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Abstract

Locally Volume Collapsed 4-Manifolds with Respect to a Lower Sectional Curvature Bound

by

Thunwa Theerakarn

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor John Lott, Chair

Perelman stated without proof that a 3-dimensional compact Riemannian manifold which is
locally volume collapsed, with respect to a lower curvature bound, is a graph manifold. The
theorem was used to complete his Ricci flow proof of Thurston’s geometrization conjecture.
Kleiner and Lott gave a proof of the theorem as a part of their presentation of Perelman’s
proof.

In this dissertation, we generalize Kleiner and Lott’s version of Perelman’s theorem to 4-
dimensional closed Riemannian manifolds. We show that under some regularity assumptions,
if a 4-dimensional closed Riemannian manifold is locally volume collapsed then it admits an
F -structure or a metric of nonnegative sectional curvature.
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1

Introduction

Roughly speaking, an n-dimensional Riemannian manifold Mn is said to be collapsed if it
appears to have dimension less than n. Collapsed manifolds are studied under various cur-
vature assumptions such as bounded sectional (or Ricci or scalar) curvature, lower sectional
(or Ricci or scalar) curvature bound, or assuming that the metric is Einstein.

One way to precisely define collapsing is in terms of the injectivity radius. A Riemannian
manifold M is said to be collapsed with bounded sectional curvature if there is a sequence
of metrics {gj} for which the injectivity radius ij of (M, gj) converges uniformly to zero at
all points, p, as j goes to infinity, but the sectional curvature K stays bounded (independent
of p and j). Cheeger and Gromov [5, 6] first developed the theory of collapsing by showing
that a Riemannian manifold is collapsed (in terms of the injectivity radius) with bounded
sectional curvature if and only if it admits an F -structure of positive rank. An F -structure
on a space X is a generalization of local torus actions where different tori (possibly not all
of the same dimensions) act locally on finite covering spaces of subsets of X.

Another way to define collapsing is in terms of the volume. We say that a Riemannian
manifold M is volume collapsed if there is a sequence of metrics {gj} for which the volume
of (M, gj) approaches zero as j goes to infinity. Perelman [24, Theorem 7.4] stated without
proof that a 3-dimensional compact Riemannian manifold which is locally volume collapsed,
with respect to a lower curvature bound, is a graph manifold. The theorem was used to
complete his Ricci flow proof of Thurston’s geometrization conjecture. As a part of their
presentation [12] of Perelman’s proof, Kleiner and Lott gave a proof of this theorem in [13].
Other proofs of Perelman’s theorem appear in [1, 3, 16, 29].

In this dissertation, we generalize Kleiner and Lott’s version ([13, Theorem 1.3]) of Perel-
man’s theorem to closed Riemannian 4-manifolds. In short, under some regularity assump-
tions, if a closed Riemannian 4-manifolds is locally volume collapsed then it admits an
F -structure or admits a metric of nonnegative sectional curvature. We state and discuss the
result in the next section.
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Other related works include Yamaguchi [34], where he studied global volume collapsed
4-manifolds with respect to a lower sectional curvature bound. Paternain and Petean [21]
showed that if a compact manifold M admits an F -structure then it is volume collapsed with
respect to a lower sectional curvature bound. Therefore, under some regularity assumptions,
the result of this dissertation is in fact necessary and sufficient.

This dissertation is structured as follows. In the next sections, we state and discuss the
result, then we give the outline of the proof, and set notations and conventions. In Chapter
2, we collect material that we will need. The rest of the dissertation, Chapter 3 to Chapter
15, is the proof of the result. See Section 1.2 for more details.

1.1 Statement of result

First, we define an intrinsic local scale function needed to define locally volume collapsed
manifolds.

Definition 1.1. Let M be a complete Riemannian manifold. Given p ∈ M , the curvature
scale Rp at p is defined as follows. If the connected component of M containing p has
nonnegative sectional curvature then Rp = ∞. Otherwise Rp is the (unique) number r > 0
such that the infimum of the sectional curvatures on B(p, r) equals − 1

r2 .

Definition 1.2. Let cn denote the volume of the unit ball in Rn and let w ∈ (0, cn). A
complete Riemannian manifold Mn is said to be w-locally volume collapsed with respect to a
lower sectional curvature bound if for every p ∈Mn, vol(B(p,Rp)) ≤ wRn

p .

Suppose that we rescale the ball B(p,Rp) to have radius one. Then the resulting ball
will have sectional curvature bounded from below by −1 and volume bounded above by w.
As w will be small compared to the volume of the unit ball in Rn, we can say that on the
curvature scale, the manifold is locally volume collapsed with respect to a lower sectional
curvature bound.

Next, we give a definition of F -structures. Roughly speaking, an F -structure on a space
X is a generalization of local torus actions. Different tori (possibly not all of the same
dimensions) act locally on finite covering spaces of subsets of X. These local actions satisfy
compatibility conditions insuring that X is partitioned into disjoint “orbits”. The concept of
F -structures was introduced by Cheeger and Gromov [5, 6]. A graph manifold is an example
of a manifold which admits an F -structure. The following definition of F -structures is
adapted from [9]. The difference is that in this dissertation, we allow torus actions to have
fixed points.
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Definition 1.3. An F -structure on M is an open cover {Ui} together with an action of a

torus T ni on Ũi, which is a finite normal cover of Ui, with the following properties.

(1) If Ui∩Uj 6= ∅, then there exists a covering πij : Ũij → Ui∩Uj and maps πij,i : Ũij → Ũi
and πij,j : Ũij → Ũj so that the following diagram is commutative.

Ũi Ũij Ũj

Ui Ui ∩ Uj, Uj

πi

πij,i

πij,j

πij πj

That is πi ◦ πij,i = πj ◦ πij,j = πij.

(2) There exists an action of a torus T nij on Ũij.

(3) There exists an ni-dimensional subtorus T niij ⊂ T nij and a locally isomorphic group
homomorphism T niij → T ni , such that πij,i is equivariant. The same holds when we
replace i by j.

The following theorem is the main result of this dissertation.

Theorem 1.4. Let c4 denote the volume of the unit ball in R4 and let K ≥ 10 be a fixed
integer. Fix a function A : (0,∞) → (0,∞). Then there is some w0 ∈ (0, c4) such that the
following holds.

Suppose that (M, g) is a closed orientable Riemannian 4-manifold. Assume in addition
that for every p ∈M ,

(1) vol(B(p,Rp)) ≤ w0R
4
p and

(2) For every w′ ∈ [w0, c4), k ∈ [0, K], and r ≤ Rp such that vol(B(p, r)) ≥ w′r4, the
inequality

|∇kRm| ≤ A(w′)r−(k+2) (1.5)

holds in the ball B(p, r).

Then M admits a metric of nonnegative sectional curvature or M admits an F -structure.

The main geometric assumption in Theorem 1.4 is the first assumption, which is a local
collapsing statement. The second assumption is a technical regularity assumption. Assuming
the second assumption allows us to work with a sequence of pointed Riemannian manifolds
which converge in the standard CK-topology to a CK-smooth limit rather than having a
pointed Gromov-Hausdorff convergence to an Alexandrov space limit. For the 3-dimensional
analog ([24, Theorem 7.4], [13, Theorem 1.3]) of Theorem 1.4, the second assumption arises
from the smoothing effect of the Ricci flow equation in its application to the geometrization
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conjecture. Kleiner and Lott [13] showed that the second assumption of [24, Theorem 7.4]
can be removed by using the Stability Theorem of Perelman [23] instead of the standard
CK-convergence of Riemannian manifolds and using the classification of complete, noncom-
pact, orientable, nonnegatively curved 3-dimensional Alexandrov spaces N , when N is a
noncompact topological manifold by Shioya and Yamaguchi [28] instead of the classification
of closed Riemannian 3-manifolds with nonnegative sectional curvature.

Paternain and Petean [21] showed that if a compact manifold M admits an F -structure
then it is volume collapsed with respect to a lower sectional curvature bound. Therefore,
assuming the second assumption, the statement of Theorem 1.4 is in fact necessary and
sufficient. We have the following corollary.

Corollary 1.6. With the same assumptions as in Theorem 1.4, there exists w0 ∈ (0, c4) such
that for any closed orientable Riemannian 4-manifold M , hypotheses (1) and (2) of Theorem
1.4 hold if and only if M admits a metric of nonnegative sectional curvature or M admits
an F -structure.

1.2 Outline of the proof

The proof of Theorem 1.4 is by contradiction. Assuming that the theorem is false, we get a
sequence of manifolds Mα which satisfy the hypotheses of Theorem 1.4 with the parameter
ω0 → 0, but do not admit an F -structure or a metric of nonnegative sectional curvature.
Using the standard CK-convergence for Riemannian manifolds, we study the local geometry
and topology of Mα, for sufficiently large α. The local geometries are based on the number
of R-factors that Mα locally approximately splits off. Next, we use these local descriptions
to decompose Mα into domains which are fiber bundles. We then study all possible ways
to glue fiber bundle pieces together and give an explicit configuration of Mα. Lastly, we
show that Mα admits a metric of nonnegative sectional curvature or admits an F-structure.
Hence, we get a contradiction.

For brevity, we will suppress the superscript α and refer to Mα by M , assuming that α
is sufficiently large.

We will mainly follow and generalize the strategy and techniques developed by Kleiner
and Lott in [13]. However, there are some complications that arise in proving its 4-dimensional
analog. Firstly, a situation where M locally approximately splits off exactly one R-factor
is more complicated in the 4-dimensional case. This is discussed in Chapter 8 and parts of
Chapter 10 to Chapter 12. Secondly, the gluing procedure and the explicit configurations of
M are more involved in the 4-dimensional case. This is done in Chapter 13 to Chapter 15.
Lastly, one needs to recognize a meaningful structure on M from the explicit configurations,
which turned out to be F -structures.
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1.2.1 Local collapsing in terms of the volume scale

In Chapter 3, we reformulate Theorem 1.4 in terms of the volume scale and set up the
contradiction proof for the theorem.

Definition 1.7. Let c4 denote the volume of the unit ball in R4. Fix w̄ ∈ (0, c4). Given
p ∈M , the w̄-volume scale at p is

rp(w̄) = inf{r > 0 : vol(B(p, r)) = w̄r4}. (1.8)

If there is no such r, then we say that the w̄-volume scale is infinite.

In terms of the curvature scale (see Definition 1.1), Hypothesis (1) of Theorem 1.4 implies
that if we rescale the ball B(p,Rp) to have radius one, then the resulting ball will have
sectional curvature bounded from below by −1 and volume bounded above by w0. On
the other hand, if we rescale the ball B(p, rp(w0)) to have radius one, then Hypothesis (1)
implies that there is a large number R so that the sectional curvature on the radius R ball,
B′(p,R) in the rescaled manifold, is bounded below by − 1

R2 while vol(B′(p, 1)) = w0, where
B′(p, 1) denotes a unit ball in the rescaled manifold. This means that on the volume scale, a
large neighborhood of p is well approximated by a large region of a complete 4-manifold Np,
which admits a metric of nonnegatively sectional curvature. This allows us to study a local
geometry of M . Moreover, if w0 is sufficiently small, then we can say that at the volume
scale, a neighborhood of p is close in a coarse sense to a space of dimension less than four.
In this dissertation, we will work consistently on the volume scale.

1.2.2 Modified volume scale

Volume scales can fluctuate from point to point. This leads to difficulties in gluing local
models together. In Chapter 4, we replace the volume scale by a modified volume scale, the
fluctuation of which can be better controlled. We define a scale function p 7→ rp at each
point p ∈M such that:

(1) rp is much smaller than the curvature scale Rp.

(2) The function p 7→ rp is smooth and has Lipschitz constant much smaller than 1.

(3) vol(B(p, rp)) ∈ [w′r4
p, w̄r

4
p], where w′ < w̄ are suitably chosen constants lying in the

interval [w0, c4].

The existence of the modified volume scale follows from the local collapsing assumption,
the Bishop-Gromov volume comparison theorem, and an argument similar to McShane’s
extension theorem for real-valued Lipschitz functions.
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1.2.3 Implication of compactness

From Condition (1) above, we have that the rescaled manifold 1
rp
M admits a metric of non-

negative sectional curvature near p. Condition (3) implies that 1
rp
M , near p, looks collapsed

but not too collapsed, in the sense that the volume of the unit ball around p in the rescaled
manifold 1

rp
M is small but not too small. Together with the regularity assumption (1.5) in

Theorem 1.4 and the standard compactness theorems for pointed Riemannian manifolds, we
can approximate a neighborhood of p in the rescaled manifold in two ways:

(1) For every p ∈ M , the rescaled pointed manifold ( 1
rp
M, p) is close in the pointed CK-

topology to a pointed CK-smooth Riemannian 4-manifold (Np, ?) which admits a metric
of nonnegative sectional curvature.

(2) For every p ∈M , the rescaled pointed manifold ( 1
rp
M, p) is close in the pointed Gromov-

Hausdorff topology to a pointed nonnegatively curved Alexandrov space (Xp, ?) of
dimension at most 3.

1.2.4 Stratification

Next in Chapter 5, we partition M into k-stratum points, for k ∈ {0, 1, 2, 3}, in terms of the
number of R-factors that ( 1

rp
M, p) approximately splits off.

Let 0 < β1 < β2 < β3 be new parameters. At scale rp, we partition points in M as
follows:

– A point p in M is a 3-stratum point if ( 1
rp
M, p) is β3-close to (R3, 0) in the pointed

Gromov-Hausdorff topology.

– A point p in M lies in the 2-stratum if it does not lie in the 3-stratum and ( 1
rp
M, p) is

β2-close to (R2× Yp, (0, ?Yp)) in the pointed Gromov-Hausdorff topology, where Yp is a
point, a circle, an interval, or a half-line, and ?Yp is a basepoint in Yp.

– A point p in M lies in the 1-stratum if it does not lie in the k-stratum for k ∈ {2, 3}
and ( 1

rp
M, p) is β1-close to (R×Yp, (0, ?Yp)) in the pointed Gromov-Hausdorff topology,

where Yp is a 2-dimensional Alexandrov space.

– A point p in M lies in the 0-stratum if it does not lie in the k-stratum for k ∈ {1, 2, 3}.

Furthermore, if a point p ∈M is in the k-stratum, then at some scale comparable to rp,
M is close in the pointed CK-topology to Np ' Rk × Fp where Fp is given in the following
table. The structures near p in the k-stratum, for k ∈ {0, 1, 2, 3}, are discussed in Chapter
6 to Chapter 9.
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k Fp

3 S1

2 S2, T 2, D2

1 S3/Γ, T 3/Γ, S2 × S1, RP 3#RP 3, D3, S2 ×Z2 I, S
1 ×D2, T 2 ×Z2 I

0
D4, S1 ×D3, S2 ×ω D2, (S2 ×ω D2)/Z2, ω ∈ Z, (RP 2 × S1)×̃I,

(S2×̃S1)×̃I, T 2 ×D2, T 2 ×Z2 D
2, βk×̃I, k ∈ {1, 2, 3, 4}

Additionally, we can transfer the projection map Np ' Rk×Fp → Rk to a map ηp defined
on a large ball B(p, C), at some scale comparable to rp, where it defines a submersion.

1.2.5 Compatibility of the local structures

Once we have the local structure of M near each point, we investigate how the local structures
fit together on their overlaps. It follows from the construction of the stratification that local
structures are nearly “aligned”.

For example, suppose that p, q ∈M are 1-stratum points with B(p, Cprp)∩B(q, Cqrq) 6= ∅
for some constants Cp and Cq. Provided that the Lipschitz constant of p 7→ rp is small, we
have that rp ≈ rq. Let z ∈ B(p, Cprp) ∩ B(q, Cqrq). We have two R-factors at z, coming
from the approximate splittings at p and q. If the two R-factors do not nearly align at z,
then they generate an approximate R2-factor at z, which then transfers to an approximate
R2-factor at p. This contradicts to the assumption that p is in the 1-stratum. Therefore,
the two R-factors from the approximate splittings at p and q must nearly align along the
overlap. It follows that the maps ηp and ηq are “almost” affine functions of each other. This
will enable us to glue local structures near p and q together. Compatibilities between points
in other strata follow from similar arguments.

1.2.6 Gluing the local structures together

In Chapter 10 to Chapter 12, we use the compatibility of local structures to glue them
together. We mostly follow the methods in [13] in this part.

In summary, the gluing process begins with selecting a collection of points of each type
in M , {pi}i∈Ik-stratum

, for k ∈ {0, 1, 2, 3}, so that
⋃
i∈Ik-stratum

B(pi, Cirpi) covers the k-stratum
points, for some constants Ci. Next, we try to combine the maps ηpi so that we have a
global fibration structure for each type of points. This is done by defining a smooth map
E0 : M → H into a high-dimensional Euclidean space H. Components of E0 are functions
of ηpi and the scale function p 7→ rp, cutoff appropriately so that they define global smooth
functions. See Chapter 10 for details.



Chapter 1 8

It follows from pairwise compatibility of the functions ηpi discussed above that the image
of E0 of

⋃
i∈I3-stratum

B(pi, Cirpi) is a subset S ⊂ H which, at the right scale, is everywhere
locally closed in the pointed Hausdorff sense to a 3-dimensional affine subspace. Kleiner
and Lott [13] call such sets cloudy manifolds. They showed that a cloudy manifold of any
dimension can be approximated by a core manifold W whose normal injectivity radius is
controlled (see [13, Appendix B]). We use this to “upgrade” E0 to a new map E1 which is
C1-close to E0 and is a fibration near the 3-stratum. We repeat similar adjustments near
other stratum points to obtain a map E : M → H whose restriction to certain regions of
M give locally trivial fibrations. For example, near the 3-stratum points, E yields circle
fibrations. See Chapter 11 for details.

Lastly in Chapter 12, we show that the fibered regions derived from E have disjoint
interiors and are pairwise compatible. In particular, if two fibers intersect, then one of them
is contained in the other.

1.2.7 Describing the domains in terms of fiber bundle components

In Chapter 13, we describe the conclusion of Chapter 12 in terms of domains with disjoint
interiors. Each domain is a compact 4-manifold with corners which is also a fiber bundle,
with compatibility of fibers along the overlaps. Then, we study how fibers of different types
intersect. In particular, we describe possible configurations of each fiber along the overlaps in
terms of fibers of other types. We note that not all combinatorial configurations are feasible
due to topological obstructions.

The following example demonstrates the decompositions of fibers.

Example 1.9. Let M0 be a fiber bundle component

F 4 M0

pt

 where F 4 is the unit

normal bundle of a soul of a complete noncompact orientable Riemannian 4-manifold which
admits a metric of nonnegative sectional curvature. For a classification, see Lemma 2.12.
∂M0 is a closed 3-manifold.

Assume that M0 intersects exactly two other types of fiber bundle components:

–

T 2 Mi

(Σ2, ∂Σ2)

, a T 2-bundle over a surface Σ2, and

–

S1 ×D2 Mj

(I, ∂I)

, an S1 ×D2-bundle over an interval I.
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In Lemma 13.17, we show that ∂M0 = B1 ∪ A ∪ B2 where A ∼= T 2 × I is a subbundle

of the boundary of

T 2 Mi

(Σ2, ∂Σ2)

, for some i, and B1 and B2 are S1 ×D2-fibers over

the endpoints of

S1 ×D2 Mj1

(I, ∂I)

 and

S1 ×D2 Mj2

(I, ∂I)

, for some j1 and j2. It

follows that ∂M0
∼= S3, S1×S2, or a Lens space L(|ω|, 1) and M0

∼= D4, ±CP 2#D4, S1×D3,
S2 ×D2, a twisted (RP 2 × S1)-bundle over an interval (RP 2 × S1)×̃I, a twisted (S2×̃S1)-
bundle over an interval (S2×̃S1)×̃I where S2×̃S1 is the nonorientable S2-bundle over S1, or
a D2-bundle over S2 with Euler number ω, S2 ×ω D2.

More generally, ∂M0 still has the same decomposition ∂M0 = B1 ∪ A ∪ B2 when we

replace an occurrence of a component

S1 ×D2 Mj

(I, ∂I)

 by

T 2 ×Z2 I Mj

(I, ∂I)

 in

the above construction. However, the topology of M0 changes.

1.2.8 Gluing fiber bundle components into building blocks

Recall that we are trying to get a contradiction by showing that for large α, M = Mα admits
an F -structure or a metric of nonnegative sectional curvature. In Chapter 14, we use the
decompositions of fibers from Chapter 13 to glue fiber bundle components of different types
together into building blocks and show that they admit F -structures. Later in Chapter 15,
we finish the proof of Theorem 1.4 by describing M in terms of a configuration of building
blocks and showing that M admits an F -structure.

The following example illustrates the gluing process.

Example 1.10. Assume that M consists of

– three (S1 ×D3)-bundles over a point

S1 ×D3 Vα

pt

, α ∈ {1, 2, 3},

– two (S1 ×D2)-bundles over an interval

S1 ×D2 Eβ

(I, ∂I)

, β ∈ {12, 23},

– one T 2-bundle over D2

T 2 M ′

(D2, ∂D2)

,
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– and one S1-bundle over D3

S1 M ′′

(D3, ∂D3)

.

These components are glued together according to the following diagram

V1

V3

V2

where the vertices represent

S1 ×D3 Vα

pt

, α ∈ {1, 2, 3}, the solid edges representS1 ×D2 Eβ

(I, ∂I)

, β ∈ {12, 23}, and the triangular area represents

T 2 M ′

(D2, ∂D2)

.

The dashed edge is a T 2-subbundle T 2 × I of

T 2 ∂M ′

∂D2

. For each (S1 × D2)-fiber ofS1 ×D2 Eβ

(I, ∂I)

, its T 2-boundary coincides with a T 2-fiber of

T 2 ∂M ′

∂D2

. The

union of components represented by the above figure is glued to

S1 M ′′

(D3, ∂D3)

 along

their (S1 × S2)-boundaries in such a way that each T 2-fiber of the dashed edge T 2 × I is a

union of S1-fibers from

S1 M ′′

(D3, ∂D3)

.

More generally, under the same configuration, each component in Example 1.10 has more
than one possible topological type. For example, in addition to S1 × D3, each vertex can
also represent a manifold diffeomorphic to T 2 ×D2, D4, or a D2-bundle over S2. Instead ofT 2 M ′

(D2, ∂D2)

, the triangular area can also represent

T 2 M ′

(Σ2, ∂Σ2)

 where Σ2 is
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a surface with one boundary component. Instead of

S1 M ′′

(D3, ∂D3)

, the union of the

components represented by the above figure can also attach to

S1 M ′′

(X3, ∂X3)

 where

X3 is a 3-manifold such that ∂X3 ∼= S2.

1.2.9 Giving an explicit configuration and recognizing an F -structure

In Chapter 15, we finish the proof of Theorem 1.4 by describing M in terms of a configuration
of building blocks and fiber bundle components then showing that M admits an F -structure
or a metric of nonnegative sectional curvature.

The following example illustrates a construction of an F -structure on M .

Example 1.11. Let M be the manifold in Example 1.10. For simplicity, we assume that

all fiber bundles are trivial. Let S1 act on

S1 M ′′

(D3, ∂D3)

 ∼= (S1 ×D3) by rotations on

S1-fibers and act trivially on D3. Similarly, let T 2 act on

T 2 M ′

(D2, ∂D2)

 ∼= (T 2 ×D2)

by the standard T 2-action on T 2-fibers and act trivially on D2. The T 2-action extends to⋃
α,β(Vα ∪ Eβ) ∼= (S1 × D2) × I in such a way that T 2 acts trivially on the I-factor and

acts by an extension of the standard action on the (S1 × ∂D2)-factor. Each (S1 ×D2)-fiber
is the union of T 2-orbits over an open interval and a single orbit of dimension one. The
T 2-action restricts to an S1-action on a neighborhood of this 1-dimensional orbit. By the
compatibility of fibers, the S1 action on ∂M ′′ extends to the T 2-action on the boundary of

M ′ ∪
(⋃

α,β Vα ∪ Eβ
)

. This gives an F -structure on M .

1.3 Notation and conventions

1.3.1 Parameters and constraints

We mostly follow the notation and conventions in [13]. The proof of Theorem 1.4 involves
long constructions, many steps of which generate new constants. We will refer to these
constants as parameters. Several arguments will include a consideration of sequences of
values of parameters, which one should associate with a sequence of distinct instances of the
constructions.

Many arguments in this dissertation assert that certain statements hold provided that
certain constraints on the parameters are satisfied. Each time we refer to such a constraint,



Chapter 1 12

we will assume that the inequalities in question are satisfied for the remainder of the thesis.
Constraint functions will be denoted with a bar. For example, µ < µ̄(β, σ) means that
µ ∈ (0,∞) satisfies an upper bound which is a function of β and σ. By convention, all
constraint functions take values in (0,∞).

At the end of the proof of Theorem 1.4 (Section 15.8), we will verify that it is possible
to simultaneously satisfy all the constraints that appear in the proof. Since the constraints
are of the form that one parameter is sufficiently large or small in terms of some other
parameters, we only need to consider the order in which the parameters are consider.

We follow Perelman’s convention that a condition like a > 0 means that a should be
considered to be small, while a condition like A <∞ means that A should be considered to
be large. This convention is for expository purposes only.

1.3.2 Notation

We will use the following notation for cutoff functions with prescribed support. Let φ ∈
C∞(R) be a nonincreasing function so that φ|(−∞,0] = 1, φ|[1,∞) = 0, and φ((0, 1)) ⊂ (0, 1).
Given a, b ∈ R with a < b, we define Φa,b ∈ C∞(R) by

Φa,b(x) = φ(a+ (b− a)x), (1.12)

so that Φa,b|(−∞,a] = 1 and Φa,b|[b,∞) = 0. Given a, b, c, d ∈ R with a < b < c < d, we define
Φa,b,c,d ∈ C∞(R) by

Φa,b,c,d(x) = φ−b,−a(−x)φc,d(x), (1.13)

so that Φa,b,c,d|(−∞,a] = 0, Φa,b,c,d|[b,c] = 1 and Φa,b,c,d|[d,∞) = 0.

If X is a metric space and 0 < r ≤ R, then we denote the annulus B(x,R)− B(x, r) by
A(x, r, R). The dimension of X refers to the Hausdorff dimension.

Let (X, ?) be a pointed metric space. A metric cone (C, ?) of (X, ?) is the union of rays
leaving the basepoint ? such that the union of any two such rays is isometric to the union of
two rays leaving the origin in R2. For brevity, sometimes we write C for the pointed metric
space (C, ?).

If Y is a subset of X and t : Y → (0,∞) is a function, then we write Nt(Y ) for the
neighborhood of Y with variable thickness t : Nt(Y ) =

⋃
y∈Y B(y, t(y)).

If (X, d) is a metric space and λ > 0, then we write λX for the scaled metric space
(X,λd). That is, for any two points x, y ∈ X, the distance dλX(x, y) = λdX(x, y). We also
write BλX(p, r) ⊂ λX for the r-ball around p in the metric space λX.

A product metric space X1 × X2 will always be endowed with the distance function

d(X1×X2)((x1, x2), (y1, y2)) =
√
d2
X1

(x1, y1) + d2
X2

(x2, y2) for (x1, x2), (y1, y2) ∈ X1 ×X2.
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Let X and Y be topological spaces with boundary. We denote by X ∪∂ Y the union
X ∪ Y with the condition that X ∩ Y = ∂X ∩ ∂Y .

Let Xn be a topological space and let k be a nonnegative integer. We denote the con-
nected sum X#X# . . .#X︸ ︷︷ ︸

k copies

by kX. When k = 0, we define kX to be Sn.
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2

Preliminaries

In this chapter, we list the material that we will need.

We refer to [25] for basics about Riemannian geometry. We refer to [2] for basics about
length spaces and Alexandrov spaces. We refer to [10, 27] for facts about 3-manifolds. We
refer to [7, 8, 17] for facts about S1 and T 2-actions on 3 and 4-manifolds.

2.1 Pointed Gromov-Hausdorff approximations

In this section, we collect definitions and basic results about the pointed Gromov-Hausdorff
topology. We refer to [2, Chapter 8].

Definition 2.1. Let (X, ?X) be a pointed metric space. Given δ ∈ [0,∞), two closed
subspaces C1 and C2 are δ-close in the pointed Hausdorff sense if C1 ∩ B(?X , δ−1) and
C2 ∩B(?X , δ−1) have Hausdorff distance at most δ.

Definition 2.2. Let (X, ?X) and (Y, ?Y ) be pointed metric spaces. Give δ ∈ [0, 1), a pointed
map f : (X, ?X) → (Y, ?Y ) is a δ-Gromov-Hausdorff approximation if for every x1, x2 ∈
B(?X , δ

−1) and y ∈ B(?Y , δ
−1 − δ), we have

|dY (f(x1), f(x2))− dX(x1, x2)| ≤ δ and dY (y, f(B(?X , δ
−1))) ≤ δ. (2.3)

Two pointed metric spaces (X, ?X) and (Y, ?Y ) are δ-close in the pointed Gromov-Husdorff
topology if there is a δ-Gromov-Hausdorff approximation from (X, ?X) to (Y, ?Y ). Although
this does not define a metric space structure on the set of pointed metric spaces, it defines
a topology which is metrizable.

A sequence {(Xi, ?Xi)}∞i=1 of pointed metric spaces Gromov-Hausdorff converges to (Y, ?Y )
if there is a sequence {fi : (Xi, ?Xi) → (Y, ?Y )}∞i=1 of δi-Gromov-Hausdorff approximations,
where δi → 0.

The pointed Gromov-Hausdorff topology is a complete metrizable topology on the set of
complete proper metric spaces (up to isometry). Thus, we can talk about two metric spaces
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having distance at most δ from each other. In this dissertation, we only concern complete
proper length spaces, which form a closed subset of the set of complete proper metric spaces
under the Gromov-Hausdorff topology.

2.2 CK-convergence

Definition 2.4. Given K ∈ Z+, let (M1, ?M1) and (M2, ?M2) be complete pointed CK-
smooth Riemannian manifolds. Given δ ∈ [0,∞), a pointed CK+1-smooth map f : (M1, ?M1)
→ (M2, ?M2) is a δ-CK approximation if it is a δ-Gromov-Hausdroff approximation and
‖f ∗gM2 − gM1‖CK , computed on B(?M , δ

−1), is bounded above by δ. Two CK-smooth
Riemannian manifolds (M1, ?M1) and (M2, ?M2) are said to be δ-CK-close if there is a δ-CK

approximation from (M1, ?M1) to (M2, ?M2).

We will use the following CK-precompactness result from [13] (see also [25, Chapter 10]).

Lemma 2.5 ([13, Lemma 3.5]). Given v, r > 0, n ∈ Z+, and a function A : (0,∞)→ (0,∞),
the set of complete pointed CK+2-smooth n-dimensional Riemannian manifolds (M, ?M) such
that

(1) vol(B(?M , r)) ≥ v and

(2) |∇kRm| ≤ A(R) on B(?M , r), for all 0 ≤ k ≤ K and R > 0,

is precompact in the pointed CK-topology.

The bound on the derivatives of curvature in Lemma 2.5 gives uniform CK+1-bounds on
the Riemannian metric in harmonic coordinates. One then obtains limit metrics which are
CK-smooth.

2.3 Alexandrov Spaces

We refer to [2] for basics about length spaces and Alexandrov spaces. In this dissertation,
all Alexandrov spaces are assumed to have a finite Hausdorff dimension.

We recall the notion of a strainer (cf. [2, Definition 10.8.9]). For facts about strainers,
we refer to [2, Chapter 10].
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Definition 2.6. Let X be an Alexandrov space of curvature bounded below by c. Let p ∈ X.
An m-strainer at p of quality δ and scale r is a collection {(ai, bi)}mi=1 of pairs of points such
that d(p, ai) = d(p, bi) = r and in terms of comparison angles,

∠̃p(ai, bi) > π − δ, (2.7)

∠̃p(ai, aj) >
π

2
− δ,

∠̃p(ai, bj) >
π

2
− δ,

∠̃p(bi, bj) >
π

2
− δ,

for all i, j ∈ {1, . . . ,m}, i 6= j. The comparison angles are defined using comparison triangles
in the model space of constant curvature c.

Definition 2.8. The strainer number of X is the supremum of numbers m such that there
exists an m-strainer of quality 1

100m
at some point and some scale.

Lemma 2.9 ([2, Corollary 10.8.21]). The Hausdorff dimension of X equals to its strainer
number.

If (X, ?X) is a pointed nonnegatively curved Alexandrov space, then there is a pointed
Gromov-Hausdorff limit CTX = limλ→∞( 1

λ
X, ?X) called the Tits cone of X. It is a nonneg-

atively curved Alexandrov space which is also a metric cone.

Lemma 2.10 ([13, Lemma 3.10]). Given n ∈ Z+, let {(Xi, ?Xi)}∞i=1 be a sequence of complete
pointed length spaces. Suppose that ci → 0 and ri →∞ are positive sequences such that for
each i, the ball B(?Xi , ri) has curvature bounded below by −ci and dimension bounded above
by n. Then a subsequence of the (Xi, ?Xi)’s converges in the pointed Gromov-Hausdorff
topology to a pointed nonnegatively curved Alexandrov space of dimension at most n.

2.4 Topology of Riemannian 4-manifolds with nonnegative sectional curvature

Lemma 2.11 ([13, Lemma 3.11]). Let M be a closed orientable 3-dimensional CK-smooth
Riemannian manifold with nonnegative sectional curvature. Then, M is diffeomorphic to
S3/Γ (where Γ is a finite subgroup of Isom+(S3) = SO4 which acts freely on S3), T 3/Γ
(where Γ is a finite subgroup of Isom+(T 3) which acts freely on T 3), S1×S2, and S1×Z2S

2 ∼=
RP 3#RP 3.

Wolf [33] showed that there are six orientable and four nonorientable flat closed 3-
manifolds. We follow the notation in [33]. The six orientable flat 3-manifolds are denoted
by Gi, i ∈ {1, . . . , 6}, where G1

∼= T 3. The four nonorientable flat 3-manifolds are denoted
by Bi, i ∈ {1, . . . , 4}, where B1

∼= K2 × S1. The double cover of B1 and B2 is T 3 and the
double cover of B3 and B4 is G2.
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Lemma 2.12. Let M be a complete connected orientable 4-dimensional CK-smooth Rieman-
nian manifold with nonnegative sectional curvature. We have the following classification of
the diffeomorphism types of M , based on the number of ends:

– 0 ends: complete compact connected orientable 4-dimensional CK-smooth Riemannian
manifold with nonnegative sectional curvature.

– 1 end: R4, S1 ×R3, T 2 ×R2, an R2-bundle over K2 K2×̃R2 ∼= T 2 ×Z2 R2, R2-bundles
over S2 S2×ωR2 for some ω ∈ Z, R2-bundles over RP 2 (S2×ωR2)/Z2 for some ω ∈ Z,
the twisted R-bundle over the nonorientable S2-bundle over S1 (S2×̃S1)×̃R, the twisted
R-bundle over RP 2×S1 (RP 2×S1)×̃R, and the twisted R-bundle over Bi Bi×̃R where
Bi is a nonorientable compact 3-dimensional Euclidean space form for i ∈ {1, 2, 3, 4}.

– 2 ends: N ×R where N is S1×S2, S1×Z2 S
2 ∼= RP 3#RP 3, T 3/Γ (where Γ is a finite

subgroup of Isom+(T 3) that acts freely on T 3), or S3/Γ (where Γ is a finite subgroup
of SO(4) that acts freely on S3).

If M has two ends then it splits off an R-factor isometrically.

Proof. If M has no ends then it is compact. Thus, M is a complete compact connected
orientable 4-dimensional CK-smooth Riemannian manifold with nonnegative sectional cur-
vature.

If M is noncompact, then by the Cheeger-Gromoll soul theorem, M is diffeomorphic to
the total space of a vector bundle over its soul, which is a closed lower-dimensional manifold
with nonnegative sectional curvature [4]. (As stated in [13], the proof in [4], which is for
C∞-metric, is also valid for CK-smooth metrics.) The possible dimensions of soul are 0, 1,
2, and 3. The possible topologies of M are listed in the lemma.

The O’Neill formula (see [25, Chapter 3]) implies that every R2-bundle over S2 admits a
metric of nonnegative sectional curvature. Özaydin and Walschap [20] showed that the only
R2-bundle over T 2 which admits a metric of nonnegative sectional curvature is the product
T 2 × R2.

If M has two ends then it contains a line and the Toponogov splitting theorem [32]
implies that M isometrically splits off an R-factor. The classification of closed orientable
3-dimensional CK-smooth Riemannian manifolds with nonnegative sectional curvature was
given in [13, Lemma 3.11].

Lemma 2.13. For i ∈ {1, 2}, let Wi be diffeomorphic to S2×±2D
2 and let Vi be a submanifold

of ∂Wi
∼= RP 3 diffeomorphic to S2×Z2 I. Let W = W1∪∂W2 by identifying V1 and V2. Then,

W ∼= D4#(S2 × S2) or D4#(S2×̃S2) where S2×̃S2 is the nontrivial orientable S2-bundle
over S2.

Proof. Let Z = W1 ∪∂ W2 where ∂W1 is identify with ∂W2 by an orientation-reversing
diffeomorphism. Then, Z is diffeomorphic to the union of two copies of S2 ×±2 D

2 along
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their boundaries. The mapping class group of RP 3 has one path-connected component.
Hence, there is a unique way, up to isotopy, to glue two copies of S2 ×±2 D

2 to get an
orientable manifold. In particular, ∂D2-fibers from two copies of ∂(S2 ×±2 D

2) coincide.
Therefore, Z is diffeomorphic to an S2-bundle over S2. That is Z ∼= S2 × S2 or S2×̃S2,
where S2×̃S2 is the nontrivial orientable S2-bundle over S2.

Consider that S2×Z2I
∼= RP 3−B3. For i ∈ {1, 2}, ∂Wi−Vi ∼= RP 3−(RP 3−B3) ∼= D3. Z

can be obtained from W by identifying ∂W1−V1 and ∂W2−V2. In other words, Z ∼= W ∪D4.
Therefore, W ∼= Z −B4 ∼= D4#(S2 × S2) or D4#(S2×̃S2).

2.5 S1 and T 2-actions

In this section, we list some S1 and T 2-actions on the unit normal bundle of a soul of a com-
plete noncompact orientable Riemannian 4-manifold which admits a metric of nonnegative
sectional curvature. From Lemma 2.12, they are D4, S1×D3, a D2-bundle over S2, S2×ωD2

for ω ∈ Z, a D2-bundle over RP 2, (S2 ×ω D2)/Z2 for ω ∈ Z, (RP 2 × S1)×̃I, (S2×̃S1)×̃I,
T 2 ×D2, T 2 ×Z2 D

2, or βk×̃I for k ∈ {1, 2, 3, 4}.

2.5.1 D2-bundles over S2, S2 ×ω D2, ω ∈ Z

We follow the constructions in [7] for S1 and T 2-actions on D2-bundles over S2.

Write S2 as B1 ∪B2 where B1 and B2 are the upper and lower hemispheres respectively.
For i ∈ {1, 2}, we use the polar coordinates (r, γ) on Bi and (s, δ) on D2

i where D2
i the

D2-fiber of S2 ×ω D2, r, s ∈ [0, 1] and γ, δ ∈ [0, 2π).

For relatively prime integers ui and vi, we define an S1-action on Bi ×D2
i by

S1 × (Bi ×D2
i )→ Bi ×D2

i , (2.14)

φ× (r, γ, s, δ) 7→ (r, γ + uiφ, s, δ + viφ).

If u2 = −u1 and v2 = −ωu1 + v1, then we obtain Yω = B1 ×D2
1 ∪G B2 ×D2

2 where G is an
equivariant pasting G : ∂B1 × D2

1 → ∂B2 × D2
2 so that G(1, γ, s, δ) = (1,−γ, s,−ωγ + δ).

The resulting manifold Yω is diffeomorphic to S2 ×ω D2, the D2-bundle over S2 with Euler
number ω, i.e. ω is the self-intersection number of the zero section of Yω.

Moreover, ∂Yω is obtained as the equivariant union of two solid tori ∂Yω = B1× ∂D2
1 ∪F

B2 × ∂D2
2 where F =

(
−1 0
−ω 1

)
. Hence, ∂Yω is the Lens space L(|ω|, 1) if ω 6= 0. Y0 is the

product S2 ×D2 and ∂Y0 = S2 × S1.

We can similarly define an effective T 2-action on S2 ×ω D2

T 2 × (Bi ×D2
i )→ Bi ×D2

i (φ, θ) (2.15)

(r, γ, s, δ) 7→ (r, γ + uiφ+ wiθ, s, δ + viφ+ tiθ)
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where the intergers ui, vi, wi, and ti satisfy∣∣∣∣ui wi
vi ti

∣∣∣∣ = ±1. (2.16)

The pasting G defined above is T 2-equivariant if also w2 = −w1 and t2 = −ωw1 + t1.

We describe S1 and T 2-actions on S2 ×ω D2 by the matrix(
u1 u2 w1 w2

v1 v2 t1 t2

)
(2.17)

which satisfies certain conditions.

The full list of S1-actions on Yω ∼= S2 ×ω D2 is given in [7]. Here we present a selection
that we will use. Throughout the following, ε = ±1, n is an arbitrary integer, and pairs
(αj, βj) are relatively prime with 0 < βj < αj.

(a) Suppose

ε′ =

∣∣∣∣ α1 β1

α3 β3

∣∣∣∣ = ±1, ε′′ =

∣∣∣∣ α3 β3

α2 β2

∣∣∣∣ = ±1, and ω = ε′ε′′
∣∣∣∣ α1 β1

α2 β2

∣∣∣∣ . (2.18)

Then(
u1 u2 w1 w2

v1 v2 t1 t2

)
=

 εα1 −εα1 ε(β1 + nα1) −ε(β1 + nα1)

εε′α2 −εε′′α2 εε′(β2 + nα2) −εε′′(β3 + nα3)

 (2.19)

describes actions on Yω with the orbit space Y ∗ω ' D3. The restriction of the above
S1-action onto ∂Yω has two exceptional orbits.

Figure 2.1: The orbit space Y ∗ω of a circle action on S2 ×ω D2 with two exceptional orbits
on ∂(Y ∗ω )

(b) Suppose

ε′′ =

∣∣∣∣ α1 β1

α3 β3

∣∣∣∣ = ±1, bα1+β1 = ±1, ε′ =

∣∣∣∣ 1 |b|
α1 β1

∣∣∣∣ , and ω = ε′ε′′
∣∣∣∣ 1 |b|
α2 β2

∣∣∣∣ .
(2.20)

Then(
u1 u2 w1 w2

v1 v2 t1 t2

)
=

εα1 −εα1 ε(β + nα1) −ε(β + nα1)

εε′ −εε′′α2 εε′(|b|+ n) −εε′′(β2 + nα2)

 (2.21)
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describes actions on Yω with the orbit space Y ∗ω ' D3. The restriction of the above
S1-action onto ∂Yω has one exceptional orbits.

Figure 2.2: The orbit space Y ∗ω of a circle action on S2 ×ω D2 with one exceptional orbit on
∂(Y ∗ω )

(c) Suppose

b′α1 + β1 = ±1, b′′α1 + β1 = ±1, ε′ =

∣∣∣∣ 1 |b|
α1 β1

∣∣∣∣ , (2.22)

ε′′ =

∣∣∣∣ α1 β1

1 |b′′|

∣∣∣∣ , and ω = ε′ε′′
∣∣∣∣ 1 |b|

1 |b′′|

∣∣∣∣ .
Then (

u1 u2 w1 w2

v1 v2 t1 t2

)
=

εα1 −εα1 ε(b+ nα1) −ε(b+ nα1)

εε′ −εε′′ εε′(|b′|+ n) −εε′′(|b′′|+ n)

 (2.23)

describes actions on Yω with the orbit space Y ∗ω ' D3. The restriction of the above
S1-action onto ∂Yω has no exceptional orbits.

Figure 2.3: The orbit space Y ∗ω of a circle action on S2 ×ω D2 with no exceptional orbits on
∂(Y ∗ω )

2.5.2 D4

Consider D4 as {(z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1}. Let S1 act on D4 by θ ∈ S1, θ(z1, z2) =
(eiαθz1, e

iβθz2), for some relatively prime α, β. The orbit space of the S1-action is (D4)∗ ∼= D3.
The restriction of the action to S3 = {(z1, z2) : |z1|2 + |z2|2 = 1} gives a Seifert bundle with
at most two exceptional points.

2.5.3 S1 ×D3

There is an S1-action on S1×D3 by rotation on the S1-factor and by the trivial action on the
D3-factor. An another S1-action on S1 ×D3 is by rotation about an axis on the D3-factor
and by the trivial action on the S1-factor.
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2.5.4 T 2 ×D2

There is an S1-action on T 2 ×D2 by rotation about the origin on the D2-factor and by the
trivial action on the T 2-factor. There is a T 2-action on T 2 ×D2 by the standard T 2-action
on the T 2-factor and by the trivial action on the D2-factor. Note that this T 2-action also
restricts to an S1-action.

2.5.5 (S2 ×ω D2)/Z2, ω ∈ Z

There are S1 and T 2-actions on the double cover (S2×ωD2) of (S2×ωD2)/Z2 as given above.

2.5.6 (RP 2 × S1)×̃I, (S2×̃S1)×̃I

There is an S1-action on the double cover (S2 × S1) × I of (RP 2 × S1)×̃I and (S2×̃S1)×̃I
by an S1-action on the S1 × S2-factor and by the trivial on the I-factor.

2.5.7 T 2 ×Z2 D
2

There are S1 and T 2-actions on the double cover T 2 ×D2 of T 2 ×Z2 D
2 as given above.

2.5.8 Bi×̃I, i ∈ {1, 2, 3, 4}

The double cover of B1 and B2 is T 3. There are S1 and T 2-actions on the double cover T 3×I
of Bi×̃I, i ∈ {1, 2}, by an action on the T 3-factor and by the trivial action on the I-factor.

The double cover of B3 and B4 is G2. G2 is a T 2-bundle over S1 which admits a T 2-action.
There is a T 2-action on the double cover G2 × I of Bi×̃I, i ∈ {3, 4}, by a T 2-action on the
G2-factor and by the trivial action on the I-factor.

2.6 Plumbing

We refer to [7, 17] for notation and basics about plumbing.

Definition 2.24. Given two D2-bundles η1 : D2 → Y1 → M1 and η2 : D2 → Y2 → M2 over
surfaces M1 and M2, we define a plumbing Y1�Y2 of Y1 and Y2 as follows.

Choose 2-disks B1 ⊂M1 and B2 ⊂M2 and the bundles over them, ξ1 and ξ2 respectively.
Since they are trivial bundles, there are natural identifications µ1 : B1 × D2 → ξ1 and
µ2 : B2×D2 → ξ2. Consider the reflection t : B1×D2 → B2×D2, t(x, y) = (y, x) and define
the homeomorphism f : ξ1 → ξ2 by f = µ2tµ

−1
1 . Pasting η1 and η2 together along ξ1 and ξ2

by the map f is called plumbing.

The resulting manifold of a plumbing is a 4-manifold with corners that may be smoothed.
It is independent of the choices involved [17].
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2.6.1 Equivariant plumbing

Fintushel [7] showed that a plumbing of D2-bundles over S2 can be done equivariantly with
the S1 and T 2-actions given in Subsection 2.5.1.

Lemma 2.25 ([7]). Let Yω1 and Yω2 be D2-bundles over S2 constructed as in Subsection 2.5.1.
Recall that we can write Yω1 = B1,1×D1,1∪GB1,2×D1,2 and Yω2 = B2,1×D2,1∪GB2,2×D2,2

where Bj,k and Dj,k are 2-disks and G is an equivariant pasting.

Then, we may equivariantly plumb together Yω1 and Yω2 by identifying B2,1 × D2,1 with
B1,2 ×D1,2. The resulting manifold Yω1�Yω2 has an induced S1-action and T 2-action.

2.7 F -structures

We refer to [5, 6, 9] for basics about F -structures.

The following definition is adapted from [9]. The difference is that we allow torus actions
to have fixed points.

Definition 2.26. An F -structure on M is an open cover {Ui}i together with an action of

T ni on Ũi, which is a finite normal cover of Ui, with the following properties.

(1) If Ui∩Uj 6= ∅, then there exists a covering πij : Ũij → Ui∩Uj and maps πij,i : Ũij → Ũi
and πij,j : Ũij → Ũj so that the following diagram is commutative.

Ũi Ũij Ũj

Ui Ui ∩ Uj, Uj

πi

πij,i

πij,j

πij πj

That is πi ◦ πij,i = πj ◦ πij,j = πij.

(2) There exists an action of T nij on Ũij.

(3) There exists an ni-dimensional subtorus T niij ⊂ T nij and a locally isomorphic group
homomorphism T niij → T ni , such that πij,i is equivariant. The same holds when we
replace i by j.

Definition 2.27. The orbit of a point p in M is the minimal invariant set containing p.
An F -structure is said to have positive rank if all orbits are of positive dimension, i.e., the
action of T ni on Ũi is fixed point free, for all Ũi.

In this dissertation, we do not assume that F -structures have positive rank.

Definition 2.28. If every finite normal covering πi : Ũi → Ui in Definition 2.26 is trivial,
then the F -structure is called a T-structure.
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A graph manifold is an example of a manifold which admits a T -structure.

Example 2.29. Let {Σ2
i } be a collection of surfaces with boundary. For each i, let Ui ∼=

Σ2
i ×S1. For each boundary component σi of Σ2

i , identify the boundary component σi×S1 of
Ui with a boundary component σj×S1 of Uj, for some j, where σj is a boundary component
of Σj, by an element of SL2(Z). The resulting manifold X is a graph manifold.

For each i, let S1 act on Ui by rotation on the S1-factor and by the trivial action on
Σ2
i . On an overlap Ui ∩ Uj ∼= S1 × S1, the two S1-actions from Ui and Uj do not necessary

coincide. However, if they do not coincide, then they generate a T 2-action on Ui ∩ Uj. This
T 2-action extends to a T 2-action φ on a neighborhood of Ui∩Uj so that φ|Ui agrees with the
S1-action on Ui and φ|Uj agrees with the S1-action on Uj. In the case that the T 2-action on
Ui ∩Uj is not effective, i.e., the orbits are 1-dimensional, we can pass to a quotient to get an
effective S1-action on Ui ∩ Uj. As a result, X admits a T -structure.

In this example, we have 2-dimensional torus actions on the overlaps and 1-dimensional
torus actions elsewhere. The method used to construct a T -structure in this example is a
typical technique for constructing an F -structure.

The following lemma says that a plumbing of two D2-bundles over a surface admits a
T -structure (see also [15] for a similar argument).

Lemma 2.30. For k ∈ {1, 2}, let Xk be a D2-bundle over a surface Σ2
k. The plumbing

X1�X2 admits a T-structure. If Σ2
1 and Σ2

2 are closed surfaces, then ∂(X1�X2) is a graph
manifold and the restriction of the T -structure to ∂(X1�X2) is a T -structure of positive
rank.

Proof. For k ∈ {1, 2}, the principal S1-bundle of D2 → Xk → Σ2
k gives local S1-actions on

Xk where S1 acts on each D2-fiber by rotations about the center and acts trivially on Σ2
k.

Σ2
k×{0} is the set of fixed orbits and the restriction of the local S1-actions on ∂Xk are free.

Recall the plumbing construction of X1�X2. Let B2
k ⊂ Σ2

k, k ∈ {1, 2}, be 2-disks. Let
φ : D2

1×B2
1 → D2

2×B2
2 be a map switching the fibers and the bases. That is φ(D2

1, ·) = (·, B2
2)

and φ(·, B2
1) = (D2

2, ·). Then, X1�X2 = X1 ∪φ X2 where D2
1 × B2

1 ⊂ X1 and D2
2 × B2

2 ⊂ X2

are identified by φ. The local S1-actions on Xk, k ∈ {1, 2}, can be chosen so that they
restrict to an S1-action on D2

k ×B2
k.

Let Y ∼= D2
1 × D2

2 be the plumbing location in X1�X2. There exists a T 2-action on Y
whose restriction to (D2

1, ·) coincides with the S1-action on D2
1 ×B2

1 ⊂ X1 and restriction to
(·, D2

2) coincides with the S1-action on D2
2 × B2

2 ⊂ X2. The local S1-actions on X1 and X2

and the T 2-action on a neighborhood of Y together give a T-structure on X1�X2.

It follows from the plumbing construction that ∂(X1�X2) is a graph manifold in the case
that Σ2

1 and Σ2
2 are closed surfaces. From the above construction, the T -structure on X1�X2

restricts to a T -structure of positive rank on ∂(X1�X2).
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Paternain and Petean [21] showed that a connected sum of two manifolds which admit a
T -structure also admits a T -structure.

Lemma 2.31 ([21, Theorem 5.9]). Suppose X and Y are n-dimensional manifolds, n > 2,
which admit a T -structure. Then X#Y also admits a T -structure.

The proof of [21, Theorem 5.9] is by constructing new local tori actions in a neighborhood
of the connected sum region. Therefore, the same proof also applies to manifolds X and Y
which admit an F -structure such that at least one finite normal covering (as in Definition
2.26) is trivial.

Corollary 2.32 ([22]). Suppose X and Y are n-dimensional manifolds, n > 2, which admit
an F -structure such that at least one finite normal covering (as in Definition 2.26) is trivial.
Then X#Y also admits an F -structure.

2.8 Cloudy submanifolds

Kleiner and Lott [13] introduced the notion of a cloudy submanifold as a subset of a Euclidean
space which looks roughly close to an affine subspace of the Euclidean space to use in their
proof of [24, Theorem 7.4]. As a reference, we give the definition of a cloudy submanifold as
appeared in [13, Appendix B].

Definition 2.33 ([13, Definition 20.1]). Suppose C, δ ∈ (0,∞), k ∈ Z+, and H is a Euclidean

space. A (C, δ) cloudy k-manifold in H is a triple (S̃, S, r), where S ⊂ S̃ ⊂ H is a pair of

subsets, and r : S̃ → (0,∞) is a (possible discontinuous) function such that:

(1) For all x, y ∈ S̃, |r(y)− r(x)| ≤ C(|x− y|+ r(x)).

(2) For all x ∈ S, the rescaled pointed subset ( 1
r(x)

S̃, x) is δ-close in the pointed Hausdorff

distance to ( 1
r(x)

Ax, x), where Ax is a k-dimensional affine subspace of H.

The following lemma says that every cloudy submanifold has a smooth “core” that comes
with a smooth submersion.

Lemma 2.34 ([13, Lemma 20.2]). For all k,K ∈ Z+, ε ∈ (0,∞), and C < ∞, there is

a δ = δ(k,K, ε, C) > 0 with the following property. Suppose (S̃, S, r) is a (C, δ) cloudy k-
manifold in a Euclidean space H, and for every x ∈ S, we denote by Ax an affine subspace
as in Definition 2.33. Then there is a k-dimensional smooth submanifold W ⊂ H such that

(1) For every point x ∈ S, the pointed Hausdorff distance from ( 1
r(x)

S̃, x) to ( 1
r(x)

W,x) is
at most ε.

(2) W ⊂ Nεr(S̃).
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(3) W ∩Nr(S) is properly embedded in Nr(S).

(4) The nearest point map P : Nr(S)→ W is a well-defined smooth submersion.

2.9 Approximate splittings and adapted coordinates

In their proof of [24, Theorem 7.4], Kleiner and Lott [13] introduced approximate Rk-splittings
and related concepts to capture the notion of a pointed metric space approximately splitting
off an Rk-factor. In this section, we collect basic properties of approximate splittings and
related concepts that we will need in this dissertation. For more details of approximate
splittings including the proofs of statements in this section, we refer the readers to [13,
Section 4].

2.9.1 Splittings

We recall the notion of splitting of a metric space.

Definition 2.35. Let X be a metric space. A product structure on X is an isometry
α : X → X1 ×X2. A k-splitting of X is a product structure α : X → X1 ×X2, where X1 is
isometric to Rk. A splitting is a k-splitting for some k. Two k-splittings α : X → X1×X2 and
β : X → Y1×Y2 are equivalent if there are isometries φi : Xi → Yi such that β = (φ1, φ2)◦α.

Definition 2.36. Suppose that j ≤ k. A j-splitting α : X → X1×X2 is said to be compatible
with a k-splitting β : X → Y1× Y2 if there is a j-splitting φ : Y1 → Rj ×Rk−j such that α is
equivalent to the j-splitting given by the composition

X Y1 × Y2 (Rj × Rk−j)× Y2
∼= Rj × (Rk−j × Y2).

β (φ,Id)
(2.37)

Lemma 2.38 ([13, Lemma 4.4]). (1) Suppose α : X → Rk×Y is a k-splitting of a metric
space X, and β : X → R × Z is a 1-splitting. Then either β is compatible with α,
or there is a 1-splitting γ : Y → R ×W such that β is compatible with the induced
splitting X → (Rk × R)×W .

(2) Any two splittings of a metric space are compatible with a third splitting.

2.9.2 Approximate splittings

Definition 2.39. Given a nonnegative integer k and δ ∈ [0,∞), a (k, δ)-splitting of a
pointed metric space (X, ?X) is a δ-Gromov-Hausdorff approximation (X, ?X)→ (X1, ?X1)×
(X2, ?X2), where (X1, ?X1) is isometric to (Rk, ?Rk). (We allow Rk to have other basepoints
than 0.)

The following definitions are approximate versions of equivalence and compatibility of
splittings.
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Definition 2.40. Suppose that α : (X, ?X)→ (X1, ?X1)× (X2, ?X2) is a (j, δ1)-splitting and
β : (X, ?X)→ (Y1, ?Y1)× (Y2, ?Y2) is an (k, δ2)-splitting. Then

(1) α is ε-close to β if j = k and there are ε-Gromov-Hausdorff approximations φi :
(Xi, ?Xi) → (Yi, ?Yi) such that the composition (φ1, φ2) ◦ α is ε-close to β, i.e., agrees
with β on B(?X , ε

−1) up to error at most ε.

(2) α is ε-compatible with β if j ≤ k and there is a j-splitting γ : (Y1, ?Y1) → (Rj, ?Rj) ×
(Rk−j, ?Rk−j) such that the (j, δ2)-splitting defined by the composition

X Y1 × Y2 (Rj × Rk−j)× Y2
∼= Rj × (Rk−j × Y2).

β (γ,Id)
(2.41)

is ε-close to α.

Lemma 2.42 ([13, Lemma 4.10]). Given δ > 0 and C < ∞, there is a δ′ = δ′(δ, C) > 0
with the following property. Suppose that (X, ?X) is a complete pointed metric space with a
(k, δ′)-splitting α. Then for any x ∈ B(?X , C), the pointed space (X, x) has a (k, δ)-splitting
coming from a change of basepoint of α.

2.9.3 Approximate splittings of Alexandrov spaces

The next lemma shows that the notions of having a good strainer and having a good ap-
proximate Rk-splitting are essentially equivalent for Alexandrov spaces.

Lemma 2.43 ([13, Lemma 4.15]). (1) Given k ∈ Z+ and δ > 0, there is a δ′ = (k, δ) > 0
with the following property. Suppose that (X, ?X) is a complete pointed nonnegatively
curved Alexandrov space with a (k, δ′)-splitting. Then ?X has a k-strainer of quality δ
at a scale δ−1.

(2) Given n ∈ Z+ and δ > 0, there is a δ′ = (n, δ) > 0 with the following property. Suppose
that (X, ?X) is a complete pointed length space so that B(?X ,

1
δ′

) has curvature bounded
below by −δ′ and dimension bounded above by n. Suppose that for some k ≤ n, ?X
has a k-strainer {p±}ki=1 of quality δ′ at a scale 1

δ′
. Then (X, ?X) has a (k, δ)-splitting

φ : (X, ?X) → (Rk × X ′, (0, ?X′)) where the composition πRk ◦ φ has jth component
dX(p+

j , ?X)− dX(p+
j , ·).

2.9.4 Compatibility of approximate splittings

The following lemma states that the nonexistence of an approximate (k+1)-splitting implies
that approximate j-splittings are approximately compatible with k-splittings for j ≤ k.

Lemma 2.44 ([13, Lemma 4.17]). Given j ≤ k ≤ n ∈ Z+ and β′k, βk+1 > 0, there are num-
bers δ = δ(j, k, n, β′k, βk+1) > 0, βj = βj(j, k, n, β

′
k, βk+1) > 0, and βk = βk(j, k, n, β

′
k, βk+1) >

0 with the following property. If (X, ?X) is a complete pointed length space such that



Chapter 2 27

(1) The ball B(?X , δ
−1) has curvature bounded below by −δ and dimension bounded above

by n, and

(2) (X, ?X) does not admit a (k + 1, βk+1)-splitting,

then any (j, βj)-splitting of (X, ?X) is β′k-compatible with any (k, βk)-splitting.

2.9.5 Overlapping cones

Recall that a pointed metric space (X, ?X) is a metric cone if it is a union of rays leaving
the basepoint ?, and the union of any two rays γ1 and γ2 leaving ? is isometric to the union
of two rays γ̄1, γ̄2 ⊂ R2 leaving the origin 0 ∈ R2.

The following lemma says that an existence of two cone points implies a 1-splitting.

Lemma 2.45 ([13, Lemma 4.19]). If (X, ?X) is a conical nonnegatively curved Alexandrov
space and there is some x 6= ?X so that (X, x) is also a conical Alexandrov space, then X
has a 1-splitting such that the segment from ?X to x is parallel to the R-factor.

The following lemma is an approximate version of Lemma 2.45.

Lemma 2.46 ([13, Lemma 4.20]). Given n ∈ Z+ and δ > 0, there is a δ′ = δ′(n, δ) > 0 with
the following property. If

(1) (X, ?X) is a complete pointed length space,

(2) x ∈ X has d(?X , x) = 1, and

(3) (X, ?X) and (X, x) have pointed Gromov-Hausdorff distance less than δ′ from conical
nonnegatively curved Alexandrov spaces CY and CY ′, respectively, of dimension at
most n,

then (X, x) has a (1, δ)-splitting.

2.9.6 Adapted coordinates

Definition 2.47 ([13, Definition 4.21]). Suppose 0 < δ′ ≤ δ, and let α be a (k, δ′)-splitting
of a complete pointed Riemannian manifold (M, ?M). Let Φ : B(?M , δ

−1) → Rk be the
composition B(?M , δ

−1)→α Rk ×X2 → Rk. Then a map φ : (B(?M , 1), ?M)→ (Rk, φ(?M))
defines α-adapted coordinates of quality δ if the following holds.

(1) φ is smooth and (1 + δ)-Lipschitz.

(2) The image of φ has Hausdorff distance at most δ from B(φ(?M), 1) ⊂ Rk.
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(3) For all m ∈ B(?M , 1) and m′ ∈ B(?M , δ
−1) with d(m,m′) > 1, the unit-length initial

velocity vector v ∈ TmM of any minimizing geodesic from m to m′ satisfies∣∣∣∣Dφ(v)− Φ(m′)− Φ(m)

d(m,m′)

∣∣∣∣ < δ. (2.48)

We say that a map φ : (B(?M , 1), ?M) → (Rk, 0) define adapted coordinates of quality δ if
there exists a (k, δ)-splitting α such that φ defines α-adapted coordinates of quality δ, as
above. Likewise, (M, ?M) admits k-dimensional adapted coordinates of quality δ if there is a
map φ as above which defines adapted coordinates of quality δ.

We will refer to the following lemma as the existence of adapted coordinates.

Lemma 2.49 ([13, Lemma 4.23]). For all n ∈ Z+ and δ > 0, there is a δ′ = δ′(n, δ) > 0
with the following property. Suppose that (M, ?M) is an n-dimensional complete pointed
Riemannian manifold with sectional curvature bounded below by −(δ′)2 on B(?M ,

1
δ′

), which
has a (k, δ′)-splitting α. Then there exist α-adapted coordinates of quality δ.

We will refer to the following lemma as the uniqueness of adapted coordinates.

Lemma 2.50 ([13, Lemma 4.28]). Given 1 ≤ k ≤ n ∈ Z+ and ε > 0, there is an ε′ =
ε′(n, ε) > 0 with the following properties. Suppose that

(1) (M, ?M) is an n-dimensional complete pointed Riemannian manifold with sectional
curvature bounded below by −(ε′)2 on B(?M ,

1
ε′

).

(2) α : (M, ?M)→ (Rk × Z, (0, ?Z)) is a (k, ε′)-splitting of (M, ?M).

(3) φ1 : B(M, ?M)→ (Rk, 0) defines α-adapted coordinates of quality ε′ on B(?M , 1).

(4) Either

(a) φ2 : B(M, ?M)→ (Rk, 0) defines α-adapted coordinates of quality ε′ on B(?M , 1),
or

(b) φ2 has (1 + ε′)-Lipschitz components and the following holds:

For every m ∈ B(?M , 1) and every j ∈ {1, . . . , k}, there is an m′j ∈ B(?M ,
1
ε′

) with
d(m′j,m) > 1 satisfying (2.48) (with φ replaced by φ2), such that (πRk ◦ α)(m′j)
lies in the ε′-neighborhood of the line (πRk ◦α)(m) +Rej, and (πZ ◦α)(m′j) lies in
the ε′-ball centered at (πZ ◦ α)(m).

Then ‖φ1 − φ2‖C1 < ε on B(?M , 1).

The next lemma shows that approximate compatibility of two approximate splittings
leads to an approximate compatibility of their associated adapted coordinates.
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Lemma 2.51 ([13, Lemma 4.31]). Given 1 ≤ j ≤ k ≤ n ∈ Z+ and ε > 0, there is an
ε′ = ε′(n, ε) > 0 with the following properties. Suppose that

(1) (M, ?M) is an n-dimensional complete pointed Riemannian manifold with sectional
curvature bounded below by −(ε′)2 on B(?M ,

1
ε′

).

(2) α1 is a (j, ε′)-splitting of (M, ?M) and α2 is a (k, ε′)-splitting of (M, ?M).

(3) α1 is ε′-compatible with α2.

(4) φ1 : (M, ?M) → (Rj, 0) and φ2 : (M, ?M) → (Rk, 0) are adapted coordinates of quality
ε′ on B(?M , 1), associated to α1 and α2, respectively.

Then there exists a map T : Rk → Rj, which is a composition of an isometry with an
orthogonal projection, such that ‖φ1 − T ◦ φ2‖C1 ≤ ε on B(?M , 1).

By rescaling, we can define adapted coordinates on a ball of any specified size, and the
results of this subsection will remain valid ([13, Remark 4.35]).
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3

Standing Assumptions

We now start the proof of Theorem 1.4. The proof is by contradiction.

Lemma 3.1. If Theorem 1.4 is false then we can satisfy Standing Assumption 3.2, for an
appropriate choice of A′.

Lemma 3.1 implies that if we can get a contradiction from Standing Assumption 3.2, then
we have proven Theorem 1.4. Recall from Definition 1.7 that if w ≤ w′ then rp(w) ≥ rp(w

′).

Standing Assumption 3.2. Let K ≥ 10 be a fixed integer and let A′ : (0,∞)× (0,∞) →
(0,∞) be a function.

We assume that {(Mα, gα)}∞α=1 is a sequence of connected closed Riemannian 4-manifolds
such that

(1) For all p ∈Mα, the ratio Rp
rp(1/α)

of the curvature scale at p to the 1
α

-volume scale at p

is bounded below by α.

(2) For all p ∈ Mα, ω′ ∈
[

1
α
, c4

)
, integer k ∈ [0, K], and C ∈ (0, α), we have that

|∇kRm| ≤ A′(C,w′)rp(w
′)−(k+2) on B(p, Crp(w

′)).

(3) Each Mα does not admit a metric of nonnegative sectional curvature or an F -structure.

Proof. Suppose that Theorem 1.4 is false. Then for every positive integer α, there is a
manifold (Mα, gα) which satisfies the hypothesis of Theorem 1.4 with the parameter w0 set
to wα0 = 1

16α4 , but Mα does not admit a metric of nonnegative sectional curvature or an
F -structure.

First, we claim that for every pα ∈ Mα, we have that rpα(1/α) < Rpα . If not, then for
some pα ∈Mα, rpα(1/α) ≥ Rpα . From the definition of rpα(1/α),

vol(B(pα, Rpα)) ≥ 1

α
R4
pα >

1

16α4
R4
pα (3.3)

which contradicts our choice of wα0 .
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Therefore, rpα(1/α) < Rpα . Then

1

α
(rpα(1/α))4 = vol(B(pα, rpα(1/α))) ≤ vol(B(pα, Rpα)) ≤ 1

16α4
R4
pα . (3.4)

Thus,
Rpα

rpα(1/α)
≥ 2α. (3.5)

We then have that {(Mα, gα)}∞α=1 satisfies condition (1) of Standing Assumption 3.2.

Next, we show that condition (2) of Standing Assumption 3.2 holds, for an appropriate
choice of A′. First, consider that it suffices to just consider C ∈ [1, α) because a derivative
bound on a larger ball implies a derivative bound on a smaller ball. For w̃′ ∈

[
1
α
, c4

)
, we

have
Crpα(w̃′) ≤ αrpα(1/α) ≤ Rpα . (3.6)

Then,

vol(B(pα, Crpα(w̃′))) ≥ vol(B(pα, rpα(w̃′))) = w̃′(rpα(w′))4 = C−4w̃′(Crpα(w̃′))4 (3.7)

Put w′ = C−4w̃′. We have that

wα0 =
1

16α4
≤ w′ < c4. (3.8)

Hypothesis (2) of Theorem 1.4 implies that

|∇kRm| ≤ A(w′)(Crpα(w̃′))−(k+2) (3.9)

on B(pα, Crpα(w̃′)). Hence, condition (2) of Standing Assumption 3.2 will be satisfied, for
C ∈ [1, α), if we take

A′(C, w̃′) = max
0≤k≤K

A(C−4w̃′)C−(k+2). (3.10)

Standing Assumption 3.2 will remain in force until Chapter 15 where we will get a
contradiction to the Standing Assumption.

For simplicity, we will suppress the superscript α. We will refer to Mα simply just by
M . By convention, each of the statements made in the proof is to be interpreted as being
valid provided that α is sufficiently large without being mentioned explicitly.

Remark 3.11. We note that for a fixed ŵ ∈ (0, c4), conditions (1) and (2) of Standing
Assumption 3.2 imply that for large α, the following holds for all p ∈Mα:

(1) Rp
rp(ŵ)

≥ α.

(2) For each integer k ∈ [0, K] and each C ∈ (0, α), we have |∇kRm| ≤ A′(C, ŵ)rp(ŵ)−(k+2)

on B(p, Crp(ŵ)).
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4

The modified volume scale r

In this chapter, we introduce a smooth scale function r : M → (0,∞), which we call the
modified volume scale. Next, we show that r is like a volume scale in the sense that there
is lower bounds on volume at scale r. This allows us to make use of CK-paracompactness
arguments at scale r. The advantage of r over a volume scale is that the Lipschitz constant
of r can be made arbitrarily small. This will allow us to glue local structures together in
later chapters.

Lemma 4.1 ([13, Lemma 6.1]). Suppose X is a metric space, C ∈ (0,∞), and l, u : X →
(0,∞) are functions. Then, there is a C-Lipschitz r : X → (0,∞) satisfying l ≤ r ≤ u if
and only if

l(p)− Cd(p, q) ≤ u(q) (4.2)

for all p, q,∈ X.

Proof. We repeat the proof in [13] here for completeness. Clearly, if such an r exists then
(4.2) must hold.

Conversely, suppose that (4.2) holds and define r : X → (0,∞) by

r(q) = sup
p∈X
{l(p)− Cd(p, q)}. (4.3)

Then, l ≤ r ≤ u. For q, q′ ∈ X, since l(p)− Cd(p, q) ≥ l(p)− Cd(p, q′)− C(q, q′), we obtain
r(q) ≥ r(q′)− Cd(q, q′), from which it follows that r is C-Lipschitz.

Let Λ > 0 and w̄ ∈ (0, c4) be new parameters where c4 is the volume of the unit ball in
R4. Put

w′ =
w̄

2(1 + 2Λ−1)4
. (4.4)

Corollary 4.5. There is a smooth Λ-Lipschitz function r : M → (0,∞) such that for every
p ∈M , we have

1

2
rp(w̄) ≤ r(p) ≤ 2rp(w

′) (4.6)
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Proof. Let l : M → (0,∞) be the w̄-volume scale and let u : M → (0,∞) be the w′-volume
scale. We first verify (4.2) with parameter C = Λ

2
. To argue by contradiction, suppose that

for some p, q ∈ M , we have l(p) − 1
2
Λd(p, q) > u(q). In particular, d(p, q) < 2

Λ
l(p) and

u(q) < l(p). Hence, B(p, l(p)) ⊂ B(q, (1 + 2Λ−1)l(p)) ⊂ B(p, (1 + 4Λ−1)l(p)). It follows that

vol(B(q, (1 + 2Λ−1)l(p)) ≥ vol(B(p, l(p))) = w̄l4(p) = 2w′((1 + 2Λ−1)l(p))4. (4.7)

For any c > 0, if α is sufficiently large, then the sectional curvature on B(p, (1 + 4Λ−1)l(p)),
and hence on B(q, (1 + 2Λ−1)l(p)) is bounded below by −c2l(p)−2. As u(q) < l(p) <
(1 + 2Λ−1)l(p), the Bishop-Gromov inequality implies that

w′u(q)4∫ u(q)
l(p)

0

sinh3(cr) dr

=
vol(B(q, u(q)))∫ u(q)
l(p)

0

sinh3(cr) dr

≥ vol(B(q, (1 + 2Λ−1)l(p)))∫ 1+2Λ−1

0

sinh3(cr) dr

(4.8)

≥ 2w′((1 + 2Λ−1)l(p))4∫ 1+2Λ−1

0

sinh3(cr) dr

.

Then,

c3
(
u(q)
l(p)

)4

∫ u(q)
l(p)

0

sinh3(cr) dr

≥ 2c3(1 + 2Λ−1)4∫ 1+2Λ−1

0

sinh3(cr) dr

. (4.9)

Since the function x 7→ c3

4

x4∫ x
0

sinh3(cr) dr
tends uniformly to 1 as c → 0, for x ∈

(0, 1 + 2Λ−1], taking c sufficiently small gives a contradiction.

By Lemma 4.1, there is a Λ
2
-Lipschitz function r on M satisfying l ≤ r ≤ u. The corollary

now follows from [13, Corollary 3.15].

Notation. From now on, we will denote r(p) by rp.

The next lemma shows CK-compactness at scale r. The following lemma is a 4-dimensional
analog of [13, Lemma 6.10].

Lemma 4.10.

(1) There is a constant ŵ = ŵ(w′) > 0 such that vol(B(p, rp)) ≥ ŵ(rp)
4 for every p ∈M .

(2) For every p ∈M , C <∞ and k ∈ [0, K], we have

|∇kRm| ≤ 2k+2A′(C,w′)r−(k+2)
p on the ball B

(
p,

1

2
Crp

)
. (4.11)
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(3) Given ε > 0, for sufficiently large α and for every p ∈Mα, the rescaled pointed manifold
( 1
rp
Mα, p) is ε-close in the pointed CK-topology to a complete CK-smooth Riemannian

4-manifold which admits a metric of nonnegative sectional curvature. Moreover, this
manifold belongs to a family which is compact in the pointed CK-topology.

Proof. (1) As 1
2
rp ≤ rp(w

′), the Bishop-Gromov inequality gives

vol(B(p, 1
2
rp))∫ rp

2rp(w′)

0

sinh3(r) dr

≥ vol(B(p, rp(w
′)))∫ 1

0

sinh3(r) dr

=
w′(rp(w

′))4∫ 1

0

sinh3(r) dr

. (4.12)

Then,

vol(B(p, 1
2
rp))

(1
2
rp)4

≥ w′∫ 1

0

sinh3(r) dr

·

∫ rp
2rp(w′)

0

sinh3(r) dr(
rp

2rp(w′)

)4 . (4.13)

Because

∫ A

0

sinh3(r) dr =
A4

4
+ h.o.t where the higher order terms are positive, we have

that
1

A4

∫ A

0

sinh3(r) dr ≥ 1

4
. Thus,

vol(B(p, 1
2
rp))

(1
2
rp)4

≥ w′

4

∫ 1

0

sinh3(r) dr

. (4.14)

Therefore,

vol(B(p, rp)) ≥ vol(B(p, rp/2)) ≥ w′

64

∫ 1

0

sinh3(r) dr

(rp)
4, (4.15)

which gives (1).

The proof of (2) is the same as the proof of [13, Lemma 6.10 (2)] and the proof of (3) is
similar to the proof of [13, Lemma 6.10 (3)].

Next, we extend Lemma 4.10 to provide CK-splitting. The next lemma is a 4-dimensional
analog of [13, Lemma 6.16].

Lemma 4.16. Given ε > 0 and 0 ≤ j ≤ 4, provided δ < δ̄(ε, w′), the following holds. If
p ∈M , and φ : ( 1

rp
M, p)→ (Rj ×X, (0, ?X)) is a (j, δ)-splitting, then φ is ε-close to a (j, ε)-

splitting φ̂ : ( 1
rp
M, p) → (Rj × X̂, (0, ?X̂)), where X̂ is a complete CK-smooth Riemannian

(4− j)-manifold which admits a metric of nonnegative sectional curvature, and φ̂ is ε-close
to an isometry on the ball B(p, ε−1) ⊂ 1

rp
M , in the CK+1-topology.
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Proof. The proof is similar to the proof of [13, Lemma 6.16].

Let σ > 0 be a new parameter. In the next lemma, we show that if the parameter w̄
is small then the pointed 4-manifold ( 1

rp
M, p) is Gromov-Hausdorff close a space of lower

dimension. The next lemma is a 4-dimensional analog of [13, Lemma 6.18].

Lemma 4.17. Under the constraint w̄ < w̄(σ,Λ), the following holds. For every p ∈M , the
pointed space ( 1

rp
M, p) is σ-close in the pointed Gromov-Hausdorff metric to a nonnegatively

curved Alexandrov space of dimension at most 3.

Proof. Suppose that the lemma is not true. Then there exist σ,Λ > 0 so that there
is a sequence w̄i → 0 and for each i, a sequence {Mα(i,j), pα(i,j)}∞j=1 so that for each j,

( 1
r
pα(i,j)

Mα(i,j), pα(i,j)) has pointed Gromov-Hausdorff distance at least σ from any nonnega-

tively curved Alexandrov space of dimension at most 3.

For each fixed i,
Rpα(i,j)

rpα(i,j)(w′)
→ ∞ as j → ∞. Hence,

Rpα(i,j)

rpα(i,j)

→ ∞ as j → ∞. Thus,

we can find some j = j(i) so that Rpα(i,j(i)) ≥ i rpα(i,j(i)) . We relabel Mα(i,j(i)) as M i and

pα(i,j(i)) as pi. Thus, we have a sequence {M i, pi}∞i=1 so that for each i, ( 1
rpi
M i, pi) has

pointed Gromov-Hausdorff distance at least σ from any nonnegatively curved Alexandrov
space of dimension at most 3, and the curvature scale at pi is at least i rpi . In particular,
a subsequence of {( 1

rpi
M i, pi)}∞i=1 converges in the pointed Gromov-Hausdorff topology to a

nonnegatively curved Alexandrov space (X, x) of dimension 4. Hence, there is a uniform

lower bound on
vol(B(pi,2rpi ))

(2rpi )
4 .

As rpi(w̄i) ≤ 2rpi , the Bishop-Gromov inequality implies that

w̄i(rpi(w̄i))
4∫ r

pi
(w̄i)

2r
pi

0

sinh3(r) dr

=
vol(B(pi, rpi(w̄i)))∫ r

pi
(w̄i)

2r
pi

0

sinh3(r) dr

≥ vol(B(pi, 2rpi))∫ 1

0

sinh3(r) dr

. (4.18)

That is

vol(B(pi, 2rpi))

(2rpi)4
≤ w̄i

(∫ 1

0

sinh3(r) dr

) (
rpi (w̄i)

2rpi

)4

∫ r
pi

(w̄i)

2r
pi

0

sinh3(r) dr

(4.19)

≤ 4w̄i

∫ 1

0

sinh3(r) dr.

Since w̄i → 0, we get a contradiction.
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From now on, we will assume that the constraint

w̄ < w̄(σ,Λ) (4.20)

is satisfied. In particular, the conclusion of Lemma 4.17 always holds.
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5

Stratifications

In this chapter, we define a stratification of Riemannian 4-manifolds, based on the maximal
dimension of a Euclidean factor of an approximate splitting at a point. Refer to Chapter 2
and [13, Section 4] for the definition and facts about an approximate splitting of a pointed
Riemannian manifold.

Let βi, i ∈ {0, 1, 2, 3, 4} be new parameters such that 0 = β0 < β1 < β2 < β3 < β4. Recall
that the parameter σ has already been introduced in Chapter 4.

Definition 5.1. A point p ∈ M belongs to the k-stratum, k ∈ {0, 1, 2, 3, 4}, if ( 1
rp
M, p)

admits a (k, βk)-splitting, but does not admit a (j, βj)-splitting for any j > k.

We note that every point has a (0, 0)-splitting. Thus, every point p ∈ M belongs to the
k-stratum for some k ∈ {0, 1, 2, 3, 4}.

Lemma 5.2. Under the constraints β4 < β4 and σ < σ, there are no 4-stratum points.

Proof. The proof is similar to the proof of [13, Lemma 7.2]. Let c > 0 be the minimal
distance, in the pointed Gromov-Hausdorff metric, between (R4, 0) and a nonnegatively
curved Alexandrov space of dimension at most 3. Taking β̄4 = σ̄ = c

4
, the lemma follows

from Lemma 4.17.

Let ∆ ∈ (β−1
3 ,∞) be a new parameter.

Lemma 5.3. Under the constraint ∆ > ∆(β3), if p ∈ M has a 3-strainer of size ∆
100

rp and
quality 1

∆
at p, then ( 1

rp
M, p) has a (3, 1

2
β3)-splitting 1

rp
M → R3. In particular, p is in the

3-stratum.

Proof. The lemma follows directly from Lemma 2.43.

Definition 5.4. A 2-strainer point p ∈M is in the slim 2-stratum if there is a (2, β2)-splitting
( 1
rp
M, p)→ (R2 ×X, ((0, 0), ?X) where diam(X) ≤ 103∆.
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6

The local geometry of the 3-stratum

In the next fews chapters, we study the local geometry and topology near points in different
strata. We also introduce adapted coordinates, cutoff functions, and ball coverings associated
with different types of strata. In this chapter, we consider the 3-stratum.

6.1 Adapted coordinates, cutoff functions, and local topology near 3-stratum
points

In this chapter, let p denote a point in the 3-stratum. Let φp : ( 1
rp
M, p)→ (R3 ×X, (0, ?X))

be a (3, β3)-splitting.

Lemma 6.1. Under the constraint β3 < β3 and σ < σ, diam(X) < 1.

Proof. The proof is similar to the proof of [13, Lemma 8.1]. Suppose that the lemma is
false. Then, there is a subsequence {Mαj} of the sequence {Mα} and pj ∈ Mαj , such that
with β3 = σ = 1

j
, the map φpj : ( 1

rpj
Mαj , pj)→ (R3 ×Xj, (0, ?Xj)) violates the conclusion of

the lemma, i.e. diam(Xj) ≥ 1. There is a Gromov-Hausdorff sublimit (M∞, p∞) of {Mαj},
which is a nonnegatively curved Alexandrov space of dimension at most 3, and a limiting
3-splitting φ∞ : (M∞, p∞)→ (R3×X∞, (0, ?X∞)). The only possibility is that dim(M∞) = 3,
φ∞ is an isometry, and X∞ is a point. This contradicts the diameter assumption.

Let ς3-stratum > 0 be a new parameter.

Lemma 6.2. Under the constraint β3 < β3(ς3-stratum), there is a φp-adapted coordinate ηp of
quality ς3-stratum on B(p, 200) ⊂ ( 1

rp
M, p).

Proof. The lemma follows from the existence of adapted coordinates (see Lemma 2.49).

Definition 6.3. Let ζp be the smooth function on M which is the extension by zero of
Φ8,9 ◦ |ηp|.
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Lemma 6.4. Under the constrains β3 < β3, ς3-stratum < ς3-stratum, and σ < σ, ηp|η−1
p (B(0,100))

is a fibration with fiber S1. In particular, for all R ∈ (0, 100), |η−1
p |[0, R] is diffeomorphic to

S1 ×B(0, R).

Proof. The proof is similar to the proof of [13, Lemma 8.4].

6.2 Selection of 3-stratum balls

LetM be a new parameter, which will become a bound on intersection multiplicity of balls.
The corresponding boundM will describe how bigM has to be taken in order for assertions
to be valid.

Let {pi}i∈I3-stratum be a maximal set of 3-stratum points of M with the property that the
collection {B(pi,

1
3
rpi)}i∈I3-stratum is disjoint. We write ζi for ζpi .

Lemma 6.5. Under the constraints M >M and Λ < Λ, the following holds.

(1)
⋃
i∈I3-stratum

B(pi, rpi) contains all 3-stratum points.

(2) The intersection multiplicity of the collection {supp(ζi)}i∈I3-stratum is bounded by M.

Proof. The proof is similar to the proof of [13, Lemma 8.5].

(1). Since {pi}i∈I3-stratum is a maximal set of 3-stratum points ofM so that {B(pi,
1
3
rpi)}i∈I3-stratum

is disjoint, if p is a 3-stratum point, then B(p, 1
3
rp) ∩B(pi,

1
3
rpi) 6= ∅, for some i ∈ I3-stratum.

In particular d(p, pi) ≤ 1
3
rp + 1

3
rpi . As p 7→ rp is Λ-Lipschitz, |rp − rpi | ≤ Λd(p, pi) ≤

Λ
(

1
3
rp + 1

3
rpi
)
. That is

1−Λ
3

1+ Λ
3

≤ rp
rpi
≤ 1+ Λ

3

1−Λ
3

. If we assume that 1 + 2
3
Λ < 1.01, then

rp
rpi
∈ [0.9, 1.1]. Thus d(p, pi) ≤ rpi , so p ∈ B(pi, rpi). It follows that

⋃
i∈I3-stratum

B(pi, rpi)

contains all 3-stratum points.

(2). From the definition of ζi, if ς3-stratum is sufficiently small, then supp(ζi) ⊂ B(pi, 10rpi).

Suppose that there exists p ∈ M such that p ∈
⋂N
j=1B(pij , 10rpij ) for distinct ij’s. We

relabel {ij}Nj=1 so that B(pi1 , rpi1 ) has the smallest volume among all B(pij , 10rpij )’s.

If 10Λ is sufficiently small, then we can assume the for all j, 1
2
≤

rpij
rpi1
≤ 2. Hence, the N

disjoint balls {B(pij , rpij )}
N
j=1 lie in B(pi1 , 100rpi1 ). By Bishop-Gromov volume comparison,

N ≤
vol(B(pi1 , 100rpi1 ))

vol(B(pi1 ,
1
3
rpi1 ))

≤

∫ 100

0

sinh3(r) dr∫ 1
3

0

sinh3(r) dr

. (6.6)

This proves the lemma.
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7

The local geometry of the 2-stratum

In this chapter, we study the local geometry and topology of 2-stratum points. We also
introduce adapted coordinates, cutoff functions, and ball coverings associated with the 2-
stratum.

7.1 Edge 2-stratum points and associated structures

In this section we study points p ∈ M where the pair (M, p) looks like a half 3-dimensional
Euclidean space with a base point lying on the boundary. Such points define a 2-edge set E.

Recall from Definition 5.4, p ∈ M is a slim 2-stratum point is there is a (2, β2)-splitting
( 1
rp
M, p) → (R2 × X, (0, ?X)) where diam(X) ≤ 103∆. In this section, we show that any

2-stratum point, which is not a slim 2-stratum point, is not far from E.

We also introduce an approximate 2-edge set E ′, which consists of points where the edge
structure is of slightly lower quality than that of E. This is a technical tool to define a
smooth distance function near points in E.

Lemma 7.1. Given ε > 0, if β2 < β2(ε) and σ < σ(ε) then the following holds. If ( 1
rp
M, p)

has a (2, β2)-splitting then there is a (2, ε)-splitting ( 1
rp
M, p)→ (R2 × Y, (0, ?Y )) where Y is

an Alexandrov space with dim(Y ) ≤ 1.

Proof. The proof is similar to the proof of [13, Lemma 9.1].

Let 0 < βE < βE′ and 0 < σE < σE′ be new parameters.

Definition 7.2. A point p ∈M is an (s, t)-edge 2-stratum point if there is a (2, s)-splitting

Fp :

(
1

rp
M, p

)
→ (R2 × Y, (0, ?Y )) (7.3)

and a t-pointed-Gromov-Hausdorff approximation

Gp : (Y, ?Y )→ ([0, C], 0), (7.4)
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with C ≥ 200∆. Given Fp and Gp, we put

Qp = (Id×Gp) ◦ Fp :

(
1

rp
M, p

)
→ (R2 × [0, C], (0, 0)). (7.5)

We let E denote the set of (βE, σE)-edge 2-stratum points, and E ′ denote the set of
(βE′ , σE′)-edge 2-stratum points. Note that E ⊂ E ′. We will refer to elements of E as edge
2-stratum points.

We emphasize that in the definition above, Qp maps the basepoint p ∈ M to (0, 0) ∈
R2 × [0, C].

Lemma 7.6. Under the constraints βE′ < βE′, σE′ < σE′, and β3 < β3, no element p ∈ E ′
can be a 3-stratum point.

Proof. The proof is similar to the proof of [13, Lemma 9.6].

Lemma 7.7. Given ε > 0, if βE′ < βE′(ε,∆), σE′ < σE′(ε,∆), βE < βE(βE′ , σE′), σE <
σE(βE′ , σE′), and Λ < Λ(ε,∆) then the following holds.

For p ∈ E, if Qp is as in Definition 7.2 and Q̂p : (R2 × [0, C], (0, 0)) → ( 1
rpM

, p) is a

quasi-inverse for Qp, then Q̂p(B(0, 100∆)×0) is ε
2
-Hausdorff close to E ′∩Q−1

p (B(0, 100∆)×
[0, 100∆]).

Proof. The proof is similar to the proof of [13, Lemma 9.7].

Part (1) of the next lemma states that 2-stratum points are either slim 2-stratum points
or lie not too far from an edge 2-stratum point. Part (2) says that E is coarsely dense in E ′.

Lemma 7.8. Under the constraints βE′ < βE′(∆), σE′ < σE′(∆), βE < βE(βE′ , σE′), σE <
σE(βE′ , σE′), β2 < β2(∆, βE), σ < σ(∆, σE), and Λ < Λ(∆), the following holds.

(1) For every 2-stratum point p which is not in the slim 2-stratum, there is some q ∈ E
with p ∈ B(q,∆rq).

(2) For every 2-stratum point p which is not in the slim 2-stratum and for every p′ ∈
E ′ ∩B(p, 10∆rp), there is some q ∈ E with p′ ∈ B(q, rq).

Proof. The proof is similar to the proof of [13, Lemma 9.10].

7.2 Regularization of the distance function dE′

Let dE′ be the distance function from E ′. In this subsection, we will apply the smoothing
results from [13, Section 3.6]. The resulting smoothing of dE′ will define part of a good
coordinate in a collar region near E.

Let ςE′ > 0 be a new parameter.
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Lemma 7.9. Under the constraints βE′ < βE′(∆, ςE′) and σE′ < σE′(∆, ςE′), there is a
function ρE′ : M → [0,∞) such that if ηE′ :=

ρE′
r

then:

(1) We have ∣∣∣∣ρE′r − dE′

r

∣∣∣∣ ≤ ςE′ . (7.10)

(2) In the set η−1
E′

[
∆
10
, 10∆

]
∩
(
dE
r

)−1
[0, 50∆], the function ρE′ is smooth and its gradient

lies in the ςE′-neighborhood of the generalized gradient of dE′.

(3) ρE′ − dE′ is ςE′-Lipschitz.

Proof. The proof is similar to the proof of [13, Lemma 9.12].

7.3 Adapted coordinates tangent to the edge

In this section, p ∈ E will denote an edge 2-stratum point and Qp will denote a map as in
Definition 7.2.

Let ς2-edge > 0 be a new parameter. Applying Lemma 2.49, we get:

Lemma 7.11. Under the constraint βE < βE(∆, ς2-edge), there is a Qp-adapted coordinate

ηp :

(
1

rp
M, 0

)
⊃ B(p, 100∆)→ R2 (7.12)

of quality ς2-edge.

We define a global function ζp : M → [0, 1] by extending

(Φ−9∆,−8∆,8∆,9∆ ◦ ηp) · (Φ8∆,9∆ ◦ ηE′) : B(p, 100∆)→ [0, 1] (7.13)

by zero.

Lemma 7.14. The following holds:

(1) ζp is smooth.

(2) Under the constraints β3 < β3(ς3-stratum), Λ < Λ(ς3-stratum,∆), βE′ < βE′(ς3-stratum,∆),
σE′ < σE′(ς3-stratum,∆), βE < βE(β3, βE′ , σE′ , ς3-stratum), σE < σE(β3, βE′ , σE′ , ς3-stratum),
ςE′ < ςE′(ς3-stratum), and ς2-edge < ς2-edge(ς3-stratum), if x ∈ (ηp, ηE′)

−1(B(0, 10∆) ×[
1
10

∆, 10∆
]
) then x is a 3-stratum point, and there is a (3, β3)-splitting φ : ( 1

rx
M,x)→

(R3, 0) such that (ηp, ηE′) : ( 1
rx
M,x) → (R3, φ(x)) defines φ-adapted coordinates of

quality ς3-stratum on the ball B(x, 100) ⊂ 1
rx
M .

Proof. The proof is similar to the proof of [13, Lemma 9.20].
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7.4 The topology of the edge region

In this section, we study the local topology of a suitable neighborhood of an edge 2-stratum
point p ∈ E.

Lemma 7.15. Under the constraints βE′ < βE′(∆), σE′ < σE′(∆), βE < βE(βE′ , σE′ , w
′),

σE < σE(βE′ , σE′), ς2-edge < ς2-edge(∆), ςE′ < ςE′(∆), Λ < Λ(∆), and σ < σ(∆), the map ηp
restricted to (ηp, ηE′)

−1(B(0, 4∆)× (−∞, 4∆])) is a fibration with fiber diffeomorphic to the
closed 2-disk D2.

Proof. The proof is similar to the proof of [13, Lemma 9.21].

7.5 Selection of the edge balls

Let {pi}i∈I2-edge
be a maximal set of edge 2-stratum points with the property that the collec-

tion {B(pi,
1
3
∆rpi)}i∈I2-edge

is disjoint. We write ζi for ζpi .

Lemma 7.16. Under the constraints M >M and Λ < Λ(∆), the following holds.

(1)
⋃
i∈I2-edge

B(pi,∆rpi) contains E.

(2) The intersection multiplicity of the collection {supp(ζi)}i∈I2-edge
is bounded by M.

Proof. The proof is similar to the proof of Lemma 6.5.

The next lemma is a useful covering of the 2-stratum points.

Lemma 7.17. Under the constraint Λ < Λ(∆), any 2-stratum point lies in the slim 2-stratum
or lies in

⋃
i∈I2-edge

B(pi, 3∆rpi).

Proof. The proof is similar to the proof of [13, Lemma 9.25].

The next lemma will be used later for the interface between the slim 2-stratum and the
edge 2-stratum.

Lemma 7.18. Under the constraints βE < βE(∆, β3), ς2-edge < ς2-edge(∆, β3), and Λ < Λ(∆),
the following holds. Suppose for some i ∈ I2-edge and q ∈ B(pi, 10∆rpi) we have

ηE′(q) < 5∆, |ηpi(q)| < 5∆. (7.19)

Then either pi belongs to the slim 2-stratum, or there is a j ∈ I2-edge such that q ∈ B(pj, 10∆rpj)
and |ηpj(q)| < 2∆.

Proof. The proof is similar to the proof of [13, Lemma 9.26].
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7.6 Additional cutoff functions

We define two additional cutoff functions for later use:

ζ2-edge = 1− Φ 1
2
,1 ◦

 ∑
i∈I2-edge

ζi

 (7.20)

and
ζE′ = (Φ0.2∆,0.3∆,8∆,9∆ ◦ ηE′) · ζ2-edge. (7.21)

7.7 Adapted coordinates, cutoff functions, and local topology near slim 2-
stratum points

In this section we discuss the local geometry and topology of the slim 2-stratum points.

Let p denote a point in the slim 2-stratum and let φp : ( 1
rp
M, p) → (R2 ×X, (0, ?X)) be

a (2, β2)-splitting with diam(X) ≤ 103∆. Let ς2-slim > 0 be a new parameter.

Lemma 7.22. Under the constraint β2 < β2(∆, ς2-slim), the following holds.

(1) There is a φp-adapted coordinate ηp of quality ς2-slim on B(p, 106∆) ⊂ ( 1
rp
M, p).

(2) The cutoff function
(Φ−9·105∆,−8·105∆,8·105∆,9·105∆) ◦ ηp (7.23)

extends by zero to a smooth function ζp on M .

Proof. This lemma follows from the existence of adapted coordinates (see Lemma 2.49).

Let ηp and ζp be as in Lemma 7.22

Lemma 7.24. Under the constraints β2 < β2(ς2-slim,∆, w
′) and ς2-slim < ς2-slim(∆), η−1

p {0}
is diffeomorphic S2 or T 2.

Proof. The proof is similar to the proof of [13, Lemma 10.3].

7.8 Selection of slim 2-stratum balls

Let {pi}i∈I2-slim
be a maximal set of slim 2-stratum points with the property that the collection

{B(pi,
1
3
rpi)}i∈I2-slim

is disjoint. We write ζi for ζpi .

Lemma 7.25. Under the constraints M >M and Λ < Λ(∆), the following holds.

(1)
⋃
i∈I2-slim

B(pi, 105∆rpi) contains all slim 2-stratum points.

(2) The intersection multiplicity of the collection {supp(ζi)}i∈I2-slim
is bounded by M.

Proof. The proof is similar to the proof of Lemma 6.5.
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8

The local geometry of the 1-stratum

In this chapter, we study the local geometry and topology near points in the 1-stratum. We
start with a general lemma about 1-stratum points.

Lemma 8.1. Given ε > 0, if β1 < β1(ε) and σ < σ(ε) then the following holds. If ( 1
rp
M, p)

has a (1, β1)-splitting then there is a (1, ε)-splitting ( 1
rp
M, p) → (R× Y, (0, ?Y )), where Y is

an Alexandrov space of dimension at most 2.

Proof. The proof is similar to the proof of [13, Lemma 9.1].

8.1 The good annulus lemma for 1-stratum points

Let σR, δ1 > 0,Υ1 ∈ (∆,∞), and Υ′1 > 1 be new parameters. In the next lemma, we show
that at an appropriate scale larger than r, a neighborhood of a 1-stratum point p is well
approximated by a model geometry in two different ways: firstly by R×Np, where Np is a
3-manifold with nonnegative sectional curvature, in the pointed CK-topology, and secondly
by R×CTNp where CTNp is the Tits cone of Np in the pointed Gromov-Hausdorff topology.

Lemma 8.2. Let p be a 1-stratum point. Under the constraints Υ′1 > Υ
′
1(δ1, σR,Υ1, w

′),
β1 < β1(δ1, w

′), and σ < σ, there is r1
p ∈ [Υ1rp,Υ

′
1rp] so that the following holds.

(1) ( 1
r1
p
M, p) is δ1-pointed Gromov-Hausdorff close to R × CTNp where CTNp is the Tits

cone of a complete CK-smooth Riemannian 3-manifold Np with nonnegative sectional
curvature.

(2) ( 1
r1
p
M, p) is σR-pointed Gromov-Hausdorff close to R×Zp where Zp is a complete CK-

smooth Riemannian 3-manifold with nonnegative sectional curvature and (Zp, ?Zp) is
σR-pointed Gromov-Hausdorff close to CTNp.

(3) The ball B(p, r1
p) ⊂M is diffeomorphic to R×Np.

(4) The ball B(?Zp , 1) ⊂ Zp is diffeomorphic to Np.
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(5) The distance function from p has no critical points in A(p,
r1
p

100
, r1
p) ⊂M .

(6) The distance function from ?Zp has no critical points in A(?Zp ,
1

100
, 1) ⊂ Zp.

Proof. Suppose that the conclusion (1) is not true. Then for each j, if we take Υ′1 = jΥ1, it is
not true that conclusion (1) hold for sufficiently large α. Hence, we can find a sequence αj →
∞ so that for each j, (Mαj , pαj) provides a counterexample with Υ′1 = jΥ1. We can assume

further that there are sequences σj → 0 and βj1 → 0 so that for each r1
j ∈ [Υ1rpj , jΥ1rpj ],

there is a (1, βj1)-splitting φj : ( 1
rpαj

Mαj , pαj)→ (R× Yj, (0, ?Yj)) where Yj is an Alexandrov

space of dimension at most 2 but there is no 3-dimensional Riemannian manifold Nj with
nonnegative sectional curvature such that conclusion (1) holds.

Additionally, we assume that βj1 is sufficiently small (as a function of w′) so that by

Lemma 4.16, there is a (1, j−1)-CK-splitting φ̂j : ( 1
rpαj

Mαj , pαj) → (R × Zj, (0, ?Zj)) where

Zj is a complete CK-smooth Riemannian 3-manifold with nonnegative sectional curvature

and φ̂j is j−1-close to an isometry on the ball B(pαj , j) ⊂ 1
rαj
M in the CK+1-topology.

For notational simplicity, we relabel ( 1
rpαj

Mαj , pαj) as (Mj, pj) and write rj for rpαj .

By Lemma 4.10, there is a subsequence of {( 1
rj
Mj, pj)}∞j=1 converging in the pointed CK-

topology to a complete CK-smooth 4-dimensional Riemannian manifold (M∞, p∞), which
admits a metric of nonnegative sectional curvature, with a 1-splitting (R × N, (0, ?N)) for
some complete CK-smooth Riemannian 3-manifold N with nonnegative sectional curvature.
By the compatibility of approximated splittings (Lemma 2.44), (Zj, ?Zj) → (N, ?N) in the
pointed CK-topology.

R × N is asymptotically conical. Thus, there exists λ′ > 0 such that for all λ > λ′,(
1
λ
(R×N), (0, ?N)

)
is δ1

2
-pointed Gromov-Hausdorff close to its asymptotic cone CT (R×N)

∼= R×CTN . Because N is also asymptotically conical, λ′ can also be chosen so that ( 1
λ
N, ?N)

is σR
2

-pointed Gromov Hausdorff close to CTN .

By critical point theory, large open balls in R×N are diffeomorphic to R×N itself and
large open balls in N are diffeomorphic to N . Hence, there exists λ′ > 103 max(Υ1, λ) so
that for any λ′′ ∈ (1

2
λ′, 2λ′), there are no critical points of the distance function from (0, ?N)

in A((0, ?N), 1
103λ

′′, aλ′′) ⊂ R × N and there are no critical points of the distance function
from ?N in A(?N ,

1
103λ

′′, aλ′′) ⊂ N . Consequently, B((0, ?N), λ′′) is diffeomorphic to R × N
and B(?N , λ

′′) is diffeomorphic to N .

As ( 1
rj
Mj, pj) → (R × N, (0, ?N)) in the pointed CK-topology, for large j, there are

no critical points of the distance function in A(pj,
λ′′rj
100

, λ′′rj) ⊂ Mj and B(pj, λ
′′rj) ⊂ Mj

is diffeomorphic to B((0, ?N), λ′′) ⊂ R × N . Similarly, as
(
Zj, ?Zj

)
→ (N, ?N) in the

pointed CK-topology, for large j, there are no critical points of the distance function in
A(?Zj ,

λ′′

100
, λ′′) ⊂ Zj and B(pj, λ

′′) ⊂ Zj is diffeomorphic to B(?N , λ
′′) ⊂ N . Taking r1

j = λ′′rj
gives a contradiction.
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8.2 Adapted coordinates, cutoff functions, and local topology near 1-stratum
points

Definition 8.3. We call a 1-stratum point p such that CTNp is a point, i.e., Np is compact,
a slim 1-stratum point. Otherwise, we call p a ridge 1-stratum point.

For each 1-stratum point p, apply Lemma 8.2 to get β1, σ, and a scale r1
p ∈ [Υ1rp,Υ

′
1rp]

for which the conclusion of the lemma holds. Let φ̃p : ( 1
rp
M, p) → (R ×Xp, (0, ?Xp)) be the

(1, β1)-splitting from the conclusion (1) of the lemma and let φp : ( 1
r1
p
M, p)→ (R×Zp, (0, ?Zp))

be the (1, σR)-splitting from the conclusion (2) of the lemma.

Let ςR > 0 be a new parameter. Let d(0,?Zp ) be the distance function from (0, ?Zp) in
R× Zp and let π : R× Zp → R be the projection to the R-factor.

Lemma 8.4. Under the constraint σR < σR(ςR), there exists a function ψ(0,?Zp ) : R× Zp →
[0,∞) such that:

(1) ψ(0,?Zp ) is CK-smooth on A((0, ?Zp), 0.7, 10) ⊂ R× Zp.

(2) ||ψ(0,?Zp ) − d(0,?Zp )||∞ < ςR

(3) ψ(0,?Zp ) − d(0,?Zp ) : R× Zp → [0,∞) is ςR-Lipschitz.

(4) For every τ ∈ [−0.5, 0.5] and ρ ∈ [1, 5], (π, ψ(0,?Zp ))
−1({τ} × [0, ρ]) is diffeomorphic to

the normal bundle νS where S ⊂ Np is a soul, if Np is noncompact, or to Np itself if
Np is compact.

Proof. If σR is sufficiently small, R×Zp will be pointed-close to the cone R×CTNp. Hence,
we can apply the same arguments as in the proof of [13, Lemma 11.3] for the proof of parts
(1), (2), and (3).

(4). For any τ ∈ [−0.5, 0.5], we have that π−1(τ) = {τ} × Zp and d2
?Zp

= d2
(0,?Zp ) − τ 2 is

bounded away from 0 when A(?Zp , 0.7, 10) ⊂ {τ} × Zp. From parts (1) to (3), if σR is suffi-

ciently small, h :=
√
ψ2

(0,?) − τ 2
∣∣
{τ}×Zp

is a smooth approximation of d?Zp on A(?Zp , 0.8, 7) ⊂
{τ}×Zp. We apply the same arguments as in the proof of [13, Lemma 11.3 (4)] but use [13,
Remark 11.4] instead of the Schoenflies theorem. We have that h−1([0, s]) for s ∈ [0.6, 6] is
diffeomorphic to the normal bundle νS where S ⊂ Np is a soul, if Np is noncompact, or Np

itself if Np is compact.

Let dp be the distance function from p in ( 1
r1
p
M, p). The following lemma gives a smooth

approximation of dp.
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Lemma 8.5. Under the constraint δ1 < δ1(ςR), there is a function ψp : 1
r1
p
M → [0,∞) such

that

(1) ψp is smooth on A(p, 0.1, 10) ⊂ 1
r1
p
M .

(2) ||ψp − dp||∞ < ςR

(3) ψp − dp : 1
r1
p
M → [0,∞) is ςR-Lipschitz.

Proof. The proof is similar to the proof of [13, Lemma 11.3].

The next two lemmas show that under appropriate constraints, ηp and η̃p are compatible
after a scaling.

Let ς1-ridge > 0 be a new parameter.

Lemma 8.6. Under the constraint β1 < β1(ς1-ridge,Υ
′
1), there is a φ̃p-adapted coordinate η̃p

of quality ς1-ridge on B(p, 10Υ′1) ⊂ ( 1
rp
M, p) where φ̃p is a (1, β1)-splitting of ( 1

rp
M, p).

Proof. The lemma follows from the existence of adapted coordinates (Lemma 2.49).

Lemma 8.7. Under the constraints β1 < β1(ςR, β2,Υ1,Υ
′
1), Υ1 > Υ1(β2), and ς1-ridge <

ς1-ridge(ςR), rp
r1
p
η̃p is a φp-adapted coordinate of quality ςR on B(p, 10) ⊂ ( 1

r1
p
M, p). Put ηp =

rp
r1
p
η̃p.

Proof. Let ε1, ε2, ε3 > 0 be parameters internal to this proof.

Consider that φ̃p : ( 1
rp
M, p) → (R × X, (0, ?X)) is a (1, β1)-splitting. Thus, φ̃p has

distortion comparable to β1 on B 1
rp
M(p, β−1

1 ). Then, rp
r1
p
φ̃p has distortion comparable to rp

r1
p
β1

on B 1

r1p
M(p, rp

r1
p
β−1

1 ). Since r1
p ∈ [Υ1rp,Υ

′
1rp], if β1 is sufficiently small (as a function of Υ1,Υ

′
1,

and ε1), then rp
r1
p
φ̃p is a (1, ε1)-splitting for ( 1

r1
p
M, p).

Assume that ( 1
r1
p
M, p) has a (2, ε2)-splitting. By the equivalence of a good approximate

splitting and a good strainer (see Lemma 2.43) and because
r1
p

rp
≥ Υ1, if ε2 < ε2(β2) and

Υ1 > Υ1(β2), then there is a (2, β2)-splitting of ( 1
rp
M, p). This is a contradiction. Therefore,

( 1
r1
p
M, p) does not have a (2, ε2)-splitting.

By the compatibility of approximate splittings (see Lemma 2.44), if ε1, ε2, and σR are

sufficiently small (as functions ε3), then rp
r1
p
φ̃p is ε3-compatible with φp. From the uniqueness of

adapted coordinates (see Lemma 2.50), if ς1-ridge and ε3 are sufficiently small (as functions of
ςR), rp

r1
p
η̃p is a φp-adapted coordinate of quality ςR on B(p, 10) ⊂ B(p, 10Υ′1

rp
r1
p
) ⊂ ( 1

r1
p
M, p).

The following lemma describes the local topology of a neighborhood of a 1-stratum point.
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Lemma 8.8. Under the constraints ςR < ςR, δ1 < δ1(ςR), σR < σR(ςR), if p is a ridge
1-stratum point, i.e. CTNp is not a point, then the map ηp restricted to (ηp, ψp)

−1((−0.5, 0.5)×
[0, 5]) is a fibration with fiber diffeomorphic to D3, S1 ×D2, S2 ×Z2 I, or T 2 ×Z2 I.

If p is a slim 1-stratum point, i.e. CTNp is a point, then the map ηp restricted to
η−1
p (−0.5, 0.5) is a fibration with fiber diffeomorphic to a closed orientable connected Rie-

mannian 3-manifold with nonnegative sectional curvature.

Proof. Let φp : ( 1
r1
p
M, p)→ (R×Zp, (0, ?Zp)) be the (1, σR)-splitting that satisfies the previous

lemmas. Let π : R×Zp → R be the projection to the R-factor. From the definition of adapted
coordinates in Definition 2.47, if σR and ςR are sufficiently small, then ηp is C1-close to π ◦φ.
Since φ is CK+1-close to an isometry, the generalized gradients of d(0,?) ◦ φ will be close to
the generalized gradient of dp in ψ−1

p ((0.6, 10)) where the gradients are taken with respect to
the metric on 1

r1
p
M . Hence by Lemma 8.6 and Lemma 8.7, if ςR and δ1 are sufficiently small,

ψ(0,?) ◦ φ will be C1-close to ψp in the region ψ−1
p ((0.6, 10)).

For t ∈ [0, 1], define a map f t : (ηp, ψp)
−1((−0.6, 0.6)× [0, 10))→ R2 by

f t = (tηp + (1− t)(π ◦ φ), tψp + (1− t)(ψ(0,?Zp ) ◦ φ)). (8.9)

Let F : (ηp, ψp)
−1((−0.6, 0.6) × [0, 10)) × [0, 1] → R2 be the map with slices {f t}t∈[0,1].

By the C1-closeness discussed above, we can apply [13, Lemma 21.1] to conclude that
(ηp, ψp)

−1({τ} × [0, 5]) is diffeomorphic to (π, ψ(0,?Zp ))
−1({τ} × [0, 5]) for any τ ∈ [−0.5, 0.5].

Finally, we claim that the restriction of ηp to (ηp, ψp)
−1((−0.5, 0.5) × [0, 5]) is a proper

submersion to (−0.5, 0.5), and is therefore a fibration. The properness follows from the
fact that (ηp, ψp)

−1((−0.5, 0.5) × [0, 5]) is contained in a compact subset of the domain of
(ηp, ψp). Dηp is nonvanishing by the definition of adapted coordinates. If σR, ςR, and δ1 are
sufficiently small, Dηp is almost parallel to the R-factor in the approximate splitting. Also,
the angle between Dψp and the R-factor in the approximate splitting is contained in the
interval [π

2
− 2 tan−1(1

6
), π

2
+ 2 tan−1(1

6
)]. In particular, {Dηp, Dψp} is linearly independent

at points on the boundary with (ηp, ψp) ∈ (−0.5, 0.5)× {3}. As a result, ηp is a submersion
with fiber diffeomorphic to (π, ψ(0,?))

−1({τ} × [0, 5]).

(π, ψ(0,?))
−1({τ} × [0, 5]) is diffeomorphic to the normal bundle νS where S ⊂ Np is a

soul. If Np has 2 ends, then CTNp = R. If δ1 < δ1(ε), then there is a 2-strainer at p of

quality ε at scale ε−1. By Lemma 2.43 and because
r1
p

rp
≥ Υ1, if ε < ε1(β2) and Υ1 > Υ1(β2),

then there is a (2, β2)-splitting for ( 1
rp
M, p). This is a contradiction. Hence, CTNp has at

most one end.

By the classification of complete connected orientable 3-dimensional CK-smooth Rieman-
nian manifolds with nonnegative sectional curvature (see [13, Lemma 3.11]), if Np has one
end, then Np is diffeomorphic to R3, S1 × R2, S2 ×Z2 R, or T 2 ×Z2 R. If Np has zero ends,
i.e. Np is compact, then Np is diffeomorphic to a closed connected orientable Riemannian
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3-manifold with nonnegative sectional curvature. Therefore, (π, ψ?)
−1({τ} × [0, 5]) is diffeo-

morphic to D3, S1 × D2, S2 ×Z2 I, or T 2 ×Z2 I if CTNp is not a point. Otherwise, π−1(τ)
is diffeomorphic to a closed connected orientable Riemannian 3-manifold with nonnegative
sectional curvature.

Define a smooth cutoff function ζp : M → [0, 1] by extending

Φ−0.9∆,−0.8∆,0.8∆,0.9∆ ◦ η̃p : (B(p, 10Υ1) ⊂ 1

rp
M)→ R (8.10)

by zero. We note that ∆ < Υ1. Therefore, the conclusions of Lemma 8.4 to Lemma 8.8 hold
for all point p where ζp > 0.

Lemma 8.11. Under the constraints σR < σR(ς2-slim, β2), Υ1 > Υ1(ς2-slim, β2), and Υ′1 >

Υ
′
1(ς2-slim, β2), if q ∈ φ−1

p ([−5, 5]×A(?Zp ,
1
3
, 5)) then q belongs to the 2-stratum or 3-stratum

and there is a smooth map ηq such that
r1
p

rq
ηq is an adapted coordinate for ( 1

rq
M, q) of quality

ς2-slim.

Proof. Let q ∈ φ−1
p ([−5, 5]×A(?Zp ,

1
3
, 5)). Let εi > 0 for i = 1, . . . , 6 be parameters internal

to this proof.

Recall that there is a (1, σR)-splitting φp : ( 1
r1
p
M, p) → (R × Zp, (0, ?Zp)) of ( 1

r1
p
M, p).

From Lemma 2.42, if σR < σR(ε1), then there is a (1, ε1)-splitting φ̃ of ( 1
r1
p
M, q) coming from

a change of basepoint of φp. If ε1 < ε1(ε2), then there is a 1-strainer {a+
1 , a

−
1 } of quality ε2

and at a scale 1
ε2

.

Let (t, y) = φp(q) ∈ [−5, 5] × A(?Zp ,
1
3
, 5). Let a+

2 = φ−1
p (t, ?Zp) ∈ 1

r1
p
M and let a+

2 =

φ−1
p (x) where x is the point on the ray from (t, ?Zp) passing through (t, y) with the distance

equal to 2dZ(?Zp , y). If σR is sufficiently small, then d 1

r1p
M(q, a+

2 ) ≥ 1
6

and d 1

r1p
M(q, a−2 ) ≥ 1

6
.

Since φ̃ comes from a change of basepoint of φp, we have that φp(a
+
1 ), φp(q), and φp(a

−
1 )

approximately aligned along the R-factor in R × Zp. Therefore, the comparison angles

∠̃a+
1 qa

+
2 , ∠̃a−1 qa

+
2 , ∠̃a+

1 qa
−
2 , and ∠̃a−1 qa

−
2 are arbitrary close to π

2
if σR is sufficiently small.

In particular, if σR < σR(ε3) and ε2 < ε2(ε3), then {(a+
i , a

−
i )}2

i=1 is a 2-strainer for ( 1
r1
p
M, q)

of quality ε3 at a scale at least 1
6
. If ε3 < ε3(ε4), then there is an approximate 2-splitting

of ( 1
r1
p
M, q) with an adapted coordinate η̂ of quality ε4. Note that the i-th component of η̂

approximates d 1

r1p
M(a+

i , q)− d 1

r1p
M(a+

i , ·).

If ε3 < ε3(ε5), then {(a+
i , a

−
i )}2

i=1 is a 2-strainer ( 1
rq
M, q) of quality ε5 with scale at least

r1
p

6rq
. If ε5 < ε5(β2, ε6) and Υ1 > Υ1(β2, ε5, ε6), then ( 1

rq
M, q) has a (2, β2)-splitting α with

an adapted coordinate γ of quality ε6. Consider that the i-th component of γ approximates
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d 1
rq
M(a+

i , q)− d 1
rq
M(a+

i , ·) =
r1
p

rq

(
d 1

r1p
M(a+

i , q)− d 1

r1p
M(a+

i , ·)
)

. Therefore, if Υ′1 > Υ
′
1(ε6) then

r1
p

rq
η̂ also approximates d 1

rq
M(a+

i , q)−d 1
rq
M(a+

i , ·). From Lemma 2.50 and the proof of Lemma

2.49 (see [13, Lemma 4.23]), if ε4 < ε4(ς2-slim) and ε6 < ε6(ς2-slim), then
r1
p

rq
η̂ is an adapted

coordinate for ( 1
rq
M, q) of quality ς2-slim.

8.3 Selection of ridge 1-stratum balls

Let {pi}i∈I1-ridge
be a maximal set of ridge 1-stratum points with the property that the

collection B(pi,
1
30

∆rpi)i∈I1-ridge
is disjoint. Write ζi for ζpi .

Lemma 8.12. Under the constraints M >M and Λ < Λ(∆), the following holds.

(1)
⋃
i∈I1-ridge B(pi,

1
10

∆rpi) contains all ridge 1-stratum points.

(2) The intersection multiplicity of the collection {supp(ζi)}i∈I1-ridge is bounded by M.

Proof. (1). The proof is similar to the proof of Lemma 6.5(1).

(2). From the definition of ζpi in (8.10), if ςR is sufficiently small then we are ensured

that supp(ζpi) ⊂ B(pi,∆rpi). Suppose that for some q ∈ M , we have q ∈
⋂N
j=1 B(pij ,∆rpij )

for distinct ij’s. We relabel so that B(pi1 ,
1
30

∆rpi1 ) has the smallest volume among the
B(pij , rpij )’s.

Note that {B(pi,
1
30

∆rpi)}i∈I1-ridge
is a disjoint collection. If Λ < Λ(∆), then we can

assume that for all j, 1
2
≤

rpij
rpi1
≤ 2. Hence, the N disjoint balls {B(pij ,

1
30

∆rpij )}
N
j=1 lies in

B(pi1 , 100∆rpi1 ) and by Bishop-Gromov volume comparison

N ≤
vol(B(pi1 , 100∆rpi1 ))

vol(B(pi1 ,
1
30

∆rpi1 ))
≤

∫ 100∆

0

sinh3(r) dr∫ 1
30

∆

0

sinh3(r) dr

. (8.13)

The upper bound of the right-hand side does not depend on ∆. This proves part (2) of the
lemma.

Denote λpi =
r1
pi

rpi
. Define an additional cutoff function ζψi : M → [0, 1] for each i ∈ I1-ridge

by extending

ζψpi = (Φ1.1λpi ,1.2λpi ,4.8λpi ,4.9λpi
◦ λpiψpi) ·

(
Φ0.9λpi ,1λpi

◦ η̃pi
)

:
1

rpi
M → R (8.14)

by zero.
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8.4 Selection of slim 1-stratum balls

Let {pi}i∈I1-slim
be a maximal set of slim 1-stratum points with the property that the collection

B(pi,
1
30

∆rpi)i∈I1-slim
is disjoint. Write ζi for ζpi .

Lemma 8.15. Under the constraints M >M and Λ < Λ(∆), the following holds.

(1)
⋃
i∈I1-slim B(pi,

1
10

∆rpi) contains all slim 1-stratum points.

(2) The intersection multiplicity of the collection {supp(ζi)}i∈I1-slim is bounded by M.

Proof. The proof is similar to the proof of Lemma 8.12.
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9

The local geometry of the 0-stratum

Points in the 0-stratum are defined by a process of elimination, i.e. they are points that are
not k-stratum points for k ∈ {1, 2, 3}, rather than by geometric structure. In this chapter,
we discuss the local geometry and topology of the 0-stratum. We show in Lemma 9.1 that M
has conical structure near every point. We then use this to define radial and cutoff functions
near 0-stratum points. This chapter is an analog of [13, Section 11].

Let δ0 > 0 and Υ0,Υ
′
0, τ0 > 1 be new parameters.

9.1 The good annulus lemma

The next lemma states that for every point p in M , there is a scale at which a neighborhood of
p is well approximated by a model geometry in two different ways: firstly by a nonnegatively
curved 3-manifold in the pointed CK-topology, and secondly by the Tits cone of this manifold
in the pointed Gromov-Hausdorff topology.

Lemma 9.1. Under the constraint Υ′0 > Υ
′
0(δ0,Υ0, ω

′), if p ∈ M then there exists r0
p ∈

[Υ0rp,Υ
′
0rp] and a complete CK-smooth Riemannian 4-manifold which admits a metric of

nonnegative sectional curvature Np such that:

(1) ( 1
r0
p
M, p) is δ0-close in the Gromov-Hausdorff topology to the Tits cone CTNp of Np.

(2) The ball B(p, r0
p) ⊂M is diffeomorphic to Np.

(3) The distance function from p has no critical points in the annulus A(p, 1
100
r0
p, r

0
p).

Proof. The proof is the similar to the proof of [13, Lemma 11.1].

Remark 9.2. If we that the parameter σ of [13, Lemma 6.18] to be small then we can ad-
ditionally conclude that CTNp is pointed Gromov-Hausdorff close to a conical nonnegatively
curved Alexandrov space of dimension at most three.
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9.2 The radial function near 0-stratum point

For every p ∈M , we apply Lemma 9.1 to get a scale r0
p ∈ [Υ0rp,Υ

′
0rp] for which the conclusion

of Lemma 9.1 holds. In particular, ( 1
r0
p
M, p) is δ0-close in the pointed Gromov-Hausdorff

topology to the Tits cone CTNp of Np, where Np is a complete Riemannian 4-manifold which
admits a metric of nonnegative sectional curvature.

Let dp be the distance function from p in ( 1
r0
p
M, p). Let ς0-stratum > 0 be a new parameter.

Lemma 9.3. Under the constraint δ0 < δ0(ς0-stratum), there is a function ηp : 1
r0
p
M → [0,∞)

such that:

(1) ηp is smooth on A(p, 0.1, 10) ⊂ 1
r0
p
M .

(2) ‖ηp − dp‖∞ < ς0-stratum.

(3) ηp − dp : 1
r0
p
M → [0,∞) is ς0-stratum-Lipschitz.

(4) ηp is smooth and has no critical point in η−1
p ([0.2, 2]), and for every p ∈ [0.2, 2], the

sublevel set η−1
p ([0, ρ]) is diffeomorphic to either the closed disk bundle in the normal

bundle νS of the soul S ⊂ Np, if Np is noncompact, or to Np itself if Np is compact.

(5) The composition Φ0.2,0.3,0.8,0.9 ◦ηp extends by zero to a smooth cutoff function ζp : M →
[0, 1].

Proof. The proof is similar to the proof of [13, Lemma 11.3] except that for (4), [13, Re-
mark 11.4] is used instead of the Schoenflies theorem.

9.3 Selecting the 0-stratum balls

The next lemma has a statement about an adapted coordinate for the radial splitting in
an annular region of a 0-stratum ball. We use the parameter ς1-ridge for the quality of this
splitting. We note that there is no a priori relationship to ridge 1-stratum points. The use
of this parameter will simplify the later parameter ordering.

Lemma 9.4. Under the constraints δ0 < δ0(β1, ς1-ridge), Υ0 > Υ0(β1), β1 < β1(ς1-ridge), and
ς0-stratum < ς0-stratum(ς1-ridge), there is a finite collection {pi}i∈I0-stratum of points in M so that
the following holds.

(1) The ball {B(pi, r
0
pi

)}i∈I0-stratum are disjoint.

(2) If q ∈ B(pi, 10r0
pi

), for some i ∈ I0-stratum, then r0
q ≤ 20r0

pi
and

r0
pi

rq
≥ 1

20
Υ0.

(3) For each i ∈ I0-stratum, every q ∈ A(pi,
1
10
r0
pi
, r0
pi

) belongs to the 1-stratum, 2-stratum,

or 3-stratum, and there is a (1, β1)-splitting of ( 1
rq
M, q), for which

r0
pi

rq
ηpi is an adapted

coordinate of quality ς1-ridge.
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(4)
⋃
i∈I0-stratum

B(pi,
1
10
r0
pi

) contains all 0-stratum points.

(5) For each i ∈ I0-stratum, the manifold Npi has at most one end.

Proof. The proof is similar to the proof of [13, Lemma 11.5].
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10

Mapping into Euclidean Space

In this chapter, we first construct a smooth map E0 : M → H fromM into a high-dimensional
Euclidean space H by using the ball collections and the geometrically defined functions from
Chapter 6 to Chapter 9. We then study the behavior of E0 near the different strata.

10.1 Definition of the map E0 : M → H

Let IP be a copy of the index set I1-ridge. For each i ∈ I1-ridge, we denote the corresponding
copy of i in IP by iP . Let index sets Ir and IE′ be singletons Ir = {r} and IE′ = {E ′}
respectively.

Let H =
⊕

i∈I Hi where

– I = Ir ∪ IE′ ∪ IP ∪ I0-stratum ∪ I1-slim ∪ I1-ridge ∪ I2-slim ∪ I2-edge ∪ I3-stratum,

– Hi is a copy of R when i = r,

– Hi is a copy of R⊕ R when i ∈ I0-stratum ∪ I1-slim ∪ I1-ridge ∪ IE′ ∪ IP ,

– Hi is a copy of R2 ⊕ R when i ∈ I2-slim ∪ I2-edge, and

– Hi is a copy of R3 ⊕ R when i ∈ I3-stratum.

We also define

– H0-stratum =
⊕

i∈I0-stratum
Hi,

– H1-slim =
⊕

i∈I1-slim
Hi,

– H1-ridge =
⊕

i∈I1-ridge
Hi,

– H2-slim =
⊕

i∈I2-slim
Hi,

– H2-edge =
⊕

i∈I2-edge
Hi,
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– H3-stratum =
⊕

i∈I3-stratum
Hi,

– Q1 = H

– Q2 = H0-stratum ⊕H1-slim ⊕H1-ridge ⊕H2-slim ⊕H2-edge

– Q3 = H0-stratum ⊕H1-slim ⊕H1-ridge ⊕H2-slim

– Q4 = H0-stratum ⊕H1-slim ⊕H1-ridge

– Q5 = H0-stratum ⊕H1-slim

– Q6 = H0-stratum, and

– πi,j : Qi → Qj, πi = π1,i : H → Qi, π
⊥
i : H → Q⊥i are the orthogonal projections, for

1 ≤ i ≤ j ≤ 6.

If x ∈ Qj, we denote the projection to a summand Hi by πHi(x) = xi. When i 6= r, we write
Hi = H ′i ⊕H ′′i ' Rki ⊕ R where ki ∈ {1, 2, 3}, and we denote the decomposition of xi ∈ Hi

into its components by xi = (x′i, x
′′
i ) ∈ H ′i ⊕H ′′i . We denote the orthogonal projection onto

H ′i and H ′′i by πH′i and πH′′i , respectively.

Recall that in Chapter 6 to Chapter 9, we define adapted coordinates ηp and cutoff
functions ζp corresponding to points p ∈ M of different strata types. If {pi} is a collection
of points used to define a ball cover, as in Chapters 6 to Chapter 9, then we write ηi for ηpi
and ζi for ζpi . For i ∈ I\{r}, we also define a new scale parameter Ri as follows:

– If i ∈ I0-stratum, then we put Ri = r0
pi

, where r0
pi

is as in Lemma 9.1.

– If i ∈ I1-slim ∪ I1-ridge, then we put Ri = rpi . ηi := η̃pi . Recall that ηpi =
rpi
r1
pi

η̃pi .

– If i ∈ I2-slim ∪ I2-edge ∪ I3-stratum, then we put Ri = rpi .

– If i ∈ IP , then we put Ri = rpi , ηi = λpiψpi , and ζi = ζψpi .

– If i = E ′, then Ri = r. Note that unlike the other cases, Ri is not a constant.

The component E0
i : M → Hi of the map E0 : M → H is defined to be r when i = r, and

(Riηiζi, Riζi) (10.1)

otherwise.

In the rest of the chapter, we study the behavior of E0 near the different strata. In
Chapter 11, we will use these information to adjust E0 slightly to get a new map E which is
a submersion in different parts of M .
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10.2 The image of E0

Let x = E0(p) ∈ H. The components of x satisfy the following inequalities:

xr > 0 (10.2)

and for every i ∈ I\{r},
x′′i ∈ [0, Ri] and |x′i| ≤ cix

′′
i , (10.3)

where

ci =



0.9∆ when i ∈ I1-slim,
0.9∆ when i ∈ I1-ridge,
4.9λpi when i ∈ IP ,
9∆ when i ∈ IE′ ,
9 · 105∆ when i ∈ I2-slim,
9∆ when i ∈ I2-edge,
9 when i ∈ I3-stratum.

(10.4)

Lemma 10.5. Under the constraint Λ ≤ Λ(M), there is a number Ω0 = Ω0(M) so that for
all p ∈M , |DE0

p | ≤ Ω0.

Proof. The lemma follows from the definition of E0.

10.3 Structure of E0 near the 3-stratum

Define
Ã1 =

⋃
i∈I3-stratum

{|ηi| ≤ 8}, A1 =
⋃

i∈I3-stratum

{|ηi| ≤ 7} (10.6)

and
S̃1 = E0(Ã1), S1 = E0(A1). (10.7)

In this section, we show that on a scale which is sufficiently small compared to r, the
pair (S̃1, S1) ⊂ H is a cloudy 2-manifold. This is roughly because, on a scale which is small
compared to r, near any point in A1, the map E0 is well approximated in the C1-topology by
an affine function of ηi, for some i ∈ I3-stratum. We refer to Section 2.8 and [13, Appendix B]
for the definition and properties of cloudy manifolds.

Let Σ1,Γ1 > 0 be new parameters. Define r1 : S̃1 → (0,∞) by putting r1(x) = Σ1rp for

some p ∈ (E0)−1(x) ∩ Ã1.
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Lemma 10.8. There is a constant Ω1 = Ω1(M) so that under the constraints Σ1 < Σ1(Γ1,
M), β3 < β3(β4,Γ1,Σ1,M), ς3-stratum < ς3-stratum(β4,Γ1,Σ1,M), β2 < β2(β4,Γ1,Σ1,M,∆),
ς2-slim < ς2-slim(β4,Γ1,Σ1,M,∆), ς2-edge < ς2-edge(β4,Γ1,Σ1,M,∆), βE′ < βE′(β4,Γ1,Σ1,M,
∆), ςE′ < ςE′(β4,Γ1,Σ1,M,∆), ς1-ridge < ς1-ridge(β4,Γ1,Σ1,M,∆), β1 < β1(β4,Γ1,Σ1,M,∆),
ς0-stratum < ς0-stratum(β4,Γ1,Σ1,M), Υ0 > Υ0(β4,Γ1,Σ1,M,∆), and Λ < Λ(β4,Γ1,Σ1,M,∆),
the following holds.

(1) The triple (S̃1, S1, r1) is a (2,Γ1)-cloudy 3-manifold.

(2) The affine subspaces {Ax}x∈S1 inherent in the definition of the cloudy 3-manifold can
be chosen to have the following property. Pick p ∈ A1 and put x = E0(p) ∈ S1. Let
A0
x ⊂ H be the linear subspace parallel to Ax (i.e., Ax = A0

x +x) and let πA0
x

: H → A0
x

denote orthogonal projection onto A0
x. Then

‖DE0
p − πA0

x
◦DE0

p‖ ≤ Γ1 (10.9)

and
Ω−1

1 ‖v‖ ≤ ‖(πA0
x
◦DE0

p )(v)‖ ≤ Ω1‖v‖ (10.10)

for every v ∈ TpM which is orthogonal to ker(πA0
x
◦DE0

p ).

(3) Given i ∈ I3-stratum, there is a smooth map Ê0
i : (B(0, 8) ⊂ R3)→ (H ′i)

⊥ such that

‖DÊ0
i ‖ ≤ Ω1Ri (10.11)

and on the subset {|ηi| ≤ 8} ⊂ 1
Ri
M , we have∥∥∥∥ 1

Ri

E0 −
(
ηi,

1

Ri

Ê0
i ◦ ηi

)∥∥∥∥
C1

< Γ1. (10.12)

Furthermore, if x ∈ S1, then there are some i ∈ I3-stratum and p ∈ {|ηi| ≤ 7} such that

x = E0(p) and A0
x = Im(Id, 1

Ri
(DÊ0

i )ηi(p)).

The parameters ε1, ε2 > 0 will be internal to this section, which is devoted to the proof
of Lemma 10.8. Until further notice, the index i will denote a fixed element of I3-stratum.

We put J = {j ∈ I/{r} : supp(ζj) ∩B(pi, 10Ri) 6= ∅}.

Sublemma 10.13. Under the constraints β3 < β3(β4, ε1), ς3-stratum < ς3-stratum(β4, ε1), β2 <
β2(β4, ε1,∆), ς2-slim < ς2-slim(β4, ε1,∆), ς2-edge < ς2-edge(β4, ε1,∆), βE′ < βE′(β4, ε1,∆), ςE′ <
ςE′(β4, ε1,∆), ς1-ridge < ς1-ridge(β4, ε1,∆), β1 < β1(β4, ε1,∆), ς0-stratum < ς0-stratum(β4,∆),
Υ0 > Υ0(β4, ε1,∆), and Λ < Λ(β4, ε1,∆), the following holds.

For each j ∈ J , there is a map Tij : R3 → Rkj which is a composition of an isometry and
an orthogonal projection, such that on the ball B(pi, 10) ⊂ 1

Ri
M , the map ηj is defined and

satisfies ∥∥∥∥Rj

Ri

ηj − (Tij ◦ ηi)
∥∥∥∥
C1

< ε1. (10.14)
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Proof. As we are assuming the hypothesis of Lemma 5.2, there are no 4-stratum points.

If j ∈ I3-stratum, then the same arguments as in the proof of [13, Lemma 12.12] apply.

Suppose that j ∈ I2-slim ∪ I2-edge. Then, d(pi, pj) ≤ 10Ri + 105∆Rj. Since Ri and Rj are

Λ-Lipschitz, 1−10∆Λ
1+105∆Λ

≤ Ri
Rj
≤ 1+105∆Λ

1−10∆Λ
. In particular, if Λ < Λ(∆), then Ri

Rj
is arbitrary close

to 1 and d(pi, pj) ≤ 106∆Rj. From Lemma 2.42, for any ε > 0, if β2 < β2(ε,∆), then the
(2, β2)-splitting of ( 1

Rj
M, pj) gives a (2, ε)-splitting of ( 1

Rj
M, pi). This means that there is

a map from B 1
Rj
M(pi,

1
ε
) with the distortion comparable to ε. By scaling, this gives a map

from B 1
Ri
M(pi,

Rj
Ri

1
ε
) with the distortion comparable to

Rj
Ri
ε. Hence, for any ε′ > 0, if ε < ε(ε′)

and Λ < Λ(ε′,∆), then there is a map from B 1
Ri
M(pi,

1
ε′

) with the distortion comparable to

ε′. In other word, there is a (2, ε′)-splitting of ( 1
Ri
M, pi). Since pi is a 3-stratum point, there

is no (4, β4)-splitting at pi. By the compatibility of approximate splitting (Lemma 2.44), for
any ε′′ > 0, if ε′ < ε′(β4, ε

′′) and β3 < β3(β4, ε
′′), then the (3, β3)-splitting of ( 1

Ri
M, pi) is ε′′-

compatible with the (2, ε′)-splitting of ( 1
Ri
M, pi) from the above scaling and translation. By

Lemma 2.51, if β3, β2, ε
′′, ς3-stratum, ς2-slim, ς2-edge are sufficiently small (as functions of ε1), then

the conclusion of the sublemma holds. In summary, the sublemma holds for j ∈ I2-slim∪I2-edge

if Λ, β2, ς2-slim, ς2-edge are sufficiently small (as functions of β4, ε1, and ∆) and β3, ς3-stratum are
sufficiently small (as functions of β4 and ε1).

The case j ∈ IE′ is the same as in the proof of [13, Lemma 12.12]. If βE′ ,Λ and ςE′ are
sufficiently small (as functions of β4, ε1,∆) and β3, ς3-stratum are sufficiently small (as functions
of β4 and ε1), then we can apply Lemma 2.44 and Lemma 2.51 to deduce the conclusion of
the sublemma.

Suppose that jP ∈ IP . Then, supp(ζj) ∩ B(pi, 10Ri) 6= ∅. There is q ∈ B(pi, 10Ri)
such that ζjP (q) = ζψpj (q) > 0 for the corresponding j ∈ I1-ridge. That is ψpj(q) ∈ (1.1, 4.9)

and ηpj ∈ (−1, 1). In particular, if Λ < Λ(∆, β2), then q is in the region where there is a
(2, β2)-splitting of ( 1

rq
M, q). If Λ and β2 (as functions of ∆) are sufficiently small, then there

is an approximate 2-splitting for ( 1
rq
M, pi) of arbitrary quality. If Λ is sufficiently small, rq

rpj

is arbitrary close to 1. Hence, there is an approximate 2-splitting for ( 1
rpj
M, pi) of arbitrary

quality. The same arguments as in the first case imply that the conclusion of the sublemma
holds if Λ, β2, ς2-slim are sufficiently small (as functions of ∆ and ε1) and β3, ς3-stratum are
sufficiently small (as functions of ε1).

Next, suppose that j ∈ I1-ridge ∪ I1-slim. Note that supp(ζj) ⊂ B(pi,∆rpj). Then,
d(pi, pj) ≤ 10rpi + ∆rpj . Since r is Λ-Lipschitz, |rpi − rpj | ≤ Λd(pi, pj) ≤ Λ(10rpi + ∆rpj). If

Λ < Λ(∆), then
rpi
rpj

is arbitrary close to 1 and d(pi, pj) < 2∆rpj . If β1 is sufficiently small (as

a function of ∆), then the (1, β1)-splitting of ( 1
rpj
M, pj) gives an approximate 1-splitting of

( 1
rpj
M, pi) with arbitrary quality. By the same argument as in the first case, the conclusion
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of the sublemma holds if Λ, β1, ς1-ridge are sufficiently small (as functions of β4, ε1, and ∆)
and β3, ς3-stratum are sufficiently small (as functions of β4 and ε1).

Lastly, the case j ∈ I0-stratum is the same as in the proof of [13, Lemma 12.12]. The con-
clusion of the sublemma holds if Λ, β1, β3, ς0-stratum, ς3-stratum are sufficiently small as functions
of β4 and ε1.

We retain the hypothesis of Sublemma 10.13.

For j ∈ J , the cutoff function ζj is a function of the ηj′ ’s for j′ ∈ J , i.e., there is a smooth
function Φj ∈ C∞c (RJ) such that ζj(·) = Φj({ηj′(·)j∈J}). The Hj-component of 1

Ri
E0 can be

written as

1

Ri

E0
j =

(
Rj

Ri

ηjζj,
Rj

Ri

ζj

)
=

(
Rj

Ri

ηj · (Φj ◦ {ηj′}j′∈J),
Rj

Ri

· (Φj ◦ {ηj′}j′∈J)

)
. (10.15)

Let F0 : R3 → H be the map so that the Hj-component of F0 ◦ ηi, for j ∈ J , is
obtained from the preceding formula by replacing each occurrence of ηj with the approxi-
mation Ri

Rj′
(Tij ◦ ηi). That is

1

Ri

F0
j (u) =

(
Tij(u) ·

(
Φj

({
Ri

Rj′
Tij′(u)

}
j′∈J

))
,
Rj

Ri

Φj

({
Ri

Rj′
Tij′(u)

}
j′∈J

))
, (10.16)

whose Hr-component is a constant function Ri, and whose other componenets vanish. We
then have

1

Ri

F0
j ◦ ηi =

(
(Tij ◦ ηi) ·

(
Φj

({
Ri

Rj′
Tij′ ◦ ηi

}
j′∈J

))
,
Rj

Ri

Φj

({
Ri

Rj′
Tij′ ◦ ηi

}
j′∈J

))
.

(10.17)

Sublemma 10.18. Under the constraints ε1 < ε1(ε2,M),Υ0 > Υ0(ε2,M), and Λ < Λ(ε2,M),∥∥∥∥ 1

Ri

E0 − 1

Ri

F0 ◦ ηi
∥∥∥∥
C1

< ε2 (10.19)

on B(pi, 10) ⊂ 1
Ri
M.

Proof. The proof is the same as the proof of [13, Sublemma 12.17] except in the case jP ∈
J ∩ IP .

Suppose that jP ∈ J ∩ IP . The only relevant arguments of Φj are when j′ = jP and
j′ = j ∈ I1-ridge corresponding to jP ∈ IP . Hence, from (10.15), in this case we can write

1

Ri

E0
jP

=

(
RjP

Ri

ηjP · ΦjP (ηj, ηjP ),
RjP

Ri

· ΦjP (ηj, ηjP )

)
. (10.20)
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From (10.17), we also have

1

Ri

F0
jP
◦ηi =

(
TijP (u) · ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)
,
RjP

Ri

ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))

.

(10.21)
Thus, the first component of 1

Ri
E0
jP
− 1

Ri
F0
jP
◦ ηi is

A :=
RjP

Ri

ηjP · ΦjP (ηj, ηjP )− (TijP ◦ ηi) · ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)
. (10.22)

By (10.14),
RjP
Ri
ηjP = TijP ◦ ηi ± sε1 for some 0 ≤ s < 1. Then,

A = (TijP ◦ ηi ± sε1) · ΦjP (ηj, ηjP )− (TijP ◦ ηi) · ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)

(10.23)

= (TijP ◦ ηi) ·
(

ΦjP (ηj, ηjP )− ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))
± sε1ΦjP (ηj, ηjP ).

So,

|A| ≤ ‖TijP ◦ ηi‖ · ‖DΦjP ‖
∥∥∥∥(ηj, ηjP )−

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)∥∥∥∥+ ε1‖ΦjP ‖ (10.24)

≤ ε1

((
Ri

RjP

)2

+

(
Ri

Rj

)2
) 1

2

‖TijP ◦ ηi‖ · ‖DΦjP ‖+ ε1‖ΦjP ‖.

Recall that j ∈ I1-ridge is chosen so that pj and pjP are the same point. In particular,
Ri
RjP

= Ri
Rj

. We then have

|A| ≤ ε1
Ri

RjP

‖TijP ◦ ηi‖ · ‖DΦjP ‖+ ε1‖ΦjP ‖. (10.25)

Since jP ∈ J ∩ IP , we have that d(pi, pj) < 5r1
pj

+ 10Ri ≤ 5∆rpj + 10rpi . If Λ is sufficiently

small (as a function of ∆), then
rpi
rpj

is arbitrary close to 1. Using the fact that Φj has explicit

bounds on its derivatives of order up to 2, if ε1 < ε1(ε2) then |A| ≤ ε2.

Next, we compute a bound for ‖DA‖. Consider that

DA =
RjP

Ri

ΦjP (ηj, ηjP )DηjP +
RjP

Ri

ηjPD(ΦjP (ηj, ηjP )) (10.26)

− ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)
D(TijP ◦ ηi)

− (TijP ◦ ηi)D
(

ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))
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= ΦjP (ηj, ηjP )(D(TijP ◦ ηi)± sε1) + ((TijP ◦ ηi)± sε1)D(ΦjP (ηj, ηjP ))

− ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)
D(TijP ◦ ηi)

− (TijP ◦ ηi)D
(

ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))

.

So,

‖DA‖ ≤ ‖D(TijP ◦ ηi)‖
∥∥∥∥ΦjP (ηj, ηjP )− ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)∥∥∥∥ (10.27)

+ ‖TijP ◦ ηi‖
∥∥∥∥D(ΦjP (ηj, ηjP ))−D

(
ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))∥∥∥∥

+ ε1(‖ΦjP ‖+ ‖DΦjP ‖)

≤ ε1
Ri

RjP

‖D(TijP ◦ ηi)‖‖DΦjP ‖

+ ‖TijP ◦ ηi‖
∥∥∥∥D(ΦjP (ηj, ηjP ))−D

(
ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))∥∥∥∥

+ ε1(‖ΦjP ‖+ ‖DΦjP ‖).

Consider

D(Φj(ηj, ηjP ))−D
(

ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))

(10.28)

= DΦjP (ηj, ηjP ) · {Dηj, DηjP }T

−DΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)
· {Ri

Rj

D(Tij ◦ ηi),
Ri

RjP

D(TijP ◦ ηi)}T

= DΦjP (ηj, ηjP ) · {Dηj, DηjP }T

−DΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
)
· {Dηj + sε1

Ri

Rj

, DηjP + sε1
Ri

RjP

}T .

So,∥∥∥∥D(ΦjP (ηj, ηjP ))−D
(

ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))∥∥∥∥

≤ ε1
Ri

RjP

‖D2ΦjP ‖‖{Dηj, DηjP }‖+ ε1
Ri

RjP

‖DΦjP ‖. (10.29)

By substituting (10.29) into (10.27) and by the same argument for |A|, we have that if ε1 is
sufficiently small (as a function of ε2) then ‖DA‖ < ε2. Consequently, ‖A‖C1 < ε2.

The second component of 1
Ri
E0
jP
− 1

Ri
F0
jP
◦ ηi is

B :=
RjP

Ri

(
ΦjP (ηj, ηjP )− ΦjP

(
Ri

Rj

Tij ◦ ηi,
Ri

RjP

TijP ◦ ηi
))

. (10.30)
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By a similar calculation as the calculation for A,

|B| ≤ RjP

Ri

· ε1
Ri

RjP

‖DΦjP ‖ = ε1‖DΦjP ‖, (10.31)

and

‖DB‖ ≤ RjP

Ri

·
(
ε1
Ri

RjP

‖D2ΦjP ‖‖{Dηj, DηjP }‖+ ε1
Ri

RjP

‖DΦjP ‖
)

= ε1‖D2ΦjP ‖‖{Dηj, DηjP }‖+ ε1‖DΦjP ‖. (10.32)

If ε1 < ε1(ε2), then ‖B‖C1 < ε2. Therefore,
∥∥∥ 1
Ri
E0
jP
− 1

Ri
F0
jP
◦ ηi
∥∥∥
C1
< ε2.

Sublemma 10.33. Given Σ ∈ (0, 1
10

), suppose that |ηi(p)| < 8 for some p ∈ M . Put
x = E0(p). For any q ∈M , if E0(q) ∈ B(x,ΣRi), then |ηi(p)− ηi(q)| < 20Σ.

Proof. The proof is the same as the proof of [13, Sublemma 12.21].

The rest of the proof of Lemma 10.8 is same as the proof of [13, Lemma 12.7].

10.4 Structure of E0 near the edge 2-stratum

Recall that Q2 = H0-stratum ⊕ H1-slim ⊕ H1-ridge ⊕ H2-slim ⊕ H2-edge, and π2 : H → Q2 is the
orthogonal projection.

Define

Ã2 =
⋃

i∈I2-edge

{|ηi| ≤ 8∆, ηE′ ≤ 8∆} , A2 =
⋃

i∈I2-edge

{|ηi| ≤ 7∆, ηE′ ≤ 7∆} , (10.34)

and
S̃2 = (π2 ◦ E0)(Ã2), S2 = (π2 ◦ E0)(A2). (10.35)

Let Σ2,Γ2 > 0 be new parameters. Define r2 : S̃2 → (0,∞) by putting r2(x) = Σ2rp for some

p ∈ (π2 ◦ E0)−1(x) ∩ Ã2.

The analog of Lemma 10.8 for the region near edge 2-stratum points is:

Lemma 10.36. There is a constant Ω2 = Ω2(M) so that under the constraints Σ2 < Σ2(Γ2,
M), ς2-edge < ς2-edge(β3,Γ2,Σ2,M,∆), ς2-slim < ς2-slim(β3,Γ2,Σ2,M,∆), βE < βE(β3, Γ2,
Σ2, M,∆), σE < σE(β3,Γ2,Σ2,M,∆), β2 < β2(β3,Γ2,Σ2,M,∆), ς1-ridge < ς1-ridge(β3,
Γ2, Σ2, M,∆), β1 < β1(β3,Γ2,Σ2,M,∆), ς0-stratum < ς0-stratum(β3,Γ2,Σ2,M,∆), Υ0 >
Υ0(β3,Γ2,Σ2,M,∆) and Λ < Λ(β3,Γ2,Σ2,M,∆), the following holds.
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(1) The triple (S̃2, S2, r2) is a (2,Γ2)-cloudy 2-manifold.

(2) The affine subspaces {Ax}x∈S2 inherent in the definition of the cloudy 2-manifold can be
chosen to have the following property. Pick p ∈ A2 and put x = (π2 ◦ E0)(p) ∈ S2. Let
A0
x ⊂ Q2 be the linear subspace parallel to Ax (i.e., Ax = A0

x+x) and let πA0
x

: H → A0
x

denote orthogonal projection onto A0
x. Then

‖D(π2 ◦ E0)p − πA0
x
◦D(π2 ◦ E0)p‖ ≤ Γ2 (10.37)

and
Ω−1

2 ‖v‖ ≤ ‖(πA0
x
◦D(π2 ◦ E0)p)(v)‖ ≤ Ω2‖v‖ (10.38)

for every v ∈ TpM which is orthogonal to ker(πA0
x
◦D(π2 ◦ E0)p).

(3) Given i ∈ I2-edge, there is a smooth map Ê0
i : (B(0, 8∆) ⊂ R)→ (H ′i)

⊥ ∩Q2 such that

‖DÊ0
i ‖ ≤ Ω2Ri (10.39)

and on the subset {|ηi| ≤ 8∆, ηE′ ≤ 8∆}, we have∥∥∥∥ 1

Ri

π2 ◦ E0 −
(
ηi,

1

Ri

Ê0
i ◦ ηi

)∥∥∥∥
C1

< Γ2. (10.40)

Furthermore, if x ∈ S2, then there are some i ∈ I2-edge and p ∈ {|ηi| ≤ 7∆, ηE′ ≤ 7∆}
such that x = (π2 ◦ E0)(p) and A0

x = Im(Id, 1
Ri

(DÊ0
i )ηi(p)).

Proof. The proof is similar to the proof of Lemma 10.8.

10.5 Structure of E0 near the slim 2-stratum

Recall that Q3 = H0-stratum ⊕H1-slim ⊕H1-ridge ⊕H2-slim, and π3 : H → Q3 is the orthogonal
projection.

Define

Ã3 =
⋃

i∈I2-slim

{
|ηi| ≤ 8 · 105∆

}
, A3 =

⋃
i∈I2-slim

{
|ηi| ≤ 7 · 105∆

}
, (10.41)

and
S̃3 = (π3 ◦ E0)(Ã3), S3 = (π3 ◦ E0)(A3). (10.42)

Let Σ3,Γ3 > 0 be new parameters. Define r3 : S̃3 → (0,∞) by putting r3(x) = Σ3rp for some

p ∈ (π3 ◦ E0)−1(x) ∩ Ã3.

The analog of Lemma 10.8 for the region near slim 2-stratum points is:
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Lemma 10.43. There is a constant Ω3 = Ω3(M) so that under the constraints Σ3 <
Σ3(Γ3, M), ς2-slim < ς2-slim(β3,Γ3,Σ3,M,∆), β2 < β2(β3,Γ3,Σ3,M,∆), ς1-ridge < ς1-ridge(β3,
Γ3,Σ3,M,∆), β1 < β1(β3,Γ3,Σ3,M,∆), ς0-stratum < ς0-stratum(β3,Γ3,Σ3,M,∆), Υ0 >
Υ0(β3,Γ3,Σ3,M,∆), and Λ < Λ(β3,Γ3,Σ3,M,∆), the following holds.

(1) The triple (S̃3, S3, r3) is a (2,Γ3)-cloudy 2-manifold.

(2) The affine subspaces {Ax}x∈S3 inherent in the definition of the cloudy 3-manifold can be
chosen to have the following property. Pick p ∈ A3 and put x = (π3 ◦ E0)(p) ∈ S3. Let
A0
x ⊂ Q3 be the linear subspace parallel to Ax (i.e., Ax = A0

x+x) and let πA0
x

: H → A0
x

denote orthogonal projection onto A0
x. Then

‖D(π3 ◦ E0)p − πA0
x
◦D(π3 ◦ E0)p‖ ≤ Γ3 (10.44)

and
Ω−1

3 ‖v‖ ≤ ‖(πA0
x
◦D(π3 ◦ E0)p)(v)‖ ≤ Ω3‖v‖ (10.45)

for every v ∈ TpM which is orthogonal to ker(πA0
x
◦D(π3 ◦ E0)p).

(3) Given i ∈ I2-slim, there is a smooth map Ê0
i : (B(0, 8 · 105∆) ⊂ R) → (H ′i)

⊥ ∩ Q3 such
that

‖DÊ0
i ‖ ≤ Ω3Ri (10.46)

and on the subset {|ηi| ≤ 8 · 105∆}, we have∥∥∥∥ 1

Ri

π3 ◦ E0 −
(
ηi,

1

Ri

Ê0
i ◦ ηi

)∥∥∥∥
C1

< Γ3. (10.47)

Furthermore, if x ∈ S3, then there are some i ∈ I2-slim and p ∈ {|ηi| ≤ 7 · 105∆} such

that x = (π3 ◦ E0)(p) and A0
x = Im(Id, 1

Ri
(DÊ0

i )ηi(p)).

Proof. The proof is similar to the proof of Lemma 10.8.

10.6 Structure of E0 near the ridge 1-stratum

Recall that Q4 = H0-stratum⊕H1-slim⊕H1-ridge, and π4 : H → Q4 is the orthogonal projection.
Put

Ã4 =
⋃

i∈I1-ridge

{|ηi| ≤ 0.8∆, ηiP ≤ 4.5λpi} , A4 =
⋃

i∈I1-ridge

{|ηi| ≤ 0.7∆, ηiP ≤ 4λpi} , (10.48)

where ψi = ψpi for the corresponding i ∈ IP , and

S̃4 = (π4 ◦ E0)(Ã4), S4 = (π4 ◦ E0)(A4). (10.49)

Let Σ4,Γ4 > 0 be new parameters. Define r4 : S̃4 → (0,∞) by putting r4(x) = Σ4rp for some

p ∈ (π4 ◦ E0)−1(x) ∩ Ã4.
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Lemma 10.50. There is a constant Ω4 = Ω4(M) so that under the constraints Σ4 < Σ4(Γ4,
M), ς1-ridge < ς1-ridge(β2,Γ4,Σ4,M,∆), β1 < β1(β2,Γ4,Σ4,M,∆), ς0-stratum < ς0-stratum(β2,
Γ4, Σ4,M,∆), Υ0 > Υ0(β2,Γ4,Σ4,M,∆), and Λ < Λ(β2,Γ4,Σ4,M,∆), the following holds.

(1) The triple (S̃4, S4, r4) is a (2,Γ4)-cloudy 1-manifold.

(2) The affine subspaces {Ax}x∈S4 inherent in the definition of the cloudy 1-manifold can be
chosen to have the following property. Pick p ∈ A4 and put x = (π4 ◦ E0)(p) ∈ S4. Let
A0
x ⊂ Q4 be the linear subspace parallel to Ax (i.e., Ax = A0

x+x) and let πA0
x

: H → A0
x

denote orthogonal projection onto A0
x. Then

‖D(π4 ◦ E0)p − πA0
x
◦D(π4 ◦ E0)p‖ ≤ Γ4 (10.51)

and
Ω−1

4 ‖v‖ ≤ ‖(πA0
x
◦D(π4 ◦ E0)p)(v)‖ ≤ Ω4‖v‖ (10.52)

for every v ∈ TpM which is orthogonal to ker(πA0
x
◦D(π4 ◦ E0)p).

(3) Given i ∈ I1-ridge, there is a smooth map Ê0
i : (B(0, 0.8∆) ⊂ R)→ (H ′i)

⊥∩Q4 such that

‖DÊ0
i ‖ ≤ Ω4Ri (10.53)

and on the subset {|ηi| ≤ 0.8∆, ηiP ≤ 4.5λpi}, we have∥∥∥∥ 1

Ri

π4 ◦ E0 −
(
ηi,

1

Ri

Ê0
i ◦ ηi

)∥∥∥∥
C1

< Γ4. (10.54)

Furthermore, if x ∈ S4, then there are some i ∈ I1-ridge and p ∈ {|ηi| ≤ 0.7∆, ηiP ≤
4λpi} such that x = (π4 ◦ E0)(p) and A0

x = Im(Id, 1
Ri

(DÊ0
i )ηi(p)).

Put J = {j ∈ I1-ridge ∪ I1-slim ∪ I0-stratum : supp(ζj) ∩B(pi,∆Ri) 6= ∅}.

Sublemma 10.55. Under the constraints β1 < β1(β2, ε1), ς1-ridge < ς1-ridge(β2, ε1,∆),
ς0-stratum < ς0-stratum(β2, ε1,∆), Υ0 > Υ0(β2, ε1,∆), and Λ < Λ(β2, ε1,∆), the following holds.

For each j ∈ J , there is a map Tij : R→ Rkj which is a composition of an isometry and
an orthogonal projection, such that on the ball B(pi,Υ1) ⊂ 1

Ri
M , the map ηj is defined and

satisfies ∥∥∥∥Rj

Ri

ηj − (Tij ◦ ηi)
∥∥∥∥
C1

< ε1. (10.56)

Proof. Suppose that j ∈ I1-ridge∪ I1-slim. Note that supp(ζj) ⊂ B(pj,∆rpj). Then, d(pi, pj) ≤
∆rpi + ∆rpj . If Λ < Λ(∆), then

rpi
rpj

is arbitrary close to 1 and also d(pi, pj) < 10∆rpj . If β1 is

sufficiently small (as a function of ∆ and ε′ for ε′ > 0), then the (1, β1)-splitting of ( 1
rpj
M, pj)
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gives a (1, ε′)-splitting of ( 1
rpj
M, pi). If Λ and ε′ is sufficiently small (as functions of ∆ and ε′′

for some ε′′ > 0), then
rpi
rpj

is arbitrary close to 1 and there is a (1, ε′′)-splitting for ( 1
rpi
M, pi).

By the uniqueness of approximate splittings (Lemma 2.50), if β1 and ε′′ are sufficiently
small (as functions of ε̃ > 0), then the (1, ε′′)-splitting is ε̃-compatible with the (1, β1)-
splitting for ( 1

rpi
M, pi). By Lemma 2.51, the conclusion of the sublemma holds if Λ, β1 are

sufficiently small (as functions of ε1,∆) and ςR are sufficiently small (as a function of ε1).

The case j ∈ I0-stratum is the same as in the proof of [13, Sublemma 12.12].

We retain the hypothesis of Sublemma 10.55.

For j ∈ J , the cutoff function ζj is a function of the ηj′ ’s for j′ ∈ J , i.e., there is a smooth
function Φj ∈ C∞c (RJ) such that ζj(·) = Φj({ηj′(·)j∈J}). The Hj-component of π4 ◦ E0, after
dividing by Ri, can be written as

1

Ri

(π4 ◦ E0)j =

(
Rj

Ri

ηjζj,
Rj

Ri

ζj

)
=

(
Rj

Ri

ηj · (Φj ◦ {ηj′}j′∈J),
Rj

Ri

· (Φj ◦ {ηj′}j′∈J)

)
. (10.57)

Let F0 : R→ H be the map so that the Hj-component of F0 ◦ηi, for j ∈ J , is obtained from
the preceding formula by replacing each occurrence of ηj with the approximation Ri

Rj′
(Tij ◦ηi).

That is

1

Ri

F0
j (u) =

(
Tij(u) ·

(
Φj

({
Ri

Rj′
Tij′(u)

}
j′∈J

))
,
Rj

Ri

Φj

({
Ri

Rj′
Tij′(u)

}
j′∈J

))
. (10.58)

We then have

1

Ri

F0
j ◦ ηi =

(
(Tij ◦ ηi) ·

(
Φj

({
Ri

Rj′
Tij′ ◦ ηi

}
j′∈J

))
,
Rj

Ri

Φj

({
Ri

Rj′
Tij′ ◦ ηi

}
j′∈J

))
.

(10.59)

Sublemma 10.60. Under the constraints ε1 < ε1(ε2,M), Υ0 > Υ0(ε2,M), and Λ <
Λ(ε2,M,∆), ∥∥∥∥ 1

Ri

(π4 ◦ E0)− 1

Ri

F0 ◦ ηi
∥∥∥∥
C1

< ε2 (10.61)

on B(pi,∆) ⊂ 1
Ri
M .

Proof. For j ∈ J ∩ (I1-slim ∪ I1-ridge ∪ I0-stratum), the only relevant argument of Φj is when
j′ = j. Hence, we can write

1

Ri

(π4 ◦ E0)j =

(
Rj

Ri

ηj · Φj(ηj),
Rj

Ri

· Φj(ηj)

)
(10.62)
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and
1

Ri

F0
j ◦ ηi =

(
Tij(u) · Φj

(
Ri

Rj

Tij ◦ ηi
)
,
Rj

Ri

Φj

(
Ri

Rj

Tij ◦ ηi
))

. (10.63)

The first component of 1
Ri

(π4 ◦ E0)j − 1
Ri
F0
j ◦ ηi is

A :=
Rj

Ri

ηj · Φj(ηj)− Tij(u) · Φj

(
Ri

Rj

Tij ◦ ηi
)
. (10.64)

By similar calculations as in the proof of Sublemma 10.18,

|A| ≤ ε1
Ri

Rj

‖Tij ◦ ηi‖ · ‖DΦj‖+ ε1‖Φj‖ (10.65)

and

‖DA‖ ≤ ε1
Ri

Rj

(
‖D(Tij ◦ ηi)‖‖DΦj‖+ ‖Tij ◦ ηi‖‖D2Φj‖‖Dηj‖+ ‖DΦj‖

)
+ε1(‖Φj‖+‖DΦj‖).

(10.66)

In the case j ∈ I1-slim∪I1-ridge, if Λ is sufficiently small (as a function of ∆), then Ri
Rj

=
rpi
rpj

is arbitrary close to 1. In the case j ∈ I0-stratum, from Lemma 9.4, Ri
Rj
≤ 20

Υ0
. Therefore, if ε1

is sufficiently small and Υ0 is sufficiently large (as functions of ε2), then ‖A‖C1 < ε2.

The second component of 1
Ri

(π4 ◦ E0)j − 1
Ri
F0
j ◦ ηi is

B :=
Rj

Ri

(
Φj(ηj)− Φj

(
Ri

Rj

Tij ◦ ηi
))

. (10.67)

By similar calculations as in the proof of Sublemma 10.18,

|B| ≤ ε1‖DΦj‖ (10.68)

and

‖DB‖ ≤ ε1‖D2Φj‖‖{Dηj, Dηj}‖+ ε1‖DΦj‖. (10.69)

Hence, if ε1 < ε1(ε2) then ‖B‖C1 < ε2. Therefore,
∥∥∥ 1
Ri
E0
j − 1

Ri
F0
j ◦ ηi

∥∥∥
C1
< ε2.
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Sublemma 10.70. Given Σ ∈ (0, 1
10Υ1

), suppose that |ηi(p)| < 0.8Υ1 for some p ∈ M . Put

x = E0(p). For any q ∈M , if E0(q) ∈ B(x,ΣΥ1Ri) then |ηi(p)− ηi(q)| < 4ΣΥ2
1.

Proof. We know that ζi(p) = 1. From the hypothesis of the sublemma, |E0(p) − E0(q)| <
ΣΥ1Ri. In particular, |ζi(p)− ζi(q)| < ΣΥ1 and |ζi(p)ηi(p)− ζi(q)ηi(q)| < ΣΥ1. Then

|ηi(p)− ηi(q)| =
1

ζi(q)
|ζi(q)ηi(p)− ζi(q)ηi(q)| (10.71)

≤ 1

ζi(q)
(|ζi(p)ηi(p)− ζi(q)ηi(q)|+ |ζi(p)− ζi(q)||ηi(p)|)

≤ ΣΥ1 + ΣΥ1 · 0.8Υ1

1− ΣΥ1

≤ 2ΣΥ2
1

1− ΣΥ1

≤ 4ΣΥ2
1.

Since Σ < 1
2Υ1

, this proves the sublemma.

We now prove Lemma 10.50. We no longer fix i ∈ I1-ridge. Given x ∈ S4, choose p ∈ A4

and i ∈ I1-ridge so that π4 ◦ E0(p) = x and |ηi(p)| ≤ 0.8∆. Put A0
x = Im(dF0

ηi(p)
), a 1-plane in

H, and let Ax = x+ A0
x be the corresponding affine subspace through x.

We first show that under the constraints Σ4 < Σ4(Γ4,M), ε2 < ε2(Γ4,M) and Λ <

Λ(Γ4,M), the triple (S̃4, S4, r4) is a (2,Γ4)-cloudy 1-manifold. First, we verify condition (1)

of [13, Definition 20.2]. Pick x, y ∈ S̃4, and choose

p ∈ (π4 ◦ E0)−1(x) ∩
⋃

i∈I1-ridge

|ηi|−1 [0, 0.8∆) ∩ ψ−1
i [0, 4.5) (10.72)

and
q ∈ (π4 ◦ E0)−1(y) ∩

⋃
i∈I1-ridge

|ηi|−1 [0, 0.8∆) ∩ ψ−1
i [0, 4.5) (10.73)

satisfying r4(x) = Σ4rp and r4(y) = Σ4rq.

Suppose that d(p, q) < rp
Λ

. Since r is Λ-Lipschitz, we have that |rp− rq| ≤ rp. In this case

|r4(x)− r4(y)| = Σ4|rp − rq| ≤ Σ4rp = r4(x). (10.74)

Now suppose that d(p, q) ≥ 2∆rp. We claim that if Λ is sufficiently small (as a function of
∆) then this implies that d(p, q) ≥ 1.95∆rq as well. Suppose the claim is not true. Then
2∆rp ≤ d(p, q) ≤ 1.95∆rq, so rp

rq
≤ 1.95

2
. On the other hand, rq − rp ≤ Λd(p, q) ≤ 1.95Λ∆rq.

Thus, rp
rq
≥ 1− 1.95Λ∆. This is a contradiction if Λ is sufficiently small. Therefore, we have

that d(p, q) ≥ 1.95∆rq.

Let i, j ∈ I1-ridge such that p ∈ |ηi|−1[0, 0.8∆) ∩ η−1
iP

[0, 4.5λpi) and q ∈ |ηj|−1[0, 0.8∆) ∩
η−1
iP

[0, 4.5λpi). We have ζi(p) = ζj(q) = 1. Consider d(q, pi) ≥ d(p, q)− d(pi, p) ≥ 1.95∆rq −
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∆rpi . If Λ is sufficiently small, then rq
rpi

can be made arbitrary close to 1. Hence, d(q, pi) ≥
0.9∆rpi . In particular, ζi(q) = 0. Similarly, ζj(p) = 0. Then

|x− y| = |E0(p)− E0(q)| (10.75)

≥ max(rpi |ζi(p)− ζi(q)|, rpj |ζj(p)− ζj(q)|)

= max(rpi , rpj) ≥
1

2
max(rp, rq) =

1

2Σ4

max(r4(x), r4(y)).

So |r4(x)− r4(y)| ≤ |x− y| provided Σ4 ≤ 1
4
. Therefore, condition (1) of [13, Definition 20.2]

is satisfied.

We now verify condition (2) of [13, Definition 20.2]. That is, for all x ∈ S4, the rescaled

pointed subset ( 1
r4(x)

S̃4, x) is Γ4-close in the pointed Hausdorff distance to ( 1
r4(x)

A0
x, x). Let

x ∈ S4, i ∈ I1-ridge, and p ∈M be such that π4 ◦ E0(p) = x with |ηi(p)| ≤ 0.7∆ and ηiP (p) ≤
4λpi . Take Σ = 1

100∆
in Sublemma 10.70 and let q ∈ Im(E0) ∩ B(x,Σ∆Ri). By Sublemma

10.70, |x − ηi(q)| = |ηi(p) − ηi(q)| ≤ 4∆2
1Σ = 0.04∆. Thus, ηi(q) ≤ 0.7∆ + 0.04∆ = 0.74∆.

Moreover, since Σ < 0.1, d(pi, q) ≤ d(q, p) + d(p, pi) ≤ Σ∆Ri + 4r1
pi
≤ (Σ + 4)r1

pi
< 4.1r1

pi
. If

ςR is sufficiently small, then ηiP (q) < 4.2λpi . We have that

Im(π4 ◦ E0) ∩B(x,Σ∆Ri) ⊂ Im

(
π4 ◦ E0

∣∣
|ηi(p)|−1[0,0.74∆)∩η−1

iP
[0,4.2λpi )

)
. (10.76)

Thus, we can restrict our attention to the action of E0 on |ηi(p)|−1[0, 0.74∆)∩ η−1
iP

[0, 4.2λpi).

Consider that Im(F0
∣∣
B(0,0.74∆)

, x) is the restriction to B(0, 0.74∆) of the graph of a function

G0
i : H ′i → (H ′i)

⊥ since Tii = Id and ζi
∣∣
B(0,0.74∆)

= 1. Furthermore, in view of the universality

of the functions {Φj}j∈J and the bound on the cardinality of J , there are uniform C1-
estimates on G0

i . Hence, we can find Σ4 (as a function of Γ4 and M) which ensures that(
1

r4(x)
Im(F0

∣∣
B(0,0.74∆)

), x
)

is Γ4

2
-close in the pointed Hausdorff topology to x + Im(dF0

p ).

Finally, if the parameter ε2 of Sublemma 10.60 is sufficiently small, then we can ensure

that
(

1
r4(x)

Im(E0), x
)

is Γ4-close in the pointed Hausdorff topology to x + Im(dF0
p ). Thus,

condition (2) of [13, Definition 20.2] is satisfied.

To finish the proof of Lemma 10.50, equation (10.51) is satisfied if the parameter ε2 of
Sublemma 10.60 is sufficiently small. Equation (10.52) is equivalent to upper and lower
bounds on the eigenvalues of the matrix (πA0

x
◦ DE0

p )(πA0
x
◦ DE0

p )∗, which acts on the 1-
dimensional space A0

x. In view of Sublemma 10.60 and the definition of A0
x, it is sufficient to

show upper and lower bounds on the eigenvalues of DF0
ηi(p)

(DF0
ηi(p)

)∗ acting on A0
x. In terms

of the function G0
i , these are the same as the eigenvalues of Id + ((DG0

i )ηi(p))
∗(DG0

i )ηi(p)
acting on R. The eigenvalues are clearly bounded by 1. In view of the C1-bound on the
eigenvalues in terms of dim(H), which in turn is bounded above in terms ofM. This shows
equation (10.52).
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Finally, given i ∈ I1-ridge, we can write 1
Ri
F0 on B(0, 0.74∆) ⊂ R in the form 1

Ri
F0 =

(Id, 1
Ri
Ê0
i ) with respect to the orthogonal decomposition H = H ′i ⊕ (H ′i)

⊥. We use this to

define Ê0
i . Equation (10.54) is a consequence of Sublemma 10.60. The last statement of

Lemma 10.50 follows from the definition of A0
x.

10.7 Structure of E0 near the slim 1-stratum

Recall that Q5 = H0-stratum ⊕H1-slim, and π5 : H → Q5 is the orthogonal projection.

Define
Ã5 =

⋃
i∈I1-slim

{|ηi| ≤ 0.8∆} , A5 =
⋃

i∈I1-slim

{|ηi| ≤ 0.7∆} , (10.77)

and
S̃5 = (π5 ◦ E0)(Ã5), S5 = (π5 ◦ E0)(A5). (10.78)

Let Σ5,Γ5 > 0 be new parameters. Define r5 : S̃5 → (0,∞) by putting r5(x) = Σ5rp for some

p ∈ (π5 ◦ E0)−1(x) ∩ Ã5.

The analog of Lemma 10.8 for the region near slim 1-stratum points is:

Lemma 10.79. There is a constant Ω5 = Ω5(M) so that under the constraints Σ5 < Σ5(Γ5,
M), ς1-ridge < ς1-ridge(β2,Γ5,Σ5,M,∆), β1 < β1(β2,Γ5,Σ5,M,∆), ς0-stratum < ς0-stratum(β2,
Γ5, Σ5,M,∆), Υ0 > Υ0(β2,Γ5,Σ5,M,∆), and Λ < Λ(β2,Γ5,Σ5,M,∆), the following holds.

(1) The triple (S̃5, S5, r5) is a (2,Γ5)-cloudy 1-manifold.

(2) The affine subspaces {Ax}x∈S5 inherent in the definition of the cloudy 5-manifold can be
chosen to have the following property. Pick p ∈ A5 and put x = (π5 ◦ E0)(p) ∈ S5. Let
A0
x ⊂ Q5 be the linear subspace parallel to Ax (i.e., Ax = A0

x+x) and let πA0
x

: H → A0
x

denote orthogonal projection onto A0
x. Then

‖D(π5 ◦ E0)p − πA0
x
◦D(π5 ◦ E0)p‖ ≤ Γ5 (10.80)

and
Ω−1

5 ‖v‖ ≤ ‖(πA0
x
◦D(π5 ◦ E0)p)(v)‖ ≤ Ω5‖v‖ (10.81)

for every v ∈ TpM which is orthogonal to ker(πA0
x
◦D(π5 ◦ E0)p).

(3) Given i ∈ I1-slim, there is a smooth map Ê0
i : (B(0, 0.8∆) ⊂ R)→ (H ′i)

⊥ ∩Q5 such that

‖DÊ0
i ‖ ≤ Ω5Ri (10.82)

and on the subset {|ηi| ≤ 0.8∆}, we have∥∥∥∥ 1

Ri

π5 ◦ E0 −
(
ηi,

1

Ri

Ê0
i ◦ ηi

)∥∥∥∥
C1

< Γ5. (10.83)
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Furthermore, if x ∈ S5, then there are some i ∈ I1-slim and p ∈ {|ηi| ≤ 0.7∆} such that

x = (π5 ◦ E0)(p) and A0
x = Im(Id, 1

Ri
(DÊ0

i )ηi(p)).

Proof. The proof is similar to the proof of Lemma 10.8.

10.8 Structure of E0 near the 0-stratum

Lemma 10.84. For i ∈ I0-stratum, the only nonzero componenet of the map π6 ◦ E0 : M →
Q6 = H0-stratum in the region {ηi ∈ [0.3, 0.8]} is E0

i , where it conincides with (Riηi, Ri).

Proof. The lemma follows directly from the definitions of E0 and ζi, i ∈ I0-stratum.
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Adjusting the map to Euclidean space

In this chapter, we modify E0 : M → H slightly to get a new map E : M → H which is a
submersion in different parts of M . In Chapter 12, we will use the submersion to decompose
M into fibered pieces which are compatible along the intersections. The main result of this
chapter is Proposition 11.1. The rest of the chapter is the proof of the proposition.

Let cadjust > 0 be a new parameter.

Proposition 11.1. Under the constraints imposed in this and prior chapters, there is a
smooth map E : M → H with the following properties:

(1) For every p ∈M ,

‖E(p)− E0(p)‖ < cadjustrp and ‖DEp −DE0
p‖ < cadjust. (11.2)

(2) For j ∈ {1, 2, 3, 4, 5}, the restriction of πj ◦ E : M → Qj to the region Uj ⊂ M is a
submersion to a kj-manifold Wj ⊂ Qj, where

U1 =
⋃

i∈I3−stratum

{|ηi| < 5}, (11.3)

U2 =
⋃

i∈I2−edge

{|ηi| < 5∆, ηE′ < 5∆},

U3 =
⋃

i∈I2−slim

{|ηi| < 5 · 105∆},

U4 =
⋃

i∈I1−ridge

{|ηi| < 0.5∆, ηiP < 3λpi},

U5 =
⋃

i∈I1−slim

{|ηi| < 0.5∆},

and k1 = 3, k2 = k3 = 2, k4 = k5 = 1.

Let c3-stratum, c2-slim, c2-edge, c1-ridge, c1-slim > 0, and Ξi > 0 for i ∈ {1, 2, 3, 4, 5} be
additional new parameters. We will use these parameters in the following sections.
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11.1 Overview of the proof of Proposition 11.1

The maps E0 and πi ◦ E0, i ∈ {1, 2, 3, 4, 5}, as defined in Chapter 10 behave like a “rough
fibration.” The goal is to promote these rough fibrations to fibrations in such a way that
they are compatible on their overlap. We will do this by producing a sequence of maps
E j : M → H, for j ∈ {1, 2, 3, 4, 5}, which are successive adjustments of E0. This proof is an
analog of the proof of [13, Proposition 13.1].

The idea for constructing E j from E j−1, for j ∈ {1, 2, 3, 4, 5}, is as follows. First we
consider the orthogonal splitting H = Qj ⊕ Q⊥j of H. Let πj = π1,j : H → Qj and
π⊥j : H → Q⊥j be the orthogonal projections. In Chapter 10, we introduced a pair of subsets

(Ãj, Aj) in M whose image (S̃j, Sj) under the composition πj ◦E j−1 is a cloudy kj-manifold in

Qj. We can think of the restriction of E j−1 to Aj as a “rough submersion” over (S̃j, Sj). From
a property of a cloudy manifold (see [13, Lemma 20.2]), there is a kj-dimensional manifold

Wj ⊂ Qj near (S̃j, Sj) and a projection map Pj onto Wj, defined in a neighborhood Ŵj of
Wj. Thus, we have a well-defined map

H ⊃ Ŵj ×Q⊥j Qj ⊕Q⊥j = H.
(Pj◦πj ,π⊥j )

(11.4)

Then, we use a partition of unity to blend the composition (Pj ◦ πj, π⊥j ) ◦ E j−1 with E j−1 to
obtain E j : M → H. Under this construction, at a point p ∈M , |E j(p)−E j−1(p)| < (const)rp
and |DE jp − DE j−1

p | < const, for some small constants, and E j preserves the submersions
defined by E j−1.

11.2 Adjusting the map near the 3-stratum

We start the adjustment process from the 3-stratum.

We take Q1 = H, Q⊥1 = {0} and let Ã1, A1, S̃1, S1, and r1 : S̃1 → (0,∞) be as in Section
10.3.

From Lemma 10.8, (S̃1, S1, r1) is a (2,Γ1) cloudy 3-manifold. By [13, Lemma 20.2],
there is a 3-manifold W 0

1 ⊂ Q1 so that the conclusion of [13, Lemma 20.2] holds, where
the parameter ε in [13, Lemma 20.2] is given by ε = Ξ1 = Ξ1(Γ1). In particular, there is a
well-defined nearest point projection

P1 : Nr1(S1) = Ŵ1 → W 0
1 (11.5)

where Nr1 is a variable thickness neighborhood as defined in Section 1.3.

First, we define a cutoff function.
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Lemma 11.6. Under the constraint c3-stratum < c3-stratum, there is a smooth function ψ1 :
H → [0, 1] with the following properties:

(1)

ψ1 ◦ E0 ≡ 1 in
⋃

i∈I3-stratum

{|ηi| < 6} and (11.7)

ψ1 ◦ E0 ≡ 0 outside
⋃

i∈I1-ridge

{|ηi| < 7}.

(2) supp(ψ1) ∩ im(E0) ⊂ Ŵ1.

(3) There is a constant Ω′1 = Ω′1(M) such that

|(Dψ1)x| < Ω′1x
−1
r (11.8)

for all x ∈ im(E3).

Proof. The proof is the similar to the proof of [13, Lemma 13.6]

Define Ψ1 : H → H by Ψ1(x) = x if x /∈ Ŵ1 and

Ψ1(x) = ψ1(x)P1(x) + (1− ψ1(x))x (11.9)

otherwise. Put E1 = Ψ1 ◦ E0.

Lemma 11.10. Under the constraints Σ1 < Σ1(Ω1, c3-stratum), Γ1 < Γ1(Ω1, c3-stratum), and
Ξ1 < Ξ1(c3-stratum), we have:

(1) E1 is smooth.

(2) For all p ∈M ,

‖E1(p)− E0(p)‖ < c3-stratum r(p) and ‖DE1(p)−DE0(p)‖ < c3-stratum. (11.11)

(3) The restriction of E1 to
⋃
i∈I3-stratum

{|ηi| < 6} is a submersion to W 0
1 .

Proof. The proof is the similar to the proof of [13, Lemma 13.15]

11.3 Adjusting the map near the edge 2-stratum

Recall that Q2 = H0-stratum ⊕ H1-slim ⊕ H1-ridge ⊕ H2-slim ⊕ H2-edge and π2 : H → Q2 is an

orthogonal projection. We let Ã2, A2, S̃2, S2, and r2 : S̃2 → (0,∞) be as in Section 10.4.

Thus, by Lemma 10.36, (S̃2, S2, r2) is a (2,Γ2) cloudy 2-manifold. By [13, Lemma 20.2],
there is a 2-manifold W 0

2 ⊂ Q2 so that the conclusion of [13, Lemma 20.2] holds, where
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the parameter ε in [13, Lemma 20.2] is given by Ξ2 = Ξ2(Γ2). In particular, there is a
well-defined nearest point projection

P2 : Nr2(S2) = Ŵ2 → W 0
2 (11.12)

where Nr2 is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.13. Under the constraint c2-edge < c2-edge, there is a smooth function ψ2 : H →
[0, 1] with the following properties:

(1)

ψ2 ◦ E1 ≡ 1 in
⋃

i∈I2-edge

{|ηi| < 6∆, ηE′ < 6∆} and (11.14)

ψ2 ◦ E1 ≡ 0 outside
⋃

i∈I2-edge

{|ηi| < 7∆, ηE′ < 7∆}.

(2) supp(ψ2) ∩ im(E1) ⊂ Ŵ2 ×Q⊥2 .

(3) There is a constant Ω′2 = Ω′2(M) such that

|(Dψ2)x| < Ω′2x
−1
r (11.15)

for all x ∈ im(E1).

Proof. The proof is similar to the proof of [13, Lemma 13.21]

We can assume that Ŵ2 ⊂ {xr > 0}. Define Ψ2 : {xr > 0} → {xr > 0} by Ψ2(x) = x if

π2(x) 6= Ŵ2 and

Ψ2(x) = (ψ2(x)P2(π2(x)) + (1− ψ2(x))π2(x), π⊥2 (x)) (11.16)

otherwise. Put E2 = Ψ2 ◦ E1.

Lemma 11.17. Under the constraints, Σ2 < Σ2(Ω2, c2-edge), Γ2 < Γ2(Ω2, c2-edge), Ξ2 <
Ξ2(c2-edge), and c3-stratum < c3-stratum(c2-edge), we have:

(1) E2 is smooth.

(2) For all p ∈M ,

‖E2(p)− E0(p)‖ < c2-edge r(p) and ‖DE2(p)−DE0(p)‖ < c2-edge. (11.18)

(3) The restriction of π2 ◦ E2 to
⋃
i∈I2-edge

{|ηi| < 6∆, ηE′ < 6∆} is a submersion to W 0
2 .

Proof. The proof is similar to the proof of [13, Lemma 13.34]
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11.4 Adjusting the map near the slim 2-stratum

Recall that Q3 = H0-stratum ⊕ H1-slim ⊕ H1-ridge ⊕ H2-slim and π3 : H → Q3 is an orthogonal

projection. We let Ã3, A3, S̃3, S3, and r3 : S̃3 → (0,∞) be as in Section 10.5.

Thus, by Lemma 10.43, (S̃3, S3, r3) is a (2,Γ3) cloudy 2-manifold. By [13, Lemma 20.2],
there is a 2-manifold W 0

3 ⊂ Q3 so that the conclusion of [13, Lemma 20.2] holds, where
the parameter ε in [13, Lemma 20.2] is given by Ξ3 = Ξ3(Γ3). In particular, there is a
well-defined nearest point projection

P3 : Nr3(S3) = Ŵ3 → W 0
3 (11.19)

where Nr3 is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.20. Under the constraint c2-slim < c2-slim, there is a smooth function ψ3 : H →
[0, 1] with the following properties:

(1)

ψ3 ◦ E2 ≡ 1 in
⋃

i∈I2-slim

{|ηi| < 6 · 105∆} and (11.21)

ψ3 ◦ E2 ≡ 0 outside
⋃

i∈I2-slim

{|ηi| < 7 · 105∆}.

(2) supp(ψ3) ∩ im(E2) ⊂ Ŵ3 ×Q⊥3 .

(3) There is a constant Ω′3 = Ω′3(M) such that

|(Dψ3)x| < Ω′3x
−1
r (11.22)

for all x ∈ im(E2).

Proof. The proof is similar to the proof of [13, Lemma 13.38]

Define Ψ3 : H → H by Ψ3(x) = x if π3(x) /∈ Ŵ3 and

Ψ3(x) = (ψ3(x)P3(π3(x)) + (1− ψ3(x))π3(x), π⊥3 (x)) (11.23)

otherwise. Put E3 = Ψ3 ◦ E2.

Lemma 11.24. Under the constraints, Σ3 < Σ3(Ω3, c2-slim), Γ3 < Γ3(Ω3, c2-slim), Ξ3 <
Ξ3(c2-slim), and c2-edge < c2-edge(c2-slim), we have:

(1) E3 is smooth.

(2) For all p ∈M ,

‖E3(p)− E0(p)‖ < c2-slim r(p) and ‖DE3(p)−DE0(p)‖ < c2-slim. (11.25)

(3) The restriction of π3 ◦ E3 to
⋃
i∈I2-slim

{|ηi| < 6 · 105∆} is a submersion to W 0
3 .

Proof. The proof is similar to the proof of [13, Lemma 13.34].
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11.5 Adjusting the map near the ridge 1-stratum

Recall that Q4 = H0-stratum ⊕H1-slim ⊕H1-ridge and π4 : H → Q4 is an orthogonal projection.

We let Ã4, A4, S̃4, S4, and r4 : S̃4 → (0,∞) be as in Section 10.6.

Thus, by Lemma 10.50, (S̃4, S4, r4) is a (2,Γ4) cloudy 1-manifold. By [13, Lemma 20.2],
there is a 1-manifold W 0

4 ⊂ Q4 so that the conclusion of [13, Lemma 20.2] holds, where
the parameter ε in [13, Lemma 20.2] is given by Ξ4 = Ξ4(Γ4). In particular, there is a
well-defined nearest point projection

P4 : Nr4(S4) = Ŵ4 → W 0
4 (11.26)

where Nr4 is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.27. Under the constraint c1-ridge < c1-ridge, there is a smooth function ψ4 : H →
[0, 1] with the following properties:

(1)

ψ4 ◦ E3 ≡ 1 in
⋃

i∈I1-ridge

{|ηi| < 0.6∆, ηiP < 3.5λpi} and (11.28)

ψ4 ◦ E3 ≡ 0 outside
⋃

i∈I1-ridge

{|ηi| < 0.7∆, ηiP < 4λpi}.

(2) supp(ψ4) ∩ im(E3) ⊂ Ŵ4 ×Q⊥4 .

(3) There is a constant Ω′4 = Ω′4(M) such that

|(Dψ4)x| < Ω′4x
−1
r (11.29)

for all x ∈ im(E3).

Proof. If the parameter c2-slim is sufficiently small and ∆ is sufficiently large, then by Lemma
11.24, ‖E3(p) − E0(p)‖ < c2-slimr(p). Hence, E3(p) ∈

⋃
i∈I1-ridge

{|ηi| < 0.6∆, ηiP < 3.5λpi}
implies that E0(p) ∈

⋃
i∈I1-ridge

{|ηi| < 0.61∆, ηiP < 3.6λpi}. Also, E3(p) /∈
⋃
i∈I1-ridge

{|ηi| <
0.7∆, ηiP < 4λpi} implies that E0(p) /∈

⋃
i∈I1-ridge

{|ηi| < 0.69∆, ηiP < 3.9λpi}.

Define ψ4 : H → [0, 1] by

ψ4(x) = 1− Φ 1
2
,1

( ∑
{i∈I1-ridge,x

′′
i >0}

[
Φ0.61∆,0.65∆

(
|x′i|
x′′i

)
·
(

1− Φ 1
2
,1

(
x′′i
Ri

))]

·
[
Φ3.6λpi ,3.7λpi

( |x′iP |
x′′iP

)
·
(

1− Φ 1
2
,1

(
x′′iP
RiP

))])
(11.30)
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where iP ∈ IP is the index corresponding to i ∈ I1-ridge. ψ4 is clearly smooth. Also note that
x′′i > 0 if and only if x′′iP > 0.

To prove part (1), it suffices to show that

ψ4 ◦ E0 ≡ 1 in
⋃

i∈I1-ridge

{|ηi| < 0.61∆, ηiP < 3.6λpi}, and (11.31)

ψ4 ◦ E0 ≡ 0 outside
⋃

i∈I1-ridge

{|ηi| < 0.69∆, ηiP < 3.9λpi}.

Suppose that i ∈ I1-ridge, |ηi(p)| < 0.61∆, and ηiP < 3.6λpi . Put x = E0(p). Recall that
x′′i = Riζi(p) where ζi is given by (8.10). Hence,

x′′i
Ri

= ζi(p) = 1, (11.32)

1− Φ 1
2
,1

(
x′′i
Ri

)
= 1, and

Φ0.61∆,0.65∆

(
|x′i|
x′′i

)
= Φ0.61∆,0.65∆ (|ηi(p)|) = 1.

Also, x′′iP = RiP ζiP (p) where ζiP = ζψpi is given by (8.14). We have

x′′iP
RiP

= ζiP (p) = 1, (11.33)

1− Φ 1
2
,1

(
x′′iP
RiP

)
= 1, and

Φ3.6λpi ,3.7λpi

( |x′iP |
x′′iP

)
= Φ3.6λpi ,3.7λpi

(ηiP ) = 1.

Therefore, ψ4(x) = 1. Now suppose that for all i ∈ I1-ridge, either

(i) ζi(p) = 0 or ζiP (p) = 0, or

(ii) ζi(p) > 0, ζiP (p) > 0, and |ηi(p)| ≥ 0.69∆, or

(iii) ζi(p) > 0, ζiP (p) > 0, |ηi(p)| < 0.69∆, and ηiP ≥ 3.9λpi .

If ζi(p) = 0 or ζiP (p) = 0, then(
1− Φ 1

2
,1

(
x′′i
Ri

))
·
(

1− Φ 1
2
,1

(
x′′iP
RiP

))
= 0. (11.34)

If ζi(p) > 0, ζiP (p) > 0, and |ηi(p)| ≥ 0.69∆, then

Φ0.61∆,0.65∆

(
|x′i|
x′′i

)
= 0. (11.35)
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If ζi(p) > 0, ζiP (p) > 0, |ηi(p)| < 0.69, and ηiP ≥ 3.9λpi , then

Φ3.6λpi ,3.7λpi

( |x′iP |
x′′iP

)
= 0. (11.36)

In any case, ψ4(x) = 0. This proves part (1) of the lemma.

To prove part (2), suppose x = E3(p) and ψ4(x) > 0. From part (1), |ηi(p)| < 0.7∆ and
ηiP < 4λpi for some i ∈ I1-ridge. Thus, p ∈ A4 and x ∈ E3(A4). Let x̃ = (π4 ◦ E0)(p) ∈
(π4 ◦ E0)(A4) = S4. Recall that r4(x̃) = Σ4rp̃ for some p̃ ∈ (π4 ◦ E0)−1(x̃) ∩ Ã4. If Λ is
sufficiently small, we have that r4(x̃) ≥ 1

2
Σ4rp. By Lemma 11.24, if c2-slim < c2-slim(Σ4), then

‖π4(x)− x̃‖ = ‖π4 ◦ E3(p)− π4 ◦ E0(p)‖ ≤ ‖E3(p)− E0(p)‖ < c2-slim r(p) < r4(x̃). Hence,

π4(x) ∈ Nr4(S4) = Ŵ4 ⊂ Q4. Therefore, x ∈ Ŵ4 ×Q⊥4 . This proves part (2) of the lemma.

To prove part (3), suppose that x = E3(p). If x′′i > 0, then ζi(p) > 0. The number of
indices i ∈ I1-ridge such that x′′i > 0 is bounded by the multiplicity of the ridge 1-stratum

cover. For the remaining indices j ∈ I1-ridge such that x′′j ≤ 0, the quantity 1 − Φ 1
2
,1

(
x′′j
Rj

)
vanishes near x. Thus, by the chain rule, it suffices to bound the differentials of

Φ0.61∆,0.65∆

(
|x′i|
x′′i

)
·
(

1− Φ 1
2
,1

(
x′′i
Ri

))
, and (11.37)

Φ3.6λpi ,3.7λpi

( |x′iP |
x′′iP

)
·
(

1− Φ 1
2
,1

(
x′′iP
RiP

))
for each i ∈ I1-ridge and its corresponding iP ∈ IP for which x′′i > 0. Both differentials are

non-zero only when
|x′i|
x′′i
≤ 0.65∆,

x′′i
Ri
≥ 1

2
,
|x′iP |
x′′iP
≤ 3.7λpi , and

x′′iP
RiP
≥ 1

2
. In this case, Ri will be

comparable to xr and the estimate (11.29) follows. This proves part (3) of the lemma.

Define Ψ4 : H → H by Ψ4(x) = x if π4(x) /∈ Ŵ4 and

Ψ4(x) = (ψ4(x)P4(π4(x)) + (1− ψ4(x))π4(x), π⊥4 (x)) (11.38)

otherwise. Put E4 = Ψ4 ◦ E3.

Lemma 11.39. Under the constraints, Σ4 < Σ4(Ω4, c1-ridge), Γ4 < Γ4(Ω4, c1-ridge), Ξ4 <
Ξ4(c1-ridge), and c2-slim < c2-slim(c1-ridge), we have:

(1) E4 is smooth.

(2) For all p ∈M ,

‖E4(p)− E0(p)‖ < c1-ridge r(p) and ‖DE4(p)−DE0(p)‖ < c1-ridge. (11.40)

(3) The restriction of π4 ◦ E4 to
⋃
i∈I1-ridge

{|ηi| < 0.6∆, ηiP < 3.5λpi} is a submersion to

W 0
4 .
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Proof. Part (1) of the lemma follows from part (2) of Lemma 11.27.

(2). Given p ∈M , put x = E3(p). We have

‖E4(p)− E3(p)‖ = ‖Ψ4(x)− x‖ = ‖(ψ4(x)(P4(π4(x))− π4(x)), 0)‖ (11.41)

≤ |ψ4(x)| · |P4(π4(x))− π4(x)|.

Now |ψ4(x)| ≤ 1. From [13, Lemma 20.2(1)], |P4(π4(x))−π4(x)| ≤ Ξ4r4(x). From Sublemma
10.70, we can assume that r4(x) ≤ 10rp. If Ξ4 is sufficiently small, then ‖E4(p) − E3(p)‖ <
1
2
c1-ridge r(p).

Next, consider

‖DE4(p)−DE3(p)‖ =
∣∣(Dψ4)x(P4(π4(x))− π4(x)) (11.42)

+ ψ4(x)((DP4)π4(x) ◦D(π4 ◦ E3)p −D(π4 ◦ E3)p)
∣∣

≤ |(Dψ4)x| · |(P4(π4(x))− π4(x))|
+ |ψ4(x)| · |((DP4)π4(x) − πA0

x
) ◦D(π4 ◦ E3)p|

+ |ψ4(x)| · |πA0
x
◦D(π4 ◦ E3)p −D(π4 ◦ E3)p|

≤ |(Dψ4)x| · |(P4(π4(x))− π4(x))|+ |(DP4)π4(x) − πA0
x
| · |D(π4 ◦ E3)p|

+ |πA0
x
◦D(π4 ◦ E3)p −D(π4 ◦ E3)p|.

Equation (11.29) gives a bound on |(Dψ4)x|. [13, Lemma 20.2(1)] gives a bound on
|(P4(π4(x))−π4(x))|. [13, Lemma 20.2(7)] gives a bound on |(DP4)π4(x)−πA0

x
|. Lemma 10.5

gives a bound on |D(π4 ◦ E3)p|. Equation (10.51) gives a bound on |πA0
x
◦ D(π4 ◦ E3)p −

D(π4 ◦ E3)p|. It follows that ‖DE4(p)−DE3(p)‖ < 1
2
c1-ridge.

From Lemma 11.24, if c2-slim is sufficiently small, then ‖E3(p)−E0(p)‖ < 1
2
c1-ridge r(p) and

‖DE3(p)−DE0(p)‖ < 1
2
c1-ridge. It follows that ‖E4(p)− E0(p)‖ < c1-ridge r(p) and ‖DE4(p)−

DE0(p)‖ < c1-ridge. This proves part (2) of the lemma.

(3). The restriction of π4 ◦E4 to
⋃
i∈I1-ridge

{|ηi| < 0.6∆, ηiP < 3.5λpi} equals P4 ◦ (π4 ◦E3).

For p ∈
⋃
i∈I1-ridge

{|ηi| < 0.6∆, ηiP < 3.5λpi}, put x = E3(p). Then

D(P4 ◦ (π4 ◦ E3))p = πA0
x
◦D(π4 ◦ E3)p + ((DP4)π4(x) − πA0

x
) ◦D(π4 ◦ E3)p. (11.43)

Using (10.52) and [13, Lemma 20.2(7)], we have that if Ξ4 is sufficiently small, then
D(P4 ◦ (π4 ◦ E3))p maps onto (TW 0

4 )P4(π4(x)). This proves part (3) of the lemma.

11.6 Adjusting the map near the slim 1-stratum

Recall that Q5 = H0-stratum ⊕ H1-slim and π5 : H → Q5 is an orthogonal projection. We let
Ã5, A5, S̃5, S5, and r5 : S̃5 → (0,∞) be as in Section 10.7.

Thus, by Lemma 10.79, (S̃5, S5, r5) is a (2,Γ5) cloudy 1-manifold. By [13, Lemma 20.2],
there is a 1-manifold W 0

5 ⊂ Q5 so that the conclusion of [13, Lemma 20.2] holds, where
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the parameter ε in [13, Lemma 20.2] is given by Ξ5 = Ξ5(Γ5). In particular, there is a
well-defined nearest point projection

P5 : Nr5(S5) = Ŵ5 → W 0
5 (11.44)

where Nr5 is a variable thickness neighborhood as defined in Section 1.3.

Lemma 11.45. Under the constraint c1-slim < c1-slim, there is a smooth function ψ5 : H →
[0, 1] with the following properties:

(1)

ψ5 ◦ E4 ≡ 1 in
⋃

i∈I1-slim

{|ηi| < 0.6∆} and (11.46)

ψ5 ◦ E4 ≡ 0 outside
⋃

i∈I1-slim

{|ηi| < 0.7∆}.

(2) supp(ψ5) ∩ im(E4) ⊂ Ŵ5 ×Q⊥5 .

(3) There is a constant Ω′5 = Ω′5(M) such that

|(Dψ5)x| < Ω′5x
−1
r (11.47)

for all x ∈ im(E4).

Proof. If the parameter c1-ridge is sufficiently small and ∆ is sufficiently large, then by Lemma
11.39, ‖E4(p) − E0(p)‖ < c1-ridger(p). Hence, E4(p) ∈

⋃
i∈I1-slim

{|ηi| < 0.6∆} implies that
E0(p) ∈

⋃
i∈I1-slim

{|ηi| < 0.61∆}. Also, E4(p) /∈
⋃
i∈I1-slim

{|ηi| < 0.7∆} implies that E0(p) /∈⋃
i∈I1-slim

{|ηi| < 0.69∆}.

Define ψ5 : H → [0, 1] by

ψ5(x) = 1− Φ 1
2
,1

 ∑
{i∈I1-slim, x

′′
i >0}

Φ0.61∆,0.65∆

(
|x′i|
x′′i

)
·
(

1− Φ 1
2
,1

(
x′′i
Ri

)) (11.48)

The rest of the proof is the same as the proof of Lemma 11.27 but without the IP case.

Define Ψ5 : H → H by Ψ5(x) = x if π5(x) /∈ Ŵ5 and

Ψ5(x) = (ψ5(x)P5(π5(x)) + (1− ψ5(x))π5(x), π⊥5 (x)) (11.49)

otherwise. Put E5 = Ψ5 ◦ E4.
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Lemma 11.50. Under the constraints, Σ5 < Σ5(Ω5, c1-slim), Γ5 < Γ5(Ω5, c1-slim), Ξ5 <
Ξ5(c1-slim), and c1-ridge < c1-ridge(c1-slim), we have:

(1) E5 is smooth.

(2) For all p ∈M ,

‖E5(p)− E0(p)‖ < c1-slim r(p) and ‖DE5(p)−DE0(p)‖ < c1-slim. (11.51)

(3) The restriction of π5 ◦ E5 to
⋃
i∈I1-slim

{|ηi| < 0.6∆} is a submersion to W 0
5 .

Proof. The proof is similar to the proof of [13, Lemma 13.34].

11.7 Proof of Proposition 11.1

Note from (11.9), (11.16), (11.23), (11.38), and (11.49) that Ψj+1 can be factored as Ψ
Qj
j+1 × IQ⊥j

for some Ψ
Qj
j+1 : Qj → Qj. Moreover, since Qj ⊂ Qj+1, Ψj+1 can be factored as ΨQk

j+1 × IQ⊥k
for some ΨQk

j+1 : Qk → Qk for k < j. In particular, πk ◦ Ψj+1 = ΨQk
j+1 ◦ πk for j ∈ {1, 2, 3, 4}

and k < j.

Put E = E5, cadjust = c1-slim,

W1 = (Ψ5 ◦Ψ4 ◦Ψ3 ◦Ψ2)(W 0
1 ) ∩

⋃
i∈I3-stratum

{y ∈ H : y′′i > 0.9Ri, |y′i| < 5.5Ri}, (11.52)

W2 = (ΨQ2

5 ◦ΨQ2

4 ◦ΨQ2

3 )(W 0
2 ) ∩

⋃
i∈I2-edge

{
y ∈ Q2 :

y′′i > 0.9Ri, |y′i| < 5.5∆Ri,
yr > 0, yE′ < 5.5∆yr

}
,

W3 = (ΨQ3

5 ◦ΨQ3

4 )(W 0
3 ) ∩

⋃
i∈I2-slim

{y ∈ Q3 : y′′i > 0.9Ri, |y′i| < 5.5 · 105∆Ri},

W4 = ΨQ3

5 (W 0
4 ) ∩

⋃
i∈I1-ridge

{
y ∈ Q4 :

y′′i > 0.9Ri, |y′i| < 0.55∆Ri,
y′′iP > 0.9RiP , y

′
iP
< 3λpiRiP

}
, and

W5 = W 0
5 ∩

⋃
i∈I1-slim

{y ∈ Q5 : y′′i > 0.9Ri, |y′i| < 0.55∆Ri}.

The smoothness of E follows from part (1) of Lemma 11.50. Part (1) of Proposition 11.1
follows from part (2) of Lemma 11.50.

Lemma 11.53. Wi is a ki-manifold.

Proof. The proof is similar to the proof for [13, Lemma 13.46].

By Lemma 11.10 (3), the restriction of E1 to U1 is a submersion from U1 to W 0
1 . From

Lemma 10.8 and equation (11.51), if Γ5 and c1-slim are sufficiently small, then E = Ψ5 ◦Ψ4 ◦
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Ψ3 ◦ Ψ2 ◦ E1 maps U1 to W1 ⊂ (Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ2)(W 0
1 ). To see that it is a submersion,

suppose that |ηi(p)| < 5 for some i ∈ I3-stratum. Put x0 = E0(p), x1 = E1(p), and x = E(p).
Note that x′i = (x1)′i = (x0)′i. From Lemma 10.8 and [13, Lemma 20.2(3)], if Ξ1 is sufficiently
small then we are ensured that (DπH′

i

)x0 ◦ DE0
p maps onto T(x0)′i

H ′i ' R3. By Lemma

11.10, if c3-stratum is sufficiently small, then (DπH′
i

)x1 ◦DE1
p maps onto T(x1)′i

H ′i ' R3. Thus,

(DπH′
i

)x ◦ DEp = (DπH′
i

)x ◦ D(Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ2)x1 ◦ DE1
p = (DπH′

i

)x1 ◦ DE1
p maps onto

Tx′iH
′
i ' R3. Hence, DEp must map TpM onto TxW1. This shows that E is a submersion

near p.

By Lemma 11.17 (3), the restriction of π2 ◦ E2 to U2 is a submersion from U2 to W 0
2 .

Lemma 10.36 and equation (11.51) implies that if Γ2 and c1-slim are sufficiently small,
then π2 ◦ E = π2 ◦ Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ E2 = ΨQ2

5 ◦ ΨQ2

4 ◦ ΨQ2

3 ◦ π2 ◦ E2 maps U2 to W2 ⊂
(ΨQ2

5 ◦ΨQ2

4 ◦ΨQ2

3 )(W 0
2 ). To see that it is a submersion, suppose that |ηi(p)| < 5∆ for some

i ∈ I2-edge and ηE′(p) < 5r(p). Put x0 = E0(p), x2 = E2(p), and x = E(p). Note that
x′i = (x2)′i = (x0)′i. From Lemma 10.36 and [13, Lemma 20.2(3)], if Ξ2 is sufficiently small,
then we are ensured that (DπH′

i

)π2(x0) ◦D(π2 ◦ E0)p maps onto T(π2(x0))′i
H ′i ' R2. By Lemma

11.17, if c2-edge is sufficiently small, then (DπH′
i

)π2(x2)◦D(π2◦E2)p maps onto T(π2(x2))′i
H ′i ' R2.

Thus, (DπH′
i

)π2(x) ◦D(π2 ◦ E)p = (DπH′
i

)π2(x) ◦D(π2 ◦Ψ5 ◦Ψ4 ◦Ψ3)x2 ◦D(E2)p = (DπH′
i

)π2(x) ◦
D(ΨQ2

5 ◦ΨQ2

4 ◦ΨQ2

3 )π2(x2) ◦D(π2 ◦ E2)p = (DπH′
i

)π2(x2) ◦D(π2 ◦ E)2
p maps onto Tπ2(x)′i

H ′i ' R2.

Thus, D(π2 ◦ E)p must map TpM onto Tπ2(x)W2, showing that π2 ◦ E is a submersion near p.

By Lemma 11.24 (3), the restriction of π3 ◦ E3 to U3 is a submersion from U3 to W 0
3 .

Lemma 10.43 and equation (11.51) implies that if Γ3 and c1-slim are sufficiently small then
π3 ◦ E = π3 ◦ Ψ5 ◦ Ψ4 ◦ E3 = ΨQ3

5 ◦ ΨQ3

4 ◦ π3 ◦ E3 maps U3 to W3 ⊂ (ΨQ3

5 ◦ ΨQ3

4 )(W 0
3 ). By a

similar argument to π2 ◦ E2 case, the restriction of π3 ◦ E to U3 is a submersion to W3.

By Lemma 11.39 (3), the restriction of π4 ◦ E4 to U4 is a submersion from U4 to W 0
4 .

Lemma 10.50 and equation (11.51) implies that if Γ4 and c1-slim are sufficiently small then
π4 ◦ E = π4 ◦Ψ5 ◦ E4 = ΨQ4

5 ◦ π4 ◦ E4 maps U4 to W4 ⊂ ΨQ4

5 (W 0
3 ). By a similar argument to

π2 ◦ E2 case, the restriction of π4 ◦ E to U4 is a submersion to W4.

Finally, by lemma 11.50 (3), the restriction of π5 ◦ E = π5 ◦ E5 to U5 is a submersion to
W5 = W 0

5 . This proves Proposition 11.1.
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12

Extracting a good decomposition of M

In this chapter we will use the map E to decompose M into fibered domains which are
compatible along the intersections. The main result of this chapter is Proposition 12.1. The
rest of the chapter is the proof of the proposition.

Proposition 12.1. There is a decomposition

M = M0-stratum ∪M1-slim ∪M1-ridge ∪M2-slim ∪M2-edge ∪M3-stratum (12.2)

into compact domains with disjoint interiors, where each connected component of M1-slim,
M1-ridge, M2-slim, M2-edge, and M3-stratum may be endowed with a fibration structure, such
that:

(1) M0-stratum and M1-slim are domains with smooth boundary, while M1-ridge, M2-slim,
M2-edge, and M3-stratum are smooth manifolds with corners, each point of which has
a neighborhood diffeomorphic to R4−k × [0,∞)k for some k ≤ 3.

(2) Connected components of M0-stratum are diffeomorphic to a closed Riemannian 4-manifold
which admits a metric of nonnegative sectional curvature or diffeomorphic to D4,
S1 × D3, S2 ×ω D2, (S2 ×ω D2)/Z2 for ω ∈ Z, T 2 × D2, T 2 ×Z2 D

2, (S2×̃S1)×̃I,
(RP 2×̃S1)×̃I, or Bi×̃I for i ∈ {1, 2, 3, 4}.

(3) The components of M1-slim have a fibration with fibers diffeomorphic to S3/Γ (where Γ
is a finite subgroup of Isom+(S3) = SO4 which acts freely on S3), T 3/Γ (where Γ is a
finite subgroup of Isom+(T 3) which acts freely on T 3), S1 × S2, or RP 3#RP 3.

(4) The components of M1-ridge have a fibration with fibers diffeomorphic to D3, S1 ×D2,
S2 ×Z2 I, or T 2 ×Z2 I.

(5) The components of M2-slim have a fibration with fibers diffeomorphic to S2 or T 2.

(6) The components of M2-edge have a fibration with fibers diffeomorphic to D2.
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(7) M3-stratum is a smooth domain with corners with a smooth S1-fibration. The S1-fibration
is compatible with any corners.

(8) Each fiber of the fibration M1-ridge → B1-ridge, lying over a boundary point of the base
B1-ridge, is contained in ∂M0-stratum or ∂M1-slim.

(9) Each fiber of the fibration M2-slim → B2-slim lying over a boundary point of the base
B2-slim, is contained in ∂M0-stratum, ∂M1-slim, a fiber of ∂M1-ridge induced by the fibration
M1-ridge → B1-ridge, or M2-edge ∪ M3-stratum. In the ∂M1-ridge case, if a fiber of the
fibration M2-slim → B2-slim is contained in a fiber over an interior point of B1-ridge then
they coincide.

(10) Each fiber of the fibration M2-edge → B2-edge, lying over a boundary point of the base
B2-edge, is contained in ∂M0-stratum, ∂M1-slim, a fiber of ∂M1-ridge induced by the fibration
M1-ridge → B1-ridge, or a fiber of ∂M2-slim induced by the fibration M2-slim → B2-slim.

(11) The part of ∂M1-ridge that carries an induced 2-dimensional fibration over interior
points of the base B1-ridge is contained in M2-slim ∪M2-edge ∪M3-stratum.

(12) The part of ∂M2-edge that carries an induced S1-fibration over interior points of the base
B2-edge is contained in ∂M3-stratum, and the S1-fibration induced from M2-edge agrees
with the one inherited from M3-stratum.

12.1 The definition of M0-stratum

For each i ∈ I0-stratum, put

M0-stratum
i = B(pi, 0.35Ri) ∪ E−1

{
x ∈ H : x′′i ≥ 0.9Ri,

x′i
x′′i
≤ 0.4

}
. (12.3)

Lemma 12.4. Under the constraints ς0-stratum < ς0-stratum and cadjust < cadjust, we have that
{M0-stratum

i }i∈I0-stratum is a disjoint collection and each M0-stratum
i is a compact manifold with

boundary, which is diffeomorphic to one of the possibilities in Proposition 12.1 (2).

Proof. The proof is similar to the proof of [13, Lemma 14.4].

We let M0-stratum =
⋃
i∈I0-stratum

M0-stratum
i , and put M1 = M \ int(M0-stratum). Thus

M0-stratum and M1 are smooth compact manifolds with boundary.
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12.2 The definition of M1-slim

We first truncate W5. Put

W ′
5 = W5 ∩

⋃
i∈I1-slim

{
x ∈ Q5 : x′′i ≥ 0.9Ri,

∣∣∣∣ x′ix′′i
∣∣∣∣ ≤ 0.4∆

}
(12.5)

and define U ′5 = (π5 ◦ E)−1(W ′
5).

Lemma 12.6. Under the constraints ς1-slim < ς1-slim(∆) and cadjust < cadjust, the following
holds.

(1)
⋃
i∈I1-slim

{|ηi| ≤ 0.35∆} ⊂ U ′5 ⊂ U5, where U5 is as in Proposition 11.1.

(2) The restriction of π5 ◦ E to U ′5 gives a proper submersion to W ′
5. In particular, it is a

fibration.

(3) The fibers of π5 ◦E : U ′5 → W ′
5 are diffeomorphic to an orientable compact Riemannian

3-manifold with nonnegative sectional curvature.

(4) M1 intersects U ′5 in a submanifold with boundary which is a union of fibers of π5 ◦ E :
U ′5 → W ′

5.

Proof. For a given i ∈ I1-slim, suppose that p ∈ M satisfies |ηi(p)| ≤ 0.35∆. Putting y =

(π5 ◦ E0)(p) ∈ Q5, we have y′′i = Ri and
∣∣∣ y′iy′′i ∣∣∣ ≤ 0.35∆. Put x = (π5 ◦ E)(p) ∈ Q5. If cadjust

is sufficiently small, then we have that x′′i > 0.9Ri and
∣∣∣ x′ix′′i ∣∣∣ < 0.4∆. As p ∈ U5, Proposition

11.1 implies that x ∈ W5. Hence,
⋃
i∈I1-slim

{|ηi| ≤ 0.35∆} ⊂ U ′5.

Now suppose that p ∈ U ′5. Putting x = (π5 ◦ E)(p), we have that for some i ∈ I1-slim,

x′′i > 0.9Ri and
∣∣∣ x′ix′′i ∣∣∣ < 0.4∆. Put y = (π5 ◦ E0)(p). If cadjust is sufficiently small, then

y′′i ≥ 0.8Ri and
∣∣∣ y′iy′′i ∣∣∣ ≤ 0.45∆. Hence, |ηi(p)| ≤ 0.45∆. This shows that U ′5 ⊂ U5, proving

part (1) of the lemma.

By Proposition 11.1, π5◦E is a submersion from U5 to W5. Hence it restricts to a surjective
submersion on U ′5. Suppose that K is a compact subset of W ′

5. Then (π5 ◦ E)−1(K) is a
closed subset of M which is contained in U5 = {|ηi| ≤ 0.5∆}. As {pi}i∈I1-slim

are in the
slim 1-stratum, it follows from the definition of adapted coordinates that {|ηi| ≤ 0.5∆} is
a compact subset of M . Thus the restriction of π5 ◦ E to U ′5 is a proper submersion. This
proves part (2) of the lemma.

To prove part (3) of the lemma, given x ∈ W ′
5, suppose that p ∈ U ′5 satisfies (π5◦E)(p) = x.

Choose i ∈ I1-slim so that |ηi(p)| ≤ 0.45∆. If cadjust is sufficiently small, then by looking at
the components in Hi, one sees that for any p′ ∈ U ′5 satisfying (π5 ◦ E)(p′) = x, we have
p′ ∈ {|ηi| < 0.5∆}. Thus, to determine the topology of the fibers, it suffices to just consider
the restriction of π5 ◦ E to {|ηi| < 0.5∆}.
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Let πH′i : Q5 → H ′i be an orthogonal projection and put X = πH′i(x) ∈ H ′i. Since the
restriction of πH′i ◦ π5 ◦ E0 to {|ηi| < 0.5∆} equals ηi, we have that πH′i ◦ π5 ◦ E0 is transverse
there to X. By Lemma 8.8, {|ηi| < 0.5∆} ∩ (πH′i ◦ π5 ◦ E0)−1(X) is diffeomorphic to an
orientable compact Riemannian 3-manifold with nonnegative sectional curvature.

Consider the restriction of (πH′i ◦ π5 ◦ E) to {|ηi| < 0.5∆}. Proposition 11.1 and [13,
Lemma 21.3] imply that if cadjust is sufficiently small, then the fiber {|ηi| < 0.5∆} ∩
(πH′i ◦ π5 ◦ E)−1(X) is diffeomorphic an orientable compact Riemannian 3-manifold with non-
negative sectional curvature. In particular, it is connected. Now, (πH′i ◦ π5 ◦ E)−1(X) is the
preimage, under π5 ◦ E : U ′5 → W ′

5, of the preimage of X under πH′i : W ′
5 → H ′i. From

connectedness of the fiber, the preimage of X under πH′i : W ′
5 → H ′i must just be x. Hence

(π5 ◦ E)−1(x) is diffeomorphic to an orientable compact Riemannian 3-manifold with non-
negative sectional curvature. This proves part (3) of the lemma.

To prove part (4) of the lemma, let p ∈ M1 ∩ U ′5. We only need to check when p ∈
∂M0-stratum. Suppose that p ∈ ∂M0-stratum

j for some j ∈ I0-stratum. If x = E(p) then x′′j ≥ 0.9Rj

and x′j = 0.4x′′j . Let q ∈ U ′5 be a point in the same fiber of π5 ◦ E : U ′5 → W ′
5 as p and put

y = E(q). As π5(x) = π5(y), πHj(x) = πHj(y). Hence, y′′j ≥ 0.9Rj and y′j = 0.4y′′j . In
particular, q ∈ ∂M0-stratum

j . Thus, the whole fiber (π5 ◦ E)−1(x) is in ∂M0-stratum
j .

Let W ′′
5 ⊂ W ′

5 be a compact 1-dimensional manifold with boundary such that
(π5 ◦ E)−1(W ′′

5 ) contains
⋃
i∈I1-slim

{|ηi| < 0.35∆} and put M1-slim = M1∩ (π5 ◦E)−1(W ′′
5 ). We

endow M1-slim with the fibration induced by π5 ◦ E .

Put M2 = M1 \ int(M1-slim).

12.3 The definition of M1-ridge

We first truncate W4. Put

W ′
4 = W4 ∩

⋃
i∈I1-ridge

{
x ∈ Q4 : x′′i ≥ 0.9Ri,

∣∣∣∣ x′ix′′i
∣∣∣∣ ≤ 0.4∆, x′′iP ≥ 0.9RiP ,

∣∣∣∣x′iPx′′iP
∣∣∣∣ ≤ 2.5λpi

}
(12.7)

and define U ′4 = (π4 ◦ E)−1(W ′
4).

Lemma 12.8. Under the constraints ς1-ridge < ς1-ridge(∆) and cadjust < cadjust, the following
holds.

(1)
⋃
i∈I1-ridge

{|ηi| ≤ 0.35∆, |ηiP | ≤ 2λpi} ⊂ U ′4 ⊂ U4, where U4 is as in Proposition 11.1.

(2) The restriction of π4 ◦ E to U ′4 gives a proper submersion to W ′
4. In particular, it is a

fibration.

(3) The fibers of π4 ◦E : U ′4 → W ′
4 are diffeomorphic to D3, S1×D2, S2×Z2 I, or T 2×Z2 I.
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(4) M2 intersects U ′4 in a submanifold with corners which is a union of fibers of π4 ◦ E :
U ′4 → W ′

4.

Proof. For a given i ∈ I1-ridge, suppose that p ∈M satisfies |ηi(p)| ≤ 0.35∆ and |ηiP | ≤ 2λpi .

Putting y = (π4 ◦ E0)(p) ∈ Q4, we have y′′i = Ri,
∣∣∣ y′iy′′i ∣∣∣ ≤ 0.35∆, y′′iP = RiP , and

∣∣∣y′iPy′′iP
∣∣∣ ≤ 2λpi .

Put x = (π4 ◦ E)(p) ∈ Q4. If cadjust is sufficiently small, then since λpi ≥ Υ1 > ∆ � 1, we

have that x′′i > 0.9Ri,
∣∣∣ x′ix′′i ∣∣∣ < 0.4∆, x′′iP > 0.9RiP , and

∣∣∣x′iPx′′iP
∣∣∣ < 2.5λpi . As p ∈ U4, Proposition

11.1 implies that x ∈ W4. Hence,
⋃
i∈I1-ridge

{|ηi| ≤ 0.35∆, |ηiP | ≤ 2λpi} ⊂ U ′4.

Now suppose that p ∈ U ′4. Putting x = (π4 ◦ E)(p), we have that for some i ∈ I1-ridge,

x′′i > 0.9Ri,
∣∣∣ x′ix′′i ∣∣∣ < 0.4∆, x′′iP > 0.9RiP , and

∣∣∣x′iPx′′iP
∣∣∣ < 2.5λpi . Put y = (π4 ◦ E0)(p). If

cadjust is sufficiently small, then
∣∣∣ y′iy′′i ∣∣∣ ≤ 0.45∆, y′′iP ≥ 0.8RiP , and

∣∣∣y′iPy′′iP
∣∣∣ ≤ 2.7λpi . Hence,

|ηi(p)| ≤ 0.45∆ and |ηiP (p)| ≤ 2.7λpi . This shows that U ′4 ⊂ U4, proving part (1) of the
lemma.

By Proposition 11.1, π4◦E is a submersion from U4 to W4. Hence it restricts to a surjective
submersion on U ′4. Suppose that K is a compact subset of W ′

4. Then (π4◦E)−1(K) is a closed
subset of M which is contained in U4 = {|ηi| ≤ 0.5∆, |ηiP | ≤ 3λpi}. As {pi}i∈I1-ridge

are in the
ridge 1-stratum, it follows from the definition of adapted coordinates that {|ηi| ≤ 0.5∆} is a
compact subset of M . It also follows from the definition of approximated distance function
ψpi that {|ηiP | ≤ 3λpi} is a compact subset of M . Hence {|ηi| ≤ 0.5∆, |ηiP | ≤ 3λpi} is a
compact subset of M . Thus the restriction of π4 ◦ E to U ′4 is a proper submersion. This
proves part (2) of the lemma.

To prove part (3) of the lemma, given x ∈ W ′
4, suppose that p ∈ U ′4 satisfies (π4◦E)(p) = x.

Choose i ∈ I1-ridge so that |ηi(p)| ≤ 0.45∆ and |ηiP (p)| ≤ 2.7λpi . If cadjust is sufficiently small,
then by looking at the components in Hi and HiP , one sees that for any p′ ∈ U ′4 satisfying
(π4 ◦ E)(p′) = x, we have p′ ∈ {|ηi| < 0.5∆, |ηiP | < 3λpi}. Thus, to determine the topology
of the fiber, it suffices to just consider the restriction of π4 ◦ E to {|ηi| < 0.5∆, |ηiP | < 3λpi}.

Let πH′i : Q4 → H ′i be an orthogonal projection and put X = πH′i(x) ∈ H ′i. Since the
restriction of πH′i ◦ π4 ◦ E0 to {|ηi| < 0.5∆, |ηiP | < 3λpi} equals ηi, we have that πH′i ◦ π4 ◦ E0

is transverse there to X. By Lemma 8.8, {|ηi| < 0.5∆, |ηiP | < 3λpi} ∩ (πH′i ◦ π4 ◦ E0)−1(X)
is diffeomorphic to D3, S1 ×D2, S2 ×Z2 I, or T 2 ×Z2 I.

Consider the restriction of (πH′i ◦ π4 ◦ E) to {|ηi| < 0.5∆, |ηiP | < 3λpi}. Proposi-
tion 11.1 and [13, Lemma 21.3] imply that if cadjust is sufficiently small then the fiber
{|ηi| < 0.5∆, |ηiP | < 3λpi} ∩ (πH′i ◦ π4 ◦ E)−1(X) is diffeomorphic to D3, S1 ×D2, S2 ×Z2 I,
or T 2 ×Z2 I. In particular, it is connected. Now, (πH′i ◦ π4 ◦ E)−1(X) is the preimage, under
π4 ◦ E : U ′4 → W ′

4, of the preimage of X under πH′i : W ′
4 → H ′i. From connectedness of

the fiber, the preimage of X under πH′i : W ′
4 → H ′i must just be x. Hence (π4 ◦ E)−1(x) is

diffeomorphic to D3, S1 ×D2, S2 ×Z2 I, or T 2 ×Z2 I. This proves part (3) of the lemma.
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To prove part (4) of the lemma, let p ∈M2∩U ′4. We only need to check when p ∈ ∂M1-slim

or p ∈ ∂M0-stratum.

Suppose first that p ∈ ∂M0-stratum
j for some j ∈ I0-stratum. If x = E(p) then x′′j ≥ 0.9Rj

and x′j = 0.4x′′j . Let q ∈ U ′4 be a point in the same fiber of π4 ◦ E : U ′4 → W ′
4 as p and

put y = E(q). As π4(x) = π4(y), πHj(x) = πHj(y). Hence, y′′j ≥ 0.9Rj and y′j = 0.4y′′j . In
particular, q ∈ ∂M0-stratum

j . Thus, the whole fiber (π4 ◦ E)−1(x) is in ∂M0-stratum
j .

Next, suppose that p ∈ ∂M1-slim. Let x = E(p) and let q ∈ U ′4 be a point in the same fiber
of π4 ◦ E : U ′4 → W ′

4 as p and put y = E(q) ∈ Q4. π4(x) = π4(y) implies that π5(x) = π5(y).
Hence, π5(y) ∈ W ′′

5 . Since M1-slim is endowed with the fibration induced by π5 ◦ E , q is in
the same fiber of π5 ◦ E as p. Therefore, the fiber (π4 ◦ E)−1(x) is contained in a single fiber
of the fibration of ∂M1-slim. This proves part (4) of the lemma.

Let W ′′
4 be a compact 1-dimensional manifold with corners such that (π4 ◦ E)−1(W ′′

4 )
contains

⋃
i∈I1-ridge

{|ηi| ≤ 0.35∆, |ηiP | ≤ 2λpi}, and put M1-ridge = M2 ∩ (π4 ◦ E)−1(W ′′
4 ). We

endow M1-ridge with the fibration induced by π4 ◦ E .

Put M3 = M2 \ int(M1-ridge).

12.4 The definition of M2-slim

We first truncate W3. Put

W ′
3 = W3 ∩

⋃
i∈I2-slim

{
x ∈ Q3 : x′′i ≥ 0.9Ri,

∣∣∣∣ x′ix′′i
∣∣∣∣ ≤ 4 · 105∆

}
(12.9)

and define U ′3 = (π3 ◦ E)−1(W ′
3).

Lemma 12.10. Under the constraints ς2-slim < ς2-slim(∆) and cadjust < cadjust, the following
holds.

(1)
⋃
i∈I2-slim

{|ηi| ≤ 3.5 · 105∆} ⊂ U ′3 ⊂ U3, where U3 is as in Proposition 11.1.

(2) The restriction of π3 ◦ E to U ′3 gives a proper submersion to W ′
3. In particular, it is a

fibration.

(3) The fibers of π3 ◦ E : U ′3 → W ′
3 are diffeomorphic to S2 or T 2.

(4) M3 intersects U ′3 in a submanifold with corners which is a union of fibers of π3 ◦ E :
U ′3 → W ′

3.

Proof. The proofs of parts (1), (2), and (3) of the lemma are similar to the proof of [13,
Lemma 14.7].

To prove part (4) of the lemma, let p ∈M3∩U ′3. We only need to check when p ∈ ∂M1-ridge,
p ∈ ∂M1-slim, or p ∈ ∂M0-stratum. Let x = E(p). As in the proof of Lemma 12.8 (4), the
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fiber (π3 ◦ E)−1(x) is contained in a single fiber of the fibrations of ∂M1-ridge, ∂M1-slim, or
∂M0-stratum. Additionally, consider that each fiber of an induced fibration M1-ridge → B1-ridge

on ∂M1-ridge, lying over an interior point of the base, is a connected compact 2-dimensional
manifold. Therefore, in the case that (π3 ◦ E)−1(x) is contained in a fiber of the fibration of
∂M1-ridge over an interior point of the base B1-ridge, the two fibers coincide.

Let W ′′
3 be a compact 2-dimensional manifold with corners such that (π3 ◦ E)−1(W ′′

3 )
contains

⋃
i∈I2-slim

{|ηi| ≤ 3.5 · 105∆}, and put M2-slim = M3 ∩ (π3 ◦ E)−1(W ′′
3 ). We endow

M2-slim with the fibration induced by π3 ◦ E .

Put M4 = M3 \ int(M2-slim).

12.5 The definition of M2-edge

We first truncate W2. Put

W ′
2 = W2 ∩

⋃
i∈I2-edge

{
x ∈ Q2 : x′′i ≥ 0.9Ri,

∣∣∣∣ x′ix′′i
∣∣∣∣ ≤ 4∆

}
(12.11)

and

U ′2 = (π2 ◦ E)−1(W ′
2) ∩

(
{ηE′ ≤ 0.35∆} ∪ E−1

{
x ∈ H : xr > 0,

xE′

xr
≤ 4∆

})
. (12.12)

Lemma 12.13. Under the constraints Λ < Λ(∆), ς2-edge < ς2-edge(∆), and cadjust < cadjust,
the following holds.

(1)
⋃
i∈I2-edge

{|ηi| ≤ 3.5∆, |ηE′ | ≤ 3.5∆} ⊂ U ′2 ⊂ U2, where U2 is as in Proposition 11.1.

(2) The restriction of π2 ◦ E to U ′2 gives a proper submersion to W ′
2. In particular, it is a

fibration.

(3) The fibers of π2 ◦ E : U ′2 → W ′
2 are diffeomorphic to D2.

(4) M4 intersects U ′2 in a submanifold with corners which is a union of fibers of π2 ◦ E :
U ′2 → W ′

2.

Proof. The proof of the lemma is similar to the proof of [13, Lemma 14.10] and the proof of
Lemma 12.8 (4).

Lemma 12.14. Under the constraint cadjust < cadjust, M4 ∩ U ′2 is compact.

Proof. The proof of the lemma is similar to the proof of [13, Lemma 14.11].

We put M2-edge = M4 ∩ U ′2 and W ′′
2 = (π2 ◦ E)(M2-edge). We endow M2-edge with the

fibration induced by π2 ◦ E .

Put M5 = M4 \ int(M2-edge).
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12.6 The definition of M3-stratum

We first truncate W1. Put

W ′
1 = W1 ∩

⋃
i∈I3-stratum

{
x ∈ H : x′′i ≥ 0.9Ri,

∣∣∣∣ x′ix′′i
∣∣∣∣ ≤ 4

}
(12.15)

and define U ′1 = E−1(W ′
1).

Lemma 12.16. Under the constraints ς3-stratum < ς3-stratum and cadjust < cadjust, the following
holds.

(1)
⋃
i∈I3-stratum

{|ηi| ≤ 3.5} ⊂ U ′1 ⊂ U1, where U1 is as in Proposition 11.1.

(2) The restriction of E to U ′1 gives a proper submersion to W ′
1. In particular, it is a

fibration.

(3) The fibers of E : U ′1 → W ′
1 are diffeomorphic to S1.

(4) M5 intersects U ′1 in a submanifold with corners which is a union of fibers of E
∣∣
U ′1

:

U ′1 → W ′
1.

Proof. The proof of the lemma is similar to the proof of [13, Lemma 14.7] and the proof of
Lemma 12.8 (4).

We put M3-stratum = M5 and endow it with the fibration of E
∣∣
M3-stratum : M3-stratum →

E(M3-stratum).

12.7 Proof of Proposition 12.1

Proposition 12.1 now follows from combining the results in this chapter.

Parts (1) to (7) of Proposition 12.1 follow directly from Lemma 12.4, Lemma 12.6, Lemma
12.8, Lemma 12.10, Lemma 12.13, and Lemma 12.16.

Suppose that part (10) is false. Then, there exists a fiber F ∼= D2 of M2-edge that is
disjoint from M0-stratum ∪M1-slim ∪M1-ridge ∪M2-slim. From the proof of Lemma 12.16 (4),
each S1-fiber of M3-stratum is contained in a single fiber of M2-edge. Therefore, F must be
the total space of S1-fibers. This is a contradiction because D2 cannot be the total space of
S1-fibers.

Part (11) of Proposition 12.1 follows from the proof of Lemma 12.8 (4) and from the fact
that M0-stratum, M1-slim, and M1-ridge have disjoint interiors. Part (9) follows from similar
arguments as in the proof of Lemma 12.10 (4). Part (12) follows from similar arguments as
in the proofs of Lemma 12.13 and Lemma 12.16. Part (8) follows from Lemma 12.8 (4) and
from part (9).
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13

Decomposing M into fiber bundle components

It follows from Proposition 12.1 that M can be decomposed into domains with disjoint
interiors, where each domain is a compact 4-manifold with corners which is also a fiber
bundle, with compatibility of fibers along the overlaps. In this chapter, we give a classification
of the domains as fiber bundle components and describe the decompositions of fibers along
the overlaps.

13.1 Fiber bundle components without boundary

If M contains a fiber bundle component without boundary, then M is a closed Riemannian
4-manifold which admits a metric of nonnegative sectional curvature or M is diffeomorphic
to one of the following fiber bundles:

–

S1 M

X3


–

T 2 M

Σ2


–

S2 M

Σ2


–

S3/Γ, T 3/Γ, S2 × S1,RP 3#RP 3 M

S1


where X3 is a closed 3-manifold and Σ2 is a closed 2-manifold.

From now on in this chapter, we assume that M does not contain a fiber bundle compo-
nent without boundary.
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13.2 Fiber bundle components with boundary

The boundary of a fiber bundle component

Fi Mi

Bi

 is

∂Fi Ni1

Bi

∪
Fi Ni2

∂Bi


where ∂Fi or ∂Bi may be empty.

We denote the boundary of a fiber bundle component Mi with Ni. The classification of
fiber bundle components with boundary (based on the dimension of fibers) is given in the
following table. See Section 2.4 for details about the topology of Riemannian 4-manifolds.

Table 13.1: Fiber bundle components with boundary

Dim Fiber Bundle Component Boundary

4



D4, S1 ×D3, S2 ×ω D2,
(S2 ×ω D2)/Z2, ω ∈ Z,
(RP 2 × S1)×̃I,
(S2×̃S1)×̃I,
T 2 ×D2, T 2 ×Z2 D

2,
βk×̃I, k ∈ {1, 2, 3, 4}

Mi

pt




S3, S2 × S1,RP 3#RP 3,
L(|ω|, 1), L(|ω|, 1)/Z2,
T 3,G2

Ni

pt



3


S3/Γ, T 3/Γ,
S2 × S1,RP 3#RP 3 Mi

(I, ∂I)


 S3/Γ, T 3/Γ,

S2 × S1,RP 3#RP 3 Ni

∂I


D3, S2 ×Z2 I Mi

S1

 S2 Ni

S1


S1 ×D2, T 2 ×Z2 I Mi

S1

 T 2 Ni

S1


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Dim Fiber Bundle Component Boundary

3

D3, S2 ×Z2 I Mi

(I, ∂I)


S2 Ni1

(I, ∂I)

 ∪
D3, S2 ×Z2 I Ni2

∂I


S1 ×D2, T 2 ×Z2 I Mi

(I, ∂I)


T 2 Ni1

(I, ∂I)

 ∪
 S1 ×D2,

T 2 ×Z2 I
Ni2

∂I



2

S2, T 2 Mi

(Σ2, ∂Σ2)


S2, T 2 Ni

∂Σ2


D2 Mi

Σ2

 S1 Ni

Σ2


D2 Mi

(Σ2, ∂Σ2)


S1 Ni1

(Σ2, ∂Σ2)

 ∪
D2 Ni2

∂Σ2



1

S1 Mi

(X3, ∂X3)

 S1 Ni

∂X3



13.3 Compatibility of fibers

It follows from Proposition 12.1 that

M =
N⋃
i=1

Fi Mi

Bi

 (13.1)

where

Fi Mi

Bi

 is a fiber bundle component given in Table 13.1. Additionally, the fiber

bundle components have disjoint interiors. They intersect along the boundaries so that the



Chapter 13 97

fibers along the overlaps are compatible. That is, if two fibers intersect, then either one of
them is contained in the other or they coincide. Consequently, a boundary fiber (Fi over
a boundary point of Bi or ∂Fi over an interior point of Bi) is either contained in another
boundary fiber or is the union of other boundary fibers.

In the following sections, we explicitly describe the decomposition of fibers along the
overlaps as the unions of other types of fibers. This information will be used in the next
chapter to glue different fiber bundle components of M into building blocks. We note that
not all combinatorial configurations are feasible due to topological obstructions.

13.4 Notation

For simplicity, we define the following notation for this chapter and the following chapters.

We will denote a fiber bundle component



D4, S1 ×D3, S2 ×ω D2,
(S2 ×ω D2)/Z2, ω ∈ Z,
(RP 2 × S1)×̃I, (S2×̃S1)×̃I,
T 2 ×D2, T 2 ×Z2 D

2,
βk×̃I, k ∈ {1, 2, 3, 4}

Mi

pt


by

D4, . . . Mi

pt

 and denote its boundary by

S3, . . . Ni

pt

.

We will denote a fiber bundle component


S3/Γ, T 3/Γ,
S2 × S1,RP 3#RP 3 Mi

(I, ∂I)


by

S3/Γ, . . . Mi

(I, ∂I)

 and denote its boundary by

S3/Γ, . . . Ni

∂I

.

Let X and Y be topological spaces with boundary. We denote by X ∪∂ Y the union
X ∪ Y with the condition that X ∩ Y = ∂X ∩ ∂Y .

We denote by X t Y the union X ∪ Y with an emphasis that X ∩ Y = ∅. Most of the
time, X and Y will be subsets of M . The topology on X t Y will be the topology induced
from M .
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13.5 Fiber bundle components with fibers S2 or T 2

We start with the decompositions of fibers of components

S2, T 2 Mi

(Σ2, ∂Σ2)

.

Lemma 13.2. Let Mi be a fiber bundle component

S2 Mi

(Σ2, ∂Σ2)

. Its boundary isS2 Ni

∂Σ2

. Let F ∼= S2 be a fiber of

S2 Ni

∂Σ2

. Then, the following holds.

(1) If F ∩

D4, . . . Mj

pt

 6= ∅, then F ⊂

S3, . . . Nj

pt

.

(2) If F ∩

S3/Γ, . . . Mj

(I, ∂I)

 6= ∅, then F is contained in a connected component of

S3/Γ, . . . Nj

∂I

.

(3) If F∩

D3, S2 ×Z2 I Mj

S1 or (I, ∂I)

 6= ∅, then F is a fiber of

S2 Nj

S1 or (I, ∂I)

.

(4) Otherwise, F = A1∪∂B∪∂A2 where Ak ∼= D2, k ∈ {1, 2}, is a fiber of

D2 Njk

∂Σ2

,

for some jk, and B ∼= S1×I is a subbundle of

S1 Nj

∂X3

, for some j. The unions

are so that each ∂Ak, k ∈ {1, 2}, is identified with a boundary component of B.
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Figure 13.1: A decomposition of F in case (4). F = A1 ∪∂ B ∪∂ A2.

Proof. Proposition 12.1 directly implies (1), (2), and (3). Moreover, F is disjoint fromT 2 Mj

(Σ2, ∂Σ2)

,

S1 ×D2, T 2 ×Z2 I Mj

S1 or (I, ∂I)

, and

D2 Mj

Σ2

 components.

Hence, if F is also disjoint from

D4, . . . Mj

pt

,

S3/Γ, . . . Mj

(I, ∂I)

,

D3, S2 ×Z2 I Mj

S1

, and

D3, S2 ×Z2 I Mj

(I, ∂I)

 components, then

F ⊂

⊔
j

D2 Nj

∂Σ2

 ∪∂
⊔

j

S1 Nj

∂X3

. We put A = F ∩

⊔
j

D2 Nj

∂Σ2


and B = F ∩

⊔
j

S1 Nj

∂X3

 .
It follows that A ∼=

⊔
j D

2 and B = F−A is the total space of S1-fibers. Hence, the Euler

characteristic χ(B) = 0. Since F ∼= S2, B ∼= S2 −
⊔
j D

2 must be a cylinder. Therefore,

F = A1 ∪∂ B ∪∂ A2 where Ak ∼= D2, k ∈ {1, 2}, is a fiber of

D2 Njk

∂Σ2

, for some jk, and

B ∼= S1 × I is a subbundle of

S1 Nj

∂X3

, for some j.

Lemma 13.3. Let Mi be a fiber bundle component

T 2 Mi

(Σ2, ∂Σ2)

. Its boundary isT 2 Ni

∂Σ2

. Let F ∼= T 2 be a fiber of

T 2 Ni

∂Σ2

. Then, the following holds.
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(1) If F ∩

D4, . . . Mj

pt

 6= ∅, then F ⊂

S3, . . . Nj

pt

.

(2) If F ∩

S3/Γ, . . . Mj

(I, ∂I)

 6= ∅, then F is contained in a connected component of

S3/Γ, . . . Nj

∂I

.

(3) If F ∩

S1 ×D2, T 2 ×Z2 I Mj

S1 or (I, ∂I)

 6= ∅, then F is a fiber of

T 2 Nj

S1 or (I, ∂I)

.

(4) Otherwise, F ⊂

S1 Nj

∂X3

 for some j. In particular, F is the total space of

S1-fibers and F is disjoint from any

D2 Mj

(Σ2, ∂Σ2)

 component.

Proof. Proposition 12.1 directly implies (1), (2), and (3). Moreover, F is disjoint fromS2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

S1 or (I, ∂I)

, and

D2 Mj

Σ2

 components.

Hence, if F is also disjoint from

D4, . . . Mj

pt

,

S3/Γ, . . . Mj

(I, ∂I)

,

S1 ×D2, T 2 ×Z2 I Mj

S1

, and

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components, then

F ⊂

⊔
j

D2 Nj

∂Σ2

 ∪
⊔

j

S1 Nj

∂X3

. We put A = F ∩

⊔
j

D2 Nj

∂Σ2


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and B = F ∩

⊔
j

S1 Nj

∂X3

.

It follows that A ∼=
⊔m
j=1D

2 is disjoint union of m copies of D2 and B = F − A is the

total space of S1-fibers. Hence, the Euler characteristic χ(B) = 0. Since F ∼= T 2, this
is not possible unless m = 0. Therefore, F = B is the total space of S1-fibers and F is

disjoint from any

D2 Mj

(Σ2, ∂Σ2)

 component. By connectedness, F ⊂

S1 Nj

∂X3

,

for some j.

13.6 Fiber bundle components with fibers D3, S2 ×Z2 I, S
1 ×D2, or T 2 ×Z2 I

In this section, we describe the decompositions of fibers of components

D3, S2 ×Z2 I Mi

S1

,D3, S2 ×Z2 I Mi

(I, ∂I)

,

S1 ×D2, T 2 ×Z2 I Mi

S1

, and

S1 ×D2, T 2 ×Z2 I Mi

(I, ∂I)

.

Lemma 13.4. Let Mi be a fiber bundle component

D3, S2 ×Z2 I Mi

S1 or (I, ∂I)

.

Its boundary is

S2 Ni

S1

 or

S2 Ni1

(I, ∂I)

 ∪
D3, S2 ×Z2 I Ni2

∂I

. Let F ∼= D3

or (S2 ×Z2 I) be a fiber of

D3, S2 ×Z2 I Mi

S1 or (I, ∂I)

. Then, the following holds.

(1) If F is a fiber over an interior point of S1 or I, then F is disjoint from

D4, . . . Mj

pt

,S3/Γ, . . . Mj

(I, ∂I)

,

T 2 Mj

(Σ2, ∂Σ2)

,

S1 ×D2, T 2 ×Z2 I Mj

S1 or (I, ∂I)

,

and

D2 Mj

Σ2

 components.
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(2) If F is a fiber of

D3, S2 ×Z2 I Ni2

∂I

, then F is disjoint from

T 2 Mj

(Σ2, ∂Σ2)

,

S1 ×D2, T 2 ×Z2 I Mj

S1 or (I, ∂I)

, and

D2 Mj

Σ2

 components.

Additionally, F is contained in a boundary component of

D4, . . . Mj

pt

 orS3/Γ, . . . Mj

(I, ∂I)

, for some j.

(3) If F ∩

S2 Mj

(Σ2, ∂Σ2)

 6= ∅, then F ∩Mj = ∂F ∩ ∂Mj and ∂F ∼= S2 is a fiber of

S2 Nj

∂Σ2

.

(4) Otherwise, ∂F = A1∪∂B∪∂A2 where Ak ∼= D2, k ∈ {1, 2}, is a fiber of

D2 Njk

∂Σ2

,

for some jk, and B ∼= S1×I is a subbundle of

S1 Nj

∂X3

, for some j. The unions

are so that ∂Ak, k ∈ {1, 2}, is identified with a boundary component of B.

Proof. Proposition 12.1 directly implies (1), (2), and (3). The proof of (4) is similar to the
proof of Lemma 13.2.

Lemma 13.5. Let Mi be a fiber bundle component

S1 ×D2, T 2 ×Z2 I Mi

S1 or (I, ∂I)

.

Its boundary is

T 2 Ni

S1

 or

T 2 Ni1

(I, ∂I)

 ∪
S1 ×D2, T 2 ×Z2 I Ni2

∂I

.
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Let F ∼= S1×D2 or T 2×Z2 I be a fiber of

S1 ×D2, T 2 ×Z2 I Mi

S1 or (I, ∂I)

. Then,

the following holds.

(1) If F is a fiber over an interior point of S1 or I, then F is disjoint from

D4, . . . Mj

pt

,S3/Γ, . . . Mj

(I, ∂I)

,

S2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

S1 or (I, ∂I)

, and

D2 Mj

Σ2

 components.

(2) If F is a fiber of

S1 ×D2, T 2 ×Z2 I Ni2

∂I

, then F is disjoint fromS2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

S1 or (I, ∂I)

, and

D2 Mj

Σ2

 components.

Additionally, F is contained in a boundary component of

D4, . . . Mj

pt

 orS3/Γ, . . . Mj

(I, ∂I)

, for some j.

(3) If F ∩

T 2 Mj

(Σ2, ∂Σ2)

 6= ∅, then F ∩Mj = ∂F ∩ ∂Mj and ∂F ∼= T 2 is a fiber of

T 2 Nj

∂Σ2

.

(4) Otherwise, ∂F ⊂

S1 Nj

∂X3

 for some j. In particular, ∂F is the total space of
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S1-fibers and ∂F is disjoint from any

D2 Mj

(Σ2, ∂Σ2)

 component.

Proof. Proposition 12.1 directly implies (1), (2), and (3). The proof of (4) is similar to the
proof of Lemma 13.3.

13.7 Fiber bundle components with fibers D2 or S1

In this section, we describe how the fibers of components

D2 Mi

Σ2

,

D2 Mi

(Σ2, ∂Σ2)

,

and

S1 Mi

(X3, ∂X3)

 intersect with fibers of other types.

Lemma 13.6. Let Mi be a fiber bundle component

D2 Mi

Σ2 or (Σ2, ∂Σ2)

. Its bound-

ary is

S1 Ni

Σ2

 or

S1 Ni1

(Σ2, ∂Σ2)

 ∪
D2 Ni2

∂Σ2

. Let F ∼= D2 be a fiber of

D2 Mi

Σ2 or (Σ2, ∂Σ2)

. Then, the following hold.

(1) If F is a fiber over an interior point of Σ2 or (Σ2, ∂Σ2), then ∂F ∼= S1 is a fiber ofS1 Nj

∂X3

, for some j.

(2) If F is a fiber of

D2 Ni2

∂Σ2

, then F is contained in

(a) the boundary of

D4, . . . Mj

pt

,

(b) a boundary component of

S3/Γ, . . . Mj

(I, ∂I)

,
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(c) a fiber of

S2 Nj

∂Σ2

, or

(d) the S2-boundary of a fiber of

D3, S2 ×Z2 I Mj

S1 or (I, ∂I)

.

Proof. The lemma follows from Proposition 12.1 and Lemma 13.2 to Lemma 13.5.

Lemma 13.7. Let Mi be a fiber bundle component

S1 Mi

(X3, ∂X3)

. Its boundary isS1 Ni

∂X3

. Let F ∼= S1 be a fiber of

S1 Ni

∂X3

. Then, F is contained in

(a) the boundary of

D4, . . . Mj

pt

,

(b) a boundary component of

S3/Γ, . . . Mj

(I, ∂I)

,

(c) a fiber of

S2 Nj

∂Σ2

,

(d) the S2-boundary of a fiber of

D3, S2 ×Z2 I Mj

S1 or (I, ∂I)

,

(e) a fiber of

T 2 Nj

∂Σ2

,

(f) the T 2-boundary of a fiber of

S1 ×D3, T 2 ×Z2 I Mj

S1 or (I, ∂I)

, or

(g) the S1-boundary of a fiber of

D2 Mj

Σ2 or (Σ2, ∂Σ2)

.
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Proof. The lemma directly follows from Proposition 12.1.

13.8 Fiber bundle components

D4, . . . Mi

pt



Let M0 be a fiber bundle component

D4, . . . M0

pt

. Its boundary is

S3, . . . ∂M0

pt

.

Proposition 12.1 and lemmas in the previous section imply that

S3, . . . ∂M0

pt

 is the

union of fibers of other fiber bundle components from Table 13.1. In this section, we describe
the decomposition of ∂M0.

Lemma 13.8. Let Mj be a fiber bundle component

S3/Γ, . . . Mj

(I, ∂I)

. If M0∩Mj 6= ∅,

then ∂M0 coincides with a boundary component of Mj.

Proof. The lemma directly follows from Proposition 12.1.

Lemma 13.9. If M0 intersects with exactly one fiber bundle component Mj, then ∂M0

coincides with a boundary component of Mj. Additionally, Mj is a fiber bundle componentS3/Γ, . . . Mj

(I, ∂I)

,

D3, S2 ×Z2 I Mj

S1

,

S1 ×D2, T 2 ×Z2 I Mj

S1

,

S2 Mj

(Σ2, ∂Σ2)

,

T 2 Mj

(Σ2, ∂Σ2)

, or

S1 Mj

(X3, ∂X3)

.

Proof. The lemma directly follows from Proposition 12.1.

Lemma 13.10. Assume that M0 intersects with

S2 Mj

(Σ2, ∂Σ2)

 and

D3, S2 ×Z2 I Mj

(I, ∂I)

 components, and M0 is disjoint from fiber bundle components of
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other types, i.e.

∂M0 ⊂

⊔
j

S2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

D3, S2 ×Z2 I Mj

(I, ∂I)


 . (13.11)

Then, ∂M0 = B1 ∪∂ A ∪∂ B2 where:

(i) A ∼= S2 × I is a subbundle of

S2 Nj

∂Σ2

, for some j,

(ii) Bi
∼= D3 or S2×Z2 I, i ∈ {1, 2}, is a fiber of

D3, S2 ×Z2 I Nji

∂I

, for some ji, and

(iii) ∂Bi, i ∈ {1, 2}, coincides with a boundary component of A.

That is

∂M0
∼=
{

D3

S2 ×Z2 I

}
∪∂ (S2 × I) ∪∂

{
D3

S2 ×Z2 I

}
. (13.12)

where the unions are along boundary components.

In particular,

∂M0
∼=


S3 ∼= D3 ∪D3,
RP 3 ∼= D3 ∪ S2 ×Z2 I,
RP 3#RP 3 ∼= S2 ×Z2 I ∪ S2 ×Z2 I,

(13.13)

and

M0
∼=


D4,±CP 2#D4 if ∂M0

∼= S3,
S2 ×±2 D

2 if ∂M0
∼= RP 3,

S2 ×Z2 D
2 if ∂M0

∼= RP 3#RP 3.
(13.14)

Figure 13.2: The decomposition of ∂M0 in Lemma 13.10. ∂M0 = B1 ∪∂ A ∪∂ B2.

Proof. Consider that

S3, . . . ∂M0

pt

 ∩
⊔

j

S2 Nj

∂Σ2

 ∼= ⊔jk
(S2 × I). By Lemma

13.4, each boundary component of a copy of S2×I is identified with the boundary of a D3 or
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S2 ×Z2 I-fiber from

D3, S2 ×Z2 I Nj

∂I

, for some j. Because ∂M0 is connected, it must

contain exactly one copy of S2 × I. Consequently, ∂M0 is the union of exactly two disjoint

D3 or S2 ×Z2 I-fibers and one copy of S2 × I ⊂

S2 Nj

∂Σ2

.

That is,

∂M0
∼=
{

D3

S2 ×Z2 I

}
∪∂ (S2 × I) ∪∂

{
D3

S2 ×Z2 I

}
(13.15)

where the unions are along boundary components. Hence,

∂M0
∼=


D3 ∪D3 ∼= S3,
D3 ∪ S2 ×Z2 I

∼= RP 3,
S2 ×Z2 I ∪ S2 ×Z2 I

∼= RP 3#RP 3.
(13.16)

The classification of M0 follows from Lemma 2.12 and Table 13.1.

Lemma 13.17. Assume that M0 intersects with

T 2 Mj

(Σ2, ∂Σ2)

 and

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components, and M0 is disjoint from fiber bundle compo-

nents of other types, i.e.

∂M0 ⊂

⊔
j

T 2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


 . (13.18)

Then, ∂M0 = B1 ∪∂ A ∪∂ B2 where:

(i) A ∼= T 2 × I is a subbundle of

T 2 Nj

∂Σ2

,

(ii) Bi
∼= S1 ×D2 or T 2 ×Z2 I, i ∈ {1, 2}, is a fiber of

S1 ×D2, T 2 ×Z2 I Nji

∂I

.

(iii) ∂Bi, i ∈ {1, 2}, coincides with a boundary component of A.
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That is,

∂M0
∼=
{
S1 ×D2

T 2 ×Z2 I

}
∪∂ (T 2 × I) ∪∂

{
S1 ×D2

T 2 ×Z2 I

}
(13.19)

where the unions are along boundary components.

In particular,

∂M0
∼=


S1 ×D2 ∪ S1 ×D2 ∼= S3, S2 × S1, L(p, q),
S1 ×D2 ∪ T 2 ×Z2 I

∼= S2 × S1,RP 3#RP 3, L(p, q)/Z2,
T 2 ×Z2 I ∪ T 2 ×Z2 I

∼= G2,G4,G5,
(13.20)

and

M0
∼=



D4,±CP 2#D4 if ∂M0
∼= S3,

S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M0
∼= S2 × S1,

S2 ×ω D2, ω ∈ Z if ∂M0
∼= L(|ω|, 1),

S2 ×Z2 D
2 if ∂M0

∼= RP 3#RP 3,
(S2 ×ω D2)/Z2, ω ∈ Z if ∂M0

∼= L(|ω|, 1)/Z2,
T 2 ×Z2 D

2,B3×̃I,B4×̃I if ∂M0
∼= G2.

(13.21)

Proof. Consider that

S3, . . . ∂M0

pt

∩
⊔

j

T 2 Nj

∂Σ2

 ∼= ⊔jk
(T 2× I). By Lemma

13.5, each boundary component of a copy of T 2 × I is identified with the boundary of a

S1 × D2 or T 2 ×Z2 I-fiber from

S1 ×D2, T 2 ×Z2 I Nji

∂I

, for some j. Because ∂M0 is

connected, it must contain exactly one copy of T 2 × I. Consequently, ∂M0 is the union of

exactly two disjoint S1 × D2 or T 2 ×Z2 I-fibers and one copy of T 2 × I ⊂

T 2 Nj

∂Σ2

.

That is,

∂M0
∼=
{
S1 ×D2

T 2 ×Z2 I

}
∪∂ (T 2 × I) ∪∂

{
S1 ×D2

T 2 ×Z2 I

}
(13.22)

where the unions are along boundary components. In particular,

∂M0
∼=


S1 ×D2 ∪ S1 ×D2,
S1 ×D2 ∪ T 2 ×Z2 I,
T 2 ×Z2 I ∪ T 2 ×Z2 I,

(13.23)

where the unions are along the boundaries.

S1 × D2 ∪∂ S1 × D2 is diffeomorphic to S3, S2 × S1, or a Lens space L(p, q). Put X =

S1 ×D2 ∪∂ T 2 ×Z2 I and let X̂ be a double cover of X. Then, X̂ = (S1×D2)∪f (T 2× I)∪f
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(S1 ×D2) where f is an identifying map from ∂(S1 ×D2) to a T 2-boundary component of
T 2 × I. We note that the identifying map must be the same for both copies of S1 × D2.
Hence, X̂ is diffeomorphic to S2×S1 or a Lens space. There are two orientable Z2-quotients
of S2×S1: S2×S1 where Z2 acts on S2 by a π-rotation around a fixed axis and acts on S1 by
a π-rotation, and S2×Z2 S

1 ∼= RP 3#RP 3 where Z2 acts on S2 and S1 by the antipodal map.
A Z2-quotient of a Lens space is a Prism manifold. A double cover of T 2 ×Z2 I ∪∂ T 2 ×Z2 I
is a T 2-bundle over S1. From Table 13.1, T 2×Z2 I ∪∂ T 2×Z2 I is T 3/Γ that has a T 2-bundle
over S1 as its double cover. Hence, T 2 ×Z2 I ∪∂ T 2 ×Z2 I is G2,G4, or G5 [33].

The classification of M0 follows from Lemma 2.12 and Table 13.1.

Lemma 13.24. Assume that M0 intersects with

D2 Mj

(Σ2, ∂Σ2)

 and

S1 Mj

(X3, ∂X3)


components, and M0 is disjoint from fiber bundle components of other types, i.e.

∂M0 ⊂

⊔
j

D2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

S1 Mj

(X3, ∂X3)


 . (13.25)

Then, ∂M0 = A ∪∂ B1 or A ∪∂ (B1 tB2) where:

(i) A is a subbundle of

S1 Nj

∂X3

 for some j. Additionally, A is the total space of

S1-fibers over a disk or a cylinder.

(ii) Bi
∼= D2 × S1 is a component

D2 Nj

∂Σ2

 for some j.

(iii) ∂Bi, i ∈ {1, 2}, is identified with a boundary component of A so that each ∂D2-fiber of
∂Bi
∼= ∂D2 × S1 coincides with an S1-fiber of ∂A.

Consequently,

∂M0
∼=
{
S1 ×D2 ∪ S1 ×B2 ∼= S3

S1 ×D2 ∪ S1 × (S1 × I) ∪ S1 ×D2 ∼= S2 × S1 (13.26)

where S1 ×B2 and S1 × (S1 × I) are contained in

S1 Nj

∂X3

 for some j.

Hence,

M0
∼=
{
D4,±CP 2#D4 if ∂M0

∼= S3,
S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M0

∼= S2 × S1.
(13.27)
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Proof. Write ∂M0 = A ∪∂ B where we put A = ∂M0 ∩

⊔j

S1 Mj

(X3, ∂X3)


 and

B = ∂M0 ∩

⊔j

D2 Mj

(Σ2, ∂Σ2)


 .

By Proposition 12.1, A is a disjoint union of subbundles of

S1 Nj

∂X3

. Hence, A is

the total space of S1-fibers over a disjoint union of surfaces with boundary.

From Lemma 13.6, each fiber over an interior points of

D2 Mj

(Σ2, ∂Σ2)

 is disjoint

from

D4, . . . M0

pt

. Hence, B is a disjoint union of components

D2 Nj

∂Σ2

 ∼=
D2 × S1 and D2-subbundles of

D2 Nj

∂Σ2

 diffeomorphic to D2 × I.

Additionally, A∩B = ∂A∩∂B so that the S1-boundary of each D2-fiber of

D2 Nj

∂Σ2


coincides with an S1-fiber of

S1 Nj

∂X3

. Since ∂M0 is a closed 3-manifold, B does

not contain connected components diffeomorphic to D2 × I. Therefore, B is a disjoint

union of components Bi =

D2 Nji

∂Σ2

 ∼= D2 × S1. ∂Bi
∼= T 2 is identified with a

boundary component of A so that each ∂D2-fiber of ∂Bi is identified with an S1-fiber of
∂A. Because ∂M0 is connected, A must also be connected. We have that A is a subbundleS1 A

(Σ2
A, ∂Σ2

A)

 of

S1 Nj

∂X3

, for some j, where ΣA = ΣA(g, n) is a connected

surface of genus g and with n ≥ 1 boundary components. Then,

∂M0 = A ∪∂
n⊔
i=1

Bi
∼=

S1 A

(Σ̃2, ∂Σ̃2)

 ∪∂ n⊔
i=1

(S1 ×D2). (13.28)
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By an explicit construction in [11, Proposition 1], ∂M0
∼= S3#(2g + n − 1)(S2 × S1).

According to the classification of

D4, . . . Mi

pt

 in Table 13.1, ∂M0 can only be diffeo-

morphic to S3 or S2 × S1 in this case. Thus, 2g + n− 1 = 0 or 1. That is (g, n) = (0, 1) or
(0, 2). Therefore, Σ2

A is a disk or a cylinder.

In summary,

∂M0
∼=
{
S1 ×D2 ∪ S1 ×B2 ∼= S3,
S1 ×D2 ∪ S1 × (S1 × I) ∪ S1 ×D2 ∼= S2 × S1,

(13.29)

where S1 ×B2 and S1 × (S1 × I) are contained in

S1 Nj

∂X3

 for some j.

The classification of M0 follows from Lemma 2.12 and Table 13.1.

Lemma 13.30. Assume that M0 intersects with

D3, S2 ×Z2 I Mj

(I, ∂I)

,

D2 Mj

(Σ2, ∂Σ2)

 and

S1 Mj

(X3, ∂X3)

 components, and M0 is disjoint from fiber

bundle components of other types, i.e.

∂M0 ⊂

⊔
j

D2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

D3, S2 ×Z2 I Mj

(I, ∂I)




∪

⊔
j

S1 Mj

(X3, ∂X3)


 . (13.31)

Then, ∂M0 = A ∪∂ B1 or A ∪∂ (B1 tB2) where:

(i) A is a subbundle of

S1 Nj

∂X3

 for some j. Additionally, A is the total space of

S1-fibers over a disk or a cylinder.
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(ii) For i ∈ {1, 2}, Bi is a component

D2 Nj

∂Σ2

, for some j, or a 3-manifold with

boundary, which can be represented by a cycle graph

v1 v2 · · · vn
e12 e23

en1

(13.32)

so that each vertex vα represents a fiber Vα of

D3, S2 ×Z2 I Njα

∂I

 for some jα,

and each edge eα(α+1) represents a D2-subbundle Eα(α+1)
∼= D2 × I of

D2 Njα

∂Σ2


for some jα. Vα ∼= D3 or S2 ×Z2 I and Vα ∩ Eα(α+1) = ∂Vα ∩ ∂Eα(α+1) coincides with
a connected component of D2 × ∂I ⊂ Eα(α+1).

If ∂M = A ∪∂ B1, then B1 is represented by a cyclic graph and there are at most
two Vα’s such that Vα ∼= S2 ×Z2 I. In particular, B1 is diffeomorphic to S1 × D2,
(S1 ×D2)#RP 3, or (S1 ×D2)#RP 3#RP 3.

If ∂M = A ∪∂ (B1 t B2), then all Vα’s are diffeomorphic to D3. In particular, B1

and B2 are diffeomorphic to S1 × D2. At most one of B1 and B2 is a componentD2 Nj

∂Σ2

.

(iii) ∂Bi is identified with a boundary component of A so that each ∂D2-fiber of ∂Bi
∼=

∂D2 × S1 coincides with an S1-fiber of A.

That is

∂M0
∼=


S1 ×B2 ∪ S1 ×D2 ∼= S3,
S1 ×B2 ∪ (S1 ×D2)#RP 3 ∼= RP 3,
S1 ×B2 ∪ (S1 ×D2)#(RP 3#RP 3) ∼= RP 3#RP 3,
S1 ×D2 ∪ S1 × (S1 × I) ∪ S1 ×D2 ∼= S2 × S1,

(13.33)

where S1 ×B2 and S1 × (S1 × I) are contained in

S1 Nj

∂X3

 for some j.

Hence,

M0
∼=


D4,±CP 2#D4 if ∂M0

∼= S3,
S2 ×±2 D

2 if ∂M0
∼= RP 3,

S2 ×Z2 D
2 if ∂M0

∼= RP 3#RP 3,
S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M0

∼= S2 × S1.

(13.34)
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Figure 13.3: Example of B1 ⊂ ∂M0 which is represented by a cycle graph with 3 vertices.

Proof. Write ∂M0 = A ∪∂ E ∪∂ V where we put A = ∂M0 ∩

⊔j

S1 Mj

(X3, ∂X3)


 ,

E = ∂M0 ∩

⊔j

D2 Mj

(Σ2, ∂Σ2)


 , and V = ∂M0 ∩

⊔j

D3, S2 ×Z2 I Mj

(I, ∂I)


 .

By Proposition 12.1, A is a disjoint union of subbundles of

S1 Nj

∂X3

. Hence, A is

the total space of S1-fibers over a disjoint union of surfaces with boundary.

From Lemma 13.6, each fiber over an interior points of

D2 Mj

(Σ2, ∂Σ2)

 is disjoint

from

D4, . . . Mi

pt

 and

D3, S2 ×Z2 I Mj

(I, ∂I)

 components. Hence, E is a disjoint

union of components

D2 Nj

∂Σ2

 ∼= D2×S1 and D2-subbundles of

D2 Nj

∂Σ2

 diffeo-

morphic to D2× I. The boundary of each D2-fiber coincides with a fiber of

S1 Nj

∂X3

.

From Lemma 13.4, fibers over an interior point of

D3, S2 ×Z2 I Mj

(I, ∂I)

 are disjoint

from

D4, . . . M0

pt

. Hence, V is a disjoint union of fibers of

D3, S2 ×Z2 I Nj

∂I

.
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Write V =
⊔m
α=1 Vα, where Vα ∼= D3 or S2 ×Z2 I is a connected component of V .

Write E =
⊔
iEi where Ei is a connected component of E. Suppose that there is

Ei ∼= S1 × D2. By Lemma 13.6, Ei ∩ V = ∅. As a part of ∂M0, ∂Ei is identified with
a boundary component of A so that each ∂D2-fiber of ∂Ei ∼= ∂D2 × S1 coincides with an
S1-fiber of ∂A.

Without loss of generality, assume that Ei ∼= D2 × I for all i. From Lemma 13.4 and
Lemma 13.6, for each α, Vα∩E = ∂Vα∩∂E is exactly two copies of D2 from

⊔
i(D

2×∂I)i ⊂⊔
i ∂Ei. Moreover, each connected component of D2× ∂I ⊂ Ei is contained in ∂Vα for some

α. Therefore, each connected component of V ∪∂ E can be represented by a cycle graph

v1 v2 · · · vnk
e12 e23

e(nk−1)nk

enk1

(13.35)

so that each vertex vj represents Vα for some α, each edge ej(j+1) represents Ei for some i,
and vj is incident to ej(j+1) if and only if Vα ∩ Ei 6= ∅.

Put B = V ∪∂ E and write B =
⊔
Bi where Bi is a connected component of B. ∂Bi is

the total space of S1-fibers over a circle. Each ∂D2-fiber of ∂Bi coincides with an S1-fiber of
∂A. Bi is diffeomorphic to (S1 ×D2)#ki(RP 3) where ki ≥ 0 is the number of Ei such that
Ei ∼= S2 ×Z2 I

∼= D3#RP 3.

Because ∂M0 is connected, A is also connected. We have that A is a subbundleS1 A

(Σ2
A, ∂Σ2

A)

 of

S1 Nj

∂X3

, for some j, where Σ2
A = Σ2

A(g, n) is a connected

surface of genus g and with n ≥ 1 boundary components. Then,

∂M0 = A ∪∂
n⊔
i=1

Bi
∼=

S1 A

(Σ2
A, ∂Σ2

A)

 ∪∂ ( n⊔
i=1

(S1 ×D2)#ki(RP 3)

)
. (13.36)

By an explicit construction in [11, Proposition 1], ∂M0
∼= S3#(2g+n−1)(S2×S1)#k(RP 3),

where k =
∑

i ki. According to the classification of

D4, . . . M0

pt

 in Table 13.1, ∂M0 can

only be diffeomorphic to S3, S2× S1, RP 3, or RP 3#RP 3 in this case. Thus, 2g+ n− 1 = 0
or 1. That is (g, n) = (0, 1) or (0, 2). In other words, Σ2

A is a disk or a cylinder. If Σ2
A is a

disk, then k1 = 0, 1, or 2. If Σ2
A is a cylinder, then k1 = k2 = 0. In summary,

∂M0
∼=


S1 ×B2 ∪ S1 ×D2 ∼= S3,
S1 ×B2 ∪ (S1 ×D2)#RP 3 ∼= RP 3,
S1 ×B2 ∪ (S1 ×D2)#(RP 3#RP 3) ∼= RP 3#RP 3,
S1 ×D2 ∪ S1 × (S1 × I) ∪ S1 ×D2 ∼= S2 × S1,

(13.37)
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where S1 ×B2 and S1 × (S1 × I) are contained in

S1 Nj

∂X3

 for some j.

The classification of M0 follows from Lemma 2.12 and Table 13.1.

Lemma 13.38. Assume that M0 intersects with

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 and

S1 Mj

(X3, ∂X3)

 components, and M0 is disjoint from fiber bundle components of other

types, i.e.

∂M0 ⊂

⊔
j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


 ∪

⊔
j

S1 Mj

(X3, ∂X3)


 . (13.39)

Then, ∂M0 = A ∪∂ (
⊔
iCi) where:

(i) A is a subbundle of

S1 Nj

∂X3

 for some j

(ii) Ci ∼= (S1 ×D2 or T 2 ×Z2 I) is a fiber of

S1 ×D2, T 2 ×Z2 I Nj

∂I

.

(iii) ∂Ci ∼= T 2 is identified with a boundary component of A.

It follows that ∂M0 is a Seifert manifold.

Proof. Write ∂M0 = A ∪∂ C where we put A = ∂M0 ∩

⊔j

S1 Mj

(X3, ∂X3)


 , and

C = ∂M0 ∩

⊔j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


 .

By Proposition 12.1, A is a disjoint union of subbundles of

S1 Nj

∂X3

. Hence, A is

the total space of S1-fibers over a disjoint union of surfaces with boundary.
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From Lemma 13.5, fibers over an interior point of

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 are

disjoint from

D4, . . . M0

pt

. Hence, C is a disjoint union of fibers of

 S1 ×D2,
T 2 ×Z2 I

Nj

∂I

.

Write C =
⊔m
i=1Ci, where Ci ∼= S1×D2 or T 2×Z2I is a connected component of C. Moreover,

A ∩ Ci = ∂A ∩ ∂Ci where ∂Ci ∼= T 2 is identified with a boundary component of A.

Because ∂M0 is connected, A is also connected. Hence,

∂M0 = A∪∂
⊔
i

Ci ∼=

S1 A

(Σ2
A, ∂Σ2

A)

∪∂(⊔
i

(S1 ×D2)

)
∪∂

(⊔
i

(T 2 ×Z2 I)

)
. (13.40)

From the classification of Seifert manifolds in [17] and from the classification of M0 in
Table 13.1, ∂M0 is a Seifert manifold.

Lemma 13.41. Assume that M0 intersects with

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

,

D2 Mj

(Σ2, ∂Σ2)

, and

S1 Mj

(X3, ∂X3)

 components. In addition, assume that M0

may also intersect

D3, S2 ×Z2 I Mj

(I, ∂I)

 components and M0 is disjoint from fiber

bundle components of other types, i.e.

∂M0 ⊂

⊔
j

D3, S2 ×Z2 I Mj

(I, ∂I)


 ∪

⊔
j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)




∪

⊔
j

D2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

S1 Mj

(X3, ∂X3)


 . (13.42)

Then, ∂M0 = A ∪∂ B ∪∂ C where:

(1) A is a subbundle of

S1 Nj

∂X3

, for some j.
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(2) B = B1 or B = B1 t B2 where Bi is a component

D2 Nj

∂Σ2

 for some j, or a

3-manifold which can be represented by a cycle graph as in Lemma 13.30.

(3) ∂Bi, i ∈ {1, 2}, is identified with a boundary component of A so that each ∂D2-fiber of
∂Bi
∼= ∂D2 × S1 coincides with an S1-fiber of A.

(4) C =
⊔
iCi where Ci ∼= (S1×D2 or T 2×Z2 I) is a fiber of

S1 ×D2, T 2 ×Z2 I Nji

∂I


for some ji.

(5) ∂Ci is identified with a boundary component of A.

It follows that ∂M0 is diffeomorphic to S3, S2 × S1,RP 3,RP 3#RP 3, or a Lens space.
Hence,

M0
∼=


D4,±CP 2#D4 if ∂M0

∼= S3,
S2 ×±2 D

2 if ∂M0
∼= RP 3,

S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M0
∼= S2 × S1,

S2 ×Z2 D
2 if ∂M0

∼= RP 3#RP 3,
S2 ×ω D2 if ∂M0

∼= L(|ω|, 1).

(13.43)

Figure 13.4: Example of a decomposition of ∂M0 in Lemma 13.41. ∂M0 = B1 ∪∂ A ∪∂ C.

Proof. Write ∂M0 = A ∪∂ B ∪∂ C where we put A = ∂M0 ∩

⊔j

S1 Mj

(X3, ∂X3)


 ,

B = ∂M0 ∩


⊔j

D2 Mj

(Σ2, ∂Σ2)


 ∪

⊔j

D3, S2 ×Z2 I Mj

(I, ∂I)



 , and C =

∂M0 ∩

⊔j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


 .



Chapter 13 119

By Proposition 12.1, A is a disjoint union of subbundles of

S1 Nj

∂X3

. Hence, A is

the total space of S1-fibers over a disjoint union of surfaces with boundary.

By the same arguments as in the proof of Lemma 13.30, we can write B =
⊔n
i=1Bi, where

each connected component Bi is a component

D2 Nj

∂Σ2

 for some j, or a 3-manifold

which can be represented by a cycle graph such that each vertex vα represents a fiber Vα ofD3, S2 ×Z2 I Njα

∂I

, for some jα, and each edge eα(α+1) represents a subbundle Eα(α+1)
∼=

D2×I of

D2 Njα

∂Σ2

, for some jα. Vα ∼= D3 or S2×Z2 I and Vα∩Eα(α+1) = ∂Vα∩∂Eα(α+1)

is a connected component of D2× ∂I ⊂ Eα(α+1). Moreover, Bi
∼= (S1×D2)#ki(RP 3) where

ki ≥ 0 is the number of Eα ∼= S2 ×Z2 I
∼= D3#RP 3. ∂Bi is identified with a boundary

component of A so that each ∂D2-fiber of ∂Bi
∼= ∂D2 × S1 coincides with an S1-fiber of A.

By the same arguments as in the proof of Lemma 13.38, we can write C =
⊔m
i=1Ci, where

Ci ∼= S1 ×D2 or T 2 ×Z2 I is a fiber of

S1 ×D2, T 2 ×Z2 I Nji

∂I

 for some ji. ∂Ci ∼= T 2

is identified with a boundary component of A.

Because ∂M0 is connected, A is also connected. Thus, A is a subbundleS1 A

(Σ2
A, ∂Σ2

A)

 of

S1 Nj

∂X3

, for some j, where Σ2
A = Σ2

A(g, n+m) is a connected

surface of genus g and with n+m boundary components. Hence,

∂M0 = A ∪∂

(
n⊔
i=1

Bi

)
∪∂

(
m⊔
i=1

Ci

)
(13.44)

∼=

S1 A

(Σ2
A, ∂Σ2

A)

 ∪∂ ( n⊔
i=1

(S1 ×D2)#ki(RP 3)

)

∪∂

(⊔
i

(S1 ×D2)

)
∪∂

(⊔
i

(T 2 ×Z2 I)

)
.

Let φi : ∂Ci → ∂A be the identifying map from ∂Ci to a boundary component of A.
First, assume that Ci ∼= S1 × D2. Then, φi : S1 × ∂D2 → S1 × ∂iΣ2

A for some boundary
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component ∂iΣ
2
A of Σ2

A. Up to isotopy, φi ∈ SL2(Z). Suppose further that φi does not send
each (·, ∂D2) ⊂ ∂Ci to (S1, ·) ⊂ S1 × ∂iΣ2

A. From the classification of Seifert manifolds in
[17], A∪∂ Ci extends the S1-fibration of A or A∪∂ Ci is a Seifert manifold (with boundary).
Next, assume that Ci ∼= T 2×Z2 I. From the classification of Seifert manifolds in [17], A∪∂Ci
is a Seifert manifold with two exceptional Seifert orbits.

Reindex {Ci} so that for i ∈ {1, . . . ,m′}, Ci ∼= S1 ×D2 and φi sends (·, ∂D2) ⊂ ∂Ci to
(S1, ·) ⊂ S1×∂iΣ2

A, or Ci ∼= T 2×Z2 I. Otherwise, Ci ∼= S1×D2 for some i ∈ {m′+1, . . . ,m}.
Put C̃ =

⊔m
i=m′+1 Ci. Then, A ∪∂ C̃ is the total space of S1-fibers or a Seifert manifold. Let

Σ̃2 be the base of the S1-bundle or the Seifert manifold A ∪∂ C̃. Σ̃2 has the same genus as
Σ2
A which is equal to g. Σ̃2 has n+m′ boundary components. Therefore,

∂M0 = (A ∪∂ C̃) ∪∂ (B t (C − C̃)) (13.45)

∼= (a Seifert manifold with base Σ̃2(g, n+m′))

∪∂

(
n⊔
i=1

(S1 ×D2)#ki(RP 3)

)
∪∂

(
m′⊔
i=1

S1 ×D2

)

where each S1 × ∂D2 is glued to a boundary component of A ∪∂ C̃ so that each ∂D2-fiber
coincides with an S1-fiber of A ∪∂ C̃. By [11, Proposition 2],

∂M0
∼= S3#(2g + (n+m′)− 1)(S2 × S1)#k(RP 3)#L(p1, q1)#L(p2, q2)# · · · (13.46)

where k =
∑

i ki.

According to the classification of

D4, . . . M0

pt

 in Table 13.1, ∂M0 can only be

diffeomorphic to S3, S2×S1, RP 3, RP 3#RP 3, or L(p, q) in this case. Thus, 2g+(n+m′)−1 ∈
{0, 1}. That is g = 0 and n+m′ ∈ {1, 2}. We have that (n,m′) is (1, 0), (2, 0), or (1, 1).

Case 1: (n,m′) = (1, 0). Then, B = B1 and C = C̃. If A ∪∂ C̃ is the total space of

S1-fibers, then A ∪∂ C̃ ∼= S1 ×D2. Hence,

∂M0 = (A ∪∂ C̃) ∪∂ B1
∼= S1 ×B2 ∪ S1 ×D2 ∼= S3#k(RP 3). (13.47)

According to the classification of

D4, . . . M0

pt

 in Table 13.1, k ≤ 2. Therefore, ∂M0
∼=

S3,RP 3, or RP 3#RP 3. Otherwise, A ∪ C̃ is a Seifert manifold with base D2 and with one
exceptional orbit. In this case,

∂M0 = (A ∪∂ C̃) ∪∂ B1
∼= S3#L(p, q) ∼= L(p, q). (13.48)
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Case 2: (n,m′) = (2, 0). Then B = B1 t B2 and C = C̃. If A ∪∂ C̃ is the total space of

S1-fibers, then A ∪∂ C̃ ∼= S1 × (S1 × I). Hence,

∂M0 = (A ∪∂ C̃) ∪∂ (B1 tB2) (13.49)
∼= S1 × (S1 × I) ∪ (S1 ×D2 t S1 ×D2)#k(RP 3)
∼= (S1 × S2)#k(RP 3).

According to the classification of

D4, . . . M0

pt

 in Table 13.1, k = 0 and ∂M0
∼= S1×S2.

By the same argument as in case 1, if A∪∂ C̃ is a Seifert manifold, then ∂M0
∼= (S1 × S2)#

L(p1, q1)# · · · . This contradicts to the classification of M0 in Table 13.1.

Case 3: (n,m′) = (1, 1). Then B = B1 and C − C̃ = C1
∼= S1 × D2. By the same

argument as in case 2, A∪∂ C̃ is the total space of S1-fibers, k = 0, and ∂M0
∼= S1×S2.

Lemma 13.50. Assume that M0 intersects with

D3, S2 ×Z2 I Mj

(I, ∂I)

,

D2 Mj

(Σ2, ∂Σ2)

,

S2 Mj

(Σ2, ∂Σ2)

, and

S1 Mj

(X3, ∂X3)

 components, and M0

is disjoint from fiber bundle components of other types, i.e.

∂M0 ⊂

⊔
j

D3, S2 ×Z2 I Mj

(I, ∂I)


 ∪

⊔
j

D2 Mj

(I, ∂I)




∪

⊔
j

S2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

S1 Mj

(X3, ∂X3)


 . (13.51)

Then ∂M0 = A ∪∂ B1 or ∂M0 = A ∪∂ (B1 tB2) where:

(1) A = (
⊔
iAi) where Ai is a subbundle of

S1 Nji

∂X3

, for some ji. Additionally, Ai

is the total space of S1-fibers over a disk or a cylinder. There is at most one Ai that
is the total space of S1-fibers over a cylinder.

(2) Bi is a component

D2 Nj

∂Σ2

 for some j or a 3-manifold that can be represented

by a connected graph G with the following properties.
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(i) Each vertex has degree at most 3.

(ii) There are two types of edges: solid edges and dashed edges. Let ED(G) be the set
of dashed edges. Every vertex of odd degree is incident to exactly one dashed edge.
Every vertex of degree 2 is incident to two solid edges.

(iii) Put C = G−∪e∈ED(G)e and write C =
⊔
i Ci where Ci is a connected component of

C. Then, Ci is a cycle graph or a single vertex.

(iv) There exists at most one cycle subgraph of G that is not a cycle subgraph of C.

Suppose that Ci is a cycle graph

v1 v2 · · · vni
e12 e23

e(ni−1)ni

eni1

, (13.52)

so that the following holds. Each vertex vj represents a 3-manifold Vj where either

(a) Vj ∼= D3 or S2 ×Z2 I is a fiber of

D3, S2 ×Z2 I Nj

∂I

, for some j, or

(b) Vj ∼= S2 is a boundary component of a subbundle Zj ∼= S2 × I of

S2 Nj

∂Σ2

,

for some j.

As a vertex of G, deg(vj) = 2 in case (a) and deg(vj) = 3 in case (b).

Each edge ej(j+1) represents a subbundle Ej(j+1)
∼= D2× I of

D2 Nj

∂Σ2

, for some

j. Vj ∩ Ej(j+1) = ∂Vj ∩ ∂Ej(j+1) is a connected component of D2 × ∂I ⊂ Eα(α+1).

If Ci is a single vertex vi, then vi represents a fiber Vi of

D3, S2 ×Z2 I Ni

∂I

, for

some i. As a vertex of G, deg(vi) = 1.

Each dashed edge eD represents a subbundle Z ∼= S2× I of

S2 Nj

∂Σ2

 for some j.

For each vertex vj, if deg(vj) = 3 and vj is incident to eD then Vj ∼= S2 is a boundary
component of Z. If deg(vj) = 1 and vj is incident to eD, then ∂Vj coincides with a
boundary component of Z.

The graph G represents Bi
∼= di(S

1 × D2)#ki(RP 3)#`i(S
1 × S2) for some integers

di > 0, ki ≥ 0, and `i ≥ 0.
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(3) Each boundary component of Bi is diffeomorphic to S1 × ∂D2. It is identified with a
boundary component of A so that each ∂D2-fiber coincides with an S1-fiber of A.

If ∂M0 = A ∪∂ B1, then for some n1 ≥ 1, A = tn1
i=1Ai and for every i, Ai is the total

space of S1-fibers over a disk. One of the following holds.

(1) B1
∼= n1(S1 × D2)#k1(RP 3) where k1 ∈ {0, 1, 2}. In this case, ∂M0

∼= S3,RP 3, or
RP 3#RP 3.

(2) B1
∼= n1(S1 ×D2)#(S1 × S2). In this case, ∂M0

∼= S1 × S2.

If ∂M0 = A ∪∂ (B1 t B2), then A = tn1+n2−1
i=1 Ai, for some n1, n2 ≥ 1, where A1 is the

total space of S1-fibers over a cylinder and Ai, for all i ≥ 2, is the total space of S1-fibers
over a disk. For k ∈ {1, 2}, Bk

∼= (S1 ×D2)# · · ·#(S1 ×D2)︸ ︷︷ ︸
nk copies

and A1 ∩ Bk 6= ∅. In this

case, ∂M0
∼= S1 × S2.

Hence,

M0
∼=


D4,±CP 2#D4 if ∂M0

∼= S3,
S2 ×±2 D

2 if ∂M0
∼= RP 3,

S2 ×Z2 D
2 if ∂M0

∼= RP 3#RP 3,
S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M0

∼= S2 × S1.

(13.53)

Before we prove Lemma 13.50, we give some examples of the decomposition of ∂M0 in
the lemma.

Example 13.54. Case 1 : ∂M0 = A1 ∪ B1 where B1
∼= (S1 × D2)#k(RP 3) and A1 is the

total space of S1-fibers over a disk. ∂M0
∼= S3,RP 3 or RP 3#RP 3.

Figure 13.5: Left: The graph G which represents B1.
Center: B1

∼= (S1 ×D2)#k(RP 3). Right: ∂M0 = A1 ∪∂ B1.
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Example 13.55. Case 1 : ∂M0 = (A1 t A2) ∪∂ B1 where B1
∼= 2(S1 × D2)#k(RP 3), and

A1 and A2 are the total spaces of S1-fibers over a disk. ∂M0
∼= S3,RP 3 or RP 3#RP 3.

Figure 13.6: Left: The graph G which represents B1. Right: B1
∼= 2(S1 ×D2)#k(RP 3).

Below: ∂M0 = A1 ∪∂ B1 ∪∂ A2
∼= S3,RP 3, or RP 3#RP 3.

Example 13.56. Case 2 : ∂M0 = A1 ∪B1 where B1
∼= (S1 ×D2)#(S1 × S2) and A1 is the

total space of S1-fibers over a cylinder. ∂M0
∼= S1 × S2.

Figure 13.7: Left: The graph G which represents B1. Center: B1
∼= (S1 ×D2)#(S1 × S2).

Right: ∂M0 = A1 ∪∂ B1
∼= S1 × S2.
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Example 13.57. Case 3 : ∂M0 = A1 ∪ B1 where B1
∼= (S1 × D2)#(S1 × D2). A1 is the

total space of S1-fibers over a cylinder. ∂M0
∼= S1 × S2. We note that the graph G which

represents B1 is the same as in Example 13.55.

Figure 13.8: ∂M0 = A1 ∪∂ B1
∼= S1 × S2 with B1 as in Example 13.55

Proof. Write ∂M0 = A∪∂E∪∂W ∪∂Z where we put A = ∂M0∩

⊔j

S1 Mj

(X3, ∂X3)


 ,

E = ∂M0 ∩

⊔j

D2 Mj

(Σ2, ∂Σ2)


 , W = ∂M0 ∩

⊔j

D3, S2 ×Z2 I Mj

(I, ∂I)


 , and

Z = ∂M0 ∩

⊔j

S2 Mj

(Σ2, ∂Σ2)


 .

By Proposition 12.1, A is a disjoint union of subbundles of

S1 Nj

∂X3

. Hence, A is

diffeomorphic the total space of S1-fibers over a disjoint union of surfaces with boundary.

From Lemma 13.6, each fiber over an interior points of

D2 Mj

(Σ2, ∂Σ2)

 is disjoint

from

D4, . . . Mi

pt

,

D3, S2 ×Z2 I Mj

(I, ∂I)

, and

S2 Mj

(Σ2, ∂Σ2)

 components.

Hence, E is a disjoint union of components

D2 Nj

∂Σ2

 ∼= D2 × S1 and subbundles of
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D2 Nj

∂Σ2

 diffeomorphic to D2 × I. The boundary of each D2-fiber coincides with an

S1-fiber of

S1 Nj

∂X3

.

From Lemma 13.4, fibers over an interior point of

D3, S2 ×Z2 I Mj

(I, ∂I)

 are disjoint

from

D4, . . . M0

pt

. Hence, W is a disjoint union of fibers of

D3, S2 ×Z2 I Nj

∂I

.

Write W =
⊔
sWs, where Ws

∼= D3 or S2 ×Z2 I is a connected component of W .

From Lemma 13.2, Z is a disjoint union of subbundles of

S2 Nj

∂Σ2

 diffeomorphic

to S2 × I. Write Z =
⊔
t Zt, where Zt is a connected component of Z. If Zt ∩Ws 6= ∅, then

∂Ws coincides with a boundary component of Zt.

Write E =
⊔n
i=1Ei where Ei is a connected component of E. If Ei ∼= S1 ×D2, then by

Lemma 13.6, Ei ∩W = ∅ and Ei ∩ Z = ∅. Hence, as a part of ∂M0, ∂Ei is identified with
a boundary component of A so that each ∂D2-fiber of ∂Bi

∼= ∂D2 × S1 coincides with an
S1-fiber of ∂A. Without loss of generality, assume that Ei ∼= D2 × I for all i.

If there exist t, s1, and s2 such that Zt∩Ws1 6= ∅ and Zβ∩Ws2 6= ∅, then Ws1∪∂Zβ∪∂Ws2

is a closed manifold. Consequently, ∂M0 = Ws1 ∪∂ Zβ ∪∂ Ws2 . This is a contradiction since
A 6= ∅. Therefore, every Zt intersects with at most one connected component of W .

We construct a graph G to represent E ∪∂ W ∪∂ Z as follows.

(1) For every connected component Ws of W , construct a vertex ws to represent Ws
∼= D3

or S2 ×Z2 I.

(2) For every connected component Zt of Z such that Zt ∩Ws 6= ∅, construct a vertex zt1
to represent the boundary component of Zt that is disjoint from Ws. Connect vertices
zt1 and ws with a dashed edge.

(3) For every connected component Zt of Z such that Zt ∩ W = ∅, let ∂1Zt and ∂2Zt
denote its two boundary components and construct vertices zt1 and zt2 to represent
∂1Zt and ∂2Zt respectively. Connect zt1 and zt2 with a dashed edge.

(4) Let V1 and V2 be connected components of W represented by vertices v1 and v2 where
v1 6= v2. Connect vertices v1 and v2 with a solid edge if there is a connected component
Ei ∼= D2 × I of E such that V1 ∩ Ei 6= ∅ and V2 ∩ Ei 6= ∅.
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(5) Let V1 be a connected component of W represented by the vertex v1. If there exists
a connected component Ei ∼= D2 × I of E such that V1 ∩ Ei is diffeomorphic to two
copies of D2, then we construct a loop of solid edge incident to v1.

Next, we show that all vertices have degree at most 3. From Lemma 13.4 and Lemma

13.6, if Ws ∩ E 6= ∅, then Ws ∩ E = ∂Ws ∩ ∂E is two D2-fibers of

D2 ∂Eik

∂I

, for

some ik, k ∈ {1, 2}. Similarly, from Lemma 13.2 and Lemma 13.6, if Zt ∩ Ei 6= ∅, then

Zt ∩ E = ∂Zt ∩ ∂E is two D2-fibers of

D2 ∂Eik

∂I

, for some ik, k ∈ {1, 2}. Every

connected component of D2 × ∂I ⊂ ∂Ei is contained in ∂Ws or ∂Zt for some s and t. In
other words, every vertex is incident to either zero or two solid edges. From the construction
of G, each vertex has at most one dashed edge. Thus, each vertex has degree at most 3.
Every vertex of odd degree is incident to exactly one dashed edge and all other edges are
solid edges.

Let ED(G) be the set of all dashed edges and define C = G − ∪e∈ED(G)e. We have that
all vertices in C have degree zero or degree two. Write C =

⊔
i Ci where Ci is a connected

component of C. Then, each Ci is a cycle graph or a single vertex.

First assume that Ci is a single vertex ws, for some s. As a vertex of G, deg(ws) = 1 and
ws is adjacent to a vertex zt1 for some t. ws represents a connected component Ws

∼= D3 or
S2 ×Z2 I and ∂Ws is identified with a boundary component of Zt ∼= S2 × I. In particular,
Ws∪Zt ∼= Ws. Let G′ be the graph obtained from G by replacing the subgraph zt1 ws

with the vertex ws. We have that the 3-manifold represented by G′ is diffeomorphic to the
3-manifold represented by G. Therefore, we can assume without loss of generality that all
vertices have degree 2 or 3. In other words, every Ci is a cycle graph.

Let Ci be a cycle graph

v1 v2 · · · vni
e12 e23

e(ni−1)ni

eni1

(13.58)

where each vertex v` represents a 3-manifold V` so that

(1) V` = Ws
∼= D3 or S2 ×Z2 I, for some s, or

(2) V` ∼= S2 is a boundary component of Zt ∼= S2 × I, for some t.

Each edge e`(`+1) represents a component E` ∼= D2 × I intersecting both V` and V`+1.

Let Bi be the 3-manifold represented by Ci. It follows that Bi
∼= (S1 ×D2)#ki(RP 3) −⊔pi

u=1B
3 where ki is the number of V` ∼= S2 ×Z2 I and pi is the number of V` ∼= S2. Every



Chapter 13 128

S2-boundary component of Bi is a boundary component of Zt ∼= S2× I, for some t. Thus, a
dashed edge between vertices zt1 and zt2 corresponds to identifying two S2-boundary com-
ponents of Bi1 and Bi2 , for some i1 and i2.

We can construct E ∪∂ W ∪∂ Z from the graph G inductively as follows.

(1) First, we put B0 =
⊔
iBi.

(2) Put B1 = B0 ∪∂ Z1 = (
⊔
iBi) ∪∂ Z1.

(3) We have that B1 is diffeomorphic to B0 with two S2-boundary components of Bi1 and
Bi2 , for some i1, i2, identified.

(4) If i1 = i2, then Bi1 ∪∂ Z1
∼= (S1 × D2)#ki1(RP 3)#(S1 × S2) −

⋃pi1−2

u=1 B3. If i1 6= i2,

then Bi1 ∪∂ Z1 ∪∂ Bi2
∼= Bi1#Bi2

∼= 2(S1 ×D2)#(ki1 + ki2)(RP 3)−
⋃pi1+pi2−2

u=1 B3.

(5) Redefine Bi1 = Bi1#Bi2 and reindex {Bi}. After reindexing, we have that B1 =
⊔
iBi.

(6) In the general case, put Bj+1 = Bj ∪∂ Zj where Bj =
⊔
iBi and Bi

∼= ni(S
1 ×D2) #

ki(RP 3) # `i(S
1 × S2) −

⋃pi
u=1 B

3 for some integers ni > 0 and ki, `i, pi ≥ 0.

(7) Bj+1 is diffeomorphic to Bj with two S2-boundary components of Bi1 and Bi2 , for some
i1, i2, identified.

(8) If i1 = i2, then Bi1 ∪∂ Zj ∼= ni1(S1 ×D2)#ki1(RP 3)#(`i1 + 1)(S1 × S2)−
⋃pi1−2

u=1 B3.
If i1 6= i2, then Bi1 ∪∂ Zj ∪∂ Bi2

∼= Bi1#Bi2
∼= (ni1 + ni2)(S1 ×D2)#(ki1 + ki2)(RP 3)#

(`i1 + `i2)(S1 × S2)−
⋃pi1+pi2−2

u=1 B3.

(9) Repeat the process for all connected components Zt of Z. Finally, we get the manifold
E∪∂W ∪∂Z =

⊔
iBi
∼=
⊔
i ni(S

1×D2)#ki(RP 3)#`i(S
1×S2), for some integers ni > 0,

ki, `i ≥ 0.

Write A =
⊔
iAi where Ai is a connected component of A. Each Ai is the total space

of S1-fiber over a surface Σ2
Ai

= Σ2
Ai

(gi, di) of genus gi and with di boundary components.
Then,

∂M0 = A∪∂ (E∪∂W ∪∂Z) ∼=

(⊔
i

Ai

)
∪∂

(⊔
i

ni(S
1 ×D2)

)
#k(RP 3)#`(S1×S2) (13.59)

where k =
∑

i ki and ` =
∑

i `i. We note that ` is the number of cycle subgraphs of G that
are not subgraphs of C, and k is the number of Ws

∼= S2 ×Z2 I. Each copy of S1 × D2 is
glued to a boundary component of A so that ∂D2-fibers of S1× ∂D2 coincide with S1-fibers
of A.

By an explicit construction in [11, Proposition 1],(⊔
i

Ai

)
∪∂

(⊔
i

ni(S
1 ×D2)

)
∼= S3#q(S1 × S2) (13.60)
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where q =
∑

i(gi + di − 1) + r and r is the number of pairs of boundary components of the
same Bi that are glued to the same connected component of A. Therefore,

∂M0
∼= S3#k(RP 3)#(`+ q)(S1 × S2). (13.61)

According to the classification of

D4, . . . M0

pt

 in Table 13.1, ` = q = 0 and k ∈

{0, 1, 2}, or `+ q = 1 and k = 0.

Case 1: ` = q = 0. Then, r = 0, gi = 0, and di = 1 for all i. Thus, Ai is the total space
of S1-fibers over D2, for all i. Because ∂M0 is a closed manifold, E ∪∂ W ∪∂ Z =

⊔
iBi is

connected. Hence
⊔
j Bj = B1

∼= n1(S1×D2)#k(RP 3) where n1 is the number of connected

components of A and k ∈ {0, 1, 2}. Therefore, ∂M0
∼= S3,RP 3 or RP 3#RP 3.

Case 2: q = 0 and ` = 1. By the same arguments as in case 1, Ai is the total space
of S1-fibers over D2, for all i, and E ∪∂ W ∪∂ Z has exactly one connected component
B1
∼= n1(S1 ×D2)#(S1 × S2). In this case, ∂M0

∼= S1 × S2.

Case 3: q = 1 and ` = 0. If r = 1, then
∑

i(gi + di − 1) = 0. By the same arguments
as in case 1, Ai is the total space of S1-fibers over D2, for all i. However, because r = 1,
there exists a connected component of A that has at least two boundary components. This
is a contradiction. Therefore, r = 0 and

∑
i(gi + di − 1) = 1. It follows that gi = 0

for all i, and without loss of generality d1 = 2 and di = 1 for all i ≥ 2. A1 is the total
space of S1-fibers over S2 × I, and Ai is the total space of S1-fiber over D2, for all i ≥ 2.
(E ∪∂ W ∪∂ Z) =

⊔
iBi = B1 t B2 where Bk

∼= nk(S
1 × D2), for some nk ≥ 1, k ∈ {1, 2}.

A1 ∩B1 6= ∅ and A1 ∩B2 6= ∅. A has n1 + n2 − 1 connected components. Alternatively, B2

is a component

D2 Nj

∂Σ2

 for some j. In this case, ∂M0
∼= S1 × S2.

The classification of M0 follows from Lemma 2.12 and Table 13.1.

Combining Lemma 13.41 and Lemma 13.50, we get the following lemma.

Lemma 13.62. Assume that M0 intersects with

D3, S2 ×Z2 I Mj

(I, ∂I)

,

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

,

D2 Mj

(Σ2, ∂Σ2)

,

S2 Mj

(Σ2, ∂Σ2)

,

and

S1 Mj

(X3, ∂X3)

 components, and M0 is disjoint from fiber bundle components of
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other types, i.e.

∂M0 ⊂

⊔
j

D3, S2 ×Z2 I Mj

(I, ∂I)


 ∪

⊔
j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


∪

⊔
j

D2 Mj

(I, ∂I)


 ∪

⊔
j

S2 Mj

(Σ2, ∂Σ2)


 ∪

⊔
j

S1 Mj

(X3, ∂X3)


 .

(13.63)

Then, the conclusion of Lemma 13.50 is still valid but with every occurrence of Ai in
the statement replaced by Ai ∪∂

⊔
ik
Cik where Cik

∼= S1 × D2 or T 2 ×Z2 I is a fiber ofS1 ×D2, T 2 ×Z2 I Njik

∂I

, for some jik . ∂M0 is diffeomorphic to S3, S1 × S2, RP 3,

RP 3#RP 3, or a Lens space.

Proof. The proof of Lemma 13.41 is still valid when every occurrence of Ai is replaced by
Ai ∪∂

⊔
ik
Cik .

The following two lemmas describe small adjustments to Lemma 13.30, Lemma 13.38,
Lemma 13.41, Lemma 13.50, and Lemma 13.62 in the case that M0 also intersectsT 2 Mj

(Σ2, ∂Σ2)

 components in addition to

S1 Mj

(X3, ∂X3)

 components.

Lemma 13.64. In the assumption of Lemma 13.38, assume that M0 also intersectsT 2 Mj

(Σ2, ∂Σ2)

 components. That is, M0 intersects with

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

,

S1 Mj

(X3, ∂X3)

, and

T 2 Mj

(Σ2, ∂Σ2)

 components and M0 is disjoint from fiber

bundle components of other types, i.e.
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∂M0 ⊂

⊔
j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


 ∪

⊔
j

S1 Mj

(X3, ∂X3)




∪

⊔
j

T 2 Mj

(Σ2, ∂Σ2)


 . (13.65)

Then, ∂M0 = A ∪∂ C ∪∂ T where:

(i) A =
⊔
iAi where Ai is a subbundle of

S1 Nji

∂X3

 for some ji and Ai is connected.

(ii) C =
⊔
iCi where Ci ∼= (S1×D2 or T 2×Z2 I) is a fiber of

S1 ×D2, T 2 ×Z2 I Nji

∂I

,

for some ji.

(iii) T =
⊔
i Ti where Ti ∼= T 2 × I is a subbundle of

T 2 Nji

∂Σ2

, for some ji.

(iv) ∂Ci ∼= T 2 is identified with a boundary component of A or a boundary component of
Tj, for some j.

(v) Each boundary component of Ti is identified with a boundary component of A or a
boundary component of Cj, for some j.

(vi) For every i, Ti ∩ A 6= ∅.

It follows that ∂M0 is a Seifert manifold.

Figure 13.9: Example of a decomposition of ∂M0 in Lemma 13.64.
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Proof. Write ∂M0 = A∪∂C∪∂ T where we put A = ∂M0∩

⊔j

S1 Mj

(X3, ∂X3)


 , C =

∂M0 ∩

⊔j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)


 , and T = ∂M0 ∩

⊔j

T 2 Mj

(Σ2, ∂Σ2)


 .

By Proposition 12.1, A is a disjoint union of subbundles of

S1 Nj

∂X3

. Hence, A is

the total space of S1-fibers over a disjoint union of surfaces with boundary. Write A =
⊔
iAi

where Ai is a connected component of A.

From Lemma 13.5, fibers over an interior point of

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 are

disjoint from

D4, . . . M0

pt

. Hence, C is a disjoint union of fibers ofS1 ×D2, T 2 ×Z2 I Nj

∂I

. Write C =
⊔
i=1 Ci, where Ci ∼= S1 × D2 or T 2 ×Z2 I is a

connected component of C. If Ci∩A 6= ∅, then ∂Ci is identified with a boundary component
of A.

From Lemma 13.3, T is a disjoint union of subbundles of

T 2 Nj

∂Σ2

 components

which are diffeomorphic to T 2 × I. Write T =
⊔
i Ti where Ti ∼= T 2 × I is a connected

component of T .

From Lemma 13.5, if Ti ∩ Cj 6= ∅, then ∂Cj is identified with a boundary component of
Ti. Suppose that for some i, j1, and j2, Ti∩Cj1 6= ∅ and Ti∩Cj2 6= ∅. Then, Cj1 ∪∂ Ti∪∂Cj2
is a closed manifold. Consequently, ∂M0 = Cj1 ∪∂ Ti ∪∂ Cj2 . This is a contradiction since
A 6= ∅. Therefore, every Ti intersects with at most one connected component of C. In other
words, Ti ∩A 6= ∅. From Lemma 13.3, it follows that for every i, a boundary component of
Ti coincides with a boundary component of A.

In summary, each boundary component ∂Ci ∼= T 2 of C is identified with a boundary
component of A ∪∂ T . Because ∂M0 is connected, A ∪∂ T must be connected. Since Ai is
the total spaces of S1-fibers over a surface and Tj ∼= T 2 × I, for every i and j, we have that
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A ∪∂ T is a connected graph manifold with boundary. Hence,

∂M0 = (A ∪∂ T ) ∪∂

(⊔
i

Ci

)
(13.66)

∼= Q3 ∪∂

(⊔
i

(S1 ×D2)

)
∪∂

(⊔
i

(T 2 ×Z2 I)

)

where Q3 is a graph manifold.

According to the classification of

D4, . . . M0

pt

 in Table 13.1 and the classification

of Seifert manifolds in [17], ∂M0 is a Seifert manifold.

Lemma 13.67. In the assumptions of Lemma 13.30, Lemma 13.41, Lemma 13.50, and

Lemma 13.62, assume that M0 also intersects

T 2 Mj

(Σ2, ∂Σ2)

 components.

The conclusion of the lemmas are still valid when an occurrence of Aj, an S1-subbundle

of

S1 ∂Mj

∂X3

, is replaced by A′j = S ∪∂ T where:

(1) A′j is connected.

(2) S =
⊔
i Si where Si is an S1-subbundle of

S1 Nji

∂X3

, for some ji, and Si is

connected.

(3) T =
⊔
i Ti where Ti ∼= T 2 × I is a T 2-subbundle of

T 2 Nji

∂Σ2

, for some ji.

(4) For every i, each boundary component of Ti is identified with a boundary component of
S. In particular, ∂A′j ⊂ ∂S.

For Lemma 13.30 and Lemma 13.50, in addition to S3, S2 × S1,RP 3, and RP 3#RP 3, ∂M0

can also be diffeomorphic to a Lens space.
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Figure 13.10: Example of a decomposition of ∂M0 in Lemma 13.67.

Proof. Put S = ∂M0∩

⊔j

S1 Mj

(X3, ∂X3)


 and T = ∂M0∩

⊔j

T 2 Mj

(Σ2, ∂Σ2)


 .

Write S =
⊔
i Si where Si is a connected component of S and T =

⊔
i Ti where Ti is a con-

nected component of T . Put A = S ∪∂ T and write A =
⊔
j A
′
j where A′j is a connected

component of A.

From Lemma 13.3, Ti ∼= T 2×I is a T 2-subbundle of

T 2 Nji

∂Σ2

, for some ji. Moreover,

T is disjoint from any

D2 Mj

(Σ2, ∂Σ2)

 and

S2 Mj

(Σ2, ∂Σ2)

 components. Therefore,

each boundary component of Ti is identified with a boundary component of S. Since T 6= ∅,
we must have that ∂A′j ⊂ ∂S.

In the statements and the proofs of Lemma 13.30, Lemma 13.41, and Lemma 13.50,
a connected component Aj of A is the total space of S1-fibers over a connected surface.
The arguments about a decomposition of ∂M0 in the proofs of above lemmas only use the
information on the boundary components of Aj. Therefore, arguments and conclusions of
the lemmas are still valid when an occurrence of Aj is replaced by A′j = S ∪∂ T .

According to the classification of

D4, . . . M0

pt

 in Table 13.1 and from explicit con-

structions in [11], ∂M0
∼= S3, S2 × S1,RP 3, and RP 3#RP 3, or a Lens space.
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13.9 Fiber bundle components

S3/Γ, . . . Mi

(I, ∂I)



Every statement about ∂M0 =

S3, . . . ∂M0

pt

 in the previous sections also applies to

a boundary component of


S3/Γ, T 3/Γ,
S2 × S1,RP 3#RP 3 Mi

(I, ∂I)

. This is because the proofs

in the previous sections only use Proposition 12.1 and the fact that ∂M0 is a closed Seifert
manifold. Therefore, we have the following lemma.

Lemma 13.68. Lemma 13.9 to Lemma 13.50 are still valid when an occurrence of ∂M0 is

replaced with a boundary component of


S3/Γ, T 3/Γ,
S2 × S1,RP 3#RP 3 Mi

(I, ∂I)

.
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14

Gluing fiber bundle components into building blocks

Recall that we are trying to get a contradiction to Standing Assumption 3.2. At this point,
we have a sequence of connected closed Riemannian 4-manifolds {Mα}∞α=1 such that for
large α, Mα satisfies the conclusions of Proposition 12.1 and all lemmas in Chapter 13. As
mentioned in Chapter 3, we refer to Mα just by M . To get a contradiction to Standing
Assumption 3.2, we need to show that M admits an F -structure or a metric of nonnegative
sectional curvature.

As a result of Proposition 12.1 and Chapter 13, M can be decomposed into fiber bundle
components (see Table 13.1) which have disjoint interiors and are compatible along the
overlaps. The next step is to find all possible ways to glue these components together.

In this chapter, we start the gluing process by gluing the fiber bundle components into
elementary building blocks. Then we construct more complicated building blocks from dif-
ferent types of elementary building blocks. In addition to the gluing process, we also show
that the building blocks admit an F -structure.

In the next chapter, we will finish the proof of Theorem 1.4 by describing M in terms of
a configuration of building blocks and showing that M admits an F -structure or a metric of
nonnegative sectional curvature.

14.1 Gluing

D4, . . . Mj

pt

 and

S3/Γ, . . . Mi

(I, ∂I)

 components

Let Mi be a component

S3/Γ, . . . Mi

(I, ∂I)

. If there exists a component Mj =

D4, . . . Mj

pt

 such that Mi ∩ Mj 6= ∅, then by Lemma 13.8, ∂Mj is a boundary
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component of Mi.

If Mi intersects

D4, . . . Mj`

pt

 for ` ∈ {1, 2}, where Mj1 6= Mj2 , then M = Mj1 ∪∂

Mi ∪∂ Mj2
∼= Mj1 ∪∂ Mj2 .

If Mi intersects exactly one

D4, . . . Mj

pt

 component, then Mi ∪∂ Mj
∼= Mj. From

Lemma 13.68, the decomposition of a boundary component of

S3/Γ, . . . Mi

(I, ∂I)

 is the

same as the decomposition of

S3, . . . Nj

pt

.

Therefore, we can assume without loss of generality that

S3/Γ, . . . Mi

(I, ∂I)

 is

disjoint from any

D4, . . . Mj

pt

 components.

14.2 Overview of the gluing strategy

To simplify the gluing process, in the following sections we assume that M does not contain

any

S3/Γ, . . . Mi

(I, ∂I)

 component. In the next chapter, we will show that constructions

and results in this chapter are still valid when an occurrence of a component

D4, . . . Mj

pt


is replaced by a boundary component of

S3/Γ, . . . Mi

(I, ∂I)

.

We start by gluing the fiber bundle components in Table 13.1 into elementary building
blocks, then we construct general building blocks by combining different types of elementary
building blocks.
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There are four types of elementary building blocks: (2, S2), (2, T 2), (2, D2), (1, S1 ×D2).
In the following sections, we will use graphs and polyhedrons to represent building blocks
and to provide gluing instructions. The number n of an elementary building block of type
(n, F ) corresponds to the dimension of its representation while the manifold F corresponds
to its representative fiber type. The following table shows fiber bundle components that are
involved in a construction of each type of elementary building block.

Table 14.1: Elementary building blocks

Type Fiber bundle components involved

(2, S2)

D4, . . . Mj

pt

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,

S2 Mj

(Σ2, ∂Σ2)



(2, T 2)

D4, . . . Mj

pt

,

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

,

T 2 Mj

(Σ2, ∂Σ2)



(2, D2)

D4, . . . Mj

pt

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,

D2 Mj

(Σ2, ∂Σ2)

,

S1 Mj

(X3, ∂X3)



(1, S1 ×D2)

D4, . . . Mj

pt

,

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

,

S1 Mj

(X3, ∂X3)


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14.3 Elementary building block of type (2, S2)

In this section, we construct an elementary building block of type (2, S2). The fiber bundle

components that are involved in the constructions are

D4, . . . Mj

pt

,D3, S2 ×Z2 I Mj

(I, ∂I)

, and

S2 Mj

(Σ2, ∂Σ2)

.

Definition 14.1. LetMk be a component

S2 Mk

(Σ2, ∂Σ2)

. Assume that every boundary

components of Mk is attached to a manifold Wj where Wj is the manifold W in the conclusion

of Lemma 14.3. We call the union Mk∪
(⊔

jWj

)
an elementary building block of type (2, S2).

We can represent an elementary building block of type (2, S2) by a disjoint union of solid
polygons where the boundary of each polygon is the cycle graph representing the manifold
W in Lemma 14.3 and the interior represents attaching W to a boundary component of Mk.

Example 14.2. The following is a model example of an elementary of building block of type
(2, S2).

Figure 14.1: A representation of an elementary of building block of type (2, S2)

In this example, there are three

D4 Mi`

pt

 components, ` ∈ {1, 2, 3}, which are

represented by vertices, and three

D3 Mj`

(I, ∂I)

 components, ` ∈ {1, 2, 3}, which are

represented by edges. Denote the union of all Mi` and Mj` by W . We have that W ∼=

S1 × D3. There is one

S2 Mk

(Σ2, ∂Σ2)

 component, where Σ2 ∼= D2. The interior of

the triangle represents attaching ∂W to a boundary component of Mk. In this example,
M = W ∪∂ Mk

∼= (S1 ×D3) ∪ (S2 ×D2) ∼= S4.
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From Lemma 13.10, if M0 =

D4, . . . M0

pt

 only intersects

S2 Mj

(Σ2, ∂Σ2)

 and

D3, S2 ×Z2 I Mj

(I, ∂I)

 components, then M0
∼= D4, ±CP 2#D4, S2×±2D

2, or S2×Z2D
2.

Lemma 14.3. Let {Mi}i∈A0 be a collection of


D4,±CP 2#D4,
S2 ×±2 D

2, S2 ×Z2 D
2 Mi

pt

 compo-

nents such that Mi only intersects

S2 Mj

(Σ2, ∂Σ2)

 and

D3, S2 ×Z2 I Mj

(I, ∂I)

 com-

ponents (as in Lemma 13.10).

Let {Mj}j∈A1 be a collection of

D3, S2 ×Z2 I Mj

(I, ∂I)

 components such that both

fibers of

D3, S2 ×Z2 I Nj

∂I

 are contained in
⊔
i∈A0

∂Mi.

Let W be a connected component of M −
⊔
p

S2 Mp

(Σ2, ∂Σ2)

 such that W only inter-

sects components Mi, i ∈ A0, and Mj, j ∈ A1, i.e. W ⊂
(⊔

i∈A0
Mi

)
∪
(⊔

j∈A1
Mj

)
. Then,

the following holds.

(1) W can be represented by a cycle graph so that each vertex represents a component Mi,
for some i ∈ A0, and each edge represents a component Mj, for some j ∈ A1.

(2) W ∼= (S1×D3)#n1(CP 2)#n2(−CP 2)#n3(S2×S2) or S1×(S2×Z2I) ∼= S1×(RP 3#D3)
for some integers n1, n2, n3 ≥ 0. In particular, ∂W ∼= S1 × ∂D3.

(3) As a part of M , ∂W is identified with a boundary component of

S2 Mk

(Σ2, ∂Σ2)

,

for some k, so that each ∂D3-fiber of ∂W coincides with an S2-fiber of ∂Mk.

Proof. (1). We construct a graph to represent W as follows. Let G be a graph such that
each vertex vi represents a connected component Mi, for some i ∈ A0, and each vertex ej
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represents a connected component Mj, for some j ∈ A1. A vertex vi is incident to an edge
ej if and only if Mi ∩Mj 6= ∅.

From Lemma 13.10, for each i ∈ A0, ∂Mi =


S3,RP 3#RP 3,
RP 3, S1 × S2 Ni

pt

 contains exactly

two fibers Bj1 and Bj2 from

D3, S2 ×Z2 I Nj1

∂I

 and

D3, S2 ×Z2 I Nj2

∂I

, for some

j1, j2 ∈ A1 respectively. It follows that every vertex v of G has degree two. Therefore, G is
a cycle graph.

(2). Let v be a vertex and let e1 and e2 be edges incident to v.

v
e1 e2 (14.4)

We note that ifG has only one vertex, e1 and e2 are the same edge. LetMi =

D4, . . . Mi

pt


be the component represented by v and let Mjk =

D3, S2 ×Z2 I Mjk

(I, ∂I)

, k ∈ {1, 2},

be the component represented by ek. We have the following cases.

(a) Case Mjk =

D3 Mjk

(I, ∂I)

 ∼= D3 × I for k ∈ {1, 2}.

By Lemma 13.10, Mi
∼= D4 or ±CP 2#D4 and Mjk ∪∂Mi

∼= D3, for k ∈ {1, 2}. If Mi
∼=

D4, then Mj1∪∂Mi∪∂Mj2
∼= (D3×I)∪∂D4∪∂ (D3×I) ∼= D3×I. If Mi

∼= ±CP 2#D4,
then Mj1 ∪∂ Mi ∪∂ Mj2

∼= (D3 × I) ∪∂ (±CP 2#D4) ∪∂ (D3 × I) ∼= (D3 × I)#(±CP 2).

(b) Case Mjk =

S2 ×Z2 I Mjk

(I, ∂I)

 ∼= (S2 ×Z2 I)× I for k ∈ {1, 2}.

By Lemma 13.10, Mi
∼= S2 ×Z2 D

2 and Mjk ∪∂ Mi
∼= S2 ×Z2 I, for k ∈ {1, 2}. Thus,

Mj1∪∂Mi∪∂Mj2
∼= ((S2×Z2 I)×I)∪∂ (S2×Z2D

2)∪∂ ((S2×Z2 I)×I) ∼= (S2 ×Z2 I)× I.
In other words,

Mi

Mj1
Mj2 ∼=

Mj′
(14.5)
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where Mi

Mj1
Mj2 denotes Mj1 ∪∂ Mi ∪∂ Mj2 . Hence, by considering Mj1 ∪∂

Mi ∪∂ Mj2 as a single component Mj′ =

S2 ×Z2 I Mj′

(I, ∂I)

, we can assume that

there is no vertex of this type, unless G has only one vertex.

In the case that G has exactly one vertex, W is the total space of (S2×Z2 I)-fibers over
S1. The mapping class group of orientation preserving homeomorphism of S2 ×Z2 I is
trivial [34, Lemma 9.12]. Therefore, W ∼= S1 × (S2 ×Z2 I) ∼= S1 × (RP 3#D3).

(c) Case Mj1 =

D3 Mj1

(I, ∂I)

 ∼= D3 × I and Mj2 =

S2 ×Z2 I Mj2

(I, ∂I)


∼= (S2 ×Z2 I)× I.

By Lemma 13.10, Mi
∼= S2 ×±2 D

2, Mj1 ∩Mi
∼= D3, and Mj2 ∩Mi

∼= S2 ×Z2 I.

Let v′ be the vertex adjacent to v via e2. By the assumption in the previous case, we

have that v′ represents a component Mi′ =

S2 ×±2 D
2 Mi′

pt

, for some i′ ∈ A0.

Additionally, v′ is incident to an edge e3 representing a component

D3 Mj3

(I, ∂I)

 ∼=
D3 × I, for some j3 ∈ A1.

v v′
e1 e2 e3 (14.6)

Mi ∪∂ Mj2 ∪∂ Mi′ is diffeomorphic to (S2 ×±2 D
2) ∪∂ (S2 ×±2 D

2) where two copies
of (S2 ×Z2 I) ∼= RP 3#D3 on their RP 3-boundaries are identified. Therefore, Mi ∪∂
Mj2∪∂Mi′ is diffeomorphic to (D3×I)#(S2×S2) or (D3×I)#(S2×̃S2) where S2×̃S2 ∼=
CP 2#(−CP 2) is the nontrivial orientable S2-bundle over S2 (see Lemma 2.13).

From all cases, we have that if W is not diffeomorphic to S1 × (RP 3#D3), then

W ∼=

(
m⋃
i=1

(D3 × [0, 1])i

)
#n1(CP 2)#n2(−CP 2)#n3(S2 × S2) (14.7)

where the union is so that (D3 × {1})i is identified with (D3 × {0})i+1, i ∈ Z/mZ, for
some integers n1, n2, n3 ≥ 0. Because the mapping class group of orientation preserving
homeomorphism of D3 is trivial,

W ∼= (S1 ×D3)#n1(CP 2)#n2(−CP 2)#n3(S2 × S2) (14.8)
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for some integers n1, n2, n3 ≥ 0. In particular, ∂W ∼= S1 × ∂D3.

(3) From Lemma 13.2 and Lemma 13.4, the boundary of each fiber ofD3, S2 ×Z2 I Mj

(I, ∂I)

, j ∈ A1, coincides with an S2-fiber of of

S2 Nk

∂Σ2

, for some

k. From Lemma 13.10, ∂M0−(Bj1∪∂Bj2) ∼= S2×I is a subbundle of

S2 Nk

∂Σ2

, for some

k. By connectedness, ∂W is identified with a boundary component of

S2 Mk

(Σ2, ∂Σ2)

,

for some k, so that each ∂D3-fiber of ∂W coincides with an S2-fiber of ∂Mk.

In the following lemma, we construct an F -structure on an elementary building block of
type (2, S2).

Lemma 14.9. Let Y be an elementary building block of type (2, S2). That is, Y = Mk ∪(⊔
jWj

)
for some component Mk =

S2 Mk

(Σ2, ∂Σ2)

 and Wj is a manifold represented

by a cycle graph in Lemma 14.3. Then, Y admits an F -structure.

Proof. From Lemma 14.3,

Y ∼=

[
Mk ∪∂

(⊔
i

S1 ×D3

)
∪∂

(⊔
j

S1 × (RP 3#D3)

)]
#n(CP 2)#m(−CP 2)#p(S2 × S2)

(14.10)
where the union is so that each ∂D3-fiber of ∂Wj is identified with an S2-fiber of Mk, for
some integers n,m, p ≥ 0.

An orientable S2-bundle over a compact surface with boundary is trivial [14]. Let S1

act on Mk by rotations (with two fixed points) on each S2-fiber and act trivially on the
base (Σ2, ∂Σ2). Let S1 act on each copy of S1 × D3 by extending the S1-action on S2-
fibers of ∂Mk to rotations on D3-fibers about an axis. For each copy of S1 × (RP 3#D3) ∼=
S1× (S2×Z2 I), we consider the double covering S1 × (S2 × I) S1 × (S2 ×Z2 I)π . Let

S1 act on S1×(S2×I) by rotations on each S2-fiber and act trivially on the S1 and I-factors.
The action can be made compatible with π and the S1-action on Mk.

The above construction gives an F -structure on Mk∪∂
⊔
i(S

1×D3)∪∂
⊔
j(S

1×(RP 3#D3)).
Paternain and Petean [21, Theorem 5.9] showed that the connected sum of two manifolds
X and Y with F -structure admits an F -structure, provided that X and Y have at least
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one open set with a trivial normal covering (as in Definition 2.26). Since CP 2,−CP 2, and
S2 × S2 admit a T -structure [21], Y admits an F -structure.

14.4 Elementary building block of type (2, T 2)

In this section, we construct an elementary building block of type (2, T 2). The fiber bundle

components that are involved in the constructions are

D4, . . . Mj

pt

,S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

, and

T 2 Mj

(Σ2, ∂Σ2)

.

Definition 14.11. Let Mk be a component

T 2 Mk

(Σ2, ∂Σ2)

. Assume that every bound-

ary component of Mk is attached to a manifold Wj where Wj is the manifold W in the

conclusion of Lemma 14.14. We call the union Mk ∪
(⊔

jWj

)
an elementary building block

of type (2, T 2).

We represent an elementary building block of type (2, T 2) by a disjoint union of solid
polygons where the boundary of each polygon is the cycle graph representing the manifold
W in Lemma 14.14 and the interior represents attaching W to a boundary component of
Mk.

Example 14.12. The following is a model of an elementary building block of type (2, T 2).

Figure 14.2: A representation of an elementary building block of type (2, T 2)

In this example, there are three

S1 ×D3 Mi`

pt

 components, ` ∈ {1, 2, 3}, which

are represented by vertices, and three

S1 ×D2 Mj`

(I, ∂I)

 components, ` ∈ {1, 2, 3},

which are represented by edges. Denote the union of all Mi` and Mj` by W . We have that
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W ∼= S1 × (S1 × D2). There is one

T 2 Mk

(Σ2, ∂Σ2)

 component, where Σ2 ∼= D2. The

interior of the triangle represents attaching ∂W to a boundary component of Mk In this
case, M = Mk ∪∂ W ∼= S1 × (S1 ×D2) ∪D2 × T 2 ∼= S1 × S3.

From Lemma 13.17, if M0 =

D4, . . . M0

pt

 only intersects

T 2 Mj

(Σ2, ∂Σ2)

 and

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components, then

M0
∼=



D4,±CP 2#D4 if ∂M0
∼= S3,

S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M0
∼= S2 × S1,

S2 ×ω D2, ω ∈ Z if ∂M0
∼= L(|ω|, 1),

S2 ×Z2 D
2 if ∂M0

∼= RP 3#RP 3,
(S2 ×ω D2)/Z2, ω ∈ Z if ∂M0

∼= L(|ω|, 1)/Z2,
T 2 ×Z2 D

2,B3×̃I,B4×̃I if ∂M0
∼= G2.

(14.13)

Lemma 14.14. Let {Mi}i∈A0 be a collection of

D4, . . . Mi

pt

 components such that Mi

only intersects

T 2 Mj

(Σ2, ∂Σ2)

 and

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components (as in

Lemma 13.17).

Let {Mj}j∈A1 be a collection of

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components such that

both fibers of

S1 ×D2, T 2 ×Z2 I Nj

∂I

 are contained in
⊔
i∈A0

∂Mi.

Let W be a connected component of M−
⊔
p

T 2 Mp

(Σ2, ∂Σ2)

 such that W only inter-

sects components Mi, i ∈ A0, and Mj, j ∈ A1, i.e. W ⊂
(⊔

i∈A0
Mi

)
∪
(⊔

j∈A1
Mj

)
. Then,

the following holds.



Chapter 14 146

(1) W can be represented by a cycle graph so that each vertex represents Mi, for some
i ∈ A0 and each edge represents Mj, for some j ∈ A1.

(2) ∂W is a T 2-bundle over S1. W admits an F -structure which restricts to local T 2-
actions on ∂W . The local T 2-actions on ∂W are free and their orbits coincide with
T 2-fibers of ∂W .

(3) As a part of M , ∂W is identified with a boundary component of

T 2 Mk

(Σ2, ∂Σ2)

,

for some k, so that T 2-fibers of ∂W coincide with T 2-fibers of Mk.

Proof. Here, we prove part (1) and part (3). In the next subsection, we give a proof of part
(2).

(1). We construct a graph to represent W as follows. Let G be a graph such that
each vertex vi represents a connected component Mi, for some i ∈ A0, and each vertex ej
represents a connected component Mj, for some j ∈ A1. A vertex vi is incident to an edge
ej if and only if Mi ∩Mj 6= ∅.

From Lemma 13.17, for each i ∈ A0, ∂Mi contains exactly two fibers Fj1 and Fj2 fromS1 ×D2, T 2 ×Z2 I Nj1

∂I

 and

S1 ×D2, T 2 ×Z2 I Nj2

∂I

, for some j1, j2 ∈ A1 re-

spectively. It follows that every vertex v of G has degree two. Therefore, G is a cycle
graph.

(3) From Lemma 13.3 and Lemma 13.5, the boundary of each fiber ofS1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 coincides with a T 2-fiber of of

T 2 Nk

∂Σ2

, for some k.

From Lemma 13.17, ∂M0− (Fj1 ∪∂ Fj2) ∼= T 2× I is a subbundle of

T 2 Nk

∂Σ2

, for some

k. By connectedness, ∂W is identified with a boundary component of

T 2 Mk

(Σ2, ∂Σ2)

,

for some k so that each T 2-fiber of ∂W coincides with a T 2-fiber of ∂Mk.

14.4.1 Proof of Lemma 14.14 (2)

In this subsection, we prove part (2) of Lemma 14.14. Let v be a vertex and let e1 and e2

be edges incident to v.

v
e1 e2 (14.15)
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We note that ifG has only one vertex, e1 and e2 are the same edge. LetM v
i =

D4, . . . M v
i

pt


be the component represented by v and letM e

jk
=

S1 ×D2, T 2 ×Z2 I M e
jk

(I, ∂I)

, k ∈ {1, 2},

be the component represented by ek. We denote the fiber of

S1 ×D2, T 2 ×Z2 I N e
jk

(I, ∂I)


that is contained in ∂M v

i by Fjk , for k ∈ {1, 2}. We have the following cases.

(a) Case M e
jk

=

S1 ×D2 M e
jk

(I, ∂I)

 ∼= (S1 ×D2)× I for k ∈ {1, 2}.

By Lemma 13.17, ∂M v
i = B1 ∪∂ A ∪∂ B2 where A ∼= T 2 × I and Bk

∼= S1 × D2,
k ∈ {1, 2}. Fjk ⊂ M e

jk
attaches to Bk ⊂ M v

i . Consider that ∂M v
i
∼= B1 ∪∂ B2

∼=
(S1 ×D2) ∪∂ (S1 ×D2) via the identifying map ϕ : (S1 × ∂D2)︸ ︷︷ ︸

∂B1

→ (S1 × ∂D2)︸ ︷︷ ︸
∂B2

. Up to

isotopy, ϕ ∈ SL2(Z). ∂M v
i
∼= L(p, q) if and only if ϕ sends a meridian {x} × ∂D2 to

a circle of slope q
p
. We adapt the convention from [10] that a meridian has slope ∞, a

longitude S1 × {y} has slope 0, L(1, 0) ∼= S3, and L(0, 1) ∼= S1 × S2. In particular,

M v
i
∼=


D4,±CP 2#D4 if ∂M v

i
∼= S3,

S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I if ∂M v
i
∼= S1 × S2,

S2 ×ω D2 if ∂M v
i
∼= L(|ω|, 1).

(14.16)
We have the following cases.

(i) M v
i
∼= S1 ×D3.

In this case, ∂M v
i
∼= S1 × ∂D3 ∼= S1 × S2 and ϕ sends a meridian to a meridian.

Then, we can consider M v
i
∼= S1 × (D2 × [0, 1]) where Fj1 → B1 sends {x} ×D2

to {x} × (D2 × {0}) and Fj2 → B2 sends {x} ×D2 to {x} × (D2 × {1}).

Figure 14.3: M e
j1
∪∂ M v

i ∪∂ M e
j2

in case (a) when M v
i
∼= S1 ×D3. In this figure, only one

D2-fiber of M e
jk

, k ∈ {1, 2} and one D3-fiber of M v
i are showed.
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Hence,

M e
j1
∪∂M v

i ∪∂M e
j2
∼= ((S1×D2)×I)∪∂ (S1×D3)∪∂ ((S1×D2)×I) ∼= (S1×D2)×I.

(14.17)
In other words, the manifold represented by the graph

v′ v v′′ (14.18)

is diffeomorphic to the manifold represented by the graph

v′ v′′. (14.19)

Therefore, we can assume that there are no vertices of this type unless the graph
G has only one vertex. In the case that G has one vertex, W ∼= (S1 ×D2) × S1

and ∂W ∼= ∂(S1 ×D2)× S1 ∼= T 2 × S1.

(ii) M v
i
∼= S2 ×D2.

In this case, ∂M v
i
∼= S2 × ∂D2 ∼= S2 × S1 and ϕ sends a meridian to a meridian.

Consider ∂M v
i
∼= S2 ×D2 as a D2-bundle over S2. Then, Fk ∼= D2

k × ∂D2 where
D2
k is a 2-disk subset of the base S2. Thus, we have that {x} ×D2 7→ D2

k × {y}.

Figure 14.4: M e
j1
∪∂ M v

i ∪∂ M e
j2

in case (a) when M v
i
∼= S2 ×D2. In this figure, only one

D2-fiber of M e
jk

, k ∈ {1, 2} and one D2-fiber of M v
i are showed.

Let (M e)′jk
∼= M e

jk
∪∂ (D2 × S1) along the identity attaching map ∂Fjk

∼= S1 ×
∂D2 → ∂D2 × S1. It follows that (M e)′jk is a trivial D2-bundle over a surface
Σ2
k
∼= (S1 × I) ∪∂ D2 ∼= D2. Then, we have that M e

jk
∪∂ M v

i
∼= (M e)′jk�M

v
i
∼=

(Σ2
k ×D2)�(S2 ×D2) where � denotes a plumbing (see Section 2.6). Therefore,

M v
i

Me
j1

Me
j2 ∼= (Σ2

1 ×D2)︸ ︷︷ ︸
(Me)′j1

� (S2 ×D2)︸ ︷︷ ︸
Mv
i

� (Σ2
2 ×D2)︸ ︷︷ ︸
(Me)′j2

(14.20)

where M v
i

Me
j1

Me
j2 denotes M e

j1
∪∂ M v

i ∪∂ M e
j2

.
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Figure 14.5: (M e)′j1 ∪∂ M
v
i ∪∂ (M e)′j2 in case (a) when M v

i
∼= S2 ×D2 in terms of plumbing

Suppose that there exists a component M v
i2

=

S2 ×D2 M v
i2

pt

, i2 ∈ A0, such

that M v
i2
∩M e

j2
6= ∅. In other words, there exists a vertex v2 (representing M v

i2
)

adjacent to v via the edge e2. Let (M e)′′j2
∼= (M e)′j2∪∂ (D2×S1) along the identity

attaching map S1×∂Σ2
2 → ∂D2×S1. It follows that (M e)′′j2 is a trivial D2-bundle

over Σ2
2 ∪∂ D2 ∼= S2. Therefore,

M v
i M v

i2

Me
j1

Me
j2 ∼= (Σ2

1 ×D2)︸ ︷︷ ︸
(Me)′j1

� (S2 ×D2)︸ ︷︷ ︸
Mv
i

� (S2 ×D2)︸ ︷︷ ︸
(Me)′′j2

� (S2 ×D2)︸ ︷︷ ︸
Mv
i2

.

(14.21)

If the graph G has one vertex, then W is a cyclic plumbing of two copies of
S2 ×D2, i.e. W is a 4-manifold with plumbing diagram

W ∼= S2 ×D2 S2 ×D2

�

�

. (14.22)

In particular, ∂W is a T 2-bundle over S1. From Lemma 2.30, W admits a T -
structure which restricts to local T 2-actions on ∂W . The local T 2-actions on ∂W
are free and their orbits coincide with T 2-fibers of ∂W .

(iii) M v
i
∼= S2 ×ω D2, ω ∈ Z, ω 6= 0.

We note that S2 ×∓1 D
2 ∼= ±CP 2#D4 ([26, Section 2.4]). In this case, ∂M v

i
∼=

L(|ω|, 1) and ϕ : (S1 × ∂D2)︸ ︷︷ ︸
∂B1

→ (S1 × ∂D2)︸ ︷︷ ︸
∂B2

is isotopic to the linear map

(
−1 0
ω 1

)
.

Consider ∂M v
i
∼= S2 ×ω D2 as a D2-bundle over S2. Write S2 = D̂2

1 ∪∂ D̂2
2 where

D̂2
k, k ∈ {1, 2}, is a 2-disk and consider Bk

∼= D̂2
k × ∂D2.

Then, we can consider ∂M v
i
∼= D̂2

1 × D2
1 ∪ψ D̂2

2 × D2
2 where the attaching map

ψ : ∂D̂2
1×D2

1 → ∂D̂2
2×D2

2 is a linear extension of ϕ. Using the polar coordinates

(s, θ)×(r, φ), r, s ∈ [0, 1], θ, φ ∈ [0, 2π) on D̂2
k×D2

k, we have that ψ((1, θ)×(r, φ)) =
(1,−θ)× (r, ωθ + φ).
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Let (M e)′jk
∼= M e

jk
∪∂ (D2 × S1) along the identity attaching map ∂Fjk

∼= S1 ×
∂D2 → ∂D2 × S1. By the same argument as in the previous case,

M v
i

Me
j1

Me
j2 ∼= (Σ2

1 ×D2)︸ ︷︷ ︸
(Me)′j1

� (S2 ×ω D2)︸ ︷︷ ︸
Mv
i

� (Σ2
2 ×D2)︸ ︷︷ ︸
(Me)′j2

. (14.23)

Similarly, if there exists a component M v
i2

=

S2 ×ω D2 M v
i2

pt

, i2 ∈ A0, such

that M v
i2
∩M e

j2
6= ∅, then

M v
i M v

i2

Me
j1

Me
j2 ∼= (Σ2

1 ×D2)︸ ︷︷ ︸
(Me)′j1

� (S2 ×ω D2)︸ ︷︷ ︸
Mv
i

� (S2 ×D2)︸ ︷︷ ︸
(Me)′′j2

� (S2 ×ω D2)︸ ︷︷ ︸
Mv
i2

.

(14.24)

If the graph G has one vertex, then W is a 4-manifold with plumbing diagram

W ∼= S2 ×D2 S2 ×ω D2

�

�

. (14.25)

In particular, ∂W is a T 2-bundle over S1. From Lemma 2.30, W admits a T -
structure which restricts to local T 2-actions on ∂W . The local T 2-actions on ∂W
are free and their orbits coincide with T 2-fibers of ∂W .

(iv) M v
i
∼= D4.

In this case, ∂M v
i
∼= S3 and ϕ sends a meridian to a longitude. Consider M v

i
∼=

D4 ∼= D2
1 × D2

2 where D2
1 and D2

2 are 2-disks. Then, ∂M v
i
∼= (D2

1 × ∂D2
2) ∪

(∂D2
1 ×D2

2). Let φ1 : Fj1
∼= S1 × D2 → D2

1 × ∂D2
2 and φ2 : Fj2

∼= S1 × D2 →
∂D2

1 ×D2
2 be the attaching maps from M e

j1
and M e

j2
to M v

i respectively. We have

that (φ2|∂Fj2 )−1
2 ◦ (φ1|∂Fj1 ) must be isotopic to ϕ =

(
0 1
1 0

)
.

Let (M e)′jk
∼= M e

jk
∪∂ (D2×S1) along attaching map φ1|∂Fj1 : ∂Fjk

∼= S1×∂D2 →
∂D2 × S1. It follows that (M e)′jk is a D2-bundle over Σ2

k
∼= (S1 × I) ∪∂ D2 ∼= D2

and Fjk ∪∂ (D2 × S1) ∼= D̂2
1 ×D2 for some 2-disk D̂2

k ⊂ Σ2
k. Hence,

M v
i

Me
j1

Me
j2 ∼= (M e)′j1 ∪ψ (M e)′j2 (14.26)

where ψ : D̂2
1 ×D2 → D̂2

2 ×D2 is an extension of (φ−1
2 ◦ φ1) : Fj1 → Fj2 . ψ sends

D̂2
1 × {y} to {x} ×D2 and sends {x} ×D2 to D̂2

2 × {y}. In other words,

(M e)′j1 ∪ψ (M e)′j2
∼= (M e)′j1�(M e)′j2 . (14.27)
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Figure 14.6: M e
j1
∪∂ M v

i ∪∂ M e
j2

in case (a) when M v
i
∼= D4 in terms of plumbing

Suppose that there exists a component M v
i2

=

S2 ×ω D2 M v
i2

pt

, ω ∈ Z,

i2 ∈ A0, such that M v
i2
∩ M e

j2
6= ∅. In other words, there exists a vertex v′

(representing M v
i2

) adjacent to v via the edge e2. Let (M e)′′j2
∼= (M e)′j2∪∂ (D2×S1)

along the identity attaching map S1 × ∂Σ2
2 → ∂D2 × S1. It follows that (M e)′′j2

is a D2-bundle over S2. In contrast to the case M v
i
∼= S2 ×ω D2, (M e)′′j2 is not

necessary a trivial bundle. Therefore,

M v
i M v

i2

Me
j1

Me
j2 ∼= (Σ2

1 ×D2)︸ ︷︷ ︸
(Me)′j1

� (S2 ×ω′ D2)︸ ︷︷ ︸
(Me)′′j2

� (S2 ×ω D2)︸ ︷︷ ︸
Mv
i2

. (14.28)

If the graph G has one vertex, then W can be obtained from (M e)′′j1 by identifying

D̂2
1 × D2

1 ⊂ (M e)′′j1 and D̂2
2 × D2

2 ⊂ (M e)′′j1 with ψ. Consider that (M e)′′j1
∼=

D̂2
1 × D2

1 ∪ D̂2
2 × D2

2 where ψ−1 is the attaching map. Thus, (M e)′′j1 is a trivial
D2-bundle over S2. Therefore, W is diffeomorphic to the resulting manifold of
a self-plumbing of S2 × D2. In particular, ∂W is a T 2-bundle over S1. From
Lemma 2.30, W admits a T -structure which restricts to local T 2-actions on ∂W .
The local T 2-actions on ∂W are free and their orbits coincide with T 2-fibers of
∂W .

(v) M v
i
∼= (S2×̃S1)×̃I or (RP 2 × S1)×̃I.

In this case, ∂M v
i
∼= S1 × S2. Let Ui be an open neighborhood of M v

i in M e
j1
∪∂

M v
i ∪∂ M e

j2
such that Vjk = Ui ∩M e

jk
is a subbundle of M e

jk
and Vjk ∩M e

jk
= Fjk ,

k ∈ {1, 2}.

Let Ũi Ui
π be a double covering constructed as follows. Ũi = Ṽj1 ∪∂ M̃i ∪∂

Ṽj2 where we put Ṽjk = π−1(Vjk), k ∈ {1, 2}, and M̃i
∼= (S2×S1)×[0, 1] is a double

cover of M v
i . We denote an (S2 × S1)-fiber of M̃i by (S2 × S1) × {t}, t ∈ [0, 1].

Write Ṽjk = Vjk(0) t Vjk(1) where π(Vjk(0)) = π(Vjk(1)) = Vjk . For k ∈ {1, 2},
put Fjk(0) = Vjk(0)∩ (S2×S1)×{0} and Fjk(1) = Vjk(1)∩ (S2×S1)×{1}. Then,
π(Fjk(0)) = π(Fjk(1)) = Fjk .

For k ∈ {1, 2}, let Fjk be a subset of M̃i so that Fjk ∼= (S1 × D2) × [0, 1] and
(S1 × D2) × {t} ⊂ (S2 × S1) × {t} for all t ∈ [0, 1]. We also require that (S1 ×
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D2) × {0} coincides with Fjk(0) and (S1 × D2) × {1} coincides with Fjk(1). It

follows that Vjk(0) ∪Fjk ∪ Vjk(1) ∼= (S1 ×D2)× I. Moreover, M̃i − (Fj1 ∪Fj2) ∼=
((S1 × I) × S1) × [0, 1] ∼= (T 2 × I) × [0, 1]. The two boundary components of
(T 2 × ∂I)× {t} coincide with the boundary of an (S1 ×D2)-fiber of Fj1 and Fj2
respectively.

Figure 14.7: Ũi = Ṽj1 ∪∂ M̃i ∪∂ Ṽj2 when M v
i
∼= (S2×̃S1)×̃I

Let T 2 act on M̃i − (Fj1 ∪ Fj2) ∼= (T 2 × I) × [0, 1] by the standard action on
the T 2-factor and act trivially on the other factors. Let φ be a T 2-action on
Vjk(0) ∪ Fjk ∪ Vjk(1) ∼= (S1 × D2) × I by any action that restricts to a free T 2-
action on ∂(S1 × D2) × I and such that π ◦ φ = π. As a result, we get local

T 2-actions on Ũi that are compatible with π.

To show that W admits an F -structure which restricts to local T 2-actions on ∂W , it
suffices to construct local T 2-actions on 4-manifolds represented by the graphs

G1 = v1 · · · vm
e1 e2 em em+1

(14.29)

and
G2 = v1 v2 · · · vm

e1 e2

em

(14.30)

where all vertices are from cases (i) to (iv). In other words, G1 and G2 represents the
resulting manifold of a linear or a cyclic plumbing of D2-bundles over S2. Fintushel
[7] constructed local T 2-actions on such manifolds.

Therefore, there exists local T 2-actions on W and from the constructions in [7], their
restrictions to the boundary are free and their orbits coincide with T 2-fibers of ∂W .

(b) CaseM e
j1

=

S1 ×D2 M e
j1

(I, ∂I)

 = (S1×D2)×I andM e
j2

=

T 2 ×Z2 I M e
j2

(I, ∂I)

 =

(T 2 ×Z2 I)× I.
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By Lemma 13.17, M v
i
∼= S1 ×D3, S2 ×D2, (RP 2 × S1)×̃I, (S2×̃S1)×̃I, S2 ×Z2 D

2, or
(S2 ×ω D2)/Z2.

Let v′ be the vertex joined with v by e2 and let e3 be an edge incident to v′. v′ represents

a component M v
i′ =

D4, . . . M v
i′

pt

, for some i′ ∈ A0. In this case, we assume that

e3 represents M e
j3
∼= (S1 ×D2)× I. The case that e3 represents M e

j3
∼= (T 2 ×Z2 I)× I

will be considered later in case (c). We have the following subgraph of G

· · · v v′ · · ·e1 e2 e3 (14.31)

where dashed edges represent

T 2 ×Z2 I M e
j

(I, ∂I)

 components and solid edges re-

present

S1 ×D2 M e
j

(I, ∂I)

 components. We have the following cases.

(i) M v
i ,M

v
i′
∼= S1 ×D3 or S2 ×D2

Let M̃ e
j2

M e
j2

π be a double covering. M̃ e
j2
∼= (T 2× I)× [0, 1]. π((T 2× I)×

{0}) coincides with T 2-fibers of Ai ⊂ ∂M v
i and π((T 2 × I)× {1}) coincides with

T 2-fibers of Ai′ ⊂ ∂M v
i′ .

Let T 2 act on M̃ e
j2

by the standard action on the T 2-factor and act trivially on the
I-factors. By the same constructions as in case (a), there are local T 2-actions on
M v

i and M v
i′ so that their restrictions on ∂M v

i and ∂M v
i′ are free. The T 2-action

on M̃ e
j2

is compatible with π and with local T 2-actions on M v
i and M v

i′ .

(ii) M v
i
∼= (RP 2×S1)×̃I, (S2×̃S1)×̃I, S2×Z2D

2, or (S2×ωD2)/Z2 and M v
i′
∼= S1×D3

or S2 ×D2.

Let U be an open neighborhood of M v
i ∪M e

j2
in W such that U∩M e

j1
is a subbundle

of M e
j1

. Put Vj1 = U ∩M e
j1

and Fj1 = Vj1 ∩M v
i . We have that Fj1

∼= S1 ×D2.

Let Ũ Uπ be a double covering. Ũ = Ṽj1 ∪ M̃ v
i ∪ M̃ e

j2
where Ṽj1 is a

double cover of Vj1 , M̃ e
j2

is a double cover of M e
j2

and M̃ v
i is a double cover of

M v
i . We have that Ṽj1 is the union of two copies of S1 ×D2’s, which we denote

by Vj1(0) and Vj1(1). Then, π(Vj1(0)) = π(Vj1(0)) = Vj1 . Next, we have that

M̃ e
j2
∼= (T 2 × [0, 1]) × [0, 1]. We denote a T 2-fiber of M̃ e

j2
by T 2 × (s, t) where

(s, t) ∈ [0, 1]× [0, 1]. Lastly, M̃ v
i
∼= (S2 × S1)× I or S2 ×ω D2, ω ∈ Z.

From Lemma 13.17, ∂M v
i = Bi ∪∂ Ai ∪∂ Ci where Bi

∼= S1 ×D2, Ci ∼= T 2 ×Z2 I,

and Ai ∼= T 2×I. Then, ∂M̃ v
i = Bi,1∪∂Ai1 ∪∂ C̃i∪∂Ai2 ∪∂Bi,2 where Bi,1

∼= Bi,2
∼=
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S1×D2, Ai1
∼= Ai2

∼= T 2× I, and C̃i ∼= T 2× I. We have that Bi1 = Vj1(0)∩ ∂M̃ v
i

and Bi2 = Vj1(1) ∩ ∂M̃ v
i . Additionally, each T 2 × (s, 0) coincides with a T 2-fiber

of C̃i. Similar arguments apply for each T 2 × (s, 1), s ∈ [0, 1].

Let T 2 act on M̃ e
j2

by the standard action on the T 2-factor and act trivially on
the [0, 1]-factors. By the same constructions as in case (a), there is a T 2-action

on Ṽj1 ∪ M̃ v
i whose orbits coincide with the orbits of the T 2-action on M̃ e

j2
along

the overlaps.

By the same arguments as in case (a), there are local T 2-actions on M v
i and M v

i′

so that their restrictions on ∂M v
i′ are free and their orbits coincide with T 2-fibers

of Ai and Ai′ . In particular, the T 2-action on M̃ e
j2

is compatible with π and with

local T 2-actions on M v
i and M v

i′ . Therefore, there are local T 2-actions on Ũ that
are compatible with π and local T 2-actions on W − U .

(iii) M v
i ,M

v
i′
∼= (RP 2 × S1)×̃I, (S2×̃S1)×̃I, S2 ×Z2 D

2, or (S2 ×ω D2)/Z2.

Let U be an open neighborhood of M v
i ∪∂M e

j2
∪∂M v

i′ in W such that Vj1 = U∩M e
j1

is a subbundle of M e
j1

and Vj3 = U ∩M e
j3

is a subbundle of M e
j3

.

Let Ũ Uπ be a double covering constructed as follows. Ũ = Ṽj0 ∪∂ M̃ v
i ∪∂

M̃ e
j2
∪∂ M̃ v

i′ ∪∂ Ṽj3 where Ṽjk is a double cover of Vjk , k ∈ {1, 3}, M̃ v
i is a double

cover of M v
i , M̃ v

i′ is a double cover of M v
i′ , and M̃ e

j2
is a double cover of M e

j2
.

By similar arguments as in case (ii), there are local T 2-actions on Ũ that are
compatible with π and local T 2-actions on W − U .

(c) Case M e
jk

=

T 2 × I M e
jk

(I, ∂I)

 ∼= (T 2 ×Z2 I)× I for k ∈ {1, 2}.

By Lemma 13.17, M v
i
∼= T 2×Z2D

2,B3×̃I, or B4×̃I. For k ∈ {1, 2}, let vk be the vertex
adjacent to v via the edge ek. Let e0 be the edge incident to v1 and e3 be the edge
incident to v2. First we assume that M e

j0
∼= M e

j3
∼= (S1×D2)× I. That is M v

i1
and M v

i2

are from case (ii). We have the following subgraph of G

· · · v1 v v2 · · ·e0 e1 e2 e3 (14.32)

where dashed edges represent

T 2 ×Z2 I M e
j

(I, ∂I)

 components and solid edges re-

present

S1 ×D2 M e
j

(I, ∂I)

 components.



Chapter 14 155

Let M̃ v
i be a double cover of M v

i . From Lemma 13.17, ∂M v
i = C1 ∪∂ A1 ∪∂ C2 where

C1
∼= C2

∼= T 2 ×Z2 I, and A ∼= T 2 × I. Then,

∂M̃ v
i = C̃1 Ai1 C̃2 Ai2∪∂ ∪∂ ∪∂

∪∂

(14.33)

where Ai1
∼= Ai2

∼= T 2 × I, and C̃1
∼= C̃2

∼= T 2 × I are double covers of C1 and C2

respectively. Thus, ∂M̃ v
i is a T 2-bundle over S1.

Let Z = M e
j1
∪∂ M v

i ∪∂ M e
j2

. Let Z̃ Zπ be a double covering. We have Z̃ =

M̃ e
j1
∪∂ M̃ v

i ∪∂ M̃ e
j2

where M̃ e
jk
∼= (T 2× [0, 1])× [0, 1] is a double cover of M e

jk
, k ∈ {1, 2}.

We denote each T 2-fiber of M̃ e
jk

by T 2×(s, t) for (s, t) ∈ [0, 1]×[0, 1]. Then, M̃ e
j1
∩∂M̃ v

i =

T 2 × [0, 1]× {1} coincides with C̃1 fiberwise. Similarly, M̃ e
j2
∩ ∂M̃ v

i = T 2 × [0, 1]× {0}
coincides with C̃2 fiberwise.

By similar arguments as in case (ii), for each k ∈ {1, 2}, there exists an F -structure
on M v

ik
∪M e

jk
which restricts to the standard T 2-action on the T 2-factors and to the

trivial action on the I-factors of M̃ e
jk
∼= (T 2 × I)× I.

M̃ v
i
∼= T 2 × D2 or G2 × I. In both cases, there exists a T 2-action on M̃ v

i whose

orbits coincides with T 2-fibers of C̃k ⊂ ∂M̃ v
i , k ∈ {1, 2}. Therefore, there exists an

F -structure on M v
i1
∪M e

j1
∪M v

i ∪M e
j2
∪M v

i2
.

More generally, we have the following subgraph of G,

· · · v1 v2 · · · vm−1 vm · · ·e0 e1 em−1 em (14.34)

By repeating the above argument on M v
j2
,M v

j3
, . . . ,M v

jm−1
, we get an F -structure on

Z = M v
i1
∪M e

j1
∪ . . . ∪M e

jm−1
∪M v

im .

In the case that G has only one vertex, W = M v
i ∪M e

j1
where M v

i ∩M e
j1

is the union

of two copies of T 2 ×Z2 I. Let W̃ be a double cover of W . W̃ = M̃ v
i ∪ M̃ e

j1
where

M̃ e
j1
∩ M̃ v

i = C̃1 ∪ C̃2. Let T 2 act by the standard T 2-action on the T 2-factor and

act trivially on the (I × I)-factor of M̃ e
j1

. There exists a T 2-action on M̃ v
i whose

orbits coincides with T 2-fibers of C̃k ⊂ ∂M̃ v
i , k ∈ {1, 2}. Therefore, there exists an

F -structure on W which restricts to local free T 2-actions on ∂W .

It follows from case (a) to case (c) that there is a collection of an open sets {Ui} which

covers W so that there exists a T 2-action on Ui or its double cover Ũi and the actions are
compatible with the covering maps and with each other along the intersections. Additionally,
their restrictions on ∂W are free. Therefore, W admits an F -structure which restricts to
local free T 2-actions on ∂W . This completes the proof of Lemma 14.14 (2).
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14.4.2 An F -structure on an elementary building block of type (2, T 2)

In the following lemma, we show that an elementary building block of type (2, T 2) admits an
F -structure by extending the F -structure on the manifold W constructed in Lemma 14.14

to the component

T 2 Mk

(Σ2, ∂Σ2)

 it attaches to.

Lemma 14.35. Let Mk be a component

T 2 Mk

(Σ2, ∂Σ2)

 such that every boundary com-

ponent of Mk attaches to a manifold Wj, for some j, where Wj is a manifold W in Lemma

14.14. Let Y be the union Mk ∪
(⊔nk

j=1Wj

)
. Then, Y admits an F -structure.

Proof. Since Mk is the total space of T 2-fibers over a surface, there are local T 2-actions on
Mk which are free and whose orbits coincide with T 2-fibers.

From Lemma 14.14, each Wj admits an F -structure which restricts to local T 2-actions
on ∂Wj. The local T 2-actions on ∂Wj are free and their orbits coincide with T 2-fibers of
∂Wj. Also, ∂Wj is identified with a boundary component of Mk so that T 2-fibers coincide.
In particular, the F -structure on Wj is compatible with local T 2-actions on Mk. Therefore,

Y = Mk ∪
(⊔

jWj

)
admits an F -structure.

14.5 Elementary building block of type (2, D2)

In this section, we consider a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 that

only contains

D4, . . . Mj

pt

,

D2 Mj

(Σ2, ∂Σ2)

, and

D3, S2 ×Z2 I Mj

(I, ∂I)

 com-

ponents.

Definition 14.36. We call a component Y in Lemma 14.38 an elementary building block of
type (2, D2).

We represent an elementary building block of type (2, D2) by a polyhedron.
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Example 14.37. The following is a model example of an elementary building block of type
(2, D2).

Figure 14.8: A representation of an elementary building block of type (2, D2)

In this example, there are four

D4 Mi`

pt

 components, ` ∈ {1, . . . , 4}, which are

represented by vertices, and six

D3 Mj`

(I, ∂I)

 components, ` ∈ {1, . . . , 6}, which are

represented by edges. Denote the union of all Mi` and Mj` by W . W is represented by

the 1-skeleton of the tetrahedron. There are four

D2 Mk`

(Σ2
k`
, ∂Σ2

k`
)

 components, ` ∈

{1, . . . , 4}, where Σ2
k`
∼= D2. Each face of the tetrahedron represents attaching Mk` to W

along the D2-bundle over ∂Σ2
k`

. Let Y be the union of all components. Y is represented by
the tetrahedron. We have that Y is a D2-bundle over S2. ∂Y is identified with a boundary

component of

S1 Mp

(X3, ∂X3)

, for some p, so that ∂D2-fibers of ∂Y coincide with S1-

fibers of Mp.

From Lemma if 13.30, M0 =

D4, . . . M0

pt

 only intersects

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

, and

S1 Mj

(X3, ∂X3)

 components, thenM0
∼= D4, ±CP 2#D4,

S2 ×±2 D
2, or S2 ×Z2 D

2.
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Lemma 14.38. Let {Mi}i∈A0 be a collection of


D4,±CP 2#D4,
S2 ×±2 D

2, S2 ×Z2 D
2 Mi

pt

 compo-

nents such that Mi only intersects

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

, and

S1 Mj

(X3, ∂X3)

 components (as in Lemma 13.30).

Let {Mj}j∈A1 be a collection of

D3, S2 ×Z2 I Mj

(I, ∂I)

 components such that both

fibers of

D3, S2 ×Z2 I Nj

∂I

 are contained in
⊔
i∈A0

∂Mi.

Let {Mk}k∈A2 be a collection of

D2 Mk

(Σ2, ∂Σ2)

 components such that

D2 Nk1

∂Σ2


are contained in

(⊔
i∈A0

∂Mi

)
∪∂
(⊔

i∈A1
∂Mj

)
. Note that ∂Mk =

D2 Nk1

∂Σ2

 ∪S1 Nk2

(Σ2, ∂Σ2)

.

Let Y be a connected component of M −
⊔
p

S1 Mp

(X3, ∂X3)

 such that Y only

intersects components Mi, i ∈ A0, Mj, j ∈ A1, and Mk, k ∈ A2, i.e. Y ⊂
(⊔

i∈A0
Mi

)
∪(⊔

j∈A1
Mj

)
∪
(⊔

k∈AkMk

)
.

Put W = Y −
(⊔

k∈A2
Mk

)
and write W =

⊔
`W` where W` is a connected component of

W .

Then, the following holds.



Chapter 14 159

(1) W` can be represented by the 1-skeleton of a polyhedron so that each vertex represents
a component Mi, for some i ∈ A0, and each edge represents a component Mj, for some
j ∈ A1.

(2) Y can be represented by the disjoint union of polyhedrons so that each connected com-
ponent of the 1-skeletons represents W`, for some `, and each face represents attaching

a connected component of

D2 Nk1

∂Σ2

, for some k ∈ A2, to W .

(3) Y admits an F -structure whose restriction to ∂M0 has positive rank.

(4) ∂Y is the total space of S1-fibers over a closed surface. As a part of M , ∂Y is identi-

fied with a boundary component of

S1 Mp

(X3, ∂X3)

, for some p, so that S1-fibers

coincide.

Proof. Here we prove parts (1), (2), and (4). The proof of part (3) is given in the next
subsection.

(1), (2). For simplicity, we assume that Y is the only connected component of

M −
⊔
p

S1 Mp

(X3, ∂X3)

 that only intersects components Mi, i ∈ A0, Mj, j ∈ A1, and

Mk, k ∈ A2.

From Lemma 13.30, for each i ∈ A0, ∂Mi = Ai ∪∂ Bi,1 or A∪∂ (Bi,1 tBi,2) where Ai is a

subbundle of

S1 Nj

∂X3

, for some j, and Bi,k, k ∈ {1, 2}, is a component

D2 Nj

∂Σ2

,

for some j, or a 3-manifold which is represented by a cycle graph Gi so that each vertex

represents a fiber of

D3, S2 ×Z2 I Nj

∂I

, for some j ∈ A1, and each edge represents a

D2-subbundle Ei ∼= D2 × I of

D2 Nk

∂Σ2

, for some k ∈ A2.

By Lemma 13.4, each fiber of

D3, S2 ×Z2 I Mj

(I, ∂I)

 contains exactly two D2-fibers
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of

D2 Mk1

(Σ2, ∂Σ2)

 and

D2 Mk2

(Σ2, ∂Σ2)

, for some k1 and k2. By connectedness,

each Mj, j ∈ A1, contains two copies of D2 × I so that each D2-fiber is contained in a

D3 or S2 ×Z2 I-fiber of

D3, S2 ×Z2 I Mj

(I, ∂I)

. The two copies of D2 × I coincide

with Mj ∩

D2 Mk1

(Σ2, ∂Σ2)

 and Mj ∩

D2 Mk2

(Σ2, ∂Σ2)

, for some k1, k2 ∈ A2. Put

Êj1 = Mj ∩

D2 Mk1

(Σ2, ∂Σ2)

 and Êj2 = Mj ∩

D2 Mk1

(Σ2, ∂Σ2)

.

Let {Mi}i∈A`0 be the collection of all Mi, i ∈ A0, such that Mi ⊂ W` and {Mj}j∈A`1 be
the collection of all Mj, j ∈ A1, such that Mj ⊂ W`. Let X ⊂ W` be the union of all

D2-subbundle Ei ∼= D2×I contained in ∂Mi, i ∈ A`0, and all Êj1
∼= D2×I and Êj2

∼= D2×I
contained in ∂Mj, j ∈ A`1. Then, X is a disjoint union of copies of D2×S1. As a part of M ,

each connected component of X is identified with a connected component of

D2 Nk

∂Σ2

,

for some k ∈ A2, so that D2-fibers of X coincide with D2-fibers of Nk.

We represent each Mi, i ∈ A`0, by a vertex and each Mj, j ∈ A`1, by an edge. A vertex vi
connects to an edge ej if and only if Mi ∩Mj 6= ∅. From the above construction, the union
of all vertices and edges is the 1-skeleton of a polyhedron so that each face corresponds to

identifying a connected component of X with a boundary component of

D2 Nk

∂Σ2

, for

some k ∈ A2.

(4). It follows from the compatibility of fibers in Lemma 13.6, Lemma 13.24, and Lemma
13.30, and from the construction in the proof of part (1) and part (2) that ∂Y is the total
space of S1-fibers. By connectedness, ∂Y is identified with exactly one boundary component

of

S1 M`

(X3, ∂X3)

, for some `, so that their S1-fibers coincide.
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Figure 14.9: Example of the configuration of an elementary building block of type (2, D2)
and its representation. Each D2-bundle over a circle (a connected component of X) is

identified with

D2 Nk

∂Σ2

, for some k. There are four D2-bundles over a circle, which

are represented by the four faces of the tetrahedron.

14.5.1 Proof of Lemma 14.38 (3)

In this subsection, we give a proof of Lemma 14.38 (3).

Put Z = Y −
(⊔

i∈A0
Mi

)
. First, we assume that for all j ∈ A1, Mj =

D3 Mj

(I, ∂I)


∼= D3 × I. We will show that Z is the total space of D2-fibers over a surface. Z is not
necessary connected.

Case Mj
∼= D3 × I, for all j ∈ A1

By the same arguments as in the proof of Lemma 14.38 (1) and (2), each Mj, j ∈ A1, contains

Êj1 = Mj ∩

D2 Mk1

(Σ2, ∂Σ2)

 ∼= D2 × I and Êj2 = Mj ∩

D2 Mk2

(Σ2, ∂Σ2)

 ∼= D2 × I,

for some k1, k2 ∈ A2, so that each D2-fiber is contained in the boundary of a D3-fiber of
Mj. Therefore, we can consider Mj

∼= D3 × I as (D2 × [0, 1])× I so that Êj1 coincides with

(D2 × {0})× I and Êj2 coincides with (D2 × {1})× I. In particular, Mj is the total space
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of D2-fibers whose fibers coincide with fibers of Mk1 and Mk2 along the overlaps. It follows
that Mk1 ∪Mj ∪Mk2 is the total space of D2-fibers.

Figure 14.10: Mj
∼= D3 × I as (D2 × [0, 1])× I

By applying the above argument to every Mj, j ∈ A1, such that Mj∩Z 6= ∅, we have that
Z is the total space of D2-fibers over a surface (Σ2

Z , ∂Σ2
Z), for some surface Σ2

Z . Moreover,
the total space of D2-fibers over ∂Σ2

Z is contained in
⊔
i∈A0

Mi.

Without loss of generality, assume that Y has one connected component. In particular,
Mi ∩ Z 6= ∅, for all i ∈ A0. From Lemma 13.30, ∂Mi

∼= S3 or S2 × S1. Next, we study
Z ∪∂ Mi. We have the following cases.

(i) Mi
∼= D4.

From Lemma 13.30, ∂Mi = A∪∂B1 whereA ∼= S1×D2 is a subbundle of

S1 Nj

∂X3

,

for some j, and B1
∼= S1 × D2 is identified with a D2-bundle over a boundary com-

ponent of Σ2
Z . The union is so that (S1, ·) ⊂ ∂A is identified with (·, ∂D2) ⊂ ∂B1.

By extending this attaching map to Mi, we can consider Mi as Σ2
i × D2 where Σ2

i is
a 2-disk and B1 is identified with ∂Σ2

i × D2. In particular, D2-fibers of Mi and Z
coincide. Then, Z ∪∂Mi is the total space of D2-fibers over the surface Σ2

i ∪∂ Σ2
Z where

the 2-disk Σ2
i attaches to a boundary component of Σ2

Z . Hence, Z ∪∂ Mi is the total
space of D2-fibers over a surface.

(ii) Mi
∼= ±CP 2#D4.

Since Mi ∩ Z = ∂Mi ∩ ∂Z, the same construction as in the case Mi
∼= D4 applies. We

have that Z ∪Mi
∼= (Z ∪D4)#(±CP 2).
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(iii) Mi
∼= S1 ×D3.

In this case, ∂Mi
∼= S1 × S2. From Lemma 13.30, ∂Mi = B1 ∪∂ A ∪∂ B2 where

A ∼= S1×(S1×[0, 1]) is a subbundle of

S1 Nj

∂X3

, for some j, and B1, B2
∼= S1×D2

are identified with two D2-bundles over a boundary component of Σ2
Z . The unions are

so that an S1-fiber S1× ({·}× {0}) ⊂ ∂A is identified with (·, ∂D2) ⊂ ∂B1 and a fiber
S1 × ({·} × {1}) ⊂ ∂A is identified with (·, ∂D2) ⊂ ∂B2. By extending this attaching
map to Mi, we can consider Mi as Σ2

i ×D2 where Σ2
i is a cylinder and Bk, k ∈ {1, 2}

is identified with a connected component of ∂Σ2
i × D2. In particular, D2-fibers of Z

extend to Mi. Then, Z ∪∂ Mi is the total space of D2-fibers over the surface Σ2
i ∪∂ Σ2

Z

where Σ2
i
∼= S1 × I connects two boundary components of Σ2

Z . Hence, Z ∪∂ Mi is the
total space of D2-fibers over a surface.

(iv) Mi
∼= S2 ×D2.

In this case, ∂Mi
∼= S1 × S2. From Lemma 13.30, ∂Mi = B1 ∪∂ A ∪∂ B2 where

A ∼= S1× (S1× I) is a subbundle of

S1 Nj

∂X3

, for some j, and B1, B2
∼= S1×D2

are identified with two D2-bundles over a boundary components of Σ2
Z . Denote the

two boundary components of Σ2
Z by σ1 and σ2 respectively. Then, Bk, k ∈ {1, 2}, is

identified with σk×D2 ⊂ Z. We note that the D2-factor of Bk, k ∈ {1, 2}, is contained
in the S2-factor of Mi while the S1-factor of Bk coincides with the ∂D2-factor of ∂Mi.

For k ∈ {1, 2}, let Uk be a neighborhood of σk×D2 in Z so that Uk ∼= (σk×D2)× [0, 1).
Then, Uk is a D2-bundle over a cylinder σk × [0, 1) where σk × {0} is identified with
Bk. By the same plumbing construction as in the proof of Lemma 14.14, we have that
U1 ∪Mi ∪ U2

∼= (Σ2
1 ×D2)�(S2 ×D2)�(Σ2

2 ×D2) where Σ2
k = (σk × [0, 1)) ∪D2 and

the union by gluing σk × {0} to ∂D2. That is Σ2
k
∼= D2.

(v) Mi
∼= (S2×̃I)×̃I or (RP 3 × S1)×̃I.

In this case, ∂Mi
∼= S1 × S2. From Lemma 13.30, ∂Mi = B1 ∪∂ A ∪∂ B2 where

A ∼= S1× (S1× I) is a subbundle of

S1 Nj

∂X3

, for some j, and B1, B2
∼= S1×D2

are identified with two D2-bundles over a boundary components of Σ2
Z . Denote the

two boundary components by σ1 and σ2 so that Bk, k ∈ {1, 2}, is identified with
σk ×D2 ⊂ Z.

For k ∈ {1, 2}, let Vk be a subbundle of Z =

D2 Z

(Σ2
Z , ∂Σ2

Z

 so that Vk ∼= D2 ×

(σk×[0, ε)) where σk×[0, ε) denotes a neighborhood of σk in Σ2
Z . Let U = V1∪∂Mi∪∂V2.
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We have that U is an open neighborhood of Mi in Z ∪∂ Mi, V1 ∩ Mi = B1, and
V2 ∩Mi = B2.

Let Ũ Uπ be a double covering. Then, Ũ = Ṽ1 ∪ M̃i ∪ Ṽ2 where M̃i is a double

cover of Mi and Ṽk, k ∈ {1, 2}, is a double cover of Vk. We will show that there are

local S1-actions on Ũ that are compatible with π.

Consider that M̃i
∼= (S2 × S1) × I. We will refer to each (S2 × S1)-fiber of M̃i by

(S2×S1)×{t}, for some t ∈ [0, 1]. For each k ∈ {1, 2}, Ṽk is the union of two copies of
D2×(σk×[0, ε)), which we denote by Vk(0) and Vk(1). Then, π(Vk(0)) = π(Vk(1)) = Vk.

Vk(0) attaches to M̃i along (S2× S1)×{0} so that each D2-fiber of Vk(0) is contained

in an S2-fiber of (S2 × S1)× {0} ⊂ ∂M̃i. Vk(1) attaches to M̃i along (S2 × S1)× {1}
similarly.

Let L1
∼= (D2 × S1) × [0, 1] be a submanifold of M̃i so that for each s ∈ S1 and

t ∈ [0, 1], (D2 × {s})× {t} ⊂ L1 is contained in (S2 × {s})× {t} ⊂ M̃i. Additionally,

(D2×S1)×{0} coincides with V1(0)∩M̃i and (D2×S1)×{1} coincides with V1(1)∩M̃i.

In particular, Ṽ1∪L1 = V1(0)∪L1∪V1(1) is the total space of D2-fibers over a cylinder.

In other words, D2-fibers of Ṽ1 extend to L1. Let L2 be constructed in the same manner
so that (D2 × S1) × {0} ⊂ L2 coincides with V2(0) ∩ M̃i and (D2 × S1) × {1} ⊂ L2

coincides with V2(1) ∩ M̃i. Then, Ṽ2 ∪ L2 = V2(0) ∪ L2 ∪ V2(1) is the total space of
D2-fibers over a cylinder.

Put Q = U−[(Ṽ1∪L1)∪(Ṽ2∪L2)]. Then, Q ∼= ((S2−2D2)×S1)×I ∼= ((S1×I)×S1)×I.
We have that U = L1 ∪∂ Q∪∂ L2 where the unions are so that (∂D2)-fibers of ∂L1 and
∂L2 coincides with (S1, ·, ·, ·)-fibers of Q.

Let S1 act on Q by rotations on the first S1-factor and act trivially on other factors.
Let S1 act on Lk, k ∈ {1, 2}, by rotations about the center on the D2-factor and act
trivially on other factors. Consequently, we get local S1-actions on U = L1 ∪∂ Q∪∂ L2

that are compatible with π and with local S1-actions on Z. In particular, the images
under π of the orbits of the local S1-actions on ∂Ũ coincides with S1-fibers of ∂U .

Case Mj
∼= (S2 ×Z2 I)× I, for some j ∈ A1

Next, we assume that there exists Mj, j ∈ A1, such that Mj =

S2 ×Z2 I Mj

(I, ∂I)

 ∼=
(S2 ×Z2 I) × I. From Lemma 13.30, if a component Mi, i ∈ A1 intersects Mj, then
Mi
∼= S2 ×±2 D

2 or S2 ×Z2 D
2. Mi

∼= S2 ×±2 D
2 if Mi intersects with exactly one Mj

∼=
(S2 ×Z2 I)× I, for some j ∈ A1. Mi

∼= S2 ×Z2 D
2 if Mi intersects with exactly two

Mjk
∼= (S2 ×Z2 I)× I, for some jk ∈ A1, k ∈ {1, 2}.
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Let A′0 be the collection of i ∈ A0 so that Mi
∼= S2 ×±2 D

2 or S2 ×Z2 D
2 and let A′1 be

the collection of j ∈ A1 so that Mj
∼= (S2 ×Z2 I) × I. Put X =

(⊔
i∈A′0

Mi

)
∪
(⊔

j∈A′1
Mj

)
and Z̃ = Y −X. Write X =

⊔
qXq where Xq is a connected component of X. Then, Xq can

be written as

Xq = Mi1 Mi2 · · · Mid

Mj1
Mj2

Mjd−1
(14.39)

or

Xq = Mi1 Mi2 · · · Mid

Mj1
Mj2

Mjd−1

Mjd

(14.40)

where Mik Mik+1

Mjk denotes the union Mik ∪∂ Mjk ∪∂ Mik+1
so that Mik ∩ Mjk and

Mjk ∩Mik+1
are the two fibers of (S2 ×Z2 I)× ∂I ⊂ ∂Mj.

(i) Case Xq = Mi1 Mi2 · · · Mid

Mj1
Mj2

Mjd−1
.

In this case, Mi1 ,Mid
∼= S2×±2D

2 and Mik
∼= S2×Z2D

2 for k /∈ {1, d}. As in the proof
of Lemma 14.3, if Mik

∼= Mik+1
∼= S2×Z2D

2, then Mik∪∂Mjk∪∂Mik+1
∼= (S2×Z2 I)×I.

Therefore, Xq
∼= (S2×±2D

2)∪∂((S2×Z2I)×I)∪∂(S2×±2D
2). By the same arguments as

in the proof of Lemma 14.3 and from Lemma 2.13, Xq
∼= (S2×S2)#D4 or (S2×̃S2)#D4.

It follows that Z̃ ∪X ∼= (Z̃ ∪D4)#(S2 × S2) or (Z̃ ∪D4)#(S2×̃S2).

(ii) Case Xq = Mi1 Mi2 · · · Mid

Mj1
Mj2

Mjd−1

Mjm

.

In this case Mik
∼= S2 ×Z2 D

2 for all k. As in the proof of Lemma 14.3, Mik ∪∂ Mjk ∪∂
Mik+1

∼= (S2×Z2 I)× I. Thus, Xq is diffeomorphic to an (S2×Z2 I)-bundle over S1. By

the same arguments as in the case Mi
∼= (S2×̃S1)×̃I, there is a double cover Ũ of a

neighborhood U of Xq and there are local S1-actions on U which are compatible with

the covering map and local S1-actions on Z̃.

Assemble all components

Lastly, we assemble all components. Let A′′0 be the collection of i ∈ A0 such that Mi
∼= D4,

±CP 2#D4, S2×D2, or S1×D3. Let A′′1 be the collection of j ∈ A1 such that Mj
∼= D3× I.

Put Y1 =
(⊔

i∈A′′0
Mi

)
∪
(⊔

j∈A′′1
Mj

)
∪
(⊔

k∈A2
Mk

)
and Y2 = Y − Y1. From all cases

above, we have that

Y1
∼= (plumbings of D2-bundles overΣ2

Y1
)#n1(CP 2)#n2(−CP 2)#n3(S2 × S2) (14.41)
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where Σ2
Y1

is a surface and for some integers n1, n2, n3 ≥ 0. Additionally, Y2 ∩ Y1 is the
disjoint union of copies of S1×D2 and Y2 admits an F -structure which is compatible to the
standard local S1-actions on D2-fibers of Y1.

From Lemma 2.30, plumbings of D2-bundles over a surface admits a T -structure. Away
from the plumbing locations, the T -structure restricts to local S1-actions by rotations about
the center on each D2-fiber. Paternain and Petean [21, Theorem 5.9] showed that the con-
nected sum of two manifolds which admit a T -structure also admits a T -structure. Therefore,
Y1 admits a T -structure which restricts to the standard local S1-actions on a D2-bundle over
a neighborhood of ∂Σ2

Y1
. Therefore, Y = Y1 ∪∂ Y2 admits an F -structure whose restriction

to ∂Y has positive rank. This completes the proof of Lemma 14.38 (3).

Example 14.42. In this example, Y ∼= (S2 ×ω1 D
2)�(S2 × D2)�(S2 ×ω2 D

2), for some
ω1, ω2 ∈ Z. All vertices represent a manifold diffeomorphic to D4 except one vertex which
represents a manifold diffeomorphic to S2 ×D2.

Figure 14.11: A representation of an elementary building block of type (2, D2)

14.6 Elementary building block of type (1, S1 ×D2)

In this section, we consider a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 that

only contains

D4, . . . Mj

pt

 and

D3, S2 ×Z2 I Mj

(I, ∂I)

 components.

Definition 14.43. We call a component W in Lemma 14.46 an elementary building block
of type (1, S1 ×D2).

We represent an elementary building block of type (1, S1 ×D2) by a graph.
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Example 14.44. The following is an example of an elementary building block of type
(1, S1 ×D2).

v4v1

v3

v2

Figure 14.12: A representation of an elementary building block of type (1, S1 ×D2)

In this example, there are three

D4 Mi`

pt

 components, ` ∈ {2, 3, 4}, which are

represented by the vertices v2, v3, and v4, respectively. There is one

T 2 ×D2 Mi1

pt


component, which is represented by the vertex v1. There are three

S1 ×D2 Mj`

(I, ∂I)


components, ` ∈ {1, 2, 3}, which are represented by edges. Let W be the union of all
components. W is represented by the graph above.

The topology of W depends on how each

S1 ×D2 Mj`

(I, ∂I)

 component attaches to

D4, T 2 ×D2 Mi`

pt

 components. For example, W can be diffeomorphic to a 4-manifold

with plumbing diagram

D4 S2 ×D2 T 2 ×D2 S2 ×D2 D4

S2 ×D2 D4

. (14.45)

Moreover, ∂W is the total space of S1-fibers and ∂W attaches to a boundary component ofS1 Mk

(X3, ∂X3)

 so that S1-fibers coincide.
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Lemma 14.46. Let {Mi}i∈A0 be a collection of

D4, . . . Mi

pt

 components such that Mi

only intersects

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 and

S1 Mj

(X3, ∂X3)

 components (as

in Lemma 13.38).

Let {Mj}j∈A1 be a collection of

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components such that

both fibers of

S1 ×D2, T 2 ×Z2 I Nj

∂I

 are contained in
⊔
i∈A0

∂Mi.

Let W be a connected component of M −
⊔
p

S1 Mp

(X3, ∂X3)

 such that W only

intersects components Mi, i ∈ A0 and Mj, j ∈ A1, i.e. W ⊂
(⊔

i∈A0
Mi

)
∪
(⊔

j∈A1
Mj

)
.

Then, the following holds.

(1) W can be represented by a graph so that each vertex represents Mi, for some i ∈ A0

and each edge represents Mj, for some j ∈ A1.

(2) W admits an F -structure whose restriction to ∂W has positive rank.

(3) ∂W is the total space of S1-fibers. As a part of M , ∂W is identified with a boundary

component of

S1 Mk

(X3, ∂X3)

, for some k, so that S1-fibers of ∂W coincide with

S1-fibers of Mk.

Proof. Here we proof parts (1) and (3) of the lemma. The proof of part (2) will be given in
the next subsection.

(1). We construct a graph to represent W as follows. Let G be a graph such that
each vertex vi represents a connected component Mi, for some i ∈ A0, and each vertex ej
represents a connected component Mj, for some j ∈ A1. A vertex vi is incident to an edge
ej if and only if Mi ∩Mj 6= ∅.

(3). It follows from compatibility of fibers in Lemma 13.5 and Lemma 13.38, and from
the configuration in part (1) that ∂W is the total space of S1-fibers. By connectedness, ∂W
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is identified with exactly one boundary component of

S1 Mk

(X3, ∂X3)

, for some k, so

that their S1-fibers coincide.

14.6.1 Proof of Lemma 14.46 (2)

In this subsection, we prove Lemma 14.46 (2). For simplicity, we assume that W is the only

connected component of M −
⊔
p

S1 Mp

(X3, ∂X3)

 that only intersects components Mi,

i ∈ A0 and Mj, j ∈ A1.

First, we assume that for all j ∈ A1, Mj =

S1 ×D2 Mj

(I, ∂I)

 ∼= (S1 ×D2)× I.

Case Mj
∼= (S1 ×D2)× I for all j ∈ A1

Let Mi =

D4, . . . Mi

pt

, i ∈ A0. From Lemma 13.38, ∂Mi = Ai ∪∂ (
⊔
sCi,s) where:

(i) Ai is a subbundle of

S1 Nk

∂X3

, for some k.

(ii) Ci,s ∼= S1 ×D2 is a fiber of

S1 ×D2 Mj

∂I

, for some j ∈ A1.

(iii) ∂Ci,s ∼= T 2 is identified with a boundary component of Ai.

Because ∂Mi is connected, Ai is also connected. Thus, Ai is a subbundle

S1 Ai

(Σ2
Ai
, ∂Σ2

Ai
)


of

S1 Nk

∂X3

 for some k. We will refer to a boundary component of Ai which attaches to

Ci,s by S1×σi,s, where σi,s is a boundary component of Σ2
Ai

. Let φi,s : S1 × ∂D2︸ ︷︷ ︸
∼=∂Ci,s

→ S1×σi,s

be the attaching map. Up to isotopy, there are three possibilities:
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(a) φi,s maps (·, ∂D2) ⊂ ∂Ci,s to (S1, ·) ⊂ S1 × σi,s.

(b) φi,s maps (·, ∂D2) ⊂ ∂Ci,s to (·, ∂Σ2
Ai

) ⊂ S1 × σi,s.

(c) φi,s maps (·, ∂D2) to a circle of slope
q

p
, where p, q 6= 0, in S1 × σi,s.

For each Mj =

S1 ×D2 Mj

(I, ∂I)

, j ∈ A1, the two fibers of

S1 ×D2 Nj

∂I

 are

attached to Mi1 and Mi2 , for some i1, i2 ∈ A0, respectively. From the compatibility of circle
fibers in Lemma 13.5 and Lemma 13.38, the two attaching maps φi1,s1 and φi2,s2 from Mi1

and Mi2 to Mj must be the same type.

Attaching map of type (a): Suppose that there exists Ci,s so that φi,s is an attaching
map of type (a), i.e., φi,s sends (·, ∂D2) ⊂ ∂Ci,s to (S1, ·) ⊂ S1 × σi,s. From explicit

constructions in [11] and from the classification of

D4, . . . Mi

pt

 in Table 13.1, Mi has

at most two attaching maps of type (a). In particular, if Mi has exactly one φi,s of type (a)
then ∂Mi

∼= S3,RP 3,RP 3#RP 3, or L(|ω|, 1), ω ∈ Z. If Mi has exactly two φi,s1 and φi,s2 of
type (a) then ∂Mi

∼= S2 × S1.

Let X be the union of all Mj, j ∈ A1, such that there exists Mi, i ∈ A0, where the
attaching map from Mi to Mj is of type (a). Write X =

⊔
mXm where Xm is a connected

component of X. Let Gm be a graph representing Xm (as constructed in Lemma 14.46 (1)).
Then, Gm must have one of the following forms.

(i)

Gm = v1 v2 · · · vd (14.47)

where v1 and vs represents Mi1 and Mis so that ∂Mi1 , ∂Mid
∼= S3,RP 3,RP 3#RP 3, or

L(|ω|, 1), ω ∈ Z, and vk, k /∈ {1, s}, represents Mik so that ∂Mik
∼= S2 × S1.

(ii)

Gm = v1 v2 · · · vd (14.48)

where and vk represents Mik so that ∂Mik
∼= S2×S1 for all k. If for all k, Mik

∼= S1×D3,
then Xm

∼= T 2 ×D2.

If Xm
∼= T 2×D2 ∼= S1× (S1×D2), then there exists a T 2-action on Xm by the standard

T 2-action on the (S1 ×D2)-factor and by the trivial action on the S1-factor. Otherwise, by
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the same constructions as in the proof of Lemma 14.14, Xm admits an F -structure whose
restriction to ∂Xm is of positive rank.

Consequently, in order to construct an F -structure on W , we can assume without loss of
generality that for all attaching map is of type (b) or (c).

Attaching map of type (b) or (c): Let Mi, i ∈ A0, and Mj, j ∈ A1, be such that
Mi ∩Mj 6= ∅ and the attaching map from Mi to Mj is of type (b) or (c). In each of the the
following cases, we will show that Mi∪∂Mj admits an F -structure which is compatible with
fibration structures on other components it intersects with.

Each Mj, j ∈ A1, intersects with two components Mi1 and Mi2 , i1, i2 ∈ A0. From the
compatibility of circle fibers in Lemma 13.5 and Lemma 13.38, and the following construc-
tions, we will have that the F -structures on Mi1 ∪∂ Mj and Mi2 ∪∂ Mj can be combined.

As a result from all cases, we will have that W admits an F -structure.

(i) Mi
∼= S2 ×ω D2, ω ∈ Z.

A list of S1-actions on S2 ×ω D2 is given in Section 2.5. The orbits of the S1-actions
on ∂Mi

∼= L(|ω|, 1) coincide with Seifert orbits on L(|ω|, 1). In particular, there are at
most two attaching maps of type (c).

Let Mj, j ∈ A1, be such that Mj ∩Mi = Ci,1. We consider Mj as (S1 × D2) × [0, 1]
so that (S1 × D2) × {0} coincides with Ci,1. We use the coordinates ((eiγ1 , reiγ2), t),
γ1, γ2 ∈ [0, 2π), t ∈ [0, 1], on Mj.

If the attaching map φi,1 is of type (c), then it introduces an exceptional orbit with orbit
invariant (u, v) on ∂Mi. In this case, let ψj : S1× [(S1×D2)× [0, 1]]→ (S1×D2)× [0, 1]
be an S1-action on Mj so that

ψj : {θ} × ((eiγ1 , reiγ2), t) 7→ ((ei(γ1+uθ), rei(γ2+vθ)), t). (14.49)

If the attaching map φi,1 is of type (b), then let ψj : S1 × [(S1 × D2) × [0, 1]] →
(S1 ×D2)× [0, 1] be an S1-action on Mj so that

ψj : {θ} × ((eiγ1 , reiγ2), t) 7→ ((ei(γ1+θ), reiγ2), t). (14.50)

In both cases, the orbits of ψj on Mj and the orbits of the S1-action on Mi coincide
along Mj ∩Mi = ∂Mj ∩ ∂Mi. If the S1-actions do not agree, then they generate a
T 2-action with orbits of dimension one on a neighborhood U of ∂Mj ∩ ∂Mi which is
compatible with both S1-actions. If the T 2-action is not effective, then we pass to a
quotient to get an effective S1-action on U .
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(ii) Mi
∼= D4.

Consider Mi
∼= D4 as D2 ×D2 with coordinates (reiγ1 , seiγ2), γ1, γ2 ∈ [0, 2π). Let ψu,v

be an S1-action on Mi defined by

ψu,v : {θ} × (reiγ1 , seiγ2) 7→ (rei(γ1+uθ), rei(γ2+vθ)) (14.51)

for some (u, v) ∈ Z2. The restriction of ψu,v to ∂D4 ∼= S3 gives a Seifert fibration
S3 → S3/ψu,v ∼= S2. The orbit space is (D4)∗ ∼= D3 with one interior fixed point and
possibly at most two exceptional segments whose endpoints are the fixed point and an
exceptional orbit on the boundary ∂(D4)∗ ∼= S2.

We construct an S1-action on Mj, j ∈ A1, that connects to Mi as in case (i).

(iii) Mi
∼= S1 ×D3.

In this case, ∂Mi
∼= S1×S2. The Seifert orbit of S1×S2 is either S2 with no exceptional

orbits or S2 with two exceptional Seifert orbits of the same order. In the first case,
there is an S1-action by rotations on the S1-factor and by the trivially action on the
S2-factor. This action extends to S1×D3 so that S1 acts by rotations on the S1-factor
and acts trivially on the D3-factor.

In the second case, there is an S1-action on Mi which is obtained from a quotient of an
S1-action on S2 ×R where S1 acts on the S2-factor by a screw motion of finite order.
Extend the screw motion on S2 to D3 to get an S1-action on S1×D3. The orbit space
of this action is D3 with one exceptional segment with two endpoints on the boundary
∂D3 ∼= S2.

We construct S1-actions on Mj, j ∈ A1, that connects to Mi as in case (i).

(iv) Mi
∼= T 2 ×D2.

In this case, ∂Mi
∼= T 3 whose Seifert orbit space is T 2 with no exceptional orbits.

Hence, all attaching maps are of type (b). From Lemma 13.38, ∂Mi = A ∪
(⊔

j Cj

)
where A is the total space of S1-fibers over a surface Σ2

A whose fibers coincide with

fibers of

S1 Mk

(X3, ∂X3)

, for some k, and Cj ∼= S1 ×D2. We consider ∂Mi
∼= T 3

as the total space of S1 fibers over T 2. Denote the base T 2 by S1
b × S1

b and denote
the fibers by S1

f . Then, ∂Mi
∼= S1

b × S1
b × S1

f where Σ2
A ⊂ S1

b × S1
b and the S1

f -factor

coincides with fibers of

S1 Mk

(X3, ∂X3)

, for some k.

∂Mi
∼= T 2 × ∂D2. Up to isotropy, the (∂D2)-factor either coincides with the S1

b -factor
or with the S1

f -factor. If the ∂D2-factor coincides with the S1
b -factor, then the T 2-factor

coincides with S1
b ×S1

f . Let S1 act on Mi
∼= T 2×D2 by acting trivially on the D2-factor
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and acting on T 2 by rotations along the S1
f -factor and trivially along the S1

b -factor. On
Mj
∼= (S1 × D2) × I, j ∈ A1, that connects to Mi, we let S1 act by rotations on the

S1-factor and act trivially on other factors. In particular, the orbits of S1-actions on
Mi and on Mj coincide along Mi ∩Mj = ∂Mi ∩ ∂Mj = Cj. If the S1-actions do not
agree, then they generate a T 2-action with orbits of dimension one on a neighborhood
of ∂Mi ∩ ∂Mj that is compatible with the two S1-actions. We pass to a quotient to
get an effective S1-action if the T 2-action is not effective.

If the ∂D2-factor coincides with the S1
f -factor, then the T 2-factor coincides with S1

b×S1
b .

We consider Mi
∼= T 2×D2 as a D2-bundle over T 2. By the same plumbing construction

as in the proof of Lemma 14.14, we have that Mi ∪Mj
∼= (T 2×D2)�(Σ2

j ×D2) where
Σ2
j
∼= D2. (∂Σ2

j , ·) is identified with (S1, ·)× {0} ⊂Mj. Let Ai1 be the collection of all

j ∈ A1 such that Mi ∩Mj 6= ∅. Then, Mi ∪
(⊔

j∈Ai1
Mj

)
is a plumbing of T 2 × D2

with copies of D2-bundles over D2. From Lemma 2.30, Mi ∪
(⊔

j∈Ai1
Mj

)
admits a

T -structure.

(v) Mi
∼= S2 ×Z2 D

2, (S2 ×ω D2)/Z2, or T 2 ×Z2 D
2.

For each Mj, j ∈ A1, such that Mj ∩ Mi = ∂Mi ∩ ∂Mj 6= ∅, we consider Mj as
(S1×D2)× [0, 1] where (S1×D2)×{0} coincides with ∂Mi ∩ ∂Mj. Let Ui be an open
neighborhood of Mi so that Vi,j = Ui ∩Mj is an (S1 ×D2)-subbundle of Mj.

Let Ũi Ui
π be a double covering. Then, Ũi = M̃i ∪

(⊔
j Ṽi,j

)
where Ṽi,j is a

double cover of Vi,j and M̃i is a double cover of Mi. Ũi ∼= M̃i
∼= S2 × D2, S2 ×ω D2,

or T 2 ×D2. By the same arguments as in cases (i) and (iv), Ũi admits a T -structure
which is compatible with π. Therefore, Ui admits an F -structure.

(vi) Mi
∼= (RP 3 × S1)×̃I, (S2×̃S1)× I, Bk×̃I, k ∈ {1, 2, 3, 4}.

We have that

∂Mi
∼=


S2 × S1 if Mi

∼= (RP 3 × S1)×̃I or (S2×̃S1)× I,
T 3 if Mi

∼= Bk×̃I, k ∈ {1, 2},
G2 if Mi

∼= Bk×̃I, k ∈ {3, 4}.
(14.52)

Let Ai1 be a collection of j ∈ A1 such that Mj∩Mi = ∂Mi∩∂Mj 6= ∅. We will consider
Mj, j ∈ A1, as (S1 ×D2)j × [0, 1] where (S1 ×D2)j × {0} coincides with ∂Mi ∩ ∂Mj.

From Lemma 13.38, ∂Mi = A ∪
(⊔

j∈Ai1
Cj

)
where A is the total space of S1-fibers

over a surface Σ2
A whose fibers coincide with fibers of

S1 Mk

(X3, ∂X3)

, for some

k, and Cj = ∂Mi ∩ ∂Mj = (S1 ×D2)j × {0}.
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Let Ui be an open neighborhood of Mi in W so that Vj = Ui ∩Mj is an (S1 × D2)-

subbundle of Mj. Let Ũi Ui
π be a double covering. Then, Ũ = M̃i ∪

(⊔
j Ṽj

)
where Ṽj is a double cover of Vj and M̃i is a double cover of Mi. We have that

M̃i
∼= ∂Mi × I. That is M̃i

∼= (S2 × S1) × I, T 3 × I, or G2 × I. We will refer to a

(∂Mi)-fiber of M̃i by (∂Mi) × {t} for some t ∈ [0, 1]. Write Ṽj = Vj(0) t Vj(1) where
π(Vj(0)) = π(Vj(1)) = Vj. Put Cj(s) = Vj(s) ∩ ∂Mi × {s} for s ∈ {0, 1}. Then,
π(Cj(0)) = π(Cj(1)) = Cj.

For each j ∈ Ai1, let Cj be a subset of M̃i so that Cj ∼= (S1 × D2) × [0, 1] and for all
t ∈ [0, 1], (S1 × D2) × {t} ⊂ Cj is contained in ∂Mi × {t}. We also require that for
each s ∈ {0, 1}, (S1 × D2) × {s} coincides with Cj(s). It follows that Vj(0) ∪ Cj ∪

Vj(1) ∼= (S1 × D2) × I. Moreover, M̃i − (
⊔
j∈Ai1
Cj) ∼=

S1 A

(Σ2
A, ∂Σ2

A)

 × [0, 1].

Each connected component of

S1 ∂A

∂Σ2
A

×{t} coincides with the boundary of an

(S1 ×D2)-fiber of Cj, for some j ∈ Ai1.

There are local S1-actions on M̃i − (
⊔
j∈Ai1
Cj) whose orbits coincide with S1-fibers

of

S1 A

(Σ2
A, ∂Σ2

A)

 × [0, 1]. Let φj be any S1-action on Vj(0) ∪ Cj ∪ Vj(1) ∼=

(S1 ×D2)× I which is compatible with π and whose restriction to ∂(S1 ×D2)× I is

free. As a result, we get local S1-actions on Ũi that is compatible with π.

From all cases above, we have that if Mj
∼= (S1 ×D2)× I for all j ∈ A1, then W admits

an F -structure whose restriction on ∂W has positive rank.

Case Mj
∼= (T 2 ×Z2 I)× I for some j ∈ A1

Next, we assume that there exists j ∈ A1 so thatMj =

T 2 ×Z2 I Mj

(I, ∂I)

 ∼= (T 2 ×Z2 I)×

I. Let A′1 be the collection of j ∈ A1 such that Mj
∼= (T 2×Z2 I)×I. Let A′0 be the collection

of i ∈ A0 such that Mi ∩Mj 6= ∅, for some j ∈ A′1.

Put Z =
(⊔

j∈A′1
Mj

)
∪∂
(⊔

i∈A′0
Mi

)
. From Lemma 13.38, for all i ∈ A′0, ∂Mi

∼= S2×S1,

RP 3#RP 3, L(|ω|, 1)/Z2, or G2. From the classification of Seifert manifolds ([17, 27]), a
Seifert orbit space of S3/Γ, T 3/Γ, or (S2 × S1)/Γ contains at most four exceptional orbits.
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Since T 2×Z2 I ⊂ ∂Mik introduces two exceptional orbits of the same order, each Mi, i ∈ A0,
connects to at most two Mj, j ∈ A′1.

Write Z =
⊔
m Zm where Zm is a connected component of Z. It follows that either

Zm = Mi1 Mi2 · · · Mid

Mj1
Mj2

Mjd−1
(14.53)

or

Zm = Mi1 Mi2 · · · Mid

Mj1
Mj2

Mjd−1

Mjd

(14.54)

where Mik Mik+1

Mjk denotes the union Mik ∪∂ Mjk ∪∂ Mik+1
so that Mik ∩ Mjk and

Mjk ∩ Mik+1
are the two fibers of (T 2 ×Z2 I) × ∂I ⊂ ∂Mj. In the first case, ∂Mik

∼=
RP 3#RP 3, L(|ω|, 1)/Z2, or G2 for k /∈ {1, d} and ∂Mi1 , ∂Mid

∼= S2×S1,RP 3#RP 3, L(|ω|, 1)/Z2,
or G2. In the second case, ∂Mik

∼= RP 3#RP 3, L(|ω|, 1)/Z2, or G2 for all k. We construct an
F -structure on Zm as follows.

For each jk, let M̃jk Mjk

πjk be a double covering. Then, M̃jk
∼= (T 2×I)×I. Let T 2

act on M̃jk by the standard action on the T 2-factor and by the trivial action on the I-factors.
By the compatibility of fibers from Lemma 13.5, each ((T 2 × ∂I), ·)-fiber of (T 2 × I)× I is

the total space of S1-fibers from

S1 Mk

(X3, ∂X3)

, for some k.

For each ik, if Mik
∼= S1×D3 or S2×D2, then let M̃ik = Mik . By the same construction

as in the proof of the case Mj
∼= (S1×D2)×I, there is an S1-action on M̃ik that is compatible

with the T 2-action on M̃jk . Otherwise, we let M̃ik Mik

πik be a double covering. Then,

M̃ik
∼= S2 ×ω D2, ω ∈ Z, T 2 ×D2, (S2 × S1)× I, or G2 × I.

If M̃ik
∼= S2×ωD2, or T 2×D2, then a similar construction as in the caseMj

∼= (S1×D2)×I
gives an S1-action on M̃ik . Since S2 × S1 and G2 are the total space of S1-fibers, if M̃ik

∼=
(S2 × S1) × I or G2 × I, then there is an S1-action on M̃ik whose orbits coincide with the

S1-fibers on the S2×S1 or G2-factor. From Lemma 13.38, M̃jk∩M̃ik = ∂M̃jk∩∂M̃ik
∼= T 2×I

where each T 2-fiber is the total space of S1-fibers of ∂M̃ik . Therefore, the S1-action on M̃ik

is compatible with the T 2-action on M̃jk along their overlap.

As a result, Zm admits an F -structure. By the same arguments as in the case Mj
∼=

(S1×D2)× I, the F -structure is compatible with S1-actions on all Mj
∼= (S1×D2)× I such

that Zm ∩Mj 6= ∅.
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From all cases, we have that W admits an F -structure whose restriction on ∂W has
positive rank. This completes the proof of Lemma 14.46 (2).

14.7 Combining elementary building blocks of type (2, D2) and (1, S1 ×D2)

In this section, we show that a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 that

only contains

D4, . . . Mj

pt

,

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

, and

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components is the union of elementary building blocks of

type (2, D2) and elementary building blocks of type (1, S1 ×D2). We call such components
building blocks of type (2, D2) + (1, S1 ×D2).

Definition 14.55. We call the manifold W in Lemma 14.57 a building block of type (2, D2)+
(1, S1 ×D2).

We represent a building block of type (2, D2) + (1, S1×D2) by a join of the polyhedrons
representing elementary building blocks of type (2, D2) (see Lemma 14.38) and the graphs
representing elementary building blocks of type (1, S1×D2) (see Lemma 14.46) by identifying
some vertices of the polyhedrons with vertices of the graphs.

Example 14.56. The following is a model example of a building block of type (2, D2) +
(1, S1 ×D2).

Figure 14.13: A representation of a building block of type (2, D2) + (1, S1 ×D2)

In this example, we have an elementary building block of type (2, D2) represented by
a tetrahedron and an elementary building block of type (1, S1 × D2) represented by a
graph with four vertices. The two elementary building blocks are joined via a componentS1 ×D2 Mj

(I, ∂I)

. In Lemma 14.57, we show that the resulting manifold W is the

plumbing of an elementary building block of type (2, D2) represented by the tetrahedron
and an an elementary building block of type (1, S1 ×D2) represented by the graph
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v

where the vertex v represents the component

D4, . . . Mi

pt

 connecting an elementary

building block of type (2, D2) to an elementary building block of type (1, S1×D2). ∂W is the

total space of S1-fibers. ∂W is identified with a boundary component of

S1 Mp

(X3, ∂X3)

,

for some p, so that S1-fibers coincide.

From Lemma 13.41, if M0 =

D4, . . . M0

pt

 only intersects

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

, and

S1 Mj

(X3, ∂X3)

 com-

ponents, thenM0
∼= D4,±CP 2#D4, S2×±2D

2, S2×Z2D
2, S1×D3, (RP 3×S1)×̃I, (S2×̃S1)×̃I,

or S2 ×ω D2, ω ∈ Z.

Lemma 14.57. Let {Mi}i∈A0 be a collection of

D4, . . . Mi

pt

 components such that Mi

only intersects

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,


S1 ×D2,
T 2 ×Z2 I

Mj

(I, ∂I)

,

and

S1 Mj

(X3, ∂X3)

 components (as in Lemma 13.41).

Let W be a connected component of M−
⊔
p

S1 Mp

(X3, ∂X3)

 such that W contains a

component Mi, i ∈ A0, and W is disjoint from any

S2 Mj

(Σ2, ∂Σ2)

 or

T 2 Mj

(Σ2, ∂Σ2)


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components. Then, the following holds.

(1) W can be represented a join of the polyhedrons representing elementary building blocks
of type (2, D2) (see Lemma 14.38) and the graphs representing elementary building
blocks of type (1, S1×D2) (see Lemma 14.46) by identifying some vertices of the poly-
hedrons with vertices of the graphs. These vertices correspond to Mi, for some i ∈ A0.

(2) W admits an F -structure whose restriction to ∂W has positive rank.

(3) ∂W is the total space of S1-fibers. As a part of M , ∂W is identified with a boundary

component of

S1 Mk

(X3, ∂X3)

, for some k, so that S1-fibers of ∂W coincide with

S1-fibers of Mk.

Proof. Here we prove part (1) and part (3) of the lemma. In the next subsection, we give a
proof of part (2) of the lemma.

(1). Let Mi =

D4, . . . Mi

pt

, for some i ∈ A0. From Lemma 13.41, ∂Mi =

B ∪∂ A ∪∂ C where A ⊂

S1 Nj

∂X3

 is the total space of S1-fibers over a surface

Σ2
A, B ∼= S1 × D2, (S1 ×D2)#RP 2, or (S1 × D2)#(RP 2#RP 2), is the union of D2-

subbundles of
⊔
j

D2 Nj

∂Σ2

 and fibers of
⊔
j

D3, S1 ×Z2 I Nj

∂I

, and C is a fiber

of

S1 ×D2, T 2 ×Z2 I Nj

∂I

. In particular, Mi intersects both an elementary building

block of type (2, D2) and an elementary building block of type (1, S1 ×D2).

It follows from the constructions in Lemma 14.38 (1) and Lemma 14.46 (1) that W can be
represented a join of the polyhedrons representing elementary building blocks of type (2, D2)
and the graphs representing elementary building blocks of type (1, S1 ×D2) by identifying
some vertices of the polyhedrons with vertices (of degree one) of the graphs. These vertices
correspond to Mi, i ∈ A0.

(3). It follows from the compatibility of fibers in Lemma 13.41, the conclusions of Lemma
14.38 and Lemma 14.46, and from part (1), that ∂W is the total space of S1-fibers. By con-

nectedness, ∂W is identified with exactly one boundary component of

S1 Mk

(X3, ∂X3)

,

for some k, so that their S1-fibers coincide.
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14.7.1 Proof of Lemma 14.57 (2)

In this section, we prove Lemma 14.57 (2). Without loss of generality, we assume that
W contains only one Mi, i ∈ A0. Then, W −Mi has exactly two connected components.
One connected component corresponds to an elementary building block of type (2, D2) (see
Lemma 14.38) and the other connected component corresponds to an elementary building
block of type (1, S1×D2) (see Lemma 14.46). Denote the connected component of W −Mi

corresponding to an elementary building block of type (2, D2) by X(2,D2) and the connected
component corresponding to an elementary building block of type (1, S1×D2) by X(1,S1×D2).
Hence, W can be represented as in the following figure.

Figure 14.14: A representation of a building block of type (2, D2) + (1, S1 ×D2)

We have that

W = X(2,D2) ∪∂ Mi X(1,S1×D2)Mj
(14.58)

where Mj =

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 and Mi X(1,S1×D2)Mj
denotes Mi ∪∂

Mj ∪∂X(1,S1×D2). From part (1), ∂Mi = B∪∂ A∪∂ C where B coincides with X(2,D2)∩Mi =
∂X(2,D2) ∩ ∂Mi and C coincides with Mj ∩X(1,S1×D2) = ∂Mj ∩ ∂X(1,S1×D2).

Case Mj
∼= (S1 ×D2)× I

From Lemma 14.38, we can assume that X(2,D2) is a D2-bundle over a cylinder near ∂X(2,D2)∩
∂Mi. Hence, we can apply the same plumbing construction as in the proof of Lemma 14.14.
Thus,

W = X(2,D2) ∪∂ Mi X(1,S1×D2)Mj ∼= (X(2,D2) ∪∂ D4) � (Mi X(1,S1×D2))
Mj

(14.59)
where the plumbing locations are contained in D4 and Mi.

From Lemma 14.38 and Lemma 14.46, X(2,D2) ∪∂ D4 is an elementary building block of

type (2, D2) and Mi X(1,S1×D2)Mj
is an elementary building block of type (1, S1×D2).

Additionally, they admit an F -structure whose restriction to a neighborhood of D4 and Mi

is a T -structure. In other words, the normal covers of open neighborhoods of D4 and Mi
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associated with the F -structures are trivial. Since the plumbing locations are contained in
D4 and Mi, Lemma 2.30 implies that W admits an F -structure.

Case Mj
∼= (T 2 ×Z2 I)× I

From Lemma 13.41, ∂Mi
∼= RP 3#RP 3 so Mi

∼= S2 ×Z2 D
2. Let U be a neighborhood of

Mj ∪∂ Mi in W so that V = U ∩X(2,D2) is a D2-bundle over a cylinder. Let Ũi Ui
π

be a double covering. Then, Ũ = M̃j ∪∂ M̃i ∪∂ Ṽ where M̃j
∼= (T 2 × I)× I is a double cover

of Mj, M̃i
∼= S2 × D2 is a double cover of Mi, and Ṽ is a double cover of V . Ṽ = V1 t V2

where V1 and V2 are D2-bundles over a cylinder and π(V1) = π(V2) = V . Vk ∩M̃i
∼= S1×D2,

k ∈ {1, 2}.

By similar constructions as in the proofs of Lemma 14.38 and Lemma 14.46, Ũ admits
a T -structure which is compatible with π, local S1-actions on X(2,D2) near ∂X(2,D2) ∩ ∂Mi,
and the F -structure on X(1,S1×D2). Therefore, U admits an F -structure which is compatible
with the F -structures on X(1,S1×D2) and X(2,D2). Hence, W admits an F -structure whose
restriction to ∂W has positive rank. This proves Lemma 14.57 (2).

14.8 Combining elementary building blocks of type (2, S2) and (2, D2)

In this section, we consider a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 that

only contains

D4, . . . Mj

pt

,

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,

and

S2 Mj

(Σ2, ∂Σ2)

 components.

Definition 14.60. We call the manifold W in Lemma 14.62 a building block of type (2, S2)+
(2, D2).

We represent a building block of type (2, S2) + (2, D2) by a union of the polyhedrons
representing elementary building blocks of type (2, D2) (see Lemma 14.38) and the solid poly-
gons representing elementary building blocks of type (2, S2) (see Lemma 14.3) by identifying
some edges.
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Example 14.61. The following is a model example of a building block of type (2, S2) +
(2, D2).

Figure 14.15: A representation of a building block of type (2, S2) + (2, D2)

In this example, we have an elementary building block of type (2, D2) represented by a
tetrahedron and an elementary building block of type (2, S2) represented by a triangle. An
edge of the triangle and an edge of the tetrahedron are identified. In Lemma 14.62, we show
that the resulting manifold Y is the connected sum of an elementary building block of type
(2, D2) represented by the tetrahedron and an an elementary building block of type (2, S2)
represented by the triangle.

∂Y is the total space of ∂D2-fibers. ∂Y is identified with a boundary component ofS1 Mp

(X3, ∂X3)

, for some p, so that S1-fibers coincide with ∂D2-fibers of ∂Y .

Lemma 14.62. Let {Mi}i∈A0 be a collection of

D4, . . . Mi

pt

 components such that Mi

only intersects

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,

S2 Mj

(Σ2, ∂Σ2)

, and

S1 Mj

(X3, ∂X3)

 components (as in Lemma 13.50) or Mi only intersects

D2 Mj

(Σ2, ∂Σ2)

,

D3, S2 ×Z2 I Mj

(I, ∂I)

,

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

,

S2 Mj

(Σ2, ∂Σ2)

, and

S1 Mj

(X3, ∂X3)

 components (as in Lemma 13.62).
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Let W be a connected component of M−
⊔
j

S1 Mj

(X3, ∂X3)

 such that W contains a

component Mi, i ∈ A0, and W is disjoint from any

T 2 Mj

(Σ2, ∂Σ2)

 component. Then,

the following holds.

(1)

W =

(
Y −

m⊔
`=1

B4

)
∪

(
Z −

m⊔
`=1

B4

)
. (14.63)

where Y =
⊔
j Yj so that each connected component Yj is an elementary building block

of type (2, S2) and Z =
⊔
j Zj so that each connected component Zj is an elementary

building block of type (2, D2). The union is by identifying S3-boundary components of⊔m
`=1B

4.

W can be represented by a union of the polyhedrons representing elementary building
blocks of type (2, D2) (see Lemma 14.38) and the solid polygons representing elementary
building blocks of type (2, S2) (see Lemma 14.3) by identifying some edges.

(2) ∂W = ∂Z. As a part of M , each connected component of ∂W is identified with a

boundary component of

S1 Mk

(X3, ∂X3)

, for some k.

(3) W admits an F -structure whose restriction to ∂W has positive rank.

Proof. (1). Consider a component Mi for some i ∈ A0. From the decomposition of ∂Mi

in Lemma 13.50 and Lemma 13.62, there exists a collection {Ej}nij=1 of S2-subbundles ofS2 Nj

∂Σ2

 so that Ej ∼= S2 × I and Ej ∩ ∂Mi 6= ∅. We consider Ej as S2 × [0, 3] and

denote the subbundle S2 × [0, 1] ⊂ Ej by E
(1)
j , the subbundle S2 × [1, 2] by E

(2)
j , and the

subbundle S2 × [2, 3] by E
(3)
j . Then, Ej ∩ ∂Mi coincides with E

(1)
j . Additionally, we denote

the two boundary components S2 × {0} and S2 × {1} of E
(1)
j by Vj,1 and Vj,2 respectively.

From Lemma 13.50 and Lemma 13.62, one of the following holds.

(i) Vj,1 coincides with a boundary component of

D3, S2 ×Z2 I Nk

∂I

, for some k. Vj,2 =
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A ∪∂ (B1 t B2) where Bs
∼= D2, s ∈ {1, 2}, is a fiber of

D2 Njs

∂Σ2

, for some js,

and A is a subbundle of

S1 N`

∂X3

, for some `.

(ii) Both Vj,1 and Vj,2 can be decomposed into A ∪∂ (B1 tB2) as in (i).

From Lemma 13.2 and by connectedness, for each k ∈ {1, 2}, there is a subbundle

Fjk
∼= D2 × I of

D2 Njk

∂Σ2

 so that each D2-fiber of Fjk is contained in an S2-fiber of

E
(2)
j = S2× [1, 2]. D2-fibers of Fj1 tFj2 on E

(1)
j ∩E

(2)
j
∼= S2 coincide with D2-fibers B1 tB2

on Vj,2. E
(2)
j − (Fj1 t Fj2) ∼= (S1 × I) × I is contained in

S1 N`

∂X3

, for some `, so

that S1-fibers coincide. Moreover, from Lemma 13.50 and by connectedness, there exists
Mi′ , i

′ ∈ A0, so that Mi′ ∩ Ej = E
(3)
j . Similarly, E

(2)
j ∩ E

(3)
j
∼= S2 can be decomposed into

A′ ∪∂ (B′1 tB′2) in the same way as Vj,2 = E
(1)
j ∩ E

(2)
j .

As a result, E
(2)
j has the same decomposition as the boundary of the componentD3 Mj

(I, ∂I)

 represented by an edge of a polyhedron in the construction of an elemen-

tary building block of type (2, D2) in Lemma 14.38.

Therefore, the construction of an elementary building block of type (2, D2) in Lemma
14.38 is still valid when we replace an occurrence of Mj

∼= D3×I by Ej ∼= S2×I. This process
is equivalent (up to diffeomorphism) to removing B4 from the interior of an elementary
building block of type (2, D2), removing B4 from the interior of an elementary building
block of type (2, S2), then identifying their S3-boundaries. Hence,

W =

(
Y −

m⊔
`=1

B4

)
∪

(
Z −

m⊔
`=1

B4

)
(14.64)

where Y =
⊔
j Yj so that each connected component Yj is an elementary building block of

type (2, S2) and Z =
⊔
j Zj so that each connected component Zj is an elementary building

block of type (2, D2). The union is by identifying S3-boundary components of
⊔m
`=1B

4.

(2). From Lemma 14.3, Y is a closed manifold. Hence, ∂W = ∂Z. Part (2) of the lemma
then follows directly from Lemma 14.38.
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Figure 14.16: Example of the configuration of a building block of type (2, S2) + (2, D2) and

its representation. Each D2-bundle over a circle is identified with

D2 Nj

∂Σ2

.

(3). From Lemma 14.38, every Zj admits an F -structure and there exists a componentD2 Mk

(Σ2, ∂Σ2)

 such that Mk ⊂ Zj. The F -structure on Zj restricts to local S1-actions

on Mk. From Lemma 14.9, every Yj admits an F -structure with at least one open set with
a trivial normal covering (in the sense of Definition 2.26).

Paternain and Petean [21, Theorem 5.9] showed that the connected sum of two manifolds
with F -structure admits an F -structure, provided that the manifolds have at least one open
set with a trivial normal covering (in the sense of Definition 2.26). The new F -structure is
constructed by finding appropriate S1-actions in a neighborhood of connected sum locations.
Hence, [21, Theorem 5.9] also applies to (14.64). Therefore, W admits an F -structure.

The constructions in the proof of Lemma 14.62 only concern components

D3 Mj

(I, ∂I)


as a part of an elementary building block of type (2, D2). Therefore, we get the following
corollary.
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Corollary 14.65. The conclusion of Lemma 14.62 is still valid when an occurrence of an
elementary building block Zj of type (2, D2) is replaced by a building block of type (2, D2) +
(1, S1 ×D2).

Proof. The proof of the lemma is similar to the proof of Lemma 14.62. Lemma 14.57 is used
in the proof instead of Lemma 14.38 and Lemma 13.62 is used instead of Lemma 13.50.

Definition 14.66. We call the resulting manifold in Corollary 14.65 a building block of type
(2, S2) + (2, D2) + (1, S1 ×D2).

Figure 14.17: Example of a representation of a building block of type
(2, S2) + (2, D2) + (1, S1 ×D2)

14.9 Connected components of M −
⊔
`

S1 M`

(X3, ∂X3)

 that contains

T 2 Mi

(Σ2, ∂Σ2)

 components

In this section, we consider connected components of M −
⊔
`

S1 M`

(X3, ∂X3)

 from

the previous sections that also contain

T 2 Mi

(Σ2, ∂Σ2)

 components. There are two

possibilities which will be described in Lemma 14.67 and Lemma 14.75.

14.9.1 Combining an elementary building block of type (2, T 2) with other
building blocks

Lemma 14.67 shows that we can combine an elementary building blocks of type (2, T 2)
with an elementary building block of type (2, D2), an elementary building block of type
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(1, S1 ×D2), a building block of type (2, S2) + (1, D2), or a building block of type (2, S2) +
(2, D2) + (1, S1 ×D2).

Example 14.67. The following example combines an elementary building blocks of type
(2, T 2) with an elementary building block of type (1, S1 ×D2).

Figure 14.18: A representation of a building block of type (2, S2) + (2, D2) + (1, S1 ×D2)

The rectangle represents an elementary building block of type (2, T 2). Dashed edges

represent removing

S1 ×D2 Mj

(I, ∂I)

 components in the construction of an elementary

building block of type (2, T 2) (as in Lemma 14.14). The rest of the figure is a graph which
represents an elementary building block of type (1, S1 ×D2) (as in Lemma 14.46).

In Lemma 14.68, we show that the resulting manifold Y admits an F -structure. ∂Y is
a graph manifold and the F -structure restricts to a T -structure with positive rank on ∂Y .

∂Y is identified with a boundary component of

S1 Mp

(X3, ∂X3)

, for some p.

Lemma 14.68. Let M2 be a component

T 2 M2

(Σ2, ∂Σ2)

. Suppose that there exists a

boundary component N ′2 of M2 such that N ′2 only intersects

D4, . . . Mi

pt

,S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

, and

S1 M`

(X3, ∂X3)

 components, i.e.

N ′2 ⊂

⊔
i

D4, . . . Mi

pt

 ∪
⊔

j

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)




∪

⊔
`

S1 M`

(X3, ∂X3)

 . (14.69)
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Let {Mi}i∈A0 be a collection of

D4, . . . Mi

pt

 components such that Mi∩N ′2 6= ∅. Also

assume that ∂Mi∩
⊔
p

T 2 Mp

(Σ2, ∂Σ2)

 is connected. That is ∂Mi∩
⊔
p

T 2 Mp

(Σ2, ∂Σ2)


= ∂Mi ∩N ′2 ∼= T 2 × I.

Let {Mj}j∈A1 be a collection of

S1 ×D2, T 2 ×Z2 I Mj

(I, ∂I)

 components such that

Mj ∩N ′2 6= ∅.

Let W =
(⊔

i∈A0
Mi

)
∪
(⊔

j∈A1
Mj

)
. Then, the following holds.

(1) We can represent W together with its attaching data to N ′2 by a cycle graph C as follows.
Each vertex vi represents a component Mi, i ∈ A0. There are two types of edges: solid
edges and dashed edges. A solid edge represents a component Mj, j ∈ A1, and a dashed
edge represents a connected component of N ′2 − ∂W diffeomorphic to (T 2 × I).

We can consider W as an elementary building block of type (2, T 2) but with the interior

of some

S1 ×D2 Mj

(I, ∂I)

 components removed. The cycle graph C is obtained

by labeling some edges of a cycle graph in Lemma 14.14 as dashed edges.

(2) Let vi be a vertex representing a component Mi, i ∈ A0. If vi is incident to exactly one
dashed edge, then either

a) there exists a component Mj′ =

S1 ×D2, T 2 ×Z2 I Mj′

(I, ∂I)

, for some j′, so

that Mj′ is not contained in W and Mj′ ∩Mi 6= ∅ (Mi is as in in Lemma 13.64),
or

b) ∂Mi = A ∪∂ B ∪∂ C where A is the total space of S1-fibers over a surface with
one boundary component, B ∼= T 2 × I is a subbundle of N ′2, and C ∼= S1 ×D2 or

T 2 ×Z2 I is a fiber of a component

S1 ×D2, T 2 ×Z2 I Nj

∂I

, for some j (Mi

is as in Lemma 13.67).
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If vi is incident to two dashed edges, then either

a) there exists a component Mj′ =

S1 ×D2, T 2 ×Z2 I Mj′

(I, ∂I)

, for some j′, so

that Mj′ is not contained in W and Mj′ ∩Mi 6= ∅ (Mi as in Lemma 13.64), or

b) ∂Mi = A∪∂B where A is the total space of S1-fibers over a surface (not necessary
connected) with two boundary components and B ∼= T 2 × I is a subbundle of N ′2
(Mi is as in Lemma 13.67).

(3) Let Z be a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 such that M2 ⊂ Z.

Assume that Z contains exactly one

T 2 Mp

(Σ2, ∂Σ2)

 component. Let Y be a con-

nected component of Z −M2 such that W ⊂ Y .

Suppose that there exists exactly one component Mj′
∼= (S1×D2)× I or (T 2×Z2 I)× I

such that Mj′ is not contained in W and Mj′ ∩Mi 6= ∅, for some i ∈ A0, as in (2).
Then,

Y = W X = W ∪∂ Mj′ ∪∂ X
Mj′

(14.70)

where X is a 4-manifold with boundary which admits an F -structure, Mj′ ∩ W =
∂Mj′ ∩∂Mi, Mi′ ⊂ X, and Mj′ ∩X = ∂Mj′ ∩∂Mi′. (In particular, X is an elementary
building block of type (2, D2), an elementary building block of type (1, S1 × D2), a
building block of type (2, S2) + (2, D2), a building block of type (2, D2) + (1, S1 ×D2),
or a building block of type (2, S2) + (2, D2) + (1, S1 ×D2))

W admits an F -structure that is compatible with local T 2-actions on M2 and the F -
structure on Mj′ ∪X.

(4) In general, when there are more than one

S1 ×D2, T 2 ×Z2 I Mj′

(I, ∂I)

 compo-

nents as in (2), Y admits an F -structure that is compatible with local T 2-actions on⊔
`

T 2 M`

(Σ2, ∂Σ2)

 and with local S1-actions on
⊔
`

S1 M`

(X3, ∂X3)

. ∂Y is a

graph manifold and the F -structure on Y restricts to a T -structure with positive rank
on ∂Y .
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Proof. (1). We construct a graph C to represent W together with its attaching data to N ′2
as follows. We construct a vertex vi for each component Mi, i ∈ A0. Vertices vi1 and vi2
are adjacent via a solid edge ej if and only if there is a component Mj, j ∈ A1, so that
Mi1 ∩Mj 6= ∅ and Mi2 ∩Mj 6= ∅. From Lemma 13.3, N ′2− ∂W =

⊔
j Lj where Lj ∼= T 2× I

is a subbundle of N ′2. We construct a dashed edge eDj connecting vertices vi1 and vi2 if and
only there is Lj such that Lj ∩Mi1 6= ∅ and Lj ∩Mi2 6= ∅.

The decomposition of Mi, i ∈ A0, such that vi is incident only to solid edges is given
in Lemma 13.17. The decomposition of Mi such that vi is incident to both solid edges and
dashed edges is given in Lemma 13.64. The decomposition of Mi such that vi is incident
only to dashed edges is given in Lemma 13.67. It follows from the lemmas that deg(vi) = 2
for all i. Therefore, C is a cycle graph.

By a similar construction as in the proof of Lemma 14.14, the cycle graph C can be
obtained by labeling some edges of a cycle graph in Lemma 14.14 as dashed edges. In other
words, we can consider W as an elementary building block of type (2, T 2) with the interior

of some

S1 ×D2 Mj

(I, ∂I)

 components removed.

(2). This follows directly from the decomposition of Mi in Lemma 13.64 and Lemma
13.67.

(3). Let Z be a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 such that W ∪M2

⊂ Z. Assume that Z contains exactly one

T 2 Mp

(Σ2, ∂Σ2)

 component, i.e.

Z ∩
⊔
p

T 2 Mp

(Σ2, ∂Σ2)

 = Z ∩M2.

Put Y = Z −M2. Suppose that there exists exactly one component Mj′ =S1 ×D2, T 2 ×Z2 I Mj′

(I, ∂I)

 such that Mj′ is not contained in W and Mj′ ∩Mi 6= ∅,

for some i ∈ A0, as in (2). Put X = Y − (W ∪Mj′). Then, Mi′ ⊂ X and

Y = W X = W ∪∂ Mj′ ∪∂ X
Mj′

(14.71)

where Mj′ ∩W = ∂Mj′ ∩ ∂Mi, Mi′ ⊂ X, and Mj′ ∩X = ∂Mj′ ∩ ∂Mi′ .
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From Lemma 13.5, the boundary of each (S1×D2) or (T 2×Z2 I)-fiber of Mj′ is the total

space of S1-fibers from

S1 N`

∂X3

, for some `. By connectedness, ∂Mi′∩

S1 N`

∂X3


6= ∅. The decompositions of ∂Mi′ in these cases are given in Lemma 13.38, Lemma 13.41,
Lemma 13.62, Lemma 13.64, and Lemma 13.67. It follows that X is an elementary building
block of type (2, D2), an elementary building block of type (1, S1 ×D2), a building block of
type (2, S2) + (1, D2), a building block of type (2, D2) + (1, S1 ×D2), or a building block of
type (2, S2) + (2, D2) + (1, S1 ×D2).

Let Wp be a connected component of W . By the same argument as in the proof of Lemma
14.14,

Wp = Mi1 Mi2 · · · Mim

Mj1 (14.72)

where Mik Mik+1

Mjk denotes Mik ∪∂ Mjk ∪∂ Mik+1
so that Mik ∩Mik+1

= ∅. For all

k ∈ {2, 3, . . . ,m− 1},

∂Mik
∼=
{
S1 ×D2

T 2 ×Z2 I

}
∪∂ (T 2 × I) ∪∂

{
S1 ×D2

T 2 ×Z2 I

}
. (14.73)

In particular, the decomposition of ∂Mik is the same as the decomposition of

D4, . . . Mi

pt


in Lemma 14.14. Hence, the construction of an F -structure in the proof of Lemma 14.14 also
applies to this case. We have that Wp−Mi1 −Mim admits an F -structure whose restriction
to ∂Wp−Mi1−Mim is local T 2-actions. Additionally, the F -structure restricts to T 2-actions
on Mj1 and Mjm−1 (or their double covers).

Without loss of generality, we assume that Mi1 ∩Mj′ 6= ∅. Then, ∂Mim ∩Mj′ = ∅.
From Lemma 13.64, ∂Mim = A ∪∂ B ∪∂ C where A is the total space of S1-fibers over a
surface with one boundary component, B ∼= T 2 × I is a subbundle of N ′2, and C ∼= S1 ×D2

or T 2 ×Z2 I. ∂Mi1 and ∂Mim are Seifert manifolds.

If Mim
∼= D4, S2 ×ω D2, ω ∈ Z, or S1 × D3, then Mjm−1

∼= (S1 × D2) × I. By a
similar argument as in the proof of Lemma 14.14, there is an S1-action on Mim so that the
orbits are compatible with the orbits of the T 2-action on Mjm−1 . The S1-action on Mim

and the T 2-action on Mjm−1 generate a T 3-action of degree one or two on a neighborhood of
Mim∩Mjm−1 . By passing to a quotient, we get an effective T 2 or S1-action on a neighborhood
of Mim ∩Mjm−1 which is compatible with the S1-action on Mim and the T 2-action on Mjm−1 .

If Mim
∼= (S2 ×ω D2)/Z2, ω ∈ Z, (RP 3 × S1)×̃I, or (S2×̃S1)×̃I, then Mjm−1

∼= S1 ×D2

or T 2 ×Z2 I. If Mjm−1
∼= S1 × D2 then we let M̃jm−1 = Mjm−1 . If Mjm−1

∼= (T 2 ×Z2 I) × I,

then we let M̃jm−1
∼= (T 2 × I)× I be the double cover of Mjm−1 . Let M̃im be a double cover
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of Mim . By a similar argument as in the proof of Lemma 14.14 and in above cases, there is

an effective T 2 or S1-action on a neighborhood of M̃im ∩ M̃jm−1 which is compatible with the

S1-action on M̃im and the T 2-action on M̃jm−1 .

If Mim
∼= T 2×D2, then by a similar argument as in the proof of Lemma 14.14, Mjm−1 ∪∂

Mim admits a T -structure which restricts to T 2-actions on Mim and Mjm−1 . If Mim
∼=

T 2 ×Z2 D
2 or Bk×̃I, then the same argument applies on its double covers.

From all cases, we can extend the F -structure on Wp−Mi1 −Mim to Mim . Similarly, we
can extend the F -structure on Wp−Mi1−Mim to Mi1 . Therefore, W admits an F -structure
that is compatible with local T 2-actions on M2.

(4). From the proofs of Lemma 14.38, Lemma 14.46, Lemma 14.57, Lemma 14.62, Lemma
14.68, and the proof of part (3), the F -structures on X and W are compatible with the S1

or T 2-action on Mj′ (or its double cover). Therefore, Y = W ∪∂ Mj′ ∪∂ X admits an F -
structure. It follows from part (3) that ∂Y is a graph manifold and the F -structure restricts
to a T -structure with positive rank on ∂Y . The F -structure is also compatible with local

T 2-actions on
⊔
`

T 2 M`

(Σ2, ∂Σ2)

 and local S1-actions on
⊔
`

S1 M`

(X3, ∂X3)

.

The above construction is done on a neighborhood of Mi1 ∩Mj′ . Thus, the same con-

struction applies for the general case when there are more than one


S1 ×D2,
T 2 ×Z2 I

Mj′

(I, ∂I)


components such that Mj′ ∩Mi 6= ∅, for some i ∈ A0, and Mj′ ∩ N ′2 = ∅. Hence, Y ad-
mits an F -structure. ∂Y is a graph manifold and the F -structure restricts to a T -structure
with positive rank on ∂Y . Moreover, the F -structure is compatible with local T 2-actions on⊔
`

T 2 M`

(Σ2, ∂Σ2)

 and local S1-actions on
⊔
`

S1 M`

(X3, ∂X3)

.
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14.9.2 Attaching

T 2 Mj

(Σ2, ∂Σ2)

 to any

D4, . . . Mi

pt

 component

The next lemma shows that we can attach a component

T 2 Mj

(Σ2, ∂Σ2)

 to any

D4, . . . Mi

pt

 component such that Mi ∩

S1 M`

(X3, ∂X3)

 6= ∅, for some `.

Example 14.74. The following example demonstrates attaching a componentT 2 Mj

(Σ2, ∂Σ2)

 to elementary building blocks of type (2, D2) and (1, S1 ×D2).

Figure 14.19: Attaching a component

T 2 Mj

(Σ2, ∂Σ2)

 to elementary building blocks of

type (2, D2) and (1, S1 ×D2)

In this figure, the tetrahedron represents an elementary building block of type (2, D2) and
the graph represents an elementary building block of type (1, S1×D2). The region bounded

by dashed curves represents a

T 2 Mj

(Σ2, ∂Σ2)

 component. In Lemma 14.75, we show

that the resulting manifold Y admits an F -structure. ∂Y is identified with a boundary

component of

S1 Mp

(X3, ∂X3)

, for some p.
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Lemma 14.75. Let M2 be a component

T 2 M2

(Σ2, ∂Σ2)

. Suppose that there exists a

boundary component N ′2 of M2 such that N ′2 only intersects

D4, . . . Mi

pt


and

S1 M`

(X3, ∂X3)

 components, i.e.

N ′2 ⊂

⊔
i

D4, . . . Mi

pt

 ∪
⊔

`

S1 M`

(X3, ∂X3)

 . (14.76)

Let U2 be a neighborhood of N ′2 in M2 so that U2
∼= N ′2 × [0, ε), for some ε > 0. U2 is a

T 2-subbundle of M2.

Let {Mi}i∈A0 be a collection of

D4, . . . Mi

pt

 components such that Mi∩N ′2 6= ∅. Also

assume that ∂Mi∩
⊔
p

T 2 Mp

(Σ2, ∂Σ2)

 is connected. That is ∂Mi∩
⊔
p

T 2 Mp

(Σ2, ∂Σ2)


= ∂Mi ∩N ′2 ∼= T 2 × I.

Let Z be a connected component of M −
⊔
`

S1 M`

(X3, ∂X3)

 such that Z contains

M2. Assume that there Z contains exactly one

T 2 Mj

(Σ2, ∂Σ2)

 component.

Let {Yj}j∈J be a collection of connected components of Z −M2 such that Yj ∩ N ′2 6= ∅.
Then, each Yj, j ∈ J , admits an F -structure which is compatible with local T 2-actions on M2

and local S1-actions on
⊔
`

S1 M`

(X3, ∂X3)

. In particular, Yj is an elementary building

block of type (2, D2), an elementary building block of type (1, S1 × D2), a building block of
type (2, D2) + (1, S1 ×D2), a building block of type (2, S2) + (2, D2), a building block of type
(2, S2) + (2, D2) + (1, S1 ×D2), or the manifold Y in the conclusion of Lemma 14.68.
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Let X be the connected component of ∂
(
U2 ∪

⊔
j∈J Yj

)
such that X ∩N ′2 6= ∅. As a part

of M , X attaches to a component

S1 N`

∂X3

, for some `. Each T 2-fiber of X ∩ N ′2 is

the total space of S1-fibers from N`. U2∪
⊔
j∈J Yj admits an F -structure which is compatible

with local T 2-actions on M2 and local S1-actions on M`.

Proof. It follows from Lemma 13.67 that every argument in the proofs of Lemma 14.38,

Lemma 14.46, Lemma 14.57, Lemma 14.62, and Lemma 14.68 that involves

D4 Mq

pt


components such that Mj ∩

S1 M`

(X3, ∂X3)

 6= ∅, for some `, is still valid when an

occurrence of Mq is replaced by Mi, for some i ∈ A0. Therefore, Yj admits an F -structure

which is compatible with local S1-actions on
⊔
`

S1 M`

(X3, ∂X3)

. By similar arguments

as in the proof of Lemma 14.62, the F -structure is also compatible with local T 2-actions on
M2. In particular, each Yj is an elementary building block of type (2, D2), an elementary
building block of type (1, S1×D2), a building block of type (2, D2)+(1, S1×D2), a building
block of type (2, S2) + (2, D2), a building block of type (2, S2) + (2, D2) + (1, S1 ×D2), or
the manifold Y in the conclusion of Lemma 14.68.

For each i ∈ A0, put Si = N ′2 ∩ ∂Mi
∼= T 2 × I. From Lemma 13.67, we have that

N ′2 = S1 S2 · · · Sm
E1 E2 Em−1

Em

(14.77)

where Ei ∼= T 2 × I is a connected component of N ′2 −
⊔
iMi and Si Si+1

Ei represents

Si ∪∂ Ei ∪∂ Si+1
∼= (T 2× I)∪∂ (T 2× I)∪∂ (T 2× I) ∼= T 2× I. By Lemma 13.3, each T 2-fiber

of Ei is the total space of S1-fibers from

S1 N`

∂X3

. By Lemma 13.67, Ei ∩ ∂Mi is the

total space of S1-fibers which coincide to both S1-fibers of Ei and ∂Mi.

Let X be a connected component of ∂
(
U2 ∪

⊔
j∈J Yj

)
such that X ∩ N ′2 6= ∅. For
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simplicity, we first assume that each Yj, j ∈ J , contains exactly one Mi, i ∈ A0. Then,

X = ∂Y1 ∂Y2 · · · ∂Ym
E1 E2

Em

(14.78)

where the two boundary components of ∂Yi − Si are identified with a boundary component
of Ei and Ei+1 respectively. From the compatibility of S1-fibers and from Lemma 14.38,
Lemma 14.46, Lemma 14.57, Lemma 14.62, and Lemma 14.68, X is the total space of S1-

fibers. By connectedness, X attaches to a boundary component of

S1 M`

(X3, ∂X3)

, for

some ` so that S1-fibers coincide. If there exists Yj, j ∈ J , such that Yj contains Mi1 and
Mi2 , i1, i2 ∈ A0, then the same argument applies.

Let T 2 act freely on U2 so that the orbits coincide with T 2-fibers of U2. From Lemma
14.38, Lemma 14.46, Lemma 14.57, Lemma 14.62, and Lemma 14.68, each Yj, j ∈ J , admits
an F -structure whose restriction to Mi, i ∈ A0, such that Mi ⊂ Yj and Mi ∩ N ′2 6= ∅, is

compatible with T 2-fibers on N ′2 ∩ ∂Mi and S1-fibers on ∂Mi ∩

S1 N`

∂X3

. Hence,

U2 ∪
⊔
j Yj admits an F -structure which is compatible with local T 2-actions on M2 and local

S1-actions on M`.
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15

Proof of Theorem 1.4

In this chapter, we finish the proof of Theorem 1.4. We describe M in terms of a configuration
of building blocks and fiber bundle components then show that M admits an F -structure or
a metric of nonnegative sectional curvature.

15.1 M contains a fiber bundle component without boundary

From Section 13.1, if M contains a fiber bundle component without boundary, then M is a
closed Riemannian 4-manifold which admits a metric of nonnegative sectional curvature or M

is

S1 M

X3

,

T 2 M

Σ2

,

S2 M

Σ2

, or

S3/Γ, T 3/Γ, S2 × S1,RP 3#RP 3 M

S1

.

In the later case, M admits local S1 or T 2-actions. In particular, M admits an F -structure.

In the following sections, we assume that M does not contain a fiber bundle component
without boundary.

15.2 M does not contain a component with 2 or 3-dimensional base

First, we assume that M does not contain a component with 2 or 3-dimensional base. From
Section 2.5, M = Mi1 ∪∂ M1 ∪∂ Mi2

∼= Mi1 ∪∂ Mi2 where Mik , k ∈ {1, 2}, is a componentD4, . . . Mik

pt

, and M1 is a component

S3/Γ, . . . M1

(I, ∂I)

. The classification of

Mik , k ∈ {1, 2}, is given in Table 13.1. From Section 2.5, Mik (or its double cover M̃ik)

admits an S1 or T 2-action whose restriction to ∂Mik (or ∂M̃ik) is free.

Consider M1 as F × [1, 2] where F ∼= S3/Γ, T 3/Γ, S2 × S1, or RP 3#RP 3. We must have
that F ∼= ∂Mik , k ∈ {1, 2}. Additionally, consider Mi1 ∩ M1 as F × {1} and Mi2 ∩ M1

as F × {2}. Extend the S1 or T 2-action on Mi1 (or M̃i1) to F × [1, 2] (or its double cover
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F̃ × [1, 2]) so that it restricts to the same action on each fiber F ×{t} (or F̃ ×{t}), t ∈ [1, 2],

and restricts to the trivial action on the [1, 2]-factor. The action on F × [1, 2] (or F̃ × [1, 2])

and the action on Mi2 (or M̃i2) together generate a higher dimensional torus action on

M1 ∩Mi2 = F × {2} (or F̃ × {2}). If the action is not effective, then we pass to a quotient
to get an effective lower dimensional torus action. Therefore, M admits an F -structure.

From Section 14.1, it suffices to assume that every

S3/Γ, . . . Mi

(I, ∂I)

 component

is disjoint from

D4, . . . Mj

pt

 components. For simplicity, in the following sections,

we assume that M does not contain any

S3/Γ, . . . Mi

(I, ∂I)

 component. Later in Sec-

tion 15.6, we will show that the conclusions of the following sections are still valid when

we replace an occurrence of a

D4, . . . Mj

pt

 component by a boundary component ofS3/Γ, . . . Mi

(I, ∂I)

.

15.3 Boundary components of

S2 Mi

(Σ2, ∂Σ2)



Let Mi be a component

S2 Mi

(Σ2, ∂Σ2)

. Let N ′i be a boundary component of Mi. From

the results in previous two chapters, N ′i
∼= S2 × S1 is identified with one of the following.

(i) A component

S1 ×D3, S2 ×D2 Mj

pt

, for some j, along the boundaryS1 × S2 ∂Mj

pt

.
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(ii) A component

D3, S2 ×Z2 I Mj

S1

, for some j, along the boundary

S2 ∂Mj

S1


so that S2-fibers coincide.

(iii) A 4-manifold W represented by a cycle graph where each vertex represents a compo-
nent

D4,±CP 2#D4

S2 ×±2 D
2, S2 ×Z2 D

2 Mjk

pt

, for some jk, and each edge represents a compo-

nent

D3, S2 ×Z2 I Mj`

(I, ∂I)

, for some j`, as in Lemma 14.3. W ∼= (S1 × D3)#

n1(CP 2)# n2(−CP 2)# n3(S2 × S2), for some integers n1, n2, n3 ≥ 0, or W ∼= S1 ×
(RP 3#D3). In particular, ∂W ∼= S1 × ∂D3. ∂D3-fibers of ∂W coincide with S2-fibers
of N ′i .

(iv) A 4-manifold as in (iii) but with some occurrences of

D3, S2 ×Z2 I Mj

S1

 compo-

nents replaced by the union Vj1 ∪∂ E` ∪∂ Vj2 ∼= S2 × I where Vjk
∼= D2 × I, k ∈ {1, 2},

is a subbundle of

D2 Njk

∂Σ2

, for some jk, and E` ∼= (S1× I)× I is a subbundle ofS1 N`

∂X3

, for some `. Vjk ∩ E` ∼= S1 × I so that the boundary of each D2-fiber

of Vjk coincides with a boundary component of an (S1 × I)-fiber of E`. (See Lemma
14.62).

(v) The union Vj1 ∪∂ E` ∪∂ Vj2 where Vjk , k ∈ {1, 2}, is a boundary component ofD2 Mjk

(Σ2, ∂Σ2)

, for some jk, and E` ∼= (S1×I)×S1 is a subbundle of

S1 N`

∂X3

,

for some `. Vjk ∩ E` ∼= S2 × S1 so that the boundary of each D2-fiber of Vjk coincides
with a boundary component of an (S1 × I)-fiber of E`.

Lemma 15.1. There are local S1-actions on Mi which are compatible with an F -structure
on the manifold attaching to N ′i .

Proof. Let Ui be a neighborhood of N ′i in Mi so that Ui ∼= S2 × [0, ε)× S1 where [0, ε)× S1

is a neighborhood of a boundary component of the base Σ2 and so that N ′i is identified with
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S2 × {0} × S1. Since Mi is an S2-bundle over a surface Σ2, there is the associated principal
bundle S1 −→ F −→ Σ2. Therefore, there are local S1-actions on Mi where S1 acts trivially
on Σ2 and acts by rotations (with two fixed points) on each S2-fiber. The local S1-actions
can be chosen so that they restrict to an S1-action on Ui.

In cases (i) and (ii), if Mj =

S1 ×D3 Mj

pt

 or Mj =

D3 Mj

S1

, then the S1-

action on Ui extends to Mj ∪∂ Ui so that S1 acts trivially on the S1-factor and acts by

rotations on each D3-fiber. If Mj =

S2 ×D2 Mj

pt

 then the S1-action on Ui extends to

Mj ∪∂ Ui so that S1 acts trivially on the D2-factor and acts by rotations on the S2-factor. If

Mj =

S2 ×Z2 I Mj

S1

, then consider its double cover M̃j
∼= (S2 × I) × S1. There is an

S1-action on M̃j so that S1 acts trivially on the (I ×S1)-factor and acts by rotations on the
S2-factor so that it is compatible with the S1-action on Ui. Hence, there are local S1-actions
on Ui which are compatible with an F -structure on the manifold attaching to N ′i in cases (i)
and (ii).

For cases (iii) and (iv), the result follows from Lemma 14.3, Lemma 14.9, and Lemma
14.62.The proof of case (v) is similar to the proof of Lemma 14.62.

15.4 Boundary components of

T 2 Mi

(Σ2, ∂Σ2)



Let Mi be a component

T 2 Mi

(Σ2, ∂Σ2)

. Let N ′i be a boundary component of Mi. N
′
i

is the total space of T 2-fibers over S1. From the results in previous two chapters, N ′i is
identified with one of the following.

(i) A component


T 2 ×D2, T 2 ×Z2 D

2,
Bk×̃I, k ∈ {1, 2, 3, 4}

Mj

pt

, for some j, along the boundary

T 3,G2 Nj

pt

.
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(ii) A component

S1 ×D2, T 2 ×Z2 I Mj

S1

, for some j, along the boundary

T 2 Nj

S1


so that T 2-fibers coincide.

(iii) A boundary component of a component

S1 Mj

(X3, ∂X3)

, for some j, which is also

a T 2-bundle over S1.

(iv) A 4-manifold represented by a cycle graph as in Lemma 14.46 where each vertex repre-

sents a component

F Mjk

pt

, for some jk, where F ∼= D4, ±CP 2#D4, S1×D3, S2×

D2, (RP 2×S1)×̃I, (S2×̃S1)×̃I, S2×ωD2, S2×Z2D
2, (S2×ωD2)/Z2, T 2×Z2D

2, B3×̃I,

or B4×̃I, and each edge represents a component

S1 ×D2, T 2 ×Z2 I Mj`

(I, ∂I)

, for

some j`, as in Lemma 14.14.

(v) A 4-manifold as in (iv) but with some occurrences of

S1 ×D2, T 2 ×Z2 I Mj`

(I, ∂I)


components replaced by S1-subbundles of

S1 Nj

∂X3

 diffeomorphic to (S1×S1)×I.

(See Lemma 14.68.)

(vi) The union of S1-subbundles of

S1 Njk

∂X3

 components and copies of (T 2 × I)-

subsets of

S3, . . . Nj`

pt

 components. (See Lemma 14.75.)

Lemma 15.2. There are local T 2-actions on Mi which are compatible with an F -structure
on the manifold attaching to N ′i .

Proof. N ′i is the total space of T 2-fibers over S1. Let Ui be a neighborhood of N ′i in Mi so
that Ui ∼= N ′i × [0, ε). There are local T 2-actions on Mi where T 2 acts trivially on the base
and acts by the standard T 2-action on each T 2-fiber.

In case (i), Mj
∼= T 2 ×D2, T 2 ×Z2 D

2 or Bk×̃I, k ∈ {1, 2, 3, 4}.
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(a) Mj
∼= T 2 ×D2.

Consider that ∂Mj
∼= T 2 × ∂D2 = S1 × S1 × ∂D2. Up to isotopy, either T 2-fibers of

∂Mj
∼= T 2 × ∂D2 coincide with T 2-fibers of Ui or (S1 × ∂D2)-fibers of ∂Mj coincide

with T 2-fibers of Ui. In the first case, we let T 2 act on Mj by the rotations

T 2 × T 2 → T 2

(φ, θ)× (u, v) 7→ (u+ φ, v + θ) (15.3)

where we use the coordinates u, v, φ, θ ∈ [0, 2π), on the T 2-factor and act trivially on
the D2-factor. Consequently, we get local free T 2-actions on Mj ∪ Ui. In the second
case, we let S1 act by rotations on the D2-factor of Mj

∼= T 2 × D2 and act trivially
on the T 2-factor. We have that the T 2-action on Ui restricts to the S1-action on Mj.
Hence, Mj ∪ Ui admits a T -structure.

(b) Mj
∼= T 2 ×Z2 D

2.

In this case, we apply the same argument as in the case Mj
∼= T 2 ×D2 to its double

cover M̃j
∼= T 2 ×D2. As a result, Mj ∪ Ui admits an F -structure which restricts to a

T 2-action on Ui.

(c) Mj
∼= Bk×̃I.

Consider a double cover Ṽ = Ui,1 ∪∂ M̃j ∪∂ Ui,2 of V = Mj ∪ Ui where M̃j
∼= T 3 × I or

G2 × I is a double cover of Mj and Ui,1 and Ui,2 are copies of Ui. Consider that Ṽ is a

T 2-bundle over a surface. Hence, there are local T 2-actions on Ṽ that are compatible
with the double covering Ṽ −→ V . Therefore, Mj ∪ Ui admits an F -structure which
restricts to local T 2-actions on Ui.

In case (ii), if Mj =

S1 ×D2 Mj

S1

, then the local T 2-actions on Ui extend to

Mj∪∂Ui so that T 2 acts trivially on the base S1 and acts on each S1×D2-fiber by the action

T 2 × (S1 ×D2)→ S1 ×D2

(φ, θ)× (u, r, v) 7→ (u+ φ, r, v + θ) (15.4)

where we use the coordinates φ, θ, u, v ∈ [0, 2π), and r ∈ [0, 1]. This extends the T 2-
action on each T 2-fiber of Ui. Hence, there are local T 2-actions on Mj ∪ Ui. If Mj =T 2 ×Z2 I Mj

S1

, then the same argument as in case (i) : Mj
∼= Bk×̃I applies. From

both cases, we have that Mj ∪ Ui admits an F -structure which restricts to a T 2-action on
Ui.
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In case (iii), there are local S1-actions on

S1 Mj

(X3, ∂X3)

. From Lemma 13.3, each

T 2-fiber of N ′i is the total space of S1-fibers from Mj. Hence, local S1-fibers from Mj and
local T 2-fibers from Mi are compatible in the sense of T -structure. As a result, there is a
T -structure on Mj ∪Mi that restricts to local T 2-actions on Mi.

For cases (iv), (v), and (vi), the result follows from Lemma 14.14, Lemma 14.9, Lemma
14.68, and Lemma 14.75.

15.5 Boundary components of

S1 Mi

(X3, ∂X3)



Let Mi be a component

S1 Mi

(X3, ∂X3)

. Let N ′i be a boundary component of Mi. N
′
i is

the total space of S1-fibers over a closed surface. From the results in previous two chapters,
N ′i is identified with one of the following.

(i) A component

D4, . . . Mj

pt

, for some j, along the boundary

S3, . . . Nj

pt

.

(ii) A component

D2 Mj

Σ2

, for some j, along the boundary

S1 Nj

Σ2

 so that

S1-fibers coincide.

(iii) A component

S1 ×D2, T 2 ×Z2 I Mj

S1

, for some j, along the boundary

T 2 Nj

S1


so that each T 2-fiber of Nj is the total space of S1-fibers from N ′i .

(iv) A boundary component of a component

T 2 Mj

(Σ2, ∂Σ2)

, for some j, so that along

the overlap, each T 2-fiber is the total space of S1-fibers from N ′i .

(v) An elementary building block of type (2, D2) (see Lemma 14.38).

(vi) An elementary building block of type (1, S1 ×D2) (see Lemma 14.46).
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(vii) A building block of type (2, D2)+(1, S1×D2), a building block of type (2, S2)+(2, D2),
or a building block of type (2, S2) + (2, D2) + (1, S1 ×D2) (see Lemma 14.57, Lemma
14.62, and Corollary 14.65).

(viii) The union of T 2-subbundles of

T 2 Nj

∂Σ2

, which are diffeomorphic to T 2× I, and

other building blocks as described in Lemma 14.68 and Lemma 14.75.

Lemma 15.5. There are local S1-actions on Mi which are compatible with an F -structure
on the manifold attaching to N ′i .

Proof. Let Ui be a neighborhood of N ′i in Mi so that Ui ∼= N ′i × [0, ε). Since Mi is an S1-
bundle over X3, there are local S1-actions on Mi where S1 acts trivially on the base and
acts by rotations on each S1-fiber. The local S1-actions can be chosen so that it restricts to
an S1-action on Ui.

For case (i), there is an S1 or T 2-action on Mj (or its double cover M̃j) whose restriction

to ∂Mj (or ∂M̃j) is free (see Section 2.5). The action on ∂Mj (or M̃j) and the local S1-actions
on Ui together generate higher dimensional local torus actions on a neighborhood of ∂Mj in

Mj ∪Ui (or ∂M̃j in M̃j ∪ Ũi). If they are not effective, then we can pass to a quotient to get
effective local actions. Therefore, Mj ∪ Ui admits an F -structure.

In case (ii), Mj =

D2 Mj

Σ2

. We can extend the local S1-actions on Ui to Mj so that

S1 acts trivially on the base Σ2 and acts by rotations about the center on each D2-fiber.

For cases (iii) and (iv), the result follows from the same arguments as in the proof of
cases (ii) and (iii) of Lemma 15.2. For cases (v), (vi), (vii), and (viii), the result follows from
Lemma 14.38, 14.46, Lemma 14.57, Lemma 14.68, and Lemma 14.75.

15.6 Replacing

D4, . . . M0

pt

 with a boundary component ofS3/Γ, . . . Mi

(I, ∂I)


In this section, we show that the conclusions of Lemma 15.1, Lemma 15.2, and Lemma

15.5 are still valid when we replace an occurrence of a component

D4, . . . Mj

pt

 by a
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boundary component of

S3/Γ, . . . Mi

(I, ∂I)

.

If an occurrence of a

D4, . . . Mj

pt

 component in case (i) of Section 15.3, Section

15.4, and Section 15.5 is replaced by a boundary component of

S3/Γ, . . . Mj

(I, ∂I)

, then

by the same argument as in Section 15.2, the conclusions of Lemma 15.1, Lemma 15.2, and
Lemma 15.5 are still valid. Therefore, from now on we can assume that there are no boundary

components of

S2 Mj

(Σ2, ∂Σ2)

,

T 2 Mj

(Σ2, ∂Σ2)

, and

S1 Mj

(X3, ∂X3)

, that

only intersect a component

S3/Γ, . . . Mi

(I, ∂I)

.

From Lemma 13.68, the decomposition of a boundary component ofS3/Γ, . . . Mi

(I, ∂I)

 is the same as the decomposition of

S3, . . . ∂M0

pt

. It follows

that the gluing description of building blocks in the previous chapter (Lemma 14.38, Lemma
14.46, Lemma 14.57, Lemma 14.62, Corollary 14.65, Lemma 14.68, and Lemma 14.75) does

not change when an occurrence of a component

D4, . . . M0

pt

 is replaced by a boundary

component of

S3/Γ, . . . Mi

(I, ∂I)

.

Since we will construct an F -structure near

S3/Γ, . . . Mi

(I, ∂I)

, it suffices to assume

that M contains only one

S3/Γ, . . . Mi

(I, ∂I)

 component, which we denote by M1. Then,
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we can write M as

M = W0 W1
M1 (15.6)

or

M = W0

M1

(15.7)

where W0 W1
M1 denotes W0 ∪∂ M1 ∪∂W1 and W0 and W1 are the resulting manifolds

from Section 15.3, Section 15.4, and Section 15.5 but with a component

D4, . . . Mj

pt


replaced by a boundary component of M1. Because we will construct an F -structure in a
neighborhood of M1, it suffices to assume that M is as in (15.6).

Lemma 15.8. Let M = W0 W1
M1 be defined as in (15.6). Then, M admits an F -

structure.

Proof. Consider M1 =

S3/Γ, . . . M1

(I, ∂I)

 as F × [0, 1] where F ∼= S3/Γ, T 3/Γ, S2×S1,

or RP 3#RP 3.

Let U be a neighborhood of M1 in M so that U ∼= F × (−ε, 1 + ε) for some ε > 0. Put

V0 = F × (−ε, 0] ⊂ W0 and V1 = F × [1 + ε) ⊂ W1. Then, U = V0 ∪M1 ∪ V1. Let Ũ be a

finite cover of U so that Ũ/Γ ∼= U . Then, Ũ = Ṽ0 ∪ (F̃ × [0, 1])∪ Ṽ1 where F̃ is a finite cover

of F so that F̃ /Γ ∼= F , Ṽ0 = F̃ × (−ε, 0] and Ṽ1 = F̃ × [1, 1 + ε). We have that, F̃ ∼= S3, T 3,
or S2 × S1.

From the constructions of F -structures on building blocks and associated components
in Lemma 14.38, Lemma 14.46, Lemma 14.57, Lemma 14.62, Lemma 14.68, and Lemma
14.75, W0 and W1 admit an F -structure whose restriction to ∂M1 is an F -structure. In
particular, V0 and V1 admit an F -structure whose restriction to each fiber is an F -structure.
Moreover, from our choices of F -structures in the lemmas, Ṽ0 and Ṽ1 admit a T -structure
whose restriction to each fiber is a T -structure.

Let S1 act on F̃ × [0, 1] by a free action on the F̃ -factor and act trivially on the [0, 1]-

factor. On Ṽ0∩F̃×[0, 1], if the S1-action and torus actions from the T -structure on Ṽ0 do not
coincide, then they generate higher dimensional torus actions. By passing to quotients, we
get a T -structure on a neighborhood of Ṽ0∩ F̃ × [0, 1], which is compatible to the T -structure

on Ṽ0 and the S1-action on F̃ × [0, 1]. Consequently, Ṽ0∪ F̃ × [0, 1] admits a T -structure. By

repeating the same argument, Ũ = Ṽ0 ∪ (F̃ × [0, 1])∪ Ṽ1 admits a T -structure. Therefore, U
admits an F -structure.



Chapter 15 206

15.7 The gluing instruction

By Section 15.2, Section 15.6, and Lemma 15.8, it suffices to assume that M does not

contain any

S3/Γ, . . . Mi

(I, ∂I)

 component. First, we glue all fiber bundle components

contained in Y = M−
⊔
`

S1 M`

(X3, ∂X3)

 as described in Section 15.3 and Section 15.4.

By the lemmas in Chapter 14, boundary components of Y are S1-bundles over surfaces. By
Lemma 15.1 and Lemma 15.2, Y admits an F -structure which is compatible with S1-fibers

of ∂Y . Finally, we glue
⊔
`

S1 M`

(X3, ∂X3)

 with Y as described in Section 15.5. By

Lemma 15.5, M admits an F -structure.

15.8 Satisfying the constraints

We have now shown that M is a 4-dimensional closed CK-smooth Riemannian manifold
which admits an F -structure or a metric of nonnegative sectional curvature. Hence, we have
shown:

Proposition 15.9. Under the constraints imposed in earlier chapters, M admits an F -
structure or a metric of nonnegative sectional curvature.

We now verify that it is possible to simultaneously satisfy all the constraints that appeared
in the construction. We indicate a partial ordering of the parameters which is respected by
all the constraints appearing in this dissertation. We denote A ≺ B if and only if A < A(B)
or A > A(B). This means that every constraint on a given parameter is an upper or lower
bound given as a function of other parameters which are strictly smaller in the partial order.
It follows that all constraints can be satisfied simultaneously.

{M, β4} ≺ {c1-slim,Ωi,Ω
′
i} ≺ Γ5 ≺ {Σ5,Ξ5} ≺ c1-ridge ≺ Γ4 ≺ {Σ4,Ξ4} ≺ c2-slim ≺ Γ3 ≺

{Σ3,Ξ3} ≺ c2-edge ≺ Γ2 ≺ {Σ2,Ξ2} ≺ c3-stratum ≺ Γ1 ≺ {Σ1,Ξ1} ≺ ς3-stratum ≺ β3 ≺
∆ ≺ ςE′ ≺ {ς2-slim, ς2-edge, βE′ , σE′} ≺ σE ≺ {σ,Λ} ≺ w̄ ≺ w′ ≺ βE,≺ β2 ≺

Υ1 ≺ ςR ≺ {ς1-ridge, δ1, σR} ≺ Υ′1 ≺ β1 ≺ {Υ0, δ0} ≺ ς0-stratum ≺ Υ′0.

(15.10)

This proves Theorem 1.4.
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