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ABSTRACT OF THE DISSERTATION

A Search for New Physics producing Jets, Large MT2, and Disappearing Tracks in 13 TeV
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by
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Doctor of Philosophy in Physics

University of California San Diego, 2020

Professor Avraham Yagil, Chair
Professor Frank Würthwein, Co-Chair

This work presents two searches for new physics characterized by pair-production of

strongly interacting particles, each decaying to hadronic jets and a particle that is not detectable.

The searches use the full 13 TeV proton-proton collision dataset produced by CERN’s Large

Hadron Collider and recorded by the CMS detector from 2016 to 2018, with total integrated

luminosity 137 fb−1. The presence of particles interacting too weakly to be detected is inferred

using imbalance in the transverse momentum of the collision products, and sensitivity to pair-

production is enhanced by requiring large values of the kinematic variable MT2 in events with

xiii



at least two jets. The first search is inclusive, binning events using the total hadronic transverse

energy, the total number of jets, the number of jets reconstructed as originating from a bottom

quark, and either the value of MT2 in multijet events, or the transverse momentum of the jet in

monojet events. The second search extends the first, by requiring the presence of a disappearing

track in the event, and adds binning in the length and transverse momentum of the disappearing

track. Both searches are sensitive to a variety of extensions to the Standard Model that include dark

matter candidates. Of greatest interest, the results set constraints on pair production of squarks

and gluinos as predicted by R-parity conserving supersymmetric extensions of the Standard

Model, in which the lightest supersymmetric particle is a neutralino. The first search is sensitive

to any decay chain terminating in Standard Model hadrons plus the neutralino, while the second

specifically targets, with greatly enhanced sensitivity, decay chains containing an intermediate

long-lived chargino. These constraints are the most stringent yet produced by any experiment.
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Chapter 1

Introduction

Elementary particle physics aims to describe nature at its most fundamental level. This

thesis presents analyses of data obtained from high energy proton collisions, which search

for evidence for or against new theoretical models of elementary particle physics. This section

introduces the theoretical context of these searches, describing first the theoretical model presently

serving as the null hypothesis of elementary particle physics, then a few issues identified with

this model, and finally some proposed solutions for these issues.

1.1 The Standard Model of Particle Physics

Modern elementary particle physics finds itself in a peculiar state. Physicists have

constructed a theoretical model, now called the Standard Model of Particle Physics (the Standard

Model; SM), that is the most quantitatively accurate scientific model of any kind, consistent with

experiment in almost every laboratory test, even when experimental uncertainty is smaller than a

part per ten billion [55, 12], with its most famously accurate prediction displayed in Table 1.1.

It is important to take this time to reflect on the Standard Model’s astonishing accuracy,

because the Standard Model is known with certainty to be imperfect, for a few reasons. A subset

1



Table 1.1: A comparison of the leading experimental measurement of the electron’s magnetic
moment [55], and the Standard Model’s theoretical prediction [12], in terms of the classical
prediction, the Bohr magneton. Famously, this is the most accurate verification of theory by
experiment in all of science. The numbers in parentheses are the uncertainties, on the same
order as the last digits printed.

µe
Experiment 2.00231930436 (56)

Theory 2.002319304363 (15)

are discussed in Section 1.2. As a result, the Standard Model is sometimes treated with disdain,

belying its quantitative success as a model of nature. This attitude is born from frustration.

Particle physicists have a theory known to be incomplete, only an approximation, and yet so

accurate an approximation that no evidence in favor of any specific proposed extension has ever

been found. Modern particle physicists hope to find experimental clues by testing the Standard

Model using any available means, including, as in this work, by comparing its predictions for the

outcomes of high energy proton collisions with experimental data.

1.1.1 A Brief Description

The Standard Model is based in quantum field theory (QFT), which provides the general

toolkit used to make calculations, and identifies the observed elementary particles as excitations

of these underlying fields. Since every elementary particle corresponds directly to an underlying

field and vice-versa, for example “the electron particle” and “the electron field” are colloquially

treated as synonyms.

The SM itself, like every model of elementary particle physics based in QFT, consists of

a list of particles present in nature and a description of their interactions with each other. The

particles can be grouped in several ways, but by far the most significant is to group bosons and

fermions.

The bosons of the Standard Model are the photon (typically indicated by γ), the W+

and W−, the Z, the eight gluons, and the Higgs. Of these, the Higgs has no intrinsic angular

2



Table 1.2: The Standard Model bosons, their masses, and associated interactions. Note that
there are eight gluons, but they are not experimentally distinct.

Boson Mass (GeV) [74] Interaction
Photon (γ) 0 Electromagnetism
Gluon (g) 0 Strong (QCD)

W± 80.379 ± 0.012 Weak (charged current)
Z 91.1876 ± 0.0021 Weak (neutral current)

Higgs (h) 125.18 ± 0.16 Weak (symmetry breaking and mass)

momentum (“spin-0”) and the others have spin quantum number 1. One of the major insights

obtained from QFT is that the existence of spin-1 particles requires the existence of fermions

that interact with them, and vice versa. A fermion that interacts with a boson is said to be

“charged under” the boson. Moreover, pure fermion interactions are forbidden, so that fermion-

fermion interactions require a “mediating” boson under which both fermions are charged, while

boson-boson interactions are perfectly acceptable. For this reason, bosons are said to mediate

fundamental interactions. The photon mediates electromagnetism, and the gluons collectively

mediate the strong interaction, as described by Quantum Chromodynamics (QCD). For historical

reasons, the distinct interactions mediated by the W+ and W−, the Z, and the Higgs are all

collectively called the weak interaction. The bosons of the Standard Model are summarized in

Table 1.2.

The interactions have very different character due to differences in the mediating bosons.

The photon and electromagnetism are most familiar. Electromagnetism is relatively simple, as a

result of having only a single-component charge and a single mediating boson, and is relatively

easily studied due to its long range, as a consequence of the masslessness of the photon. The

weak interaction, by contrast, is less well-known in part due to its very short range, a consequence

of the large masses of the mediating bosons. In addition to the 1/r2 behavior familiar from

electromagnetism, forces are also suppressed by an exponential term, e−
mc2
h̄c r, where m is the

mass of the mediating boson and h̄c ≈ 200 GeV-pm. This term vanishes for massless bosons

like the photon, but since the weak bosons have masses on the order of 100 GeV, the weak
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interaction becomes negligible after only a few picometers despite having an intrinsic interaction

strength comparable to electromagnetism. Thus, the weak interaction has an impact only on

nuclear and elementary particle physics. The strong interaction is also short ranged, with effects

becoming significant only on the order of femtometers, but for an entirely different reason. As its

name suggests, it is also intrinsically stronger than the other interactions. It will be discussed in

Section 1.1.3.

The fermions of the Standard Model are all spin-1
2 , and come in two major groups. The

leptons are those fermions which do not participate in the strong interaction, and the quarks are

those that do. The leptons can be further subdivided into the electrically charged leptons, like the

electron, and the electrically neutral neutrinos, which having neither strong nor electromagnetic

interactions can interact only weakly, and are ghost-like particles as a result. The quarks can

be further subdivided into the up-type quarks, which are positively charged, and the down-type

quarks, which are negatively charged. There are three of each quark, one for each of the charges

of the strong interaction, but like the eight gluons, they are not experimentally distinct.

As is evident in Table 1.3, the fermions of the Standard Model occur in triplets with

identical properties aside from mass: the up-type quarks, the down-type quarks, the charged

leptons, and the neutrinos are all roughly three versions of the same particle with different masses.

The fermions are therefore said to be arranged in three similar generations, with generation 1

having the least mass and generation 3 the greatest.

If each generation were truly independent of the others, then each would be independently

stable, as there would be no way to cross from, say, generation 3 to generation 1. However, it is

an experimental fact that quarks can decay across generations via their interactions with the W

boson, albeit much more slowly than within the same generation. This is well-accommodated

in the Standard Model [22, 49], in which there is no reason in general for the charge eigenstates

with respect to any given boson to be equal to those of any other. Famously, the Higgs boson

is responsible for the masses of the Standard Model’s elementary particles, with each particle
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Table 1.3: A table of the Standard Model fermions, first the quarks then the leptons. The vastly
different experimental character of quarks due to their confinement by the strong interactions
make their masses much more difficult to measure than those of the charged leptons. Note
that every Standard Model fermion also has an antiparticle, with identical properties except for
opposite charge. (*) The charge and mass eigenstates of (by convention) down-type quarks are
different, so that for example “the mass of the down quark” does not exist. Otherwise, decays
across generations would be impossible. In practice, they are so nearly equal that the mass of
the down quark is equated with that of the lightest mass eigenstate, etc. (†) The Standard Model
predicts that neutrinos are massless but they experimentally have nonzero masses, albeit one
million times smaller than the electron’s (see Section 1.2).

Fermion Symbol Mass (GeV) [74] Electric charge
Up quark u 0.0022+0.0005

−0.0004 +2
3

Charm quark c 1.275+0.025
−0.035 +2

3
Top quark t 173.0±0.4 +2

3
Down quark∗ d 0.0047+0.0005

−0.0003 -1
3

Strange quark s 0.095+0.009
−0.003 -1

3
Bottom quark b 4.18+0.04

−0.03 -1
3

Electron e 0.0005109989461(31) −1
Muon µ 0.1056583745(24) −1
Tau τ 1.77686(12) −1
Neutrinos νe, νµ, ντ 0† 0
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acquiring a mass proportional to the strength of its interaction with the Higgs. The Higgs

interaction eigenstates, being the mass eigenstates, are privileged as the only charge eigenstates

that are also eigenstates of the Hamiltonian, and so are the only states that can be more than

transient, the states of so-called “real” particles. The hybrid nature of the real states with respect

to W interactions produces effective generation-crossing interactions for quarks described by

the Cabibbo-Kobayashi-Maskawa (CKM) matrix, with values measured experimentally to be

approximately [74],


|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

≈


0.974 0.224 0.004

0.218 0.997 0.042

0.008 0.039 1.019

 (1.1)

where Vxy indicates the effective coupling between quarks x and y. If the eigenstates were exactly

equal, the CKM matrix would be diagonal, with Vxx = 1 and Vxy = 0 (x 6= y), prohibiting trans-

generation decays. As can be seen in Equation 1.1, the CKM matrix is nearly diagonal, meaning

trans-generation decays are slow but not impossible. This causes the third generation bottom

quark to have a longer lifetime than the second generation charm quark despite having a larger

mass, because a bottom quark must cross a generation to decay (the top quark is more massive)

using |Vub| ≈ 0.004 or |Vcb| ≈ 0.042, while a charm quark does not (the strange quark, also of

the second generation, is less massive) and may decay using |Vcs| ≈ 0.997. In fact, the bottom

quark lifetime is long enough that bottom hadron decay lengths are macroscopic, on the order

of millimeters. This is experimentally relevant, as discussed in Section 2.2.2. Similar physics is

possible for leptons since neutrinos are now known to be massive, but is not incorporated in the

Standard Model, in which neutrinos are massless (see Section 1.2).

Further description of the Standard Model’s interactions is more conveniently done using

Feynman Diagrams, in the next section.
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1.1.2 Feynman Diagrams and Perturbative Expansions

The interactions of the Standard Model are expressed as a Lagrangian density of intimi-

dating complexity. Applying the Euler-Lagrange equations to this Lagrangian produces nonlinear

differential equations that have no known exact solutions. However, it is possible to extract an

approximate solution as a perturbative expansion in powers of the coupling, a parameter that

indicates the intrinsic strength of an interaction. This procedure at first seems barely feasible, as

it is no trivial task to find all the contributions to the leading order term, then the next to leading

order term, and so on by simple inspection of the Lagrangian. Fortunately, physicist Richard

Feynman was able to devise a diagrammatic method for expressing the terms of the perturbative

expansion that is far more intuitive.

First, one may inspect each term of the Lagrangian to assemble so-called vertices, the

building blocks of diagrams. Each field that occurs in a term represents one line, and all the

lines of a term intersect at a central point to form the vertex. For example, the Standard Model

Lagrangian contains a term in which the electron field appears twice and the photon field appears

once, from which one obtains the vertex shown in Figure 1.1. Each vertex represents one power

of the coupling. The diagrams with the fewest vertices, then, are the lowest order diagrams in the

perturbative expansion.

e− e−

γ

Figure 1.1: The Standard Model Lagrangian contains a term in which the electron field appears
twice, and the photon field once, which corresponds to this Feynman diagram vertex. This vertex,
and analogous vertices in which another electrically charged fermion replaces the electron, are
the vertices of electromagnetism. Traditionally, straight lines with arrows represent fermions,
and a wavy line represents a photon (or a W or Z). The arrows on fermion lines mark whether a
fermion is matter or antimatter, depending on whether the arrow points generally in the same
(matter) or opposite (antimatter) direction as the flow of time (left to right).
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Typically, time runs left to right in Feynman diagrams. The vertex in Figure 1.1, then,

depicts an incoming electron absorbing or emitting a photon, and continuing along. All Feynman

vertices can be freely rotated, effectively changing the flow of time. For example, one can rotate

Figure 1.1 to produce Figure 1.2. Figure 1.2 depicts the annihilation of an electron and its

antiparticle, the positron, into a photon. While this process is allowed by the Standard Model

as shown, it is not allowed kinematically, as it is impossible to conserve energy and momentum

with only a single massless particle in the final state. To produce the leading order diagram for

electron-positron annihilation that is allowed by kinematics, two vertices must be connected as

shown in Figure 1.3, by attaching two identical external lines to form an internal line.

e−

e+

γ

Figure 1.2: This diagram is a rotation of Figure 1.1. Instead of an incoming electron absorbing
or emitting a photon, this diagram represents an electron and its antiparticle, the positron,
annihilating into a photon. While permitted as an interaction by the Standard Model, this process
is not kinematically allowed, making Figure 1.3 the leading order diagram for electron-positron
annihilation.

e−

e

γ

e+

γ

Figure 1.3: This diagram connects vertices like those of Figures 1.1 and 1.2 to produce the
leading order kinematically allowed diagram for electron and positron annihilation. Whether
the internal line is an electron or positron is ambiguous, due to the relativity of simultaneity. In
some reference frames, the positron emits a photon first, then annihilates with the electron, and
so the internal line is a positron. In others, the electron emits a photon first, then annihilates with
the positron, and the internal line is an electron.

All of the diagrams shown thus far have been “tree-level,” with no internal loops. These

tend to be the leading order diagrams, but diagrams with internal loops also contribute to the
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amplitude, usually at sub-leading order. Figure 1.4 is one such diagram, contributing to the

next-to-leading order term of the electron-positron annihilation amplitude.

Figure 1.4: This diagram is one of the next-to-leading order contributions to the electron-
positron annihilation amplitude, containing an internal loop.

In all of the diagrams we have reviewed thus far, the electron could be replaced with any

electrically charged fermion, such as a muon or up quark. Collectively, all of these diagrams and

others like them, constructed by combining variants of Figure 1.1, constitute electromagnetism.

The strong interaction as described by Quantum Chromodynamics (QCD) has a similar

foundational diagram, shown in Figure 1.5 (upper), in which the photon is switched out for

a gluon, and the fermion must be a quark. Unlike electromagnetism, the strong interaction

also contains interactions between the mediating bosons, the gluons, alone. These vertices are

partly responsible for the dramatically different physics of the strong interaction compared to

electromagnetism. See Section 1.1.3 for more details.

Finally, some of the vertices of the weak interaction are shown in Figure 1.6.

In order to calculate rates and distributions of elementary particle physics processes, one

assembles diagrams using the minimal number of vertices, then the next to minimal number,

and so forth up to the desired precision, then follows an algorithm to convert each diagram to

its equivalent mathematical expression. The result of evaluating this expression is the quantum

mechanical amplitude for the process. This tedious procedure is now performed almost entirely

by computers, using software such as the MadGraph generator [10].
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q q

g

g g

g

g

g

g

g

Figure 1.5: The Standard Model Lagrangian contains terms in which appear (upper) one of
the quark fields twice, and a gluon field once, (middle) 3 separate gluon fields, and (lower) 4
gluon fields. These are the vertices of QCD. Unlike the lines of other bosons, gluon lines are
traditionally drawn as springs.

1.1.3 Quantum Chromodynamics, Hadronization, and Jets

Quantum Chromodynamics is the theory of the strong interactions incorporated into the

Standard Model, describing the interactions of quarks and gluons. States composed of quarks

that are neutral with respect to the strong interactions (“colorless,” to avoid confusion with

electromagnetic neutrality) are called hadrons, analogous to atoms of electromagnetism. There

are two distinct ways to create a colorless state, due to the unique 3-component structure of the

QCD charge. The first is to have a quark and antiquark with +1 and -1 units, respectively, of

the same component of the QCD charge. These mutually cancel like a proton and electron in

electromagnetism, forming a hadron called a meson. The second is to have 3 quarks, each with 1

unit of a different component of the QCD charge, or 3 antiquarks each with -1 unit of a different

component. This kind of hadron is called a baryon, and there is no electromagnetic analogue to

this kind of neutral object. The only (observationally) stable hadron is the proton, the lightest

baryon, excepting neutrons bound to protons by the QCD equivalent of dipole forces in atomic
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qu qd

W

` ν`

W

f f

Z

f f

h

Figure 1.6: The Standard Model Lagrangian contains terms in which appear (upper) an up-type
quark field and down-type quark field once each, and the W field once, (second) a similar
diagram with a charged lepton and its associated neutrino replacing the quarks, (third) a fermion
field appears twice, and the Z field once, and (lower) a non-neutrino fermion field appears twice,
and the Higgs once. These are the vertices of the weak interaction that include both fermions and
bosons. The weak interaction also includes many boson-only interactions similar to Figure 1.5
(lower), but these are omitted for brevity. The Z diagram (third) is very similar to the interaction
of the photon with fermions, with the important addition that the fermion here can also be an
electrically-neutral neutrino. The lines of spin-0 bosons are traditionally drawn as dotted lines,
as in the lower diagram.

nuclei. The formation of hadrons is called hadronization, and the hadronization process after a

high energy collision tends to produce objects called jets that are important in experiments.

To understand hadronization and jets, it is necessary to understand a feature of the strong

interaction intimately related to why it is short ranged despite having a massless mediator, as was

mentioned in the previous sections. Unlike the familiar electromagnetism, in which the potential
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energy associated with two charges decreases as the separation of the changes increases, the

QCD potential energy increases without bound as two quarks are separated, roughly linearly

proportional to distance [50], as shown in Figure 1.7. Eventually, the potential energy stored in the

quark system exceeds the rest energy of a new hadron. At this threshold, it becomes energetically

preferable to convert some of the stored energy into new hadrons, creating a new quark-antiquark

pair in order to reset the quark separation distance, than to allow further separation of the quarks.

As a result, any attempt to separate two quarks cannot ultimately succeed, and all quarks are

bound inside colorless hadrons. As gluons also carry color charge (that is, gluons interact with

themselves as shown in Figure 1.5), they are similarly confined, and the reach of the strong

interaction is limited to only a few femtometers.
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Figure 1.7: The potential energy associated with two static quarks predicted by QCD as a
function of distance, calculated numerically using the lattice technique. The potential increases
roughly linearly with distance once a quark is no longer inside a hadron. The strong coupling
used for the numerical calculation is denoted by β. Taken from [50].

During a high energy collision involving a hadron like a proton, quarks and gluons are

customarily ejected, and eventually reach a great enough distance to trigger the formation of

new hadrons. But, the ejection is oftentimes so violent that even this new hadron fragments into
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new daughter hadrons, then these fragment, and so on. This fragmentation process produces a

spray of hadrons, hadron decay products, and hadrons formed from QCD radiation analogous to

bremsstrahlung, all traveling in approximately the same direction as the original ejected quark or

gluon, which are collectively called a hadron jet.

Unfortunately, while the production of jets is understood qualitatively, it is difficult to

predict quantitatively due to yet another peculiar feature of QCD. The perturbative expansion

described in the previous section is performed in powers of the interaction’s coupling, with

one factor of the coupling per vertex. In order for a truncated perturbation series to be a good

approximation, the coupling must be significantly less than 1. Otherwise, diagrams with more

vertices, representing higher order terms in the expansion, are in general more important than

diagrams with fewer vertices, and no finite truncation can be accurate. Although the QCD

coupling is less than 1 at high energy, making the perturbative approach still viable for very

high energy collisions, the coupling explodes at low energies, which earns the strong interaction

its name. Even at intermediate energies where QCD is technically perturbative, the number of

diagrams that must be evaluated for an accurate result is still impractically large.

1
2 2Q  (GeV  )

1010
2
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α
(Q

 )2

0.2

0.4
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0
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1

Figure 1.8: The QCD coupling explodes at low energy, making QCD non-perturbative for any
interaction energy below around 1 GeV. The different lines are obtained for different methods of
performing the calculation, specifically different renormalization schemes. Taken from [37].
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Non-perturbative approaches to QCD exist, including the lattice numerical method used to

produce the plot shown in Figure 1.7, but they are extremely computationally expensive for even

the most simple systems. It is not feasible to perform non-perturbative calculations of low energy

QCD physics from first principles in an environment as complex as high energy hadron collisions.

For the hadronization and fragmentation process, heuristic approximations tweaked to match

data are used instead, typically the Lund String Model as implemented in the Pythia software

package (see Section 2.4). Additionally, relatively low energy quarks and gluons can be emitted

during the collision itself, called Initial State Radiation (ISR). A diagram of uū→ Z→ e+e− that

includes a single ISR gluon is shown in Figure 1.9. The most reliable way to predict ISR is to

measure it in a very similar physics process, then convert this measurement to an expected rate in

the physics process of interest. For example, ISR in Z→ e+e− events is essentially identical to

ISR in Z→ νν events.

ū

u

e−
Z

ISR gluon

e+

Figure 1.9: Initial State Radiation emitted as part of the hard collision, in this case uū→ Z→
e+e−, can be at relatively low energy. This gluon will hadronize and add a jet to the event. QCD
ISR is difficult to predict accurately due to the intractability of QCD at low energy.

In summary, QCD’s intractability at low energy combined with its raw strength make

precise predictions of the outcome of hadron collisions difficult to obtain, despite the Standard

Model’s overall success in describing the interactions of elementary particles. The Standard Model

prediction cannot always be obtained directly from first principles with satisfactory accuracy.
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1.1.4 Parton Distribution Functions

Being composite particles bound by QCD, the internal structure of hadrons is rich and

difficult to understand quantitatively, due to the impossibility of using perturbation theory at the

low energies that prevail in hadrons. Of greatest interest is the internal structure of the proton, the

only stable hadron.

The proton is often said to be a bound state of two up quarks and one down quark. This

is true enough—the net composition of a proton is two up quarks and one down quark—but

is an oversimplification. The quarks in a proton constantly emit and absorb gluons, which can

split to quark-antiquark pairs, which can in turn annihilate back to gluons. Viewed at a small

enough length scale, the proton is not a simple object, and not even a bound state of 3 quarks, but

rather a complex cloud of quarks and gluons with various energies. This is problematic for any

attempt to predict the outcome of proton collisions, because one cannot be sure which of these

subcomponents, called partons, will be the component of the proton that actually experiences a

collision. Due to the intractability of QCD at low energy, the composition of a proton is known

only from a fit to data, and called a Parton Distribution Function (PDF). PDFs are typically

expressed as the probability to find a parton of a given species carrying a given fraction of the

proton’s energy, as shown in Figure 1.10. These PDFs display a few sensible features described in

the figure’s caption. A large number of proton collisions collectively sample all the possible initial

partons, with momentum distributions described by the PDFs. Thus, a dataset composed of proton

collisions naturally probes a wide range of collision energies with a variety of colliding particles,

making proton collisions well-suited to searches for new particles of unknown properties.
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Figure 1.10: The plot shows the measured parton distribution function for a proton at an
interaction energy of 100 GeV. The horizontal axis x is the fraction of the proton’s total
momentum, and the vertical axis is the probability distribution. The finite thickness of the
curves indicates the uncertainty. As expected for a proton, uud, the probability to collide with
an up quark is around twice the probability to collide with a down quark at any energy. The v
subscript on these two curves indicate that these are the “valence” quarks, the only quarks that
are present as more than transient products of gluon splitting. It is much less likely to find an
up or down antiquark, and roughly equally likely to find either, because these antiquarks are
produced only by gluons splitting to quark-antiquark pairs. Since they are also produced only
transiently by gluon splitting, the probability to find a heavier quark, namely s, c, or b, is exactly
equal to the probability to find a heavy antiquark. Since the heavy quark and antiquark curves
overlap, only the quark curves are shown and represent both. Quarks aside, notice that the gluon
curve (red) has been suppressed by a factor of 10 to fit on the plot. To a decent approximation,
high energy proton colliders in practice collide gluons. Taken from [17].

1.2 Some Problems with the Standard Model

The Standard Model is extremely successful, as epitomized by the result in Table 1.1, but

not entirely satisfactory. In fact, its success in laboratory experiments is a source of frustration for

elementary particle physicists, as there are precious few hints as to how its deficiencies can be

repaired. This section introduces a few of the known problems with the Standard Model.
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1.2.1 Gravity, and the Standard Model as an Effective Field Theory

In Section 1.1, there is never any mention of gravity as an interaction between particles.

This is because the Standard Model entirely omits gravity from its description of nature, which

means the Standard Model cannot possibly be the final theory. Instead, the Standard Model must

be only an effective theory, a low energy approximation of nature that must be replaced by a more

fundamental theory at some cutoff energy. In the case of the Standard Model, this cutoff cannot

be any larger than the energy at which gravity becomes relevant in the interactions of elementary

particles, called the Planck scale.

Unlike the fields of the Standard Model, whose couplings are dimensionless, the gravi-

tational coupling G has dimensions of inverse energy squared. An effective field theory of the

weak interactions developed by Enrico Fermi, which models the weak interactions of fermions

without mediating bosons, has a similar coupling, GF ≈ 1
(100 GeV)2 . The energy scale embedded

in the coupling is a message from nature, hinting that this effective theory must be replaced by

something more fundamental in order to model physics at the scale of around 100 GeV or more.

Nowadays, we recognize this energy as the mass scale of the weak interaction’s mediating bosons.

At interaction energies on the order of 100 GeV or larger, there is enough energy to produce

the boson itself as a resonant excitation of the field, a real particle, and the underlying theory

is revealed. Making an analogous inference from the gravitational coupling, one obtains the

maximum possible cutoff energy for the Standard Model, the Planck energy of around 1019 GeV,

at which gravity must be incorporated into the quantum theory.

Moreover, the Standard Model becomes self-inconsistent at very high energies, even

ignoring the gravity problem [43, 62]. The couplings of both electromagnetism and of the Higgs

to itself increase with increasing energy, until eventually diverging at very high energy scales, a

theoretical consistency issue called quantum triviality.

As a result, the Standard Model’s formulation of electromagnetism cannot be used for any

energy greater than around 1034 GeV [43]. Although this energy is far greater than the Planck
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energy, at which the Standard Model must fail anyway due to its exclusion of gravity, it is a

completely independent indication that the Standard Model must be only a low energy limit of

some more fundamental theory that supersedes it at high energy, one that does not exhibit these

kinds of problems. Even if one supposes that gravity’s exclusion from the Standard Model is not

actually a problem, that attempting to treat gravity like the other interactions is misguided, the

Standard Model still cannot be the final theory.

The Higgs self-interaction similarly diverges above the Planck scale, although had the

Higgs mass turned out to be only around 200 GeV rather than the measured 125 GeV, the problem

would arise below the Planck scale, and a Higgs mass as small as around 600 GeV would have

made the triviality scale only a few TeV, accessible to current experiments [62].

Thus, there exist known finite energy scales at which the Standard Model must fail,

due both to its exclusion of gravity and to internal mathematical consistency issues, and the

actual cutoff energy may be much smaller than these upper limits. Every experiment probing

an unexplored energy scale has a chance to be the first to observe a hint as to what this more

fundamental theory looks like.

1.2.2 The Hierarchy Problem

As described in the previous section, the energy scales of the weak interaction and of

gravity differ by approximately 17 orders of magnitude. If the Standard Model emerges from

some more fundamental theory at the Planck energy, then what effect has pushed the weak scale

down 17 orders of magnitude? The most troublesome expression of this apparently inexplicable

hierarchy of energy scales centers on the mass of the Higgs boson. In the Standard Model, the

Higgs mass mh is given approximately by [16, 35],

m2
h ≈ 2µ2 +(∆mh)

2 (1.2)
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where µ is a free parameter called the bare mass of the Higgs, and ∆mh is an adjustment that the

Higgs acquires via its interactions with other fields in the Standard Model,

∆m2
h ≈

3
4π2

(
λ

2−λ
2
t + . . .

)
Λ

2 (1.3)

where λ is the Higgs’ coupling to itself, λt is its coupling to the top quark, and Λ is the energy

at which the Standard Model is replaced by a more fundamental theory that is assumed not to

contribute any further corrections to the Higgs mass, at most the Planck Energy. The couplings of

the Higgs to all the fermions of the Standard Model appear in the correction with the same form

as the top’s λt , but the coupling of the top quark is by far the most important, since at ∼1 it is by

far the largest, as can be seen from the mass column in Table 1.3. The Higgs’ self-coupling is

somewhat smaller [35]. Therefore, ∆m2
h ∼−Λ2. If one takes Λ≈ 1019 GeV, the Planck Energy,

then Equation 1.2 is deeply implausible after also inserting the experimental value mh ≈ 125 GeV,

(125)2 ≈ 2µ2− (1019)2. (1.4)

The Higgs mass of 125 GeV emerges from almost perfect cancellation of two terms with values

around 1019 GeV. A model that produces an output of a very different order of magnitude from

the inputs is said to be finely tuned. The Standard Model, epitomized by the Higgs mass, is

egregiously finely tuned. This is the Hierarchy Problem.

Of course, the Standard Model’s cutoff need not be the Planck Energy. If Λ is only

1000 GeV, then the Hierarchy Problem as stated disappears, and one can expect to discover new

physics in elementary particle interactions at this experimentally accessible scale. Still, merely

not being the Standard Model is insufficient; the replacement theory also needs to introduce a

mechanism to stabilize the Higgs mass, lest it make its own contributions or allow the Standard

Model fields to continue pushing it to large values. By far the most popular proposal for such a

replacement is a supersymmetric extension to the Standard Model, discussed in Section 1.3.
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1.2.3 Massive Neutrinos

In the Standard Model, all fundamental particles acquire mass through their interactions

with the Higgs, and the neutrinos are strictly massless. However, recent measurements of neutrinos

have established that they undergo flavor oscillation, whether produced by cosmic rays in the

atmosphere [39], or by nuclear processes in reactors on Earth [11] or in the Sun’s core [8]. This

means that, just as for quarks, the neutrino mass eigenstates are not equal to the interaction

eigenstates, and more importantly that the neutrinos’ mass eigenstates are not equal to each other

[38]. This is only possible, of course, if at least 2 of the 3 neutrinos are massive. Although

difficult particles to measure, experiments have managed to map out the neutrino mixing matrix

analogous to the CKM matrix for quarks, the Pontecorvo-Maki-Nakagawa-Sakata matrix [74],

UPMNS ≈


0.800↔ 0.844 0.515↔ 0.581 0.139↔ 0.155

0.229↔ 0.516 0.438↔ 0.699 0.614↔ 0.790

0.249↔ 0.528 0.462↔ 0.715 0.595↔ 0.776

 (1.5)

where each element of the matrix shows the range consistent with experiment. Mysteriously,

UPMNS is not approximately diagonal, unlike the CKM matrix. Nonzero neutrino masses are

entirely inconsistent with the Standard Model and, to date, are the only observables measured in

laboratories that the Standard Model has failed to predict accurately.

1.2.4 Astrophysical Evidence of Dark Matter

Over the last century, astrophysical observations have assembled conclusive evidence that

most of the Universe’s gravitating mass has at most a neutrino-like interaction cross section.

Some of the oldest evidence was obtained from galactic rotation curves. In general, stars

far from the cores of galaxies have much greater orbital velocity than would be inferred from the

visible mass to their interior, implying either that general relativity is not a good model of gravity
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on large distance scales, or that most of the gravitating mass in galaxies is weakly interacting and

arranged as an extended halo [58]. Recent observations have concluded with good precision that

this is true also in the Milky Way [54].

Observation of the Cosmic Microwave Background (CMB) has allowed for measurement

of the Universe’s energy density, and the forms taken by that energy density. The best fit is a

Universe composed of about 6 times as much “dark” matter as visible matter, consistent with

the ratio that would explain galactic rotation curves [31]. No modification of gravity has ever

been found that can satisfactorily explain both the rotation curve observations, and these energy

density measurements.

Observations of the Universe at more recent times have found a few cases of colliding

galaxy clusters, most famously the Bullet Cluster, that offer further evidence for the existence

of dark matter. In galaxy cluster collisions, the luminous matter can collide and produce a very

hot plasma due to its relatively strong interactions, while dark matter continues on unaffected.

The luminous matter can be accounted for directly via the emissions of the hot plasma, while

the location of the mass, visible or not, can be measured by observing the gravitational lensing

of the light of more distant galaxies by the foreground colliding clusters [28]. The result of

this analysis for the Bullet Cluster is shown in Figure 1.11. The visible matter, revealed by its

x-ray emissions, is caught in the collision zone at the center, while the majority of the gravitating

matter has continued on unaffected, and is detectable only through its powerful gravitational

lensing on either side of the luminous plasma. The inferred ratio of dark matter and visible

matter is consistent with the amount that would explain both rotation curves and the energy

densities measured using the CMB. Again, no modification to gravity has been found that can

simultaneously explain galactic rotation curves and the energy density measurements from the

CMB, and also the gravitational lensing observed in the Bullet Cluster and similar collisions.

Finally, astronomers have recently identified a few small galaxies that appear to contain

little or no dark matter [76]. While this is an extraordinarily rare occurrence and effectively
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Figure 1.11: The distribution of luminous matter emitting x-rays (black dots) and the location
of mass inferred through gravitational lensing of background sources (contours) are offset. The
plasma emitting x-rays has been slowed and shocked as a result of the astronomically recent
collision between the galaxy clusters, and so has been left behind by the dark matter, which
constitutes most of the mass and was unaffected by the collision due to its negligible interaction
cross section. Taken from [28].

impossible in a large galaxy like the Milky Way, small galaxies are subject to larger statistical

fluctuations, and the Universe has a rather large sample size of galaxies. It is difficult to imagine

a modification of gravity that could, in most observations, cause there to appear to be around 6

times are much invisible mass in the Universe as visible mass, but in some small galaxies appear

as if there is no modification at all.

If dark matter is not composed of a weakly interacting particle beyond the Standard Model,

the only remaining possibility is that it is composed of larger non-radiating masses like rogue

planets or black holes produced in the high-density primordial Universe and surviving to the

present day. This possibility is taken seriously, and can be investigated by searching for small

microlensing events, where the light of a distant star is briefly gravitationally lensed when one of

these bodies passes between an Earth-based telescope and the star. As there is around 6 times as
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much dark mass as visible in the galaxy, such an event should be relatively common. No excess of

such events is observed in microlensing and complementary searches, so that if all dark matter has

exactly the same mass, it cannot have any mass in the range 10−7 MSun < MDM < 105 MSun [42].

This leaves open the possibility that dark matter could be composed of black holes of small mass,

with Schwarzschild radius around 0.1 mm or less, or that it could be composed of bodies with a

range of masses. However, both possibilities are disfavored. It is suspected that small primordial

black holes would generically be captured by stars, eventually migrate to the core as the star dies,

and destroy the compact remnant via accretion [25], but no such events are observed. As for the

latter possibility, the data places such strong constraints on the acceptable mass distribution that

it is necessary to construct one carefully by hand to avoid the limits [42]. Particle dark matter,

despite its own history of non-observation, remains the possibility most easily reconciled with the

data.

There is especially strong hope for detecting particle dark matter at the TeV scale, due to

a suggestive coincidence called the Weakly Interacting Massive Particle (WIMP) Miracle. The

characteristic energy scale of the weak interaction is ∼100 GeV. A hypothetical particle with

mass in the suitable range, on the order of 1 to 10,000 GeV, interacting via the Standard Model’s

weak interaction or a similar interaction, would have been produced in the early Universe and

survived to the present day at the proper density to account for the observed cold dark matter [44].

Furthermore, it would be an astonishing coincidence if the dark matter particle is only distantly

related to the Standard Model, perhaps only by gravitational interactions, and yet somehow by

dumb luck ended up with a relic mass density on the same order of magnitude as that of the

Standard Model particles. Viewed in light of indications that new physics ought to be found at

the TeV scale from the Hierarchy Problem and other issues with the Standard Model, the case

for particle dark matter at the TeV scale is compelling. The chief argument against WIMPs is

that they have not yet been observed in experiments despite significant efforts, with some of the

more stringent general constraints produced by the XENON1T experiment [13], yet some of the
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parameter space remains viable. It is a high priority of current experiments to extend sensitivity

into these regions, and either discover or exclude WIMP dark matter.

1.3 Supersymmetry

Among all the proposals for extending the Standard Model and repairing many of its

issues at the TeV scale, supersymmetric extensions are by far the most popular and intensively

researched. Supersymmetry proposes that for every Standard Model fermion (boson), there

exists a superpartner boson (fermion) with nearly identical properties aside from its spin. The

superpartners of spin-1
2 particles are spin-0, and the superpartners of spin-1 and spin-0 particles

are spin-1
2 . For example, the superpartner of the electron is a spin-0 particle called the scalar

electron, usually contracted to “selectron.” The fermionic superpartners of bosons instead receive

the “-ino” suffix, for example “higgsino.” If supersymmetry is realized at the TeV scale, it would

resolve many of the Standard Model’s problems, and would be experimentally testable using

TeV-scale particle colliders. This section introduces some of the theoretical reasons for the

popularity of supersymmetry, and how it may be targeted experimentally.

1.3.1 Theoretical Appeal

A full discussion of the theoretical appeal of supersymmetry is beyond the scope of this

thesis, so this section briefly discusses only a pair of the most compelling points that are most

closely connected to why supersymmetry at the TeV scale is of great interest. First, supersymmetry

provides a well-motivated dark matter candidate, a concrete realization of the WIMP Miracle.

Second, it resolves the Hierarchy Problem and is almost certainly the only solution that possibly

can; if supersymmetry is not realized at the TeV scale, it likely means that the Standard Model’s

fine tuning has somehow been misinterpreted and is not in fact a problem.

Supersymmetry’s dark matter candidate arises as a side effect of a solution to an unrelated

24



problem. Naive implementations of supersymmetry make possible the decay p→ π0 e+ via

mediation by a squark (the pion is the lightest meson and the only hadron lighter than the

proton). The proton would be highly unstable for any reasonable squark mass, in conflict with

the lower limit on this decay mode of some 1032 years, and the any-mode limit of more than

1029 years [74]. However, it is possible to have a stable proton within supersymmetric models,

by proposing that there exists a conserved multiplicative quantum number called R-parity and

assigning superpartners odd R-parity and Standard Model particles even R-parity. This saves the

proton, but as a side effect also makes the lightest supersymmetric particle (LSP) stable, since

decays to final states including other superpartners are kinematically impossible and decays to

final states containing only Standard Model particles cannot conserve R-parity [74].

At first, LSP stability appears to be a problem as severe as proton decay. If the LSP

is stable, then there should be a large relic population persisting from the primordial plasma,

indeed this relic population may represent the majority of the mass of the Universe, but no

such population has ever been observed. However, astrophysical observations have assembled

a compelling case that a majority of the mass of the Universe is not of the Standard Model,

making it possible that stable LSPs have been observed, as dark matter, via their gravitational

interactions. Of course, this position is only tenable if one of the superpartners has the properties

necessary to be a dark matter candidate. The superpartners of neutrinos, the sneutrinos, are an

obvious first guess, but their interaction cross sections are too large in generic implementations

of supersymmetry, so that a sneutrino LSP requires a special purpose-built model to be viable

[75]. Fortunately, the neutral superpartners of the weak bosons, the neutralinos, could have even

smaller interaction cross sections than sneutrinos, and are ideal dark matter candidates. Moreover,

as part of supersymmetry’s solution to the Hierarchy Problem, the neutralinos in general and

especially the higgsino are constrained to be relatively light [56, 16, 15], making a neutralino

LSP plausible on more than phenomenological grounds.

The supersymmetric solution to the Hierarchy Problem is founded on a simple observation.
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In Equation 1.3, the Higgs’ coupling to itself, a boson, and to the top quark, a fermion, appear

with opposite signs. This is general: the contributions of bosons and of fermions to the Higgs

mass have opposite signs. Among the Standard Model fields, this is not very helpful, since the

top quark simply dominates the other fields. But, if every boson had a fermion counterpart with

exactly the same properties and vice versa, all contributions to Equation 1.3 would exactly cancel.

Of course, experiments have long excluded the existence of, say, a selectron of the same mass and

interactions as the electron, so supersymmetry must be spontaneously broken if it exists, with the

superpartners pushed to a higher mass scale. A variety of well-motivated mechanisms for this have

been proposed [59, 56]. Whatever the mechanism, the scale of supersymmetry breaking would

lead directly to the observed Higgs mass, implying that superpartners and especially the higgsino

should begin to appear at energies not far beyond the observed Higgs mass [56, 59, 16, 15].

1.3.2 Experimental Signatures

Since every supersymmetric particle must decay to the nearly undetectable LSP, the

primary signature of superpartner production in colliders is large missing energy and momentum,

carried away by the undetectable LSP. Additionally, conservation of R-parity requires that

superpartners be produced in pairs, so that these events are characterized by two heavy invisible

particles. As experimental constraints on the visible superpartner masses increase, the likelihood

that the decays are extremely energetic also increases. Two particles with large masses of perhaps

2 TeV would be produced only rarely in state of the art accelerators, but their events would be

extraordinarily high energy, unless the LSP mass is also large and absorbs most of the decay

energy.

By definition, the LSP is the most energetically accessible superpartner. Even so, the

preferred supersymmetry search strategy is to use the invisibility of the LSP to identify decay

chains of more massive but more strongly interacting superpartners, as the LSP itself must have a

very low production rate due to its weak interaction cross section, if it exists. At hadron colliders,
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the best candidate superpartners are those participating in the strong interactions, squarks and

gluinos, due to the relatively large production cross sections for strongly interacting particles

(see Figure 1.12). Unfortunately, while the mass of the LSP is restricted to a relatively low

value if supersymmetry is to solve the Hierarchy Problem, the masses of other superpartners are

not as strongly constrained. Attempts to observe the LSP in decays of more easily produced

superpartners require that these intermediate states have accessible masses, which is not neces-

sarily the case for any experiment to date [16, 15]. It may be necessary to search for direct LSP

production if the other superpartners are too massive, which will require a vast dataset due to the

low production rate. As the present datasets are still too small for highly sensitive direct LSP

searches, most current analyses are two-dimensional, targeting a relatively easily pair-produced

heavy superpartner and the LSP ultimately produced at the end of its decay chain.

In some supersymmetric models, a relatively large supersymmetry energy scale tends to

suppress the mass splitting of the lightest chargino χ̃
±
1 and lightest neutralino χ̃0

1, for instance in

the model described in [56],
∆m
m
∼
(

mW

µ

)4

(1.6)

where ∆m
m is the fractional splitting of the nearly-degenerate χ̃

±
1 and χ̃0

1 masses and µ is a parameter

appearing in the supersymmetric Higgs potential, which is partially responsible for setting the

mass scale of superpartners. A µ value of a few hundred GeV would produce a mass splitting

of one part per thousand or less, as small as a few hundred MeV. As the viable masses of

superpartners are pushed to larger values by experimental constraints, such a scenario becomes

increasingly plausible. At a splitting of a few hundred MeV, the phase space of the decay

χ̃
±
1 → π±χ̃0

1 is so small that the lifetime becomes sufficient to produce macroscopic decay

lengths. Furthermore, with only a few hundred MeV available to the pion, it would fall below

the minimum pT for track reconstruction, making the decay of χ̃
±
1 completely invisible. As χ̃

±
1

has a macroscopic decay length and nonzero electric charge, this invisible decay can produce

the remarkable experimental signature called a disappearing track. Interest in this long-lived χ̃
±
1
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model and other models that include long-lived particles has recently grown, motivated in part by

the growing theoretical plausibility, and in part by the additional sensitivity that exploitation of

long-lived particle signatures can provide. The disappearing track signature in particular is used

by the search in Section 3.2.

1.3.3 Simplified Models

Due to the large number of particles and free parameters in even the simplest supersym-

metric extensions of the Standard Model, it is not possible to make exact calculations that hold

for every possible realization of supersymmetry, and every supersymmetry simulation is to some

extent dependent on the exact choices of free parameters. To make calculations tractable, the

community has widely adopted use of simplified models [9]. Simplified models are effective field

theories that assume all superpartners except those of interest are at an inaccessible mass scale.

Effectively, instead of extending the Standard Model with every superpartner simultaneously, only

a few particles, perhaps only the gluino and the LSP, are added. This makes it possible to calculate

pair-production cross sections as a function of mass, allows for the decay channel(s) to be set

without worrying about the model’s self-consistency, and so on without excessive computational

effort. The gluino pair-production cross section as a function of mass in such a simplified model

is shown in Figure 1.12. Results expressed in these models are straightforwardly reinterpreted as

general constraints on more realistic models with more complicated phenomenologies.
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Figure 1.12: In simplified models, it is possible to calculate superpartner production cross
sections from theory. Here, the theoretical gluino pair production cross section in 13 TeV
proton-proton collisions is shown in black, with the one standard deviation uncertainty shown as
a yellow band. The cross section drops rapidly with increasing mass. Based on cross section
values used in [63], calculated in [21]. Compare Figure 5 (upper) from [21], of which this is a
simplified reproduction.

1.4 Other Models

While supersymmetry is generally of greatest interest and so drives the design of many

searches for new physics, it shares its primary signatures with some other hypothetical extensions

of the Standard Model. Two are worth special mention, since they are considered explicitly by

the analysis discussed in Section 3.1.

Some models propose the existence of “leptoquarks,” strongly-interacting bosons that

have vertices in which one fermion is a lepton and one is a quark, with one example shown in

Figure 1.13. These models have recently attracted some interest due to their ability to explain

some minor anomalies in a few rare meson decays [61, 4, 5]. As leptoquarks can be pair-produced

and decay to a neutrino and a quark, they produce a very similar experimental signature to a
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squark decaying to a quark and LSP, in the limit where the LSP is nearly massless. Therefore,

searches for squarks decaying to LSPs can easily be reinterpreted as searches for leptoquarks.

q ν

LQ

Figure 1.13: Leptoquarks are defined by vertices that connect quarks and leptons. In this
example, the lepton is a neutrino.

A second model, this time motivated by a small excess in events with large missing energy

and relatively low energy, proposes a generic strongly-interacting scalar φ mediating Standard

Model interactions with a fermionic dark matter candidate ψ [14] as shown in Figure 3.2, with

parameters tuned to match the minor observed anomaly. This model need not involve pair-

production and could in principle have a smaller mass scale than supersymmetry, and so can

produce events with lower energy and lower numbers of hadronic jets than would be typical for

supersymmetric models. While not nearly as well-motivated theoretically as supersymmetry, it

provides a framework for analyzing anomalies in relatively low activity kinematic regions that

superpartner pair-production events cannot easily populate.

In general, while supersymmetry drives the design of many searches for new physics, the

signatures of supersymmetry are in practice very general, so that searches nominally targeting

supersymmetry are in practice sensitive to a wide variety of models of new physics. Supersymmet-

ric models are used as a benchmark means of communicating results that is familiar throughout

the elementary particle physics community. Ultimately, the focus of experiments is on providing

evidence to support or refute any potential explanations of observations that conflict with the

Standard Model prediction.
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Chapter 2

The Large Hadron Collider and the

CMS Detector

The searches for new physics discussed in Chapter 3 analyze data recorded by the

Compact Muon Solenoid (CMS) experiment. The CMS detector straddles beams generated by

the Large Hadron Collider (LHC), a particle collider located at CERN in Geneva, Switzerland.

CMS directly measures the products of collisions between the protons in these beams, digitizes

the measurements, and records a small subset of these events. The data is then processed by

reconstruction algorithms and shared across the worldwide CMS computing grid. This chapter

describes the LHC and CMS.

2.1 The Large Hadron Collider

A detailed description of the LHC is available in Reference [20]. This section provides a

summary of the essential information.
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2.1.1 A Brief Description

Although it sometimes collides atomic nuclei, typically Pb-208, the LHC is primarily

a proton-proton collider, and that is the operational mode considered in this work. The LHC

is the highest energy and highest luminosity proton-proton collider ever constructed, thus far

achieving collisions with center of momentum frame energy as large as 13 TeV, produced by two

counter-rotating beams of 6.5 TeV protons, at sustained rates on the order of one billion collisions

per second.

Producing such high energy collisions at such high intensity requires that the LHC be

a large ring, 27 km in circumference. The circular shape allows multiple opportunities for the

protons in each beam to collide, rather than a single all-or-nothing pass, and additionally allows

the beams to be circulated for as long as necessary to accelerate them up to the intended energy,

at a rate of 0.5 MeV per revolution. The size makes it possible for the protons to be confined

to a circular path, even at very high energies. The beams are constrained to travel in the ring

using powerful magnetic fields, and the maximum feasible magnetic field strength is the primary

limit on the maximum achievable beam energy. The LHC beams require an 8.36 T field to stay

on track, provided by superconducting niobium-titanium electromagnets carrying a current of

11,080 A. Superconductors stable at greater magnetic field strengths are rare and expensive, and

the magnets must be superconducting to carry such enormous currents. Larger rings reduce the

beams’ curvature and allow for greater energies with the same magnetic field strength.

Protons are chosen for the beams rather than electrons, the only other obvious potential

choice, for two reasons. First, protons are composite particles, so their total energies are distributed

among their many subcomponents, referred to as partons in this context (see Section 1.1.4).

Collisions between protons with energy 6.5 TeV each are in fact collisions between a parton in

each proton with some fraction of the total energy. This naturally scans across the accessible

energy range, providing sensitivity to any new state with mass on the TeV scale. Were the beams

composed of elementary particles like electrons, the collider would need to scan the beam energy

32



to provide sensitivity to any possible mass. Therefore, electron colliders are poorly suited for new

discoveries compared to proton colliders, and better suited for studying a state with known mass

in greater detail. Second, and more importantly, the mass of the proton is much greater than that

of the electron, reducing energy losses to synchrotron radiation. Because synchrotron losses are

relatively small, circular colliders of protons are limited chiefly by the magnetic field strength,

as discussed above. Electron colliders, on the other hand, are limited by synchrotron losses.

Illustrating this, the Large Electron Positron (LEP) collider previously occupied the same tunnel

that now houses the LHC, and managed a maximum collision energy of only 209 GeV [51].

The protons are not collided one-by-one, as this would be impossibly tedious. Instead,

they are grouped in bunches of over 100 billion, spaced by 25 ns to make it possible for the

detectors to distinguish the products of one bunch crossing from those of the preceding and

following crossings. During each bunch crossing, a few dozen proton pairs (see Figure 2.13)

collide simultaneously, of which either one or none are interesting and the rest are undesirable

noise called pileup, discussed in Section 2.3.1. These bunch crossings occur at a few points

around the LHC tunnel occupied by detectors. Among them are the CMS detector, described in

Section 2.2, and its sister detector ATLAS, which are both general-purpose detectors designed

to study any and all phenomena at the TeV scale, and operate in parallel to provide independent

checks of any measurements and discoveries.

2.1.2 Luminosity Delivered

The sensitivity of searches performed in CMS scales straightforwardly with the total

number of collisions provided by the LHC. Thus far, the LHC has provided CMS with nearly

200 fb−1 across all operating periods, with the rate accelerating as the machine is pushed to the

limits of its design, as shown in Figure 2.1. The searches discussed in the next chapter use only

the 137 fb−1 recorded by CMS during the 13 TeV runs from 2016 to 2018. As the total inelastic

proton-proton collision cross section is approximately 69.2 mb at 13 TeV, the total number of

33



Jan '1
1

Jan '1
2

Jan '1
3

Jan '1
4

Jan '1
5

Jan '1
6

Jan '1
7

Jan '1
8

Date

0

50

100

150

200

T
o
ta

l 
In

te
g

ra
te

d
 L

u
m

in
o
s
it

y
 (
fb
¡
1
)

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC 

LHC Delivered: 192.29 fb¡1

CMS Recorded: 177.65 fb¡1

0

50

100

150

200

CMS Integrated Luminosity, pp, ps = 7, 8, 13 TeV

Figure 2.1: The integrated luminosity delivered to CMS over time by the LHC, in blue, and
the portion CMS managed to record, in yellow. As can be seen, CMS is not 100% efficient at
recording collisions. It is important to note that this inefficiency is a straightforward failure to
observe the events, not the purposeful rejection of events by the trigger system discussed in
Section 2.3.1. Taken from [1].

collisions observed by CMS from 2016 to 2018 is nearly 1016. While this vast sample size makes

very rare genuine physics processes potentially observable, it also presents a challenge in that

very rare and difficult to model detector failures may pollute the dataset. It is prudent to adopt a

conservative approach to any searches for rare new physics.

2.2 The CMS Detector

While the LHC provides the collisions, it is the Compact Muon Solenoid (CMS) detector

that ultimately measures the products and reconstructs each event. A detailed description of all of

the CMS hardware and software is available in Reference [19], and a description of the general

event reconstruction technique used at CMS, called Particle Flow, is available in Reference [69].

This section serves as a general overview of how CMS works, sufficient to understand the searches

for new physics presented later in this work.
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The particles stable enough to be detected directly by CMS come in 5 distinct varieties,

namely electrons, muons, photons, charged hadrons (largely protons, pions, and charged kaons),

and neutral hadrons (largely neutrons and neutral kaons). Figure 2.2 depicts a generic detection

of each kind of particle. All other particles are too unstable to be measured directly, except the

neutrinos. Neutrinos are, uniquely among Standard Model particles, both stable and invisible

to CMS. Their presence in the products of a collision is inferred by measuring all of the visible

content of an event, and noting that some energy is missing, as discussed in Section 2.2.6. Any

stable weakly interacting particles beyond the Standard Model produced in a collision at CMS

would present a similar signature.
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Figure 2.2: The design of CMS causes particles of different types to leave distinct experimental
signatures, allowing them to be distinguished. The rest of this section references and explains
this image. Taken from [69].

The CMS detector is a cylinder composed of a central barrel section with two flat endcaps,

each of which contain layers of different detection systems designed to provide the information

necessary to distinguish the various particles that can be generated by collisions, and measure
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their positions and energies. Starting from the beam pipe, they are the tracker, the electromagnetic

calorimeter, the hadronic calorimeter, and the muon system. The tracker and the calorimeters are

inside a solenoid that produces a powerful magnetic field, while the muon system is subject only

to the external, returning field of the solenoid. Altogether, the detector measures about 7.5 meters

in radius and 21 meters in length. As suggested by the cylindrical detector shape, the experiment

uses a cylindrical coordinate system, in which the beam axis is assigned to the z axis, and the

angle in the transverse plane, φ, is measured starting from a line connecting CMS to the center of

the LHC ring. The trajectories of particles are usually described using this angle φ alongside the

pseudorapidity η,

η =− log
[

tan
(

θ

2

)]
(2.1)

where θ is the angle made with the z axis [19]. This usage is motivated by the fact that the average

flux of particles produced by collisions in a window of fixed ∆η = η2−η1 is roughly constant

for any η1 and η2.

This section describes each of the subsystems, as well as the objects that are constructed

using their measurements.

2.2.1 Magnet

As its name suggests, a major feature of the CMS detector is a superconducting solenoid,

the largest ever built, which provides a constant 3.8 T magnetic field in the tracker and calorimeters.

This magnetic field curves the trajectories of charged particles, allowing for a determination of

their charges and assisting in the measurement of their masses and energies, contributing to highly

accurate identification of particles.

CMS is compact in part to make it possible to fit the bulk of the detector inside this

single solenoid. This maximizes the strength and consistency of the magnetic field, which in turn

maximizes the precision with which particle positions, and the curvatures of their trajectories,
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can be measured.

In Figure 2.2, one can see the path of an electron (orange) curving sharply, in a direction

indicating that it is negatively charged. Similarly, the path of a charged hadron (solid green)

curves in the opposite direction, indicating a positive charge. A positively charged muon (blue)

curves first one way, then the reverse once the field flips after exiting the solenoid. Neutral

particles (dotted lines) do not curve at all.

2.2.2 Tracker

The silicon tracker is the innermost detector system and is primarily responsible for

measuring the positions of charged particles. In Figure 2.2, the trajectories of neutral particles are

represented with dotted lines, to indicate that they do not actually leave those tracks in the detector.

The tracker is critically important for the disappearing tracks search covered in Section 3.2, and

so is described here in more detail than the other detector systems.
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a 4th layer. The tracker is symmetric about the beam axis (r = 0); one should imagine rotating
this image around the horizontal axis to form a cylinder, to visualize the tracker’s 3-dimensional
form. The labels in green text denote tracker subsystems, the Tracker End Cap, the Tracker
Inner Disk, the Pixel Tracker, the Tracker Inner Barrel, and Tracker Outer Barrel. The interior
subsystems have more miniaturized detector elements and, therefore, better resolution. Taken
from [33].
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Figure 2.4: The efficiency for a genuine charged particle to produce an expected hit in the
various components of the CMS pixel tracker, in the configuration used in 2016 and earlier. Fake
tracks may have many missing expected hits, but more than one or perhaps two is extremely rare
in tracks produced by genuine particles. The probability for a neutral particle to produce a hit is
small, and the probability to leave enough to produce a track is negligible. Taken from [33].

As shown in Figure 2.3, the tracker is composed of several discrete layers. When a charged

particle passes through a layer, it usually causes a measurable current to flow in the silicon, and is

said to have produced a “hit.” As shown in Figure 2.4, the probability for a genuine particle to

leave a hit is near but not quite unity, so a missing hit where one would be expected is credible,

but uncharacteristic of genuine tracks. Each event produces an intimidating array of these discrete

hits throughout the tracker, which must then be connected by the track reconstruction algorithm

into particle tracks, each consisting of at least three distinct hits. CMS uses an iterative procedure

described in Reference [33], in which clean, high energy, isolated tracks are reconstructed first

so that their hits may be removed from the pool, followed by the next most obvious tracks, and

so on, dramatically simplifying the computational complexity of each step. The early iterations
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that produce the tracks judged to be of highest quality find only those tracks with transverse

momenta at least 0.3 GeV, and no iteration can produce a track with transverse momentum below

0.1 GeV, so that particles of such low energy are effectively invisible to CMS. Note that, due

to the strong magnetic field present in the tracker, charged particles with energies lower than

around 0.1 GeV travel in such tight spirals that reconstruction becomes unfeasible. Although this

is normally insignificant, since these particles are not typically important to an event’s overall

characterization, this fact allows for the existence of disappearing tracks, in which a high energy

charged particle decays to a trackless neutral particle and a charged particle of such low energy

that it is not reconstructed.

The performance is outstanding, especially for tracks passing the sophisticated “high

purity” selection applied by the vast majority of CMS analyses. Figure 2.5 shows the fake

rate of this procedure, less than 5% for tracks in the intermediate energy range, and further

suppressible with additional cleaning selections like those of the disappearing tracks search

covered in Section 3.2. Figure 2.6 shows the efficiency to reconstruct tracks successfully for

the three most common varieties of charged particles measured by CMS, namely muons (left),

electrons (center), and pions (right), approaching unity in all cases for higher energy tracks in the

barrel region of the tracker.

The tracker detection elements are smaller and consequently provide better localization

in interior layers of the tracker, with the pixel detector components only approximately 100 µm

across. As a general guideline, no element in the tracker is permitted to have an expected

probability of a hit greater than 1% per bunch crossing, to maintain a low probability of tracks

intersecting. This structure produces outstanding sub-millimeter resolution of a track’s origin,

shown in Figure 2.7, allowing tracks originating from collisions only microns apart to be separated,

and tracks originating from decays of particles with decay lengths on the order of a millimeter to

be identified. The former is important for rejection of pileup, and the latter for identification of

jets originating from bottom quark hadrons.
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Figure 2.5: The CMS track fake rate as a function of pT, in the configuration used in 2016 and
earlier. The sophisticated high purity selection aims to suppress the fake rate without badly
affecting efficiency and is applied in the vast majority of CMS analyses. Taken from [33].
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Figure 2.6: The CMS track reconstruction efficiency for (left) muons, (center) electrons, and
(right) pions, split by detector region as a function of pT, in the configuration used in 2016 and
earlier. Muons are by far the cleanest objects at CMS as they are massive enough to avoid strong
perturbations by tracker material, and lack nuclear interactions. Electrons are lighter and so are
vulnerable to tracker interactions, experiencing strong bremsstrahlung losses, while pions can
undergo nuclear interactions. Taken from [33].
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Figure 2.7: The CMS tracker has micron-level impact parameter resolution, for both (left) the
transverse plane and (right) the z direction. Solid markers indicate the half-width of the 68%
confidence interval, while open markers indicate 90% confidence. With this resolution, a track
reconstructed with an impact parameter of more than a few hundred microns is likely a fake,
from a pileup vertex, or from a secondary vertex produced by a decaying particle like a bottom
hadron. Taken from [33].

The CMS pixel tracker was upgraded after 2016 for the 2017 and 2018 runs, increasing

the number of layers from three to four. Comparisons between the track reconstruction efficiency

and fake rate in 2016 and 2017 are shown in Figure 2.8. The new pixel tracker significantly

improves performance, for all tracks.
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Figure 2.8: A comparison of the performance before (blue squares) and after (red circles)
the pixel tracker upgrade following the 2016 data taking period. The upgrade increased the
efficiency (left) and reduced the fake rate (right) for tracks of all momenta. Taken from [29].
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Vertices and b-Tagging

Almost every track ultimately originates from a single point in a proton-proton collision.

Tracks reconstructed in the tracker can be extrapolated back to their origins to form vertices,

locations at which multiple tracks intersect and the inferred location of the initial hard interaction

between partons. All the content associated with a single vertex constitutes a single event, subject

to analysis in an attempt to determine the nature of the physics that occurs in the hard interaction.

Some tracks do not extrapolate to a proton-proton primary vertex back but instead a point

a few millimeters away. While a few millimeters is not even enough to exit the beam pipe, such

a decay length is nevertheless well within the tracker’s resolution. These features are called

secondary vertices, and are a distinctive feature of jets associated with hadrons containing bottom

quarks. These hadrons, uniquely, have decay lengths on the order of millimeters. Charmed

hadrons tend to decay somewhat more quickly, while hadrons containing only up, down, and

strange quarks tend to live long enough to reach the calorimeters. These secondary vertices, along

with some other indicators including the muon content of a jet, the number of tracks, and the mass,

are leveraged by sophisticated algorithms that can identify jets originating from bottom quarks

produced in the hard process with high efficiency [30]. Such jets are said to be “b-tagged.” The

fake rate for a given efficiency achieved by various b-tagging algorithms is shown in Figure 2.9,

with the older algorithms listed first and the newer, machine learning-based algorithms last. The

analyses discussed in Section 3 apply the DeepCSV algorithm (purple) at the 1% light quark

fake rate working point, which achieves a successful b-tag rate of nearly 70% and a charm quark

mistag rate of just over 10%.

Although the ability to identify a jet’s source flavor is intrinsically useful, the identification

of bottom quarks is of special interest because they tend appear in the majority of Higgs and top

quark decays, and for their relative rarity in generic QCD multijet events compared to lighter quark

flavors, which means that requiring many b-tags greatly suppresses background. Supersymmetry

searches consider the case of bottom and top superpartners separately due in large part to the
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number of b-jets expected in the final state, and the consequently different, smaller backgrounds

that dominate these models.
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Figure 2.10: The CMS tracker material budget in (left) radiation lengths (ie electromagnetic) and
(right) interaction lengths (ie nuclear), in the configuration used in 2016 and earlier. While the
CMS tracker is not intended to shower particles, only to measure positions as gently as possible,
some amount of interaction between tracker material and collision products is inevitable. Taken
from [33].
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Figure 2.11: The probability for pions not to have undergone a nuclear interaction in the CMS
tracker by layer, in the configuration used in 2016 and earlier. In rare cases, the pion may shower
in such a way that no charged daughters have high enough energy to be reconstructed, causing
its track to disappear. Taken from [33].

As a general rule, the tracker intends to interact with particles only to the extent absolutely

necessary to measure their positions. Strong interactions between the tracker and the particles it

is measuring modify the particles’ tracks and affect their energies, and are therefore undesirable.

Unfortunately, electrons are so strongly affected by bremsstrahlung that the tracker is quite thick

in terms of radiation lengths, as shown in Figure 2.10 (left). Therefore, electrons at CMS are

experimentally observed more as clouds of bremsstrahlung photons by the time they reach the

electromagnetic calorimeter at CMS, and must be reconstructed with a special tracking procedure,
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the Gaussian-sum filter described in [6]. In terms of interaction lengths, the CMS tracker is

much thinner, as shown in Figure 2.10 (right). The vast majority of hadrons therefore reach the

calorimeters without having undergone a nuclear interaction. Figure 2.11 shows that over 80% of

high energy charged pions reach the calorimeters intact. Even so, 80% is not 100%. Pion tracks

occasionally terminate in a shower induced by a collision with a nucleus inside the tracker. In

rare cases, these showers can contain zero visible particles of any kind. These disappearing pions

are an important background source for the disappearing tracks search in Section 3.2.

2.2.3 Electromagnetic Calorimeter

The primary purpose of the electromagnetic calorimeter (ECAL) is to observe the energies

of photons, which do not leave tracks. It is also important in the observation of electrons,

which produce a jet of photons due to bremsstrahlung in the tracker. Other electromagnetically

interacting particles will also leave small ECAL deposits, but much less due to their lesser

tendency to produce photons. In Figure 2.2, the electron (red) and photon (dotted blue) produce

strong showers in the ECAL (green), while the other particles leave negligible deposits.

The design of the CMS ECAL prioritizes good resolution of photon energies and positions

over all else, due to the experimental importance of the Higgs boson’s decay to a pair of isolated

photons. To accomplish this, the ECAL is constructed from tens of thousands of scintillating lead

tungstate crystals, which have several desirable properties.

First, these crystals have a Moliere radius of only 2.2 cm [19]. Aside from providing

generally good position resolution, this small Moliere radius most importantly allows a prompt

isolated photon, perhaps from a Higgs decay, to be distinguished from two closely overlapping

photons produced by the decay of a neutral pion, because the two separate showers produced by

the photon pair are clearly separated in the ECAL cells. These two nearby showers may merge

into a single large shower indistinguishable from that of a single photon in a material with a larger

Moliere radius. Similarly, photons produced inside jets can be distinguished from truly isolated
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photons, since the showers of other particles in the jets can be discriminated from the photon’s

own shower. Although the size of the shower is restricted, a typical one will still extend over a

few adjacent crystals as shown in Figure 2.2, so that a 5-by-5 cluster of crystals, or potentially a

smeared supercluster for electrons that have radiated over a larger area, is the essential object of

ECAL reconstruction. Studying the distribution of energy measurements across the crystals in a

cluster, as described in [27], allows for better fake rejection, and energy resolution of 1% [26].

Second, lead tungstate also has an extremely short radiation length, only 0.89 cm compared

to the roughly 2 radiation lengths of the entire 1 m radius tracker, so it contains electrons very

efficiently [19].

Third, scintillation in lead tungstate happens quickly, with 80% of the light produced

within 25 ns [19]. This speed is critical for coping with the 25 ns bunch spacing of the LHC’s pro-

ton beams, so that the ECAL deposits produced by adjacent bunch crossings can be distinguished.

Due to this rapid shower production and careful calibration of the electronics, the ECAL achieves

a timing resolution of roughly 0.2 ns for particles with momenta on the order of tens of GeV [36].

Finally, lead tungstate is resistant to radiation damage, so that the ECAL can continuously

operate in the high flux environment of LHC proton collisions. Unfortunately, it is not immune to

radiation damage, and so the performance of the ECAL degrades over time. By the end of data

taking in 2018, roughly 20% of ECAL cells no longer consistently detected showers of photons

and electrons. This leads to a background for the disappearing tracks search in Section 3.2

consisting of electrons that transform to photons inside the tracker, no longer leaving a track, but

are not later detected as photons in the ECAL. Fortunately, 80% of the ECAL is still performing

well despite years of high radiation flux, so this background can be almost entirely rejected by

mapping and vetoing the poorly performing cells, using events in which a Z boson decayed to a

pair of electrons, exactly one of which is lost due to this effect, as described in Section 3.2.
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2.2.4 Hadronic Calorimeter

Charged hadrons are too massive to shower significantly in the ECAL, and neutral

hadrons are invisible to both the ECAL and the tracker. However, both can be made to shower

by capitalizing on their powerful nuclear interactions, and the hadronic calorimeter (HCAL)

accomplishes this, as depicted in Figure 2.2 for a neutral hadron in dotted green and a charged

hadron in solid green. The performance of the HCAL is very important to analyses selecting

events containing jets and missing energy, as HCAL measurement errors lead directly to errors in

jet energies, which in turn cause errors in the inferred missing energy in the event.

The essential plan of the CMS HCAL design is to induce hadron showers by putting a high

density of atomic nuclei in their paths in the form of 5 cm brass plates, then to measure the products

of these showers using plastic scintillators, and from this reconstruct the energies of the original

hadrons. To ensure that as few hadrons as feasible escape detection, whether from the primary

interaction or from secondary showers, there are multiple layers of this shower-inducing metal

plate and scintillator combination. Nevertheless, some hadrons do manage to “punch through”

the HCAL, especially if they have extremely high energy, and even successful measurements are

only accurate to within roughly a factor of 2 [34], unless the hadron has very high energy. On the

whole, the CMS HCAL performance is the weakest of any detector system. However, the energy

of a typical jet is not measured only with the HCAL, and errors made on different hadrons within

a jet tend to cancel, so that CMS achieves a typical jet energy resolution of approximately 10%,

for the jets of most interest [19]. Still, jets are occasionally badly mismeasured, most often due to

HCAL measurement errors, and it is important for analyses selecting events with large missing

energy to filter out these mismeasurement events, see Section 3.1.3.

Accuracy of energy measurements aside, the ability to detect neutral hadrons consistently

in the HCAL is important to the disappearing tracks search discussed in Section 3.2. A charged

hadron can decay to a neutral hadron inside the tracker, and thus allow known Standard Model

physics to produce an apparent disappearing track. Unlike a true disappearing track, however, the
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neutral hadron is detectable in the HCAL, revealing what happened in the tracker and rejecting

this Standard Model background. As with the ECAL, poorly performing regions of the HCAL

can be vetoed to ensure this background is wholly rejected.

2.2.5 Muon System

The muon system is the outermost detector of CMS, and the only one outside the solenoid.

Muons, like charged hadrons, are too heavy to produce significant showers in the ECAL, and

unlike hadrons, do not have nuclear interactions allowing them to be trapped in the HCAL. Instead,

they penetrate through the entire detector, leaving a track in the tracker, largely disappearing

inside the calorimeters, and then reappearing in the muon system. Unlike other particles, then,

the energies of muons must be measured largely by analyzing the curvature of their tracks. As

one of the design goals of the Compact Muon Solenoid experiment is ultra-precise measurements

of muons, the muon system is large partly in order to provide a long look at the muon’s track for

momentum measurement purposes, and partly to provide a positive identification of a particle as

a muon, rather than a hadron that managed to escape the HCAL, as only muons can penetrate

through so many layers of detector material. As installing a second tracker would be far too

expensive and excessive, the muon system instead uses only four widely spaced layers of detectors

operating based on ionization of gas by passing muons, which while generally worse than the

tracker system in terms of space and time resolution, are much more economical for covering

such a large volume [19]. The design of CMS has proven successful. Muons are by far the

cleanest, most well-measured particles at CMS, with momentum resolution better than 1% and

high reconstruction efficiency, as shown for tracker muon tracks in Figure 2.6.

While muons are the only charged Standard Model particle that can consistently penetrate

to the muon system, the possibility exists that heavy long-lived charged particles beyond the

Standard Model may be produced in LHC collisions and leave hits in the muon system. The

disappearing tracks search in Section 3.2 targets models that could potentially produce such a
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signature. However, that search considers only tracks that disappear inside the tracker, and in

fact explicitly vetoes muon-like tracks, so it is not sensitive to this potential signature. Adding

sensitivity to this powerful signature could be an interesting extension in the future.

2.2.6 Missing Transverse Energy

Once muons are measured in the muon system, all Standard Model particles have been

accounted for, except neutrinos. Unfortunately, the neutrino interaction length, even at LHC

energies, is on the order of billions of meters at Earthly densities, so that the probability of a

typical LHC neutrino experiencing even a single interaction anywhere inside the CMS detector is

negligible [40]. However, the presence of neutrinos can be inferred by measuring all other particles

inside the event, and observing that the transverse momentum does not balance, indicating either

the presence of at least one undetected particle, or a detector mismeasurement. At a hadron

collider like the LHC, only the transverse momentum can be used for this procedure, because the

exact center of momentum frame of the primary collision is unknown along the beam axis. The

actual colliding particles are not the protons themselves, but rather subcomponents of the proton

called partons. The partons are approximately at rest with respect to the detector in the transverse

plane, so that their transverse momenta are known to sum nearly to zero, but have unknown

momenta along the beam axis, drawn from a probability distribution as described in Section 1.1.4.

Unbalanced momentum along this axis may indicate the presence of an invisible particle, but

more often it indicates simply that the initial momentum of the collision along the beam axis

was nonzero. The observable is not the missing energy, then, but the missing transverse energy,

written as MET, 6ET , or Emiss
T . This observable is tentatively identified with the unobservable

transverse momentum of a neutrino or other invisible particle or particles.

Although the invisible momentum is only available in the transverse plane, it is still a

very useful quantity. For instance, consider the leptonic decay of a W boson, W±→ `±ν. The W

boson has mass approximately 80 GeV with width approximately 2 GeV [74]. Even allowing for
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detector resolution smearing of around 10% in addition to the intrinsic width of the W resonance,

a lepton and neutrino system originating from an on-shell W decay can never have mass greater

than approximately 100 GeV. It follows directly that transverse mass MT, the mass calculated

using energy and momentum in the transverse plane, also cannot exceed 100 GeV, since ET ≤ E

and pT ≤ p. The analyses discussed in Chapter 3 leverage this fact to determine whether a lepton

or disappearing track may potentially have originated in a leptonic W decay.

Of course, while the missing transverse energy is sometimes the undetected energy of a

single neutrino or unknown invisible particle, it can also be a consequence of mismeasurement. In

fact, even events with relatively large amounts of missing energy at CMS are most often produced

by detector mismeasurement (see Figure 3.4, in which “Multijet” events in yellow have 6ET due to

detector mismeasurement), even though such large errors are rare, because neutrinos are rarer

still. Searches for invisible particles naturally wish to eliminate these events with fake 6ET using

cleaning selections. The 6ET can also potentially be the vector sum of the transverse momenta of

multiple undetected particles. One of the most powerful observables that can be used to reject

events with fake 6ET and indicate than an event may have multiple invisible particles is MT2 [52],

a generalization of MT.

MT2

Although the presence of invisible particles can be inferred via the observation of a

nonzero ~Emiss
T , it is not trivial to distinguish events in which ~Emiss

T corresponds to the transverse

momentum of a single invisible particle, and events in which it is the vector sum of the momenta

of multiple invisible particles. It can also be difficult to distinguish the presence of genuine

invisible particles from cases of detector mismeasurement. While no conclusions about invisible

content can ever be drawn with perfect certainty for any single event, the situation is not hopeless.

There exist tools that can be used to make quantitative inferences concerning an event’s invisible

content, including the MT2 observable. Specifically, MT2 is designed to identify events consistent
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with the presence of two invisible particles in the final state, produced in symmetric decay chains

of pair-produced heavy particles. This also tends to reject events in which 6ET was produced by

detector mismeasurement, as these events tend to have no symmetry whatsoever.

The algorithm begins by dividing the visible portion of the event into two hemispheres. To

do this, an event must have at least two visible objects, so in an event with only hadron jets, like

the majority of the events at CMS, MT2 can be calculated only for multijet events. The method

used to assign each visible object to a hemisphere varies. One popular method, and the one used

in [63], begins by identifying the pair of objects with largest system mass, M12,

M12 =
√

(E1 +E2)2− (~p1 +~p2)2, (2.2)

and assigning each as the seed of a separate hemisphere. In an event containing two identical

pair-produced particles undergoing similar decay chains, the pair of objects with largest mass is

unlikely to originate from the same particle, as the mass of the full system is strictly greater than

the mass of either particle.

Then, each object is associated to the seed of lesser Lund distance, DL, which is defined

for seed i as [70, 71],

DL = (Ei− pi cosθ)
Ei

(Ei +E)2 (2.3)

where Ei is the seed’s energy, pi is the seed’s momentum, θ is the angle between the momenta

of the seed and of the object under consideration, and E is that object’s energy. Considering the

massless limit of DL provides some intuition,

DL =
1− cosθ

(1+ E
Ei
)2
. (2.4)

The Lund distance is small if the seed and object point in nearly the same direction so that

cosθ∼ 1, and if Ei is small. Thus, selecting based on minimal Lund distance prefers to assign
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objects to the less energetic seed when possible to keep the hemispheres energetically balanced,

so long as the object and the seed point in similar directions. Once all objects have been assigned

to a seed, two new seeds are defined as the sum of all the four-momenta in each hemisphere,

and the assignment procedure repeats using these seeds. This continues until no object changes

hemisphere after an iteration. Ultimately, the algorithm assigns objects to the correct hemisphere

with efficiency ranging from approximately 70–85%, with higher efficiencies obtained in events

with fewer objects and therefore reduced combinatorics [32].

The next step of the calculation of MT2 takes these finalized hemispheres as inputs. Under

the hypothesis that the observed missing energy is the vector sum of the unobserved momenta of

two invisible particles, the algorithm considers every possible vector decomposition,

~Emiss
T =~v1 +~v2 (2.5)

and calculates MT for hemisphere i with respect to ~vi. The maximum of these two values of

MT is taken as the candidate MT2 for this decomposition. This choice is motivated by a desire

to infer the true mass of the decaying pair-produced particle, again, under the hypothesis that

there are two pair-produced particles undergoing symmetric partially invisible decays. For the

correct ~Emiss
T decomposition and hemisphere assignments, the two calculated transverse masses

are correct, and both are no larger than the true mass of the pair-produced particles. The larger, of

course, is nearer to that true mass.

The only remaining step is to select which of the candidate values of MT2, equivalently

which ~Emiss
T decomposition, is correct. The algorithm selects the smallest candidate MT2 value

found, the “minimum maximum,” so that the final MT2 is

MT2 = min
~Emiss

T =~v1+~v2

[
max

(
M1

T,M
2
T
)]

(2.6)

where hemispheres 1 and 2 are assembled as described above. Since the correct missing energy
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decomposition is among those considered and manifestly cannot produce a value of MT greater

than the true mass of the parent particle when hemisphere assignments are correct, selecting the

“minimum maximum” guarantees that MT2 can be no larger than the mass of the parent particle.

Just as MT cannot exceed the mass, MT2 is unlikely to exceed the true MT.

Of course, it is possible for MT2 to be small even in genuine signal events for which it is

designed to be large, and it is possible for especially pathological mismeasurement events to have

large MT2 despite MT2 being a powerful rejector of these backgrounds (see Section 3.1.3). No

observable is so magical that it can accept 100% of signal and reject 100% of background. Still,

MT2 is one of the most powerful discriminants available for analyses targeting pair-produced

particles decaying semi-invisibly, as can be seen for instance in Figure 3.4. Indeed, the selection

of MT2 > 200 GeV applied by the analyses discussed in Section 3 is the single most important

part of their baseline selection, dramatically reducing especially the detector mismeasurement

background.

2.3 CMS Event Reconstruction

After observing the signatures of particles in the detector, CMS must reconstruct what

happened in the event. A fully detailed description is well beyond the scope of this thesis and

indeed, well beyond the scope of any single document. This section will describe only some of

the most essential pieces that have not already been covered by previous sections.

2.3.1 Pileup and the Trigger System

Previous sections have discussed some of the challenges faced by the detector in re-

constructing a single collision. However, the large event rate at CMS produces its own set of

challenges. First, the sheer number of bunch crossings per second produces too high a data rate

to save the measurements of all but a small subset of collisions [19]. Second, the collision of
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protons in bunches rather than singly to maintain a collision rate produces multiple simultaneous

collisions in each bunch crossing, called pileup, which must be disentangled.

The Trigger System

The LHC provides CMS with roughly 1 billion collisions per second spread across

40 million bunch crossings per second, one per 25 ns. This enormous event rate is necessary

to provide sensitivity to very rare physics. For instance, the expected number of gluino pair-

production events observed at CMS is approximately 1 across the entire 2016, 2017, and 2018

datasets, for a gluino mass of 3 TeV. Unfortunately, as each bunch crossing constitutes roughly

1.5 MB of data, it is feasible to write only approximately 100 events per second to disk, for

150 MB/s [19]. All but one bunch crossing in 400,000 must be rejected, a feat accomplished by a

two-tier trigger system [47].

The Level-1 trigger system is implemented in hardware and considers gross features of

the event that are rapidly computable and qualify it for further consideration. It rejects the vast

majority of bunch crossings, reducing the rate from 40 MHz to 100 kHz. The rejected events are

almost all mundane events containing only a few low energy hadron jets. Some of the signatures

that may qualify an event for further consideration include measurements in the muon system

consistent with an isolated muon of a minimum pT, or preliminary signs that the event may have

large missing energy. The Level-1 trigger system is allotted only 3.2 µs to make a decision, of

which less than 1 µs is available to perform a limited reconstruction, and so is subject to errors

that can cause it to incorrectly reject some borderline events, so that the trigger is not a perfect

step function. For instance, the electron energy resolution of the Level-1 reconstruction is shown

in Figure 2.12 (left), along with the resulting trigger turn-on curve (right). To avoid the need to

simulate this trigger turn on, analyses typically select only events sufficiently distinctive that they

are accepted by the trigger with 100% efficiency.

Events passing the Level-1 trigger are subjected to a more careful analysis by the High
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Figure 2.12: (Left) The electron energy resolution of the Level-1 CMS trigger obtained in
7 TeV collisions, in the barrel. Positive values correspond to incorrectly small measurements
of the electron energy, and may cause candidate electrons to fall short of the minimum energy
requirement, leading to a trigger inefficiency. (Right) The Level-1 electron trigger turn-on curve
as a function of offline reconstructed electron energy, with a nominal threshold of 15 GeV.
The black markers are for electrons in the barrel, corresponding to the electron population
whose energy resolution is shown in the plot at left, and red is for electrons in the endcaps. To
avoid exposing itself to trigger turn-on systematic uncertainties, an analysis may be forced to
select only events possessing an electron with energy greater than approximately 30 GeV, the
beginning of the efficiency plateau, despite the trigger nominally accepting events containing an
electron with energy as low as 15 GeV. Taken from [47].

Level Trigger (HLT), implemented in software on standard servers. With 13,000 machines

working in parallel, the HLT is allotted 90 ms per event, enough time for reconstruction of the

portion of the event identified by the Level-1 trigger as interesting at near offline quality. One

event in 1000 considered by the HLT is sufficiently spectacular to qualify to be written to disk,

and these constitute the CMS dataset available for final offline analysis.

Pileup Correction

In addition to the high bunch crossing rate, the reconstruction also must cope with the

large number of simultaneous collisions in each bunch crossing, called pileup. The mean number

of pileup collisions was 32 in 2018 [1], and a significant number of bunch crossings exceeded 60
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pileup collisions, as can be seen in Figure 2.13. Given that only one bunch crossing in 400,000

contains a collision interesting enough to be written to disk, the number of interesting collisions

per bunch crossing is at most 1, and the others must be subtracted.
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Figure 2.13: The distribution in 2018 of the number of simultaneous collisions per bunch
crossing, so-called pileup, provided by the LHC and observed by CMS. The average bunch
crossing produced 32 simultaneous collisions, with an inferred total inelastic collision cross
section of 69.2 mb. Taken from [1].

Barring errors in track reconstruction, charged pileup can be subtracted perfectly [23].

Charged particles produce tracks, which can be associated to vertices. Tracks associated to

vertices other than the primary vertex of interest can be subtracted. This is not possible for the

neutral content of an event, which is known only from calorimeter deposits.

There exist two popular heuristic methods for subtracting neutral pileup. The first method,

called Delta-Beta, proposes that the neutral energy from a pileup vertex is equal everywhere to

exactly one half of the charged pileup, because particles with charges +1, -1, or 0 tend to be

produced with roughly equal probability and energy. This is true on average, but of course is only

approximately true in any given instance. The second method, called Effective Area, benefits

from larger pileup and has gained popularity recently. This method divides the detector into
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many small regions and calculates the median energy density in these regions, ρ. By taking the

median, the calculation naturally mitigates the impact of outlier regions of the detector with large

contributions from the primary vertex, which tends to be much more energetic than any of the

pileup vertices. This median energy deposit is taken to be representative of the pileup contribution

in every region of the detector, true by construction within statistical fluctuations, and subtracted

everywhere to leave only the energy believed to originate from the primary vertex. This algorithm

is only as accurate as the statistical fluctuations of pileup energy are small, and so benefits directly

from increased pileup vertex counts. At present, both algorithms have similar performance and

see wide use. The search in Section 3.1 uses Effective Area, while the extension to this search in

Section 3.2 uses the Delta-Beta method to correct the isolation of disappearing tracks similarly.

Pileup also makes reconstruction more difficult in a more general sense by overwhelming

reconstruction algorithms. Of special importance to the disappearing tracks analysis in Section 3.2

is its effect on track fake rates. High pileup vertex counts cause proportionally increased hit

counts in the tracker. With more hits to consider, the track reconstruction algorithm is more

prone to make errors, and connect hits to form tracks that are not all associated with the same

genuine particle. For instance, the algorithm may output a fake track using three hits produced

by particles from three different pileup vertices that happen to fall in a line extrapolating to the

primary vertex. The tracker is also overwhelmed at the hardware level, with higher particle

flux causing higher operating temperatures, and therefore more noise, and overflowing readout

buffers during periods where the beam luminosity, and therefore the typical pileup, is especially

high [77], as shown in Figure 2.14. Events containing disappearing tracks, especially very short

tracks, disproportionately originate from events at the extreme high end of the pileup distribution,

indicating that pileup and, more generally, high beam luminosity directly causes background for

this search by inducing track reconstruction errors.
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Figure 2.14: The efficiency for a charged particle to leave a hit drops at high instantaneous
beam luminosity, especially in the first layer of the tracker (red). Periods of high luminosity tend
to produce events with high pileup. Taken from [77].

2.3.2 Particle Flow

The general purpose offline reconstruction algorithm used in most cases at CMS is called

Particle Flow [69]. Particle Flow (PF) attempts to reconstruct every individual particle in an event

by integrating information from all detector components, producing so-called PF candidates.

Rather than, say, obtain an energy measurement entirely from the calorimeters and ignore the

energy measurement that can be made using the curvature of a particle’s track, PF uses the tracker

and the calorimeters as checks on each other, and intelligently assigns a final energy based on

its beliefs about the relative trustworthiness of each measurement in each case. This extraction

of all available information from the event rather than the traditional segregated inputs from

different detector components is in part responsible for CMS’s outstanding reconstruction. These
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achievements include a high b-tagging efficiency, which is maximized by considering all possible

clues simultaneously using a machine learning approach, rather than for instance using only the

secondary vertex and track multiplicity information provided by the tracker [69], and efficient

identification of electrons, as shown in Figure 2.15.

 of the generated electron (GeV)
T

p
3 4 5 6 7 8 10 20 30 40

E
ffi

ci
en

cy
 g

ai
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6
e from Z boson decay

CMS 
Simulation

Figure 2.15: The identification efficiency of electrons produced by the decay of a Z boson is
dramatically improved by using information from both the tracker and the ECAL, rather than
the ECAL alone as has been the standard approach in other detectors at hadron colliders. The
absolute efficiency gain, EffECAL+Tracker−EffECAL, is plotted. Taken from [69].

This approach can allow PF to reject fakes or badly mismeasured particles. For instance,

PF rejects tracks that do not extrapolate to significant calorimeter deposits, indicating that they are

neither electrons nor hadrons, and also do not have a corresponding track in the muon chamber. In

most cases, PF is correct to reject these tracks, which are almost assuredly fakes. In rare cases, the

track is of such high quality that it passes the “high purity” selection described in Section 2.2.2,

indicating that the tracker is highly unlikely to have made an error. These are called “Lost Tracks,”

and are the foundational object for the track selection used in the Section 3.2 disappearing tracks
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analysis. The fact that PF rejected these tracks despite a strong tracker measurement flags them

as worthy of further study, serving as a useful clue for searches for new physics.

2.3.3 Jet Clustering

Jets produced by hadron fragmentation are constructed from PF candidates using the

Anti-kt algorithm [24]. A major goal of such an algorithm is including all of the content associated

with a hadron’s fragmentation in a single jet, and nothing else. Additionally, it is desirable for

jets output by an algorithm not to be affected by very low energy particles that may be simple

manifestations of noise, so that the same event measured by multiple detectors with different

properties would produce nearly identical jets in every case. Older jet clustering algorithms

simply used a fixed cone size, and included in jets anything that fell inside a cone centered on a

few of the larger energy deposits in the calorimeters. Modern algorithms start at the particle level

and associate particles to jets using distance measures similar to the Lund distance (Equation 2.4)

used in MT2. The Anti-kt algorithm uses the measure of distance between particles i and j defined

as

di j = min

(
1
k2

ti
,

1
k2

t j

)
∆R2

i j

R2 (2.7)

where ∆R2
i j = (ηi−η j)

2 +(φi− φ j)
2, R is a tunable jet cone size parameter, and kti is the pT

of particle i. The algorithm gets its name from the appearance of k2
t in the denominator rather

than the numerator of the minimum as in its predecessor, the kt algorithm. The most important

advantage of this algorithm relative to its predecessor is the suppression of the effect of very low

energy particles on jet composition and shape by using the minimum of 1/kt rather than of kt .

This causes low energy particles to cluster not simply with whatever the nearest particles are, but

rather with the nearest high energy particle, since di j is always large for two low energy particles,

while it is suppressed by the smallness of the high energy particle’s 1/k2
t in any pairing with a low

energy particle. Nearby hadrons producing partially overlapping jets can thereby be distinguished,
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by clustering the lower energy particles around nearby but separate high energy cores, instead of

forming one fat jet from the agglomeration of all particles falling inside the cone, and jets can

pick up low energy particles that may have been radiated a moderate distance away from the core

of the source jet, instead of these outliers clustering amongst themselves to form spurious jets.

Thus, jets clustered by the modern Anti-kt algorithm closely correspond to the source hadrons,

making the Njet observable more useful than ever before, and also assisting flavor tagging.

2.4 Simulation

The Standard Model and hypothetical models of new physics predict what happens at the

primary interaction. These parton-level predictions need to be converted into final state particles,

and then a prediction of the observable signatures produced by these particles in the detector. To

accomplish this, CMS employs a multi-tier Monte Carlo simulation process.

2.4.1 Objectives

Simulation is used both to understand sources of background and to predict the appearance

and yield of signals. Although simulation is subject to uncertainties that cause analyses to prefer

using data-driven background predictions, it still captures the gross features of all but the most

pathological background sources. For understanding the expected appearance of signals, it is the

only option available.

2.4.2 Limitations and Challenges

Simulation of collider physics faces four primary challenges.

First and foremost is a finite computation budget. All simulations must be performed

numerically, using a Monte Carlo approach. While the physical collider can produce 1 billion

event per second and thereby produce events with extremely rare properties, such an event rate is
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orders of magnitude out of reach of software. This is not necessarily a problem for rare signal

models, as a computer can be made to simulate only the signal model of interest, and ignore the

much more common background physics, thereby producing simulated events even faster than

the collider can, sometimes much faster for the rarest signals. However, much more common

backgrounds are typically difficult to simulate in the phase space of greatest interest. For instance,

QCD events with large MT2 are extremely rare as discussed in Section 3.1.3, but QCD events

comprise nearly all of the 1 billion collisions per second observed at CMS, such that even the high

MT2 event rate is non-negligible. Software simply cannot produce a statistically robust sample

of these events using the traditional Monte Carlo sampling approach. Section 3.1.5 discusses a

successful workaround for this problem.

The other three problems affect three separate stages of the simulation pipeline.

First is an uncertainty arising from theory due to the perturbative approximation used to

extract predictions from the Standard Model at parton level. Although the Standard Model is

capable of producing astonishingly accurate predictions, famously including over 10 digits of

accuracy in its prediction of the electron’s magnetic moment [55], calculating predictions to such

precision is a laborious undertaking that cannot practically be managed for every conceivable

process [12]. In practice, most theoretical calculations are truncated at only a few orders, or even

only to leading order, and so are not as precise. At CMS, most of these parton-level calculations

are performed numerically by the MadGraph generator [10]. This issue is mitigated in part by

using data-driven predictions for background, but this is not possible for signal, contributing to

significant theoretical uncertainties in signal predictions. Additionally, the Standard Model’s the-

oretical prediction is dependent on experimental inputs, which have an unavoidable measurement

uncertainty.

Second is an uncertainty arising due to QCD’s non-perturbativity at low energy, as

described in Section 1.1.3. At energy scales around 1 GeV and below, the QCD coupling exceeds

1, so that the typical perturbative approach is useless for low energy QCD [37]. As the LHC is a
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hadron collider, QCD dominates the underlying structure of every event, and although the initial

collision may be at a high enough energy scale to allow for perturbative calculation of QCD effects,

the energy eventually becomes spread among enough particles to reach the non-perturbative

regime. Thus, the conversion of the output of a parton-level generator like MadGraph to the final

state particles, chiefly the fragmentation of hadrons to produce jets, can only be performed using

heuristics rather than from first principles. CMS simulation typically uses the Pythia program to

perform this second step, which implements the Lund string framework of hadronization [72].

Moreover, the internal structure of the proton itself is dictated by non-perturbative QCD, creating

the need for empirical PDFs as discussed in Section 1.1.4.

Finally, the interaction of final state particles with the detector depends on the exact

state of the detector at every moment. The detector’s state is dynamic, and fine details like

which components momentarily overheated or the impact of induced radioactivity in detector

components, can only be represented approximately at best. CMS employs two simulation

methods for particle interactions with the detector. The first is a detailed simulation of the

interaction of simulated particles with as detailed a model of the detector as knowledge permits,

implemented in the GEANT program [7] and called full-simulation. Naturally, this is the gold

standard, and is applied to simulation campaigns that are either of broad interest to the entire

collaboration, or require and can afford the additional computational complexity. The second

approximates typical detector measurements using empirical smearing functions to represent,

for example, the detector’s ECAL resolution for electrons. This is called fast simulation. Fast

simulation does not accurately capture the tails of distributions, having limited knowledge of

rare events, but accurately predicts the bulk. This makes fast simulation suitable for producing

large samples of signal events, but unsuitable for background. Signal events define the parameter

space of interest, and so the bulk of signal events populate the desired region. Typically, only

background events deep into the tails of distributions manage to appear signal-like, and so sources

of background must be modeled with full simulation.
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In the end, the CMS simulation pipeline cannot be perfect, but is largely robust. Fig-

ure 2.16 shows a comparison between simulation and data of the MT2 distribution in events

containing exactly one low MT electron or muon and either (left) 0 or (right) 1 b-tagged jet,

and additionally with requirements on the minimum HT and 6ET . These are small corners of

phase space, combining contributions from multiple distinct physics processes, and yet still the

simulation’s agreement with data is remarkable, overcoming all of the challenges described above.
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Figure 2.16: Modeling of MT2 in simulation is checked against data with 0 (left) and 1 (right)
b-tagged jet, in events satisfying HT > 250 GeV, 6ET > 250 GeV if HT < 1200 GeV and 6ET >
30 GeV otherwise, containing one lepton with MT < 100 GeV, consistent with a W±→ `±ν

decay. The simulation combines all contributing Standard Model processes. Even though the
simulation is being asked to predict a narrow corner of phase space, and MT2 is a complex
observable depending in detail on all components of the detector, the agreement is remarkable.
Taken from [63].
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Figures 2.1 and 2.13 show the CMS integrated luminosity and pileup distribution in 2018,

respectively, as measured by the CMS Luminosity Physics Object Group (POG) [CMS luminosity

public results, Nov. 2019].

Figures 2.2 and 2.15 respectively show the typical experimental signatures of the particles

measured by CMS, and the improvement in electron identication efficiency achieved by the

CMS Particle Flow reconstruction algorithm compared to approaches that do not integrate all

available detector information, produced as part of the documentation of that algorithm Journal

of Instrumentation, Oct. 2017].

Figures 2.3–2.8, 2.10, and 2.11 show the layout of the Phase 0 (2016 and earlier) CMS

tracker, the hit efficiency, the track fake rate, track reconstruction efficiency, track impact parame-

ter resolution, comparisons of the efficiency and fake rate in the Phase 0 and Phase 1 tracker, the

tracker material budget in terms of radiation lengths and interaction lengths, and the pion survival

rate, respectively, as prepared by the CMS Tracking POG [The CMS Collaboration, Journal of

Instrumentation, Oct. 2014].

Figure 2.9 shows the b-tagging efficiency of various algorithms used at CMS, as measured

by the CMS B-Tagging and Vertexing POG [The CMS Collaboration, Journal of Instrumentation,

May 2018].

Figure 2.12 shows the Level-1 reconstruction’s electron energy resolution and the asso-

ciated electron trigger turn-on curve prepared by the CMS Trigger and Data Acquisition group

[The CMS Collaboration, V. Khachatryan et al., Journal of Instrumentation, Jan. 2017].

Finally, Figure 2.16 [A.M. Sirunyan et al., European Physics Journal C, Jan. 2020] was

produced by Bennett Marsh, who has been an invaluable co-author of the analyses presented in

the next chapter.
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Chapter 3

The Full 13 TeV MT2 Analysis

This section presents two searches for new physics in all-hadronic final states with

substantial 6ET as inferred through large MT2 in 13 TeV proton-proton collisions recorded by the

CMS detector [63].

The 6ET selection targets invisible particles, motivated by the evidence for dark matter

discussed in Section 1.2.4. If dark matter is at least partially composed of a particle or particles

associated with physics at the weak scale, then it may be produced in LHC collisions and, while

not detectable itself, be inferred via an excess of events with imbalanced transverse momentum.

Considering only all-hadronic events with large MT2 is part of a divide and conquer

strategy employed by the CMS collaboration. CMS analyses also search for dark matter in events

containing leptons, e.g. [67], but there is no way to know whether dark matter will be found in

either or both. By splitting the searches, each can optimize for its unique event characteristics.

Likewise, the collaboration also considers all-hadronic events that do not necessarily have large

MT2 [68], since while MT2 in many cases provides enhanced sensitivity, it can reduce sensitivity

to some models, for instance in cases where the decay energy is very small, or those in which

invisible particles are not produced in pairs.
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The first search is inclusive, and is a continuation of previous analyses based on smaller

datasets, most recently using the 35.9 fb−1 dataset recorded in 2016 [64]. Accordingly, it is

referred to as the classic search.

The second search is a new extension of the first, requiring additionally the presence of a

disappearing track in a selected event. Disappearing tracks have been targeted as an observable of

interest by both CMS [45, 65] and ATLAS [3, 2] previously, but with lower energy or smaller

datasets, and different methods.

Both searches set the strongest constraints to date on a variety of hypothetical extensions

to the Standard Model possessing pair-produced dark matter candidates, most notably R-parity

conserving supersymmetry.

3.1 Classic Search

3.1.1 General Description

The classic search’s core, defining selections are for events with large missing transverse

energy 6ET as inferred via MT2, large total hadronic transverse energy, called HT, and no leptons.

The primary motivation for the analysis is either finding or setting constraints on particle

dark matter. The experimental signature of dark matter is its undetectability; its presence can only

be inferred through large imbalance of transverse energy. The MT2 analysis further focuses on

the case of pair-produced dark matter using its eponymous observable. For reasons discussed in

Section 1.3, R-parity conserving supersymmetry is a model of special interest to the theoretical

community, and this model’s dark matter candidate would always appear in pairs. The MT2

variable tends to increase sensitivity to the pair-production scenario as described in Section 2.2.6.

The selection of events with large HT is motivated by the CMS trigger as discussed in

Section 2.3.1, which is in turn motivated by the inferred large energy scale of new physics. The

decays of heavy new particles to relatively light Standard Model particles will result in, typically,
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very energetic events. It is possible that the dark matter candidate is itself very heavy, nearly as

massive as the new particle that decays to it. In this scenario, while the events are indeed very

energetic, much of the energy is lost to the invisible portion of the event, and the visible, hadronic

energy can be relatively small. Accordingly, sensitivity in the compressed scenario is weaker, as

many of the new physics events are too low energy to pass the kinematic selections. The MT2

selection is especially inefficient, in this scenario. However, sensitivity is not negligible, and the

search is sensitive to any mass splitting in many cases.

The last selection, a veto of leptons, is chiefly motivated by CMS’s divide and conquer

strategy. Final states including leptons are considered in other searches. However, the veto does

allow for partial suppression of the Standard Model neutrino background, since neutrinos are

often produced alongside a charged lepton in decays of the W boson, as discussed in Section

3.1.3.

Ideally, any observation of an event with large 6ET and MT2, large HT, and no leptons,

would constitute a discovery. Unfortunately, this is not the case, as the Standard Model is capable

of producing events with all of these signatures. Neutrinos and simple mismeasurement of the

event can produce large missing energy signatures, events with large HT are uncommon in the

Standard Model but hardly impossible, and the vast majority of events in a proton-proton collider

have no leptons. Some number of events will have all of these properties without any new physics

occurring, and most of the analysis’ efforts are spent estimating how often these background

processes occur, as discussed in Section 3.1.3.

3.1.2 Signals

The classic search generically targets any new physics that produces high HT events

with jets and missing energy from undetected particles. Diagrams for several candidate models

are shown in Figures 3.1, 3.2, and 3.3. The diagrams in Figure 3.1 of gluino and squark pair

production as predicted by supersymmetric extensions of the Standard Model are of greatest
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Figure 3.1: Diagrams of gluino (upper five) and squark (lower six) pair production, as predicted
by supersymmetric extensions of the Standard Model. The classic search considers five potential
gluino decay chains. At upper left, the gluinos decay to light flavor quarks (up, down, strange,
or charm), and the lightest neutralino, χ̃0

1. At upper center, the gluinos decay to light flavor
quarks, but rather than decaying directly to χ̃0

1, the gluinos decay either to the second neutralino,
χ̃0

2, which subsequently decays to a Z boson and χ̃0
1, or to the lightest chargino, χ̃±, which

subsequently decays to the W boson and χ̃0
1, with equal probability. At upper right, both gluinos

undergo the χ̃± to W decay chain. On the left of the second row, both gluinos decay to bottom
quark pairs and χ̃0

1. On the right of the second row, both gluinos decay to top quark pairs and χ̃0
1.

Additionally, the classic search considers six potential modes of squark production and decay.
On the left of the third row, light flavor squarks decay to light flavor quarks and χ̃0

1. In the center
of the third row, bottom squarks decay to bottom quarks and χ̃0

1. On the right of the third row,
top squarks decay to top quarks and χ̃0

1. At lower left, top quarks decay to bottom squarks and
χ̃±, which subsequently decay to the W boson and χ̃0

1. At lower center, top squarks may undergo
either the χ̃± decay chain, or a direct decay to a bottom squark and χ̃0

1, with equal probability.
At lower right, each top squark decays to a charm squark and χ̃0

1. Taken from [63].
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interest, and while the analysis is sensitive to a wide variety of similar hypothetical models,

it is optimized for these. As discussed in Section 1.3.3, these models simplify the enormous

parameter space of supersymmetric extensions by assuming that all superpartners except those

in the process are so massive that they can be neglected entirely. The upper five diagrams all

depict pair production of gluinos, g̃, the supersymmetric partner of the gluon. As each gluino

decays to two quarks, each of which will typically produce a jet, gluino pair production events

tend to have many jets. Many different decay chains are possible, and the analysis considers five

representative benchmarks.

In the first benchmark, the gluinos decay to light flavor quarks (up, down, strange, or

charm), and the lightest neutralino, χ̃0
1.

In the second benchmark, the gluinos decay to light flavor quarks, but rather than decaying

directly to χ̃0
1, the gluinos can decay either to the second neutralino, χ̃0

2, which subsequently

decays to a Z boson and χ̃0
1, or to the lightest chargino, χ̃±, which subsequently decays to the

W boson and χ̃0
1. Each of these decays can occur with equal probability. Both the W and Z will

themselves decay, usually to a pair of quarks, which will in turn produce jets. So, relative to

the first signal model, the second tends to have greater jet multiplicity. The Z can also decay

to neutrinos, and the W can decay to a neutrino and a lepton that is not reconstructed. In these

scenarios, this benchmark trades some jets for an enhanced missing energy signature. If the W or

Z decays leptonically and a lepton is successfully reconstructed, events from these signals may

fail the lepton veto and instead end up in control regions, biasing the background prediction. The

procedure used to handle such signal contamination of control regions is described in Section

3.1.6.

The third benchmark, in which both gluinos undergo the χ̃± to W decay chain, is similar.

In the fourth benchmark, both gluinos decay to the bottom quark and χ̃0
1. As described

in Section 2.2.2, it is possible to identify jets that originated from a bottom quark; such a jet is

said to be “b-tagged.” The classic search bins in the number of b-tagged jets in order to enhance
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sensitivity to signals of this type.

In the fifth and final gluino pair-production benchmark, both gluinos decay to top quarks

and χ̃0
1. The top quark decays with probability near unity to a bottom quark and a W boson. The

extra W bosons, compared to the direct bottom decay model, can either add jets or leptons and

neutrinos, as previously discussed. This signal tends to produce the most remarkable events of

any signal model considered, with very large HT, Njet, and Nb−tag, but also loses many events to

the lepton veto as any of the four W bosons is liable to produce a lepton.

The lower six diagrams of Figure 3.1 all depict pair production of squarks, the super-

symmetric partners of quarks. Squark decays directly produce only one quark each, compared

to two for gluino decays, so squark pair-production events tend to have fewer jets than gluino

pair-production events.

In the first squark benchmark diagram, on the left of the third row, a pair of light flavor

squarks (up, down, strange, or charm) is produced and each decays to a light flavor squark and χ̃0
1.

In the second benchmark, bottom squarks are produced and decay to bottom quarks and

χ̃0
1. These events tend to have b-tagged jets, but fewer than in gluino decays to bottom squarks.

In the third benchmark, top squarks are pair produced and decay to top quarks and χ̃0
1.

The relationship between this process and the previous one is similar to the relationship between

the fifth and fourth gluino benchmarks, respectively.

The fourth benchmark is very similar to the third. Instead of the top squark decaying

directly to a top quark, which then decays to a bottom quark and W boson, the squark decays

to a bottom quark directly and χ̃±, which subsequently produces the W. While the final state

particles are identical, their kinematics can be very different depending on the distribution of

masses realized in nature. For instance, if the top squark and χ̃± mass splitting is very small, the

bottom quark jet in this benchmark may have such low pT in a typical event that it is difficult to

reconstruct.

In the fifth benchmark, each top squark may undergo the χ̃± decay chain or decay directly
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to a bottom squark and χ̃0
1, with equal probability, mixing the two previous models.

In the last benchmark, each top squark decays to a charm quark and χ̃0
1. This decay chain

could dominate when the top squark and χ̃0
1 mass splitting is too small to allow decay to on-shell

top quarks, and the mass of χ̃± is larger than that of the top squark.

In each of these models, the mass of the squark or gluino and the mass of χ̃0
1 are free

parameters. Large squark and gluino masses cause low production rates, as the production cross

sections drop rapidly with increasing mass, as discussed in Section 1.3.3 and shown in Figure 1.12.

The mass of χ̃0
1 does not affect the production rate, but it does affect the character of the events.

When the mass splitting between the gluino or squark and χ̃0
1 is small, only a small portion of

the event’s energy ends up in the visible decay products, and most is lost to the rest energy of χ̃0
1.

These events have low HT and 6ET , low Njet, and when applicable, low Nb−tag, and more closely

resemble background. As the mass splitting increases, more energy shifts to the visible portion of

the event, making events less background-like and increasing sensitivity. The analysis considers a

grid of potential mass points for each model, and this sensitivity pattern is evident in the curves

shown in Section 3.1.8.

The classic search also considers non-supersymmetric models.

The first is referred to as the mono-φ model. In this model, a colored boson much like a

squark is produced singly, rather than pair-produced as mandated in squark models to conserve

R-parity, and decays to a quark and invisible fermion, as shown in Figure 3.2. This model has an

especially low number of jets and low MT2, and so would appear in more background-like bins

than most supersymmetric models. In fact, it was originally proposed [14] to explain a potential

excess in bins of this sort in the previous edition of the classic search, published based on 2016

data [64], and so there is some interest in whether such an excess persists in the larger dataset.

While the analysis is not optimized for this kind of model, it still has some residual sensitivity to

any model characterized by jets and missing energy in the final state, including mono-φ.

The second non-supersymmetric model, and final model considered explicitly by the
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classic search, is a leptoquark extension of the Standard Model. As discussed in Section 1.4,

while squarks can decay to a quark and χ̃0
1, leptoquarks can decay to a quark and a neutrino. A

neutrino is experimentally effectively indistinguishable from a low mass χ̃0
1, such that leptoquarks

and squarks produce nearly identical final states, as first established in a reinterpretation of the

2016 edition of the classic search [66]. Thus, it is a relatively simple exercise to reinterpret squark

results in the low mass χ̃0
1 limit as leptoquark results. A few leptoquark production diagrams are

shown in Figure 3.3.

qj

qi φ† qk

ψ

Figure 3.2: Diagram for the mono-φ model, in which a colored scalar φ is resonantly produced,
and decays to an invisible massive Dirac fermion ψ and an SM quark. Note that φ is not
pair-produced, in contrast to otherwise-similar squarks. Taken from [63].

By necessity and unlike backgrounds, the expected event yields for signal models are

obtained directly from simulation. For this reason, while most uncertainties are shared with

background, signal estimates are exposed to a few extra uncertainties, and some of the shared

uncertainties increase in magnitude.

First, while background is normalized to control region counts and so automatically scaled

to the correct integrated luminosity, signal counts must be scaled by an independent measurement
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Figure 3.3: Diagrams of leptoquark pair production. Each leptoquark decays to a neutrino and
a quark. Taken from [63].

Table 3.1: Systematic uncertainties in the signal yields for the simplified models of BSM
physics. The large statistical uncertainties in the simulated signal sample come from a small
number of bins with low acceptance, which are typically not among the most sensitive bins
contributing to a given model benchmark point. Taken from [63].

Source Range [%]
Integrated luminosity 2.3–2.5
Limited size of MC samples 1–100
b-tagging efficiency, heavy flavors 0–40
b-tagging efficiency, light flavors 0–20
Lepton efficiency 0–20
Jet energy scale 5
Fast simulation 6ET modeling 0–5
ISR modeling 0–30
µR and µF 5

of the integrated luminosity. This measurement is only precise to within a few per cent, leading

to a few per cent uncertainty on the expected event count.

Second, additional jets obtained from ISR must be modeled in simulation for signal,

while for background, the control regions provide a precise measurement of the relevant ISR

jet production. In bins with many jets, where ISR jet production rates are less well-known and

simultaneously more important, this uncertainty is as large as 30%.

Finally, signal models must be simulated in the fast-simulation framework discussed in

Section 2.4.2 to make the enormous array of signal scenarios considered computationally feasible.
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A systematic is assessed to cover potential errors made by this approximation.

The remaining uncertainties are described in the next section, in the context of background

estimates.

3.1.3 Backgrounds

All of the targeted signals are characterized by all-hadronic events with large missing

energy, but observing such an event does not constitute discovery due to the existence of back-

grounds that can produce the same basic signature. These backgrounds can be broadly divided

into the detector mismeasurement background, in which apparent missing energy is generated not

by genuine undetected particles but by an error in reconstruction, and the neutrino background, in

which the missing energy is produced by genuine neutrinos as predicted in the Standard Model.

The neutrino background can be subdivided into neutrinos originating from W±→ `±ν, in which

the presence of a charged lepton allows the neutrino to be rejected with good efficiency, and those

originating from Z→ νν, in which the final state is entirely invisible and cannot be efficiently

vetoed.

Mismeasurement

The most problematic background is that caused by detector mismeasurement. Nearly

every mismeasured event is a QCD multijet event, because nearly every event at a proton-proton

collider is a QCD multijet event and the probability of mismeasurement is roughly flat across

events. Accordingly, the mismeasurement background is also referred to as the QCD multijet

background. While the detector makes mistakes only very rarely, QCD events are so relatively

common that this background is still dominant in the raw dataset, before any cleaning selections.

Estimating the QCD background is challenging because it requires highly detailed knowl-

edge of the detector’s idiosyncrasies. Rather than risk falsely discovering a signal or failing to

identify one that is present due to misprediction of this background, the analysis adopts selections
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designed to suppress it, until the background is sufficiently minor that large relative error in its

prediction is acceptable.

The first and most powerful of these selections uses the MT2 variable described in Section

2.2.6, namely MT2 > 200 GeV, where the value is chosen to achieve the desired suppression

of the mismeasurement background. Although the MT2 selection is somewhat expensive in the

sense that it eliminates a significant fraction of signal, especially for signals with a small mass

splitting and signals like mono-φ that are not pair-produced, it is crucial for suppressing the

mismeasurement background. At HT > 1500 GeV, the mismeasurement background extends

unacceptably beyond MT2 ∼ 200 GeV, and the MT2 selection is tightened to MT2 > 400 GeV.

The second selection uses the observable

∆φ
1,2,3,4
min = Min

(∣∣∣φ 6ET
−φi

∣∣∣)

where φi indicates the φ coordinate of the ith pT jet and φ 6ET
is the φ coordinate of the missing

energy vector. Stated simply, ∆φ
1,2,3,4
min is the smallest angular separation in the transverse plane

of the missing energy vector and any of the four highest pT jets. Close overlap between a jet and

the missing energy vector indicates a high probability that the jet was badly mismeasured, and

that this mismeasurement is the source of 6ET in the event. The selection applied is ∆φ
1,2,3,4
min > 0.3,

where the value is chosen to achieve strong background rejection without too great a loss of

signal efficiency. Only the four highest energy jets are used because the probability of some

jet overlapping the missing energy vector approaches unity as the number of jets increases, so

the selection would nearly always veto high Njet events, and the high Njet bins are sufficiently

background-depleted that aggressive background rejection is not as necessary. The effect of this

selection is depicted in Figure 3.5, after an MT2 selection of only 100 GeV.

The last selection rejects events in which a suspiciously large fraction of the missing

energy comes from very soft objects. The minimum pT for selected jets is 30 GeV. The missing
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energy vector from only selected jets is denoted ~HT/ . The missing energy vector used in the

analysis, ~6ET , uses all PF candidates, including those outside jets or in jets with pT < 30 GeV. If

these two quantities are very different, it means that a large portion of the 6ET in the event was

generated by these low pT objects, a sign that something may have gone wrong in reconstruction.

Specifically, the selection is
∣∣∣ ~HT/ − ~6ET

∣∣∣/ 6ET < 0.5.

Figure 3.4: The distributions in MT2 of the QCD background (filled yellow) and the neutrino
backgrounds (filled blue and green) are stacked and overlaid with an example signal point
(gluino pair production and decay to bottom quarks, in red). Even with other mismeasurement-
suppression selections applied, the mismeasurement background still dominates without MT2 >
200 GeV. Taken from [46].

The residual mismeasurement background is estimated using a procedure called Rebalance

and Smear that was newly implemented for this edition of the classic analysis, and is described in

Section 3.1.5.

Lost Lepton

The lepton veto rejects most events containing neutrinos originating from the decay of

a W boson, W±→ `±ν. However, the lepton is not always successfully reconstructed, usually

because it is a τ that decays hadronically and is mistaken for a meson, and this residual so-called
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Figure 3.5: The distributions in ∆φ
1,2,3,4
min of the QCD background (filled yellow) and the neutrino

backgrounds (filled blue and green) are stacked and overlaid with an example signal point scaled
up by a factor of 5 (bottom squark pair production, in red), with the MT2 selection relaxed to
100 GeV. Note that most QCD lies below the cut value of 0.3. Taken from [46] supplementary
materials.

lost lepton background must be estimated.

A first attempt might be to simulate events containing W bosons, scale the simulation

to the desired luminosity, and count the events in which the lepton is not reconstructed. This

procedure would have reasonable accuracy, but producing accurate simulations is not trivial, and

the result would be subject to an array of systematic errors. Schematically, if NData
LL is the actual

number of lost lepton events in data and NMC
LL is the number predicted by Monte Carlo simulation,

the simulation will mispredict by some factor ε such that NData
LL = εNMC

LL .

It is possible to do better than ε with data driven techniques. In addition to the lost lepton

events, one can also ask the simulation for its prediction of the number of W events in which the

lepton is not lost, single lepton events, NMC
SL , where the lepton is required to be an electron or muon

since τ reconstruction is much more difficult. Every part of this simulation is exactly identical

to the lost lepton simulation, subject to almost the same errors, with the major exception being

the predicted lepton reconstruction efficiency. Call this new error factor δ so that NData
SL = δNMC

SL .
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Then ε/δ = γ is the portion of the misprediction due to the simulation’s imperfect knowledge

of the lepton reconstruction efficiency and a few other more minor uncorrelated effects, a small

portion of the total. The ratio R0`/1`
MC = NMC

LL /NMC
SL is subject only to this relatively small error γ,

since the fully correlated errors cancel. The prediction of NData
LL follows directly,

NData;Est
LL = R0`/1`

MC NData
SL . (3.1)

The input NData
SL is measured in a control region populated by single lepton events observed in

data, in a kinematic region identical to the corresponding lost lepton signal region. The remaining

systematic uncertainty is only about 15% in most signal regions.

Table 3.2: Summary of systematic uncertainties in the lost-lepton background prediction,
together with their typical size ranges across the search bins. (†) In every topological region,
bins along the MT2 axis with insufficient statistics to allow a fully data-driven estimate are
assigned an MT2 shape from simulation, normalized to the integral of the impacted bins in the
data control region. Taken from [63].

Source Range [%]
Limited size of data control samples 5–100
Limited size of MC samples 0–50
e/µ efficiency 0–10
τ efficiency 0–3
b-tagging efficiency 0–3
Jet energy scale 0–5

MT

(
lepton, ~6ET

)
selection efficiency 0–3

MT2 shape uncertainty† 0–40
Renormalization and factorization scale variation 0–5
tt̄bb̄/tt̄ j j weight 0–25

Other uncertainties affecting the lost lepton background prediction are summarized in

Table 3.2, together with their typical size ranges across the search bins. The first two uncertainties

due to limited data control region and Monte Carlo simulation sample sizes are purely statistical.

The remainder are systematic.

The efficiency to reconstruct leptons is, as mentioned, the primary uncertainty of the
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simulation with respect to data, that does not drop out after taking a ratio of lost- and single-lepton

events.

The impact of the τ reconstruction efficiency is smaller, as it is not used in the single

lepton control region, however uncertainty on the rate at which the τ veto fails to reject events

contributes to uncertainty in the expected yield.

The expected transfer factor from the single lepton to lost lepton regions varies slightly

with respect to the binning variables, HT, Njet, Nb−tag, and MT2, and so is recalculated in simulation

for each bin. Since the transfer factor varies, they may be incorrectly estimated if simulation does

not accurately reproduce the b-tagging efficiency and jet energy assignments in real data.

To restrict the single lepton control region to leptons consistent with originating from a

leptonic W decay, the lepton and 6ET system is required to satisfy MT

(
lepton, ~6ET

)
< 100 GeV,

since an on-shell W can never decay to a lepton-neutrino system more massive than this, and

MT ≤M.

The renormalization and factorization scales are generic issues with theoretical calcula-

tions, discussed in Section 2.4.2.

Finally, the tt̄bb̄/tt̄ j j weight is a special systematic assessed to cover an ad hoc procedure

that corrects a particularly severe data-simulation discrepancy affecting the relative rates of bb̄

ISR and light flavor ISR in simulated tt̄ events. This simulation error is not significant for the

majority of CMS analyses, however it is important for analyses like this search that include bins

with large Nb−tag, for which tt̄bb̄ is the only meaningful background.

In closing, it should be noted that while the lost lepton background tends to be subdominant

relative to the Invisible Z background discussed in the next section, it is the largest background in

certain high Njet, high Nb−tag, high HT bins since Z events do not populate these bins efficiently,

while tt̄ pair-production events do, and all tt̄ events contain two W bosons that may decay

leptonically.
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Invisible Z

The Z→ νν background is predicted in a similar fashion to the lost lepton background,

using a control region populated with Z → `+`− events. Again, the leptons are restricted to

pairs of electrons and pairs of muons, since τ reconstruction is much more difficult. Figure 3.6

(right) shows the similarity in the MT2 distributions of simulated Z→ νν events and observed

Z→ `+`− events in which one pretends that the leptons are invisible, demonstrating both that

these events are kinematically very similar as expected, and that the simulation is accurate. The

ratio Rνν/`+`−

MC can be extracted from Monte Carlo simulation, and is dominated by only the lepton

reconstruction efficiency uncertainty. In the Standard Model, this ratio is almost exactly 3, but it

is significantly larger experimentally because it is possible for one of the leptons in Z→ `+`− not

to be well-reconstructed, causing the affected event not to be counted. The value NData
`+`− , unlike

NData
SL , is not trivial to extract, since a non-negligible fraction of double lepton events come from

sources other than a single Z boson, almost always one each from a pair of W bosons. NMC
`+`− and

NData
νν are exclusively Z→ `+`− and Z→ νν events, respectively, and for maximal cancellation

of systematic uncertainties, it is desirable that NData
`+`− be purified to the greatest extent possible.

Fortunately, there is an experimental handle on the contamination. When a Z boson

decays to a lepton pair, the flavor is always identical, either two electrons or two muons. When a

pair of W bosons each decay to a lepton-neutrino pair, their choices of lepton are uncorrelated.

Half the time, the flavors will be identical as for a Z event, and half the time, one W will decay

to a muon and the other to an electron. The first case is the undesired impurity in NData
`+`− , and

events of the second type are used to populated a different-flavor control region used to predict

the impurity, NData
DF . It is nearly sufficient simply to subtract NData

DF from NData
`+`− since the different

flavor and same flavor W events occur at the same rate. However, it is possible that the detector is

slightly more or less efficient at reconstructing events where both leptons are the same flavor than

events in which they are different flavors, so the different flavor count must be scaled slightly to

compensate, by a factor RSF/DF . RSF/DF is measured in data in `+`− events that are kinematically
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Figure 3.6: (Left) The ratio of the number of same flavor to different flavor lepton pairs
in data, RSF/DF , which is a component of the Z → νν background estimate from Z → `+`−

events. (Right) A comparison of the MT2 shape between data Z→ `+`− events and simulated
Z→ νν events. The two processes should be kinematically identical, and the similarity of the
distributions indicates that the Monte Carlo simulation models the processes well. Taken from
[63].

inconsistent with originating from a Z decay, chiefly due to a requirement that the invariant mass

of the lepton pair be at least 20 GeV away from the Z mass. One finds that RSF/OF ≈ 1.06±0.15,

as shown in Figure 3.6 (left). The final prediction is

NData;Est
νν = Rνν/`+`−

MC (NData
`+`−−RSF/OFNData

DF ). (3.2)

Being irreducible, the Z→ νν plus jets background is dominant in the vast majority of bins.

The uncertainties in the Z → νν background prediction are summarized in Table 3.3

together with their typical size ranges across the search bins. Only the uncertainty in RSF/DF is

unique to Z→ νν, while the others are shared with the lost-lepton estimate.
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Table 3.3: Summary of systematic uncertainties in the Z→ νν background prediction, together
with their typical size ranges across the search bins. (†) In every topological region, bins along
the MT2 axis with insufficient statistics to allow a fully data-driven estimate are assigned an MT2
shape from simulation, normalized to the integral of the impacted bins in the data control region.
Take from [63].

Source Range [%]
Limited size of data control samples 5–100
Limited size of MC samples 0–50
Lepton efficiency 0–5
Jet energy scale 0–5
Uncertainty in RSF/DF 0–5
MT2 shape uncertainty† 0–40

Table 3.4: A summary of the baseline event selection for the classic MT2 search. Events are
required to have large HT, no leptons, and significant missing energy unlikely to be the product
of detector mismeasurement or a single undetected particle.

Observable Selection Notes

MT2 > 200 GeV Only for multijet events. Increased to MT2 > 400 GeV for HT > 1500 GeV

to maintain QCD suppression.

pJet1
T > 250 GeV Only for monojet events.

HT > 250 GeV Motivated by available triggers. Background events at lower HT are too

common for these events to be always recorded.
6ET > 250 GeV Relaxed to 6ET > 30 GeV for HT > 1200 GeV. Motivated by available triggers.

∆φ
1,2,3,4
min > 0.3 Auxiliary mismeasurement suppression.∣∣∣ ~HT/ − ~6ET

∣∣∣/6ET < 0.5 Auxiliary mismeasurement suppression.

Nlep = 0 The lepton veto; rejects the majority of W±→ `±ν background.
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3.1.4 Baseline Selection

The properties of these signals and backgrounds motivate the baseline event selection

summarized in Table 3.4. The MT2 selection primarily suppresses the mismeasurement back-

ground, by many orders of magnitude. The ∆φ
1,2,3,4
min and HT/ selections also help to suppress this

background further, until it is smaller than the genuine 6ET backgrounds. The HT and 6ET selections

are chosen primarily so that all of the selected events pass the online trigger. Backgrounds are

so common at HT < 250 GeV, and 6ET < 250 GeV for HT < 1200 GeV, that the experiment is

unable to record all of the events observed, making this part of the parameter space a poor region

to search for a rare signal in any case. The lepton veto rejects most W±→ `±ν events, so that

only events in which the lepton is not reconstructed remain in the signal region, as described in

Section 3.1.3, and serves to narrow the analysis’ focus to the all-hadronic final state as part of

CMS’s larger research program.

In addition to this baseline selection, the analysis bins in MT2, HT, Njet, and Nb−tag to

enhance signal sensitivity as described in Section 3.1.5.

3.1.5 Upgrades in 2019

The classic search has been performed before at 13 TeV, once in 2015 [46] using a 2.3 fb−1

dataset, and again in 2016 [64] using 35.9 fb−1. The update in 2019 uses the full dataset from

2016, 2017, and 2018, totaling 137 fb−1. As the analysis is dominated by statistical uncertainties

in its most sensitive bins, the increased statistical power is the primary improvement in the update.

The update includes two other major upgrades.

The first improves the estimate of the mismeasurement background using a technique

called Rebalance and Smear.

The second leverages the increased statistics to expand the signal region binning, better

targeting signal models with more extreme jet and b-tagged jet multiplicities, and MT2.
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Figure 3.7: The fit of rφ = N
∆φ

1,2,3,4
min >0.3/N

∆φ
1,2,3,4
min <0.3 as a function of MT2 obtained in the 2016

classic search, for the 1000 < HT < 1500 GeV HT band. The fit is performed in events in the
MT2 band 70 < MT2 < 100 GeV and extrapolated to the MT2 > 200 GeV signal region. Black
points represent raw data, while white points represent data after contribution from genuine
6ET backgrounds is subtracted. Taken from [64].

In older versions of the classic search [46, 64], the mismeasurement background estimate

used the ∆φ
1,2,3,4
min observable and extrapolated across MT2. Events at low MT2 and at low ∆φ

1,2,3,4
min

are both dominated by QCD mismeasurement. The suppression effect of MT2 is so strong that even

events at low MT2 and high ∆φ
1,2,3,4
min are QCD dominated. As essentially every low MT2 event is a

QCD event, low MT2 events can be used to measure the ratio rφ of QCD mismeasurement events at
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high and low ∆φ
1,2,3,4
min . High MT2 events with low ∆φ

1,2,3,4
min can then serve as a control region for

estimating the QCD mismeasurement background, N
∆φ

1,2,3,4
min >0.3 = rφN

∆φ
1,2,3,4
min <0.3. Unfortunately,

rφ decreases with increasing MT2, so that instead the dependence must be fit to a power law at

low MT2 and extrapolated to high MT2, as shown in Figure 3.7. This procedure has obvious

potential for statistical errors in the fit, systematic error in extrapolating the fit to high MT2, and

potential non-multijet contamination of the low ∆φ
1,2,3,4
min control region at high MT2, producing

total relative error at least 40% and as large as 180%. Although the impact of these errors on the

overall analysis is controlled by suppressing the mismeasurement background as described in

Section 3.1.3, it is desirable to replace this procedure with a more robust one.

Rebalance and Smear (R&S) achieves the desired improvement. R&S begins with a

sample of multijet events from data with HT on the order of hundreds of GeV and at least two

jets with pT > 10 GeV. This is as nearly unbiased a sample of QCD events as is allowed by

available triggers. These events will generically have some small but nonzero 6ET due to imperfect

measurement of the jet energies, dictated by the detector’s resolution, jets from pileup, very low

energy objects in the event, and potentially a very small contribution from genuine neutrinos

produced in the hadron decay chains inside the jets. The pT values assigned to the jets are then

adjusted, finding the most likely assignment of pT values subject to the hypothesis that the true

6ET is very nearly zero, and that jet mismeasurements of a given size occur with probability given

by jet response templates. As shown in Figure 3.8, large mismeasurements are rare. Thus, the

Rebalancing step tries to get the 6ET as close to zero as feasible without making more improbable

adjustments to the jets than necessary. The output of the Rebalancing step is a large sample of

real QCD events with maximally accurate jet pT assignments.

Then, each of these events goes through a Smearing step. This step randomly assigns a

new pT to each jet in the event according to the same jet response templates. The vast majority of

the time, the new event looks as unremarkable as the original event before Rebalancing. Rarely,

the output event passes the baseline selection and represents a potential mismeasurement event
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Figure 3.8: pT,ptcl is the “particle level” pT, the total energy that the jet’s particle components
actually had, while pT is the energy measured by the detector. The horizontal axis is the ratio
of these two quantities, and the vertical axis the probability that a jet’s measured energy will
differ from its true energy by that ratio. The response curve shown here applies to jets with
particle level pT in the band 97 < pT < 114 GeV, and measured in the CMS barrel. Large
mismeasurements of jet energy are much less probable than small mismeasurements. The core
is well-described by a Gaussian, but the tails are highly non-Gaussian and best described by a
Crystal-Ball function. Taken from [48].

that might lie in the data signal region. The Smearing can be repeated as many times for each

event as is desired, subject to computing limitations. The number of Smeared events falling

into each signal region, from this sample of known equivalent integrated luminosity, can then be

converted into the expected number of events that would fall into the signal region in data, due to

jet mismeasurement.
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Figure 3.9: The Rebalance and Smear jet mismeasurement background estimate is validated
in the ∆φ

1,2,3,4
min < 0.3 control region. The multijet mismeasurement event count predicted by

Rebalance and Smear is shown in yellow, and contributes most of the event counts in this
control region. The combined background estimate (filled histogram) is consistent with the data
observation (black data points). Taken from [63].

Of course, many of the output events will have ∆φ
1,2,3,4
min < 0.3, falling outside of the signal

region into the QCD-dominated low ∆φ
1,2,3,4
min control region. This allows for a validation in data

of the R&S procedure, shown in Figure 3.9. The total background estimate is consistent with

data in the ∆φ
1,2,3,4
min < 0.3 control region across all of the analysis bins, with the R&S estimated

counts contributing most of the predicted events.

R&S achieves a significant improvement over the old rφ based system, effectively elim-

inating statistical error, and improving the worst case relative error on the mismeasurement

estimate from 180% to less than 50%. Systematic uncertainties are summarized in Table 3.5

together with their typical size ranges across the search bins. The sources of these uncertainties

are described either in the text above, or are shared with the uncertainties affecting the genuine

neutrino backgrounds.
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Table 3.5: Summary of systematic uncertainties in the multijet background prediction, together
with their typical size ranges across the search bins. (†) The parameter σsoft

T is the width of
the assumed underlying irreducible 6ET distribution for a multijet event, used as an input to the
Rebalancing step, and so-called because such 6ET is dominated by low energy objects. The
final output is largely independent of the precise choice for this parameter and the shape of the
underlying distribution, but a systematic is assessed to cover any observed variations. Taken
from [63].

Source Range [%]
Jet energy resolution 10–20
Tails of jet response in templates 17–25
σsoft

T modeling† 1–25
Njetmodeling 1–19
Nb−tag modeling 1–16

Expanded Binning

Although the baseline selection defines the class of events in which a signal of interest

may be found, most signals will produce a significant number of events in only a subset of the

phase space. For instance, a signal producing 4 top quarks in the final state (see Figure 3.1 second

row, right) will almost always produce events with Njet ≥ 7, Nb−tag > 0, and HT ∼ 1 TeV. If the

entire set of selected events is considered together, the entire background is combined, potentially

hiding a signal. If instead the phase space is divided into many separate regions, the background

in each region is smaller, so that the background count is as small as possible in the small subset

of regions that any given signal actually populates. This sensitivity enhancement motivates very

fine binning of the signal region. The classic search uses MT2, HT, Njet, and Nb−tag as binning

variables.

In the 2016 version of the classic search [64], the most extreme Njet bin was Njet ≥ 7, and

the most extreme Nb−tag bin was Nb−tag ≥ 3. This limitation was imposed by limited statistics.

The background estimate for each bin is performed separately, and the observed counts are subject

to Poisson statistical fluctuations. Binning too finely causes any potential sensitivity gains from

better isolating signal to be lost to greater uncertainty in the expected background. The analysis

binning was updated for the latest edition of the classic search [63], anticipating the improved
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statistical power. The full set of new bins, along with the predicted background counts and

observed event counts in data, is available in Appendix A.

The new binning extends the old binning in three ways. First, new Njet ≥ 10 bins were

added to the HT > 1200 GeV regions. This allows for enhanced sensitivity to signals with

extremely high jet multiplicity, such as the 4 top signal previously mentioned. Similarly, new

Nb−tag ≥ 4 bins were added to these same regions, targeting the same signal. Sensitivity to some

mass points of this signal model roughly doubled due to the addition of these bins, which have

negligible background but appreciable signal counts. Finally, MT2 binning was generally made

narrower and the last bin moved to larger MT2 values, for all signal regions, until the expected

background in the last bin was on the order of 1 event. In all, there are 282 classic search bins,

enhancing sensitivity to a broad array of potential signal models.

3.1.6 Signal Contamination

The data driven estimate procedures for the neutrino backgrounds use control regions

defined using leptons. Signals capable of producing leptons can contaminate these control regions,

increasing the observed control region counts above the actual Standard Model production rate.

This leads directly to an overprediction of background. For instance, consider stop pair production

followed by decay to tops, as shown in Figure 3.1 (row 3, right). Both tops will decay to a W and

a bottom quark. If one of the W bosons decays leptonically and the lepton is reconstructed, the

event will likely enter the single lepton control region. The lost lepton background, described in

Section 3.1.3, will be overpredicted,

NData;Est
LL = R0`/1`

MC NData
SL = R0`/1`

MC

(
NData;SM

SL +NData;Sig
SL

)
. (3.3)

The background overprediction is ∆N = R0`/1`
MC NData;Sig

SL . For analysis purposes, the overprediction

is modeled in simulation and treated as a reduction of the expected signal counts in every affected
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bin.

NSig;Adjusted
SR = NSig;Raw

SR −∆N (3.4)

This adjustment has the nice property that all terms are linear in the signal strength, so that it

does not need to be recalculated for every signal strength considered when performing statistical

analysis of the results. The same fraction of the signal is lost at every signal strength.

As a result of this loss of sensitivity due to signal contamination, the classic analysis is

less effective, all things equal, when used to search for signals that sometimes produce leptons

than the naive expectation based on the leptonic versus hadronic branching ratios. This is an

inevitable consequence of performing an all-hadronic search.

3.1.7 Results

The full set of results for every classic search signal region, including every background

prediction and the observed count, are available in Appendix A. The full set of results integrating

over the MT2 binning are display in Figure 3.10 (upper), and the results including the MT2 binning

for the 575 < HT < 1200 GeV bins, the largest set, are shown in Figure 3.10 (lower). The

observed counts are consistent with the background-only hypothesis, and the results are used to

set exclusion limits at 95% confidence level on the signals discussed in Section 3.1.2.

3.1.8 Limits

The CLS statistical analysis procedure applied in this analysis is described in [57]. It begins

with maximum likelihood fits to the background-only and signal-plus-background hypotheses, for

each signal model, considering each mass point separately. The likelihoods are products of Poisson

probabilities for each signal region bin, with log-normal constraint terms for each systematic

affecting the predicted counts. Correlation between uncertainties affecting different bins are fully

accounted for. As stated in the previous section, the background-only hypothesis is consistent
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Figure 3.10: Comparison of predicted background and observed data events in the classic search
(upper) integrated over MT2 and (lower) for each of the medium HT search regions. Taken from
[63].

with the observation. So, the parameter of interest for each signal model is the maximum signal

cross section that can be excluded with 95% confidence level. That is, the maximum possible

92



production rate that the signal model could have, without requiring a combination of background

and signal fluctuations more improbable than 1 in 20 to be consistent with the data. If the

production cross section excluded at 95% CL is less than the theoretical cross section for a given

signal model, that signal model is said to be excluded at 95% CL.

The simplified supersymmetric extensions to the Standard Model shown in Figure 3.1

have only two free parameters, the mass of the pair-produced superpartner, and the mass of the

lightest supersymmetric particle, the dark matter candidate χ̃0
1. Plotting the gluino or squark

mass on the horizontal axis and the mass of χ̃0
1 on the vertical axis, then marking the mass points

excluded at exactly 95% CL, produces the exclusion curves shown in Figures 3.11–3.14. Points

to the lower left of these curves are excluded, while points above and to the right are not, as they

require fluctuations no more improbable than 1 in 20 to be consistent with present data.

The CMS dataset was collected only once, and this dataset is subject to fluctuations.

The multiple exclusion curves shown on each plot, some in red and some in black, provide an

indication of how unusual the limits generated by this dataset were. Suppose that the background’s

expected event count in a given region, summing across this entire dataset, is B. It is clearly

possible that the actual number of background events that occur in the dataset in this bin could be

around B+
√

B, or B−
√

B. In the first case, the analysis will draw unexpectedly weak limits on

signals that populate this bin, as the additional background appears consistent with signal. In the

second case, the analysis will draw unexpectedly strong limits on signals that populate this bin,

as there are not even enough events to cover the expected background count.

The curves shown in red are the median, 1 standard deviation, and 2 standard deviation

expected exclusion curves, in the background-only hypothesis. Together, these indicate the typical

range of exclusion curves across many imaginary CMS datasets in which there is no signal to

find. The curves in black are those that were observed in the CMS dataset as actually recorded.

When the black observed curves extend out beyond the red expected curves, the analysis likely

benefited from a downward fluctuation of background. In cases where the observed curves swing
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inward compared to the expected curves, the analysis may have experienced an analogous unlucky

upward fluctuation of background that mimicked a small signal, or alternatively there may be a

genuine small signal lurking in the data that is resisting exclusion!

The general shape of the curves is set by a combination of the falling cross section with

increasing gluino or squark mass shown in Figure 1.12, and a loss of signal efficiency and signal

versus background discriminatory power when the mass splitting between the gluino or squark

and χ̃0
1 is small. On the lower right hand side of the plots lie signals that produce spectacular,

energetic events, but at a very low rate due to the large mass of the gluino and squark, and

accordingly small pair-production cross section. Moving up along the χ̃0
1 mass axis towards

the upper right, the events remain spectacular, so the exclusion curves remain roughly vertical,

limited only by the production cross section. Eventually, the mass splitting becomes small enough

that the loss of signal efficiency and signal versus background discriminatory power becomes

significant, and the exclusion curve turns to the left, towards lower mass squarks or gluinos

and higher production rates. Decreasing the gluino or squark mass at fixed χ̃0
1 mass reduces the

mass splitting, so the curve generally must also drop down somewhat along the χ̃0
1 mass axis to

maintain a reasonable splitting. Eventually, the curve intercepts the M
χ̃0

1
= Mg̃ or M

χ̃0
1
= Mq̃ line.

At this mass and below, all points are excluded even in the limit of zero mass splitting.

Figure 3.11 shows the exclusion curves for gluino pair production and decay to light

quarks (upper), light quarks and the Z boson (lower left), and light quarks and the W boson (lower

right). Figure 3.12 shows the exclusion curves for gluino pair production and decay to bottom

(left) and top (right) quarks.

Figure 3.13 shows the exclusion curves for pair production of light-flavor squarks (upper

left), bottom squarks (upper right), and top squarks in which the top squark decays to a top quark

(lower). The light-flavor figure contains two curves, one which assumes that there is only a single

low mass light flavor squark, and another that assumes that there are eight light flavor squarks of

(approximately) degenerate mass, which implies a production cross section eight times larger.
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Figure 3.11: Exclusion limits at 95% CL for gluino pair production and decay to a pair of light
quark jets and (upper) χ̃0

1, (lower left) a democratic split between χ̃0
1, χ̃0

2, which then decays to a
Z boson and χ̃0

1, and χ̃±, which decays to a W boson and χ̃0
1, and (lower right) χ̃± then W and

χ̃0
1 with 100% branching fraction. Taken from [63].
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Figure 3.12: Exclusion limits at 95% CL for gluino pair production and decay to (left) bottom
quarks and (right) top quarks. Taken from [63].

The other top squark decay modes, in which the top decays to (upper left) a bottom quark and χ̃±,

which subsequently decays to a W boson and χ̃0
1, (lower) a charm and χ̃0

1, and (upper right) either

χ̃± and a bottom quark or χ̃0
1 and a top quark, are shown in Figure 3.14. The charm decay channel

is only shown for signal models with small mass splittings, as the top squark would strictly prefer

to decay to a top quark and χ̃0
1 than to a charm quark and χ̃0

1 if kinematically allowed.

Figure 3.15 shows limits placed on the mono-φ model. Here, the horizontal axis is the

mass of the singly-produced scalar φ, and the vertical axis the mass of the invisible fermion ψ. A

star indicates the mass point proposed by the original authors in [14] as most phenomenologically

interesting, which is not yet excluded. It is worth emphasizing that the background model is

nevertheless consistent with data; this signal is simply very difficult to exclude with the MT2

analysis methodology. To save computing resources, the mono-φ model is only simulated in the

phenomenologically interesting subset of the mass plane, similarly to the top squark to charm

model in Figure 3.14 (lower), hence the large white space beneath the considered range of masses.

Figure 3.16 shows limits for leptoquarks decaying to (upper left) a light flavor quark and

neutrino, (upper right) a bottom quark and neutrino, and (lower) a top quark and neutrino. As
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Figure 3.13: Exclusion limit at 95% CL for (upper left) light-flavor squark pair production,
(upper right) bottom squark pair production, and (lower) top squark pair production. Taken from
[63].
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Figure 3.14: Exclusion limits at 95% CL for top squark pair production and decay to (upper
left) a bottom quark and χ̃±, which subsequently decays to a W boson and χ̃0

1, (upper right)
either a bottom quark and χ̃± or top quark and χ̃0

1, or (lower) a charm quark and χ̃0
1. Taken from

[63].
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arXiv:1707.05783, arXiv:1712.04939 

Figure 3.15: Exclusion limit at 95% CL for the mono-φ model. Only the portion of the mass
plane of phenomenological interest was simulated. The star indicates the original authors’
proposed best fit mass point, which remains unexcluded. Taken from [63].

the mass of the neutrinos, in contrast to the mass of χ̃0
1, are known to be approximately zero, the

leptoquark limits are one dimensional, in the leptoquark masses.

The limits produced by this edition of the classic search improve upon the limits set by

the previous edition [64] by hundreds of GeV, and in most cases are the strongest constraints on

their respective signal models yet produced by any experiment.

3.1.9 Future of the Classic MT2 Search

The current limits produced by the classic MT2 search are impressive, and are unlikely to

improve much in the near future. The pair production cross section for squarks and gluinos drops

rapidly with mass, as shown in Figure 1.12. Generically, a factor of 10 improvement in sensitivity

is necessary to push the exclusion limits outward by around 500 GeV along the horizontal axis.

At this mature statistical stage, a factor of 10 improvement in sensitivity requires a factor of 100

increase in the integrated luminosity, unfeasible in the near future. Improvement along the χ̃0
1 axis

is similarly difficult due to large backgrounds and low signal efficiency for models with small
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Figure 3.16: Upper limits at 95% CL on the leptoquark production cross sections as a function
of leptoquark mass. Unlike the limits on supersymmetric models, in which the mass of χ̃0

1 is
a free parameter, the limits on leptoquarks are 1-dimensional in the leptoquark mass since the
neutrino masses are known to be approximately zero. Taken from [63].
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mass splittings. Therefore, attention in the near future will turn to other new techniques, one of

which is discussed in the next section.

3.2 Disappearing Tracks Search

3.2.1 General Description

As searches like that discussed in the previous section approach the practical limits of their

sensitivities at the LHC, interest has grown in targeting plausible signals with peculiar features

that more standard searches do not exploit. Among these features are those produced by relatively

long-lived particles (LLPs) that do not decay promptly at the collision point, but instead travel a

macroscopic distance into the detector before decaying. An overview of some possibilities in the

context of supersymmetry is provided in [53].

One of these signatures is a disappearing track, produced when a charged particle, such

as χ̃±, travels into the tracker, then decays to an invisible particle, such as χ̃0
1, with a mass so

nearly equal to that of the decaying charged particle that the visible products of the decay are

too low energy to be reconstructed. The supersymmetric parameter space is vast and there is no

way to know which if any version of supersymmetry is realized in nature, but models including

LLPs that would produce disappearing tracks at CMS have been argued to be especially plausible

on theoretical grounds [41, 56, 18]. The MT2 analysis is already well-optimized for all-hadronic

supersymmetry, so it is natural to search for all-hadronic decays of these models by extending

it with a disappearing track search. This extension begins with exactly the same set of selected

events as the classic search, and then further selects the subset of events possessing a disappearing

track.
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3.2.2 Challenges

The disappearing tracks search must confront a pair of significant challenges.

First, the background (see Section 3.2.4) entirely consists of events in which reconstruction

failed, analogous to the classic search’s detector mismeasurement background that was discussed

in Section 3.1.3, and is difficult to understand and estimate for many of the same reasons.

Simulation cannot be trusted to account for all of the detector details that lead to extremely rare

reconstruction errors. While the classic search can mitigate the impact of this issue with selections

that make the mismeasurement background subdominant compared to the better understood

neutrino backgrounds, this is not possible for the disappearing track search since no such genuine

background exists. Moreover, since the background is dependent on details of the detector, it

is strongly affected when these details change. Most prominently, the CMS pixel detector was

entirely replaced between the 2016 and 2017 data taking periods [60], and this profoundly affected

CMS track reconstruction, to the extent that the disappearing track search must treat the 2016 data

entirely separately from the 2017 and 2018 data. The detector’s state also evolves more subtly

over the data taking period, due in large part to inevitable radiation damage, and the analysis must

track, study, and account for the effect of this evolution on the occurrence of disappearing tracks.

Second, disappearing tracks are extremely rare. This is of course one of the motivations for

the disappearing tracks extension—they are a powerful tool to discriminate between background

and likely signal events—but it also makes them difficult to study.

Nevertheless, the disappearing tracks search produced a data-driven background estima-

tion procedure, described in Section 3.2.5, that was successfully validated in data, and achieved

the best sensitivity to disappearing tracks in supersymmetric models to date.
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Figure 3.17: The rest frame lifetime of χ̃± as a function of the χ̃±-χ̃0
1 mass splitting. The

lifetime is macroscopic for mass splittings less than 1 GeV in a broad class of supersymmetric
models, a regime that is realized when the superpartner mass scale is much larger than the
Standard Model mass scale. This mass splitting is so small that the charged daughter of χ̃±

decay is too low energy for track reconstruction. Thus, χ̃± lives long enough to produce a short
track in the CMS tracker, then disappears when it decays to χ̃0

1 and a lost charged daughter. For
mass splittings less than Mπ ≈ 140 MeV, indicated on the plot, the lifetime of χ̃± is so long that
it typically does not decay inside the tracker. As a result, the sweet spot for the disappearing
tracks search is mass splittings on the order of hundreds of MeV. The discontinuity at a mass
splitting of 1.4 GeV is not physical. Taken from [18].
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3.2.3 Signal Models

For the class of supersymmetric models discussed in [56] & [18], the relative mass splitting

of χ̃± and χ̃0
1 is proportional to (MW/µ)4, where µ is a parameter that roughly represents the

energy scale of supersymmetry. Non-observation of superpartners thus far at the LHC suggests

that µ is probably large, on the order of TeV, implying (MW/µ)4 < 10−4. Such a tiny mass

splitting leads to a remarkably long χ̃± lifetime, shown in Figure 3.17.
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Figure 3.18: Diagrams for (left) gluino, (center) light-flavor squark, and (right) top squark pair
production, in which the gluinos and squarks can decay via a long-lived χ̃±. In this analysis, the
gluino is taken to decay with branching fraction 1

3 each to the χ̃0
1, χ̃

−
1 , and χ̃

+
1 . Squarks decay

with branching fraction 1
2 each to the χ̃0

1 and the χ̃± allowed by charge conservation. The χ̃±

mass is greater than the χ̃0
1 mass by hundreds of MeV, so that the charged product of the χ̃±

decay is too soft to be detected. Taken from [63].

Motivated by these models, the disappearing track search considers signals that include

an intermediate χ̃± in the superpartner decay chain, similar to the models in Figure 3.1 (upper

right, lower left, and lower center) considered by the inclusive search. The χ̃± is taken to be

long-lived, only hundreds of MeV more massive than χ̃0
1. Specifically, the rest frame χ̃± lifetime,

τ0, is varied from cτ0 = 1 cm to cτ0 = 2000 cm. This range of lifetimes is selected because the

CMS tracker extends from r ≈ 10 cm to r ≈ 100 cm, and a significant fraction of χ̃± decays must

occur inside the tracker for the disappearing track search to have meaningful sensitivity. If the

decay occurs outside the tracker, the track does not disappear. The full set of models considered

is shown in Figure 3.18.

In the model at left, gluinos are pair-produced and decay with equal probability either to

χ̃
+
1 , χ̃

−
1 , or χ̃0

1, and light-flavor quarks.
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In the central model, light flavor squarks are pair-produced and decay with equal probabil-

ity either to the allowed charge of χ̃±, or to χ̃0
1, and a light-flavor quark.

In the model at right, top squarks are pair-produced and decay with equal probability

either to the allowed charge of χ̃±, or to χ̃0
1, and a bottom quark.
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Figure 3.19: Disappearing tracks produced by χ̃± decays (black triangles) tend to be much more
isolated than disappearing tracks in background events (red squares). All selections listed in
Table 3.6 are applied except the isolation selections. The last bin is an overflow bin, containing
every track failing the relative isolation selection. The events containing those tracks will either
populate control regions, or be rejected entirely, as described in Section 3.2.5. Additional
material from [63].

The disappearing tracks produced by χ̃± decays tend to be very high quality and highly

isolated (shown in comparison with background in Figure 3.19), with negligible energy deposits

in any of the calorimeter cells along the track’s extrapolated path. The quality metrics in this

context include the track’s impact parameter with respect to the primary vertex, the size of the

uncertainty in the track’s assigned pT, and the number of tracker layers in which the track failed to
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leave a hit when one would be expected. Alongside isolation, shown in Figure 3.19, these quality

metrics allow for signal-like disappearing tracks to be distinguished from disappearing tracks

that are very likely to be due to a reconstruction error. This forms the basis of the background

estimate described in Section 3.2.5.

3.2.4 Backgrounds

In contrast to the classic search, there are no irreducible disappearing track backgrounds

produced by the Standard Model. However, there are a number of detector reconstruction issues

that can lead to apparent disappearing tracks, many of which can be greatly or even entirely

rejected by various cleaning selections.

Of the near-entirely reducible backgrounds, the largest before cleaning is that produced by

electrons undergoing unusually strong bremsstrahlung inside the tracker, effectively converting

the electron into a photon. While electrons are charged and therefore produce tracks, photons

are neutral and do not. So, these tracks disappear, but can normally be rejected due to large

photon energy deposits in the electromagnetic calorimeter cells to which the track extrapolates.

However, some ECAL cells do not perform well for a variety of reasons and may fail to register

the photon energy deposits, and so fail to veto the disappearing track. Fortunately, the majority of

the ECAL performs well enough to make this background significant only for tracks extrapolating

to defective cells.

Defective cells are mapped and vetoed using a tag-and-probe strategy, in which a PF

electron “tag” identifies potential Z→ e+e− events, and a disappearing track of opposite charge

serves as the “probe.” If an event contains exactly one PF electron, the event is searched for a

disappearing track of opposite charge, under the hypothesis that the event was in fact Z→ e+e−

and the second electron was not successfully reconstructed due to the conversion process described

above. If such a track is found and the invariant mass of the electron-disappearing track pair is

consistent with the mass of the Z boson, the region of the ECAL to which the disappearing track

106



extrapolated is deemed faulty. Z→ e+e− events are sufficiently common that the map of faulty

ECAL cells can be assembled as a function of time. As expected, the performance of the ECAL

steadily degrades over time, so that the fraction of the ECAL that must be vetoed increases from

2016 to 2017 to 2018. This veto essentially entirely rejects the electron conversion background,

but at a price. It is the single largest cause of signal inefficiency, as 15-20% of signal disappearing

tracks point, by chance, into vetoed regions of the ECAL.

Another, much smaller reducible background is produced by the decay of strange baryons,

including the Ξ±, Σ±, and Ω±. These baryons have lifetimes in the proper range to produce tracks

10s of centimeters long, before decaying with a small mass splitting to a neutral baryon and a

charged daughter that is sometimes low enough pT to escape reconstruction. While these tracks

disappear from the perspective of the tracker and the ECAL, the neutral baryon is still detectable

in the hadronic calorimeter via its nuclear interactions, which allows for efficient rejection of

this background. Additionally, strange baryons are almost always found inside jets, so the vast

majority of their tracks can be vetoed on the basis of isolation. Even so, a region of the HCAL

with known performance issues in 2018 showed significantly increased disappearing track counts

that required it to be vetoed, likely in part because of this background.

The final two backgrounds are fake tracks and mesons, mostly pions, that undergo nuclear

interactions in the tracker, neither of which can be entirely rejected.

Fake tracks are tracks comprised of hits that are not all associated to the same genuine

particle. The probability that track reconstruction produces a fake track is small, and can be

suppressed by requiring that tracks pass a sophisticated selection called high purity, as shown

in Figure 2.5 for the 2016 tracker [33], which improved after the pixel tracker upgrade between

2016 and 2017 [73] as shown in Figure 2.8 (right). Furthermore, the probability that more than

3 or 4 unassociated hits will be strung together into a track is negligible, limiting the fake track

background to very short tracks. It is also rare for unassociated hits to lie on a tight, relatively

straight line; instead, they tend to be somewhat scattered. Therefore, fake tracks also tend to
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assigned low pT, since low energy track have greater curvature in the detector’s magnetic field.

The disappearing tracks analysis considers only tracks with pT > 15 GeV in part to avoid the

majority of the fake track background, and divides tracks into low and high pT bins partly in

order to maintain a relatively fake-free high pT region.

While the fake track background is limited to shorter tracks, the meson background is

not and so constitutes the dominant longer disappearing track background. This background is

generated when a meson undergoes a nuclear interaction inside the tracker, and showers in such a

way that no single charged daughter is high enough energy to be reconstructed as a track, and

any neutral products are sufficiently low energy or widely scattered that calorimeter deposits

are insufficient to reject the track. While it is merely unusual for a meson to undergo a nuclear

interaction in the tracker as shown in Figure 2.11, a shower leaving no detectable products is

extraordinarily rare, occurring only a handful of times across three years of data taking. Mesons

tend not to be isolated, allowing most of this background to be distinguished from signal-like

tracks, but with one major exception. The τ lepton, almost always isolated when produced in the

hard interaction, undergoes the decay τ±→ h±ν for some meson h±, almost always a π±, with

probability approximately 11.5% [74]. In this decay, the π± effectively inherits the isolation of

the τ. If this π± undergoes the rare shower described above, it produces an isolated disappearing

track of potentially significant length, scarcely distinguishable from a signal track. For this reason,

observation of even a relatively long, isolated, maximally signal-like disappearing track is not

itself sufficient to discover a signal. An estimate of the background’s rate is necessary, to allow a

comparison to the observed frequency of disappearing tracks.

3.2.5 The Short Track Selection and Data-Driven Background Estimate

The two surviving disappearing track backgrounds, fake tracks and lost pions, are both

produced by extremely rare failure modes of the detector. A data-driven background estimate is

mandatory, as replicating such pathological edge cases is beyond the capabilities of any feasible
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simulation. This requires definition of signal-depleted control regions that can be used to measure

the rate at which known physics processes produce disappearing tracks. As discussed with respect

to the classic search’s mismeasurement background in Sections 3.1.3 & 3.1.5, events with low

MT2 are extremely background dominated. Low MT2 events compose one such control region.

This dependence on MT2 to define a signal-depleted control region restricts the disappearing track

search to multijet events, as no comparably powerful discriminant is known for monojet events.

In high MT2 events, properties of the disappearing tracks themselves are used to divide events

with signal-like disappearing tracks, called Short Tracks (ST), and background-like disappearing

tracks, called Short Track Candidates (STCs), into ST signal regions and STC control regions.

The ST and STC selections are summarized in Table 3.6. Signal disappearing tracks pass this

selection in simulation with efficiency between 50% and 65%, while only around 1 in 1000 to 1

in 10,000 background events passing the baseline selection of the MT2 analysis possess a track

passing the ST selection. The STC selection is not maximally background-like; rather, it selects

tracks that nearly pass the ST selection, but are not STs. Instead, these tracks pass only a relaxed

version of the ST selection. This choice ensures that STCs are as closely linked to STs produced

by background as possible, without including a significant amount of true signal tracks. Only a

few per cent of signal tracks are selected as STCs, usually due to an unlucky overlap with a jet

causing a high isolation value as shown in Figure 3.19, but STCs are a few times more common

in background events than STs.

The selections relaxed for STCs with respect to the ST definition can be grouped into

two categories, those concerned with track quality, which are loosened by a factor of 3, and with

isolation, which are loosened by a factor of 6. The specific track quality selections affected are the

impact parameter, both along the beam axis and in the transverse plane, and the pT error σ(pT).

All isolation selections are loosened.

The efficiency for signal tracks to pass this selection is high, 50–65%, as shown in

Figure 3.20.
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Table 3.6: Selection requirements for STs and STCs. Some requirements differ for tracks of
different lengths; the length categories are described in Section 3.2.5. For the subset of medium
(M) length tracks that have just four tracking layers with a measurement, the minimum required
number of layers of the pixel tracking detector with a measurement is three (†). The selected
tracks are required not to overlap with any identified electrons or muons, of any quality. The
selected tracks are as well required to not be identified as PF candidates, and not to overlap with
other tracks with pT > 15GeV, even if those tracks are not associated to PF candidates. The
table also reports the factor by which a selection is relaxed to define STCs, when applicable. If
no factor is reported, the requirement is not relaxed for the selection of short track candidates.

Observable Selection Track length STC factor
pT [GeV] > 15 All
|η| < 2.4 & not 1.38 < |η|< 1.6 All
σ(pT) / p2

T [GeV−1] < 0.2; < 0.02; < 0.005 P; M; L ×3
dxy (from primary vertex) [cm] < 0.02 ( < 0.01 ) P ( M, L ) ×3
dz (from primary vertex) [cm] < 0.05 All ×3
Neutral isolation (∆R < 0.05) [GeV] < 10 All ×6
Neutral isolation / pT < 0.1 All ×6
Isolation (∆R < 0.3) [GeV] < 10 All ×6
Isolation / pT < 0.2 All ×6
Number of pixel layers ≥ 3 ( ≥ 2 ) P, M† ( M, L )
Number of tracker layers ≥ 3; < 7; ≥ 7 P; M; L
Number of lost inner hits = 0 All
Number of lost outer hits ≥ 2 M, L
Is a PF candidate? No All
PF lepton veto (∆R < 0.1) Yes All
Lepton veto (∆R < 0.2) Yes All
Track veto (∆R < 0.1) Yes All
Bad calorimeter module veto Yes All
MT (track, ~6ET ) [GeV] > 100, if pT < 150GeV L
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Figure 3.20: The signal efficiency with respect to the full short track selection after selecting
events passing the baseline kinematic signal region selection. Additional material from [63].

Binning

The background for shorter disappearing tracks is dominated by fakes, while the back-

ground for longer disappearing tracks is dominated by lost pions. Additionally, signals with

different LLP lifetimes produce tracks of different lengths. Thus, binning the signal region

by track length allows backgrounds of different origins to be segregated in different bins, and

maximizes sensitivity to a variety of signal lifetimes. The disappearing track search adopts 3

categories of tracks length.

• Pixel-only (P) tracks have hits only inside the pixel tracker. Fakes dominate the background.

In 2017 and 2018 data, these tracks are further subdivided into pixel tracks with hits in 3

distinct layers (P3) and pixel tracks with hits in 4 distinct layers (P4).

• Medium length (M) tracks have hits in fewer than 7 distinct layers, but have at least one hit
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outside the pixel detector. Lost mesons dominate the background.

• Relatively long (L) tracks have hits in 7 or more distinct layers, but still disappear, having

missing expected hits in at least the two outermost layers of the tracker. Lost mesons

dominate the background, and the better opportunity to measure the track allows for an

especially tight selection, allowing for extremely strong background suppression.

Additionally, P and M tracks are divided into tracks with 15 < pT < 50 GeV (“lo”) and tracks

with pT ≥ 50 GeV (“hi”). Most background falls into the low pT bins, and signals generically

populate the high pT bins, making the high pT bins the drivers of sensitivity to most signals.

This division is not adopted for L tracks, as statistics are too low to allow further division of that

population of tracks.

Finally, events are binned based on the global event kinematics, using Njet and HT, again

partly to segregate backgrounds produced by different signals and partly to enhance sensitivity to a

variety of signal models. The Njet bins are 2 < Njet ≤ 3 (denoted by a trailing L, targeted at squark

production), and Njet > 4 (H, targeted at gluino production). The HT bins are 250<HT < 575 GeV

(denoted by a leading “L”), 575≤HT < 1200 GeV (“M”), and HT ≥ 1200 GeV (“H”). For events

with L length tracks, the L and M HT bins are merged into “LM” to preserve statistics.

For example, the “L HLM” region is populated by events with L length tracks, with

Njet ≥ 4 and HT ≥ 1200 GeV. The “M LM lo” region is populated by events with M length tracks

of 15 < pT < 50 GeV, with 2Njet ≤ 3 and 250 < HT < 575 GeV.

The STC control region binning mirrors the ST signal region, with each STC bin mapping

to a corresponding ST bin.
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Short Track Candidates and fshort

The background estimation procedure makes use of the ratio of the counts of STs and

STCs, called fshort,

fshort =
NST

NSTC
. (3.5)

This ratio is measured in events with 60 < MT2 < 100 GeV, as these events are so background-

dominated that even STs are assuredly background-dominated. A separate fshort is measured for

every bin, except that the measurement is inclusive in HT, exploiting an empirical invariance of

fshort with respect to HT to improve the statistical precision of the measurement. The ratio is then

applied at high MT2 to estimate the number of signal-like STs produced by background, NB
ST,

using the number of STC events observed in the corresponding control region, NObs
STC,

NB
ST = fshortNObs

STC. (3.6)

This estimate is correct up to statistical fluctuations, subject to the assumption that fshort is

invariant with respect to MT2, an assumption which is validated in data in the next subsection.

Even without this explicit validation, there is no reason to expect that a ratio based on track-level

observables, namely the impact parameter, pT error, and isolation, ought to be sensitive to a global

event kinematic variable like MT2. By tethering the background estimate to the observed count of

STCs in data, the analysis is able to remain agnostic of the details of background disappearing

track production.

Validation

The fshort-based estimate of background ST production relies on the invariance of fshort

with respect to MT2. The fshort ratio is measured at 60<MT2 < 100 GeV, a background-dominated

region, and applied in the MT2 > 200 GeV signal region. In Figure 3.21, the invariance of fshort

with respect to MT2 is validated in the intermediate region, 100 < MT2 < 200 GeV, in both 2016
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Figure 3.21: Validation of the disappearing tracks background estimate in (upper) 2016 and
(lower) 2017–2018 data. There are no discrepancies inconsistent with statistical fluctuations. To
be conservative, a systematic uncertainty (gray) is assessed region-by-region to account for any
discrepancy greater than 1 statistical standard deviation (blue). Dotted vertical lines group bins
that use the same measured value of fshort, because they differ only in HT. Taken from [63].

and 2017–2018 data, by carrying out the background estimation procedure as used for the signal

region in this MT2 sideband. There are no discrepancies inconsistent with statistical fluctuations,
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so the estimate is considered validated. To be conservative, a systematic uncertainty is assessed

bin-by-bin that is no less than the statistical uncertainty, to prevent any cases of accidental closure,

and as large as is necessary to cover any observed discrepancy larger than 1 standard deviation of

statistical uncertainty.

3.2.6 Systematics

Table 3.7: Summary of systematic uncertainties in the disappearing track background prediction,
together with their typical size ranges across the search bins. The systematic uncertainties arising
from the assumption of kinematic invariance of fshort and from the validation of the background
prediction are always taken to be at least as large as the statistical uncertainties on the measured
values of fshort and on the background prediction in the validation region, respectively. Taken
from [63].

Source Range [%]
Limited size of data control samples (high MT2 STC counts) 1–100
Limited size of data fshort measurement samples (low MT2 disappearing track counts) 5–45
Kinematic invariance of fshort 10–80
Validation of background prediction 25–75

The uncertainties uniquely affecting the disappearing tracks the background prediction, in

addition to those obtained from the validation region, are summarized in Table 3.7 together with

their typical size ranges across the search bins.

The first two uncertainties are purely statistical and dominate the total uncertainty.

The kinematic invariance of fshort is checked by varying the HT and 6ET definitions of

the fshort measurement region. Any uncertainty greater than 1 statistical standard deviation is

covered by applying a systematic, just as for the validation region systematic. Although the

relative uncertainties thus assessed can be large, this is an artifact of extremely low statistics.

Discrepancies easily consistent within 2 statistical standard deviations can nonetheless lead to

assessment of a large relative systematic uncertainty. Still, these uncertainties are applied to

ensure that the disappearing tracks search is conservative.

As for the classic search, the disappearing tracks signal simulation is subject to extra
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uncertainties, all of which are shared except the uncertainties assessed to cover the reconstruction

of signal disappearing tracks, produced by decaying χ̃±. There are three such uncertainties.

First, fast simulation is used for signals simulated in 2017 and 2018 conditions. The

selection efficiency for signal tracks in fast simulation differs slightly from full simulation, and so

a systematic is assessed to cover the difference.

A 10% uncertainty is assessed to cover any potential mismodeling of how efficiently the

detector would reconstruct tracks from a long-lived χ̃±. This is half the difference between unity

and the observed efficiency in simulation, for χ̃± decays in the regions of the detector that ought

to be able to reconstruct the tracks successfully.

Finally, an uncertainty of 1.5% is assessed to cover observed differences between full

simulation and fast simulation in how often a χ̃± that reaches the muon chamber is falsely

reconstructed as a muon, triggering the lepton veto.

3.2.7 Results

Figure 3.22 shows the observed counts compared with the background estimate for both

2016 and 2017–2018 data, and corresponding tables are available in Appendix B. It is worth

noting how small the expected background is, especially in the high pT M and L bins, in which

only a few events are observed across the entire 13 TeV dataset recorded from 2016 to 2018, at

an event rate on the order of 1 GHz. The background-only hypothesis is consistent with the data,

and so these results are interpreted as exclusion limits on the signal models shown in Figure 3.18

with a variety of lifetimes. Since counts in the M and L bins are so small, signals populating the

M and L bins need only to have a few expected events to be excluded at 95% CL by these results.

Signal Contamination

As with the contamination of lepton control regions in the classic search (Section 3.1.6),

the disappearing tracks search must adjust its expected signal counts for contamination of its con-
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Figure 3.22: Taken from [63]

trol regions. In this case, there is some additional complexity because the signal can contaminate

the background estimate by multiple routes. Any signal tracks in the fshort measurement region

at low MT2 can bias the measurement of fshort, and signal STCs in the high MT2 STC control

regions can bias the application of fshort. We can separate these two factors to express the effect
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of contamination bias schematically as,

NEst
ST +NBias

Signal = ( fshort +∆ fshort)(NSTC +∆NSTC)

= fshortNSTC + fshort∆NSTC +∆ fshortNSTC +∆ fshort∆NSTC (3.7)

The bias is not linear in the signal strength, due both to the manifestly nonlinear final term,

∆ fshort∆NSTC, and to the hidden nonlinearity in ∆ fshort,

fshort +∆ fshort =
NB

ST +NS
ST

NB
STC +NS

STC
(3.8)

(Recall that these quantities are measured in the 60 < MT2 < 100 GeV sideband for the fshort

measurement.)

If the overprediction of background due to contamination, NBias
Signal, is nonlinear, then the

contamination factor C is a function of the signal strength µ, which means that the adjusted signal

count must be recomputed for every trial signal strength during the statistical analysis. Alas, the

effect of contamination is indeed nonlinear in µ,

NAdjusted
Signal = µ

(
NRaw

Signal−NBias
Signal

)
= µ

(
1−

NBias
Signal

NRaw
Signal

)
NRaw

Signal = µC(µ)NRaw
Signal. (3.9)

Recalculating the effect of signal contamination for every signal strength considered for every

mass point of every model is utterly unfeasible. Fortunately, NBias
Signal is approximately linear in µ

as we will see, and the linearizing approximation’s error is strictly conservative, so that adopting

the approximation will never lead to a false discovery or false exclusion.

First, one may approximate ∆ fshort thus,

fshort +∆ fshort =
NB

ST +NS
ST

NB
STC

. (3.10)
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The omitted NS
STC is doubly small. First, signal is rare relative to background at low MT2, and

second, only on the order of 1% of signal tracks fall into the STC category, so that NS
STC� NB

STC

in the fshort measurement region. This approximation linearizes ∆ fshort, and strictly makes ∆ fshort

larger by reducing the denominator, tending to overestimate the bias and, therefore, produce

conservative signal counts.

Next, adjusting the applied fshort to f ′short = fshort−∆ fshort, Equation 3.7 becomes

NEst
ST +NBias

Signal = f ′short(NSTC +∆NSTC) = f ′shortNSTC + f ′short∆NSTC (3.11)

The second component of f ′short∆NSTC = fshort∆NSTC−∆ fshort∆NSTC is nonlinear in the signal

strength, but is again doubly small, for the same reasons as the first neglected term. Neglecting

it again produces a strictly larger estimate of the contamination, making the approximation

conservative once again.

Ultimately, then, there are two adjustments to the expected signal counts. First, the

analysis subtracts the effect of signal contamination of low MT2 STs, which bias the fshort

measurement. Then, the analysis subtracts the effect of signal contamination of high MT2 STCs,

which bias the application of fshort. Both of these effects are small. Any terms that consider the

combined effect of low MT2 signal and signal STCs are dropped, as signal is rare in both cases,

and so doubly rare in the combined case. This procedure outputs an adjustment to expected signal

counts that is linear in the signal strength, and conservative, allowing for a straightforward and

safe statistical interpretation.

3.2.8 Limits

The statistical procedure for extracting limits in the disappearing tracks search is exactly

identical to that used in the classic search, described in Section 3.1.8, with the addition of the LLP

lifetime as a parameter of interest. Figures 3.23-3.25 show limits in the mass plane for gluinos
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Figure 3.23: Exclusion limits at 95% CL for direct gluino pair production where the gluinos
decay to light-flavor quarks, with cτ0(χ̃

±) = (upper left) 10cm, (upper right) 50cm, and (lower)
200cm. Taken from [63].
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Figure 3.24: Exclusion limits at 95% CL for light squark pair production with cτ0(χ̃
±) = (upper

left) 10cm, (upper right) 50cm, and (lower) 200cm. Taken from [63].
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Figure 3.25: Exclusion limits at 95% CL for top squark pair production with cτ0(χ̃
±) = (upper

left) 10cm (upper right) 50cm, and (lower) 200cm. Taken from [63].
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Figure 3.26: Exclusion limits at 95% CL on the χ̃0
1 mass, with mχ̃± = m

χ̃0
1
+O(100MeV), as a

function of the χ̃± proper decay length, for (upper) direct gluino and (lower) direct light-flavor
squark pair production, for representative gluino and squark masses. Taken from [63].

123



1 10 210 310
) [cm]±

1
χ∼(0τc

0

200

400

600

800

1000

1200

1400

 [G
eV

]
0 1χ∼

m

Observed limit (95% CL)
Median expected limit
68% expected
95% expected

1

0χ∼ - 
1

±χ∼Wino-like 

 + O(100 MeV)
1

0χ∼
 = m

1

±χ∼m

 = 1000 GeV
t~

m

 0.8 fb± = 6.8 theoryσ

t
~
 t

~
 →pp 

2
1) = 

1

0χ∼ t → t~(Β

2
1) = 

1

0χ∼ ±π → 
1

±χ∼, 
1

±χ∼ b → t~(Β

Excluded 95% CL (LEP)

 + 100 GeV
1

0χ∼ = m
t
~m

 (13 TeV)-1137 fbCMS

Figure 3.27: Exclusion limits at 95% CL on the χ̃0
1 mass, with mχ̃± = m

χ̃0
1
+O(100MeV), as a

function of the χ̃± proper decay length, for direct top squark pair production, as obtained for a
representative top squark mass. Taken from [63].

decaying to light squarks, bottom squarks, and top squarks, respectively, with the χ̃± cτ set to

10 cm (upper left), 50 cm (upper right), and 200 cm (bottom). These limits can be compared

directly to those obtained by the classic search, shown respectively in Figures 3.11 (upper), 3.13

(upper left), and 3.14 (upper right). In each case, the limits improve by hundreds of GeV along

each axis, due entirely to the strong background suppression of the ST requirement.

An interesting feature of these exclusion curves is evident when comparing longer to

shorter χ̃± lifetimes. For cτ = 200 cm, the limit curve abruptly turns inward at the bottom right of

each plot, where the gluino or squark is much more massive than χ̃± and χ̃0
1. At cτ = 50 cm, this

feature is reduced in prominence, and it is inverted when cτ = 10 cm. This is caused by the large

Lorentz boost and correspondingly extended lab frame lifetime of χ̃± in these mass scenarios.

At longer lifetimes, χ̃± often lives long enough to escape the tracker, or at least make it near

enough to the edge not to leave a disappearing track, defined as a track with at least two tracker

layers missing expected hits. With no disappearing track, the event fails the ST selection, so the

signal efficiency for long χ̃± lifetime is reduced in the large mass splitting scenario, and limits
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Figure 3.28: Exclusion limits at 95% CL on σ/σtheory as a function of the χ̃± decay length,
for (upper) gluino pair production where the gluinos decay to light-flavor quarks, (lower left)
light-flavor squark pair production, and (lower right) top squark pair production, as obtained
from the search for disappearing tracks. Taken from [63].
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are weakened. In contrast, shorter lifetimes benefit from the boost, as tracks more often extend

into the more sensitive M and L bins. Masses of χ̃± below 91.9 GeV are excluded by searches

performed at CERN’s Large Electron Positron collider [51], the previous occupant of the LHC

tunnel, mitigating the impact of this effect.

Figures 3.26 and 3.27 show limits at 95% CL on the χ̃0
1 mass as a function of the lifetime

of χ̃±, at representative fixed masses of the considered gluino or squark, with the 68% and

95% uncertainty bands shown in green and yellow, respectively. Figure 3.26 (upper) considers

gluino pair production at gluino mass 1900 GeV. Figure 3.26 (lower left) considers light squark

pair production in the case of a single light squark of mass 900 GeV. Figure 3.26 (lower right)

considers light squark pair production in the case of eight degenerate light squarks of mass

1500 GeV. Figure 3.27 considers top squark pair production and at top squark mass 1000 GeV.

There is a discontinuity at low χ̃± lifetime in the exclusion curves of all four of these

figures. At this discontinuity, the limits obtained for the classic search, applicable to any χ̃± of

lifetime short enough not to reach the calorimeters, become superior to those obtained by the

disappearing track search. At these very short lifetimes, many of the charginos decay before

reaching the tracker or soon after, and so do not produce tracks. As the disappearing track search

only selects events with a disappearing track, it suffers from large selection inefficiencies at these

very short lifetimes. The classic search does not require a track, and so avoids this selection

inefficiency, as the cost of a larger background. For short enough χ̃± lifetimes, to the left of the

discontinuity in each figure, this trade-off becomes advantageous as measured by the expected

sensitivity.

When the exclusion curves approach the kinematic limit, at which the mass of the decaying

particle and the mass of the χ̃± are nearly equal, the errors tend to become greatly compressed.

Finally, Figure 3.28 show the exclusion limits at 95% CL on the production cross section

of gluinos and squarks as a function of χ̃± lifetime for fixed gluino or squark mass and χ̃0
1

mass, for gluinos of mass 1600 GeV decaying to light quarks and χ̃0
1 of mass 1575 GeV (upper),
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light squarks of mass 2000 GeV and χ̃0
1 mass 1000 GeV (lower left), and top squarks of mass

1100 GeV and χ̃0
1 mass 1000 GeV (lower right). The limits are strongest for intermediate χ̃±

lifetimes for which the fraction of χ̃± decays producing disappearing tracks tens of centimeters

long is maximized. Sensitivity is lesser for longer and shorter lifetimes due to reduced efficiency

to produce disappearing tracks, and consequently reduced signal selection efficiency.

All of these limits are the strongest produced to date by any analysis, and constitute

stringent constraints on the entire class of signal models discussed in Section 3.2.3.

3.2.9 Future

The subject of LLPs in supersymmetric extensions of the Standard Model, and the potential

sensitivity gains that LLPs can provide for new physics searches in general, will continue to

inspire interest for the foreseeable future of the LHC’s physics program. The MT2 disappearing

track extension is no exception. Furthermore, unlike the classic search, which has non-negligible

backgrounds that will grow larger with increased integrated luminosity, the most sensitive bins of

the disappearing tracks search are effectively entirely background-depleted. In fact, while the

background should not meaningfully increase in the foreseeable future, the statistical precision of

the background estimate will improve with the addition of more data. As a result, the sensitivity

of the disappearing track search projects to improve roughly linearly with increasing integrated

luminosity rather than as its square root. With continuing interest and better scaling of the

sensitivity, this search is a potentially worthwhile candidate for continued updates as the CMS

dataset expands.

Additionally, the disappearing tracks search in its current form targets only tracks that

disappear inside the silicon tracker, and does not consider the case of tracks disappearing inside

the muon system, as mentioned in Section 2.2.5. Indeed, it explicitly vetoes tracks potentially

associated with hits in the muon system. However, sufficiently long-lived charginos would leave

hits in the muon system, and so there exists a possibility to extend the lifetime sensitivity range of
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the disappearing tracks search by expanding the definition to include disappearing tracks in the

muon system, or even non-disappearing tracks in the muon system that appear to be produced by

a particle too heavy to be consistent with a muon.

In any case, the disappearing tracks signature certainly has not been fully exploited, and

will remain an interesting search strategy in future LHC datasets.
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Chapter 4

Conclusions

The Standard Model of Particle Physics is robust at low energy physics, but is not

entirely satisfactory. A variety of observations, both theoretical and experimental, indicate that

many of the problems identified with the Standard Model suggest new physics at the TeV scale.

Among these new physics models are those containing candidate dark matter particles, including

supersymmetric extensions of the Standard Model. Recently, elementary particle physicists have

gained access to powerful new tools at CERN’s Large Hadron Collider, including the CMS

detector, that can use high energy proton collisions to probe the physics of the weak scale. A

pair of searches targeting pair-produced particles decaying to dark matter have been performed at

CMS using its 137 fb−1 dataset of 13 TeV proton-proton collisions recorded from 2016 to 2018.

Both searches produce the most stringent constraints to date on a variety of models, especially

supersymmetric models. The constraints of the first search apply generally to any model in which

pair-produced colored states decay semi-invisibly. The second targets similar models that also

include long-lived particles producing disappearing tracks, a challenging final state to study and

one of increasing interest in recent years as null results in searches for supersymmetry have

increased the minimum mass scale of supersymmetry. This second model in particular projects to
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benefit significantly from increased luminosity, and will be able to extend the sensitivity of CMS

to some supersymmetric models by as much as a TeV.
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Appendix A

Full Classic Binning and Results

Table A.1: Predictions and observations for the 12 search regions with Njet = 1. For each of the
background predictions, the first uncertainty listed is statistical (from the limited size of data
control samples and Monte Carlo samples), and the second is systematic. Reprinted from [63].

Njet = 1

Njet, Nb−tag pjet1
T [GeV ] Lost lepton Z→ νν Multijet Total background Data

1j, 0b

250-350 70700±400±4100 167000±1000±11000 530±20±160 238000±1000±14000 251941
350-450 13440±130±790 40100±500±3100 55±5±16 53600±500±3700 54870
450-575 3050±50±180 10850+230

−220±690 5.6±1.1±1.6 13910±230±840 14473
575-700 603+20

−19±38 2590+110
−100±160 0.38±0.06±0.11 3200±110±190 3432

700-1000 220±13±16 1076+70
−66±66 0.12±0.03±0.03 1295+71

−67±79 1304
1000-1200 11.7+4.1

−3.2±0.9 86+23
−19±6 < 0.01 98+24

−19±7 98
≥ 1200 2.8+2.7

−1.5±0.6 23+12
−8 ±2 < 0.01 26+13

−9 ±2 30

1j, ≥ 1b

250-350 4210±110±260 9030±230±630 58±10±17 13310+260
−250±820 13549

350-450 878±38±56 2180+110
−100±170 4.6±0.4±1.3 3060±110±220 3078

450-575 211+16
−15±13 651+57

−53±44 0.63±0.18±0.18 863+59
−55±53 810

575-700 40.3+6.0
−5.5±2.5 164+30

−26±11 0.04±0.02±0.02 205+31
−26±13 184

≥ 700 19.2+5.7
−4.6±1.3 74+21

−16±7 < 0.01 94+21
−17±7 83
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Table A.2: Predictions and observations for the 30 search regions with 250≤ HT < 450 GeV.
For each of the background predictions, the first uncertainty listed is statistical (from the limited
size of data control samples and Monte Carlo samples), and the second is systematic. Reprinted
from [63].

250≤ HT < 450 GeV

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

2-3j, 0b
200-300 73700±500±5000 156000±1000±12000 580±20±140 231000±1000±16000 240867
300-400 12030±200±820 31300±200±2500 50±5±10 43400±300±3200 44074
≥ 400 417+51

−47±28 1450±10±140 0.44±0.09±0.09 1870±50±160 2022

2-3j, 1b
200-300 12450±170±820 18700±300±1500 90±8±21 31300±300±2200 32120
300-400 2380±80±160 3750±60±310 6.9±1.0±1.5 6130±100±430 6258
≥ 400 97±8±39 174±3±17 0.01±0.01±0.00 271+9

−8±45 275

2-3j, 2b
200-300 2240±70±150 2340+110

−100±200 9.7±1.1±2.3 4600+130
−120±320 4709

300-400 398+34
−32±27 469+21

−20±39 0.68±0.17±0.15 868+40
−38±61 984

≥ 400 13.3±2.3±5.4 21.7+1.0
−0.9±2.2 < 0.01 35.0±2.5±6.0 30

2-6j, ≥ 3b
200-300 507+32

−31±38 179+35
−30±27 1.77±0.46±0.46 688+47

−43±54 699
300-400 69±6±15 40.0+7.8

−6.6±6.0 0.16±0.12±0.04 109+10
−9 ±16 102

≥ 400 1.50±0.80±0.61 1.43+0.28
−0.24±0.25 < 0.01 2.92+0.85

−0.83±0.67 0

4-6j, 0b
200-300 12500±180±800 21600±300±1800 250±17±58 34400±400±2400 35187
300-400 2070±80±130 4660±70±410 18.2±3.6±3.8 6750±110±510 6725
≥ 400 42±5±17 155±2±64 0.06±0.03±0.01 197±5±67 170

4-6j, 1b
200-300 5750±100±380 4300±150±360 61±7±15 10120±180±680 10564
300-400 784+43

−42±52 928+32
−31±84 2.07±0.29±0.45 1710±50±120 1769

≥ 400 14.0±2.5±5.7 31±1±13 0.04±0.02±0.01 45±3±14 40

4-6j, 2b
200-300 2550+70

−60±170 921+68
−63±87 10.0±1.5±2.2 3480±90±230 3621

300-400 220+23
−21±15 198+15

−14±20 0.47±0.15±0.11 419+27
−25±31 496

≥ 400 3.2±0.8±1.3 6.6±0.5±2.7 < 0.01 9.8±0.9±3.1 14

≥ 7j, 0b
200-300 55+15

−13±4 61+23
−17±26 2.64±0.39±0.57 119+28

−22±27 108
300-500 3.8+2.1

−2.0±0.8 8.1+3.1
−2.3±4.3 0.08±0.04±0.02 12.0+3.7

−3.1±4.4 30
≥ 500 0.0+3.2

−0.0±0.0 0.0+1.2
−0.0±0.0 < 0.01 0.0+3.4

−0.0±0.0 0

≥ 7j, 1b
200-300 48.0+9.1

−8.2±3.5 19+19
−11±10 0.33±0.14±0.09 68+21

−13±11 95
≥ 300 3.0±1.4±1.2 2.5+2.4

−1.3±1.7 0.03±0.02±0.01 5.6+2.8
−1.9±2.1 12

≥ 7j, 2b
200-300 41.3+7.7

−7.0±3.1 6.0+5.8
−3.2±3.7 0.29±0.14±0.06 47.6+9.7

−7.7±5.0 30
≥ 300 2.15+0.78

−0.76±0.87 0.74+0.72
−0.40±0.57 < 0.01 2.9+1.1

−0.9±1.1 1

≥ 7j, ≥ 3b
200-300 7.3+1.7

−1.5±0.9 1.0+1.0
−0.6±1.1 0.04±0.04±0.01 8.4+1.9

−1.6±1.5 17
≥ 300 0.47±0.35±0.20 0.12+0.11

−0.06±0.14 < 0.01 0.59+0.37
−0.35±0.24 0
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Table A.3: Predictions and observations for the 40 search regions with 450≤ HT < 575 GeV.
For each of the background predictions, the first uncertainty listed is statistical (from the limited
size of data control samples and Monte Carlo samples), and the second is systematic. Reprinted
from [63].

450≤ HT < 575 GeV

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

2-3j, 0b

200-300 8860±110±640 20100±200±1300 69±13±16 29100±300±1900 28956
300-400 4230±80±300 11770±140±790 10.6±0.8±2.4 16000±200±1000 15876
400-500 1510±60±110 5020±60±360 2.86±0.62±0.60 6540±80±440 6527
≥ 500 121+24

−21±9 580±7±63 0.07±0.03±0.02 701+25
−22±68 740

2-3j, 1b

200-300 1326±43±88 2500±80±170 17.0±8.4±3.8 3840+100
−90 ±240 3859

300-400 737±35±49 1464+49
−48±99 1.62±0.20±0.43 2200±60±140 2065

400-500 259+25
−23±19 626+21

−20±45 0.49±0.10±0.12 885+32
−31±58 907

≥ 500 19.1+2.8
−2.7±7.8 72.4±2.4±7.9 0.04±0.02±0.02 92±4±11 79

2-3j, 2b

200-300 201±15±13 322+31
−28±25 1.34±0.62±0.47 524+35

−32±35 463
300-400 83.8+9.6

−9.1±9.1 188+18
−17±15 0.26±0.07±0.07 272+21

−19±20 304
400-500 31.8+4.1

−4.0±6.7 80.4+7.7
−7.1±6.6 0.02±0.01±0.01 112+9

−8±10 120
≥ 500 2.16+0.67

−0.66±0.88 9.3+0.9
−0.8±1.1 < 0.01 11.4±1.1±1.4 15

2-6j, ≥ 3b

200-300 232+17
−16±15 57+17

−13±7 2.20±0.70±0.80 291+24
−21±19 297

300-400 81+12
−11±6 33.6+9.9

−7.8±4.3 0.26±0.08±0.08 115+16
−14±8 76

400-500 10.7+2.1
−2.0±2.3 11.4+3.4

−2.7±1.5 < 0.01 22.1+4.0
−3.4±2.8 24

≥ 500 1.08±0.58±0.44 1.03+0.30
−0.24±0.17 < 0.01 2.11+0.65

−0.62±0.48 0

4-6j, 0b

200-300 5660±90±370 8560±170±600 143±7±35 14360±190±890 15047
300-400 2250±60±150 4790+100

−90 ±350 24.3±2.6±6.2 7060±110±460 6939
400-500 428+32

−30±28 1220±20±110 1.42±0.21±0.52 1650±40±130 1817
≥ 500 14.8±2.2±6.0 86±2±35 0.04±0.02±0.01 101±3±36 104

4-6j, 1b

200-300 2810±60±190 1880±80±130 63±15±19 4750±100±300 4736
300-400 937±36±63 1054+45

−43±78 5.4±0.4±1.4 2000±60±130 2039
400-500 138+17

−16±10 269±11±25 0.36±0.10±0.10 407+20
−19±31 403

≥ 500 7.5±2.2±3.0 19.1±0.8±7.9 0.01±0.01±0.00 26.5±2.3±8.5 27

4-6j, 2b

200-300 1343+38
−37±89 414+39

−35±33 11.5±1.0±3.3 1770±50±110 1767
300-400 418+24

−23±29 232+22
−20±19 1.35±0.35±0.39 651+32

−31±43 636
400-500 45.6+3.9

−3.8±9.6 59.1+5.5
−5.1±5.9 0.03±0.02±0.01 105+7

−6±12 120
≥ 500 1.59±0.89±0.65 4.2±0.4±1.7 < 0.01 5.8±1.0±1.9 7

≥ 7j, 0b
200-300 149+17

−16±13 169+31
−27±34 11.5±0.8±3.0 329+36

−31±38 354
300-400 38.9+5.8

−5.6±8.2 64+12
−10±17 1.24±0.42±0.32 104+13

−12±20 110
≥ 400 1.28±0.82±0.52 8.8+1.6

−1.4±3.8 0.03±0.02±0.01 10.1+1.8
−1.6±3.8 10

≥ 7j, 1b
200-300 191+13

−12±15 67+19
−15±15 4.4±0.5±1.2 262+23

−19±23 268
300-400 37.8+3.4

−3.3±8.0 25.3+7.2
−5.7±7.3 0.30±0.07±0.08 63+8

−7±11 65
≥ 400 2.31±0.69±0.94 3.5+1.0

−0.8±1.5 0.01±0.01±0.00 5.8+1.2
−1.0±1.8 3

≥ 7j, 2b
200-300 173+12

−11±13 19.9+5.7
−4.5±5.2 1.24±0.18±0.33 194+13

−12±15 197
300-400 26.8±2.6±5.7 7.6+2.2

−1.7±2.4 0.09±0.04±0.03 34.6+3.4
−3.1±6.3 44

≥ 400 1.40±0.44±0.57 1.02+0.29
−0.23±0.46 < 0.01 2.42+0.53

−0.49±0.73 3

≥ 7j, ≥ 3b
200-300 55.4+4.8

−4.7±7.3 2.3+0.7
−0.5±1.1 0.15±0.06±0.06 57.8+4.8

−4.7±7.4 37
300-400 6.4±1.2±1.5 0.86+0.25

−0.20±0.46 0.01±0.01±0.00 7.3±1.2±1.6 9
≥ 400 0.06±0.01±0.03 0.12±0.03±0.06 < 0.01 0.18+0.04

−0.03±0.07 0
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Table A.4: Predictions and observations for the 47 search regions with 575≤ HT < 1200 GeV,
Njet < 7. For each of the background predictions, the first uncertainty listed is statistical (from
the limited size of data control samples and Monte Carlo samples), and the second is systematic.
Reprinted from [63].

575≤ HT < 1200 GeV, Njet < 7

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

2-3j, 0b

200-300 5270±60±370 11550±160±790 93±20±30 16900±200±1100 17256
300-400 2560±50±180 7770+110

−100±540 11.9±1.3±4.4 10340+120
−110±680 10145

400-500 1101+32
−31±77 3900±50±280 1.33±0.24±0.41 5000±60±340 5021

500-600 502+24
−23±35 2250±30±170 0.37±0.07±0.12 2760±40±200 2706

600-700 180+16
−15±13 746±10±73 0.09±0.03±0.03 926+19

−18±80 1066
700-800 52.1+7.3

−6.5±5.5 256±3±36 0.01±0.01±0.00 308+8
−7±38 347

800-900 17.7+2.6
−2.3±2.2 107±1±20 < 0.01 125±3±21 111

900-1000 6.0±0.9±1.3 39.4±0.5±8.5 0.01±0.01±0.00 45.4+1.1
−1.0±8.7 39

1000-1100 3.3+1.1
−1.0±1.0 13.3±0.2±3.9 < 0.01 16.6±1.1±4.1 11

≥ 1100 0.31+0.09
−0.08±0.12 2.5±0.0±1.1 < 0.01 2.8±0.1±1.1 2

2-3j, 1b

200-300 826+27
−26±54 1480+60

−50±100 38±15±12 2340±60±140 2499
300-400 426+21

−20±28 994+38
−37±69 2.33±0.26±0.84 1422+43

−42±90 1366
400-600 282+18

−17±20 788+30
−29±55 0.27±0.06±0.10 1071+35

−34±69 1057
600-800 43.5+3.2

−3.1±6.5 129±5±12 < 0.01 172±6±15 225
800-1000 4.6±0.7±1.3 18.8±0.7±3.3 < 0.01 23.4±1.0±3.6 22
≥ 1000 0.34±0.08±0.14 2.05±0.08±0.90 < 0.01 2.38±0.11±0.91 1

2-3j, 2b

200-300 105.1+9.2
−8.7±7.6 181+20

−18±15 3.8±0.5±1.3 290+22
−20±20 316

300-400 55.0+6.7
−6.3±7.5 122+14

−12±10 0.27±0.06±0.10 177+15
−14±14 159

400-600 36.5+4.6
−4.3±5.5 97+11

−10±8 0.08±0.03±0.03 133+12
−11±11 107

600-800 4.7±0.8±1.3 15.8+1.8
−1.6±1.6 < 0.01 20.6+1.9

−1.8±2.2 21
≥ 800 0.59±0.19±0.24 2.56+0.29

−0.26±0.45 < 0.01 3.14+0.35
−0.32±0.52 1

2-6j, ≥ 3b

200-300 299+17
−16±22 73+15

−13±10 6.2±0.4±2.1 379+22
−21±28 345

300-400 100±10±7 43.5+8.8
−7.4±6.2 0.68±0.09±0.24 144+14

−12±11 132
400-600 32.5+6.3

−5.6±2.5 31.2+6.3
−5.3±4.4 0.08±0.03±0.03 63.8+8.9

−7.7±5.8 48
600-800 3.16+0.95

−0.90±0.68 5.4+1.1
−0.9±0.8 < 0.01 8.6+1.4

−1.3±1.1 4
≥ 800 0.10±0.03±0.04 0.71+0.14

−0.12±0.15 < 0.01 0.81+0.15
−0.12±0.16 0

4-6j, 0b

200-300 6280±70±420 9470±160±650 360±20±110 16100±180±1000 16292
300-400 2700±50±180 5410±90±380 53±1±17 8160±100±520 8330
400-500 927+28

−27±62 2420±40±180 7.7±0.4±2.4 3350±50±230 3576
500-600 324+17

−16±22 1171+20
−19±100 1.46±0.12±0.46 1500±30±110 1516

600-700 95.4+9.4
−8.7±6.4 413±7±47 0.33±0.06±0.10 509+12

−11±50 543
700-800 35.6+5.0

−4.5±3.6 171±3±27 0.03±0.02±0.01 206+6
−5±27 178

800-900 13.4+2.0
−1.8±1.6 64±1±11 0.02±0.01±0.01 77±2±11 62

900-1000 4.39+0.78
−0.73±0.93 23.6±0.4±5.3 < 0.01 28.0+0.9

−0.8±5.4 20
1000-1100 0.64±0.16±0.20 6.3±0.1±2.0 < 0.01 6.9±0.2±2.0 3
≥ 1100 0.78±0.58±0.32 0.89+0.02

−0.01±0.40 < 0.01 1.68±0.58±0.52 1

4-6j, 1b

200-300 2900±50±200 2220+80
−70±150 154±16±50 5270±90±330 5335

300-400 1066±29±74 1267+44
−42±89 19.2±0.9±6.2 2350±50±150 2547

400-600 504+22
−21±35 840+29

−28±61 2.98±0.21±0.93 1347+36
−35±88 1284

600-800 35.3+5.9
−5.2±2.6 138±5±14 0.09±0.03±0.03 174+8

−7±16 151
800-1000 3.89+0.83

−0.77±0.82 19.3+0.7
−0.6±4.3 0.01±0.01±0.00 23.2+1.1

−1.0±4.5 18
≥ 1000 0.18±0.07±0.07 1.57±0.05±0.65 < 0.01 1.75±0.09±0.65 1

4-6j, 2b

200-300 1500±30±100 473+36
−33±36 42±2±13 2020±50±130 1968

300-400 508±20±35 270+20
−19±21 4.9±0.3±1.6 783+29

−28±50 788
400-600 167±12±12 179+14

−13±14 0.57±0.08±0.18 346+18
−17±23 354

600-800 11.9+1.3
−1.2±2.5 29.5+2.2

−2.1±3.5 0.02±0.01±0.01 41.4+2.6
−2.4±4.6 37

≥ 800 0.91±0.23±0.37 4.4±0.3±1.8 < 0.01 5.4±0.4±1.9 7
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Table A.5: Predictions and observations for the 34 search regions with 575≤ HT < 1200 GeV,
Njet ≥ 7. For each of the background predictions, the first uncertainty listed is statistical (from
the limited size of data control samples and Monte Carlo samples), and the second is systematic.
Reprinted from [63].

575≤ HT < 1200 GeV, Njet ≥ 7

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

7-9j, 0b

200-300 589+27
−26±39 573+47

−43±64 90±10±28 1252+55
−52±93 1340

300-400 265+19
−18±18 279+23

−21±42 14.9±0.5±4.7 559+29
−28±51 581

400-600 92+10
−9 ±6 159+13

−12±28 2.72±0.18±0.85 253+16
−15±30 243

600-800 8.6±1.2±1.8 22.8+1.9
−1.7±6.4 0.10±0.03±0.03 31.6+2.2

−2.1±6.8 32
≥ 800 0.51±0.16±0.21 3.0±0.2±1.3 < 0.01 3.5±0.3±1.3 2

7-9j, 1b

200-300 733±21±52 278+28
−25±33 48±3±16 1059+35

−33±73 1052
300-400 252+13

−12±18 135+14
−12±21 7.7±0.4±2.5 395+19

−17±32 387
400-600 71.3+6.9

−6.5±5.2 77+8
−7±14 1.36±0.13±0.45 150±10±16 131

600-800 4.26+0.73
−0.71±0.90 11.0+1.1

−1.0±3.1 0.03±0.02±0.01 15.3+1.3
−1.2±3.3 20

≥ 800 0.11±0.04±0.05 1.48+0.15
−0.13±0.63 < 0.01 1.60+0.15

−0.14±0.63 1

7-9j, 2b

200-300 675±20±51 82+8
−7±10 20.9±3.0±6.7 777+22

−21±56 750
300-400 211±11±16 39.8+4.0

−3.6±6.4 2.42±0.19±0.79 253+12
−11±19 259

400-600 55.4+5.5
−5.2±4.2 22.7+2.3

−2.1±4.2 0.50±0.07±0.16 78.6+5.9
−5.6±6.6 72

600-800 3.00+0.63
−0.62±0.64 3.25+0.32

−0.30±0.93 0.01±0.01±0.01 6.3±0.7±1.2 7
≥ 800 0.27±0.20±0.11 0.44±0.04±0.19 < 0.01 0.71±0.20±0.22 1

7-9j, 3b

200-300 185±8±18 11.3+1.1
−1.0±1.9 3.6±0.2±1.2 200±8±18 184

300-400 52.0±3.8±5.0 5.5±0.5±1.2 0.72±0.12±0.26 58.3+3.9
−3.8±5.3 59

400-600 13.6±1.8±1.3 3.13+0.31
−0.29±0.82 0.05±0.02±0.02 16.8±1.8±1.6 14

≥ 600 0.49±0.21±0.20 0.51±0.05±0.21 < 0.01 1.00±0.21±0.29 2

7-9j, ≥ 4b
200-300 38.8±3.1±7.4 2.01+0.20

−0.18±0.71 0.55±0.08±0.19 41.3+3.2
−3.1±7.4 38

300-400 14.5+2.0
−1.9±2.8 0.98+0.10

−0.09±0.43 0.06±0.02±0.02 15.6+2.0
−1.9±2.8 16

≥ 400 3.75+0.98
−0.97±0.70 0.65±0.06±0.35 < 0.01 4.40+0.98

−0.97±0.79 3

≥ 10j, 0b
200-300 11.5±1.6±1.0 4.4+0.4

−0.3±2.3 3.1±0.8±1.1 19.0±1.8±2.8 27
300-500 5.6±1.0±0.5 3.0±0.2±1.7 0.55±0.08±0.20 9.1±1.0±1.8 4
≥ 500 0.30±0.11±0.12 0.44+0.04

−0.03±0.24 0.02±0.01±0.01 0.76±0.11±0.27 3

≥ 10j, 1b
200-300 21.0±1.8±1.6 3.5±0.3±1.9 1.92±0.18±0.72 26.4±1.8±2.7 32
300-500 7.7±1.0±0.6 2.4±0.2±1.4 0.45±0.07±0.17 10.5±1.1±1.6 15
≥ 500 0.83+0.42

−0.41±0.07 0.36+0.04
−0.03±0.20 0.02±0.01±0.01 1.20+0.42

−0.41±0.22 0

≥ 10j, 2b
200-300 21.8±1.8±1.6 1.05±0.10±0.66 0.64±0.08±0.24 23.5±1.8±1.8 26
300-500 8.8±1.2±0.6 0.69+0.07

−0.06±0.45 0.16±0.04±0.06 9.6+1.3
−1.2±0.8 9

≥ 500 0.22±0.13±0.02 0.10±0.01±0.06 < 0.01 0.32±0.13±0.07 0

≥ 10j, 3b
200-300 9.9±1.3±1.2 0.25±0.02±0.20 0.29±0.05±0.12 10.4±1.3±1.2 14
≥ 300 1.59±0.50±0.18 0.19±0.02±0.16 0.02±0.01±0.01 1.80±0.50±0.25 2

≥ 10j, ≥ 4b ≥ 200 3.9±1.2±0.8 0.00+0.17
−0.00±0.00 0.05±0.02±0.02 4.0±1.2±0.8 6
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Table A.6: Predictions and observations for the 37 search regions with 1200≤HT < 1500 GeV,
Njet < 7. For each of the background predictions, the first uncertainty listed is statistical (from
the limited size of data control samples and Monte Carlo samples), and the second is systematic.
Reprinted from [63].

1200≤ HT < 1500 GeV, Njet < 7

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

2-3j, 0b

200-400 315±15±21 656+51
−47±73 39±16±12 1009+55

−52±85 1128
400-600 43.0+5.2

−4.7±4.9 185+14
−13±30 0.03±0.02±0.01 228+15

−14±31 207
600-800 14.1+2.1

−2.0±1.7 64±5±17 < 0.01 78±5±17 83
800-1000 6.4+1.1

−1.0±1.3 32.5+2.5
−2.3±7.6 < 0.01 38.9+2.7

−2.5±7.8 36
1000-1200 3.23+0.61

−0.59±0.99 17.5±1.3±5.2 < 0.01 20.7+1.5
−1.4±5.3 19

≥ 1200 0.87+0.14
−0.13±0.35 6.0+0.5

−0.4±2.6 < 0.01 6.9±0.5±2.6 4

2-3j, 1b

200-400 61.5+7.2
−6.5±4.2 78+19

−16±10 9.7±0.7±3.0 149+21
−17±12 157

400-600 10.1±1.4±1.0 21.9+5.4
−4.4±3.8 0.03±0.02±0.01 32.0+5.6

−4.6±4.1 27
600-800 2.36+0.36

−0.35±0.41 7.5+1.9
−1.5±2.0 < 0.01 9.8+1.9

−1.6±2.1 9
800-1000 0.78+0.16

−0.15±0.19 3.84+0.95
−0.78±0.93 < 0.01 4.62+0.97

−0.79±0.96 6
1000-1200 0.43±0.08±0.14 2.13+0.53

−0.43±0.64 < 0.01 2.56+0.54
−0.44±0.66 2

≥ 1200 0.14+0.05
−0.04±0.06 0.71+0.18

−0.14±0.31 < 0.01 0.86+0.18
−0.15±0.31 0

2-3j, 2b

200-400 4.8+2.0
−1.6±0.3 11+11

−6 ±2 1.38±0.13±0.43 18+11
−6 ±2 18

400-600 0.61+0.30
−0.25±0.07 3.2+3.1

−1.7±0.7 < 0.01 3.8+3.1
−1.8±0.7 5

600-800 0.21+0.11
−0.09±0.04 1.1+1.1

−0.6±0.4 < 0.01 1.3+1.1
−0.6±0.4 2

800-1000 0.07+0.04
−0.03±0.02 0.56+0.55

−0.31±0.18 < 0.01 0.63+0.55
−0.31±0.18 1

≥ 1000 0.03±0.02±0.01 0.42+0.41
−0.23±0.18 < 0.01 0.46+0.41

−0.23±0.18 1

2-6j, ≥ 3b
200-400 22.6+4.7

−4.2±1.8 0.0+6.6
−0.0±0.0 4.4±0.2±1.5 27.0+8.1

−4.2±2.4 25
400-600 1.58+0.51

−0.48±0.34 0.0+1.6
−0.0±0.0 0.02±0.01±0.01 1.6+1.7

−0.5±0.3 3
≥ 600 0.47+0.27

−0.26±0.19 0.00+0.94
−0.00±0.00 < 0.01 0.47+0.98

−0.26±0.19 4

4-6j, 0b

200-400 606+21
−20±41 909+63

−59±90 208±12±64 1720+70
−60±130 1768

400-600 84.3+7.4
−6.9±5.8 234+16

−15±34 0.88±0.09±0.27 319+18
−17±36 301

600-800 21.1+3.2
−2.9±2.3 75±5±17 0.06±0.02±0.02 96±6±17 99

800-1000 7.6+1.2
−1.1±1.1 35.2+2.4

−2.3±8.0 0.01±0.01±0.00 42.7+2.7
−2.5±8.2 41

1000-1200 2.23+0.36
−0.33±0.61 14.1+1.0

−0.9±4.2 < 0.01 16.3±1.0±4.2 15
≥ 1200 0.47+0.10

−0.09±0.19 3.0±0.2±1.3 < 0.01 3.5±0.2±1.3 5

4-6j, 1b

200-400 278+15
−14±20 254+33

−30±28 97±2±30 629+36
−33±50 579

400-600 30.3+4.0
−3.7±2.7 65+9

−8±10 0.33±0.06±0.10 96+9
−8±11 79

600-800 8.2+1.4
−1.3±1.0 21.0+2.8

−2.5±4.8 0.02±0.01±0.01 29.2+3.1
−2.8±5.0 16

800-1000 2.36+0.56
−0.54±0.50 9.8+1.3

−1.1±2.3 0.01±0.01±0.00 12.2+1.4
−1.3±2.4 9

1000-1200 1.00±0.24±0.31 4.0±0.5±1.2 < 0.01 5.0+0.6
−0.5±1.2 6

≥ 1200 0.07±0.02±0.03 0.86+0.11
−0.10±0.37 < 0.01 0.92+0.11

−0.10±0.37 1

4-6j, 2b

200-400 120.4+9.1
−8.7±9.8 45+18

−13±5 26.0±0.6±8.1 191+20
−16±15 194

400-600 11.9±1.4±1.5 11.5+4.6
−3.4±1.8 0.11±0.03±0.04 23.4+4.8

−3.7±2.6 27
600-800 3.49±0.83±0.75 3.7+1.5

−1.1±1.0 < 0.01 7.2+1.7
−1.4±1.3 7

800-1000 0.66±0.16±0.20 1.73+0.69
−0.51±0.48 < 0.01 2.38+0.71

−0.54±0.53 3
≥ 1000 0.15±0.04±0.06 0.84+0.34

−0.25±0.36 < 0.01 1.00+0.34
−0.25±0.36 0
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Table A.7: Predictions and observations for the 31 search regions with 1200≤HT < 1500 GeV,
Njet ≥ 7. For each of the background predictions, the first uncertainty listed is statistical (from
the limited size of data control samples and Monte Carlo samples), and the second is systematic.
Reprinted from [63].

1200≤ HT < 1500 GeV, Njet ≥ 7

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

7-9j, 0b

200-400 120.4+9.8
−9.2±9.0 108+26

−21±21 91±3±29 319+28
−24±38 379

400-600 16.5+1.9
−1.8±2.0 25.8+6.3

−5.1±5.7 0.80±0.09±0.25 43.1+6.5
−5.4±6.3 45

600-800 2.94±0.42±0.63 8.6+2.1
−1.7±2.1 0.06±0.02±0.02 11.6+2.1

−1.8±2.2 17
800-1000 0.77+0.14

−0.13±0.24 2.90+0.70
−0.58±1.00 0.01±0.01±0.00 3.7+0.7

−0.6±1.0 3
≥ 1000 0.11±0.03±0.05 1.09+0.26

−0.22±0.50 < 0.01 1.21+0.27
−0.22±0.50 0

7-9j, 1b

200-400 133.8+8.0
−7.7±9.8 36+13

−10±8 58±2±18 228+15
−13±23 247

400-600 16.6+2.9
−2.7±1.3 8.7+3.2

−2.4±2.1 0.46±0.07±0.14 25.8+4.3
−3.6±2.7 23

600-800 1.83+0.43
−0.41±0.28 2.9+1.1

−0.8±0.8 0.03±0.02±0.01 4.8+1.1
−0.9±0.8 7

800-1000 0.65+0.24
−0.23±0.18 0.95+0.34

−0.26±0.34 0.02±0.01±0.01 1.62+0.42
−0.35±0.39 2

≥ 1000 0.22±0.19±0.09 0.36+0.13
−0.10±0.17 < 0.01 0.58+0.23

−0.21±0.19 0

7-9j, 2b

200-400 124.0+7.6
−7.4±9.1 9.9+3.6

−2.7±2.5 21.4±0.5±6.9 155±8±12 162
400-600 15.0+2.8

−2.6±1.3 2.41+0.87
−0.66±0.67 0.12±0.03±0.04 17.5+3.0

−2.7±1.5 18
600-800 2.47+0.78

−0.76±0.53 0.81+0.29
−0.22±0.26 0.01±0.01±0.00 3.29+0.83

−0.79±0.60 1
≥ 800 0.24±0.11±0.10 0.36+0.13

−0.10±0.16 < 0.01 0.60+0.17
−0.15±0.19 1

7-9j, 3b
200-400 30.0±2.6±3.2 1.89+0.68

−0.52±0.64 5.0±0.3±1.8 36.9+2.7
−2.6±3.8 46

400-600 4.1+1.1
−1.0±0.6 0.45+0.16

−0.12±0.18 0.02±0.01±0.01 4.6+1.1
−1.0±0.6 2

≥ 600 0.92+0.50
−0.49±0.38 0.23+0.08

−0.06±0.11 < 0.01 1.15±0.50±0.40 1

7-9j, ≥ 4b
200-400 9.1±1.6±1.8 0.26+0.10

−0.07±0.23 0.88±0.10±0.32 10.3±1.6±1.9 9
≥ 400 0.44+0.24

−0.23±0.08 0.10+0.04
−0.03±0.09 < 0.01 0.53±0.24±0.12 0

≥ 10j, 0b
200-400 7.7+1.2

−1.1±0.8 2.7+0.6
−0.5±2.8 8.3±0.9±3.0 18.7+1.6

−1.5±4.1 17
400-600 1.00±0.32±0.22 0.56+0.13

−0.11±0.62 0.11±0.03±0.04 1.66+0.35
−0.34±0.66 1

≥ 600 0.10+0.35
−0.04±0.04 0.14+0.08

−0.03±0.14 0.01±0.01±0.00 0.24+0.36
−0.05±0.15 0

≥ 10j, 1b
200-400 15.2±1.8±1.4 1.1+0.4

−0.3±1.2 5.3±0.2±1.9 21.6+1.9
−1.8±2.7 22

400-600 1.27+0.38
−0.36±0.11 0.22+0.08

−0.06±0.26 0.05±0.02±0.02 1.55+0.39
−0.37±0.29 6

≥ 600 0.03±0.02±0.01 0.05+0.10
−0.01±0.05 < 0.01 0.07+0.11

−0.02±0.05 0

≥ 10j, 2b
200-400 16.9±1.8±1.5 0.44+0.16

−0.12±0.50 2.7±0.2±1.0 20.1±1.8±1.9 16
400-600 2.62+0.71

−0.68±0.30 0.09±0.03±0.11 0.01±0.01±0.00 2.73+0.71
−0.68±0.32 2

≥ 600 0.23±0.15±0.10 0.02+0.08
−0.01±0.02 < 0.01 0.25+0.17

−0.15±0.10 0

≥ 10j, 3b
200-400 5.58+0.86

−0.85±0.61 0.12+0.11
−0.03±0.16 1.04±0.10±0.42 6.74+0.87

−0.86±0.76 6
≥ 400 0.51±0.22±0.06 0.03+0.11

−0.01±0.04 < 0.01 0.54+0.25
−0.22±0.08 0

≥ 10j, ≥ 4b ≥ 200 2.59±0.82±0.62 0.10+0.13
−0.03±0.13 0.31±0.06±0.13 3.00+0.83

−0.82±0.65 7

137



Table A.8: Predictions and observations for the 30 search regions with HT≥ 1500 GeV, Njet < 7.
For each of the background predictions, the first uncertainty listed is statistical (from the limited
size of data control samples and Monte Carlo samples), and the second is systematic. Reprinted
from [63].

HT ≥ 1500 GeV, Njet < 7

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

2-3j, 0b

400-600 27.2+4.4
−3.9±2.5 150+14

−13±19 0.16±0.04±0.05 177+15
−13±20 125

600-800 7.8+1.4
−1.2±0.8 38.7+3.6

−3.3±8.4 < 0.01 46.5+3.9
−3.6±8.6 37

800-1000 2.29+0.39
−0.34±0.35 17.2+1.6

−1.5±3.4 < 0.01 19.5+1.7
−1.5±3.4 19

1000-1200 1.20+0.21
−0.19±0.26 9.0±0.8±1.8 < 0.01 10.2+0.9

−0.8±1.9 14
1200-1400 0.80+0.16

−0.14±0.22 4.9+0.5
−0.4±1.3 < 0.01 5.7+0.5

−0.4±1.4 4
1400-1800 0.43+0.09

−0.08±0.15 2.80+0.26
−0.24±0.98 < 0.01 3.23+0.28

−0.26±0.99 3
≥ 1800 0.05±0.02±0.02 0.41+0.04

−0.03±0.19 < 0.01 0.46±0.04±0.19 0

2-3j, 1b

400-600 5.2+1.1
−1.0±0.6 13.4+4.9

−3.7±1.9 0.09±0.03±0.03 18.7+5.0
−3.8±2.1 23

600-800 1.52+0.43
−0.41±0.27 3.5+1.3

−1.0±1.0 < 0.01 5.0+1.3
−1.0±1.0 3

800-1000 0.38±0.09±0.10 1.53+0.55
−0.42±0.35 < 0.01 1.90+0.56

−0.43±0.37 3
1000-1200 0.10±0.03±0.03 0.81+0.29

−0.22±0.24 < 0.01 0.91+0.29
−0.22±0.24 4

≥ 1200 0.19±0.06±0.08 0.73+0.26
−0.20±0.31 < 0.01 0.92+0.27

−0.21±0.32 0
2-3j, 2b ≥ 400 0.63+0.49

−0.36±0.26 0.0+3.0
−0.0±0.0 < 0.01 0.6+3.0

−0.4±0.3 2

2-6j, ≥ 3b
400-600 1.72+0.73

−0.68±0.42 1.1+2.4
−0.9±0.3 0.03±0.02±0.01 2.8+2.5

−1.1±0.6 1
≥ 600 0.37+0.19

−0.18±0.16 0.5+1.2
−0.4±0.2 < 0.01 0.9+1.2

−0.5±0.2 0

4-6j, 0b

400-600 46.4+5.6
−5.1±3.6 176+15

−14±23 1.62±0.13±0.46 224+16
−15±24 207

600-800 10.6+2.3
−1.9±1.2 45.5+4.0

−3.7±9.9 0.07±0.03±0.02 56+5
−4±10 62

800-1000 4.5+1.1
−1.0±0.5 20.3+1.8

−1.6±3.9 < 0.01 24.8+2.1
−1.9±4.1 31

1000-1200 1.35+0.30
−0.26±0.24 10.6±0.9±2.1 < 0.01 11.9+1.0

−0.9±2.2 12
1200-1400 0.89+0.27

−0.25±0.23 5.7±0.5±1.5 < 0.01 6.6+0.6
−0.5±1.6 9

1400-1600 0.20±0.05±0.07 2.64+0.23
−0.21±0.92 < 0.01 2.84+0.24

−0.22±0.92 3
≥ 1600 0.09±0.03±0.04 1.18±0.10±0.51 < 0.01 1.27+0.11

−0.10±0.51 2

4-6j, 1b

400-600 21.0+3.7
−3.3±2.0 32.6+7.0

−5.8±5.5 0.81±0.09±0.23 54.5+7.9
−6.7±6.3 72

600-800 4.79+0.91
−0.83±0.62 8.4+1.8

−1.5±2.3 0.02±0.01±0.01 13.2+2.0
−1.7±2.5 20

800-1000 1.27+0.26
−0.24±0.27 3.71+0.79

−0.66±0.92 0.03±0.02±0.01 5.01+0.84
−0.71±0.97 8

1000-1400 0.89+0.21
−0.20±0.28 3.00+0.64

−0.54±0.93 < 0.01 3.89+0.68
−0.57±0.98 6

≥ 1400 0.40+0.34
−0.33±0.16 0.72+0.15

−0.13±0.31 < 0.01 1.12+0.37
−0.36±0.36 3

4-6j, 2b
400-600 7.2+1.2

−1.1±1.1 4.3+2.9
−1.9±1.4 0.17±0.04±0.05 11.7+3.2

−2.2±1.9 11
600-800 1.66+0.41

−0.40±0.46 1.12+0.76
−0.48±0.55 0.01±0.01±0.00 2.79+0.86

−0.63±0.73 3
≥ 800 0.32±0.13±0.13 0.99+0.67

−0.43±0.52 < 0.01 1.31+0.68
−0.45±0.54 4
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Table A.9: Predictions and observations for the 21 search regions with HT≥ 1500 GeV, Njet≥ 7.
For each of the background predictions, the first uncertainty listed is statistical (from the limited
size of data control samples and Monte Carlo samples), and the second is systematic. Reprinted
from [63].

HT ≥ 1500 GeV, Njet ≥ 7

Njet, Nb−tag MT2 [GeV ] Lost lepton Z→ νν Multijet Total background Data

7-9j, 0b

400-600 14.3+1.8
−1.7±1.7 32.3+7.5

−6.2±4.3 1.50±0.13±0.44 48.1+7.7
−6.4±5.0 36

600-800 3.77+0.56
−0.55±0.69 8.3+1.9

−1.6±2.2 0.18±0.04±0.05 12.3+2.0
−1.7±2.3 9

800-1000 1.16+0.18
−0.17±0.30 3.70+0.86

−0.71±0.83 0.01±0.01±0.00 4.86+0.88
−0.73±0.90 6

1000-1400 0.58±0.11±0.19 2.96+0.69
−0.57±0.86 0.01±0.01±0.00 3.55+0.69

−0.58±0.89 4
≥ 1400 0.05±0.01±0.02 0.71+0.17

−0.14±0.30 < 0.01 0.76+0.17
−0.14±0.30 2

7-9j, 1b
400-600 12.8+2.5

−2.3±1.6 9.2+4.2
−3.0±1.4 0.82±0.09±0.24 22.9+4.9

−3.8±2.3 25
600-800 3.49+0.94

−0.89±0.76 2.4+1.1
−0.8±1.0 0.06±0.02±0.02 5.9+1.4

−1.2±1.2 7
≥ 800 1.09+0.34

−0.32±0.45 2.10+0.96
−0.69±0.93 < 0.01 3.2+1.0

−0.8±1.0 2

7-9j, 2b
400-600 8.1+1.8

−1.6±1.0 2.4+1.1
−0.8±0.4 0.35±0.06±0.10 10.9+2.1

−1.8±1.2 10
600-800 1.78+0.54

−0.52±0.40 0.62+0.28
−0.20±0.25 0.02±0.01±0.01 2.41+0.61

−0.56±0.49 5
≥ 800 0.40+0.19

−0.18±0.17 0.55+0.25
−0.18±0.25 0.01±0.01±0.00 0.96+0.31

−0.26±0.30 0

7-9j, 3b
400-800 2.40+0.74

−0.72±0.29 0.32+0.15
−0.10±0.12 0.10±0.03±0.03 2.82+0.76

−0.72±0.32 2
≥ 800 0.16±0.09±0.07 0.08+0.04

−0.03±0.04 < 0.01 0.24±0.09±0.08 0
7-9j, ≥ 4b ≥ 400 0.52+0.23

−0.22±0.08 0.07+0.03
−0.02±0.06 0.02±0.01±0.01 0.61+0.23

−0.22±0.10 1

≥ 10j, 0b
400-800 1.41±0.38±0.33 1.52+0.35

−0.29±0.34 0.23±0.05±0.08 3.17+0.52
−0.48±0.49 11

≥ 800 0.05±0.02±0.02 0.37+0.09
−0.07±0.17 0.01±0.01±0.00 0.43+0.09

−0.08±0.17 0

≥ 10j, 1b
400-800 2.16+0.71

−0.69±0.25 0.56+0.25
−0.18±0.16 0.14±0.04±0.05 2.85+0.76

−0.71±0.31 3
≥ 800 0.55±0.30±0.22 0.13+0.06

−0.04±0.07 < 0.01 0.68+0.31
−0.30±0.23 0

≥ 10j, 2b ≥ 400 1.98+0.69
−0.67±0.24 0.30+0.14

−0.10±0.12 0.05±0.02±0.02 2.33+0.70
−0.68±0.28 0

≥ 10j, 3b ≥ 400 0.77±0.35±0.09 0.00+0.45
−0.00±0.00 0.05±0.03±0.02 0.82+0.57

−0.35±0.09 1
≥ 10j, ≥ 4b ≥ 400 0.09±0.05±0.01 0.00+0.45

−0.00±0.00 < 0.01 0.09+0.45
−0.05±0.01 0
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Appendix B

Full Disappearing Tracks Binning

and Results

The following tables provide predicted background event counts and observed yields for

all 68 disappearing tracks search regions (28 for 2016 data, and 40 for 2017–2018 data).
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Table B.1: Summary of the 28 signal regions of the search for disappearing tracks, for the 2016
data set, together with the corresponding background predictions and observations. For the
background predictions, the first uncertainty listed is statistical (from the limited size of control
samples), and the second is systematic. The systematic uncertainty is not shown when it is
negligible. Taken from [63].

Track length Njet HT range [GeV] Track pT [GeV] Label Background Data

P

2–3

[ 250, 450 )
[ 15, 50 ) P LL lo 15.5 +3.0

−2.7 ± 3.2 16
[ 50, ∞ ) P LL hi 9.8 +2.6

−2.2 ± 2.5 3

[ 450, 1200 )
[ 15, 50 ) P LM lo 4.2 +1.0

−0.9 ± 1.2 2
[ 50, ∞ ) P LM hi 2.02 +0.66

−0.55 ± 0.63 1

[ 1200, ∞ )
[ 15, 50 ) P LH lo 0.19 +0.26

−0.13 ± 0.13 0
[ 50, ∞ ) P LH hi 0.06 +0.14

−0.05 ± 0.03 0

≥ 4

[ 250, 450 )
[ 15, 50 ) P HL lo 3.3 +0.7

−0.6 ± 1.4 1
[ 50, ∞ ) P HL hi 1.98 +0.43

−0.38 ± 0.57 1

[ 450, 1200 )
[ 15, 50 ) P HM lo 4.7 +0.8

−0.7 ± 1.9 6
[ 50, ∞ ) P HM hi 2.37 +0.50

−0.44 ± 0.55 1

[ 1200, ∞ )
[ 15, 50 ) P HH lo 0.43 +0.24

−0.17 ± 0.27 0
[ 50, ∞ ) P HH hi 0.17 +0.10

−0.07 ± 0.04 0

M

2–3

[ 250, 450 )
[ 15, 50 ) M LL lo 3.9 +1.5

−1.2 ± 1.3 3
[ 50, ∞ ) M LL hi 14 +3.7

−3.2 ± 4.0 8

[ 450, 1200 )
[ 15, 50 ) M LM lo 2.1 +0.89

−0.71 ± 1.1 3
[ 50, ∞ ) M LM hi 0.68 +0.90

−0.45 ± 0.35 4

[ 1200, ∞ )
[ 15, 50 ) M LH lo 0.0 +0.25

−0.0 ± 0.0 0
[ 50, ∞ ) M LH hi 0.0 +0.7

−0.0 0

≥ 4

[ 250, 450 )
[ 15, 50 ) M HL lo 1.8 +0.6

−0.5 ± 0.9 0
[ 50, ∞ ) M HL hi 2.1 +0.8

−0.6
+2.3
−2.1 2

[ 450, 1200 )
[ 15, 50 ) M HM lo 2.2 +0.7

−0.6 ± 1.3 1
[ 50, ∞ ) M HM hi 2.9 +0.9

−0.8 ± 2.3 0

[ 1200, ∞ )
[ 15, 50 ) M HH lo 0.23 +0.23

−0.13 ± 0.11 0
[ 50, ∞ ) M HH hi 0.30 +0.40

−0.20 ± 0.29 1

L

2–3
[ 250, 1200 ) [ 15, ∞ ) L LLM 0.046 +0.050

−0.034
+0.057
−0.046 0

[ 1200, ∞ ) [ 15, ∞ ) L LH 0.015 +0.036
−0.015 ±

+0.022
−0.015 0

≥ 4
[ 250, 1200 ) [ 15, ∞ ) L HLM 0.092 +0.136

−0.085
+0.130
−0.092 0

[ 1200, ∞ ) [ 15, ∞ ) L HH 0.0 +0.1
−0.0 0
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Table B.2: Summary of the 40 signal regions of the search for disappearing tracks, for the
2017–2018 data set, together with the corresponding background predictions and observations.
For the background predictions, the first uncertainty listed is statistical (from the limited size of
control samples), and the second is systematic. The systematic uncertainty is not shown when it
is negligible. Taken from [63].

Track length Njet HT range [GeV] Track pT [GeV] Label Background Data

P3

2–3

[ 250, 450 )
[ 15, 50 ) P3 LL lo 78 +9

−9 ± 34 73
[ 50, ∞ ) P3 LL hi 43.9 +6.7

−6.2 ± 8.1 41

[ 450, 1200 )
[ 15, 50 ) P3 LM lo 30 +5

−5 ± 16 21
[ 50, ∞ ) P3 LM hi 13 +3

−3 ± 13 16

[ 1200, ∞ )
[ 15, 50 ) P3 LH lo 0.0 +1.0

−0.0 1
[ 50, ∞ ) P3 LH hi 0.43 +0.98

−0.36 ± 0.34 0

≥ 4

[ 250, 450 )
[ 15, 50 ) P3 HL lo 25.8 +3.8

−3.4 ± 7.9 17
[ 50, ∞ ) P3 HL hi 10.8 +2.1

−1.8 ± 3.5 7

[ 450, 1200 )
[ 15, 50 ) P3 HM lo 28.9 +4.0

−3.7 ± 5.7 37
[ 50, ∞ ) P3 HM hi 12.3 +2.2

−1.9 ± 6.8 11

[ 1200, ∞ )
[ 15, 50 ) P3 HH lo 3.1 +1.5

−1.1 ± 0.5 5
[ 50, ∞ ) P3 HH hi 0.49 +0.65

−0.32 ± 0.12 3

P4

2–3

[ 250, 450 )
[ 15, 50 ) P4 LL lo 24 +5

−5 ± 11 10
[ 50, ∞ ) P4 LL hi 4.1 +1.9

−1.5 ± 3.7 0

[ 450, 1200 )
[ 15, 50 ) P4 LM lo 8.7 +2.7

−2.2 ± 4.6 8
[ 50, ∞ ) P4 LM hi 1.1 +0.7

−0.5 ±
+1.4
−1.1 0

[ 1200, ∞ )
[ 15, 50 ) P4 LH lo 0.40 +0.91

−0.33 ± 0.40 0
[ 50, ∞ ) P4 LH hi 0.0 +0.39

−0.0 0

≥ 4

[ 250, 450 )
[ 15, 50 ) P4 HL lo 6.3 +1.6

−1.3 ± 2.2 7
[ 50, ∞ ) P4 HL hi 0.62 +0.35

−0.25 ± 0.43 0

[ 450, 1200 )
[ 15, 50 ) P4 HM lo 6.9 +1.6

−1.4 ± 6.2 2
[ 50, ∞ ) P4 HM hi 1.32 +0.54

−0.43 ± 0.63 2

[ 1200, ∞ )
[ 15, 50 ) P4 HH lo 0.42 +0.56

−0.28 ± 0.12 0
[ 50, ∞ ) P4 HH hi 0.08 +0.18

−0.07 ± 0.03 0

M

2–3

[ 250, 450 )
[ 15, 50 ) M LL lo 8.4 +2.4

−2.0 ± 3.4 8
[ 50, ∞ ) M LL hi 5.4 +2.2

−1.8 ± 2.6 2

[ 450, 1200 )
[ 15, 50 ) M LM lo 1.90 +0.85

−0.66 ± 0.92 6
[ 50, ∞ ) M LM hi 1.12 +0.77

−0.54 ± 0.97 1

[ 1200, ∞ )
[ 15, 50 ) M LH lo 0.00 +0.36

−0 0
[ 50, ∞ ) M LH hi 0.00 +0.46

−0 0

≥ 4

[ 250, 450 )
[ 15, 50 ) M HL lo 1.6 +0.6

−0.5
+3.0
−1.6 3

[ 50, ∞ ) M HL hi 1.11 +0.57
−0.42 ± 0.58 1

[ 450, 1200 )
[ 15, 50 ) M HM lo 1.9 +0.6

−0.5
+3.5
−1.9 3

[ 50, ∞ ) M HM hi 1.5 +0.7
−0.5 ± 1.1 0

[ 1200, ∞ )
[ 15, 50 ) M HH lo 0.38 +0.31

−0.19
+0.70
−0.38 1

[ 50, ∞ ) M HH hi 0.12 +0.29
−0.10 ± 0.04 0

L

2–3
[ 250, 1200 ) [ 15, ∞ ) L LLM 0.46 +0.26

−0.20
+0.53
−0.46 0

[ 1200, ∞ ) [ 15, ∞ ) L LH 0.00 +0.14
−0 0

≥ 4
[ 250, 1200 ) [ 15, ∞ ) L HLM 0.013 +0.015

−0.014
+0.018
−0.013 0

[ 1200, ∞ ) [ 15, ∞ ) L HH 0.000 +0.008
−0 0
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