 1-stratum

Recall that Q4 = Ho-stratum © Hi-slim ® Hiridge, and m4 : H — @4 is the orthogonal projection.
Put

Ay = U {Imi| <0.8A,mi, <4.5M,}, As= U {Imil <0.7TA mip, < 4A,}, (10.48)

ie]l-ridgc iell—ridgc

where 9); = 1, for the corresponding i € Ip, and
Sy = (my0)(Ay), Si= (ms0E%)(Ay). (10.49)

Let X4, 'y > 0 be new parameters. Define ry : Sy — (0, 00) by putting ry(z) = X4t, for some
pE (7T4 o) 80)—1(1,) N A4.
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Lemma 10.50. There is a constant €2y = Q4(M) so that under the constraints ¥, < §4(F4,
M)a §1—ridge < 61—ridge(_627r47 Z4L7-/\/la A); Bl < 51(/827_]-—‘47 247M7A); S0-stratum < 60—stratum<527
Ly, Xgy, MyA), To > To(B2, Iy, gy M, A), and A < A(Bo, Ty, 3y, M, A), the following holds.

(1) The triple (Sy, Sy, 74) is a (2,T4)-cloudy 1-manifold.

(2) The affine subspaces { Ay }res, inherent in the definition of the cloudy 1-manifold can be
chosen to have the following property. Pick p € Ay and put x = (w40 E%)(p) € S;. Let
A2 C Qq be the linear subspace parallel to A, (i.e., Ay = AD+x) and let mgo : H — A
denote orthogonal projection onto AS. Then

|D(my0 &%), — ma0 0 D(my 0 E),|| < Ty (10.51)

and
Q o]l < (a9 © D(mg 0 £%),)(v)]] < Qulfv (10.52)

for every v € T,M which is orthogonal to ker(m40 o D(my 0 E°),).
(3) Given i € Iy yiage, there is a smooth map £0: (B(0,0.8A) C R) — (H/)*NQy such that
IDEY|| < QuR; (10.53)

and on the subset {|n;| < 0.8A,n;, < 4.5\, }, we have

1 1
o £ — (i, =& o,
S G

< Ty 10.54
i : (10.54)

Cl

Furthermore, if v € Sy, then there are some i € I yiqge and p € {|ni| < 0.7A,7;, <
4\, } such that x = (w4 0 E%)(p) and A% = Im(Id, R%(Dé'?)m(p)).

Put J = {] € Il—ridge U Il—slim ) IO—stratum : Supp((j) N B(pw ARI) 7& @}

Sublemma 10.55. Under the constraints B < B1(Ba, €1), Siridge < Siridge (F2, €1, A),
So-stratum < €0-stratum(62a €1, A); TO > T0(527 €1, A); and A < A(527 €1, A); the fOUO’lUmg holds.

For each j € J, there is a map T;; : R — R¥ which is a composition of an isometry and
an orthogonal projection, such that on the ball B(p;, T1) C %M, the map n; is defined and
satisfies

< e (10.56)

R,
I — (T 0 m;
HRi% ( 9077) o

Proof. Suppose that j € I1.iqge U 1sim- Note that supp((;) C B(p;, Avy,,). Then, d(p;, p;j) <
Avy, +Ar, . If A < A(A), then % is arbitrary close to 1 and also d(p;, p;) < 10At,,. If B is

sufficiently small (as a function of A and € for € > 0), then the (1, 51)-splitting of (%M .Dj)
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gives a (1, ¢)-splitting of (%M ,pi). If A and €' is sufficiently small (as functions of A and €”

i js arbitrary close to 1 and there is a (1, €”)-splitting for (%M, Di)-
pj i

T
J

for some €” > 0), then

By the uniqueness of approximate splittings (Lemma 2.50), if ; and €’ are sufficiently
small (as functions of € > 0), then the (1,€")-splitting is é-compatible with the (1, 3;)-
splitting for (%M ,p;). By Lemma 2.51, the conclusion of the sublemma holds if A, 5; are

Pg

sufficiently small (as functions of €1, A) and ¢ are sufficiently small (as a function of €;).

The case j € lystratum 18 the same as in the proof of [13, Sublemma 12.12]. O

We retain the hypothesis of Sublemma 10.55.

For j € J, the cutoff function ; is a function of the ;s for j' € J, i.e., there is a smooth
function ®; € C>°(R7) such that ¢;(-) = ®;({n;(-)jes}). The H;-component of 7,0 &, after
dividing by R;, can be written as

1 R; R R; R,
E(m 0&%); = <§]77jCj, ﬁCj) = (Ejﬁj (@j o {njtjer), EJ (@0 {Uj/}j'eJ)) . (10.57)

) )

Let 79 : R — H be the map so that the H;-component of FYon;, for j € J, is obtained from
the preceding formula by replacing each occurrence of 7; with the approximation R (T;50m:).

Rj/
That is

R%- j(u) = (ﬂj(u)~ (ij ({%%/(W}j/g)) a%‘bj ({%Tij’(u)}j@>> . (10.58)

We then have

1 R; R; R;
—Flomi=((Tyjom)- | P, {—ZTZ»-/oni} , 2P, {—ZTivonZ} .
Ri J < J J R]/ J e Rz J R]/ J el

(10.59)

Sublemma 10.60. Under the constraints ¢ < € (€, M), To > To(ez, M), and A <

Alea, M, A),
1

Rifﬂom

1
HE(W4 0 &Y <6 (10.61)

Cl
on B(p;, A) C RLM

Proof. For j € J N (Li-slim Y [1ridge U lo-stratum ), the only relevant argument of ®; is when
j' = j. Hence, we can write

1 R; R;
o = (o am). 32 am) (1062)
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and
1 R; R; R;
EFJQ 0N = (Ti'(u) - @, (ETij o 771') »EZ‘I%’ (ETij ° 77@)) : (10.63)
The first component of R%_(m 0 &Y%, — R%./TJQ on; is
R; R;
A= g ®5() = Tyg(u) - @ (EE] ° m) : (10.64)
1 J

By similar calculations as in the proof of Sublemma 10.18,

R;
|Al < elﬁllTwomll |[D; + €| ;] (10.65)
J
and
R;
IDA]l < 1 (ID(Ti; 0 ) 1 DR || + 1 T5 0 nll[1D* 5[ D || + |1 DD511) +ex (1|5 +] DS, ]1).
j
(10.66)

In the case j € Iy glim U [1ridge, if A is sufficiently small (as a function of A), then 1%’_ = %
J

is arbitrary close to 1. In the case j € Iygiratum, from Lemma 9.4, % < %—?}. Therefore, if €
J
is sufficiently small and Yy is sufficiently large (as functions of €;), then [|A|c1 < €.

The second component of z-(my 0 E%); — z-F} o is

b= () -0 (FT0m)). (10.67)
By similar calculations as in the proof of Sublemma 10.18,
|B| < e[ DD5]| (10.68)
and

IDB| < el D, [{Dny, D} + ea]| DB (10.69)

Hence, if €; < € (e2) then ||Bljcr < €2. Therefore, ‘ =

.Cl
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Sublemma 10.70. Given % € (0, TlTl), suppose that |n;(p)| < 0.8Yy for some p € M. Put

x=E%p). For any q € M, if E°q) € B(x, 21 R;) then |n;(p) — ni(q)] < 4273,

Proof. We know that (;(p) = 1. From the hypothesis of the sublemma, |E°%(p) — £%(q)| <
YY1 R;. In particular, |(;(p) — (i(q)| < £Y1 and |¢;(p)n:(p) — G(q)n:i(q)] < £Y;. Then

1
ni(p) —ni(q)| = mKi(Q)m(p) — Gil@)mi(q)] (10.71)
1
< 0 (G (p)mi(p) — Gi(@)mia)| + [Gi(p) — G(@)||mi(p)])
ST+ 2T -08Y;  2%nY? )
= 1—-%7T, = 1-¥7T, < 48T
Since ¥ < 52—, this proves the sublemma. O

PASH

We now prove Lemma 10.50. We no longer fix ¢ € 1 qge. Given o € Sy, choose p € Ay

and i € [1_iqge S0 that m40E%(p) = x and |n;(p)] < 0.8A. Put A? = Im(d}'ﬁi(p)), a l-plane in

H, and let A, = x + A% be the corresponding affine subspace through =.
We first show that under the constraints ¥y < 4Ty, M), €2 < €(Iy, M) and A <
A(Ty, M), the triple (Sy, Sy, 74) is a (2,T'4)-cloudy 1-manifold. First, we verify condition (1)

of [13, Definition 20.2]. Pick z,y € S, and choose

pe(mol) ()N J |ml0,0.84)N¢;"[0,4.5) (10.72)
Z‘Ell—ridge
and
ge (mo&) M y)n (J |ml[0,0.84) N [0,4.5) (10.73)
iell-ridge

satisfying r4(x) = Xyv, and r4(y) = Xy,

Suppose that d(p,q) < . Since t is A-Lipschitz, we have that |v, —t,| < t,. In this case
[ra(x) — ra(y)| = alry, — | < Xyr, = ra(2). (10.74)

Now suppose that d(p,q) > 2Ar,. We claim that if A is sufficiently small (as a function of
A) then this implies that d(p,q) > 1.95A¢, as well. Suppose the claim is not true. Then
2At, < d(p,q) < 1.95Ar,, so i—‘; < 132 On the other hand, t, — v, < Ad(p, q) < 1.95AAr,.
Thus, E—p > 1—1.95AA. This is a contradiction if A is sufficiently small. Therefore, we have
that d(p, q) > 1.95Ar,.

Let 7,5 € Iiiage such that p € |n;|71[0,0.8A) Nn; '[0,4.5),,) and ¢ € |n;[7*[0,0.8A) N
iy 10,4.5X,,). We have (;(p) = ¢;(q) = 1. Consider d(q,p;) > d(p,q) — d(pi,p) > 1.95A¢, —
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Ar,,. If A is sufficiently small, then :—q can be made arbitrary close to 1. Hence, d(q,p;) >
0.9Atpi. In particular, ¢;(¢) = 0. Slmllarly, ¢j(p) = 0. Then

[z —y| = 1E%(p) — E°(q)| (10.75)
G(p) — G|, v, 1G5 () — G(@)])

1
2%,

> max(t,,

1
= max(tpi,tp].) > —max(t,,t,) = max(rq(x), r4(y)).

2
So |ra(z) —ra(y)| < |z —y| provided X, < 1. Therefore, condition (1) of [13, Definition 20.2]
is satisfied.

We now Verify condition (2) of [13, Definition 20.2]. That is, for all x € Sy, the rescaled
pointed subset ( S4, x) is I'y-close in the pointed Hausdorff distance to (%Ag, x). Let
r €Sy, 1€ [1_rldge, and p € M be such that my 0 £%(p) = z with |n;(p)| < 0.7A and n;,(p) <
4Xy,. Take ¥ = = in Sublemma 10.70 and let ¢ € Im(£°) N B(x, SAR;). By Sublemma
10.70, |z — n;(q)| = |mi(p) — mi(q)] < 4A2E = 0.04A. Thus, 7;(q) < 0.7A + 0.04A = 0.74A.
Moreover, since ¥ < 0.1, d(p;, q) < d(q,p) +d(p,p;) < BAR; +4r) < (S +4)r) < 4.1r) . If
sg is sufficiently small, then 7;,(q) < 4.2),,. We have that

m(my 0 &%) N B(x, XAR;) C Im (m o0&’ (10.76)

|m-(p)|1[0,0-74A>mm-;[0,4.2Api)) ‘

Thus, we can restrict our attention to the action of €% on |n;(p)|[0,0.74A) Nn; 1[0, 4.2X,,).
Consider that Im( .7-"0|B(0 0.74A)’ x) is the restriction to B(0,0.74A) of the graph of a function
GY: H! — (H!)* since Tj; = Id and Ci‘B(O,O.MA) = 1. Furthermore, in view of the universality
of the functions {®;};c; and the bound on the cardinality of J, there are uniform C'-
estimates on GY. Hence, we can find ¥, (as a function of 'y and M) which ensures that

< L Tm( fU‘B(OO74A)) :13) is L-close in the pointed Hausdorff topology to = + Im(dF).

rq(x)

Finally, if the parameter e; of Sublemma 10.60 is sufficiently small, then we can ensure
that ( L Im(é’o) ) is I'y-close in the pointed Hausdorff topology to = + Im(dF)). Thus,
Condltlon ( ) of [13, Definition 20.2] is satisfied.

To finish the proof of Lemma 10.50, equation (10.51) is satisfied if the parameter ey of
Sublemma 10.60 is sufficiently small. Equation (10.52) is equivalent to upper and lower
bounds on the eigenvalues of the matrix (g0 o DE))(ma0 o DEY)*, which acts on the 1-
dimensional space A?. In view of Sublemma 10.60 and the definition of AY, it is sufficient to
show upper and lower bounds on the eigenvalues of D.ng(p)(ngi (p))* acting on A%. In terms
of the function GY, these are the same as the eigenvalues of Id + ((DGY),,))* (DGY)im)
acting on R. The eigenvalues are clearly bounded by 1. In view of the C! bound on the
eigenvalues in terms of dim(H ), which in turn is bounded above in terms of M. This shows
equation (10.52).
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Finally, given ¢ € Ii_jiqge, We can write %]—"0 on B(0,0.74A) C R in the form %.7—"0 =
Id, %g’-o with respect to the orthogonal decomposition H = H! & (H!)*. We use this to
R; i 7

define £°. Equation (10.54) is a consequence of Sublemma 10.60. The last statement of
Lemma 10.50 follows from the definition of A2.

10.7 Structure of £° near the slim 1-stratum

Recall that Q5 = Hostratum D Hi-stim, and w5 : H — ()5 is the orthogonal projection.
Define

A= | {lml<o08a}, As= ] {Iml <074}, (10.77)
t€11 glim 1€ slim
and _ B
S5 = (7T5 o) 50)(145), S5 = (7T5 o) 50)(145) (1078)

Let 25, T's > 0 be new parameters. Define r5 : S5 — (0, 00) by putting r5(2) = Sst, for some
pE (7T5 o 50)71(1') N A5.

The analog of Lemma 10.8 for the region near slim 1-stratum points is:

Lemma 10.79. There is a constant 25 = Qg,(M) s0 that under the constraints X5 < 5(Is,
M); gl—ridge < fl—ridge(_ﬁ%r& 25>M7 A); Bl < 51(52£57 257M7A); SO-stratum < 60—stratum<52;
[, X5, M, A), To > To(52, 5, X5, M, A), and A < A(Bs, T, 35, M, A), the following holds.

(1) The triple (§5, Ss,15) is a (2,1'5)-cloudy 1-manifold.

(2) The affine subspaces { Ay }res, inherent in the definition of the cloudy 5-manifold can be
chosen to have the following property. Pick p € As and put x = (750 E%)(p) € S5. Let
A2 C Qs be the linear subspace parallel to A, (i.e., Ay = AJ+x) and let mg0 : H — A
denote orthogonal projection onto AY. Then

1D (5 0 €7), — mwag © D(ms 0 £), | < T (10.80)

and
Q:H|v]| < (a9 © D(m5 0 £%),) (v)]] < Qs (10.81)

for every v € T,M which is orthogonal to ker(m40 o D(ms 0 E°),).
(3) Given i € Irgim, there is a smooth map E° : (B(0,0.88) C R) — (H))* N Qs such that
IDE|| < QsR; (10.82)
and on the subset {|n;| < 0.8A}, we have

1 1
HEWS o 80 — (771, Eé‘;o o 7’]1> <TI. (1083)

Cl
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Furthermore, if x € Ss, then there are some i € I gim and p € {|n;| < 0.7A} such that

= (150 E%(p) and AY = Im(Id, £ (DEY),, )
Proof. The proof is similar to the proof of Lemma 10.8. m

10.8 Structure of £° near the 0-stratum

Lemma 10.84. For i € Iysratum, the only nonzero componenet of the map mg o % : M —
Qs = Hostratum in the region {n; € [0.3,0.8]} is &, where it conincides with (R;n;, R;).

Proof. The lemma follows directly from the definitions of £° and (;, i € ly_stratum- O



74

Adjusting the map to Euclidean space

In this chapter, we modify £° : M — H slightly to get a new map £ : M — H which is a
submersion in different parts of M. In Chapter 12, we will use the submersion to decompose
M into fibered pieces which are compatible along the intersections. The main result of this
chapter is Proposition 11.1. The rest of the chapter is the proof of the proposition.

Let Caqjust > 0 be a new parameter.

Proposition 11.1. Under the constraints imposed in this and prior chapters, there is a
smooth map € : M — H with the following properties:

(1) For everyp e M,
1E(p) — E°(P)|| < Cadjustty and ||DE, — D5£|| < Cadjust- (11.2)

(2) For j € {1,2,3,4,5}, the restriction of mjo & : M — Q; to the region U; C M is a
submersion to a kj-manifold W; C Q);, where

vi= U nl<s) (11.3)

iEIS—stratum

U= |J Al <580z <54},

726127cdgc

Us= |J {lml <5-10°A},

i€l2_glim

Uy = U {’771’ < O'5Aamp < 3)‘pi}7

ie[lfridge

Us= |J {Iml <054},

1€11 _glim

(mdk’lz?), ]{32:]{33:27]64:]{35:1.

Let C3-stratums C2-slim> CQ—edgea Cl—ridg67 C1-slim > 0; and Ez > 0 fOI' { € {17273747 5} be
additional new parameters. We will use these parameters in the following sections.
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11.1 Overview of the proof of Proposition 11.1

The maps £° and m; 0 £, 7 € {1,2,3,4,5}, as defined in Chapter 10 behave like a “rough
fibration.” The goal is to promote these rough fibrations to fibrations in such a way that
they are compatible on their overlap. We will do this by producing a sequence of maps
E M — H, for j € {1,2,3,4,5}, which are successive adjustments of £°. This proof is an
analog of the proof of [13, Proposition 13.1].

The idea for constructing &7 from £771) for j € {1,2,3,4,5}, is as follows. First we
consider the orthogonal splitting H = @Q; @ Q]-l of H. Let m; = m; : H — @; and
7y« H — Q5 be the orthogonal projections. In Chapter 10, we introduced a pair of subsets
(A;, A;) in M whose image (S}, S;) under the composition 7;0£7 71 is a cloudy k;-manifold in
Q;. We can think of the restriction of £/~ to A; as a “rough submersion” over (§ ,5;). From
a property of a cloudy manifold (see [13, Lemma 20.2]), there is a k;-dimensional manifold
W, C @; near (gj, S;) and a projection map P; onto W;, defined in a neighborhood W\J of
W;. Thus, we have a well-defined map

(Pjormj,m+

— L)
HOW;xQf ————— Q;®Q; = H. (11.4)

Then, we use a partition of unity to blend the composition (P; o, 7TJJ‘) o &7 with &1 to
obtain &7 : M — H. Under this construction, at a point p € M, |€7(p)—&7~1(p)| < (const)r,
and |DEJ — DEI'| < const, for some small constants, and £’ preserves the submersions
defined by &771,

11.2 Adjusting the map near the 3-stratum

We start the adjustment process from the 3-stratum.

We take Q; = H, Qi = {0} and let Aj, A1, Sy, Sy, and ry 2 S — (0,00) be as in Section
10.3.

From Lemma 10.8, (S, S1,71) is a (2,T1) cloudy 3-manifold. By [13, Lemma 20.2],
there is a 3-manifold W} C @Q; so that the conclusion of [13, Lemma 20.2] holds, where
the parameter € in [13, Lemma 20.2] is given by ¢ = Z; = Z;(I";). In particular, there is a
well-defined nearest point projection

= er (Sl) = Wl — Wlo (115)

where N,, is a variable thickness neighborhood as defined in Section 1.3.

First, we define a cutoff function.
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Lemma 11.6. Under the constraint c3.sratum < C3-stratum, there is a smooth function i :
H — [0, 1] with the following properties:

(1)
P o&=1 in U {Iml <6} and (11.7)

ieIS—stratum

Y108 =0 outside U {Imi| < 7}.

ie[l-ridge

(2) supp(t1) Nim(£%) C W,
(3) There is a constant Q) = Q) (M) such that
(D)o < Q! (11.8)
for all x € im(&3).
Proof. The proof is the similar to the proof of [13, Lemma 13.6] ]
Define ¥y : H — H by ¥y(x) =z if z ¢ W, and
Vi(z) = (@) Pr(z) + (1 — ¢ (2))z (11.9)
otherwise. Put &' = ¥, 0 £°.

Lemma 11.10. Under the constraints ¥, < L1(1, Casatum), L1 < L1(Q1, Ca-stratum), and
=1 < Z1(C3stratum ), we have:

(1) &' is smooth.
(2) For allp € M,

||€1(p) - 5O(p)|| < C3.stratum t(p) and ||D€1(p) - Dgo(p)H < C3.stratum- (1111)

ni| < 6} is a submersion to W7Y.

(3) The restriction of £* to Uy, |
Proof. The proof is the similar to the proof of [13, Lemma 13.15] m

11.3 Adjusting the map near the edge 2-stratum
Recall that QZ = HO—stratum S Hl—slim S Hl-ridge S H2—slim ) H2—edge and g - H — Q2 Is an
orthogonal projection. We let As, A, So, So, and ry : So — (0,00) be as in Section 10.4.

Thus, by Lemma 10.36, (52,52,7’2) is a (2,'y) cloudy 2-manifold. By [13, Lemma 20.2],
there is a 2-manifold W9 C Qs so that the conclusion of [13, Lemma 20.2] holds, where
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the parameter e in [13, Lemma 20.2] is given by Zy = Z(I'2). In particular, there is a
well-defined nearest point projection

Py: N, (S2) = Wo — WY (11.12)
where N,, is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.13. Under the constraint cy.eqge < Co-edge, there is a smooth function vy : H —
[0, 1] with the following properties:

(1)

Y0 &' =1 in U {Iml <64, m < 6A} and (11.14)
i€I2-edge

Yy o' =0 outside U {Imi| < TA,ng < TA}.
Z‘GI—Q—Cdgc

(2) supp(i2) Nim(€") € Wa x Q5.
(3) There is a constant Qy = Q4(M) such that
[(Dy2).| < Uyt (11.15)
for all z € im(&Y).
Proof. The proof is similar to the proof of [13, Lemma 13.21] ]

We can assume that W, C {z, > 0}. Define ¥y : {z, > 0} — {z, > 0} by Us(z) = z if
mo(z) # Wa and

Wy(z) = (o) Pa(ma()) + (1 = () ma(), w3 (2)) (11.16)
otherwise. Put £2 = U, 0 &L

Lemma 11.17. Under the constraints, Yo < 32(Qg,Co-cdge)s L2 < To(Qa, Coedge), Zo <
EQ<C2-edge); and C3-stratum < E3-stmtum(62-edge); we have:

(1) &2 is smooth.
(2) Forallp € M,

1€2(p) = E°)|] < creaget(p) and [|DE*(p) — DE"(P)I| < Co-edge. (11.18)

(3) The restriction of m 0 E* to |J Almil <64, nm < 6A} is a submersion to W5

iEIQfedg

Proof. The proof is similar to the proof of [13, Lemma 13.34] ]
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11.4 Adjusting the map near the slim 2-stratum

Recall that Q3 = Ho stratum © Hislim © Hiridge ® Hoglim and m3 : H — Q3 is an orthogonal
projection. We let As, A3, S5, S3, and r3 : S3 — (0,00) be as in Section 10.5.

Thus, by Lemma 10.43, (§3, Ss3,1r3) is a (2,T'3) cloudy 2-manifold. By [13, Lemma 20.2],
there is a 2-manifold Wi C Q3 so that the conclusion of [13, Lemma 20.2] holds, where
the parameter € in [13, Lemma 20.2] is given by =3 = Z3(I's). In particular, there is a
well-defined nearest point projection

Py: N, (S5) = Ws — W2 (11.19)
where NN,, is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.20. Under the constraint co.qim < Casiim, there is a smooth function s : H —
0, 1] with the following properties:

(1)

P30E2=1 in U {Iml <6-10°A} and (11.21)
ie-[Q—slim

Y302 =0 outside U {|ni| < 7-10°A}.
1€15 glim

(2) supp(¢3) Nim(E?) C Wi x Qs .
(3) There is a constant Qf = Q4(M) such that
|(Dys),| < Q! (11.22)
for all x € im(&?).
Proof. The proof is similar to the proof of [13, Lemma 13.38] O

Define U5 : H — H by Us(z) = z if m5(z) ¢ W; and
Wy(x) = (y(w) Py(ms()) + (1 — ()3 (), 73 (7)) (11.23)
otherwise. Put £ = U350 &2

Lemma 11.24. Under the constraints, Y3 < Y3(3, Cogim), I's < T3(Q3, Costim), =3 <
E3<02—slim); and C2-edge < E2—edge(02—slim); we have:

(1) &3 is smooth.
(2) For allp e M,
1E3(p) = E°(P)]| < costimt(p) and  [[DE*(p) — DE*(p)|| < Corstim- (11.25)
(3) The restriction of w30 E* to Uic;, - {Imil < 6-10°A} is a submersion to Wy
Proof. The proof is similar to the proof of [13, Lemma 13.34]. ]
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11.5 Adjusting the map near the ridge 1-stratum

Recall that Q4 = Ho.stratum © Hislim © Hiridge and my : H — ()4 is an orthogonal projection.
We let Ay, Ay, Sys, Sy, and 74 1 Sy — (0,00) be as in Section 10.6.

Thus, by Lemma 10.50, (§4,S4,r4) is a (2,Iy) cloudy 1-manifold. By [13, Lemma 20.2],
there is a l-manifold W} C Q4 so that the conclusion of [13, Lemma 20.2] holds, where
the parameter e in [13, Lemma 20.2] is given by =4, = Z4(T"y). In particular, there is a
well-defined nearest point projection

P: N, (S1) =Wy — W) (11.26)
where N,, is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.27. Under the constraint ci.idqge < Ci-ridge; there is a smooth function vy : H —
[0, 1] with the following properties:

(1)

P 0E3=1 in U {Imi] <0.6A,7m;, <3.5)\,,} and (11.28)
7f'ell-ridge
P08 =0 outside U {In:] < 0.7A,;m;, < 4N, }.
ie[l—ridge

(2) supp(ps) Nim(E3) € Wy x Q.
(3) There is a constant ), = Q) (M) such that
|(Dty),| < Qa! (11.29)

for all x € im(E3).

Proof. If the parameter co_q;r, is sufficiently small and A is sufficiently large, then by Lemma
11.24, [|E%(p) — E°(P)|| < costimt(p). Hence, E3(p) € Usey, ., AImil < 0.6A,7m;, < 3.5M,}

implies that £%(p) € Uiell.ridge{|ni| < 0.61A,m;, < 3.6\, }. Also, £%(p) ¢ Uiel1-ridge{|m| <
0.7A,1;, < 4\, } implies that £%(p) ¢ User g Ll < 0.69A, 7, < 3.9}

Define 14 : H — [0, 1] by

|z ]
Uy(z) =1- (I)%,l Z Po.614,0.654 e 1- (I)%J 7
{iEII-ridgeax;‘l>O} ¢ ’
|} )
| P3.6r,,,3.70, (—P (1 - L (11.30)
|: ‘ ‘ ‘r;/p 271 Rip
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where ip € Ip is the index corresponding to ¢ € Iyigge. ¥4 is clearly smooth. Also note that

ri > 0 if and only if z7, > 0.

To prove part (1), it suffices to show that

Y,0E°=1 in U {Imi| < 0.61A,n;, < 3.6)\,,}, and

7f'ell—riclge

Y 08 =0 outside U {In:] < 0.69A,7n;, < 3.9X,,}.

7f'ell—riclge

(11.31)

Suppose that ¢ € 1 idge, |7:(p)| < 0.61A, and n;, < 3.6\,,. Put x = £%(p). Recall that

x! = R;(;(p) where (; is given by (8.10). Hence,

xy

= =G =1,

/"
1— (IJ%J (2—’) =1, and

()

|zl

Po.614,0.650 ( i ) = Doe1a065a ([m:(p)]) = 1.

Also, zi, = Ri.Gip(p) where i, = (y,, is given by (8.14). We have

7

T,
= (; = 17
Rip CP(p>
xl
ip o
=@y, <Rip) =1, and

!
|5Uip

P3.62,,.3.70, <_x” ) = B34, 370, (Mip) = 1.

ip
Therefore, 14(z) = 1. Now suppose that for all i € I1_igge, either
(i) Gi(p) =0or Gp(p) =0, or
(i) Gi(p) >0, Gip(p) > 0, and [ni(p)| = 0.694, or
(iii) Gi(p) >0, Gip(p) > 0, |mi(p)| < 0.69A, and 7;, > 3.9A,,.
If Gi(p) = 0 or ;. (p) = 0, then

x!! x!
7 P _
(= () (o (72) -0

If Gi(p) > 0, Cip(p) > 0, and |n;(p)| > 0.69A, then

|7
®o.612,0.650 o = 0.

%

(11.32)

(11.33)

(11.34)

(11.35)
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If Gi(p) >0, Gip(p) >0, [7:(p)| < 0.69, and 7;, > 3.9),,, then

|z,
P3.61,,.3.70, e = 0. (11.36)

ip
In any case, ¥4(x) = 0. This proves part (1) of the lemma.

To prove part (2), suppose z = £3(p) and 14(x) > 0. From part (1), |n;(p)] < 0.7A and
Nip < 4\, for some i € [1qge. Thus, p € Ay and z € E*(A4). Let T = (m0EY)(p) €
(4 0 E9)(A4) = S4. Recall that r4(F) = B4ty for some p € (my 0 ENYF) N Ay If A is
sufficiently small, we have that r4(z) > %24tp. By Lemma 11.24, if ¢o.gim < Coglim(24), then
[ra(z) = Z|| = |Imy 0 E%(p) =m0 E%p)I| < IE°(P) — E°(D)I| < costimt(p) < 7a(F). Hence,
ma(z) € N, (S4) = Wy C Q4. Therefore, z € W, x Qi. This proves part (2) of the lemma.

To prove part (3), suppose that x = E3(p). If 27 > 0, then (;(p) > 0. The number of
indices ¢ € Iyidge such that =7 > 0 is bounded by the multiplicity of the ridge 1-stratum

1

cover. For the remaining indices j € Ij.yiqge such that x;’ < 0, the quantity 1 — & 11 (%)

vanishes near x. Thus, by the chain rule, it suffices to bound the differentials of

|zl y
Do.614,0.650 ) Oy, =) and (11.37)
|} !
D361, 370, <—P 1=y £
' ' ‘r;,P 2! RiP

for each ¢ € I yigge and its corresponding ip € Ip for which z; > 0. Both differentials are
|27 | ), . -
%, ﬁ < 3.7\, and Rii > % In this case, R; will be

comparable to z, and the estimate (11.29) follows. This proves part (3) of the lemma. [

/.
Ty

non-zero only when 2l < 0.65A, 4>

Define Wy : H — H by Wy(z) = 2 if mi(z) ¢ W, and
Vy(x) = (Wa(x) Pa(ma(2) + (1 = va(@))ma(@), 7y () (11.38)
otherwise. Put £* = ¥, 0 £3.

Lemma 11.39. Under the constraints, ¥, < §4(Q4,cl_ﬂdge), Iy < F4(Q4,cl_ridge), <
E4(Craidge), and Coglim < Coglim (C1-ridge), We have:

(1) &* is smooth.
(2) Forallpe M,
1€ (D) = E° )| < Crsiaget(p) and [ DE*(p) — DEY(p)|| < Cruvidge- (11.40)

(3) The restriction of my 0 E* to |
WO
4 .

i) siage UMl < 064, 1, < 3.5X,} is a submersion to
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Proof. Part (1) of the lemma follows from part (2) of Lemma 11.27.
(2). Given p € M, put x = £3(p). We have

1€ (D) = E2 )| = W4(2) — ]| = [(a(2)(Pa(ma(2)) — 7a(=)), 0) (11.41)
< [Yal@)] - [Pa(ma(x)) — ma(2)].
Now |14(z)| < 1. From [13, Lemma 20.2(1)], | Py(m4(x)) —m4(z)| < Z4r4(x). From Sublemma
10.70, we can assume that r4(z) < 10t,. If 2 is sufficiently small, then ||E%(p) — E3(p)]| <
%cl—ridge t<p) .

Next, consider

IDE (p) — DE ()| = (D) (Pa(ma(w)) — ma(w)) (11.42)
+94(2)(DPa)my(@) © D(ma 0 E%), — D(ma 0 £%),)|
< [(DYa)al - |(Pa(ma(2)) — ma(2))]
+ [10a(@)] - [(DPa)y@) — mag) 0 D(ms 0 £7), |
+ [ha(x)] - [mag 0 D(my 0 £%), — D(my 0 £%),
< [(DWa)o] - [(Pa(ma(x)) = ma(@)] + [(DPa)myw) — mag| - [ D(ma 0 %)y
+ |7TA2 o D(my 0 53)p — D(my0 53)p|.
Equation (11.29) gives a bound on |(Dy),|. [13, Lemma 20.2(1)] gives a bound on
|(Pa(m4(x)) —ma(z))|. [13, Lemma 20.2(7)] gives a bound on |(DPy)r, () — Tao|. Lemma 10.5

gives a bound on |D(my o £%),|. Equation (10.51) gives a bound on |m4 o D(my 0 %), —
D(my 0 E®),|. It follows that || DE*(p) — DE3(p)|| < 3C1-ridge-

From Lemma 11.24, if ¢y g is sufficiently small, then ||£%(p) — £°(p)|| < 3Ci-riage t(p) and
|DEY(p) — DEY(p)| < ernage. Tt follows that [|E4(p) — E%(p)| < crgge t(p) and | DEX(p) —
DE’(p)|| < Ciriage- This proves part (2) of the lemma.

(3). The restriction of m40&* to Uie[l—ridge{|ni| < 0.6A, 1, < 3.5\, } equals Pyo(my0E3).
For p € Uiey, o, (1Ml <0.6A,m;, <3.5X,,}, put = = E3(p). Then

D(Pyo (myo0 53))p =m0 0 D(my 0 53)p + ((DPy)ry(@) — Ta9) © D(my 0 53)1,. (11.43)

Using (10.52) and [13, Lemma 20.2(7)], we have that if =, is sufficiently small, then
D(Py o (m40E?)), maps onto (TWY) p,(xs(x)). This proves part (3) of the lemma. O

11.6 Adjusting the map near the slim 1-stratum

Recall that Q5 = Hostrapum @ Higlim and 75 : H — Q5 is an orthogonal projection. We let
As, As, S5, S5, and 75 : S5 — (0,00) be as in Section 10.7.

Thus, by Lemma 10.79, (55,5'5,7’5) is a (2,'5) cloudy 1-manifold. By [13, Lemma 20.2],
there is a l-manifold W2 C @5 so that the conclusion of [13, Lemma 20.2] holds, where
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the parameter e in [13, Lemma 20.2] is given by =5 = Z5(I'5). In particular, there is a
well-defined nearest point projection

Ps i N, (S5) = Ws — WP (11.44)
where N, is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.45. Under the constraint ¢i_qim < Cistim, there is a smooth function s : H —
[0, 1] with the following properties:

(1)

Ys0EY=1 in L {Iml <0.6A} and (11.46)
1€11 slim

P50 E* =0 outside U {In:| < 0.7A}.
1€11glim

(2) supp(v5) Nim(EY) C Ws x Q.
(3) There is a constant Qf = QL(M) such that
[(Dy5)a| < ! (11.47)

for all x € im(&Y).

Proof. 1f the parameter c;.yigqe is sufficiently small and A is sufficiently large, then by Lemma
11.39, [[€4(p) — E%p)|| < crriaget(p). Hence, E*(p) € Uer, . {Im| < 0.6A} implies that
E%p) € Uier,. Alml < 0.61A}. Also, £*(p) ¢ Uiy, {Imil < 0.7A} implies that £°(p) ¢
Uie[l_shm{lnil < 0.69A}.

Define 95 : H — [0, 1] by

x x"
Us(z) =1—®1 Z Po.612,0.650 (’If,‘) : (1 -1, (ﬁ)) (11.48)

. (2
{ZEIl—slim9m2/>0} ¢

The rest of the proof is the same as the proof of Lemma 11.27 but without the Ip case. [J
Define V5 : H — H by V5(x) =z if m5(x) ¢ W; and

Ws(2) = (5() Ps(ms(2)) + (1 = ¢5(2))ms (), w5 (2)) (11.49)

otherwise. Put £° = U5 0 &4,
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Lemma 11.50. Under the constraints, X5 < Y5(s, Crgiim), I's < Ts5(Qs, Clgtim), Z5 <
E5(Cislim), and Ciridge < Ci-ridge(Ci-stim ), Wwe have:

(1) &5 is smooth.
(2) For allp € M,

1E°(p) — E°(P)|| < craimt(p) and ||DE>(p) — DE®(p)|| < Cisiim. (11.51)

(3) The restriction of w50 E® to Uiy, . {Imil < 0.6A} is a submersion to Wy
Proof. The proof is similar to the proof of [13, Lemma 13.34]. O

11.7 Proof of Proposition 11.1

Note from (11.9), (11.16), (11.23), (11.38), and (11.49) that ¥, can be factored as \I/?Jil x Igu

for some U, : Q; — @Q;. Moreover, since (); C Qj+1, V1 can be factored as \Ifﬁ’fl X IQé

j+1

Q
for some W7
and k < J.

: Qr — Qg for k < j. In particular, m, o U, = \I/ijl om for j € {1,2,3,4}

__ ©5 _
Put g = 5 y Cadjust = Ci-slim>

W= (50050 U50U)(W)N ) {yeH:y/>09R,|yj| <55R;}, (11.52)

ie]S»stratum

"> 0.9R;, |yi| < 5.5AR;,
Wa= (2 ouPoudymin (U {yeq: ¥ v 3

ye > 0,yp < 5.5AY,

iEIQ—edge
Wi = (U0 (W N | {ye@s:y! >09R; |yl <55 10°AR},
1€12 5lim
!> 0.9R;, |yl| < 0.55AR;
W, = \IJQS(WO) N y € Q4 : Y; i |Ys iy ’ and
(W EIU yl > 09R,,.yl, < 3M, R,
Ws=Wn |J {ye€@s:y>09R; |y} <055AR;}.
ie[l—s]im

The smoothness of £ follows from part (1) of Lemma 11.50. Part (1) of Proposition 11.1
follows from part (2) of Lemma 11.50.

Lemma 11.53. W, is a k;-manifold.
Proof. The proof is similar to the proof for [13, Lemma 13.46]. ]

By Lemma 11.10 (3), the restriction of £! to U; is a submersion from U; to W). From
Lemma 10.8 and equation (11.51), if I'; and ¢y g are sufficiently small, then £ = W50 ¥, 0
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U3 0 W, o0& maps Uy to Wi C (U5 0 Wy 0 Wy 0 Wy) (). To see that it is a submersion,
suppose that |n;(p)| < 5 for some i € I3gratum. Put z9 = E%(p), 1 = EX(p), and x = E(p).
Note that o} = (x1); = (x¢);. From Lemma 10.8 and [13, Lemma 20.2(3)], if Z; is sufficiently
small then we are ensured that (Dy,,)z, © DE) maps onto Ty, H; ~ R® By Lemma

11.10, if ¢35 gtratum 1S sufficiently small, then (D) )ay © DSZ} maps onto T(,,y H; ~ R3. Thus,
(Dr)e © DEy = (Dr,,)e © D(W5 0 Wy 0 Wy 0 Wy),, 0 DE; = (Dy,, )z, © DE) maps onto

Ty H! ~ R3. Hence, DE, must map T,M onto T,W;. This shows tilat £ is a submersion
near p.

By Lemma 11.17 (3), the restriction of my o £2 to U, is a submersion from U, to W3.
Lemma 10.36 and equation (11.51) implies that if T’y and ¢j g, are sufficiently small,
then My 0 & = Mo Uy 0 W, 0 Us0E2 = \I/5Q20\11f20\113on7r2052 maps Us to Wy C
(B9 0 U920 UE2)(WYP). To see that it is a submersion, suppose that |n;(p)| < 5A for some
i € Ineqge and nm(p) < 5t(p). Put zo = E%p), 22 = E*(p), and x = E(p). Note that
@, = (z2); = (x0)}. From Lemma 10.36 and [13, Lemma 20.2(3)], if =, is sufficiently small,

then we are ensured that (Dx,, )ry(ao) © D(m2 0 £2), maps onto Tr,(s,)y H] ~ R?. By Lemma

TH!
11.17, if ¢y.cage is sufficiently small, then Dz, ) r(2y) 0 D(m20E2), maps onto T, (o)) Hi ~ R?.
Thus, (D,,H,_)m(x) oD(m0&),= <D7TH4)772(90) o D(mgoWs0W,0W3),, 0 D(52)p = (Dﬂm)wz(w) o
DU 0 WF? 0 U5?) (g 0 D(my 0 £7), = (D

Thus, D(m; 0 &), must map T, M onto Tr, ()W, showing that w5 o £ is a submersion near p.

Jra(az) © D(m2 0 E)2 maps onto T, (py Hi ~ R>.

TH!
1

By Lemma 11.24 (3), the restriction of 3 o €% to Us is a submersion from Uz to W?.
Lemma 10.43 and equation (11.51) implies that if I's and ¢ g, are sufficiently small then
T30 =m30 W50 0E = U 0 U 0y 08 maps Us to Wy C (U2 0 U9)(WI). By a
similar argument to 7, o £2 case, the restriction of m3 0 € to Us is a submersion to Wi,

By Lemma 11.39 (3), the restriction of w4 o £* to U, is a submersion from Uy to W}.
Lemma 10.50 and equation (11.51) implies that if I'y and ¢ g, are sufficiently small then
T 0E =myoWs0EH =W o7y 0 & maps Uy to Wy € U2 (WD), By a similar argument to
o 0 2 case, the restriction of 74 0 € to Uy is a submersion to Wj.

Finally, by lemma 11.50 (3), the restriction of m5 0 & = 75 0 £5 to Us is a submersion to
W5 = W2. This proves Proposition 11.1.
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Extracting a good decomposition of M

In this chapter we will use the map &£ to decompose M into fibered domains which are
compatible along the intersections. The main result of this chapter is Proposition 12.1. The
rest of the chapter is the proof of the proposition.

Proposition 12.1. There is a decomposition
M = MO—stratum U Ml—slim U Ml—ridge U M?—slim U MQ—edge U M3—stratum (12 2)

into compact domains with disjoint interiors, where each connected component of M'im
Mridee - pp2stim - pr2edge g g Np3statumog g be endowed with a fibration structure, such
that:

(1) MOstratum gpg MM gre domains with smooth boundary, while M1Hidee — pf2-stim
MZ*edee  gnd M3>SU8m gre smooth manifolds with corners, each point of which has
a neighborhood diffeomorphic to R*™% x [0, 00)* for some k < 3.

(2) Connected components of MOSTatum gre diffeomorphic to a closed Riemannian 4-manifold
which admits a metric of nonnegative sectional curvature or diffeomorphic to D?,
S' x D3, S? x, D?, (S? x, D*)/Zy for w € Z, T? x D?, T? x4, D?, (S?xS")xI,
(RP2xSY)XI, or B;xI foric {1,2,3,4}.

(3) The components of M*™™ have a fibration with fibers diffeomorphic to S*/T (where T
is a finite subgroup of Isom™ (S?) = SO* which acts freely on S3), T3 /T (where T is a
finite subgroup of Isom™ (T'3) which acts freely on T?), S x S%, or RP3#RP3.

(4) The components of M4 have a fibration with fibers diffeomorphic to D3, S* x D2,
S? %z, I, or T? xz, I.

(5) The components of M*s™ have a fibration with fibers diffeomorphic to S* or T?.

(6) The components of M*°¢ have a fibration with fibers diffeomorphic to D?.
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(7) MEstratum o q smooth domain with corners with a smooth S*-fibration. The S*-fibration

1s compatible with any corners.

(8) Each fiber of the fibration M1™dse — BYridee lying over a boundary point of the base
B'ridee s contained in QM-S o § N 1-slm

(9) Each fiber of the fibration M*S'™ — BZsim Jying over a boundary point of the base
B¥sim s contained in OMO-statum - gpf-sim g fiver of QM8 induced by the fibration
Mlridee . plaidge -y Np2eedge |y ppdstratum — fn ogpe gA[ITdee cqse if a fiber of the
fibration M2 — B2 4o contained in a fiber over an interior point of B¢ then
they coincide.

(10) Each fiber of the fibration M*°d — BZedee lying over a boundary point of the base
B%edee s contained in OMOStratum g g fiber of OM e induced by the fibration
Mmidee _y ploridee o fiber of OM*S"™ induced by the fibration M*sim — BZsim,

e part o i at carries an induced 2-dimensiona ration over interior
11) Th t of OMI T that duced 2-d | fibrat ¢
points of the base B9 js contained in M?'™ U M *edee | Jf3-stratum

(12) The part of OM*°° that carries an induced S*-fibration over interior points of the base
B%edee s contained in OM>SNM and the S'-fibration induced from M?°%° agrees
with the one inherited from M3-stratum,

12.1 The definition of A/0-stratum

For each i € [O-straturna pUt

x
MOstratim — By 035R;) U E! {x € H:a!>09R;, L < 0.4} . (12.3)
Ty
Lemma 12.4. Under the constraints Sostratum < So-stratum @1 Cadjust < Cadjust, we have that
{MQstratumy i a disjoint collection and each MXS"™™ 4s g compact manifold with
boundary, which is diffeomorphic to one of the possibilities in Proposition 12.1 (2).

Proof. The proof is similar to the proof of [13, Lemma 14.4]. ]

We let MO—stratum — U

O-strat _ : O-strat
i€l M2 and put My o= M\ int (M) Thus
A{O—stratum

and M; are smooth compact manifolds with boundary.



Chapter 12 88

12.2 The definition of A/!-slim

We first truncate Ws. Put

/
Li

"
i

W5/ =WsnN U x € Q5 : l‘;/ > 0.9R;,

ie[l—slim

and define U} = (75 0 &)~ (W}).

< 0.4A} (12.5)

Lemma 12.6. Under the constraints ¢igim < Si-siim(A) and cCadjust < Cadjust, the following
holds.

(1) Uier,,, {Imil <0.35A} C Uy C Us, where Us is as in Proposition 11.1.

(2) The restriction of w5 0 & to UL gives a proper submersion to Wi. In particular, it is a
fibration.

(3) The fibers of ms0& : U, — Wi are diffeomorphic to an orientable compact Riemannian
3-manifold with nonnegative sectional curvature.

(4) My intersects U. in a submanifold with boundary which is a union of fibers of w50 E :
U, — W;.

Proof. For a given i € I gim, suppose that p € M satisfies |n;(p)| < 0.35A. Putting y =

(75 0 E%)(p) € Qs, we have y! = R; and v; < 0.35A. Put z = (150 &)(p) € Qs. If Cadjust

/
Ty

is sufficiently small, then we have that z > 0.9R; and |—;| < 0.4A. As p € Us, Proposition

Yi
!/

11.1 implies that x € W5. Hence, U, {Imi| < 0.35A}ZC U:.

Now suppose that p € U. Putting © = (75 o £)(p), we have that for some i € [ gim,
! > 0.9R; and % | < 0.4A. Put y = (150 E%(p). If Cagjust is sufficiently small, then

1!
Ty

y! > 0.8R; and )5—}/,‘ < 0.45A. Hence, |n;(p)] < 0.45A. This shows that U. C Us, proving
part (1) of the lemma.

By Proposition 11.1, m50& is a submersion from Us to W5. Hence it restricts to a surjective
submersion on Uf. Suppose that K is a compact subset of WZ. Then (75 0 £)7'(K) is a
closed subset of M which is contained in Us = {|n;| < 0.5A}. As {pi}icr, .. are in the
slim 1-stratum, it follows from the definition of adapted coordinates that {|n;| < 0.5A} is
a compact subset of M. Thus the restriction of 75 o € to U} is a proper submersion. This
proves part (2) of the lemma.

To prove part (3) of the lemma, given x € W, suppose that p € U; satisfies (m50)(p) = .
Choose i € I} gim so that |n;(p)| < 0.45A. If cagjust is sufficiently small, then by looking at
the components in H;, one sees that for any p’ € U satisfying (75 0 £)(p') = x, we have
P € {|In;| < 0.5A}. Thus, to determine the topology of the fibers, it suffices to just consider
the restriction of 75 o € to {|n;| < 0.5A}.
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Let mpr © @5 — Hj be an orthogonal projection and put X = mg(x) € H;. Since the
restriction of s 075 0 £ to {|n;| < 0.5A} equals 7;, we have that 7y o 750 £ is transverse
there to X. By Lemma 8.8, {|n;| < 0.5A} N (7 o 75 0 £°)71(X) is diffeomorphic to an
orientable compact Riemannian 3-manifold with nonnegative sectional curvature.

Consider the restriction of (7g; o 5 0 &) to {|n;] < 0.5A}. Proposition 11.1 and [13,
Lemma 21.3] imply that if cuqjust is sufficiently small, then the fiber {|n;| < 0.5A} N
(mar 0 w5 0 £)71(X) is diffeomorphic an orientable compact Riemannian 3-manifold with non-
negative sectional curvature. In particular, it is connected. Now, (741 0 75 0 £)7H(X) is the
preimage, under 75 o & : Uy — Wy, of the preimage of X under mp : W5 — H;. From
connectedness of the fiber, the preimage of X under 7y, : Wy — H; must just be z. Hence
(75 0 £)7!(x) is diffeomorphic to an orientable compact Riemannian 3-manifold with non-
negative sectional curvature. This proves part (3) of the lemma.

To prove part (4) of the lemma, let p € M; N UL. We only need to check when p €
M=t - Suppose that p € OM"*"™ for some j € Ip.gratum- If 2 = E(p) then 2 > 0.9R;
and z’; = 0.427. Let ¢ € Us be a point in the same fiber of w50 & : Uy — Wy as p and put
y = &(q). As ms5(x) = m5(y), 7u,(z) = 7m,(y). Hence, yj > 0.9R; and y; = 0.4y7. In
particular, ¢ € dM="*™ Thus, the whole fiber (75 0 £)7'(z) is in dM-sram, O

Let W2 C W be a compact 1-dimensional manifold with boundary such that
(w5 0 &)1 (W) contains e, {|m] < 0.35A} and put M = M, N (r50€) 7 (WY). We
endow MU' with the fibration induced by 75 o £.

Put M2 = M1 \int(Ml'Shm).

12.3 The definition of A/!Tidee

We first truncate W,. Put

/

xiP
7
ip

/
Ti

1"
i

<04A,2] >09R

= » Vip ip)

Wi=win ) {2€Qs:a] >00R,

Z‘Ell—ridge

< 2.5Api}

(12.7)
and define U} = (74 0 &)~ (W)).

Lemma 12.8. Under the constraints §iyidge < Si-ridge(2) and Cadjust < Cadjust, the following
holds.

(1) Uie[l—ridge {Ini| <0.35A,|n;,| <2A,,} C Uy C Uy, where Uy is as in Proposition 11.1.

(2) The restriction of mq 0 € to Uy gives a proper submersion to Wj. In particular, it is a
fibration.

(3) The fibers of myo & : Uy — W, are diffeomorphic to D3, S* x D?, 5% xz, I, or T? xz, I.
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(4) My intersects U; in a submanifold with corners which is a union of fibers of 40 E :
Uy — Wj.
Proof. For a given i € Iy ydge, suppose that p € M satisﬁes In:(p)] < 0.35A and ]nlp\ < 2M,,.
Putting y = (74 0 £%)(p) € Qu, we have y/ = R;, ! =R, < 2M,,.
Put z = (m40E)(p) € Q4 If Cagjust is sufficiently small, then since /\pi > > AP > 1, we
have that 7 > 0.9R;, | & i, > 0.9R;,, :
11.1 implies that = € W4 Hence, UZE[1 e {In:| <0. 35A \mp| < 2)\ } C Uj.

sz

ip, and

and |~ Proposition

Now suppose that p € U;. Putting z = (w4 0 8)( ), we have that for some i € I gge,
zf > 0.9R;, < 04A, z, > 09R;,, and el < 25),,. Puty = (my0&%(p). If
ip

< 0454, y! > 0.8R,

1P

Zi
z

. , : y
Cadjust 15 sufficiently small, then ‘% Yip
7

and

< 2.7),,. Hence,
ZP

1n:(p)] < 0.45A and |n;,(p)| < 2.7\,,. This shows that U; C Uy, proving part (1) of the
lemma.

By Proposition 11.1, m40& is a submersion from U, to W,. Hence it restricts to a surjective
submersion on Uj. Suppose that K is a compact subset of W,. Then (m;0&)'(K) is a closed
subset of M which is contained in Uy = {|n;| < 0.5A, ;.| < 3\, }. As {pi}ier, iy, are in the
ridge 1-stratum, it follows from the definition of adapted coordinates that {|n;| < 0.5A} is a
compact subset of M. It also follows from the definition of approximated distance function
¥y, that {|m;,| < 3\, } is a compact subset of M. Hence {|n;| < 0.5A,|ni,| <3\, } is a
compact subset of M. Thus the restriction of w4 o £ to U} is a proper submersion. This
proves part (2) of the lemma.

To prove part (3) of the lemma, given x € Wj, suppose that p € Uj satisfies (m40E)(p) = x.
Choose i € I} yiqge S0 that [1;(p)] < 0.45A and |n;,(p)| < 2.7Xp,. If Cagjust 1s sufficiently small,
then by looking at the components in H; and H,,, one sees that for any p’ € Uy satisfying
(my 0 E)(P) = x, we have p' € {|m| < 0.5A,|n;,| < 3\, }. Thus, to determine the topology
of the fiber, it suffices to just consider the restriction of my 0 € to {|n;| < 0.5A, |n;,.| < 3\, }-

Let mp © Q4 — Hj be an orthogonal projection and put X = my(x) € H;. Since the
restriction of T omy 0 E0 to {|ni| < 0.5A,|mi,] < 3, } equals n;, we have that T 0Ty 0 E°
is transverse there to X. By Lemma 8.8, {|n;| < 0.5A,[n;,| < 3\, } N (7 0my0 50) LX)
is diffeomorphic to D3, S x D?, 5% xz, I, or T? xz, I.

Consider the restriction of (7 o mq 0 &) to {|n] < 0.5A,[mi,| < 3A\,}. Proposi-
tion 11.1 and [13, Lemma 21.3] imply that if cagjus is sufficiently small then the fiber
{Imi| < 0.5A,[n;p] < 3N, } N (7 0wy 0 E)7H(X) is diffeomorphic to D*, S* x D?, 5? xz, I,
or T? xgz, I. In particular, it is connected. Now, (mg: 0 74 0 £)7'(X) is the preimage, under
myo & Uy — Wy, of the preimage of X under 7y, : W) — H;. From connectedness of
the fiber, the preimage of X under 7y : Wy — H; must just be z. Hence (m4 0 £)7!(x) is
diffeomorphic to D3, S x D2, S? xg, I, or T? x, I. This proves part (3) of the lemma.
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To prove part (4) of the lemma, let p € MyNU,. We only need to check when p € 9M-lim
orpe 8M0—stratum‘

Suppose first that p € GMJQ'Stratum for some j € lpspratum- If 2 = E(p) then 27 > 0.9R;
and 7 = 0.4z7. Let ¢ € Uj be a point in the same fiber of 7y 0 & : Uy — W as p and
put y = £(q). As my(x) = ma(y), 7u; () = 7, (y). Hence, y7 > 0.9R; and y; = 0.4y;. In
particular, ¢ € 9M="*"  Thus, the whole fiber (74 0 £)7!(z) is in dMstratwm,

Next, suppose that p € M. Let x = £(p) and let ¢ € U] be a point in the same fiber
of ;yo & : Uy — Wi as p and put y = £(q) € Qu. ms(z) = m4(y) implies that m5(z) = m5(y).
Hence, 75(y) € WZ. Since M1=I™m is endowed with the fibration induced by 75 0 £, ¢ is in
the same fiber of 75 o £ as p. Therefore, the fiber (74 0 £)~!(z) is contained in a single fiber
of the fibration of Ms™. This proves part (4) of the lemma. O

Let W) be a compact 1-dimensional manifold with corners such that (my o £)~H(W})
contains Uie]l—ridge {Im:] <0.35A, |mip| < 2M,,}, and put M9 = M, N (m4 0 E)"H(W]). We
endow M'M4e¢ with the fibration induced by 74 0 &£.

Put M5 = M, \ iIlt(Ml_ridge).

12.4 The definition of A%l

We first truncate Ws5. Put

/

i
1!
Z;

Wé = W3 N U xr € Qg . $;/ Z OQRZ,

iEIQ—slim

and define U} = (w3 0 &)~ (W}).

<4- 105A} (12.9)

Lemma 12.10. Under the constraints ogim < So-sim(A) and Cadjust < Cadjust, the following
holds.

(1) Uier, o tmil £3.5-10°A} C Us C Us, where Us is as in Proposition 11.1.

(2) The restriction of mg 0 & to U} gives a proper submersion to Wj. In particular, it is a
fibration.

3) The fibers of mg0 & : Uy — Wi are diffeomorphic to S? or T?.
(3) 3 3 P

(4) Mj intersects Ul in a submanifold with corners which is a union of fibers of m3 0 & :
U; — Wi
Proof. The proofs of parts (1), (2), and (3) of the lemma are similar to the proof of [13,
Lemma 14.7].

To prove part (4) of the lemma, let p € M3NUj. We only need to check when p € 9 1ridee,
p € OMY™IM or p € gMOstratum - [et ¢ = E(p). As in the proof of Lemma 12.8 (4), the
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fiber (w3 0 £)7!(z) is contained in a single fiber of the fibrations of M1 midse gai-sim - op
QM O-stratum = A dditionally, consider that each fiber of an induced fibration M 1idee — pl-ridee
on OM'Mdee lying over an interior point of the base, is a connected compact 2-dimensional
manifold. Therefore, in the case that (73 0 £)7!(x) is contained in a fiber of the fibration of
OM*'midee gver an interior point of the base B98¢ the two fibers coincide. O

Let W4 be a compact 2-dimensional manifold with corners such that (w3 o £)~*(WY)
contains ;e {|m| <3.5-10°A}, and put M**"™ = Mz N (730 )71 (Wy). We endow
M%*sm with the fibration induced by 73 0 &.

Put My = M3\ int(M?sim),

12.5 The definition of M %edse

We first truncate Ws. Put

/

T
"
7

WQI =WsN U x € QQ : CL’;’ > OQRZ,

Z.EI’Q—Cdgc

< 4A} (12.11)

and

T

Uy = (m0&)* (W) N ({nE/ < 0.35AYUE! {z €eH: x>0, TE < 4A}) . (12.12)
Lemma 12.13. Under the constraints A < K(A), Soedge < S2-edge(A), and Cadjust < Cadjust
the following holds.

(1) Uielz.edge {Imi] <3.5A, |ng/| < 3.5A} C Uy C U, where Us is as in Proposition 11.1.

(2) The restriction of my 0 & to Uy gives a proper submersion to W3. In particular, it is a
fibration.

(3) The fibers of my o & : Uy — Wy are diffeomorphic to D?.

(4) My intersects U} in a submanifold with corners which is a union of fibers of mg 0 & :

Uy — Wi.

Proof. The proof of the lemma is similar to the proof of [13, Lemma 14.10] and the proof of
Lemma 12.8 (4). O

Lemma 12.14. Under the constraint caqjust < Cadjust, Ma N US is compact.
Proof. The proof of the lemma is similar to the proof of [13, Lemma 14.11]. ]
We put M*edee = M, N U, and Wy = (my 0 £)(M?*°4). We endow M2 with the
fibration induced by m 0 €.
Put My = M, \ iIlt(Mz-edge).
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12.6 The definition of A/3stratum
We first truncate W;. Put

Wi=win |J JreH:2>09R,

iEIB-stratum

L
EE 4} (12.15)
and define U] = E~1(W]).

Lemma 12.16. Under the constraints G3 stratum < Sz-stratum 1A Cadjust < Cadjust, the following
holds.

(1) Uiels.snatum {|n:] < 3.5} C Uy C Uy, where Uy is as in Proposition 11.1.

(2) The restriction of £ to U] gives a proper submersion to W{. In particular, it is a
fibration.

(3) The fibers of £ : U] — W/ are diffeomorphic to S*.

(4) Ms intersects U] in a submanifold with corners which is a union of fibers of €

Uy — wi.

Uy’

Proof. The proof of the lemma is similar to the proof of [13, Lemma 14.7] and the proof of
Lemma 12.8 (4). O

We put M*stratum — Mo and endow it with the fibration of £|, 5 @ MFSTAR —
5(M3—stratum)'

12.7 Proof of Proposition 12.1

Proposition 12.1 now follows from combining the results in this chapter.

Parts (1) to (7) of Proposition 12.1 follow directly from Lemma 12.4, Lemma 12.6, Lemma
12.8, Lemma 12.10, Lemma 12.13, and Lemma 12.16.

Suppose that part (10) is false. Then, there exists a fiber F' = D? of M?%*°° that is
disjoint from MfO-stratum (j pplslim gy pplridge |y pr2sim = From the proof of Lemma 12.16 (4),
each Sl-fiber of M3stratum ig contained in a single fiber of M?°d°  Therefore, F' must be

the total space of S'-fibers. This is a contradiction because D? cannot be the total space of
Sl-fibers.

Part (11) of Proposition 12.1 follows from the proof of Lemma 12.8 (4) and from the fact
that MfO-stratum = ppislim - and Ariridee have disjoint interiors. Part (9) follows from similar
arguments as in the proof of Lemma 12.10 (4). Part (12) follows from similar arguments as
in the proofs of Lemma 12.13 and Lemma 12.16. Part (8) follows from Lemma 12.8 (4) and
from part (9).
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Decomposing M into fiber bundle components

It follows from Proposition 12.1 that M can be decomposed into domains with disjoint
interiors, where each domain is a compact 4-manifold with corners which is also a fiber
bundle, with compatibility of fibers along the overlaps. In this chapter, we give a classification
of the domains as fiber bundle components and describe the decompositions of fibers along
the overlaps.

13.1 Fiber bundle components without boundary

If M contains a fiber bundle component without boundary, then M is a closed Riemannian
4-manifold which admits a metric of nonnegative sectional curvature or M is diffeomorphic
to one of the following fiber bundles:

St— M

53/F,T3/F,32 x SURP3#RP3 — M
- !
Sl
where X3 is a closed 3-manifold and X2 is a closed 2-manifold.

From now on in this chapter, we assume that M does not contain a fiber bundle compo-
nent without boundary.
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13.2 Fiber bundle components with boundary

The boundary of a fiber bundle component 1| s LY 1
B; B; 0B;

where JF; or 0B; may be empty.

We denote the boundary of a fiber bundle component M; with N;. The classification of
fiber bundle components with boundary (based on the dimension of fibers) is given in the
following table. See Section 2.4 for details about the topology of Riemannian 4-manifolds.

Table 13.1: Fiber bundle components with boundary

Dim | Fiber Bundle Component Boundary
D*, S x D3,5? x, D?,
2 2
4 (52;251);[ 7 — M, Lg‘w‘71),L<‘W‘,1>/ZQ, — N;
T? x D? T2,><Z D? "6
) 2 )
kaj7k S {1727374} pt
pt
S3/T, 13T, S3/T, 13T,
3 5% x S RP*#RP? ]\f S% x SURP*#RP* ]\1
(1,01 oI
D352 xz, [ — M, S%2 — N;
I I
Sl Sl
St x D?,T? xg, [ — M; T? — N;
l I
St St
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Dim | Fiber Bundle Component Boundary
; D?, 5% Xz, I — M, S? — N ¥ D3,S? xz, I — N,
1 1 1
(1,0I) (1,0I) ol
1 2
SUx D2, T2 xp, [ — M, T N, Sox D%y
1 ! Ul T?xz, 1 f
1,01 1,01
(1,01 (101 d
S21? —— M; S2, 1% — N,
2 ! !
(32,0%?%) o2
D2 — Mz Sl — NZ
1 1
2 2
D? — M, St—— N, D?* — N,
! ! Y 1
(32,0%?%) (¥2,0%?) o2
Sl — M; St — N;
1 ! !
(X?3,0X?) &
13.3 Compatibility of fibers
It follows from Proposition 12.1 that
Fy — M;
M = L (13.1)
B;

where 1

B;

is a fiber bundle component given in Table 13.1. Additionally, the fiber

bundle components have disjoint interiors. They intersect along the boundaries so that the
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fibers along the overlaps are compatible. That is, if two fibers intersect, then either one of
them is contained in the other or they coincide. Consequently, a boundary fiber (F; over
a boundary point of B; or OF; over an interior point of B;) is either contained in another
boundary fiber or is the union of other boundary fibers.

In the following sections, we explicitly describe the decomposition of fibers along the
overlaps as the unions of other types of fibers. This information will be used in the next
chapter to glue different fiber bundle components of M into building blocks. We note that
not all combinatorial configurations are feasible due to topological obstructions.

13.4 Notation
For simplicity, we define the following notation for this chapter and the following chapters.

D* S' x D3, 5% x,, D2,

(S2 Xw D2)/Z27w € Z7

(RP? x SYYxI,(S?xSY)xI, — M;
We will denote a fiber bundle component | 72 D2, T2 x,, D?,

ﬂk;-hk € {1727374}

pt
D4,...—>MZ‘ Ss,—>Nl
by 1 and denote its boundary by 1
pt pt
S3/T,T3)T
’ ’ — Mz
We will denote a fiber bundle component S x 51, RPP##RP? l
(1,0I)
S3T,... — M; S3T,...— N;
by 1 and denote its boundary by 1
(Z,01) ol

Let X and Y be topological spaces with boundary. We denote by X Uy Y the union
X UY with the condition that X NY =0X NaY.

We denote by X UY the union X UY with an emphasis that X NY = &. Most of the
time, X and Y will be subsets of M. The topology on X LI'Y will be the topology induced
from M.
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13.5 Fiber bundle components with fibers S? or 77

S2, T —— M

We start with the decompositions of fibers of components l
(32, 052)
SQ e MZ
Lemma 13.2. Let M; be a fiber bundle component 1l . Its boundary s
(32,0%?%)
SZ — Nz SQ — Nz )
E Let F = S? be a fiber of N E Then, the following holds.
02 02
D4,...—>Mj 53,...—>Nj
(1) If FN 1 # O, then F C 1
pt pt
53/F, . Mj
2) If FN # &, then F' is contained in a connected component of
1
(1,0I)
53/F, . Nj
1
ol
D3,5% xz, [ —— M; 5?2 ——— N;
(3) IfFn 1 #+ &, then F is a fiber of 1l
Stoor (I1,0I) St oor (I,01)
D2 — Njk
(4) Otherwise, F = A; Uy BUgy Ay where Ay = D?, k € {1,2}, is a fiber of Ik
o0x?
Sl — Nj
for some ji, and B = S' x I is a subbundle of , for some j. The unions
1
XS

are so that each 0Ay, k € {1,2}, is identified with a boundary component of B.
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D? ST D?

Figure 13.1: A decomposition of F' in case (4). F' = Ay Uy B Uy As.

Proof. Proposition 12.1 directly implies (1), (2), and (3). Moreover, F' is disjoint from

T —— M; St x D?,T? Xz, [ —— M D? — M;
L , L , and 1 components.
(32, 0%2) Stor (I,0I) ¥2
DY ... — M; S3/)0,... —— M
Hence, if F' is also disjoint from E 1 ,
pt (Z,0I)
D3,S2 XZQI—>M]~ D3,52 XZQI—>Mj
E and 1l components, then
St (Z,01)
D2—>Nj Sl—>Nj D2—>Nj
Fcly, ! Ua |L; ! - Weput A=Fn || 1
02 0x3 02
Sl — Nj
and B =FnN | 1
0x3

It follows that A = | |; D* and B = F — A is the total space of S'-fibers. Hence, the Euler
characteristic x(B) = 0. Since F = S§? B = §* —| |. D* must be a cylinder. Therefore,

D2 — ]\/v],C
F = AUy BUy Ay where Ay = D? k € {1,2}, is a fiber of E for some j;, and
02
Sl — Nj
B =~ S! x I is a subbundle of E for some j. n
0x3
T? —— M;
Lemma 13.3. Let M; be a fiber bundle component 1l . Its boundary is
(32,0%2)
T2 — Nz T2 — Nz
N E Let F = T? be a fiber of N E Then, the following holds.

o2 o2
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D4,...—>Mj Sg,—>Nj
(1) If FN 1 7&@, then I C 1
pt pt
SS/F, . —— M]
(2) If FN l # &, then F is contained in a connected component of
(1,01)
S3/F, .. N]
4
ol
St x D?,T? Xz, [ —— M
(3) If FnN l #+ &, then F is a fiber of
St oor (I1,01)
T° —— N;
1
St oor (I1,01)
Sl — NJ
(4) Otherwise, F C 1 for some j. In particular, F' is the total space of
0x3
D?* —— M;
S1-fibers and F is disjoint from any l component.
(X2 0%?)
Proof. Proposition 12.1 directly implies (1), (2), and (3). Moreover, F is disjoint from
S?— M; D3 5% Xy, I ——— M D? — M;
1 ) 1 , and 1 components.
(22,0%2) Stor (I,01) 2
D4,...—>Mj SB/F,—>M]
Hence, if F' is also disjoint from N E 1 ,
pt (1,0I)
Stx D2, T? xz, I — M; St x D*,T? xz, I — M;
E and 1l components, then
S1 (1,0I)
D2—>Nj Sl—>Nj D2—>Nj
Fc L 1 UL, 1 . Weput A=Fn || !

032 0x3 032
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St— N;
and B=Fn || 1
0x3
It follows that A = | || D? is disjoint union of m copies of D* and B = F — A is the
total space of S'-fibers. Hence, the Euler characteristic x(B) = 0. Since F = T2 this
is not possible unless m = 0. Therefore, F' = B is the total space of S'-fibers and F is

D?* —— M St— N;
disjoint from any 1 component. By connectedness, F' C E
(22, 822) aXS

for some j.

13.6 Fiber bundle components with fibers D3 5% xz, I, S x D?, or T? xz, I

D3,52 XZq I — M,L

In this section, we describe the decompositions of fibers of components Nk
Sl
D3,58% xgz, [ — M; SUx D?T? xz, I — M, St x D?,T? xz, [ — M;
1 , E and 1
(Z,0I) S (Z,0I)
D3 5% xz, [ ——— M,
Lemma 13.4. Let M; be a fiber bundle component 1
St or (I,01)
S?2 4 N, S? —— Ny, D?,8% x5, I — N,
Its boundary is I 1 U E Let FF =~ D3
St (1,01) or
D3 5% xz, [ ——— M,
or (S% xz, I) be a fiber of 1 . Then, the following holds.
Stoor (I1,01)
D4, .= M]
(1) If F is a fiber over an interior point of S* or I, then F is disjoint from E
pt
S3T, ... —— M; 7% —— M; St x D?,T? xg,  ——— M,;
[ [ ! ;
(1,01) (32,0%2) St oor (I,01)
D2 — Mj
and 1 components.

22
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D382 x5, I — N, 7% —— M;
(2) If F is a fiber of E then F is disjoint from 1 ,
a1 (¥2,0%2)
St x D?,T? Xz, [ —— M, D? — M,
1 , and 1 components.
St oor (I,01) 2
D4, A M]
Additionally, F 1s contained in a boundary component of N
pt
SS/F, . Mj
1l , for some j.
(Z,0I)
82 _— M]
3) If Fn @, then FNM; = OF N OM; and OF = S? is a fiber o
I J J
(¥2,0%?)
52 — Nj
1
02
l)2 — N]k
(4) Otherwise, OF = A;UpBUg Ay where Ay = D?, k € {1,2}, is a fiber of E
0?2
Sl — N]
or some jy, and B = S x I is a subbundle o , for some j. The unions
4
0x3

are so that 0Ay, k € {1,2}, is identified with a boundary component of B.
Proof. Proposition 12.1 directly implies (1), (2), and (3). The proof of (4) is similar to the

proof of Lemma 13.2. O
St x D?,T? xg, | —— M
Lemma 13.5. Let M; be a fiber bundle component 1
St oor (I,01)
T? — N; T° — N, S1x D2 T2 x5 I — Ny,
Its boundary is L] or 1 U 1

St (1,0I) oI



Chapter 13 103

St x D2, T? xg, [ —— M,

Let F = S' x D% or T? xz, I be a fiber of 1 . Then,
St oor (I1,01)
the following holds.
D* ... — M;
(1) If F is a fiber over an interior point of S* or I, then F is disjoint from J{J ,
pt
53/F,...—>Mj 52—>Mj D37S2XZ2I—>M]‘
1 , 1 ; 1l , and
(I,0I) (32,0%?%) St oor (I,01)
D2 — Mj
1 components.
22
St x D*,T? xz, [ — N,
(2) If F is a fiber of I then I is disjoint from
ol
S — M; D3, 5% xz, [ ——— M; D? — M;
1 , 1 , and 1 components.
($2,052) S or (1,01) %2
D* ... — M,
Additionally, F is contained in a boundary component of ij or
pt
53/F, .. —— Mj
1l , for some j.
(1,0I)
T2 _— Mj
(3) If Fn 1 # &, then F N M; = OF N OM; and OF = T? is a fiber of
(¥?,05?)
T2 — N]
1
02
Sl — N]
(4) Otherwise, OF C 1 for some j. In particular, OF is the total space of

ox3



Chapter 13 104

D2—>Mj

Sl-fibers and OF is disjoint from any 1 component.
(¥2,0%7)
Proof. Proposition 12.1 directly implies (1), (2), and (3). The proof of (4) is similar to the
proof of Lemma 13.3. O

13.7 Fiber bundle components with fibers D? or S*

D> — M;\ (D?—— M,

In this section, we describe how the fibers of components E 1 ,
2 (32,0%?%)
St— M,
and 1 intersect with fibers of other types.
(X3,0X3)

D? — M;
Lemma 13.6. Let M; be a fiber bundle component 1l . Its bound-

2?2 or (¥2,0%2)

Sl_>Ni Sl 5N2'1 D2—>NZ‘2
ary is L] oor 1 U N E Let F = D? be a fiber of
2 (X% 0%2) o2
D? —— M,
1l . Then, the following hold.

2 or (X2%,0%?)
(1) If F is a fiber over an interior point of 3 or (¥2,0%2), then OF = S' is a fiber of

Sl — Nj
E for some j.
0x3
D? — ]\/vz‘2
(2) If F is a fiber of E then I is contained in
02
D4, oL Mj
(a) the boundary of I
pt
S3IT, ... — M;
(b) a boundary component of J{J ,

(1,0I)
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Sz—>Nj
(c) aﬁberof( i),or
ox?

D3, 5% xz, [ —— M;

(d) the S?-boundary of a fiber of 1
St or (I,0I)
Proof. The lemma follows from Proposition 12.1 and Lemma 13.2 to Lemma 13.5. O]
(Sl — M )
Lemma 13.7. Let M; be a fiber bundle component 1l . Its boundary is
(X3,0X3)

Sl — Nz Sl — Nz
E Let F = St be a fiber of R Then, F' is contained in

0xX3 0x3

D47 e o Mj
(a) the boundary of E
pt
SS/F, e —> Mj
(b) a boundary component of 1l ;
(Z,0I)
52 — N]
(c) a fiber of e
ox?
Dg,SQ X7 /I — Mj
(d) the S*-boundary of a fiber of 1l ,
St oor (I,01)
T2 — Nj
(e) a fiber of Ik
02
St x D3 T? Xz, I —— M,;
(f) the T?-boundary of a fiber of 1 , or
St or (I,0I)

D M,
(9) the S*-boundary of a fiber of ij

Y2 or (X2,0%?)
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Proof. The lemma directly follows from Proposition 12.1. O]
D4, oo — M;
13.8 Fiber bundle components 1
pt
D4,...—>M0 53,...—>8M0
Let My be a fiber bundle component N E Its boundary is 1
pt pt
53’ . GMO
Proposition 12.1 and lemmas in the previous section imply that 1 is the
pt

union of fibers of other fiber bundle components from Table 13.1. In this section, we describe
the decomposition of 0M,.

Sg/F, . Mj
Lemma 13.8. Let M; be a fiber bundle component 1 If MoNM; # o,

(1,01

then OMy coincides with a boundary component of M;.

Proof. The lemma directly follows from Proposition 12.1. O]

Lemma 13.9. If M, intersects with ezactly one fiber bundle component M;, then OM,
coincides with a boundary component of M;. Additionally, M; is a fiber bundle component

S3)T,...— M; D352 xg, I — M; SYx D?,T% xz, I — M;
\L ’ J/ ’ J/ ’
(1,01) St St
SZ—>M]‘ T2—>Mj Sl—>Mj
1 5 1 , OT 1
(32, 052) (2, 052) (X, 0X?)
Proof. The lemma directly follows from Proposition 12.1. O]

82 E— Mj
Lemma 13.10. Assume that My intersects with 1 and
(32,0%?%)
D3, 8% xg, [ — M;
1 components, and My is disjoint from fiber bundle components of

(1,01
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other types, i.e.

Sz—>Mj D3,SQ XZQI—>MJ'
oM, C || | 1 ull ] 1 . (13.11)
J (X%,0%2) J (1,0I)
Then, OMy = By Uy A Uy By where:
5?2 — Nj
(1) A= S?x I is a subbundle of I E for some 7,
02
DS, S? X 74 I — sz‘
(ii) B; 2 D3 or S? xz, 1, i € {1,2}, is a fiber of Nk for some j;, and
ol
(111) OBy, i € {1,2}, coincides with a boundary component of A.
That 1s s 5
~ D 2 D
aMo—{ 5,2 XZQI }Ua (S XI) Ua{ 52 XZQI } (1312)
where the unions are along boundary components.
In particular,
S3 ~ D3uU D3,
OMy = ¢ RP3 ~ PD3US? xg, I, (13.13)
RP3#RP? =82 x5, TUS? xz,1,
and
DY +CP*#D*  if OM, = S3,
MO = Sz X 49 D? Zf 8]\/[0 = RP3, (1314)
S? x4, D? if OMy = RP3#RP3.
D3 or 82 xz, T Sor §% xg, I
Figure 13.2: The decomposition of My in Lemma 13.10. My = By Uy A Uy Bs.
S3,...— OM, S? — N;
Proof. Consider that LN Ll 1 =|J; (S* x I). By Lemma
pt ox?

13.4, each boundary component of a copy of S? x I is identified with the boundary of a D3 or
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l)37 S? X7 I — Nj

S? xz, I-fiber from NE for some j. Because 0M, is connected, it must
ol
contain exactly one copy of S? x I. Consequently, dM; is the union of exactly two disjoint
SZ — Nj
D3 or 5% xz, I-fibers and one copy of S? x I C N
o0Y?
That is,
D3 D3
OM, = { o 1 }ua (S2 x I) Ug { o, T } (13.15)
where the unions are along boundary components. Hence,
D3u D? >~ 63
8]\/[0 = D3u S? X 74 1 = RP?’, (1316)
S? xz, TUS? xz, I = RP3#RP3.
The classification of M follows from Lemma 2.12 and Table 13.1. O
7> —— M;
Lemma 13.17. Assume that My intersects with l and
(X2,0%?)
St x D*T? Xz, I — M;
1l components, and My is disjoint from fiber bundle compo-
(Z,0I)

nents of other types, i.e.

T — M, S x D2, T2 xz, I — M,
M, C |_| i U |_| . . (13.18)
j (22,052) J (1,0I)

Then, OMy = By Uy A Uy By where:

T2—>Nj
(i) A2 T?x I is a subbundle of i
%2
St x D?,T? xz, [ — Nj,
(ii) B; =2 S' x D? orT? xz, I, i € {1,2}, is a fiber of L

ol
(i1i) 0B, i € {1,2}, coincides with a boundary component of A.
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That 1is,

1 2 1 2
S'x D Stx D } (13.19)

~ 2
aMO—{TQXZQI}Ua<T X[)UB{T2X22I

where the unions are along boundary components.

In particular,

S'x D*US' x D? =83 5% x S L(p,q),
oM,y = St x D2uUT? Xz, I = 52 x ST RP3#RP3, L(p,q)/Zs, (13.20)
T2 XZ2IUT2 XZQI gg27g47g57

and
( D* +CP?*#D* if OMy = S3,
St x D3,5% x D?, (RP? x SYxI,(S?xSY)XI if OMy = S? x S,
o) S?x,D*wel if OMy = L(|wl, 1),
Mo=1 g2 5y, D2 if oMy ~ RPurps,  (1321)
(52 Xw D2)/Z2,a} e Z ZfaMogL(l(,Ul,l)/Zg,
| 72 Xz, D? B3xI,Byx1 if OMy = Gs.
S3 ... — OM, T° — N;
Proof. Consider that 1N L, I =|J; (% x I). By Lemma
pt )%

13.5, each boundary component of a copy of T2 x I is identified with the boundary of a

St x D*T? xz, I — Nj,
St x D? or T? xz, I-fiber from Nk for some j. Because OM, is

oI

connected, it must contain exactly one copy of T2 x I. Consequently, dMj is the union of
T2 — N]
exactly two disjoint S' x D? or T? xz, I-fibers and one copy of 7% x I C 0

. 0x?
That is,

1 2 1 2
S'x D S'x D } (13.22)

~/ 2
GMO_{TQXZZI}Ua(T X])Ua{TQXZQI

where the unions are along boundary components. In particular,

St x D?2U St x D?,
OMy = { S'x D*UT? xy, I, (13.23)
T2 X7 Tu T2 X 74 I,

where the unions are along the boundaries.

St x D? Uy St x D? is diffeomorphic to S3,52 x St or a Lens space L(p,q). Put X =
St x D*UpT? xz, I and let X be a double cover of X. Then, X = (S' x D?)U; (T?* x ) Uy
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(S' x D?) where f is an identifying map from 9(S* x D?) to a T?-boundary component of
T? x 1. ~We note that the identifying map must be the same for both copies of St x D2
Hence, X is diffeomorphic to S? x S! or a Lens space. There are two orientable Z,-quotients
of 52 x S*: 52 x St where Z, acts on S? by a w-rotation around a fixed axis and acts on S! by
a m-rotation, and S? xz, S* = RP3#RP?3 where Z, acts on S? and S! by the antipodal map.
A Zsy-quotient of a Lens space is a Prism manifold. A double cover of T? xz, [ Uy T? xz, I
is a T?-bundle over S'. From Table 13.1, T? xz, [ Uy T? xz, I is T?/T that has a T?-bundle
over S' as its double cover. Hence, T? xz, I Uy T? xz, I is Gy, G4, or G5 [33].

The classification of M, follows from Lemma 2.12 and Table 13.1. O
D2 — Mj Sl _— Mj
Lemma 13.24. Assume that M, intersects with 1 and 1
(¥2,0%2) (X3,0X3)
components, and My is disjoint from fiber bundle components of other types, i.e.
l)2 — Mj Sl _— Mj
oM, C || | ! Ul | i . (13.25)
7 (X%, 0%?) 7 (X?,0X7)
Then, My = AUy By or AUy (By U By) where:
Sl — Nj
(i) A is a subbundle of 1 for some j. Additionally, A is the total space of
0x3
St-fibers over a disk or a cylinder.
D2 — Nj
(11) B; = D? x St is a component 1 for some 7.
o0y?

(111) OBy, i € {1,2}, is identified with a boundary component of A so that each OD?-fiber of
OB; = 0D? x St coincides with an S*-fiber of OA.

Consequently,
o [ S*xD*US! x B >~ 63
M%:{yxpnwuqyxﬁuyxp2z§xsl (13.26)
Sl — N]
where S* x B? and S* x (S* x I) are contained in ! for some j.
0xX3
Hence,
DY, +CP?*#D* if OMy = S3,
Moy = 1 3 Q2 2 2 nNg 2y o\ & ; ~ Q2 1 (13.27)
St x D?, 5% x D*, (RP? x SY)xI,(S*xS")xI if OMy = 5* x S'.
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St— M,

Proof. Write My = A Up B where we put A = My N || 1l and
(X?,0X7)
D2 e Mj
B = GMO N |—|j \L
(32, 052)
Sl — Nj
By Proposition 12.1, A is a disjoint union of subbundles of [ Hence, A is
0x3

the total space of S'-fibers over a disjoint union of surfaces with boundary.

D2—>Mj

From Lemma 13.6, each fiber over an interior points of 1 is disjoint
(¥2,0%?)
D4 ... — M, D? — N,
from N E Hence, B is a disjoint union of components i =
pt ox?
D2 — Nj
D? x S and D?*-subbundles of ! diffeomorphic to D? x I.
02
D2 — N]
Additionally, ANB = 0ANJB so that the S'-boundary of each D*-fiber of 1
02
Sl — Nj
coincides with an S'-fiber of E Since M, is a closed 3-manifold, B does
0x3
not contain connected components diffeomorphic to D? x I. Therefore, B is a disjoint
D2 — le
union of components B; = 1 ~ D2 x 8. 0B, = T? is identified with a
02

boundary component of A so that each dD?-fiber of 0B; is identified with an S!-fiber of
0A. Because 0M, is connected, A must also be connected. We have that A is a subbundle

St—— A St— N;
1 of E for some j, where ¥4 = ¥ 4(g,n) is a connected
(X%, 0%%) HX3
surface of genus g and with n > 1 boundary components. Then,
n Sl | n
OMy=AUy| |Bi = 1 Us | [(S* x D?). (13.28)
i=1

i=1 (52’ aiz) i
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By an explicit construction in [11, Proposition 1], My = S*#(2g + n — 1)(S? x S1).

D4, coo— M,
According to the classification of 1 in Table 13.1, 0Mj can only be diffeo-

pt
morphic to S or S? x S! in this case. Thus, 29 +n —1=0or 1. That is (g,n) = (0,1) or

(0,2). Therefore, ¥2 is a disk or a cylinder.

In summary,

S'x D?US! x B? ~ 8

S'x D*US' x (S'x I)US' x D* = 5% x 8, (13.29)

oty =~ {

Sl — Nj
where S x B? and S x (S* x I) are contained in || for some j.
0xX3
The classification of M, follows from Lemma 2.12 and Table 13.1. O

D3,5% Xz, I — M;
Lemma 13.30. Assume that My intersects with 1 ,

(1,01)
D2 _— Mj Sl _— Mj
1l and 1l components, and My is disjoint from fiber
(22,0%?) (X3,0X3)
bundle components of other types, i.e.

D? —— M; D3,5% xz, I — M;

oMy < || | ! UL !

i (32,9%2) j (1,0I)

St —— M,

ull | 1 . (13.31)

f' (X2,0X%)
Then, My = AUy By or AUy (By U By) where:
Sl — Nj
(i) A is a subbundle of 1 for some j. Additionally, A is the total space of
ox3

S1-fibers over a disk or a cylinder.



Chapter 13 113

(i)

(iii)

D2 — Nj
For i € {1,2}, B; is a component Ik for some j, or a 3-manifold with

02
boundary, which can be represented by a cycle graph

V] — 2y — 2 vy, (13.32)

\_/

€nl

D3 5% xz, I — Nj,

so that each vertex v, represents a fiber V, of 1 for some jq,
ol
l)2 — Nja
and each edge eq4(a41) Tepresents a D*-subbundle Eyoq1) = D* X I of 1
02

for some jo. Voo =2 D3 or S? xz, I and V, N Eoa+1) = OVo N OEy(a11) coincides with
a connected component of D? x 01 C Eao(at1)-
If OM = A Uy By, then By is represented by a cyclic graph and there are at most
two Vi, ’s such that V, = S* xz, I. In particular, By is diffeomorphic to S* x D?,
(ST x DH#RP3, or (S x D*)#RP3#RP3.
If OM = AUy (By U By), then all V,’s are diffeomorphic to D3. In particular, B
and By are diffeomorphic to S* x D*. At most one of By and By is a component

D2 — Nj

1
0?2

OB; is identified with a boundary component of A so that each OD?*-fiber of OB; =
0D? x St coincides with an S*-fiber of A.

That is
St x B2U St x D? ~ 3
] 8t x B2U(S! x D2)#RP? ~ RP3.
OMo =13 1% B2U (5! x D)#(RPP#RPY) = RP4RP?, (13.33)
Stx D?US' x (ST x I)US' x D* =52 x St
Sl — N]
where S* x B? and S* x (S* x I) are contained in ! for some j.
0xX3
Hence,
D* +CP2#D* if OMy = S,
~ 52 X 49 D? Zf 8]\/[0 = RPS,
Mo =9 o2 X7, D? if OMy = RP3#RP3, (13.34)

S'x D3 8% x D? (RP? x SY)XI,(S?xSY)xI if OMy = S? x S*.
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By = (S' x D*)#k(RP?)

Figure 13.3: Example of B; C dM, which is represented by a cycle graph with 3 vertices.

St— M;
Proof. Write OMy = A Uy E Uy V where we put A = My N |_|j 1l ,
(X?,0X7)/ _
D2—)Mj D3,S2 XZQI—)MJ'
E:aM()m |—|j J/ ,andV:(‘?Moﬂ |—|j J/
(%2, 5%2) (1,01)) ]
St — N;
By Proposition 12.1, A is a disjoint union of subbundles of I Hence, A is
0x3
the total space of S'-fibers over a disjoint union of surfaces with boundary.
D?* —— M;
From Lemma 13.6, each fiber over an interior points of 1l is disjoint
(£2,052)
DY, ... — M, D?, 8% Xz, I — M;
from 1 and 1l components. Hence, E is a disjoint
pt (I,0I)
D? — N; D? — N;
union of components L= D? x S' and D?*-subbundles of ! diffeo-
032 02
Sl — N]’
morphic to D? x I. The boundary of each D*-fiber coincides with a fiber of 1
0x3
D3, 8% xgz, [ — M;
From Lemma 13.4, fibers over an interior point of 1l are disjoint
(1,0I)
D4,...—)Mg D3,S2XZQI—>N]'
from E Hence, V is a disjoint union of fibers of 1

pt ol
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Write V = | |I"_, Vi, where V,, = D? or S? xz, I is a connected component of V.

Write E = | |, E; where E; is a connected component of E. Suppose that there is
E; 2 S!' x D?. By Lemma 13.6, £, NV = @. As a part of OMy, OF; is identified with
a boundary component of A so that each dD?fiber of OE; = 9D? x S! coincides with an
Sl-fiber of OA.

Without loss of generality, assume that F; = D? x I for all i. From Lemma 13.4 and
Lemma 13.6, for each a, V, N E = 9V, NIE is exactly two copies of D? from | |,(D? x 9I); C
|]; OF;. Moreover, each connected component of D? x 0I C E; is contained in OV, for some
a. Therefore, each connected component of V Uy E can be represented by a cycle graph

€(ng—1)ny,

vy —2 oy, .. VU, (13.35)
€ngl

so that each vertex v; represents V, for some «, each edge e;(;11) represents E; for some 1,
and v; is incident to ej(;41) if and only if V, N E; # @.

Put B =V Uy E and write B = | | B; where B; is a connected component of B. 9B; is
the total space of S'-fibers over a circle. Each dD?-fiber of 0B; coincides with an S*-fiber of
OA. B; is diffeomorphic to (S* x D?)#k;(RP?) where k; > 0 is the number of E; such that
E; 22 8% xz, I = D3#RP3,

Because 0M, is connected, A is also connected. We have that A is a subbundle

St—— A St—s N;
1 of ik for some j, where ¥% = ¥2(g,n) is a connected
(3%, 0%3) ox?
surface of genus ¢ and with n > 1 boundary components. Then,
n Sl A n
OMy=AUy| |Bi = 1 Us <|_|(S1 X D2)#ki(RP3)) . (13.36)
305/ O\
By an explicit construction in [11, Proposition 1], 0My = S3#(2g+n—1)(S?x S1)#k(RP?),
D4, ... — My
where k =), k;. According to the classification of | | inTable 13.1, OM, can
pt

only be diffeomorphic to S3, S? x S, RP3, or RP3#RP? in this case. Thus, 29 +n—1 =10
or 1. That is (g,n) = (0,1) or (0,2). In other words, ¥4 is a disk or a cylinder. If % is a
disk, then k; = 0,1, or 2. If ¥4 is a cylinder, then k; = ky = 0. In summary,

Sl x B2US! x D2 ~ 58,

SUx B2U (S' x D?)#RP? >~ RP3,

S x B2U (S! x DY)#(RP*HRP?) = RP*#RPS,
Stx D*USt x (St x I)US! x D? =~ 82 x S

oM, = (13.37)
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Sl — Nj
where S x B? and S! x (S! x I) are contained in || for some j.
ox3
The classification of M follows from Lemma 2.12 and Table 13.1. O
St x D*T? Xz, I — M;
Lemma 13.38. Assume that My intersects with 1 and
(£,01)
Sl _— Mj
l components, and My is disjoint from fiber bundle components of other
(X3,0X3)
types, i.e.
St x D*,T? Xz, [ — M St— M;
oM, C || | 1 ull | . . (13.39)
J (1,01) J (X3,0X3)

Then, OMy = AUy (L], C;) where:

Sl — Nj
(i) A is a subbundle of 1 for some j
0Xx3
St x D* T? Xz, I — N;
(11) C; =2 (S* x D? or T? xz, I) is a fiber of !

oI
(iii) OC; = T? is identified with a boundary component of A.
It follows that OMy is a Seifert manifold.

S1—>Mj

Proof. Write OMy = A Uy C where we put A = My N |_|j il , and
(X7, 0X7)
St x D*T? Xz, [ — M,
C = 8M0 N I—lj \L
(Z,0I)
Sl — Nj
By Proposition 12.1, A is a disjoint union of subbundles of [ Hence, A is
0x3

the total space of S!-fibers over a disjoint union of surfaces with boundary.
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St x D*T? Xz, I — M;

From Lemma 13.5, fibers over an interior point of 1 are
(1,01)
DY, ... — M, S;XDQ’ — N;
disjoint from ’ N E Hence, C'is a disjoint union of fibers of | 1~ Xz, 1 f
pt
ol

Write C' = | [I*, C;, where C; = S'x D? or T? Xz, 1 is a connected component of C'. Moreover,
ANC; = 0ANOC; where OC; = T? is identified with a boundary component of A.

Because 0M, is connected, A is also connected. Hence,

Stl—— A
OMy = AUy| |C; = 1 Us <|_|(S1 X D2)> Us <|_|(T2 X7, I)> . (13.40)
' (X%, 0%%) i i
From the classification of Seifert manifolds in [17] and from the classification of M, in
Table 13.1, OM, is a Seifert manifold. n
St x D*T? Xz, I — M;
Lemma 13.41. Assume that My intersects with 1 ,
(1,0I)
D2 _— Mj Sl _— Mj
1l , and l components. In addition, assume that M
(52, 052) (X%, 0X7)
D3,S2 X7 I — Mj
may also intersect l components and My is disjoint from fiber
(1,01)
bundle components of other types, i.e.
D3, 5% xz, I — M; St x D*T? Xz, I — M;
oMy c ||| coeid !
g (Z,01) N (Z,0I)
D?* —— M; St— M;
Ul | i Ul | i . (13.42)
J (¥2,0%?) J (X3,0X3)
Then, OMy = AUy B Uy C' where:
Sl — NJ
(1) A is a subbundle of I E for some j.
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D? — Nj
(2) B = By or B = By U By where B; is a component ! for some j, or a
22
3-manifold which can be represented by a cycle graph as in Lemma 13.30.

(3) OB, i € {1,2}, is identified with a boundary component of A so that each D?*-fiber of
OB; = 0D?* x S' coincides with an S*-fiber of A.

St x D*T? xz, I — N,

1
ol

(4) C =|;C; where C; = (S' x D* or T* xz, I) is a fiber of

for some j;.
(5) OC; is identified with a boundary component of A.
It follows that OM, is diffeomorphic to S3, 5% x S RP3 RP3#RP3, or a Lens space.

Hence,

D* +CP*#D* if OMy = S5,
52 X 49 l)2 ZfaMO = RP3,
My=<{ S'x D? 5% x D? (RP? x SYXI,(S*xSY)XI if OMy = S? x S*, (13.43)
S? %z, D? if OMy = RP3#RP?,
S? x,, D? if OMy = L(|w], 1).
} o
St x D?

B; = (S* x D)#kE(RP?)  S'-bundle over S* x I
or T2 Xz, I

Figure 13.4: Example of a decomposition of 0My in Lemma 13.41. OMy = B; Uy AUy C.

Sl M,

Proof. Write OMy = A Uy B Uy C where we put A = My N |_|j 1l ,
(X, 0%)
D2—)Mj D3,82 XZ2[—>Mj
B = 0Myn |_|j 1l U |_|j 1l ,and C =
(32,0%2) (1,0I)
S'x D2, T2 xz, T — M,
8M0ﬂ I_lj \l/

(1,0I)
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Sl — Nj
By Proposition 12.1, A is a disjoint union of subbundles of [ Hence, A is

0x3
the total space of S!-fibers over a disjoint union of surfaces with boundary.
By the same arguments as in the proof of Lemma 13.30, we can write B = | |, B;, where
D2 — Nj
each connected component B; is a component 1 for some j, or a 3-manifold

02
which can be represented by a cycle graph such that each vertex v, represents a fiber V, of

D3,5% xz, I — N,

I for some j,, and each edge e,(a+1) represents a subbundle Eq o1y =
ol
D? — N;
D2x I of | for some jo. Vi & D or §?xz, I and Van Eqgat1) = 0VaNdEa(at1)
0x?

is a connected component of D? X 9I C Ey(q41). Moreover, B; = (S* x D?)#k;(RP?) where
k; > 0 is the number of E, = S? xz, [ = D3#RP3. 0B; is identified with a boundary
component of A so that each dD*fiber of 0B; = 0D? x S' coincides with an S'-fiber of A.

By the same arguments as in the proof of Lemma 13.38, we can write C' = | || C;, where

St x D*,T? Xz, I — N,
C; = S x D? or T? Xz, I is a fiber of ! for some j;. 0C; = T?

ol
is identified with a boundary component of A.

Because 0M, is connected, A is also connected. Thus, A is a subbundle

St— A St—s N;
1 of || for some j, where Y% = Y%(g,n+m) is a connected
(3%, 0%3) ox?

surface of genus g and with n + m boundary components. Hence,

OMo = AUy <|i| BZ-> Us <|i| cy) (13.44)

S1—— A »
1 Uy (|_|(S1 X DQ)#k;i(RP?’))
(£%,05%) =

I

(U <)o (L)

% 7

Let ¢; : 0C; — OA be the identifying map from 0C; to a boundary component of A.
First, assume that C; = S* x D% Then, ¢; : S x dD* — S! x 9;X% for some boundary



Chapter 13 120

component 9;%% of ¥%. Up to isotopy, ¢; € SLy(Z). Suppose further that ¢; does not send
each (-,0D?) C 9C; to (S',-) C S' x 9;%%. From the classification of Seifert manifolds in
[17], AUy C; extends the S'-fibration of A or AUy C; is a Seifert manifold (with boundary).
Next, assume that C; 2 T? xz, I. From the classification of Seifert manifolds in [17], AUy C;
is a Seifert manifold with two exceptional Seifert orbits.

Reindex {C;} so that for i € {1,...,m'}, C; 2 S' x D? and ¢; sends (-,0D?) C 9C; to
(S, ) € S'x 9,24, or C; = T? Xz, I. Otherwise, C; = S x D? for some i € {m/+1,...,m}.
Put C = LI +1 Ci. Then, AUy C' is the total space of S'-fibers or a Seifert manifold. Let
2 be the base of the S !-bundle or the Seifert manifold A Uy C. 32 has the same genus as
¥4 which is equal to g. 32 has n + m’ boundary components. Therefore,

OMy = (AU C) Uy (BU (C = C)) (13.45)
= (a Seifert manifold with base %2(g,n + m'))

Us <|i|(51 X DQ)#ki(RP?’)) Us (D St x D2>

i=1 =1

where each S' x 9D? is glued to a boundary component of A Uy C so that each D-fiber
coincides with an S'-fiber of AUy C. By [11, Proposition 2],

OMy =2 SP#(2g 4+ (n+m) — 1)(S?* x SH#ERP)#L(p1, ¢1)#L(p2, q2)# -+ (13.46)
where k =) k.

D47 e MO
According to the classification of 1 in Table 13.1, 0M, can only be

pt
diffeomorphic to S3, S?xS* RP3 RP3#RP3, or L(p, q) in this case. Thus, 29+ (n+m')—1 €
{0,1}. That is ¢ = 0 and n +m’ € {1,2}. We have that (n,m’) is (1,0),(2,0), or (1,1).

Case 1: (n,m’) = (1,0). Then, B = B; and C = C. If AU, C is the total space of
Sl-fibers, then AUy C' = S x D% Hence,

OMy = (AUy C) Uy By = S x B2U S' x D? = S34k(RP?). (13.47)
D4, e MO

According to the classification of 1 in Table 13.1, k£ < 2. Therefore, M, =
pt

S3 RP3, or RP3#RP3. Otherwise, AU C is a Seifert manifold with base D? and with one
exceptional orbit. In this case,

OMy = (AUy C) Uy By = S°#L(p,q) = L(p,q). (13.48)
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Case 2: (n,m') = (2,0). Then B = B, LU By and C = C. If AU, C is the total space of

S'-fibers, then AUy C' = St x (S x I). Hence,

Moy = (A Uy C) Uy (B L By) (13.49)
Stx (S'x I)U (St x D*U S' x D*)#k(RP?)
(S* x S*)#k(RP?).

I

2

D4, ... — My
According to the classification of | | inTable13.1, k = 0 and OM, = S Ix 52,
pt
By the same argument as in case 1, if AUy C is a Seifert manifold, then dM, = (S' x §%)#
L(p1,q1)# -+ -. This contradicts to the classification of Mj in Table 13.1.
Case 3: (n,m/) = (1,1). Then B = B, and C — C = C; = §* x D?. By the same

argument as in case 2, AUy C is the total space of S'-fibers, k = 0, and OM, = S' x S2. O

D3, 5% Xz, I — M;

Lemma 13.50. Assume that My intersects with 1 ,
(Z,0I)
D2—>Mj 52—>Mj Sl—>Mj
1 , 1 , and l components, and My
(X2%,0%2) (32,0%2) (X3,0X3)
18 disjoint from fiber bundle components of other types, i.e.
D3,5% xz, I — M; D? — M;
oMy c || | ey 1
g (1,0I) g (£,0I)
5% —— M; St— M;
ull | 1 ull | ! . (13.51)
j (22,052) J (X?,0X7)
Then OMy = AUy By or OMy = AUy (By U By) where:
Sl — Nji
(1) A= (LU, A;) where A; is a subbundle of e E for some j;. Additionally, A;
0xX3

is the total space of S'-fibers over a disk or a cylinder. There is at most one A; that
is the total space of S'-fibers over a cylinder.

D2 — Nj
(2) B; is a component 1 for some j or a 3-manifold that can be represented
22
by a connected graph G with the following properties.
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(i) Each vertex has degree at most 3.

(ii) There are two types of edges: solid edges and dashed edges. Let EP(G) be the set
of dashed edges. Every vertex of odd degree is incident to exactly one dashed edge.
Fuvery vertex of degree 2 is incident to two solid edges.

(iii) Put C = G —Uepp(gye and write C = | |, C; where C; is a connected component of
C. Then, C; is a cycle graph or a single vertex.

(iv) There exists at most one cycle subgraph of G that is not a cycle subgraph of C.
Suppose that C; is a cycle graph

e12 €23 E(n;—1)n;

U1 Vg e Un; (13.52)

\/

€n,;1

so that the following holds. Each vertex v; represents a 3-manifold V; where either

e w | D3 5% x5, T — N, |
(a) V; = D° or S* xz, I is a fiber of ! , for some j, or

ol

2
Q2 o S*— N;
(b) V; =2 5% is a boundary component of a subbundle Z; = S* x I of 1

032

)

for some j.

As a vertex of G, deg(v;) = 2 in case (a) and deg(v;) = 3 in case (b).

D2 — Nj
Each edge ej(j1) represents a subbundle Fjjy1) = D? x I of I E for some

932
j. Vi Ejjt1) = 0V; N OEj(j11) is a connected component of D* X 01 C Eq(at1)-

D3 5% xz, [ — N;

If C; is a single vertex v;, then v; represents a fiber V; of NE for
ol
some i. As a vertex of G, deg(v;) = 1.
SQ — Nj
FEach dashed edge eP represents a subbundle Z = S? x I of 1 for some j.
02

For each vertex v;, if deg(v;) = 3 and v; is incident to eP then V; = S? is a boundary
component of Z. If deg(v;) = 1 and v; is incident to eP, then OV coincides with a
boundary component of Z.

The graph G represents B; = d;(S' x D*)#k;(RP3)#(;(S* x S?) for some integers
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(3) FEach boundary component of B; is diffeomorphic to S* x OD?. It is identified with a
boundary component of A so that each OD?-fiber coincides with an S*-fiber of A.

If OMy = A Uy By, then for some ny > 1, A = U2 A; and for every i, A; is the total
space of S'-fibers over a disk. One of the following holds.

(1) By = ny(S* x D*)#k(RP3) where ky € {0,1,2}. In this case, OMy = S3 RP3, or
RP34R P?,
(2) By 2 n (St x D?)#(St x S?). In this case, OMy = St x S?.
If OMy = AUy (B1 U Bs), then A = I_I?:lfnz_lAi, for some ny,ny > 1, where Ay is the

total space of S'-fibers over a cylinder and A;, for all i > 2, is the total space of S*-fibers
over a disk. For k € {1,2}, By = (S* x D*)#---#(S' x D?*) and A, N By, # @. In this

. J

ny copies
case, OMy = St x S2.
Hence,
D* +CP?#D* if OMy = S3,
~ S2 X 49 l)2 ZfaM() = RP3,
Mo =9 g2 X7, D? if OMy = RP3#RP3, (13.53)

S' x D3, 8% x D? (RP? x SY)xI,(S?xSY)XI if OMy = S? x S*.
Before we prove Lemma 13.50, we give some examples of the decomposition of dM; in
the lemma.

Example 13.54. Case 1 : OMy = A; U By where B; = (S' x D*)#k(RP?) and A, is the
total space of S!-fibers over a disk. M, = S3, RP3 or RP3#RP3.

N

D3 or §% xz, I

D3 or 82 xz, I

D?xT

}SQXI

D? or 82 xg, I

/\ S% x I

: 'KD:SOI'SZXZZI

Figure 13.5: Left: The graph G which represents Bj.
Center: Bl = (Sl X D2>#]€(RP3> nght aMO = A1 Us Bl.
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Example 13.55. Case 1 : OMy = (A; U As) Up By where By = 2(S' x D?)#k(RP?), and
Ay and A, are the total spaces of S'-fibers over a disk. My = S3 RP3 or RP3#RP3.

(8
DD ....... Cq D o $7 0, T

S2x I

D>x1I

D3or 8% xz, I

A1 A2

Figure 13.6: Left: The graph G which represents By. Right: By = 2(S! x D?)#k(RP?).
Below: OMy = A, Uy By Ug Ay = S3 RP?, or RP3#RP3.
Example 13.56. Case 2 : OMy = A; U By where By = (S x D*)#(S! x 5§%) and A is the

total space of S'-fibers over a cylinder. M, = S' x S2.

S2 x I

D3 or 8% xz, I

Figure 13.7: Left: The graph G which represents B;. Center: By = (S x D?)#(S* x S?).
nght 8M0 = Al Us B, = St x S2.
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Example 13.57. Case 3 : OMy = A; U By where By & (S! x D?)#(S' x D?). A; is the
total space of Sl-fibers over a cylinder. OM, = S* x S?. We note that the graph G which
represents Bj is the same as in Example 13.55.

D?x1I

Figure 13.8: OMy = A, Uy B; = S' x S? with B; as in Example 13.55

St— M
Proof. Write OMy = AUy EUs W Uy Z where we put A = 0MyN |_|j 1l ,
(X3,0X7)
D2—>Mj D3,32 XZ2]—)M]‘
E=0Myn || 1l , W =0Myn |L; il , and
i (X2,0%?) (1,0I)
S —— M;
Z = 6M0 N |—|j J/
I (X2,0%?)
St— N;
By Proposition 12.1, A is a disjoint union of subbundles of E Hence, A is
0x3
diffeomorphic the total space of S'-fibers over a disjoint union of surfaces with boundary.
D? E— Mj
From Lemma 13.6, each fiber over an interior points of 1l is disjoint
(¥2,0%?)
DY ... — M D3, 5% Xz, I — M; S?— M;
from NE 1l , and 1l components.
pt (1,01) (X%,0%2)
D? — Nj
Hence, E is a disjoint union of components 1 ~ D? x S' and subbundles of

032
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D2 — Nj
1 diffeomorphic to D? x I. The boundary of each D?*-fiber coincides with an
02
Sl — Nj
Sl-fiber of N

0x3

D3, 5% xg, I — M;
From Lemma 13.4, fibers over an interior point of l are disjoint

(1,91)

D* ... — M, D? 5% xz, I — N;
from N E Hence, W is a disjoint union of fibers of 1

pt ol
Write W = | |, Wy, where W, = D? or S? xz, I is a connected component of W.

SQ — Nj
From Lemma 13.2, Z is a disjoint union of subbundles of I diffeomorphic

ox?
to S? x I. Write Z = | |, Z;, where Z, is a connected component of Z. If Z, N W # &, then
OW coincides with a boundary component of Z;.

Write E = | |, E; where E; is a connected component of E. If E; = S x D?, then by
Lemma 13.6, E;NW = @ and E; N Z = &. Hence, as a part of dMy, OF; is identified with
a boundary component of A so that each dD?*fiber of 9B; = 9D? x S! coincides with an
Sl-fiber of 9A. Without loss of generality, assume that E; = D? x [ for all 1.

If there exist ¢, s1, and s, such that Z,NW,, # @ and ZgNW,, # @, then W, Uy ZgUy W,
is a closed manifold. Consequently, OMy = Wy, Uy Zg Uy W,,. This is a contradiction since
A # &. Therefore, every Z; intersects with at most one connected component of W.

We construct a graph G to represent E Uy W Uy Z as follows.

(1) For every connected component W of W, construct a vertex wy to represent W, = D3
or 5% xz, I.

(2) For every connected component Z; of Z such that Z, N W, # &, construct a vertex z,
to represent the boundary component of Z; that is disjoint from W;. Connect vertices
2, and w, with a dashed edge.

(3) For every connected component Z; of Z such that Z, N W = &, let 0,Z; and 027,
denote its two boundary components and construct vertices z;, and z;, to represent
01 Zy and 0,7, respectively. Connect z;, and z;, with a dashed edge.

(4) Let V4 and V5 be connected components of W represented by vertices v; and vy where
v, # ve. Connect vertices vy and vy with a solid edge if there is a connected component
E; = D? x I of E such that Vi N E; # @ and Vo N E; # @.
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(5) Let V; be a connected component of W represented by the vertex v;. If there exists
a connected component E; = D? x [ of E such that Vi N E; is diffeomorphic to two
copies of D?, then we construct a loop of solid edge incident to v.

Next, we show that all vertices have degree at most 3. From Lemma 13.4 and Lemma

D2 — 8Elk
13.6, if W, N E # @, then W, N E = 0W, N OF is two D?*-fibers of Ik for
ol
some g, k € {1,2}. Similarly, from Lemma 13.2 and Lemma 13.6, if Z; N E; # &, then
D? — 8Elk
ZiNE = 0Z, N OFE is two D*fibers of I for some i, k € {1,2}. Every
oI

connected component of D? x 9 C OF; is contained in OW, or 07, for some s and t. In
other words, every vertex is incident to either zero or two solid edges. From the construction
of GG, each vertex has at most one dashed edge. Thus, each vertex has degree at most 3.
Every vertex of odd degree is incident to exactly one dashed edge and all other edges are
solid edges.

Let EP(G) be the set of all dashed edges and define C = G — U,cpp(g)e. We have that
all vertices in C have degree zero or degree two. Write C = | |, C; where C; is a connected
component of C. Then, each C; is a cycle graph or a single vertex.

First assume that C; is a single vertex wy, for some s. As a vertex of G, deg(w,) = 1 and
wy is adjacent to a vertex z;, for some t. w, represents a connected component W, = D3 or
S? xz, I and OW, is identified with a boundary component of Z; & S? x I. In particular,
W,UuZ, = W;. Let G’ be the graph obtained from G by replacing the subgraph z;, ------ Wi

with the vertex w,. We have that the 3-manifold represented by G’ is diffeomorphic to the
3-manifold represented by G. Therefore, we can assume without loss of generality that all
vertices have degree 2 or 3. In other words, every C; is a cycle graph.

Let C; be a cycle graph

e e €(nj—1)n;
V] — o Vg — Un, (13.58)
€n;1

where each vertex v, represents a 3-manifold V, so that
(1) Vo =W, = D3 or S? xz, I, for some s, or
(2) V, = S? is a boundary component of Z; & S§% x I, for some t.

Each edge e/41) represents a component £, = D? x I intersecting both V, and V.

Let B; be the 3-manifold represented by C;. It follows that B; & (S' x D?)#k;(RP3) —
i B3 where k; is the number of V, & S? xz, I and p; is the number of V, & S?. Every
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S2-boundary component of B, is a boundary component of Z; = S? x I, for some t. Thus, a
dashed edge between vertices z;, and z;, corresponds to identifying two S%-boundary com-
ponents of B;, and B,,, for some i; and 5.

We can construct E Uy W Uy Z from the graph G inductively as follows.
(1) First, we put By = | |, B;.

(2) Put Bl = Bg Ua Zl = (|_|Z Bl) Ua Zl.

(3) We have that B is diffeomorphic to By with two S%-boundary components of B;, and
B,,, for some 11, 79, identified.

(4) If iy = i, then B;, Uy Zy = (S* x D)4k, (RP¥)#(S! x §2) — |2 B3 If iy # i
then B;, Up 7, Ug B, = By, #B;, = 2(S* x D?)#(k;, + ki) (RP?) — p‘i*’”@ B3,

u=1

(5) Redefine B;, = B;, #B,, and reindex {B;}. After reindexing, we have that B; = | |, B;.

(6) In the general case, put Bj;1 = B; Uy Z; where B; = ||, B; and B; = n;(S* x D?) #
ki(RP?) # €,(S* x S?) — UV, B? for some integers n; > 0 and k;, ¢;, p; > 0.

(7) B, is diffeomorphic to B; with two S?-boundary components of B;, and B;,, for some
il, ’iQ, identified.

(8) If iy = iy, then By, Uy Z; = ny (S x D)k, (RP3)# (6, + 1)(S! x §2) — U, B3,
If il 7é ig, then Bil Ua Z Ua Bl2 = le#Big = (nil + TZZ'Q)(Sl X DQ)#(]{?“ + klZ)(RPS)#
(€5, + £,)(S" x S%) — b2 g

u=1

(9) Repeat the process for all connected components Z; of Z. Finally, we get the manifold
FUsWUs Z = |, B; = ||, ni(S* x D?)#k;(RP?)#:£;(S* x 5§?), for some integers n; > 0,

ki, €; > 0.
Write A = | |, A; where A; is a connected component of A. Each A; is the total space

of S'-fiber over a surface X% = ¥% (gi,d;) of genus g; and with d; boundary components.
Then,

OMy = AUy (EUsW Uy Z) <|_|A ) Ua <|_| n;(S' x D?) ) HE(RP3)#0(S* x 5?) (13.59)

where k =), k; and £ = ), ¢;. We note that ¢ is the number of cycle subgraphs of G that
are not subgraphs of C, and k is the number of W, = S? x5, I. Each copy of S* x D? is
glued to a boundary component of A so that D> fibers of S! x 9D? coincide with S*-fibers
of A.

By an explicit construction in [11, Proposition 1],

<|_|A) Us <|_| n;(S' x D?) ) >~ S34q(S" x S?) (13.60)
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where ¢ = ) .(¢9; + d; — 1) + 7 and r is the number of pairs of boundary components of the
same B; that are glued to the same connected component of A. Therefore,

OMy =2 SP#E(RP?)#(L + ¢)(S' x S?). (13.61)
D4, N MO

According to the classification of 1 in Table 13.1, / = ¢ = 0 and k €
pt

{0,1,2},or £ +¢qg=1and k = 0.

Case 1: £ =g =0. Then, r =0, g; =0, and d; = 1 for all 7. Thus, A; is the total space
of S*-fibers over D?, for all i. Because M, is a closed manifold, E Uy W Uy Z = | |, B; is
connected. Hence | |; Bj = By = ny(S* x D?)#k(RP?) where n; is the number of connected
components of A and k € {0,1,2}. Therefore, 0My = 53 RP3 or RP3#RP3.

Case 2: ¢ = 0 and ¢ = 1. By the same arguments as in case 1, A; is the total space
of Sl-fibers over D?, for all 7, and E Uy W Uy Z has exactly one connected component
By & ny (St x D*)#(S! x S?). In this case, 0My = S x §2.

Case 3: ¢ =1and ¢ =0. If r =1, then ) ,(9; + d; — 1) = 0. By the same arguments
as in case 1, A; is the total space of S'-fibers over D?, for all i. However, because r = 1,
there exists a connected component of A that has at least two boundary components. This
is a contradiction. Therefore, r = 0 and ) (¢; +d; — 1) = 1. It follows that g, = 0
for all 7, and without loss of generality d; = 2 and d; = 1 for all ¢ > 2. A; is the total
space of Sl-fibers over S? x I, and A, is the total space of S'-fiber over D?, for all i > 2.
(EUpg W Uy Z) = ||, B; = By U By where By, = ny(S* x D?), for some n, > 1, k € {1,2}.
AN By # @ and Ay N By # J. A has ny + ng — 1 connected components. Alternatively, By

D2 — Nj
is a component || for some j. In this case, OMp = St x §2.
0Y?
The classification of M follows from Lemma 2.12 and Table 13.1. O

Combining Lemma 13.41 and Lemma 13.50, we get the following lemma.

D382 xz,  — M,

Lemma 13.62. Assume that My intersects with 1 ,
(1,0I)
St x D*T? Xz, I — M; D? —— M; 52— M;
I Lo I
(1,0I) (32,0%?) (22,0%?)

Sl —_— Mj
and 1l components, and My is disjoint from fiber bundle components of

(X, 0X7)
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other types, i.e.

D3, 5% xz, I — M; St x D% T? Xz, I — M;
oM, C |_| 1 U |_| 1 U
’ (1,01) J (1,01
D2—>MJ S2—>M] Sl—>M]
L N L] !
j (1,1 j (32, 0%2) J (X3,0X%)

(13.63)

Then, the conclusion of Lemma 13.50 is still valid but with every occurrence of A; in
the statement replaced by A; Uy |;, Ci, where Cj, = S x D? or T? xz, I is a fiber of

St x D*,T? xz, I — Nj,
J{k , for some j;,. OMjy is diffeomorphic to S3, S' x S%, RP3,

oI
RP3#RP3, or a Lens space.

Proof. The proof of Lemma 13.41 is still valid when every occurrence of A; is replaced by
AiUs L, G, u

The following two lemmas describe small adjustments to Lemma 13.30, Lemma 13.38,
Lemma 13.41, Lemma 13.50, and Lemma 13.62 in the case that M, also intersects

7% —— M; St— M
1 components in addition to 1 components.
(22, 5%2) (X3,0X?)
Lemma 13.64. In the assumption of Lemma 15.38, assume that My also intersects
7?7 —— M; SU'x D% T? Xz, I — M;
1l components. That is, My intersects with 1l
(32,0%?) (1,0I)
Sl _— Mj T2 — Mj
1l , and 1l components and My is disjoint from fiber
(X3, 07) (32,052)

bundle components of other types, i.e.



Chapter 18 131

81XD2,T2 XZ2]—>MJ‘ Sl—)Mj
J (1,0I) J (X3,0X3)
T2 _— Mj
U |_| 1 . (13.65)
|’ (X2, 0%?)
Then, OMy = AUy C Uy T where:
Sl — Nji
1 =\ |. A; where A; 1s a subbundle o or some j; and A; 15 connected.
A . A; where A bbundle of 1 f dA d
0x3

St x D?,T? xz, [ — N,
(ii) C = ||, C; where C; = (ST x D* or T? xz,1) is a fiber of 8 g

\L ’
oI
for some j;.
T2 — le.
(iti) T = ||, T; where T; = T* x I is a subbundle of I E for some ;.
o0Y?

(iv) OC; = T? is identified with a boundary component of A or a boundary component of
T;, for some j.

(v) Each boundary component of T; is identified with a boundary component of A or a
boundary component of C;, for some j.

(vi) For everyi, T, N A # &.
It follows that OMy is a Seifert manifold.

ow

St x D?

or T? xz, T

S'-bundle over S' x I

Figure 13.9: Example of a decomposition of 0Mj in Lemma 13.64.
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St—— M,

Proof. Write OMy = AUy C Uy T where we put A = OMyN |_|]. 1 ,C =
(X3,0X3)
St x D*T? Xz, I — M; T? —— M;
8M0ﬂ I_lj \L ,ande@Moﬂ I_lj \L
(1,0I) (32,0%?%)
Sl — N]
By Proposition 12.1, A is a disjoint union of subbundles of [ Hence, A is
0x3

the total space of S'-fibers over a disjoint union of surfaces with boundary. Write A = | |, 4;
where A; is a connected component of A.

St x D2, T? xz, [ — M;

From Lemma 13.5, fibers over an interior point of 1l are
(£,01)
D4, ce. MO
disjoint from Nk Hence, C is a disjoint union of fibers of
pt

St x D*T? Xz, [ — N; _ _
ik Write C' = | |,_, C;, where C; = S' x D* or T? xz, I is a

ol
connected component of C. If C;NA # &, then 0C; is identified with a boundary component
of A.
T2 — N]
From Lemma 13.3, T" is a disjoint union of subbundles of 1 components
02
which are diffeomorphic to T? x I. Write T' = L], 7; where T; = T? x I is a connected
component of 7.

From Lemma 13.5, if T; N C; # &, then 0C} is identified with a boundary component of
T;. Suppose that for some ¢, ji, and jo, T;NC}, # @ and T,NCY}, # &. Then, C}, Us T; Uy C},
is a closed manifold. Consequently, M, = C;, Uy T; Uy C},. This is a contradiction since
A # @. Therefore, every T; intersects with at most one connected component of C'. In other
words, T; N A # @. From Lemma 13.3, it follows that for every i, a boundary component of
T; coincides with a boundary component of A.

In summary, each boundary component 0C; = T? of C is identified with a boundary
component of AUy T. Because OM, is connected, A Uy T" must be connected. Since A; is
the total spaces of S'-fibers over a surface and T; = T? x I, for every i and j, we have that
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AUy T is a connected graph manifold with boundary. Hence,
OMy = (AUy T) U <|_| C; ) (13.66)

>~ Q% Uy <|_|(S1 X D2)> Ua <|_|(T2 X7 ]>>

% %

where Q? is a graph manifold.

D4, e MO
According to the classification of 1 in Table 13.1 and the classification
pt
of Seifert manifolds in [17], 9M, is a Seifert manifold. O

Lemma 13.67. In the assumptions of Lemma 13.30, Lemma 13.41, Lemma 13.50, and

T2—>Mj

Lemma 153.62, assume that My also intersects 1 components.
(X2,0%?%)
The conclusion of the lemmas are still valid when an occurrence of A;, an S*-subbundle
St — OM;
of E is replaced by A = S Uy T where:
0x3

(1) A’ is connected.

f— Nji
(2) S = |, S; where S; is an S*-subbundle of E for some j;, and S; is
ox?3
connected.
T — N,
(3) T =L, T where T; =2 T* x I is a T?-subbundle of e for some j;.

o2

(4) For every i, each boundary component of T; is identified with a boundary component of
S. In particular, A’ C 0S.

For Lemma 13.30 and Lemma 15.50, in addition to S, 5% x S',RP3, and RP3#RP3, OM,
can also be diffeomorphic to a Lens space.
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By = (S x D))#k(RP?)  S*-bundle over St x I T2 x T S1-bundle over D?

Figure 13.10: Example of a decomposition of M, in Lemma 13.67.

St — Mj T2 —— Mj
Proof. Put S = MM || ]; 1 and T' = dMoN | L; 1
(X3, 0X) (52, 052)

Write S = | |, S; where S; is a connected component of S and T" = | |, T; where T is a con-
nected component of 7. Put A = S Uy T and write A = | |; A} where A} is a connected
component of A.

T2 — sz
From Lemma 13.3, T; = T?x [ is a T?-subbundle of I for some j;. Moreover,
02
D? —— M; S —— M;
T is disjoint from any 1 and 1 components. Therefore,
(32,0%2%) (32,0%7%)

each boundary component of T; is identified with a boundary component of S. Since T' # &,
we must have that A’ C 95.

In the statements and the proofs of Lemma 13.30, Lemma 13.41, and Lemma 13.50,
a connected component A; of A is the total space of S'-fibers over a connected surface.
The arguments about a decomposition of dMj in the proofs of above lemmas only use the
information on the boundary components of A;. Therefore, arguments and conclusions of
the lemmas are still valid when an occurrence of A; is replaced by A’ = S Uy T.

D4, e MO
According to the classification of 1 in Table 13.1 and from explicit con-

pt
structions in [11], dM, = S3,5% x ST RP3 and RP3#RP3, or a Lens space. O
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SS/F,—>MZ

13.9 Fiber bundle components 1
(1,0I)
537 R 8M0
Every statement about dM, = l in the previous sections also applies to
pt
S3/T, 13T,
2 1 3 5 —— M,
a boundary component of S x ST RPP#RP l . This is because the proofs
(L, 0I)

in the previous sections only use Proposition 12.1 and the fact that 0M, is a closed Seifert
manifold. Therefore, we have the following lemma.

Lemma 13.68. Lemma 13.9 to Lemma 13.50 are still valid when an occurrence of OMy is

S3/T,T3)T,

S? x ST RP3#RP? » M;

|

(1,0I)

replaced with a boundary component of
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Gluing fiber bundle components into building blocks

Recall that we are trying to get a contradiction to Standing Assumption 3.2. At this point,
we have a sequence of connected closed Riemannian 4-manifolds {M®}52, such that for
large o, M satisfies the conclusions of Proposition 12.1 and all lemmas in Chapter 13. As
mentioned in Chapter 3, we refer to M just by M. To get a contradiction to Standing
Assumption 3.2, we need to show that M admits an F-structure or a metric of nonnegative
sectional curvature.

As a result of Proposition 12.1 and Chapter 13, M can be decomposed into fiber bundle
components (see Table 13.1) which have disjoint interiors and are compatible along the
overlaps. The next step is to find all possible ways to glue these components together.

In this chapter, we start the gluing process by gluing the fiber bundle components into
elementary building blocks. Then we construct more complicated building blocks from dif-
ferent types of elementary building blocks. In addition to the gluing process, we also show
that the building blocks admit an F-structure.

In the next chapter, we will finish the proof of Theorem 1.4 by describing M in terms of
a configuration of building blocks and showing that M admits an F-structure or a metric of
nonnegative sectional curvature.

D4,...—>Mj S3/F,—>MZ
14.1 Gluing ! and l components
pt (Z,01)
Let M; be a component 1 . If there exists a component M; =
(Z,0I)
D4, e M]

1 such that M; N M; # @, then by Lemma 13.8, 0M; is a boundary
pt
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component of M;.

D4, R Mjﬁ
If M; intersects | | fortle {1,2}, where M;, # Mj,, then M = M;, Uy
pt
M; Uy Mj2 = Mj1 Us sz.
D47 e Mj
If M; intersects exactly one 1 component, then M; Uy M; = M;. From
pt
S3T,... — M;
Lemma 13.68, the decomposition of a boundary component of 1 is the
(1,0I)
83, R Nj
same as the decomposition of 1
pt
53/F, oo —— M;
Therefore, we can assume without loss of generality that 1 is
(1,0I)
D4, e M]
disjoint from any 1 components.

pt
14.2 Overview of the gluing strategy

To simplify the gluing process, in the following sections we assume that M does not contain

S3/F,—>MZ

any 1 component. In the next chapter, we will show that constructions
(Z,01)
D4, A 4 M]
and results in this chapter are still valid when an occurrence of a component 1
pt
SS/F7 o — M,
is replaced by a boundary component of 1
(Z,0I)

We start by gluing the fiber bundle components in Table 13.1 into elementary building
blocks, then we construct general building blocks by combining different types of elementary
building blocks.
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There are four types of elementary building blocks: (2,5%), (2,7%), (2, D?), (1,S! x D?).
In the following sections, we will use graphs and polyhedrons to represent building blocks
and to provide gluing instructions. The number n of an elementary building block of type
(n, F') corresponds to the dimension of its representation while the manifold F' corresponds
to its representative fiber type. The following table shows fiber bundle components that are
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involved in a construction of each type of elementary building block.

Table 14.1: Elementary building blocks

Type Fiber bundle components involved
, DA ... — M D3 52 xz, I — M 52— M
(27S) \L ) J/ ) J/
pt (1,0I) (¥2,0%?)
9 D47—>M] SIXDz,T2XZQI—>Mj T2—>M]
(2’T ) J/ ) \L s J/
pt (1,01 (2%, 0%7)
) D ... — M D3, 5% xz, I — M D? —— M;
(27D> J/ ) J/ ) J/ )
pt (1,0I) (X%,0%?)
Sl _— Mj
J
(X?,0X?)
. , D*, ... — M; S x D*T? xz, I — M; St —— M
(].,S X D) \L , J/ , J/
pt (1,0I) (X3,0X3)
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14.3 Elementary building block of type (2, 5?)

In this section, we construct an elementary building block of type (2,5?). The fiber bundle

D4, e M]
components that are involved in the constructions are E
pt
DB,SZ XZ2I—>M]‘ 82—>M]‘
1l , and 1
(1,0I) (32,0%?)
S — Mk
Definition 14.1. Let M, be a component 1l . Assume that every boundary
(32,052)

components of Mj, is attached to a manifold W; where W; is the manifold W in the conclusion
of Lemma 14.3. We call the union MU <|_|J VVJ) an elementary building block of type (2, 5%).

We can represent an elementary building block of type (2, 5?%) by a disjoint union of solid
polygons where the boundary of each polygon is the cycle graph representing the manifold
W in Lemma 14.3 and the interior represents attaching W to a boundary component of Mj.

Example 14.2. The following is a model example of an elementary of building block of type
(2,5%).

Figure 14.1: A representation of an elementary of building block of type (2, 5?%)

D4 — Mié
In this example, there are three 1 components, ¢ € {1,2,3}, which are
pt
D3 — sz
represented by vertices, and three 1 components, ¢ € {1,2,3}, which are
(Z,0I)
represented by edges. Denote the union of all M;, and M;, by W. We have that W =
Sz E— Mk
S! x D3. There is one 1 component, where X2 = D?. The interior of
(32,0%?)
the triangle represents attaching W to a boundary component of M. In this example,
M =W Uy M, = (St x D3) U (8% x D?) =~ S4.
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D4,...—>MO 52—>Mj
From Lemma 13.10, if M, = 1 only intersects 1 and
pt (£2,052)

D3,5% xz, I — M;
1 components, then My = D*, £CP?*#D*, S?x,5D? or S?xz, D%

(1,0I)
D* +CP?#D*
Py 0 kg, 2 M
Lemma 14.3. Let {M;}ica, be a collection of X2 V7,07 Xz, l compo-
pt
S? —— M D352 xg, [ — M;
nents such that M; only intersects 1 and 1l com-
(32,0%7%) (1,0I)
ponents (as in Lemma 13.10).
D? 8% xg, I — M;
Let {M;}eca, be a collection of 1 components such that both
(1,0
D? 8% xg, I — N; S
fibers of || are contained in |_|Z.€A0 OM,;.
ol
S?— M,
Let W be a connected component of M — |_|p l such that W only inter-

(2%,0%?)
sects components M;, i € Ay, and M;, j € Ay, i.e. W C (Uier Ml) U (UjeA1 Mj). Then,
the following holds.
(1) W can be represented by a cycle graph so that each vertex represents a component M;,
for some i € Ay, and each edge represents a component M;, for some j € Aj.
(2) W = (S'x D3)#n, (CP?)#ny(—CP?)#n3(S5?x5?%) or ST x (82 xz,1) =2 S'x (RP3#D3)
for some integers ni,ng,n3 > 0. In particular, OW = St x 9D3.
52 E— Mk
(3) As a part of M, OW is identified with a boundary component of 1l ,
(¥2,0%?)
for some k, so that each OD3-fiber of OW coincides with an S*-fiber of OM,,.

Proof. (1). We construct a graph to represent W as follows. Let G be a graph such that
each vertex v; represents a connected component M;, for some ¢ € Ay, and each vertex e;
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represents a connected component M, for some j € A;. A vertex v; is incident to an edge
e; if and only if M; N M; # .

S3 RP34RP?,

From Lemma 13.10, for each i € Ay, OM; = RP?, S x §° l contains exactly
pt
D3, 5% xz, I — N, D3, 5% xz, I — Nj,
two fibers B;, and Bj, from 1 and RE for some

ol ol
Ji,J2 € Aj respectively. It follows that every vertex v of G has degree two. Therefore, G is

a cycle graph.
(2). Let v be a vertex and let e; and ey be edges incident to v.

€1 €2

v (14.4)

D4, . — M;

We note that if G has only one vertex, e; and e, are the same edge. Let M; = 1
pt

D3,5% xg, I — M;,
be the component represented by v and let M;, = 1 , ke {1,2},
(£,01)
be the component represented by e,. We have the following cases.
D3 — Mjk
(a) Case M, = 1 ~ D3 x I for k € {1,2}.
(1,01)

By Lemma 13.10, M; & D* or 2CP?*#D* and M;, Uy M; = D3, for k € {1,2}. If M; =
D*, then M, Uy M; U M, = (D* x I)Up D* Uy (D? x I) = D3 x I. It M; = £CP?4 D",
then M;, Uy M; Uy My, = (D? x I) Uy (£CP?#D%) Uy (D? x I) 2 (D? x I)#(£CP?).

52 X 7o I — Mjk
(b) Case M;, = 1 >~ (82 x5, I) x I for k € {1,2}.

(1,01

By Lemma 13.10, M; = S? xz, D* and M;, Uy M; = S? xz, I, for k € {1,2}. Thus,
Mj1 UaMiU3Mj2 = ((S2 XZ2I) XI)U@(SQ XZ2D2)U3((52 XZQI> XI) = (82 X 74 I) x 1.
In other words,

— M, —2 - (14.5)
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M; M,

where M, 2 denotes M;, Uy M; Uy M,,. Hence, by considering M;, Us
52 X 74 I — Mj/

M; Uy M, as a single component M = 1 , we can assume that

(1,0I)
there is no vertex of this type, unless G has only one vertex.

In the case that G has exactly one vertex, W is the total space of (S xz, I)-fibers over

S1. The mapping class group of orientation preserving homeomorphism of S? xz, I is
trivial [34, Lemma 9.12]. Therefore, W = S! x (S? xz, ) = S x (RP3#D?3).

D?* — M, S% xg, I — M,
(c) Case M;, = I ~ D3 x [ and M;, = 1
(1,01) (I,01)

>~ (5% xg, I) x 1.

By Lemma 13.10, M; = S? x4 D2, M;, N M; = D3, and M;, N M; = S? xg, 1.

Let v" be the vertex adjacent to v via e;. By the assumption in the previous case, we
S? x19 D?> — My

have that v" represents a component M; = E for some i € Ay.
pt
D? — M,
Additionally, v is incident to an edge e3 representing a component 1l =
(1,0I)

D3 x I, for some jz € Aj.

L — (14.6)

M; Ug Mj, Uy My is diffeomorphic to (S? 49 D?) Uy (S? X419 D?) where two copies
of (8% xz, I) = RP3#D? on their RP3-boundaries are identified. Therefore, M; Uy
M;,Ug My is diffeomorphic to (D x I)#(S? x S2) or (D? x I)#(S?xS?) where 5?x $? =
CP?#(—CP?) is the nontrivial orientable S%-bundle over S? (see Lemma 2.13).

From all cases, we have that if W is not diffeomorphic to S! x (RP3#D3?), then
W (U(D3 x [0, 1])i> #ny (CP?)#ny(—CP?#n3(S* x S?) (14.7)
i=1

where the union is so that (D3 x {1}); is identified with (D3 x {0})i;1, @ € Z/mZ, for
some integers ni,n9,ng > 0. Because the mapping class group of orientation preserving
homeomorphism of D3 is trivial,

W 22 (ST x D*)#n1(CP?)#ny(—CP?*)#n3(S? x S?) (14.8)
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for some integers ni, ng, n3 > 0. In particular, OW = St x 9D3.

(3) From Lemma 13.2 and Lemma 13.4, the boundary of each fiber of

D3752 XZQI—>M]' 52—>Nk
1 , 7 € Ay, coincides with an S2-fiber of of N E for some
(Z,01) o%?
82 — Nk
k. From Lemma 13.10, dMy—(Bj, Uy B;,) = 5% x I is a subbundle of | | forsome
o0y?
S2 —_— Mk
k. By connectedness, OW is identified with a boundary component of 1 ,
(X%,0%2)
for some k, so that each 0D3-fiber of OW coincides with an S%-fiber of OM,,. O

In the following lemma, we construct an F-structure on an elementary building block of
type (2, 5%).
Lemma 14.9. Let Y be an elementary building block of type (2,S5%). That is, Y = My U

52 E— Mk
<|_|j I/Vj> for some component M, = 1l and W; is a manifold represented

(32,052)
by a cycle graph in Lemma 14.3. Then, Y admits an F-structure.

Proof. From Lemma 14.3,
M, U <|_| St x D3> Us <|_| St x (RP3#D3)>
i J
(14.10)

where the union is so that each dD?*-fiber of OW; is identified with an S?-fiber of Mj, for
some integers n,m,p > 0.

y = #n(CP)fm(~CP?)#p(S? x 57)

An orientable S%-bundle over a compact surface with boundary is trivial [14]. Let S*
act on Mj, by rotations (with two fixed points) on each S?-fiber and act trivially on the
base (X2,0%2%). Let S! act on each copy of S* x D? by extending the S'-action on S2-
fibers of M, to rotations on D3-fibers about an axis. For each copy of S x (RP3#D3) =

St x (8% xz,I), we consider the double covering S! x (5% x I) —— S x (S? xz, I) . Let
S'act on S* x (8% x I) by rotations on each S2-fiber and act trivially on the S* and I-factors.
The action can be made compatible with 7 and the S'-action on M.

The above construction gives an F-structure on MyUp| |;(S* x D?)Us| |;(S* x (RP?#D?)).
Paternain and Petean [21, Theorem 5.9] showed that the connected sum of two manifolds
X and Y with F-structure admits an F-structure, provided that X and Y have at least
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one open set with a trivial normal covering (as in Definition 2.26). Since CP?* —CP?, and
S% x S? admit a T-structure [21], Y admits an F-structure. O

14.4 Elementary building block of type (2,7?)

In this section, we construct an elementary building block of type (2,72). The fiber bundle

D4, S Mj
components that are involved in the constructions are E
pt
St x D*T? Xz, I — M,; 7% —— M;
1 , and 1
(1,01) (3%,0%2)
T2 —— Mk
Definition 14.11. Let M, be a component 1 . Assume that every bound-
(32,0%?)

ary component of M}, is attached to a manifold W; where W; is the manifold W in the
conclusion of Lemma 14.14. We call the union M} U (UJ VV]> an elementary building block
of type (2,T%).

We represent an elementary building block of type (2,72) by a disjoint union of solid
polygons where the boundary of each polygon is the cycle graph representing the manifold
W in Lemma 14.14 and the interior represents attaching W to a boundary component of
M.

Example 14.12. The following is a model of an elementary building block of type (2, T?).

Figure 14.2: A representation of an elementary building block of type (2, 7%)

St x D3 — Mie
In this example, there are three 1 components, ¢ € {1,2,3}, which
pt
Sl X D2 — Mj[
are represented by vertices, and three 1 components, ¢ € {1,2,3},
(£,01)

which are represented by edges. Denote the union of all M;, and M;, by W. We have that
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T2 —_— Mk
W = S x (8! x D?). There is one 1 component, where X2 2 D?. The
(52, 052)
interior of the triangle represents attaching OW to a boundary component of M, In this
case, M = My Uy W = St x (S' x D*)u D? x T? = S' x S3.

D4,...—>M0 T2—>Mj
From Lemma 13.17, if My = 1 only intersects 1 and
pt (X20%2)
St x D*T? Xz, I — M;
1l components, then
(1,0I)
( D*, £CP?#D* if OM, = S3,
S x D3 8% x D? (RP? x SY)xI,(S?xSY)xI if OMy = S? x S,
o) S*x,D*weZ if OMy = L(|w]|, 1),
Mo=3 52, D2 if OM, =~ RPPRpS,  (1413)
(52 X w D2)/ZQ,WEZ if 8M0%L(|w],1)/Zg,
| T2 Xz, D? ByxI,Byx1 if OM, = G,.
D4, .o — M,
Lemma 14.14. Let {M;};c, be a collection of | | components such that M;
pt
T° —— M; St x D2 T? Xz, [ — M;
only intersects 1 and 1 components (as in
(¥2,0%?) (1,0I)
Lemma 13.17).
St x D2,T2 XZs I — Mj
Let {M;}jea, be a collection of 1 components such that
(1,01)
St x D> T? Xz, [ — N;
both fibers of || are contained in Llier OM,;.
ol
T° —— M,
Let W be a connected component of M — |_|p 1 such that W only inter-

(32,0%?)
sects components M;, i € Ay, and M;, j € Ay, i.e. W C (l—lz‘er Ml) U (|_|j€A1 Mj). Then,
the following holds.
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(1) W can be represented by a cycle graph so that each vertex represents M;, for some
i € Ay and each edge represents M;, for some j € Aj.

(2) OW is a T?*-bundle over S*. W admits an F-structure which restricts to local T?-
actions on OW. The local T?-actions on OW are free and their orbits coincide with
T?-fibers of OW .

T2 —— Mk
(3) As a part of M, OW s identified with a boundary component of 1l ,
(2%,0%2)
for some k, so that T?-fibers of OW coincide with T?-fibers of Mj,.

Proof. Here, we prove part (1) and part (3). In the next subsection, we give a proof of part
(2).

(1). We construct a graph to represent W as follows. Let G be a graph such that
each vertex v; represents a connected component M;, for some i € Ay, and each vertex e;

represents a connected component M, for some j € A;. A vertex v; is incident to an edge
e; if and only if M; N M; # @.

From Lemma 13.17, for each i € Ay, OM; contains exactly two fibers F}, and Fj, from

St XD2,T2 XZQI—>N]‘1 St ><D2,,I‘2 XZQI_>Nj2 o
I and Ik for some ji,jo € A; re-
oI

spectively. It follows that every vertex v of G has degree two. Therefore, G is a cycle
graph.

(3) From Lemma 13.3 and Lemma 13.5, the boundary of each fiber of

St x D?T? Xz, [ — M, o . T2 — N,
1l coincides with a T2-fiber of of N E for some k.

(1,0I) %2

T2 — Nk
From Lemma 13.17, OMy — (F;, Uy F},) = T? x I is a subbundle of | | for some
02
T2 —— Mk
k. By connectedness, OW is identified with a boundary component of 1l ,
(52, 057)
for some k so that each T%-fiber of W coincides with a T?-fiber of OMj. O

14.4.1 Proof of Lemma 14.14 (2)

In this subsection, we prove part (2) of Lemma 14.14. Let v be a vertex and let e; and ey

be edges incident to v.
el €2

v (14.15)
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D* ... — M}
We note that if G has only one vertex, e; and ey are the same edge. Let M = 1
pt
S x D, T% xz, I — M,
be the component represented by v and let M7 = 1 ke {12},

(£,01)
S x D*,T? xg, I — N§,
be the component represented by er. We denote the fiber of 1
(1,01)
that is contained in M} by Fj,, for k € {1,2}. We have the following cases.

St x D* — M.
(a) Case M§ = 1 ~ (S x D?) x [ for k € {1,2}.
(1,01)
By Lemma 13.17, OM? = B; Uy AUy By where A = T? x [ and B, = S' x D?
ke {1,2}. Fj, C Mj_ attaches to B, C My. Consider that OM} = B Uy By =
(S x D?) Uy (S* x D?) via the identifying map ¢ : (S* x 9D?) — (S* x 9D?). Up to
0B, 0B>
isotopy, ¢ € SLy(Z). OM? = L(p,q) if and only if ¢ sends a meridian {z} x dD? to
a circle of slope }%. We adapt the convention from [10] that a meridian has slope oo, a
longitude S x {y} has slope 0, L(1,0) = S3 and L(0,1) & S! x S§2%. In particular,

D* £CP?*#D* if oMy = 53,
M= St x D3 8% x D% (RP? x SY)xI,(S?xSY)xI if oM} = S' x S?,
S? x,, D? if OM? = L(|w],1).

(14.16)
We have the following cases.

(i) My =St x D3,
In this case, IMP =2 St x 9D = S' x 5% and ¢ sends a meridian to a meridian.

Then, we can consider MY = S x (D? x [0,1]) where F;, — By sends {z} x D?
to {z} x (D* x {0}) and F}, — By sends {x} x D? to {z} x (D?* x {1}).

o

Figure 14.3: My Uy M} Uy M, in case (a) when My = S x D?. In this figure, only one
D?*fiber of M¢ , k € {1,2} and one D*-fiber of M are showed.
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(i)

Hence,

M Uy MY Ug M5, = ((S* x D*) x I)Ug (S" x D*) Uy ((S' x D?*) x I) = (S x D?*) x I.

In other words, the manifold represented by the graph (14.17)
v v v’ (14.18)

is diffeomorphic to the manifold represented by the graph
v (14.19)

Therefore, we can assume that there are no vertices of this type unless the graph
G has only one vertex. In the case that G has one vertex, W = (5! x D?) x S!
and OW = 9(S' x D?) x St = T?% x S'.

Mp = 5% x D?.

In this case, IM} =2 5% x 9D* = 5? x S' and ¢ sends a meridian to a meridian.
Consider M} = S? x D? as a D*-bundle over S%. Then, F}, = D} x dD? where
D? is a 2-disk subset of the base S?. Thus, we have that {z} x D* — D3 x {y}.

QO
DO L SO

e €
M, Mz,

Figure 14.4: M{ Uy M} Uy M, in case (a) when M} = 5% x D?. In this figure, only one

D*fiber of M¢ , k € {1,2} and one D*-fiber of M are showed.

Let (M€). = M; Uy (D? x S') along the identity attaching map J0F;, = S x
OD* — 0D? x S'. It follows that (M€)) is a trivial D*bundle over a surface
¥ = (8" x I) Uy D* = D?. Then, we have that M Uy MY = (M*); OM =
(X2 x D?)0J(S? x D?) where O denotes a plumbing (see Section 2.6). Therefore,

M¢ M¢e
oMy 2 = EE% X DQZD£S2 X Dzlmgzg X DQZ (14.20)
(Me);_l MY (Me);-2

Me Me
where L/ j—— denotes M, Uy My Uy M.
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® O
(o1 3 Bl )
(M)}, My (M),

Figure 14.5: (M®)} Us M} Uy (M*)), in case (a) when M 2 S* x D* in terms of plumbing

Suppose that there exists a component M} = E s € Ap, such

pt
that M7 N M$, # . In other words, there exists a vertex vy (representing My))

2

adjacent to v via the edge ey. Let (M€)7 = (M®)}, Uy (D? x S*) along the identity

attaching map S x 9¥3 — 9D? x S'. It follows that (M) is a trivial D*-bundle
over X2 Uy D? = 52, Therefore,

M¢ M¢
J1

Mp —=— My = (3 x D*)0(S% x D*) (8% x D*) T (8% x D?).
oy, pe ey M,
(14.21)

If the graph G has one vertex, then W is a cyclic plumbing of two copies of
S? x D?,i.e. W is a 4-manifold with plumbing diagram
i
7~
W~ S§? x D? S? x D? . (14.22)

~_
O

In particular, OW is a T?-bundle over S*. From Lemma 2.30, W admits a T-
structure which restricts to local T?-actions on OW. The local T?-actions on OW
are free and their orbits coincide with T?-fibers of OW.

(i) MP = S? x, D, w€Z, w 0.
We note that S? x4 D? & £CP?#D* ([26, Section 2.4]). In this case, OM} =

L(jw], 1) and ¢ : (S* x 9D?) — (S' x D?) is isotopic to the linear map (:dl O).

N / N / ]_

~

8B 0B>
Consider OM? = §% x,, D? as a D2-bundle over S2. Write $% = D2 Uy D2 where
D2, k € {1,2}, is a 2-disk and consider By, = D2 x dD2.
Then, we can consider OM} = lA)% x D} Uy 13% x D3 where the attaching map
W : OD? x D? — QD2 x D? is a linear extension of ¢. Using the polar coordinates
(5,0)x(r,¢), 7,5 € [0,1], 6,6 € [0,27) on D2x D2, we have that 1((1,0) X (r, ¢)) =
(1, —0) x (r,wl + ¢).
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Let (M€); = M Uy (D? x S') along the identity attaching map 0Fj, = S* x
0D? — 0D? x S'. By the same argument as in the previous case,

M¢ M¢
J1

Mp —2- =2 (32 x D*)0(S? x, D*)0(¥3 x D?). (14.23)
(), My (1,
S? x, D* — M},
Similarly, if there exists a component M}, = Ik is € Ap, such
pt
that My N M7, # <, then
M;I v M;Q v ~ 2 2 2 2 2 2 2 2
M M, = (X1 x D7)O (57 x, D)0 (5" x D7) O (5 x, D7)
(Mey;, My (M2, My,
(14.24)
If the graph G has one vertex, then W is a 4-manifold with plumbing diagram
O
RS
W §2 x D? S? %, D? . (14.25)
\D_/

In particular, OW is a T?-bundle over S'. From Lemma 2.30, W admits a T-
structure which restricts to local T2-actions on OW. The local T?-actions on OW
are free and their orbits coincide with T?-fibers of OW.

MY = D%

In this case, IM? = S3 and ¢ sends a meridian to a longitude. Consider M} =
D* = D? x D2 where D} and D3 are 2-disks. Then, M = (D? x dD3) U
(0D? x D3). Let ¢y : F;, =2 S* x D* — D? x D3 and ¢y : Fj, = S' x D* —
dD? x D2 be the attaching maps from M 5 and M7 to My respectively. We have

that (¢2|3Fj2)2_1 o (¢1]or;, ) must be isotopic to ¢ = ((1) (1)>

Let (M°); = Mf Uy (D?x S') along attaching map ¢1]op,, : OF;, = S' x0D* —
dOD? x S*. It follows that (M€)} is a D*-bundle over ¥ = (S' x I) Uy D* = D?
and Fj, Uy (D2 x SY) = D2 x D2 for some 2-disk D2 C %2, Hence,

M¢ M¢

1My —= = (M®)), Uy (M©)S, (14.26)

1

where ¥ : lA)f x D?* — ﬁ% x D? is an extension of (¢;' 0 ¢1) : Fj, — Fj,. 1 sends
D? x {y} to {z} x D?* and sends {x} x D? to D3 x {y}. In other words,

(M) Uy (M€);, = (M), O(Me)S,. (14.27)
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M;, MY Mg, (M), (M*)j,

)

Figure 14.6: M5 Uy My Uy M5, in case (a) when My = D* in terms of plumbing

' 5% %, D* — M}
Suppose that there exists a component M = I € Z,
pt
iy € Ap, such that My N M; # @. In other words, there exists a vertex v’
(representing M) adjacent to v via the edge ey. Let (M€)% =2 (M®)), Uy (D?x S*)
along the identity attaching map S' x 933 — 9D? x S'. It follows that (M€)},
is a D?-bundle over S®. In contrast to the case My = 5% x,, D?, (M°)}, is not

necessary a trivial bundle. Therefore,

M¢ M¢
J1

Mp —2- MP =~ (3} x D*)O(S? x D)O(S? x, D?). (14.28)
oy, (Y, M,

If the graph G has one vertex, then W can be obtained from (A¢)” by identifying
D? x D} (M) and D x D} C (M*)" with . Consider that (M¢)! =

i 7
D? x D?U D2 x D? where ¢/~ is the attaching map. Thus, (Me)7 is a trivial
D2-bundle over S?. Therefore, W is diffeomorphic to the resulting manifold of
a self-plumbing of S? x D?. In particular, OW is a T%bundle over S'. From
Lemma 2.30, W admits a T-structure which restricts to local T%-actions on OW .
The local T?-actions on OW are free and their orbits coincide with T2-fibers of

ow.

M = (S2xSY)XI or (RP? x SY)xI.

In this case, IM = S' x S?. Let U; be an open neighborhood of My in M U,
M} Up M5, such that Vj, = U; N M is a subbundle of M} and V;, N M7 = F;
ke {1,2}.

k)

Let (7, —"— U; be a double covering constructed as follows. (7, = ‘7}1 Us ]\Z Us

V;, where we put ‘731@ =7 YV,,), k € {1,2}, and M; = (5% x S1) x [0, 1] is a double
cover of M?. We denote an (S? x S')-fiber of M; by (5% x SY x {t}, t € [0,1].
Write V5, = V;,(0) U V;, (1) where m(V;, (0)) = 7(V;,(1)) = Vj,. For k € {1,2},
put £, (0) = V;,(0)N(S?x S') x {0} and Fj, (1) = V;,(1)N(S? x S*) x {1}. Then,
m(F5,.(0)) = w(F5,. (1)) = Fj,.

For k € {1,2}, let F;, be a subset of M; so that F;, = (S x D?) x [0,1] and
(81 x D?) x {t} C (S* x S') x {t} for all t € [0,1]. We also require that (S x
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D?) x {0} coincides with Fj,(0) and (S* x D?) x {1} coincides with Fj, (1). It
follows that V}, (0) U F;, UV;, (1) = (S* x D?) x I. Moreover, M; — (Fj, UF,) =
(ST x I) x S') x [0,1] = (T? x I) x [0,1]. The two boundary components of
(T? x OI) x {t} coincide with the boundary of an (S* x D?)-fiber of F;, and Fj,

respectively.
"

Figure 14.7: U; = IN/jl Us M; Uy \N/j2 when MP = (S2xS")xI
Let T2 act on M; — (F;, U F;,) = (T% x I) x [0,1] by the standard action on
the T?-factor and act trivially on the other factors. Let ¢ be a T?-action on
V. (0) U F;, UV, (1) = (ST x D?) x I by any action that restricts to a free T°-
action on J(S! x D?) x I and such that m o ¢ = 7. As a result, we get local
T2-actions on (Z that are compatible with 7.

To show that W admits an F-structure which restricts to local T2-actions on W, it
suffices to construct local T2-actions on 4-manifolds represented by the graphs

Gl= —S gy 2 em, fmi (14.29)

and

G2 = U = (%) e tee Um (1430)

\_/

€m

where all vertices are from cases (i) to (iv). In other words, G; and G, represents the
resulting manifold of a linear or a cyclic plumbing of D*bundles over S?. Fintushel
7] constructed local T?-actions on such manifolds.

Therefore, there exists local T2-actions on W and from the constructions in [7], their
restrictions to the boundary are free and their orbits coincide with T?-fibers of W .

St x D* — M¢, T? xz, I — M;,
(b) Case M;, = 1 = (S'xD?)xI and Mf, = 1 =
(1,0I) (1,01)

(T?% xz, I) x 1.
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By Lemma 13.17, M? = S x D3, 5% x D?, (RP? x SY)xI, (§?xS")x1I, S? xz, D?, or

(52 Xw D2)/Z2

Let v" be the vertex joined with v by e, and let e3 be an edge incident to v'. v’ represents
D4 ... — MY

a component Mj = Ik for some i € Ag. In this case, we assume that

pt
es represents M¢, = (S x D?) x I. The case that es represents My, = (1% xz, I) x I
will be considered later in case (c). We have the following subgraph of G

Ay By B (14.31)

T2 xg, [ — M

where dashed edges represent 1 components and solid edges re-
(1,0I)
St x D* — M¢
present 1 components. We have the following cases.
(1,01)

(i) Mp, My = S' x D? or S* x D?
Let ]\f/.\f;; —"— M5, be a double covering. ]\,/sz >~ (T? x I)x [0,1]. 7((T* x I) x
{0}) coincides with T?-fibers of A; C OMY and 7((T? x I) x {1}) coincides with
T?fibers of Ay C OM}.

Let T2 act on ]\7]‘?2 by the standard action on the T?-factor and act trivially on the
I-factors. By the same constructions as in case (a), there are local T?-actions on
M} and M} so that their restrictions on M and OM} are free. The T?-action

on M¢, is compatible with 7 and with local T?-actions on My and Mp.

(i) MpP = (RP2x SY)xI,(S?xSY)XI, 5% %z, D? or (S?x,D?)/Zy and M} = S' x D3
or 5% x D2
Let U be an open neighborhood of MUM;, in W such that UNMZ is a subbundle
of Mf. Put V;, = UNM; and F;, =V;, N M. We have that F;, = S' x D>,

Let U —=—= U be a double covering. U = V,, U ]\7” U Me where V, is a
double cover of le, M 7, is a double cover of M and M Y is a double cover of
M?. We have that V]1 is the union of two copies of S x D¥s, which we denote
by V;,(0) and V;,(1). Then, 7(V;(0)) = m(V;,(0)) = V},. Next, we have that
]\ZZ =~ (T2 x [0,1]) x [0,1]. We denote a T*-fiber of ]\Ajj‘; by T? x (s,t) where
(s,t) € [0,1] x [0,1]. Lastly, M? = (S? x S') x I or S? x,, D? w € Z.

From Lemma 13.17, OM? = B; Uy A; Up C; where B; = S x D? C; 2 T? x4, I,
and A; = T? x 1. Then, 8M = BZ 1Us Au UaC Us Alz Us Bz o where BZ 1= BLQ =
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SUx D2 A; 2 Ay, @ T?x I, and C; 2 T2 x I. We have that B;, = Vj, (0) N OM?
and B;, = V; (1) N 8]\27’. Additionally, each T? x (s,0) coincides with a T?-fiber
of C;. Similar arguments apply for each T? x (s, 1), s € [0, 1].

Let T? act on ]\7;2 by the standard action on the T2-factor and act trivially on
the [0, 1]-factors. By the same constructions as in case (a), there is a If—action

on V;, U M} whose orbits coincide with the orbits of the T?%-action on M5, along
the overlaps.

By the same arguments as in case (a), there are local T?-actions on MY and M}
so that their restrictions on M} are free and their orbits coincide with T?-fibers
of A; and Ay. In particular, the T?-action on ]\A]ji is compatible with 7 and with
local T?-actions on M} and M}. Therefore, there are local T?-actions on U that
are compatible with 7 and local T?-actions on W — U.
(iil) MP, My = (RP? x SY)XI,(S?xS")xI,S? xz, D?, or (S? x,, D?)/Z,.

Let U be an open neighborhood of M}’ Uy M, Uy M7 in W such that Vj, = UNM5,
is a subbundle of M? and Vj; = U N M5, is a subbundle of MZ,.

Let U —— U be a double covering constructed as follows. U = ‘73‘0 Ua ]\ZP Ua
M5, Uy M UaA/V}S where Vj, is a double cover ()Afj/jk, k€ {1,3}, M} is a double
cover of My, My is a double cover of My, and MZ, is a double cover of M7 .

By similar arguments as in case (ii), there are local T?-actions on U that are
compatible with 7 and local T?-actions on W — U.

T? x I — Mg,
(c) Case M5 = 1 > (T% xg, I) x I for k € {1,2}.
(1,0I)
By Lemma 13.17, M? =2 T? x 3, D? B3I, or Byx1I. For k € {1,2}, let v, be the vertex
adjacent to v via the edge e,. Let ey be the edge incident to v; and ez be the edge
incident to vy. First we assume that M = M¢ = (S x D?) x I. That is M, and M},
are from case (ii). We have the following subgraph of G

D gy iy gy L (14.32)

where dashed edges represent 1 components and solid edges re-

St x D* — M¢
present 1 components.

(1,91)
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Let Mv be a double cover of M. From Lemma 13.17, M} = Cy Uy A; Uy Cy where
Ch = 02 T? xz, I, and A= T? x I. Then,

6]\7717’ = 51 Ua Ail Ua 52 U8 Aig (1433)

Ua

where A;, = A;, = T? x I, and 6’1 & 6’2 >~ T2 x I are double covers of C; and C,
respectively. Thus, M} is a T%bundle over S'.

Let Z = M5 Uy My Uy M5,. Let Z —™ 5 Z be a double covering. We have 7 =
M6 Uy M UaM6 where Me = (1% x [0, 1]) x [0, 1] is a double cover of M , k € {1,2}.
We denote each T?-fiber of Mjek by T%x (s,t) for (s, t) € [0,1]x[0,1]. Then, M NOM; =
T2 % [0,1] x {1} coincides with C, fiberwise. Similarly, ]\7[/;2 N 8]\2” =T?x [0,1] x {0}
coincides with C5 fiberwise.

By similar arguments as in case (ii), for each k£ € {1,2}, there exists an F-structure
on M U MZ which restricts to the standard T?-action on the T?factors and to the
trivial action on the I-factors of Mf = (1% x I) x I.

MP = T2 x D2 or G, x I. In both cases, there exists a T%-action on M? whose

orbits coincides with T2fibers of C), C 8]\/\42-”, k € {1,2}. Therefore, there exists an
F-structure on My U M7 U MU MZ U M.

More generally, we have the following subgraph of G,

S o L (14.34)
By repeating the above argument on M7 M7 ..., M} | we get an F-structure on

Z:]\IUU]\/[‘?U...U]W-e UM-U.

In the case that G has only one vertex, W = My U M7 where M7 N M5 is the union
of two Coples of T? Xz, I. Let W be a double cover of W. W = M ’ U M ¢ where
M ¢ N M v — U, Let T? act by the standard T2-action on the 72- factor and
act trivially on the (I x I)-factor of ]\Z-el. There exists a T?-action on ]\Z” whose

orbits coincides with T2-fibers of Cj, C OM?, k € {1,2}. Therefore, there exists an
F-structure on W which restricts to local free T?-actions on OW.

It follows from case (a) to case (c) that there is a collection of an open sets {U;} which
covers W so that there exists a T?-action on U; or its double cover (72 and the actions are
compatible with the covering maps and with each other along the intersections. Additionally,
their restrictions on OW are free. Therefore, W admits an F-structure which restricts to
local free T?-actions on OW. This completes the proof of Lemma 14.14 (2).
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14.4.2 An F-structure on an elementary building block of type (2,7?)

In the following lemma, we show that an elementary building block of type (2, 7?%) admits an
F-structure by extending the F-structure on the manifold W constructed in Lemma 14.14

T2—>Mk

to the component 1l it attaches to.
(32,0%?%)
T2 —— Mk
Lemma 14.35. Let M}, be a component 1l such that every boundary com-
(32,0%7%)

ponent of My, attaches to a manifold W;, for some j, where W is a manifold W in Lemma
14.14. Let'Y be the union M U (inl Wj>. Then, Y admits an F'-structure.

Proof. Since Mj, is the total space of T?-fibers over a surface, there are local T?-actions on
M, which are free and whose orbits coincide with T?-fibers.

From Lemma 14.14, each W; admits an F-structure which restricts to local T?-actions
on OW;. The local T?-actions on OW; are free and their orbits coincide with T*-fibers of
OW;. Also, W, is identified with a boundary component of M so that T?-fibers coincide.
In particular, the F-structure on W is compatible with local T2-actions on Mj. Therefore,

Y = MU (|_|] Wj> admits an F-structure. O

14.5 Elementary building block of type (2, D?)

Sl—>Mg

In this section, we consider a connected component of M — | |, 1l that
(X3,0X3)
DY ... — M, D? —— M; D3, 5% xz, I — M,;
only contains E 1 , and 1l com-
pt (32,0%?) (1,0I)
ponents.

Definition 14.36. We call a component Y in Lemma 14.38 an elementary building block of
type (2, D?).

We represent an elementary building block of type (2, D?) by a polyhedron.
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Example 14.37. The following is a model example of an elementary building block of type
(2, D).

Figure 14.8: A representation of an elementary building block of type (2, D?)

D* — Mi[
In this example, there are four | | components, ¢ € {1,...,4}, which are
pt
DS — Mjg
represented by vertices, and six 1 components, ¢ € {1,...,6}, which are
(1,01)

represented by edges. Denote the union of all M;, and M;, by W. W is represented by

D2 — M, ko
the 1-skeleton of the tetrahedron. There are four 1 components, ¢ €
(57,05
{1,...,4}, where Eié =~ D% Each face of the tetrahedron represents attaching M, to W
along the D?-bundle over 02%@. Let Y be the union of all components. Y is represented by
the tetrahedron. We have that Y is a D?-bundle over S%. 9Y is identified with a boundary

St —— M,

component of 1 , for some p, so that dD?-fibers of Y coincide with S*-
(X%, 0X°)
fibers of M,,.
D ... — M, D* —— M;
From Lemma if 13.30, M, = 1 only intersects 1 ,
pt (32,0%7%)
D3, 8% xg, [ — M; St— M,
1l , and 1 components, then M, = D* +CP2?# D*
(1,0I) (X3,0X3)

52 X 49 D2, or 52 X 74 D2.
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D*, +CP*# D",
2 D2, S2 D2 M;
Lemma 14.38. Let {M;}ica, be a collection of 5% X9 D?, 5% Xz, l compo-
pt
D? —— M; D352 xg, [ — M
nents such that M; only intersects 1 , 1l , and
(¥2,0%2) (1,01
St— M;
1 components (as in Lemma 13.30).
(X?,0X7)
D3,5% xz, I — M;
Let {M,};ea, be a collection of 1 components such that both
(1,0I)
D3,5% xz, I — N; o
fibers of || are contained in | |;c 4, OM;.
ol
D? —— M, D* — Ny,
Let { My }rea, be a collection of 1 components such that 1
(X2,0%?) %2
D? — Nkl
are contained in (Uier 8MZ-) Us (|_|l.€A1 8Mj). Note that OM,;, = 1 U
02
St —— Nk2
1
(X%,0%2)
St—— M,
Let Y be a connected component of M — |_|p l such that 'Y only

(X?,0X7)
intersects components M;, i € Ao, M;, j € A1, and My, k € Ay, i.e. Y C (|_|

<|—|jeA1 Mj) U (l_lkeAk Mk)-

PutW =Y — (|_|k,eA2 Mk) and write W = | |, W, where Wy is a connected component of
W.

Then, the following holds.

i€Ap M'L) U
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(1) Wy can be represented by the 1-skeleton of a polyhedron so that each vertexr represents
a component M;, for some i € Ay, and each edge represents a component M;, for some
JjeE AL

(2) Y can be represented by the disjoint union of polyhedrons so that each connected com-
ponent of the 1-skeletons represents Wy, for some £, and each face represents attaching

D? — Nk1
a connected component of I E for some k € Ay, to W.

02

(3) Y admits an F-structure whose restriction to OMy has positive rank.

(4) QY is the total space of S*-fibers over a closed surface. As a part of M, Y is identi-

St— M,
fied with a boundary component of 1l , for some p, so that S*-fibers

(X3,0X%)
coincide.

Proof. Here we prove parts (1), (2), and (4). The proof of part (3) is given in the next
subsection.

(1), (2). For simplicity, we assume that Y is the only connected component of

St— M,

M -], 1 that only intersects components M;, i € Ay, M;, j € Ay, and
(X?,0X7)
My, k € A,.
From Lemma 13.30, for each i € Ay, OM; = A; Uy B;1 or AUy (B;1 U B, ) where A; is a
Sl — Nj D2 — NJ
subbundle of I for some j, and B, ;, k € {1, 2}, is a component Rk
0x3 o0x?

for some j, or a 3-manifold which is represented by a cycle graph G; so that each vertex
D3, 5% xz, I — N;

represents a fiber of I for some j € A;, and each edge represents a
ol
. D? — Nk
D?-subbundle E* = D? x I of | | for some k € A,.
ox?

D? 8% xg, I — M;
By Lemma 13.4, each fiber of 1l contains exactly two D?fibers

(1,01
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D? —— Mkl D? —— MkQ
of and , for some k; and ky. By connectedness,
{ {
(32,0%7%) (32,0%?%)

each M;, j € Ay, contains two copies of D? x I so that each D?-fiber is contained in a

D3, 8% x5, [ — M;

D3 or S? xz, I-fiber of L . The two copies of D? x I coincide
(1,01)
D2 _— Mkl D2 _— ng
with M; N 1 and M; N 1 , for some ki, ko € Ay. Put
(X2%,0%?) (X2 0%?)
- D2 —_— Mkl - D2 —_— Mkl
Ejl = Mj N J/ and Ej2 = Mj N J/
(32, 0%2) (52,052)

Let {M;};c4¢ be the collection of all M;, i € Ao, such that M; C W, and {M;};c 4 be
the collection of all M;, 7 € Ay, such that M; C W,. Let X C W, be the union of all
D2%subbundle E' 22 D? x [ contained in dM;, i € Af, and all E;, = D2 x I and Ej, = D2 x [
contained in OM;, j € AY. Then, X is a disjoint union of copies of D? x S'. As a part of M,

o . D? — Ny
each connected component of X is identified with a connected component of E

02
for some k € A,, so that D?-fibers of X coincide with D?-fibers of Nj,.
We represent each M;, i € Af, by a vertex and each M;, j € A%, by an edge. A vertex v
connects to an edge e; if and only if M; N M; # &. From the above construction, the union
of all vertices and edges is the 1-skeleton of a polyhedron so that each face corresponds to

e . D?* — N
identifying a connected component of X with a boundary component of E for

0?2
some k € A,.

(4). Tt follows from the compatibility of fibers in Lemma 13.6, Lemma 13.24, and Lemma
13.30, and from the construction in the proof of part (1) and part (2) that 9Y is the total
space of Sl-fibers. By connectedness, dY is identified with exactly one boundary component

S — 5 M, ¢
of 1l , for some ¢, so that their S'-fibers coincide. O
(X?,0X7)
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Figure 14.9: Example of the configuration of an elementary building block of type (2, D?)
and its representation. Each D?-bundle over a circle (a connected component of X) is

D? — Nk
identified with Ik for some k. There are four D?-bundles over a circle, which

oy?
are represented by the four faces of the tetrahedron.

14.5.1 Proof of Lemma 14.38 (3)

In this subsection, we give a proof of Lemma 14.38 (3).

D3 — M]
Put Z=Y — (I—lier MZ) First, we assume that for all j € Ay, M; = 1
(1,01)
>~ D3 x I. We will show that Z is the total space of D?*-fibers over a surface. Z is not
necessary connected.

Case M; = D* x I, for all j € A;
By the same arguments as in the proof of Lemma 14.38 (1) and (2), each M;, j € A;, contains

~ D2 _— Mkl R D2 N Mk2
E; = M;N i} %DQXIandEjQZMjﬂ 1 ~ D?x],
(22,822) (22,822)

for some ky, ko € As, so that each D?-fiber is contained in the boundar}L of a D3-fiber of
M. Therefore, we can consider M; = D3 x I as (D? x [0,1]) x I so that Ej, coincides with

(D? x {0}) x I and E}, coincides with (D2 x {1}) x I. In particular, M; is the total space
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of D?-fibers whose fibers coincide with fibers of My, and M, along the overlaps. It follows
that My, U M; U My, is the total space of D*fibers.

Figure 14.10: M; = D? x [ as (D?* x [0,1]) x [

By applying the above argument to every M;, j € Ay, such that M;NZ # &, we have that
Z is the total space of D*-fibers over a surface (3%,0%%), for some surface ¥%. Moreover,
the total space of D*-fibers over %% is contained in | |, 4 M;.

Without loss of generality, assume that Y has one connected component. In particular,
M;NZ # @, for all i € Ay. From Lemma 13.30, 0M; = S or S? x S'. Next, we study
Z Uy M;. We have the following cases.

(i)

(i)

M; = D*.
Sl — Nj
From Lemma, 13.30, OM; = AUyB; where A = S'x D? is a subbundle of I
0x?

for some j, and B; = S x D? is identified with a D?*-bundle over a boundary com-
ponent of ¥%. The union is so that (S',-) C 9A is identified with (-,0D?) C 0B;.
By extending this attaching map to M;, we can consider M; as ¥? x D? where ¥? is
a 2-disk and B is identified with %2 x D2 In particular, D?-fibers of M; and Z
coincide. Then, Z Uy M; is the total space of D*-fibers over the surface ¥? Uy ¥22, where
the 2-disk 37 attaches to a boundary component of ¥%. Hence, Z Uy M; is the total
space of D2-fibers over a surface.

M; = £CP*#D*.

Since M; N Z = OM; N 07, the same construction as in the case M; = D* applies. We
have that Z U M; = (Z U D*)#(+CP?).
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(iii)

(iv)

Mi >~ St x D3,
In this case, OM; = S' x S%2. From Lemma 13.30, OM; = B; Uy A Uy By where
Sl — Nj
A ST x(S'x]0,1]) is a subbundle of N , for some j, and By, By 2 S'x D?
0Xx3

are identified with two D?-bundles over a boundary component of ¥%. The unions are
so that an S'-fiber S* x ({-} x {0}) C A is identified with (-,0D?) C 9B, and a fiber
St x ({-} x {1}) C A is identified with (-,0D?) C 0B;. By extending this attaching
map to M;, we can consider M; as X2 x D? where X7 is a cylinder and By, k € {1,2}
is identified with a connected component of 9%? x D?. In particular, D*-fibers of Z
extend to M;. Then, Z Uy M; is the total space of D?-fibers over the surface 32 Uy X%
where Y2 2 S x [ connects two boundary components of ¥%. Hence, Z Uy M; is the
total space of D?-fibers over a surface.

Mi >~ §?2 x D2,
In this case, OM; = S' x S%2. From Lemma 13.30, OM; = B; Uy A Uy By where
Sl — Nj
A= S x (S xT)is asubbundle of N , for some j, and By, By = S! x D?
ox?3

are identified with two D?-bundles over a boundary components of ¥%. Denote the
two boundary components of ¥4 by oy and oy respectively. Then, By, k € {1,2}, is
identified with o, x D* C Z. We note that the D?-factor of By, k € {1,2}, is contained
in the S2-factor of M; while the S'-factor of B, coincides with the dD?-factor of OM;.

For k € {1,2}, let Uy, be a neighborhood of o3, x D? in Z so that Uy = (o, x D?) x [0, 1).
Then, Uy, is a D*-bundle over a cylinder o}, x [0,1) where o}, x {0} is identified with
By.. By the same plumbing construction as in the proof of Lemma 14.14, we have that
U UM; UU, = (32 x D?)(S? x D*)0(33 x D?) where X2 = (0, x [0,1)) U D? and
the union by gluing o4 x {0} to D?. That is 37 = D?.

M; =2 (S?<I)xI or (RP? x S")xI.
In this case, OM; = S' x S?2. From Lemma 13.30, OM; = B; Uy A Uy By where
St — N,

J

A S x (8! x 1) is a subbundle of N , for some j, and By, By = St x D?
0x3
are identified with two D?-bundles over a boundary components of ¥%. Denote the
two boundary components by o1 and o, so that By, k € {1,2}, is identified with
O X D?>c Z.
D?—— 7
For k € {1,2}, let V} be a subbundle of Z = 1 so that V, & D? x
(X%, 0%%

(0% %[0, €)) where o4 % [0, €) denotes a neighborhood of oy, in ¥%. Let U = ViU M;Up V.
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We have that U is an open neighborhood of M; in Z Uy M;, Vi N M; = By, and
VoNM; = B,.

Let U —"— U be a double covering. Then, U= ‘71 U ]\/Z U ‘72 where ]\A/[/l is a double
cover of M; and ‘~/k, k € {1,2}, is a double cover of V. We will show that there are
local S'-actions on U that are compatible with 7.

Consider that M; = (S? x SY) x I. We will refer to each (5% x S')-fiber of M; by
(5% x S%) x {t}, for some ¢ € [0,1]. For each k € {1,2}, Vj, is the union of two copies of
D?x (01,x[0, €)), which we denote by V4 (0) and V;(1). Then, 7(V,(0)) = 7(Vx(1)) = V;.
V,(0) attaches to M; along (5% x S') x {0} so that each D>-fiber of V;(0) is contained
in an S%-fiber of (S2 x S') x {0} C OM;. Vi(1) attaches to M; along (S? x S?) x {1}
similarly.

Let Ly = (D? x §%) x [0,1] be a submanifold of M; so that for each s € S' and
t €[0,1], (D? x {s}) x {t} C Ly is contained in (52 x {s}) x {t} C M;. Additionally,
(D2 x %) x {0} coincides with V4 (0)NM; and (D2 x §1) x {1} coincides with V4 (1)NM;.
In particular, ‘71 UL, = V1(0)UL,UV;(1) is the total space of D?-fibers over a cylinder.

In other words, D?-fibers of V; extend to L,. Let L, be constructed in the same manner
so that (D? x S') x {0} C Ly coincides with V5(0) N M; and (D? x S') x {1} C L,
coincides with V(1) N M;. Then, Vo U Ly = V5(0) U Ly U V(1) is the total space of
D2-fibers over a cylinder.

Put Q = U—[(VaULy)U(VaULy)]. Then, Q = ((S2—2D?)x S1) x I = ((S*xI)x 1) x1.
We have that U = L; Uy Q Uy Ly where the unions are so that (9D?)-fibers of dL; and
OL, coincides with (S, -, -, -)-fibers of Q.

Let St act on @ by rotations on the first S'-factor and act trivially on other factors.
Let S' act on Ly, k € {1,2}, by rotations about the center on the D*factor and act
trivially on other factors. Consequently, we get local St-actions on U = L; Uy Q Ug Lo
that are compatible with 7 and with local S 1—actiNons on Z. In particular, the images
under 7 of the orbits of the local S*-actions on U coincides with S!-fibers of OU.

Case M; = (S% xz, I) x I, for some j € A;

S2 X7 I — Mj
Next, we assume that there exists M;, j € Ay, such that M; = 1
(1,01)
(8% xz, I) x I. From Lemma 13.30, if a component M;, i € A; intersects M, then
M; = S? x4y D? or S? xz, D?. M; & S? x5 D? if M; intersects with exactly one M; =
(52 xz, I) x I, for some j € A;. M; = 5% xz, D? if M, intersects with exactly two
M, = (8% xz, I) x I, for some j; € Ay, k € {1,2}.

I
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Let Aj, be the collection of i € Agy so that M; = S? x 15 D? or S? Xz, D* and let A} be
the collection of j € A; so that M; = (S? xz, I) x I. Put X = (|_|Z.6 P Mi> U <|_|jG « Mj)

and Z =Y — X. Write X = |_|q X, where X, is a connected component of X. Then, X, can
be written as

Mj MJ' M; 1
X, = M;, —— M, —2— ... 2L M, (14.39)
or
M; M; M;,
X, =M, — M, —2- ... =L M, (14.40)
de

Mj,
where Mlk e Mz
M, O M,

w1 denotes the union M; Uy M;, Uy M;
are the two fibers of (5% xz, I) x I C M;.

so that M; N M;, and

k+1

k+1

. My, M; Mjy_y
(1) Case Xq = Mz — Mz cee Mz
M;, =~ S? x 49 D* and M;, = S* xz, D? for k ¢ {1,d}. As in the proof
of Lemma 143, if Mlk = Mik+1 = SQ X7 DQ, then Mlk Us Mjk Us Mik+1 = <52 X774 ]) x 1.
Therefore, X, = (5% X 12D?)Up((5%x 2, 1) x I)Us(S? X £2D?). By the same arguments as
in the proof of Lemma 14.3 and from Lemma 2.13, X, & (S*x.S?)#D* or (S*xS%)#D*.

It follows that Z U X = (Z U DY)#(S? x 52) or (Z U D*)#(52x52).

In this case, M,

419

2

. M; M; Mjy_y
(ii) Case X, = M,; —— M;

\_/

M;

M.

1d

m

In this case M;, = S? xz, D?* for all k. As in the proof of Lemma 14.3, M;, Us M;, Us
M;, ., = (S? %z, I)x I. Thus, X, is diffeomorphic to an (S? Xz, I')-bundle over S*. By

k+1 ~
the same arguments as in the case M; = (S?xS')x I, there is a double cover U of a
neighborhood U of X, and there are local S'-actions on U which are compatible with

the covering map and local S'-actions on Z.
Assemble all components

Lastly, we assemble all components. Let Aj be the collection of i € Ay such that M; = D
+CP?#D*, 5? x D?, or S* x D3. Let A} be the collection of j € A; such that M; = D? x I.

Put Vi = (Llieay M) U (Ujeny Mi) U (Upe, Me) and Yz = Y = ¥i. From all cases
above, we have that

Y1 = (plumbings of D*-bundles overXy, )#n; (CP?)#ny(—CP?)#n3(S* x S%)  (14.41)
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where Effl is a surface and for some integers nq,ns,n3 > 0. Additionally, Y5 NY; is the
disjoint union of copies of S x D? and Y, admits an F-structure which is compatible to the
standard local S'-actions on D?-fibers of Y;.

From Lemma 2.30, plumbings of D?-bundles over a surface admits a T-structure. Away
from the plumbing locations, the T-structure restricts to local S'-actions by rotations about
the center on each D?-fiber. Paternain and Petean [21, Theorem 5.9] showed that the con-
nected sum of two manifolds which admit a T-structure also admits a T-structure. Therefore,
Y; admits a T-structure which restricts to the standard local S'-actions on a D?*-bundle over
a neighborhood of 82%1. Therefore, Y = Y7 Uy Y3 admits an F-structure whose restriction
to Y has positive rank. This completes the proof of Lemma 14.38 (3).

Example 14.42. In this example, Y = (5% x,, D*)0(S? x D*)(S? x,, D?), for some
wi,wy € Z. All vertices represent a manifold diffeomorphic to D* except one vertex which
represents a manifold diffeomorphic to S? x D?.

D4

P<p

S5? x D?

Figure 14.11: A representation of an elementary building block of type (2, D?)

14.6 Elementary building block of type (1, 5! x D?)

Sl—>Mg

In this section, we consider a connected component of M — | |, 1l that
(X3,0X3)
DY ... — M; D?, 8% Xz, I — M,
only contains 1 and 1l components.
pt (1,01)

Definition 14.43. We call a component W in Lemma 14.46 an elementary building block
of type (1,5 x D?).

We represent an elementary building block of type (1, S! x D?) by a graph.
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Example 14.44. The following is an example of an elementary building block of type
(1,S' x D?).

V2 U1 Uy

1

U3

Figure 14.12: A representation of an elementary building block of type (1, S x D?)

D4 — Mig
In this example, there are three 1 components, ¢ € {2,3,4}, which are
pt
T? x D* — M,,
represented by the vertices vy, v3, and vy, respectively. There is one 1
pt
St x D* — M,
component, which is represented by the vertex v;. There are three 1l
(£,01)

components, ¢ € {1,2,3}, which are represented by edges. Let W be the union of all
components. W is represented by the graph above.

St x D?* — M,
The topology of W depends on how each 1 component attaches to
(1,01)
D* T? x D* — M,,
1 components. For example, W can be diffeomorphic to a 4-manifold

pt
with plumbing diagram

D' —— $2xD? —— T2x D? —— §?x D2 —— D*
(14.45)

S?x D> ——— D*

Moreover, OW is the total space of S'-fibers and OW attaches to a boundary component of
Sl E— Mk
1 so that S'-fibers coincide.
(X?,0X7)
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D47 R MZ
Lemma 14.46. Let {M,}ic, be a collection of | | components such that M;
pt
51XD2,T2 XZQI—>M]‘ Sl—>Mj
only intersects 1 and 1 components (as
(1,01I) (X3,0X3)

in Lemma 13.38).

St x D*T? Xz, I — M;

Let {M;}jea, be a collection of 1 components such that
(Z,0I)
St x D*,T? xz, I — N,
both fibers of || are contained in | |, 4, OM;.
ol
St— M,
Let W be a connected component of M — |_|p 1 such that W only
(X%,0X°)

intersects components M;, 1 € Ay and M;, j € Ay, i.e. W C (I—lier Mz) U <|_|].€A1 Mj>.
Then, the following holds.

(1) W can be represented by a graph so that each vertex represents M;, for some i € Ay
and each edge represents M;, for some j € A;.

(2) W admits an F-structure whose restriction to OW has positive rank.

(3) OW s the total space of S*-fibers. As a part of M, OW is identified with a boundary
Sl E— Mk
component of 1l , for some k, so that S'-fibers of OW coincide with
(X3,0X°)
St-fibers of M.

Proof. Here we proof parts (1) and (3) of the lemma. The proof of part (2) will be given in
the next subsection.

(1). We construct a graph to represent W as follows. Let G be a graph such that
each vertex v; represents a connected component M;, for some i@ € Ay, and each vertex e;
represents a connected component M, for some j € A;. A vertex v; is incident to an edge
e; if and only if M; N M; # .

(3). It follows from compatibility of fibers in Lemma 13.5 and Lemma 13.38, and from
the configuration in part (1) that OW is the total space of S'-fibers. By connectedness, OW
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S 1 — M, k
is identified with exactly one boundary component of 1l , for some k, so

(X?,0X7)
that their S!-fibers coincide. O

14.6.1 Proof of Lemma 14.46 (2)

In this subsection, we prove Lemma 14.46 (2). For simplicity, we assume that W is the only
St—— M,
connected component of M — |_|p L that only intersects components M;,
(X2,0X%)
1€ .A() and Mj, j S Al.
Sl X D2 — M]
First, we assume that for all j € Ay, M; = 1 ~ (S x D?) x I.
(1,0I)

Case M; = (S* x D?) x [ for all j € A

D4, R Mz
Let M; = i i € Ap. From Lemma 13.38, OM; = A; Uy (L], C;,s) where:
pt
Sl — Nk
(i) A; is a subbundle of | | for some k.
ox?
- o a - St x D* — M; ,
1,5 — ) 1
(i) C;s =S x D? is a fiber of 1 for some j € A

ol
(iii) OC; s = T? is identified with a boundary component of A;.

Sl e Az
Because 0M; is connected, A; is also connected. Thus, A; is a subbundle )
S 1 — N, k . .
of 1 for some k. We will refer to a boundary component of A; which attaches to
ox3
Cis by S' X 0; 5, where 0; 5 is a boundary component of $% . Let ¢;, : S x 0D? — S' x 0y

gaci,s
be the attaching map. Up to isotopy, there are three possibilities:
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(a) ¢is maps (-,0D?) C 9C; 4 to (S*,-) C ST x 0y 4.
(b) ¢is maps (-,0D%) C IC;, to (-,08% ) C S X 0y

(¢) ¢;s maps (-,0D?) to a circle of slope g, where p,q # 0, in S x 0, .
p

St x D* — M; S x D* — N;
For each M; = 1 , J € Ay, the two fibers of || are
(Z,0I) ol

attached to M;, and M,;,, for some iy, 15 € Ay, respectively. From the compatibility of circle
fibers in Lemma 13.5 and Lemma 13.38, the two attaching maps ¢;, 5, and ¢, 5, from M,
and M;, to M; must be the same type.

Attaching map of type (a): Suppose that there exists C; s so that ¢; s is an attaching
map of type (a), i.e., ¢, sends (-,0D?) C 9C;, to (S',:) C S' x ;5. From explicit

D4, el Mz
constructions in [11] and from the classification of || in Table 13.1, M; has

pt
at most two attaching maps of type (a). In particular, if M; has exactly one ¢; ¢ of type (a)
then OM; = S? RP3 RP*#RP?, or L(|w|,1), w € Z. If M; has exactly two ¢; s, and ¢; 5, of
type (a) then OM; = S? x S'.
Let X be the union of all M;, j € Ay, such that there exists M;, i € Ay, where the
attaching map from M; to M; is of type (a). Write X = || X, where X,, is a connected

component of X. Let G, be a graph representing X,,, (as constructed in Lemma 14.46 (1)).
Then, G, must have one of the following forms.

(i)

Gy = 11 Vg e Vg (14.47)
where vy and v, represents M;, and M, so that OM;,,0M;, = S RP3 RP3#RP3, or
L(Jw|,1), w € Z, and vy, k ¢ {1, s}, represents M;, so that IM;, = S* x S*.

(ii)
G — o, o . oy (14.48)

\/

where and vy, represents M;, so that dM;, = S?x S! for all k. If for all k, M;, = S'x D3
then X,, = T? x D?.

If X,, 2T?x D?2= 5" x(S!x D?), then there exists a T*-action on X,, by the standard
T*-action on the (S' x D?)-factor and by the trivial action on the S*-factor. Otherwise, by
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the same constructions as in the proof of Lemma 14.14, X,, admits an F-structure whose
restriction to 0X,, is of positive rank.

Consequently, in order to construct an F-structure on W, we can assume without loss of
generality that for all attaching map is of type (b) or (c).

Attaching map of type (b) or (c): Let M;, i € Ay, and M;, j € Ay, be such that
M; N M; # @ and the attaching map from M; to M; is of type (b) or (c). In each of the the
following cases, we will show that M; Uy M; admits an F-structure which is compatible with
fibration structures on other components it intersects with.

Each M;, j € A, intersects with two components M, and M,,, i1,is € Ag. From the
compatibility of circle fibers in Lemma 13.5 and Lemma 13.38, and the following construc-
tions, we will have that the F-structures on M;, Uy M; and M;, Uy M; can be combined.

As a result from all cases, we will have that W admits an F-structure.

(i) M; = S%x, D? w € Z.

A list of S'-actions on S? x,, D? is given in Section 2.5. The orbits of the S'-actions
on OM; = L(|w|, 1) coincide with Seifert orbits on L(|w],1). In particular, there are at
most two attaching maps of type (c).

Let M;, j € Ay, be such that M; N M; = C;;. We consider M; as (S* x D?) x [0,1]
so that (S' x D?) x {0} coincides with C;;. We use the coordinates ((e",re"?),t),
Y1,7Y2 € [O, 271'), t e [0, 1], on Mj.

If the attaching map ¢; 1 is of type (c), then it introduces an exceptional orbit with orbit
invariant (u,v) on M;. In this case, let ¢; : ST x[(S'x D?) x[0,1]] = (S*x D?) x [0, 1]
be an S'-action on M; so that

Gy {0} x (€7, 7e2), 8) o (019 el Oro0) ), (14.49)

If the attaching map ¢;; is of type (b), then let ¢; : S' x [(S* x D?) x [0,1]] —
(ST x D?) x [0, 1] be an S'-action on M; so that

vy {0} x (€7, reM2),1) = (109 reh2) 1) (14.50)

In both cases, the orbits of 1; on M; and the orbits of the S'-action on M; coincide
along M; N M; = OM; N OM;. If the S'-actions do not agree, then they generate a
T?-action with orbits of dimension one on a neighborhood U of M; N dM; which is
compatible with both S'-actions. If the T2-action is not effective, then we pass to a
quotient to get an effective S'-action on U.
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(i)

(iii)

(iv)

M, = D*.

Consider M; = D* as D? x D? with coordinates (re™, se2), v, v, € [0,27). Let 1.,
be an S'-action on M; defined by

Uyw : {0} X (rem, sem) — (rei(71+“0), rei(72+”9)) (14.51)

for some (u,v) € Z*. The restriction of v,, to dD* = S3 gives a Seifert fibration
S3 — 53/, =2 S?. The orbit space is (D*)* & D3 with one interior fixed point and
possibly at most two exceptional segments whose endpoints are the fixed point and an
exceptional orbit on the boundary 9(D*)* = S2.

We construct an S'-action on Mj, j € A;, that connects to M; as in case (i).

Mi = Sl X Dg.

In this case, 9M; = S x S%. The Seifert orbit of S x S§? is either S? with no exceptional
orbits or S? with two exceptional Seifert orbits of the same order. In the first case,
there is an S'-action by rotations on the S'-factor and by the trivially action on the

S2-factor. This action extends to S x D? so that S* acts by rotations on the S*-factor
and acts trivially on the D3-factor.

In the second case, there is an S'-action on M; which is obtained from a quotient of an
Sl-action on S% x R where S' acts on the S?-factor by a screw motion of finite order.
Extend the screw motion on S? to D3 to get an S*-action on S* x D3. The orbit space
of this action is D? with one exceptional segment with two endpoints on the boundary
oD® = 52,
We construct S*-actions on M;, j € Ay, that connects to M; as in case (i).
Mi ~ T2 x D2
In this case, OM; = T3 whose Seifert orbit space is 72 with no exceptional orbits.
Hence, all attaching maps are of type (b). From Lemma 13.38, OM; = A U (|_|] Cj)
where A is the total space of S'-fibers over a surface ¥4 whose fibers coincide with
St —— Mk
fibers of 1 , for some k, and C; = S' x D?. We consider OM; = T3
(X°,0X7)
as the total space of S! fibers over T?. Denote the base T? by S} x S} and denote
the fibers by S}. Then, OM; = S) x Sy x S} where X3 C Sy x S} and the Sj-factor
St —— Mk
coincides with fibers of 1 , for some k.
(X?,0X7)
OM,; = T?% x dD?. Up to isotropy, the (9D?)-factor either coincides with the Si-factor
or with the S}-factor. If the 9 D*factor coincides with the Sy-factor, then the T*-factor
coincides with Sy x S;. Let S* act on M; = T? x D? by acting trivially on the D*-factor
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and acting on T? by rotations along the S}—factor and trivially along the S}-factor. On
M; = (S' x D?) x I, j € Ay, that connects to M;, we let S act by rotations on the
Sl-factor and act trivially on other factors. In particular, the orbits of S'-actions on
M; and on M; coincide along M; N M; = OM,; N OM; = Cj. If the S'-actions do not
agree, then they generate a T%-action with orbits of dimension one on a neighborhood
of OM; N dM; that is compatible with the two S'-actions. We pass to a quotient to
get an effective Sl-action if the T?-action is not effective.

If the d D*-factor coincides with the Sj-factor, then the T-factor coincides with Sy xSy
We consider M; =2 T? x D? as a D?-bundle over T?. By the same plumbing construction
as in the proof of Lemma 14.14, we have that M; U M; = (T* x D*)00(X3 x D?) where
Y2 = D? (0%3,) is identified with (S',-) x {0} C M;j. Let Aj be the collection of all

J € Ay such that M; N M; # @. Then, M; U (UjeAg Mj> is a plumbing of T2 x D?

with copies of D?-bundles over D?. From Lemma 2.30, M; U <|—|J€Ai Mj) admits a
T-structure.

Mi = S2 X Zs D2, (52 X D2)/ZQ, or T2 X7 Dz.

For each M;, j € A, such that M; N M; = OM,; N OM; # @, we consider M; as
(ST x D?) x [0, 1] where (S* x D?) x {0} coincides with 9M; NOM;. Let U; be an open
neighborhood of M; so that V;; = U; N M; is an (S* x D?)-subbundle of M;.

Let [71 —"— U; be a double covering. Then, [71 = ]\72 U <|_|] \7”) where 17” is a

double cover of V; ; and M, is a double cover of M;. U; = M; = S? x D2, 8% x_, D2,
or T? x D?. By the same arguments as in cases (i) and (iv), U; admits a T-structure
which is compatible with 7. Therefore, U; admits an F-structure.

M; = (RP? x SYXI, (S?xSY) x I, BpxI, k € {1,2,3,4}.
We have that
5% x ST if M; =2 (RP? x SY)xI or (S?xS") x I,
OM; = ¢ T8 if M; = BpxI, ke {1,2}, (14.52)
Go if M; = BpxI, ke {3,4}.

Let A} be a collection of j € A; such that M;NM; = OM;NOM; # @. We will consider
M;, j € Ay, as (S* x D?); x [0,1] where (S* x D?); x {0} coincides with OM; N OM;.
From Lemma 13.38, OM; = A U (UjeAi C'j> where A is the total space of S'-fibers

St —— Mk
over a surface ¥4 whose fibers coincide with fibers of 1l , for some
(X?,0X7)
kf, and Cj = 8M, ﬂ@M] = (Sl X D2)j X {0}
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Let U; be an open neighborhood of M; in W so that V; = U; N M; is an (S' x D?)-
subbundle of M;. Let (71 —"— U; be a double covering. Then, U = ]\Z U (ng \N/]>

where ‘7j is a double cover of V; and ]\Z is a double cover of M,. We have that

—

M; = OM; x I. That is M; = (S2 x SY) x I, T® x I, or Gy x I. We will refer to a
(OM;)-fiber of M; by (9M;) x {t} for some t € [0,1]. Write ‘N/J = V;(0) U V;(1) where
7(V;(0)) = n(V;(1)) = V;. Put C;(s) = V;(s) NOM; x {s} for s € {0,1}. Then,
m(C5(0)) = (C;5(1)) = C;.

For each j € Al, let C; be a subset of M; so that C; = (S* x D2) x [0,1] and for all
€ [0,1], (S* x D?) x {t} C C; is contained in dM; x {t}. We also require that for
each s € {0,1}, (S x D?) x {s} coincides with C;(s). It follows that V;(0) U C; U

St—— A

Vi(1) = (S x D?) x I. Moreover, M; — <|_|jeA§ Cj) & 1 x [0, 1].
(¥%,05%)
St— 9A
Each connected component of 1 | x{t} coincides with the boundary of an
52

(ST x D?)-fiber of C;, for some j € A’.
There are local S'-actions on M; — (L;e A C;) whose orbits coincide with S*'-fibers
St—— A
of 1 x [0,1]. Let ¢; be any S'-action on V;(0) UC; U V;(1) =
(5%, 0%3)
(S' x D?) x I which is compatible with m and whose restriction to d(S* x D?) x I is
free. As a result, we get local S'-actions on U; that is compatible with 7.

From all cases above, we have that if M; = (S x D?) x [ for all j € A;, then W admits
an F-structure whose restriction on W has positive rank.

Case M; = (T? xz, I) x I for some j € A,

T? Xz, I — M;
Next, we assume that there exists j € A; so that M; = l > (T2 Xz, I)x
(1,0I)
I. Let Aj be the collection of j € A; such that M; = (T? xz,I) x I. Let Aj, be the collection
of i € Ag such that M; N M; # @, for some j € A}.

Put Z = (L M; ) Us (Lse.q, M; ). From Lemma 13.38, for all i € Aj, OM; = §? x 5%,

RP3#RP?, L(lw|,1)/Za, or Go. From the classification of Seifert manifolds ([17, 27]), a
Seifert orbit space of S?/T", T3 /T, or (S? x S')/T" contains at most four exceptional orbits.
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Since T? Xz, I C dM;, introduces two exceptional orbits of the same order, each M;, i € Aj,
connects to at most two M;, j € A}.

Write Z = | |, Z,, where Z,, is a connected component of Z. It follows that either

M; Mj,_4

M.

1d

(14.53)

or

(14.54)

M; .
where M; —— M;,, denotes the union M;, Uy M;, Uy M;, ., so that M; N M;, and
M;, N M, are the two fibers of (T? xz, I) x I C dM;. In the first case, OM;, =
RP3#RP3, L(|w|,1)/Zs, or Gy for k ¢ {1,d} and OM,;,, OM;, = S*x ST RP3#RP3, L(|w|, 1)/Z,,
or Gy. In the second case, OM;, = RP>#RP? L(|wl|,1)/Zs, or G, for all k. We construct an
F-structure on Z,, as follows.

k+1

For each jy, let ]\Zk SRE/IN M;, be a double covering. Then, ]\Zk ~ (T?xI)xI. Let T?
act on ]\Zk by the standard action on the T?-factor and by the trivial action on the I-factors.
By the compatibility of fibers from Lemma 13.5, each ((7? x 9I),-)-fiber of (T? x I) x I is

Sl _— Mk
the total space of S!-fibers from 1l , for some k.

(X?,0X?)
For each iy, if M;, = S' x D3 or 5% x D?, then let ]\Zk = M,,. By the same construction
as in the proof of the case M; = (S' x D?)x I, there is an S'-action on M;, that is compatible
with the T2-action on ]\Zk Otherwise, we let ]\/Z,c N M;, be a double covering. Then,

M, = 82 x, D*,w e Z,T%x D, (5% x SY) x I, or Gs x 1.

If J\//v[% >~ S5?x,D? or T?x D?, then a similar construction as in the case M; = (S x D?)x I
gives an S'-action on ]\Zk Since S? x St and G, are the total space of S!'-fibers, if ]\A/[/Zk =
(S% x SY) x I or Gy x I, then there is an S'-action on M;, whose orbits coincide with the
Sl-fibers on the S? x St or Go-factor. From Lemma 13.38, ]\Zk ﬂ]\Zk = 8]\%,6 ﬂﬁj\zk >~ T2x]
where each T?-fiber is the total space of S!-fibers of 8]\7[/%. Therefore, the S'-action on ]\Zk
is compatible with the T?-action on ]\Zk along their overlap.

As a result, Z,, admits an F-structure. By the same arguments as in the case M; =
(S x D?) x I, the F-structure is compatible with S'-actions on all M; = (S* x D?) x I such
that Z,, N M; # @.
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From all cases, we have that W admits an F-structure whose restriction on W has
positive rank. This completes the proof of Lemma 14.46 (2).

14.7 Combining elementary building blocks of type (2, D?) and (1, S x D?)

Sl—>Mg

In this section, we show that a connected component of M —| |, 1l that
(X3,0X°)
D4,...—>Mj D2—>Mj D3,52X22[—>Mj

only contains E L , 1l , and

pt (32,9%2) (1,0I)
St x D*,T? Xz, I — M,;
1 components is the union of elementary building blocks of
(1,01)

type (2, D?) and elementary building blocks of type (1, S' x D?). We call such components
building blocks of type (2, D?) + (1, 5! x D?).

Definition 14.55. We call the manifold W in Lemma 14.57 a building block of type (2, D?)+
(1,S* x D?).

We represent a building block of type (2, D?) + (1, S' x D?) by a join of the polyhedrons
representing elementary building blocks of type (2, D?) (see Lemma 14.38) and the graphs

representing elementary building blocks of type (1, S x D?) (see Lemma 14.46) by identifying
some vertices of the polyhedrons with vertices of the graphs.

Example 14.56. The following is a model example of a building block of type (2, D?) +

(1,S' x D?).

Figure 14.13: A representation of a building block of type (2, D?) + (1, S! x D?)

In this example, we have an elementary building block of type (2, D?) represented by
a tetrahedron and an elementary building block of type (1,S' x D?) represented by a
graph with four vertices. The two elementary building blocks are joined via a component
St x D* — M;
l . In Lemma 14.57, we show that the resulting manifold W is the
(Z,0I)
plumbing of an elementary building block of type (2, D?) represented by the tetrahedron
and an an elementary building block of type (1, S! x D?) represented by the graph
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D4, . — M;
where the vertex v represents the component 1 connecting an elementary

pt
building block of type (2, D?) to an elementary building block of type (1, S' x D?). W is the

St—— M,
total space of S'-fibers. O is identified with a boundary component of 1

(X7, 0X7)
for some p, so that S'-fibers coincide.

D4 ... — M, D?* —— M;
From Lemma 13.41, if M, = l only intersects 1 ,
pt (¥2,0%?)
D3, 5% xz, I — M, St x D*T? xz, I — M; St— M;
1 , 1 , and 1 com-
(1,01) (1,01) (X3,0X3)

ponents, then My =2 D* £CP?*#D* S?x,D?, 5?x4,D?, S'xD? (RP3xS")xI,(S?*xS")x1,
or 2 x, D* weZ.

D4, .o — M,
Lemma 14.57. Let {M;};c, be a collection of | | components such that M;
pt
1 2
D? —— M, D3, 82 xz, [ — M, *;QXD[’ — M
only intersects 1 , l , X l ,
¥2 052 1,01
( ) ) ( ? ) (‘[7 a])
Sl _— Mj
and 1l components (as in Lemma 15.41).
(X°,0X7)
St— M,
Let W be a connected component of M — |_|p l such that W contains a
(X3,0X)
Sz E— Mj T2 — Mj
component M;, i € Ag, and W is disjoint from any 1 or 1

(¥2,052) (¥2,052)
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components. Then, the following holds.

(1) W can be represented a join of the polyhedrons representing elementary building blocks
of type (2,D?%) (see Lemma 14.38) and the graphs representing elementary building
blocks of type (1,S' x D?) (see Lemma 14.46) by identifying some vertices of the poly-
hedrons with vertices of the graphs. These vertices correspond to M;, for some i € Ajg.

(2) W admits an F-structure whose restriction to OW has positive rank.

(3) OW is the total space of S*-fibers. As a part of M, OW is identified with a boundary
Sl E— Mk
component of 1 , for some k, so that S*-fibers of OW coincide with
(X?,0X7)
St-fibers of M.
Proof. Here we prove part (1) and part (3) of the lemma. In the next subsection, we give a
proof of part (2) of the lemma.

D4, ... — M,
(1). Let M; = | | for some i € Ap. From Lemma 13.41, OM; =
pt
Sl — Nj
B Uy AUy C where A C ! is the total space of S'-fibers over a surface
0x3
Y2, B = St x D? (S'x D)#RP?, or (S' x D*)#(RP*#RP?), is the union of D*
D? — N; D3 8" xz, I — N; .
subbundles of | |; | | and fibers of | |; e and C' is a fiber
032 ol
St x D?,T? xz, I — N;
of N In particular, M; intersects both an elementary building
oI

block of type (2, D?) and an elementary building block of type (1,58 x D?).

It follows from the constructions in Lemma 14.38 (1) and Lemma 14.46 (1) that W can be
represented a join of the polyhedrons representing elementary building blocks of type (2, D?)
and the graphs representing elementary building blocks of type (1,S! x D?) by identifying
some vertices of the polyhedrons with vertices (of degree one) of the graphs. These vertices
correspond to M;, 1 € A,.

(3). It follows from the compatibility of fibers in Lemma 13.41, the conclusions of Lemma
14.38 and Lemma 14.46, and from part (1), that T is the total space of S'-fibers. By con-
St —— M,
nectedness, OW is identified with exactly one boundary component of 1l ,
(X?,0X7)
for some k, so that their S'-fibers coincide. O
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14.7.1 Proof of Lemma 14.57 (2)

In this section, we prove Lemma 14.57 (2). Without loss of generality, we assume that
W contains only one M;, i € Ay. Then, W — M; has exactly two connected components.
One connected component corresponds to an elementary building block of type (2, D?) (see
Lemma 14.38) and the other connected component corresponds to an elementary building
block of type (1,S! x D?) (see Lemma 14.46). Denote the connected component of W — M;
corresponding to an elementary building block of type (2, D?) by X (20 and the connected
component corresponding to an elementary building block of type (1, S* x D?) by X (15" xP?),
Hence, W can be represented as in the following figure.

X(1,ssz2)

x(2.0%)

Figure 14.14: A representation of a building block of type (2, D?) + (1, S! x D?)

We have that

W= X@D) U, 0, 2 x (18102 (14.58)
St x D*,T? xz, I — M; v .
where M; = L and M, —— X@O5xD%) denotes M; Uy

(101
M; Uy XB5XD%)  From part (1), dM; = B Uy AUy C where B coincides with X 2P%) 1 M, =
0X @D N OM; and C coincides with M; N XG5*D%) = 9Af; M 9x 15"<D%),

Case M; = (S' x D?) x I

From Lemma 14.38, we can assume that X @2% is a D2-bundle over a cylinder near 9X 2PN

OM;. Hence, we can apply the same plumbing construction as in the proof of Lemma 14.14.
Thus,

M; M;

X(l,SlxDQ))
(14.59)

W= X&DP)u, M, XWS'>D%) o (x2DY yy DYy O (M,

where the plumbing locations are contained in D* and M;.

From Lemma 14.38 and Lemma 14.46, X @2%) Uy D* is an elementary building block of
type (2, D?) and M; M xSxD?) g an elementary building block of type (1, S! x D?).

Additionally, they admit an F-structure whose restriction to a neighborhood of D* and M;
is a T-structure. In other words, the normal covers of open neighborhoods of D* and M;
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associated with the F'-structures are trivial. Since the plumbing locations are contained in
D* and M;, Lemma 2.30 implies that W admits an F-structure.

Case M; = (T? xz, I) x I

From Lemma 13.41, OM; = RP3#RP3 so M; = S? xz, D?. Let U be a neighborhood of
M; Uy M; in W so that V = U N X®P*) is a D>-bundle over a cylinder. Let U, —=— U,
be a double covering. Then, U= ]\Z Us ]\Z Us V where ]\//v[] ~ (T% x I) x I is a double cover
of M;, M; = S* x D? is a double cover of M;, and V is a double cover of V. V =V; UV,
where V; and V5 are D%-bundles over a cylinder and 7n(V}) = (V) = V. VN M; = S x D?,
ke {1,2}.

By similar constructions as in the proofs of Lemma 14.38 and Lemma 14.46, U admits
a T-structure which is compatible with 7, local S!-actions on X@D*) pear §X@P%) N oM;,
and the F-structure on X5 *P*) Therefore, U admits an F-structure which is compatible
with the F-structures on X5 2% and X @D, Hence, W admits an F-structure whose
restriction to OW has positive rank. This proves Lemma 14.57 (2).

14.8 Combining elementary building blocks of type (2,5?) and (2, D?)

Sl—>Mg

In this section, we consider a connected component of M — | |, 1 that
(X7, 0X7)
D4,...—>Mj D2—>Mj D37S2XZ2[—>MJ
only contains E 1 , 1l ,
pt (32,9%2) (1,0I)
S?—— M;
and 1 components.
(2%,0%2)

Definition 14.60. We call the manifold T in Lemma 14.62 a building block of type (2, 5?) +
(2, D).

We represent a building block of type (2,5%) + (2, D?) by a union of the polyhedrons
representing elementary building blocks of type (2, D?) (see Lemma 14.38) and the solid poly-
gons representing elementary building blocks of type (2, 5%) (see Lemma 14.3) by identifying
some edges.
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Example 14.61. The following is a model example of a building block of type (2,5%) +
(2, D?).

(2,5%)

Figure 14.15: A representation of a building block of type (2, 5%) + (2, D?)

In this example, we have an elementary building block of type (2, D?) represented by a
tetrahedron and an elementary building block of type (2, 5?) represented by a triangle. An
edge of the triangle and an edge of the tetrahedron are identified. In Lemma 14.62, we show
that the resulting manifold Y is the connected sum of an elementary building block of type
(2, D?) represented by the tetrahedron and an an elementary building block of type (2, 5?)
represented by the triangle.

dY is the total space of dD>fibers. 9Y is identified with a boundary component of

St— M,

1 , for some p, so that S'-fibers coincide with dD?-fibers of Y .
(X?,0X7)
1947 R MZ
Lemma 14.62. Let {M;}ic4, be a collection of | | components such that M;
pt
D? —— M; D3,5? xg, [ — M; S?— M;
only intersects 1 , 1 , 1 , and
(32,0%7%) (1,0I) (32,0%2%)
St— Mj
1 components (as in Lemma 13.50) or M; only intersects
(X?,0X7)
D —— M, D38 xz, T — M; St x D2, T? x5, [ —> M,
1 : | .|
(32,0%2%) (1,0I) (1,0I)
S2 E— Mj St —— Mj
1 , and 1l components (as in Lemma 15.62).

(22, 052) (X3,0X3)



Chapter 14 182

St— M,

Let W be a connected component of M — |_|j 1 such that W contains a
(X3,0X3)
7> —— M;
component M;, i € Ay, and W is disjoint from any 1 component. Then,
(X2%,0%2)

the following holds.
(1)
W= (Y -] B4> U <Z -] 34) . (14.63)
=1 =1

where Y = |_|j Y; so that each connected component Y; is an elementary building block
of type (2,5%) and Z = |_|j Z; so that each connected component Z; is an elementary
building block of type (2, D*). The union is by identifying S>-boundary components of
LIz, B

W can be represented by a union of the polyhedrons representing elementary building

blocks of type (2, D?) (see Lemma 14.38) and the solid polygons representing elementary
building blocks of type (2,S%) (see Lemma 14.3) by identifying some edges.

(2) OW = 0Z. As a part of M, each connected component of OW is identified with a

Sl E— Mk
boundary component of 1l , for some k.

(X?,0X7)
(3) W admits an F-structure whose restriction to OW has positive rank.

Proof. (1). Consider a component M; for some i € Ay. From the decomposition of dM;
in Lemma 13.50 and Lemma 13.62, there exists a collection {£;}7, of S*-subbundles of
SZ — Nj
|| so that Ej = S% x I and E; NOM,; # @. We consider E; as 5% x [0, 3] and
o332
denote the subbundle S? x [0,1] C E; by E\", the subbundle S x [1,2] by B, and the
subbundle S? x [2, 3] by EJ(.3). Then, E; N OM; coincides with EJ(-l). Additionally, we denote
the two boundary components S? x {0} and S? x {1} of Ej(l) by V;1 and Vo respectively.
From Lemma 13.50 and Lemma 13.62, one of the following holds.

. .. . D3752 XZQI_>Nk
(i) Vj1 coincides with a boundary component of NE for some k. Vjo =

oI
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D2 — st
AUy (By U By) where B, = D? s € {1,2}, is a fiber of I for some j,,
oy?
St —s Ng
and A is a subbundle of E for some /.
ox3

(ii) Both V;; and V;4 can be decomposed into A Uy (By U By) as in (i).

From Lemma 13.2 and by connectedness, for each k € {1,2}, there is a subbundle
D? — Njk
F;, 2 D* x [ of RS that each D?-fiber of F}, is contained in an S*-fiber of
322
E]@) = 52 x [1,2]. D?*-fibers of F}, L Fj, on Ej(-l) N Ej(?) =~ S$? coincide with D?-fibers B; L By
(2) 1 : . : St — Ny
on Vjp. E;” — (Fj, UF;,) = (S xI)x I is contained in | |, for some £, so
0x?
that S'-fibers coincide. Moreover, from Lemma 13.50 and by connectedness, there exists
My, i" € Ay, so that My N E; = E](-3). Similarly, E]@) N Ej(3) >~ G2 can be decomposed into
A" Uy (B} U BY) in the same way as V), = EJ(»D N EJ(-Q).

As a result, EJ(-Q) has the same decomposition as the boundary of the component

D3 — Mj
1 represented by an edge of a polyhedron in the construction of an elemen-
(Z,0I)
tary building block of type (2, D?) in Lemma 14.38.

Therefore, the construction of an elementary building block of type (2, D?) in Lemma
14.38 is still valid when we replace an occurrence of M; = D3x [ by E; = S?x I. This process
is equivalent (up to diffeomorphism) to removing B* from the interior of an elementary
building block of type (2, D?), removing B* from the interior of an elementary building
block of type (2,5%), then identifying their S3-boundaries. Hence,

W = (Y - |i| 34) u <Z — |i| 34) (14.64)
(=1 (=1

where Y = | | ;Y; so that each connected component Y is an elementary building block of
type (2,5%) and Z = | |; Z; so that each connected component Z; is an elementary building
block of type (2, D?). The union is by identifying S*-boundary components of | [;", B*.

(2). From Lemma 14.3, Y is a closed manifold. Hence, 0W = 0Z. Part (2) of the lemma
then follows directly from Lemma 14.38.
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D?%-bundle
5% x I as a part

of $%-bundle

over a surface

D3 xTor (S%xg,I)xI

&—— D3xTor (S%xg, I)xI e
(2,5%)

Figure 14.16: Example of the configuration of a building block of type (2,5?) + (2, D?) and

D? — N;
its representation. Each D?-bundle over a circle is identified with 1

02

(3). From Lemma 14.38, every Z; admits an F-structure and there exists a component

D? —— M,
1 such that M, C Z;. The F-structure on Z; restricts to local S L_actions
(¥2,0%2)
on Mj. From Lemma 14.9, every Y; admits an F-structure with at least one open set with
a trivial normal covering (in the sense of Definition 2.26).

Paternain and Petean [21, Theorem 5.9] showed that the connected sum of two manifolds
with F-structure admits an F-structure, provided that the manifolds have at least one open
set with a trivial normal covering (in the sense of Definition 2.26). The new F-structure is
constructed by finding appropriate S'-actions in a neighborhood of connected sum locations.
Hence, [21, Theorem 5.9] also applies to (14.64). Therefore, W admits an F-structure. [J

D3 — Mj
The constructions in the proof of Lemma 14.62 only concern components {
(1,01)
as a part of an elementary building block of type (2, D?). Therefore, we get the following
corollary.
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Corollary 14.65. The conclusion of Lemma 14.62 is still valid when an occurrence of an
elementary building block Z; of type (2, D?) is replaced by a building block of type (2, D?) +
(1,58 x D?%).

Proof. The proof of the lemma is similar to the proof of Lemma 14.62. Lemma 14.57 is used
in the proof instead of Lemma 14.38 and Lemma 13.62 is used instead of Lemma 13.50. [J

Definition 14.66. We call the resulting manifold in Corollary 14.65 a building block of type
(2,5%) + (2, D%) + (1, S' x D?).

(2,D?)
—_—
(2,5%) (1,8 x D?)

Figure 14.17: Example of a representation of a building block of type
(2,5%) +(2,D%) + (1,5 x D?)

Sl—>Mg

14.9 Connected components of M —| |, l that contains
(X3,0X3)
T° —— M,
1 components
(X2 0%2)
S LN Mg
In this section, we consider connected components of M — ||, 1 from
(X3, 07)
T° —— M,
the previous sections that also contain 1l components. There are two

(32,0%?%)
possibilities which will be described in Lemma 14.67 and Lemma 14.75.

14.9.1 Combining an elementary building block of type (2,7?) with other
building blocks

Lemma 14.67 shows that we can combine an elementary building blocks of type (2,7%)
with an elementary building block of type (2, D?), an elementary building block of type
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(1,S' x D?), a building block of type (2,5%) + (1, D?), or a building block of type (2, 5%) +
(2,D?) + (1,8 x D?).

Example 14.67. The following example combines an elementary building blocks of type
(2,7%) with an elementary building block of type (1, S' x D?).

=L

Figure 14.18: A representation of a building block of type (2,5%) + (2, D?) + (1, 8! x D?)

The rectangle represents an elementary building block of type (2,72). Dashed edges
St x D* — M;
represent removing 1l components in the construction of an elementary
(Z,01)
building block of type (2,7?) (as in Lemma 14.14). The rest of the figure is a graph which
represents an elementary building block of type (1, 5! x D?) (as in Lemma 14.46).

In Lemma 14.68, we show that the resulting manifold Y admits an F-structure. 9Y is
a graph manifold and the F-structure restricts to a T-structure with positive rank on 9Y.

St—— M,

dY is identified with a boundary component of L , for some p.
(X?,0X7)
T2 —— M2
Lemma 14.68. Let My be a component { . Suppose that there exists a
(¥2,0%?)
D4, oo — M;
boundary component N of My such that N, only intersects RE
pt
Sl><D2,T2 XZQI—>M]‘ Sl—>Mg
1 , and 1l components, i.e.
(1,01) (X3,0X3)
D* ... — M, Stx D2, T? Xz, I — M;
Ny < (L vl iy !
: pt 7 (Z,01)
Sl —— M,
Ul | 1 . (14.69)

‘ (X?,0X7)
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D4, R MZ
Let { M;}ica, be a collection of | | components such that M;NN} # @. Also
pt
T° —— M, T° —— M,
assume that OM;N| |, 1 is connected. That is OM;N | |, 1
(22, 052) (X2,0%?)

= OM; NN, = T%x1.

St x D*T? Xz, I — M;
Let {M;}jea, be a collection of 1 components such that
(1,01)
M; NN}, # @.

Let W = (e, Mi) U (Uyea, M; ) Then, the following holds.

(1) We can represent W together with its attaching data to N} by a cycle graph C as follows.
Each vertex v; represents a component M;, i € Ay. There are two types of edges: solid
edges and dashed edges. A solid edge represents a component M;, j € Ay, and a dashed
edge represents a connected component of Niy— OW diffeomorphic to (T* x I).

We can consider W as an elementary building block of type (2,T?) but with the interior

St x D* — M;
of some l components removed. The cycle graph C is obtained

(Z,0I)
by labeling some edges of a cycle graph in Lemma 14.14 as dashed edges.

(2) Letv; be a vertex representing a component M;, i € Ay. If v; is incident to exactly one
dashed edge, then either

SYx D?,T% xz, I — M

a) there exists a component M; = 1l , for some j', so
(£,0I)
that M. is not contained in W and My N M; # & (M, is as in in Lemma 13.64),
or

b) OM; = AUy B Uy C where A is the total space of S'-fibers over a surface with
one boundary component, B = T? x I is a subbundle of N}, and C = S x D? or
9 ) 51XD2,T2 XZ2I—>N]‘ ]
1% %y, I is a fiber of a component NE for some j (M,
ol

is as in Lemma 13.67).
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If v; is incident to two dashed edges, then either

St x D*T? Xz, I — My
a) there exists a component M; = 1 , for some j', so
(£,01)
that Mj: is not contained in W and My N M; # @ (M; as in Lemma 13.64), or

b) OM; = AUy B where A is the total space of S*-fibers over a surface (not necessary
connected) with two boundary components and B = T? x I is a subbundle of N}
(M; is as in Lemma 13.67).

Sl—>Mg

3) Let Z be a connected component of M — such that My C Z.
¢ 1l
(X3,0X%)
T2 —— M,
Assume that Z contains exactly one l component. Let'Y be a con-
(¥2,0%?)

nected component of Z — My such that W C Y.

[

Suppose that there exists exactly one component My = (S x D*) x I or (T? xz,I) x I
such that M is not contained in W and My N M; # &, for some i € Ay, as in (2).
Then,

M.,
V=W ——X=WUy My Usg X (14.70)

where X is a 4-manifold with boundary which admits an F-structure, My N'W =
OM; NOM;, My C X, and MyNX = 0MyNOMy. (In particular, X is an elementary
building block of type (2, D?), an elementary building block of type (1,S' x D?), a
building block of type (2,5?) + (2, D?), a building block of type (2, D*) + (1, 5" x D?),
or a building block of type (2,5%) + (2, D?) + (1,8 x D?))

W admits an F-structure that is compatible with local T?-actions on My and the F-
structure on My U X.

St x D*,T? Xz, I — My

In general, when there are more than one ! compo-
(1,0I)
nents as in (2), Y admits an F-structure that is compatible with local T*-actions on
T2 —— Mg St —— Mg
L, 1 and with local S*-actions on | |, 1 . 0Y isa
(22, 052) (X3,0X7)

graph manifold and the F'-structure on Y restricts to a T-structure with positive rank
on Y.
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Proof. (1). We construct a graph C to represent W together with its attaching data to N}
as follows. We construct a vertex v; for each component M;, i € Ay. Vertices v;, and v,
are adjacent via a solid edge e; if and only if there is a component M;, j € A;, so that
M; N M; # @ and M;, N M; # @. From Lemma 13.3, Nj — oW = |_|j L; where L; 2 T? x I
is a subbundle of Nj. We construct a dashed edge ef) connecting vertices v;, and v;, if and
only there is L; such that L; N M;, # @ and L; N M,, # @.

The decomposition of M;, ¢ € Ay, such that v; is incident only to solid edges is given
in Lemma 13.17. The decomposition of M; such that v; is incident to both solid edges and
dashed edges is given in Lemma 13.64. The decomposition of M; such that v; is incident
only to dashed edges is given in Lemma 13.67. It follows from the lemmas that deg(v;) = 2
for all 7. Therefore, C is a cycle graph.

By a similar construction as in the proof of Lemma 14.14, the cycle graph C can be
obtained by labeling some edges of a cycle graph in Lemma 14.14 as dashed edges. In other
words, we can consider W as an elementary building block of type (2,7T?) with the interior

SIXD2—>M]'

of some 1l components removed.
(1,0I)

(2). This follows directly from the decomposition of M; in Lemma 13.64 and Lemma

13.67.
Sl E— Mg
(3). Let Z be a connected component of M —| |, 1 such that W U M,
(X?,0X3)
T° —— M,
C Z. Assume that Z contains exactly one 1 component, i.e.
(X2 0%?)
T° —— M,

ZnL, 1 = Z N M.

(52,052)
Put Y = Z — M,. Suppose that there exists exactly one component M; =

St x D*,T? Xz, I — M
1 such that M, is not contained in W and M; N M, # o,
(1,0I)
for some i € Ay, asin (2). Put X =Y — (W U M;/). Then, M; C X and

M.,

where Mj/ NW = 8Mj/ N 8M1, Mi’ C X, and Mj/ NX = an/ N 8Ml/
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From Lemma 13.5, the boundary of each (S* x D?) or (T? xz, I)-fiber of M is the total

St — Ny St —s Ny
space of S'-fibers from N E for some £. By connectedness, dM; N 1
an @X?)

# . The decompositions of dM; in these cases are given in Lemma 13.38, Lemma 13.41,
Lemma 13.62, Lemma 13.64, and Lemma 13.67. It follows that X is an elementary building
block of type (2, D?), an elementary building block of type (1,S! x D?), a building block of
type (2,5%) + (1, D?), a building block of type (2, D?) + (1, S! x D?), or a building block of
type (2,5%) + (2, D?) + (1,8 x D?).

Let W), be a connected component of W. By the same argument as in the proof of Lemma

14.14,
M;

W, = M, — M, M, (14.72)
M;
where M;, —— M,,,, denotes M; Uy M;, Uy M;, ., so that M; N M,,, = @. For all
ke{23,...,m—1},
o [ Stx D? 9 St x D?
OM;, = { T2 %o, I }ua (T° x I) Uy T2y I [ (14.73)
D4, e Mz
In particular, the decomposition of dM;, is the same as the decomposition of 1
pt

in Lemma 14.14. Hence, the construction of an F-structure in the proof of Lemma 14.14 also
applies to this case. We have that W, — M, — M, admits an F-structure whose restriction
to OW, — M;, — M,,, is local T2-actions. Additionally, the F-structure restricts to T?-actions
on M;, and M, , (or their double covers).

Without loss of generality, we assume that M;, N M; # @. Then, OM,;,,6 N M; = @.
From Lemma 13.64, M;, = AUy B Uy C where A is the total space of S'-fibers over a
surface with one boundary component, B = T? x [ is a subbundle of N}, and C' = S! x D?
or T? xz, I. OM;, and OM;, are Seifert manifolds.

If M;, = D* 5% x,D*w € Z, or S' x D3 then M; , = (S'x D?) x I. By a
similar argument as in the proof of Lemma 14.14, there is an S'-action on M;, so that the
orbits are compatible with the orbits of the T?-action on M, ,. The S'-action on M,
and the T?-action on M, generate a T°-action of degree one or two on a neighborhood of
M;, NM;, . By passing to a quotient, we get an effective 7% or S'-action on a neighborhood
of M;,, MM, , which is compatible with the S'-action on M;, and the T?-action on M, .

If M;, = (S? x,, D?)/7y,w € Z, (RP? x SY)XI, or (S?xS")xI, then M; , = S'x D?

Jm—1
or T2 xz, I. If M, , =2 S* x D? then we let M, , = M;, . It M, = (T? xgz, I) x I,
then we let M;, , = (T? x I) x I be the double cover of M, . Let M;  be a double cover

1
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of M; . By a similar argument as in the proof of Lemma 14.14 and in above cases, there is
an effective T? or S'-action on a neighborhood of M;, N M; , which is compatible with the

Sl action on ]\Zm and the T?-action on M;, .

If M; =T?x D? then by a similar argument as in the proof of Lemma 14.14, M; . U

Jm—1
M;, admits a T-structure which restricts to T?-actions on M;, and M; . If M;,

T? xz, D? or ByxI, then the same argument applies on its double covers.

5}

124

From all cases, we can extend the F-structure on W, — M;, — M, to M, . Similarly, we
can extend the F-structure on W, — M;, — M, to M;,. Therefore, W admits an F-structure
that is compatible with local T?-actions on Ms.

(4). From the proofs of Lemma 14.38, Lemma 14.46, Lemma 14.57, Lemma 14.62, Lemma
14.68, and the proof of part (3), the F-structures on X and W are compatible with the S?
or T?-action on M,/ (or its double cover). Therefore, Y = W Uy Mj Uy X admits an F-
structure. It follows from part (3) that 0Y is a graph manifold and the F-structure restricts
to a T-structure with positive rank on 0Y. The F-structure is also compatible with local

T2 —— Mg St —— Mg
T?-actions on | |, 1 and local S*'-actions on | |, 1

(32, 052) (X3, 0X°)
The above construction is done on a neighborhood of M; N Mj. Thus, the same con-
St x D?,

T2 x4, 1 » My

|

1,01
components such that M; N M; # &, for some i € Ay, and M, N N) = @. Hencfa, Y E)ld—
mits an F-structure. dY is a graph manifold and the F-structure restricts to a T-structure
with positive rank on Y. Moreover, the F-structure is compatible with local T2-actions on
T2 —— Mg St — Mg
L, 1 and local S'-actions on | |, 1 : O

(22, 5%2) (X?,0X?)

struction applies for the general case when there are more than one
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T° —— M, DY ... — M,
14.9.2 Attaching 1 to any ! component
(32,0%7%) pt
T? — M;
The next lemma shows that we can attach a component ij to any
(X%,0%2)
D* ... — M, St — M,
component such that M; N #+ &, for some /£.
l \J
pt (X37 8X3)

Example 14.74. The following example demonstrates attaching a component

T2 —_— Mj
1 to elementary building blocks of type (2, D?) and (1, S! x D?).

(X20%?)

(1,5 x D?) T (2, D7)
(T? = M; — (£%,0%?))

T? —— M;
Figure 14.19: Attaching a component 1 to elementary building blocks of
(32,052)
type (2, D?) and (1,S' x D?)

In this figure, the tetrahedron represents an elementary building block of type (2, D?) and
the graph represents an elementary building block of type (1, S* x D?). The region bounded
T2 —_— Mj
by dashed curves represents a l component. In Lemma 14.75, we show
(32 0%?)
that the resulting manifold Y admits an F-structure. 0Y is identified with a boundary
St— M,
component of 1 , for some p.

(X?,0X7)
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T2—>MQ

Lemma 14.75. Let My be a component { . Suppose that there exists a
(X2,0%?)

D* ... — M,

boundary component N of My such that N, only intersects 1

pt

St —— M,
and 1l components, 1i.e.
(X3,0X3)
4 1
Ny || ] D""_”\fl Ul S—”\fé . (14.76)
i pt ¢ (X?,0X3)

Let Uy be a neighborhood of Nj in My so that Uy = Nj x [0,¢€), for some € > 0. Uy is a
T?-subbundle of Ms.

D4, A Mz
Let {M;}ic 4, be a collection of | | components such that M;N\N; # @. Also
pt
77 —— M, T° —— M,
assume that OM;N| |, 1 is connected. That is OM;N| |, 1
(X2 0%2) (X2,0%2)
=OM; "Ny, = T?x .
Sl E— Mg
Let Z be a connected component of M —| |, 1l such that Z contains
(X3,0X9)
T° —— M;
Msy. Assume that there Z contains exactly one 1 component.
(X2,0%2)

Let {Y;}jes be a collection of connected components of Z — My such that Y; N Nj # .

Then, eachY;, j € J, admits an F-structure which is compatible with local T*-actions on My
St— M,
and local S*-actions on | |, 1l . In particular, Y; is an elementary building
(X, 0%

block of type (2, D?), an elementary building block of type (1,S' x D?), a building block of
type (2, D?) + (1, S* x D?), a building block of type (2,5?%) + (2, D?), a building block of type
(2,8%) + (2, D% + (1,8 x D?), or the manifold Y in the conclusion of Lemma 14.68.
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Let X be the connected component of O <U2 Uljes YJ) such that X NN, # @. As a part

Sl — Ng
of M, X attaches to a component E for some £. Each T?-fiber of X N N} is

0x3
the total space of S*-fibers from Ny. Uy U |_|jej Y; admits an F'-structure which is compatible

with local T?-actions on My and local S*-actions on M.

Proof. 1t follows from Lemma 13.67 that every argument in the proofs of Lemma 14.38,

D* — M,
Lemma 14.46, Lemma 14.57, Lemma 14.62, and Lemma 14.68 that involves 1
pt
St — Mg
components such that M; N { # @, for some /, is still valid when an

(X3,0X3)
occurrence of M, is replaced by M;, for some ¢ € Ay. Therefore, ¥; admits an F-structure
St —— Mg
which is compatible with local S'-actions on | |, { . By similar arguments
(X3,0X3)
as in the proof of Lemma 14.62, the F-structure is also compatible with local T2-actions on
M,. In particular, each Y; is an elementary building block of type (2, D?), an elementary
building block of type (1, S! x D?), a building block of type (2, D?)+ (1, S' x D?), a building
block of type (2,5%) + (2, D?), a building block of type (2,5?) + (2, D?) + (1, S! x D?), or
the manifold Y in the conclusion of Lemma 14.68.

For each i € Ay, put S; = Ny NIM; = T? x I. From Lemma 13.67, we have that

E1 EQ Emfl

N = S

S

\/

Em

S (14.77)

where F; = T? x I is a connected component of N} — L), M; and S, B Si11 represents
SiUp E; Up Sip1 = (T? x I)Ug (T? x I) Uy (T? x I) = T? x I. By Lemma 13.3, each T*-fiber

Sl — Ng
of E; is the total space of S!'-fibers from R By Lemma 13.67, E; N 0M; is the

0xX3
total space of S'-fibers which coincide to both S!-fibers of E; and OM;.

Let X be a connected component of 0 <U2 Uljes Y}) such that X N N, # @. For
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simplicity, we first assume that each Y}, j € J, contains exactly one M;, i € Ay. Then,

Eq E>

X = 0" Y5,

Em

oY, (14.78)

where the two boundary components of 9Y; — S; are identified with a boundary component
of E; and E;,; respectively. From the compatibility of S'-fibers and from Lemma 14.38,
Lemma 14.46, Lemma 14.57, Lemma 14.62, and Lemma 14.68, X is the total space of S*-
S 1 — M, ¢
fibers. By connectedness, X attaches to a boundary component of 1 , for
(X7, 0X7%)
some ¢ so that S'-fibers coincide. If there exists Y, j € J, such that Y; contains M;, and
M,,, i1,12 € Ay, then the same argument applies.

Let T? act freely on U, so that the orbits coincide with T?-fibers of U,. From Lemma
14.38, Lemma 14.46, Lemma 14.57, Lemma 14.62, and Lemma 14.68, each Y}, j € J, admits
an F-structure whose restriction to M;, i € Ay, such that M; C Y; and M; N N; # @, is

St —s Ng
compatible with T2-fibers on Nj N OM; and S'-fibers on dM; N | |- Hence,

0x?
Us Ul | ; Y; admits an F-structure which is compatible with local T?-actions on M, and local

Sl actions on M,. O
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Proof of Theorem 1.4

In this chapter, we finish the proof of Theorem 1.4. We describe M in terms of a configuration
of building blocks and fiber bundle components then show that M admits an F-structure or
a metric of nonnegative sectional curvature.

15.1 M contains a fiber bundle component without boundary

From Section 13.1, if M contains a fiber bundle component without boundary, then M is a
closed Riemannian 4-manifold which admits a metric of nonnegative sectional curvature or M

St— M T? — M 5?2 — M S3/T,T3)T, 52 x SY,RP3#RP? — M
IS J/ 9 J/ ) J/ 70r J/
X3 2 2 gl

In the later case, M admits local S' or T?-actions. In particular, M admits an F-structure.

In the following sections, we assume that M does not contain a fiber bundle component
without boundary.

15.2 M does not contain a component with 2 or 3-dimensional base

First, we assume that M does not contain a component with 2 or 3-dimensional base. From
Section 2.5, M = M;, Us My Uy M;, = M;, Uy M;, where M; , k € {1,2}, is a component

k7

DY ... — M, S3T,... — M,
E and M is a component l . The classification of
pt (I,01)
M, , k € {1,2}, is given in Table 13.1. From Section 2.5, M;_(or its double cover M;, )

admits an ST or T?-action whose restriction to OM;, (or M;,) is free.

Consider M; as F x [1,2] where FF = S3/T", T3/T", 5% x S, or RP3#RP3. We must have
that F' = OM,; , k € {1,2}. Additionally, consider M;, N M; as F' x {1} and M;, N M,

as F' x {2}. Extend the S' or T?-action on M;, (or M;,) to F' x [1,2] (or its double cover
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F x [1,2]) so that it restricts to the same action on each fiber F x {t} (or F x {t}), t € [1,2],
and restricts to the trivial action on the [1, 2]-factor. The action on F' x [1,2] (or F' x [1,2])
and the action on M;, (or M,,) together generate a higher dimensional torus action on

My N M;, = F x {2} (or F x {2}). If the action is not effective, then we pass to a quotient
to get an effective lower dimensional torus action. Therefore, M admits an F-structure.

S?’/F,—>]\4Z

From Section 14.1, it suffices to assume that every l component
(1,01)
D4, e M]
is disjoint from 1 components. For simplicity, in the following sections,
pt
53/F, o — M,
we assume that M does not contain any 1 component. Later in Sec-
(£,0I)
tion 15.6, we will show that the conclusions of the following sections are still valid when
D4, S Mj
we replace an occurrence of a 1 component by a boundary component of
pt

SB/F,—>MZ
{

(1,0I)
52 _— Mz
15.3 Boundary components of 1
(32,0%?%)
R E— MZ
Let M; be a component 1 . Let N/ be a boundary component of M;. From

(¥2,0%?)
the results in previous two chapters, N/ & S? x S is identified with one of the following.

' St x D3, 5% x D* — M; 4
(i) A component Nk for some 7, along the boundary
pt
St x 8% — IM;
1
pt
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D3, 5% xz, I — M S? — OM;
(ii) A component [k for some 7, along the boundary 1
St St

so that S?-fibers coincide.

(iii) A 4-manifold W represented by a cycle graph where each vertex represents a compo-

nent
D* £CP?#D*
’ — M;
S? X 43 D?, 5% xz, D? o , for some ji, and each edge represents a compo-
pt
D3, 5% xz, I — M,
nent 1 , for some jy, as in Lemma 14.3. W = (S x D3)#
(1,01)

n1(CP?)# ny(—CP?)# n3(S? x §?%), for some integers ni,ny,n3 > 0, or W = ST x
(RP34#D3). In particular, W = S x 9D3. dD3-fibers of OW coincide with S?-fibers
of N/.

D3, 8% x5, T — M,
(iv) A 4-manifold as in (iii) but with some occurrences of | | compo-

Sl
nents replaced by the union V;, Us B, Uy Vj, = 5% x T where V;, 2 D? x I, k € {1,2},
D? — N;

is a subbundle of jk , for some ji,, and B, = (S* x I) x I is a subbundle of

032
Sl — Ng
| |, forsome £V} N E, = S x I so that the boundary of each D?-fiber

0X3
of Vj, coincides with a boundary component of an (S x I)-fiber of Ey. (See Lemma
14.62).

(v) The union Vj Uy Ey Uy V;, where Vj,, k € {1,2}, is a boundary component of

D? —— M;, . _ St— Ny
! , for some jy, and F, & (S1xI)x S! is a subbundle of 1
(2, 0%2) ox3
for some ¢. V;, N E, = 5% x S so that the boundary of each D*fiber of V}, coincides
with a boundary component of an (S x I)-fiber of E,.

Lemma 15.1. There are local S*-actions on M; which are compatible with an F-structure
on the manifold attaching to NJ.

Proof. Let U; be a neighborhood of N/ in M; so that U; = S? x [0,¢) x S* where [0, ¢) x S?
is a neighborhood of a boundary component of the base 32 and so that N/ is identified with
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S? x {0} x S1. Since M; is an S%-bundle over a surface 32, there is the associated principal
bundle S — F — X2, Therefore, there are local S'-actions on M; where St acts trivially
on ¥? and acts by rotations (with two fixed points) on each S*fiber. The local S'-actions
can be chosen so that they restrict to an S*-action on U;.

St x D3 — M; D3 — M;
In cases (i) and (ii), if M; = L] or M= | | then the St
pt St
action on U; extends to M; Uy U; so that S' acts trivially on the S'-factor and acts by
S? x D* — M;
rotations on each D3-fiber. If M; = 1 then the S'-action on U, extends to
pt
M; Uy U; so that ST acts trivially on the D*-factor and acts by rotations on the S*-factor. If
52 X7 I — Mj —~
M; = [ then consider its double cover M; = (S? x I) x S*. There is an
Sl

Sl-action on M; so that ST acts trivially on the (I x S*)-factor and acts by rotations on the
S2-factor so that it is compatible with the S!-action on U;. Hence, there are local S!-actions
on U; which are compatible with an F-structure on the manifold attaching to N/ in cases (i)
and (ii).

For cases (iii) and (iv), the result follows from Lemma 14.3, Lemma 14.9, and Lemma
14.62.The proof of case (v) is similar to the proof of Lemma 14.62. O]

T? —— M,

15.4 Boundary components of 1
(¥2,0%2)
T? —— M,
Let M; be a component 1 . Let N/ be a boundary component of M;. N/
(22,0%?)

is the total space of T?-fibers over S'. From the results in previous two chapters, N/ is
identified with one of the following.

T2 x D2, T? x5, D2,

~ — M.
(i) A component BixI, k€ {1,2,3,4} f , for some j, along the boundary
pt
TB, g2 — Nj
1

pt
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St x D*,T? Xz, I — M; T? — N;
(ii) A component [k for some j, along the boundary 1
St St

so that T?-fibers coincide.
St— M;
(iii) A boundary component of a component 1 , for some 7, which is also
(X3,0X°)

a T?-bundle over S!.

(iv) A 4-manifold represented by a cycle graph as in Lemma 14.46 where each vertex repre-
sents a component N E for some jj,, where F' = D* +CP?*#D*, S'x D3, S?x
- _ bt -
D% (RP*x SY)xI, (S?xSY)x1I, S* x, D?, 5% %z, D? (S?x, D?)/Zy, T?* Xz, D?, BsX1,
~ St x D*T? xz, I — M,,
or Byx I, and each edge represents a component 1l , for
(1,01)

some jy, as in Lemma 14.14.

St x D*T? Xz, [ — M,

(v) A 4-manifold as in (iv) but with some occurrences of 1
(1,0I)
Sl — Nj
components replaced by S'-subbundles of 1 diffeomorphic to (S*x S')x 1.
0x3
(See Lemma 14.68.)
Sl — Njk
(vi) The union of S'-subbundles of 1 components and copies of (7% x I)-
0x3
53, e Nje
subsets of | | components. (See Lemma 14.75.)
pt

Lemma 15.2. There are local T?-actions on M; which are compatible with an F-structure
on the manifold attaching to N.

Proof. N/ is the total space of T?fibers over S'. Let U; be a neighborhood of N/ in M; so
that U; & N/ x [0,€). There are local T?-actions on M; where T? acts trivially on the base
and acts by the standard T2-action on each T?-fiber.

In case (i), M; = T? x D* T? Xz, D? or BpxI, ke {1,2,3,4}.
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(a) M; = T2 x D”.
Consider that OM; = T? x dD* = S' x S* x dD?. Up to isotopy, either T?-fibers of

OM; = T? x 9D? coincide with T?-fibers of U; or (S* x dD?)-fibers of 9M; coincide
with T?-fibers of U;. In the first case, we let T? act on M; by the rotations

T? x T? = T?
(¢,0) X (u,v) — (u+ ¢,v+0) (15.3)

where we use the coordinates wu,v, ¢,6 € [0,27), on the T?-factor and act trivially on
the D?-factor. Consequently, we get local free T?-actions on M; U U;. In the second
case, we let S' act by rotations on the D?-factor of M; = T? x D? and act trivially
on the T?-factor. We have that the T?-action on U; restricts to the S'-action on M;.
Hence, M; U U; admits a T-structure.

(b) M; = T? xz, D?.
In this case, we apply the same argument as in the case M; = T? x D? to its double

cover M; = T? x D?. As a result, M; U U; admits an F-structure which restricts to a
T?-action on U;.

(c) M; = ByxI.

Consider a double cover V = Ui1 Us ]\Z Up Uiz of V.= M, UU,; where ]\A/E =~ T3 x ] or
Gy x I is a double cover of M; and U;; and U, » are copies of U;. Consider that Vis a
T?-bundle over a surface. Hence, there are local T?-actions on V that are compatible
with the double covering vV — V. Therefore, M; U U; admits an F-structure which
restricts to local T?-actions on Us.

Sl X 1)2 — Mj

In case (ii), if M; = | |+ then the local T?-actions on U; extend to
Sl

M;Up U; so that T? acts trivially on the base S* and acts on each S* x D*-fiber by the action

T? x (S' x D*) — S' x D?
(¢,0) x (u,r,v) = (u+ ¢,r,v+0) (15.4)

where we use the coordinates ¢,0,u,v € [0,27), and r € [0,1]. This extends the T>-

action on each T*-fiber of U;. Hence, there are local T?-actions on M; U U;. If M; =

T? Xz, [ — M; -

E then the same argument as in case (i) : M; = ByxI applies. From
Sl

both cases, we have that M; U U; admits an F-structure which restricts to a T?-action on

U..
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St—— M;
In case (iii), there are local S'-actions on 1 . From Lemma 13.3, each
(X3,0X3)
T?-fiber of N/ is the total space of S*-fibers from M;. Hence, local S'-fibers from M; and
local T?-fibers from M; are compatible in the sense of T-structure. As a result, there is a
T-structure on M; U M; that restricts to local T?-actions on M;.

For cases (iv), (v), and (vi), the result follows from Lemma 14.14, Lemma 14.9, Lemma
14.68, and Lemma 14.75. O

Sl—>Mi

15.5 Boundary components of 1
(X3,0X7)
Sl —_— Mz
Let M; be a component 1l . Let N/ be a boundary component of M;. N/ is
(X?,0X7)

the total space of S!-fibers over a closed surface. From the results in previous two chapters,
N/ is identified with one of the following.

D4,...—>Mj 5’3,...—>Nj
(i) A component N for some 7, along the boundary 1
pt pt
D2 — Mj Sl — N]
(ii) A component E for some 7, along the boundary L] s that
¥2 .2
Sl-fibers coincide.
St x D*,T? Xz, I — M; 7% — N;
(iii) A component I for some j, along the boundary 1
S1 S

so that each T?fiber of NN, is the total space of S*-fibers from N.

T2 —— M;
iv) A boundary component of a component , for some j, so that alon
y 1 j g

(52, 057)
the overlap, each T?-fiber is the total space of S!-fibers from NJ.

(v) An elementary building block of type (2, D?) (see Lemma 14.38).

(vi) An elementary building block of type (1, S' x D?) (see Lemma 14.46).
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(vii) A building block of type (2, D?)+(1, S' x D?), a building block of type (2, 5%)+ (2, D?),
or a building block of type (2,5%) + (2, D?) + (1, 5! x D?) (see Lemma 14.57, Lemma
14.62, and Corollary 14.65).

2 N;
(viii) The union of T%-subbundles of f , which are diffeomorphic to 7% x I, and

02
other building blocks as described in Lemma 14.68 and Lemma 14.75.

Lemma 15.5. There are local S*-actions on M; which are compatible with an F-structure
on the manifold attaching to Nj.

Proof. Let U; be a neighborhood of N/ in M; so that U; = N/ x [0,¢). Since M; is an S'-
bundle over X3, there are local S'-actions on M; where S' acts trivially on the base and
acts by rotations on each S!-fiber. The local S'-actions can be chosen so that it restricts to
an S'-action on Uj.

For case (i), there is an S* or T?-action on M; (or its double cover ]\A/[/J) whose restriction
to OM; (or OM;) is free (see Section 2.5). The action on dM; (or M;) and the local S*-actions
on U; together generate higher dimensional local torus actions on a neighborhood of 9M; in

M;UU; (or 8]\7/]» in M; U (71) If they are not effective, then we can pass to a quotient to get
effective local actions. Therefore, M; U U; admits an F-structure.

D2 — Mj
In case (ii), M; = | |- We can extend the local St-actions on U; to M; so that
22
S1 acts trivially on the base X2 and acts by rotations about the center on each D?-fiber.

For cases (iii) and (iv), the result follows from the same arguments as in the proof of
cases (ii) and (iii) of Lemma 15.2. For cases (v), (vi), (vii), and (viii), the result follows from

Lemma 14.38, 14.46, Lemma 14.57, Lemma 14.68, and Lemma 14.75. O
D4, R MO
15.6 Replacing 1 with a boundary component of
pt

S3T,... —— M,

!

(1,01)
In this section, we show that the conclusions of Lemma 15.1, Lemma 15.2, and Lemma
D47 e — MJ
15.5 are still valid when we replace an occurrence of a component 1 by a

pt
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53/F,—>MZ

boundary component of l
(£,01)
D4, S Mj
If an occurrence of a | | component in case (i) of Section 15.3, Section
pt
SB/F, o Mj
15.4, and Section 15.5 is replaced by a boundary component of 1 , then

(1,01)
by the same argument as in Section 15.2, the conclusions of Lemma 15.1, Lemma 15.2, and
Lemma 15.5 are still valid. Therefore, from now on we can assume that there are no boundary

components of 1 , 1 , and 1 , that
(32,0%2) (32,0%2) (X3,0X3)
53/F, e —— M;
only intersect a component 1
(1,01I)
From Lemma 13.68, the decomposition of a boundary component of
S3T, ... —— M; S3,...— OM,
l is the same as the decomposition of N E It follows

that the gluing description of building blocks in the previous chapter (Lemma 14.38, Lemma
14.46, Lemma 14.57, Lemma 14.62, Corollary 14.65, Lemma 14.68, and Lemma 14.75) does

Z)47 N MO
not change when an occurrence of a component 1 is replaced by a boundary
pt
SS/F, e/ Mz
component of l
(Z,0I)
S3JT, ... — M;
Since we will construct an F-structure near l , it suffices to assume

(1,81)

S3T,... — M;
that M contains only one l component, which we denote by M;. Then,

(1,01
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we can write M as

or
)
M = Wo (15.7)
where W, Wy denotes Wy Ug My Ug W1 and Wy and W, are the resulting manifolds
1)47 e Mj
from Section 15.3, Section 15.4, and Section 15.5 but with a component 1
pt

replaced by a boundary component of M;. Because we will construct an F-structure in a
neighborhood of M, it suffices to assume that M is as in (15.6).

Lemma 15.8. Let M = W,

Wy be defined as in (15.6). Then, M admits an F-

structure.
Sg/F, e —— M1
Proof. Consider M, = 1 as I x [0,1] where F' = S3/T",T3/T", 5? x S,
(I,01)
or RP3#RP3.

Let U be a neighborhood of M; in M so that U = F x (—¢,1 + ¢) for some € > 0. Put
Vo=F x (—¢,0] C Wy and Vi = F x [L+¢€) C Wy. Then, U = Vo UM; UV;. Let U be a
finite cover of U so that U/F U. Then, U = VO (F % [0,1]) U Vi where F'is a finite cover
of Fsothat F/T 2 F, Vo= F x (—e¢,0] and V; = F x [1,1+ ¢). We have that, F' = §3 T3,
or §% x St

From the constructions of F-structures on building blocks and associated components
in Lemma 14.38, Lemma 14.46, Lemma 14.57, Lemma 14.62, Lemma 14.68, and Lemma
14.75, Wy and W; admit an F-structure whose restriction to 0M; is an F-structure. In
particular, V5 and V; admit an F-structure whose restriction to each fiber is an F-structure.
Moreover, from our choices of F-structures in the lemmas, Vj and V; admit a T-structure
whose restriction to each fiber is a T-structure.

Let S' act on F x [0,1] by a free action on the F-factor and act trivially on the [0, 1]-
factor. On VoNF x [0, 1], if the S*-action and torus actions from the T-structure on Vo do not
coincide, then they generate higher dimensional torus actions. By passing to quotients, we
get a T-structure on a nelghborhood of Vo NE x 0, 1], which is compatible to the T-structure
on Vp and the S'-action on F x [0, 1]. Consequently, VoUF % [0,1] admits a T-structure. By

repeating the same argument, U = V, U (F x [0,1]) U V4 admits a T-structure. Therefore, U
admits an F-structure. O
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15.7 The gluing instruction

By Section 15.2, Section 15.6, and Lemma 15.8, it suffices to assume that M does not
53/F, R 4 Mz

contain any 1 component. First, we glue all fiber bundle components
(1,0I)
St—— M,
contained in Y = M —| |, { as described in Section 15.3 and Section 15.4.
(X3,0X3)

By the lemmas in Chapter 14, boundary components of Y are S'-bundles over surfaces. By
Lemma 15.1 and Lemma 15.2, Y admits an F-structure which is compatible with S*-fibers

S L V/) ¢
of Y. Finally, we glue | |, 1l with Y as described in Section 15.5. By

(X3,0X?)
Lemma 15.5, M admits an F-structure.

15.8 Satisfying the constraints

We have now shown that M is a 4-dimensional closed C¥-smooth Riemannian manifold
which admits an F-structure or a metric of nonnegative sectional curvature. Hence, we have
shown:

Proposition 15.9. Under the constraints imposed in earlier chapters, M admits an F-
structure or a metric of nonnegative sectional curvature.

We now verify that it is possible to simultaneously satisfy all the constraints that appeared
in the construction. We indicate a partial ordering of the parameters which is respected by
all the constraints appearing in this dissertation. We denote A < B if and only if A < A(B)
or A > Z(B). This means that every constraint on a given parameter is an upper or lower
bound given as a function of other parameters which are strictly smaller in the partial order.
It follows that all constraints can be satisfied simultaneously.

{M, Ba} < {C1stim; i, U} < T5 < {5,25} < Cridge < T's < {24, Z4} < cogtim < I's <
{X3,23} < Comedge < 'z < {32, 52} < C3stratum < 't < {X1, 21} < Gstratum < F3 <
A < ¢ < {Soslim, S2-edge, B, 0 } < 0p < {o,A} <w < w' < fg, < [ <
Ty <cr = {§1-ridge,51,UR} = T/l < B1 < {Yo,00} < Sostratum < Tf)-
(15.10)

This proves Theorem 1.4.
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