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Introduction

Stroke is the leading cause of severe movement disability 
worldwide (Lopez et  al 2006, Feigin et  al 2014); it affects 
more than 700 000 people in the US each year (Broderick 
et al 1998). Approximately 82% of people with acute stroke 

experience motor deficits, with about 76% experiencing upper 
extremity deficits (Rathore et  al 2002). To reduce motor 
impairment, people with stroke typically undergo several 
months of movement rehabilitation therapy; this is associ-
ated with inconsistent and often modest benefits. An impor-
tant direction for stroke rehabilitation research is to develop 
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Abstract
Objective. Brain–computer interface (BCI) technology is attracting increasing interest as a 
tool for enhancing recovery of motor function after stroke, yet the optimal way to apply this 
technology is unknown. Here, we studied the immediate and therapeutic effects of BCI-based 
training to control pre-movement sensorimotor rhythm (SMR) amplitude on robot-assisted 
finger extension in people with stroke. Approach. Eight people with moderate to severe hand 
impairment due to chronic stroke completed a four-week three-phase protocol during which 
they practiced finger extension with assistance from the FINGER robotic exoskeleton. In Phase 
1, we identified spatiospectral SMR features for each person that correlated with the intent to 
extend the index and/or middle finger(s). In Phase 2, the participants learned to increase or 
decrease SMR features given visual feedback, without movement. In Phase 3, the participants 
were cued to increase or decrease their SMR features, and when successful, were then cued 
to immediately attempt to extend the finger(s) with robot assistance. Main results. Of the 
four participants that achieved SMR control in Phase 2, three initiated finger extensions with 
a reduced reaction time after decreasing (versus increasing) pre-movement SMR amplitude 
during Phase 3. Two also extended at least one of their fingers more forcefully after decreasing 
pre-movement SMR amplitude. Hand function, measured by the box and block test (BBT), 
improved by 7.3  ±  7.5 blocks versus 3.5  ±  3.1 blocks in those with and without SMR control, 
respectively. Higher BBT scores at baseline correlated with a larger change in BBT score. 
Significance. These results suggest that learning to control person-specific pre-movement SMR 
features associated with finger extension can improve finger extension ability after stroke for 
some individuals. These results merit further investigation in a rehabilitation context.
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training techniques that best engage the resources for neu-
roplasticity that each patient retains after stroke (Boyd et al 
2017).

Robotic devices, including exoskeletons, have been devel-
oped to assist movement training for people with stroke and 
other neurologic impairments (Reinkensmeyer et  al 2004). 
Developers typically state three main goals for such devices: 
automating the repetitive and strenuous aspects of movement 
training; delivering rehabilitation therapy in a more repeatable 
manner; and quantifying outcomes with greater precision. In 
addition, robotic assistance can enhance afferent feedback, 
which may aid in neural reorganization (Takahashi et al 2008, 
Hornby et  al 2010, Rowe et  al 2017). Systematic reviews 
indicate that well-designed robot-assisted therapy typically 
produces results equal to or slightly better than the results of 
conventional rehabilitation techniques (Kwakkel et al 2008, 
Mehrholz 2008). Nevertheless, the benefits are modest, and 
an important direction in robot-assisted training is to develop 
novel approaches that increase benefit, as well as to accurately 
identify individuals who can benefit from specific approaches.

Brain–computer interface (BCI) systems have been pro-
posed in this regard; they are attracting increasing interest to 
enhance rehabilitation protocols in people with motor impair-
ment after a neurological injury (Daly and Wolpaw 2008, Ang 
and Guan 2013, McCrimmon et al 2016). The most common 
use of BCI for movement rehabilitation employs muscle stim-
ulation or orthotic assistance that is contingent on the subject 
generating a target pattern of brain activity. This approach 
might augment movement recovery by using operant condi-
tioning to normalize brain states conducive to movement, or 
by coupling movement-related brain states to time-correlated 
sensory feedback (Daly and Wolpaw 2008, Cramer et al 2011, 
Ang and Guan 2013).

One brain signal often used in BCI applications is the sen-
sorimotor rhythm (SMR). SMRs are 8–12 Hz or 18–26 Hz 
rhythms in electroencephalographic (EEG) activity recorded 
over sensorimotor cortex (Pfurtscheller and McFarland 2012). 
SMR decrease, called event-related desynchronization (ERD) 
(Pfurtscheller and Aranibar 1977, Pfurtscheller and Lopes da 
Silva 1999) typically occurs before and during active move-
ments; SMR increase, called event-related synchronization 
(ERS), typically occurs after movement (Pfurtscheller and 
Aranibar 1977, Pfurtscheller et  al 2005, Pfurtscheller and 
McFarland 2012). However, the neural mechanisms gener-
ating SMRs and how pre-movement SMRs affect subsequent 
motor behavior are less clear. SMR changes appear to result 
from a distributed process including premotor and motor 
cortices, subcortical, and spinal centers (Cohen et al 2010). 
High SMR power at rest is thought to reflect motor inhibition 
(Pfurtscheller 1992), a view consistent with SMR ERD before 
and during movement and SMR ERS after movement. On 
the other hand, SMR changes are not linked solely to active 
movement; they may also change in response to afferent input 
alone, as evidenced by their modulation prior to passive move-
ments produced by a robotic orthosis (Formaggio et al 2013, 
Norman et al 2016a). Taken together, this evidence suggests 
that control of SMR may play a role in movement control 

and learning by altering motor excitability and/or modulating 
afferent input.

Several studies have explored SMR training as an inter-
vention for people with motor deficits after stroke (Buch 
2008, Daly et al 2009, Broetz et al 2010, Prasad et al 2010, 
Ramos-Murguialday et al 2012, Takahashi et al 2012, Ramos-
Murguialday et al 2013, Pichiorri et al 2015). Typically, these 
studies have focused on training SMR modulation during 
movement or movement imagery: they have used SMR ampl-
itude to control robotic orthoses that assisted movement, or 
they have sought to improve SMR ERD during movement 
with the expectation that this will improve movement. These 
studies assume that the temporal relation in activation of 
motor areas and sensory areas associated with proprioceptive 
and tactile feedback produced by limb movement are benefi-
cial to motor learning and rehabilitation, perhaps driven by 
Hebbian learning effects (Gomez-Rodriguez et  al 2011) or 
priming of subsequent physiotherapy (Curado et al 2015). In 
general, these types of BCI interventions have shown mod-
erate clinical effects in controlled clinical trials (Cervera et al 
2017).

To the extent that poor motor preparation can also limit 
subsequent motor function, training pre-movement SMR con-
trol might also improve the ensuing motor action. In a BCI-
motor task, McFarland et al taught eight unimpaired people 
to regulate SMR amplitude before movement to initiate a 
subsequent upper extremity movement task. Following suc-
cessful BCI training, three of eight participants significantly 
reduced response times when they reduced SMR amplitude 
before movement (McFarland et  al 2015). Delays in move-
ment initiation have been described in finger extension after 
stroke (Seo et  al 2009). These delays limit motor function 
and contribute to disability in hemiparetic patients (Chae et al 
2002), suggesting them as possible targets for intervention. 
Another benefit of training pre-movement SMR regulation 
is that it may better prepare sensorimotor cortical areas vital 
to motor learning after stroke. In unimpaired people, down-
regulating SMR naturally occurs before movement onset and 
is likely related to the generation and processing of afferent 
information that can drive motor learning (Formaggio et  al 
2013, Norman et  al 2016a). However, pre-movement SMR 
changes are attenuated in people with motor impairments (Fu 
et al 2006). Here, we train pre-movement SMR control online 
for the first time in people with stroke.

In this study, we hypothesized that: (1) people with stroke 
can learn to control SMR amplitude; and (2) pre-movement 
SMR amplitude modulation will affect movement onset 
latency and maximum finger extension torque. We also 
quanti fied the functional impact of this training, which would 
presumably be due to motor learning, using a standard clinical 
measure of hand function.

This study differs from previous efforts to apply BCI tech-
nology in rehabilitation in that it uses the BCI to improve 
preparation for movement rather than using the BCI to assist 
movement or to modify the brain state during movement. 
This approach relies on evidence that advanced preparation 
improves subsequent motor performance and the assumption 
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that improved performance can result in a therapeutic benefit. 
Elevated motor cortical power has been shown to be associated 
with neural patterns that promote tone and slow movements 
(Gilbertson et al 2005). Later studies exploited this associa-
tion in non-human primates (Khanna and Carmena 2017) and 
humans (Boulay et al 2011, McFarland et al 2015), showing 
that reducing motor cortical power can reduce subsequent 
movement onset delay. Although therapeutic mechanisms are 
less well defined, controlling SMR into a movement-favorable 
state before moving may allow individuals to repeatedly prac-
tice better quality movements with improved motor cortex 
excitability (Pichiorri et al 2011), which may be beneficial for 
motor learning and rehabilitation (Stinear et al 2008, Pomeroy 
et al 2011, Stinear et al 2014, Hsieh et al 2017).

This study is unique also in that it used a finger-individuated 
robotic hand orthosis. This permitted training more complex 
movement tasks (e.g. extending one finger while inhibiting 
movement in another—i.e. finger individuation), which are 
tasks with greater cognitive requirements since they involve 
more complex decision making based on cues. Specifically, 
we employed a visual matching task that asked the partici-
pant to identify spatially distributed stimuli and then make 
the appropriate finger movements or non-movements. Such 
complex tasks can increase activity in brain motor areas more 
than simpler tasks (Meister et al 2005). Furthermore, complex 
action selection matching tasks may improve motor training 
for people with chronic hemiparesis after stroke (Stewart et al 
2016). Finally, this study focused on finger extension move-
ments, because extension movement onset (Seo et  al 2009) 
and torque production are particularly impaired in people with 
stroke, thereby limiting overall hand function (Conrad and 
Kamper 2012, Wolbrecht et al 2018).

Methods

Participants

We recruited individuals who: had experienced a single hem-
orrhagic or ischemic stroke at least six months previously that 
had spared the ipsilesional precentral gyrus (i.e. the stroke was 
subcortical or, if it was cortical, it spared the primary motor 
area); and had a significant but not total deficit of finger motor 
function, defined as a box and block test (BBT) score from 1 

to 25 (i.e. less than one-third normal, but able to manipulate at 
least one block). The resulting eight (N  =  8) participants were 
all men, aged 44–83 (mean 59.5  ±  SD 11.8), with BBT score 
at baseline from 1 to 28 (mean 12.0  ±  8.5), and arm motor 
Fugl-Meyer Assessment scores at baseline of 23–50 out of 66 
(mean 37.6  ±  11.0). All participants were new to BCI training 
and achieved a satisfactory score (minimum 24) on the mon-
treal cognitive assessment (MoCA). All participants provided 
written informed consent and the study was approved by the 
Institutional Review Board of UC Irvine. The authors have 
confirmed that any identifiable participants in this study have 
given their consent for publication.

Protocol

Each participant completed a four-week, 12-session protocol 
(three sessions/wk). Each session comprised eight 3 min runs 
of about 30 trials each, for an average total of 240 trials/ses-
sion. The study was divided into three Phases. Phases 1 and 
3 each lasted one week, and incorporated finger extension 
practice using the finger individuating grasp exercise robot 
(FINGER) robotic exoskeleton (Taheri et al 2014). Phase 2 
lasted two weeks and focused solely on SMR control (figure 
1). Phase 1 identified 1–3 SMR features in the EEG during 
preparation for finger extension that correlated with the Go/
NoGo condition of the finger extension movement trial. Phase 
2 trained users to increase or decrease the amplitude of these 
SMR features using visual feedback only, without attempting 
to move the fingers. Phase 3 combined the SMR regulation of 
Phase 2 with the movement of Phase 1 to evaluate the effects 
of pre-movement SMR amplitude control on an immediately 
ensuing finger extension movement attempt.

Phase 1—identification of SMR features

In Phase 1, we sought to identify participant-specific SMR 
features that predicted the intent to try to extend the fingers as 
quickly and forcefully as possible. Participants sat in a chair 
facing a 24″ 1920  ×  1080 monitor placed on a table  1.5 m 
away while EEG was recorded. Participants completed a Go/
NoGo task cued on the monitor. ‘Go’ trials required them to 
extend the index finger only, the middle finger only, or both 
fingers together. On these trials, robot assistance was provided 

Figure 1. Timeline of study. Each dot represents a day with one session of training. Each group of three dots represents one week of 
training (4 weeks total). Red dots are robot-assisted movement sessions; blue dots are BCI-based SMR/visual feedback-only sessions; blue/
red dots are sessions in which SMR control triggered robot-assisted movement. Phases 1 and 3 had three sessions each, while Phase 2 had 
six sessions. Movement (finger extension) analyses are indicated (m). Clinical assessments (c) of upper-extremity movement ability  
(box and block) were conducted at the beginning and end of Phases 1 and 3.

J. Neural Eng. 15 (2018) 056026



S L Norman et al

4

by the FINGER robot (Taheri et al 2012). FINGER assisted 
flexion/extension of the index and middle fingers along a natu-
ralistic grasping/release trajectory; it also recorded position, 
acceleration, and force at the proximal and middle phalanxes 
of the index and middle fingers to calculate torque at the meta-
carpophalangeal (MCP) joint. Robot data were sampled at 
1000 Hz for the control loop and sub-sampled for recording 
at 64 Hz. On the ‘Go’ trials, the robot did not assist until the 
participant reached a finger extension torque threshold equal 
to ~0.034 Nm. This required the participant to initiate each 
trial; once this occurred, the robot-assisted for the remainder 
of the movement. This assistance enabled the participant to 
complete finger extension movements that he might not be 
able to complete on his own. Assistance torque was provided 
by a proportional-derivative position controller that corrected 
user movement towards a minimum-jerk trajectory that would 
complete a full extension movement in 0.5 s. Thus, if the par-
ticipant lagged the trajectory, the robot would assist. However, 
if the participant exceeded the trajectory, the robot would slow 
the movement. We did not observe a slowing effect in any of 
the participants in this study.

Participants were visually cued to attempt different finger 
extension movements, which were randomized between 
(1) no movement (i.e. ‘NoGo’ condition for both fingers); 
(2) move index finger only; (3) move middle finger only; 
and (4) move both fingers. All movements were attempted 
using the paretic hand. Each trial began with the fingers at 
rest in the flexed position. During a 1 s pre-movement period 
(figure 2(a)), the participant saw a yellow circle(s) for the to- 
be-extended finger(s) and a blue circle(s) for finger(s) that were 
to remain flexed. At the beginning of the subsequent response 
interval (figure 2(b)), yellow circles changed to green to cue 
extension (‘Go’ condition) and blue circles changed to red 
to cue the finger to remain flexed (‘NoGo’ condition for that 
finger). The participant was instructed to respond as quickly 
as possible to this imperative stimulus and had 2 s to complete 
the response. The participant’s correct response to a ‘Go’ cue 
elicited robot assistance for the remainder of the movement 
and the green circle grew in proportion to finger position as a 
form of positive visual feedback (figure 2(c)). If the response 
was correct and the movement was completed, the circle 
turned white for 1 s (figure 2(d)) and the participant was given 
visual feedback in the form of a score number indicating the 
latency from the go cue to finger movement initiation. If both 
fingers were given ‘NoGo’ cues and the participants correctly 
remained at rest for 1 s, the circles turned white for 1 s. If the 
response was not correct, or 2 s expired, the screen went blank 
for 1 s. Figure 2 also shows an example of the finger position 
response profile recorded from a single trial. After each move-
ment, the robot returned the fingers to the flexed position and 
kept them there.

EEG data collection and processing. We recorded EEG with 
9 mm tin electrodes embedded in a cap (Electro-Cap Interna-
tional, Inc.) at 16 scalp locations according to the modified 
10–20 system of Sharbrough et  al (1991) (locations F3, Fz, 
F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4, PO7, PO8, 

Oz). The electrodes were referenced to the mastoid and re- 
referenced in a bi-polar montage to Cz. The signals were ampli-
fied and digitized at 256 Hz by a g.tec g.USBamp biosignal 
amplifier. BCI operation and data collection were supported 
by the BCI2000 platform (Schalk et al 2004, Mellinger and 
Schalk 2009). We performed spectral analyses using the 24th-
order autoregressive (AR) algorithm described in McFarland 
and Wolpaw (McFarland and Wolpaw 2008), similar to the 
16th-order model used in McFarland et al (2015). We used an 
increased model order due to the higher sampling rate (256 Hz 
versus 160 Hz). This AR analysis determines the amplitude, i.e. 
square root of power, within discrete 3 Hz spectral bands from 
12 to 24 Hz for 400 ms sliding windows updated every 50 ms 
for the 1 s after the warning stimulus (figure 2(a)) and preced-
ing the imperative (‘Go’ or ‘NoGo’) stimulus (figure 2(b)). In 
summary, the AR spectral analysis is a linear prediction filter 
that uses the Berg algorithm (Marple 1987) to estimate AR fil-
ter weights without necessitating matrix inversion. To estimate 
these weights and the resulting power spectra we used routines 
from Press et al (1986). We chose these param eters, e.g. spec-
tral bandwidth, and routines, e.g. Berg algorithm, to match 
our previous work and historical data in unimpaired people to 
avoid confounding comparisons.

EEG data modeling. We analyzed spatiospectral EEG activ-
ity from phase 1 for the immediate pre-movement period (i.e. 
between the warning and imperative cues) to identify the 
SMR features (i.e. amplitudes in specific frequency bands at 
specific locations over sensorimotor cortex of either hemi-
sphere) that best predicted movement (of one or both fingers) 
versus no movement. We used the Elastic Net with l1 and l2 
regularization regression model in the glmnet package from 
R (Friedman et al 2010) to correlate potential SMR features 
(e.g. SMR amplitude at 12–15 Hz for electrode C3) with the 
warning cue value (‘Go’ versus ‘NoGo’). We chose to use 
Elastic Net regression because, for people with stroke practic-
ing robot-assisted finger movement, it generalized to new data 
with the highest accuracy among several regression models 
(Norman et al 2016b). The elastic net minimizes the vector of 
regression weights:

β′ = argmin
{∑

(yi − β0 − xT
i β)

2
+ λPαβ

}
 (1)

where yi is the ith value of the vector of values to be predicted, 
xi is the ith vector of predictors, λ is the weight of the penalty 
term and:

Pα (β) =
∑{1�2 (1 − α)β2

j + α|βj|
}

. (2)

The parameters λ and α are optimized by a grid search of 
values determined by a glmnet package heuristic. A 7-fold 
cross-validation was performed using training data chosen at 
random from each participant’s data from Phase 1. This pro-
vides an optimized combination of l1 (i.e. absolute sum of the 
weights) and l2 (i.e. squared sum of the weights) penalties on 
the regression weights. The resulting EEG features achieving 
the largest r2 values were then used as the SMR features for 
online feedback in Phases 2 and 3.
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Phase 2—sensorimotor rhythm training

In Phase 2, participants were trained to control the SMR fea-
ture amplitudes selected based on the analysis of the Phase-1 
data. Each participant completed three sessions of Phase-2  

training/wk for two weeks (six total sessions). Each session 
lasted ~1 h and included eight 3 min runs of SMR training. 
Participants learned to change (increase or decrease) the 
amplitude of the SMR feature(s) identified in Phase 1 using 
visual feedback in the form of color change of a square on 

Figure 2. Trial progressions are shown for Phases 1–3. BCI control components are in boxes outlined in blue; robot-assisted movements are 
in boxes outlined in red. Phase 1: participants are cued to attempt extension of the index finger, middle finger, or both. Shown here are the 
visual cues for an index finger trial. (a) An index movement preparation warning cue (yellow dot); (b) the imperative ‘Go’ cue for an index 
finger movement (green dot); (c) the participant’s correct response (index finger extension) elicits robot assistance for the remainder of the 
movement and visual feedback occurs (green dot grows with finger position); (d) the dot turns white indicating a properly executed movement. 
Phase 2: the participant attempts to increase SMR amplitude for targets of one color (yellow or blue) and decrease SMR amplitude for targets 
of the other color. (e) A yellow square appears, prompting this participant to increase SMR amplitude (a blue square would prompt SMR 
decrease in this participant); (f) the square brightens as SMR amplitude approaches the criterion; (g) satisfying the criterion for 1 s produces a 
green square indicating success; (h) the screen goes blank for 2.5 s. Phase 3: (i) as in Phase 2, this participant modulates SMR amplitude; (j) as 
SMR amplitude approaches and satisfies the criterion value, the square brightens; (k) when the SMR criterion is satisfied for the required 1 s, a 
movement stimulus appears; (l) the green circle grows with finger extension; (m) if the movement is properly executed, the green circle turns 
white; the screen is blank for 2.5 s and the robot returns the participant’s finger to the starting position.

J. Neural Eng. 15 (2018) 056026
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the monitor. We suggested that they explore different motor 
imagery scenarios (e.g. finger movement versus no move-
ment) until they found a strategy that allowed them to con-
trol the BCI. For each trial, the starting color of the 5.1 cm 
square was randomly chosen to be yellow or blue. When the 
square appeared (figure 2(e)), the participants controlled the 
satur ation of the colored square based on real-time feedback 
of their SMR amplitude. For squares of one color (yellow 
or blue), a given participant was asked to maintain the SMR 
amplitude above a criterion value for 1 s. For squares of the 
other color, the participant was asked to maintain the SMR 
amplitude below a criterion value for 1 s. The square became 
brighter as SMR amplitude approached the criterion for 1.0 s 
(figure 2(f)); when it satisfied the criterion for 1.0 s, the square 
became bright green for 0.5 s (figure 2(g)). A coding error 
resulted in three participants’ (e, f, and h) mappings of SMR 
up-regulation versus down-regulation to blue versus yellow 
cues to be reversed. However, participants’ mappings were 
maintained throughout Phases 2 and 3; thus, besides the color 
reversal, this change did not affect the methodology or results. 
If SMR ampl itude changed in the wrong direction (incorrect 
trial) or did not maintain the criterion for 1 s within 5 s (aborted 
trial), the screen simply went blank. After the completion of a 
trial, the screen remained blank for the 2.5 s inter-trial interval.

As described above, the specific spatiospectral features of 
the SMR were participant-dependent as determined from their 
Phase-1 data. We selected the SMR features that maximized 
the predictive movement/no-movement capacity for each 
participant.

Phase 3—SMR-triggered movement performance

Phase 3 comprised three sessions over one week immediately 
following the conclusion of Phase 2. During Phase 3, partici-
pants were given visual feedback on their ability to change 
SMR amplitude. As during Phase 2, they were initially pre-
sented with a colored square that was color-saturated by cor-
rect SMR amplitude change. When the participant satisfied the 
criterion for 1 s, a movement trial was immediately cued. As in 
Phase 1, they were instructed to respond as quickly as possible 
to the cue. As in Phase 1, the robot actively maintained a con-
stant position, thereby resisting movement and enabling iso-
metric torque to be measured. Once the participants initiated 
a movement (i.e. reached the small torque threshold of 0.034 
Nm), robot assistance was activated, extending the finger and 
thereby providing haptic feedback. Figure 2 shows a represen-
tative Phase-3 trial.

During Phase 3, we collected two primary measures of 
movement performance: latency to movement onset and max-
imum MCP torque. Latency to movement onset was defined 
as the time it took the participants to initiate movement (i.e. 
exceed the torque threshold that triggered robot assistance) 
after being given the ‘Go’ cue. Torque about the metacar-
pophalangeal joint (MCP torque) was calculated based on the 
forces measured by transducers on the proximal and middle 
finger joints of the index and middle fingers. Here, we report 

peak MCP torque, calculated as the maximum MCP torque on 
an individual trial in the extension direction, normalized to the 
maximum torque across all Phase 3 trials for that participant. 
Thus, MCP torque is reported as a value between 0 and 1.

Clinical outcome

The clinical outcome measure of this study was the BBT 
(Radomski and Latham 2008), in which a wooden box with 
two separate compartments divided by a partition is placed 
in front of the participant. The person then attempts to move 
as many one-inch cubic blocks as possible from one com-
partment over the partition into the other compartment in 
1 min. The average score for an unimpaired male age 60–64 is 
71.3  ±  8.8 blocks (Mathiowetz et al 1985).

Results

Phase 1—identification of SMR features

Phase-1 data were collected to identify participant-specific 
SMR features that best predicted the movement intention of 
the participant (i.e. whether they intended to move—to extend 
one or both fingers—or to not move). We successfully gen-
erated models for all eight participants that correlated SMR 
features with the Go/NoGo response condition in the training 
data from the first two sessions (R values were 0.18–0.78, 
mean R  =  0.53, p  <  0.05 for 8/8 participants and p  <  0.01 
for 7/8 participants). These models generalized well to test 
data acquired from the third session (R values 0.078–0.77, 
mean R  =  0.48, p  <  0.05 for 7/8 participants and p  <  0.01 for 
5/8 participants). For each participant, we selected the model 
that had the highest correlation to the response condition (i.e. 
Go or NoGo). The linear combination of these SMR features 
comprised the ‘SMR Composite’ signal that was used in Phase 
2 to measure SMR amplitude. In other words, changing the 
SMR composite score—a linear combination of the power of 
the SMR features identified for each person—directly affected 
the stimulus color during Phases 2 and 3. Table 1 shows, for 
each participant, the 1–3 SMR features that had the largest 
weights in the regression models and thus were used to deter-
mine SMR amplitude. Note that all channels were bipolar ref-
erenced to Cz.

Phase 2—sensorimotor rhythm training

The purpose of Phase 2 was for the participants to learn 
through visual feedback to modulate the SMR amplitude 
selected for them in Phase 1 (figure 2). Table  1 shows the 
percent age of trials in the final Phase-2 session in which each 
participant modulated SMR amplitude appropriately. Aborted 
trials, i.e. those in which SMR amplitude did not reach the up 
criterion or the down criterion within 5 s, are excluded (abort 
rates ranged from 29% to 47%, mean 39%). To determine if 
the participants were controlling the BCI above chance level, 
we used the binomial distribution with a chance level of 0.50 
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and a threshold of p  <  0.001 (Combrisson and Jerbi 2015). 
Six of the eight participants achieved hit rates that were sig-
nificantly above chance level (bolded in table 1).

Topographical and spectral analyses provide important 
insight into each participant’s control. Figure  4 shows for 
each participant the scalp topography and frequency spec-
trum for each participant for one of his selected SMR features 
(i.e. table 1). The topography shows the scalp distribution of 
control (i.e. correlation with whether the instruction was to 
increase or decrease SMR amplitude) at the frequency of that 
feature; the spectra indicate the frequency-specificity of that 
control. Four participants (a, b, c and d) gained control that 
was focused in an SMR frequency band and concentrated 
over lateral or central sensorimotor cortical areas. Two par-
ticipants (g and h) did not gain control. In the remaining two 
(e and f), the control was not spectrally or topographically 
focused; it extended across the frequency spectrum, indicating 
that it was almost certainly due to head/neck muscle activity 
(Goncharova et al 2003). In fact, the study proctors noted that 
these two participants (e and f) shrugged their shoulders or 
tensed their necks during recording sessions, despite requests 
to avoid doing so. Thus, these two participants did not demon-
strate actual SMR control (figure 5).

Phase 3—SMR-triggered movement performance

The purpose of Phase 3 was to combine the SMR feature 
modulation of Phase 2 with the overt movement of Phase 1 
to explore the impact of pre-movement SMR modulation on 
subsequent movement performance in people with stroke. In 
Phase 3 as in Phase 2, the participants modulated SMR ampl-
itude up or down as instructed on the monitor. Once they had 
maintained the SMR criterion value for 1 s, a finger extension 
task was immediately cued (figure 3(k)). We quantified two 
movement performance measures: latency to movement onset 
and maximum extension torque at the MCP joint. We focus 
our analysis here to the four participants (a, b, c and d) who 
demonstrated actual SMR amplitude control.

We performed two-way ANOVAS for each dependent 
motor performance measure (latency to movement initiation 
and maximum MCP extension torque) where the finger target 
(index, middle, both) and SMR condition (increase, decrease) 
served as independent variables. Analysis across participants 
showed that SMR condition and the finger used had significant 

effects on movement latency (p  <  0.001) with no interaction 
effects (p  =  0.443). SMR condition (p  =  0.012) and finger 
(p  <  0.001) also had significant effects on maximum MCP 
torque with no significant interaction effects (p  =  0.557).

We also performed two-way ANOVAs within the four par-
ticipants (a, b, c, d) with significant narrow-band BCI con-
trol at the end of Phase 2. Example movement traces can be 
seen for each of these participants’ index finger extensions 
in figure 6. Three of four participants showed significantly 
reduced latency when they decreased SMR amplitude (figure 
7, two-way ANOVA, participants a, c and d, p  <  0.001; 
participant b, p  =  0.540). Two of four participants showed 
significantly higher MCP torques when they reduced SMR 
amplitude (two-way ANOVA, participant c, p  =  0.034; sub-
ject d, p  =  0.007). Post-hoc analysis revealed higher torques 
in individuated finger extensions for two participants (t-test, 
participant a, index p  =  0.012, middle p  <  0.01; participant 
d, index p  =  0.017, middle p  <  0.01) and higher torques 
in coordinated finger extensions in one participant (t-test, 
participant c, both p  =  0.04). One participant showed an 
interaction effect with finger condition (two-way ANOVA, 
participant a, target-finger interaction, p  =  0.001) where 
index finger torques were higher with decreased SMR ampl-
itude and middle finger torques were lower with decreased 
SMR amplitude.

Table 1. The selected SMR feature(s) and final Phase 2 (session 9) BCI accuracy for each participant. Each frequency or band of 
frequencies, paired with the specified electrode, corresponds to a feature. Frequencies are reported as center frequencies of 3 Hz bands.

Subject Impaired Channel
Frequency 
(Hz) Channel

Frequency 
(Hz) Channel

Frequency 
(Hz)

Trials  
(correct/total)

A R C3 18, 24 C4 18, 21, 24 CP4 12, 24 143/172, 83.1%
B R C3 21 C4 12, 21 — — 116/152, 76.3%
C L C3 21 C4 12, 21 — — 077/105, 73.3%
D R C3 15, 18 C4 18, 21 CP3 18 088/129, 68.2%
E R CP3 18 — — — — 093/125, 74.5%
F L CP3 18, 21, 24 CP4 12, 24 — — 147/170, 86.5%
G L C4 12, 15 CP3 12 CP4 18 069/144, 47.9%
H R C3 21 CP3 12, 21, 24 CP4 12, 21 054/135, 40.0%

Figure 3. BCI hit rates across the Phase-2 sessions for each 
participant. Chance accuracy is 50% (dotted line). Four participants 
(a, b, c and d, in black) learned to control SMR amplitude. Two 
participants (e and f, in blue) exhibited broad spatiospectral patterns 
(see figure 4) indicative of control by head/neck muscle activity 
rather than actual SMR amplitude modulation. Two participants  
(g and h) did not gain control.
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Functional impact of training

The clinical outcome measure used in this study to test hand 
function was the BBT (Radomski and Latham 2008). Mean 
BBT score at screening was 14.3  ±  10.0 (SD). For compar-
ison, the average score for an unimpaired male age 60–64 is 
71.3  ±  8.8 (Mathiowetz et al 1985). We observed no significant 
effects of age, days-post-stroke, type of stroke (hemorrhagic/
ischemic), or dominant hand on BBT score. We measured the 
change in BBT score as the difference in the score at the end 
of therapy compared to the mean of the values at screening 
and session 1. The mean change in BBT score after therapy 
was 4.3  ±  4.5 with minimum and maximum changes of 0 and 
12, respectively. BBT scores improved 7.3  ±  7.5 blocks in the 
participants with SMR control and 3.5  ±  3.1 in those who did 
not gain SMR control or did so with broadband spatiospectral 
activity indicating artifactual (i.e. head/neck muscle-based) 
control (figure 8). The difference between these groups was 
not significant (two-sample t-test, p  =  0.199).

Participants with higher baseline hand function had sig-
nificantly better motor outcomes following the BCI-based 

training. BBT score at screening predicted the change in BBT 
score over the course of training for all participants (Spearman 
Correlation, figure 9, left, ρ  =  0.763, p  =  0.037). The strength 
of this effect was improved by limiting the model to the partic-
ipants with BCI control but was not significant due to the small 
sample size of N  =  4 (ρ  =  1.000, p  =  0.083). The reduction in 
movement latency was similarly correlated (latency decreased 
more for participants with higher BBT score at baseline) for 
participants with BCI control, but again was not significant 
(figure 9, right, ρ  =  −1.000, p  =  0.083). This effect was not 
present across all participants (ρ  =  0.000, p  =  1.000).

Participants completed a survey at the end of the last day 
of training. All participants reported that they enjoyed the 
therapy and that it motivated them to work hard. Participants 
a, b, c, and d, who all learned to control the BCI, reported 
specific measures of hand movement/activity that they could 
do at the end of therapy but not before (e.g. ‘hold or carry a 
bag weighing 10 lbs’, ‘hold a magazine’, ‘extend [my] fingers 
and relax [my] hand’. Participant e, who controlled the system 
using muscle activity rather than brain activity, reported no 

Figure 4. Topographies and spectra of the correlation (R-value) between the SMR feature amplitude and the target condition, SMR 
down-regulation (red) versus SMR up-regulation (black). Data from the last Phase-2 session are shown for each participant, a through 
h. Topographies and power spectra were generated using a bipolar reference to channel Cz; the specific channel used to generate the 
spectra for each participant is indicated. Asterisks denote the stroke-affected hemisphere. Participants a, b, c and d exhibited narrow-band 
BCI control (arrows). Participants e and f showed broad-band control indicative of artifactual (i.e. probably head/neck muscle) activity. 
Participants g and h did not show significant control, although participant h did produce a narrow-band differential signal.
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new activities after training and participant f reported they 
were ‘[able to] turn wrists’. Participants g and h, who did not 
gain control of the BCI, reported some improvement, e.g. 
‘move my fingers a little better’, ‘relax hand.

Discussion

In this study, four of eight people achieved statistically sig-
nificant SMR amplitude control by the end of Phase 2, two 
showed artifactual (i.e. muscle-based) control, and two 
showed no significant control. In the four people with SMR 
control, we assessed the effects of such control on move-
ment performance. In three out of these four people, modu-
lating SMR amplitude during movement preparation altered 
subsequent movement performance. When the participants 
decreased pre-movement SMR amplitude, movement latency 
was shorter and movement force was higher. Clinical scores 
of hand function at baseline correlated with change in hand 
function after training, although the sample size was small.

Differences in SMR after stroke

Seven of the eight participants in this study exhibited clear 
ERD patterns prior to movement. However, the topographical 
representation of this effect was more broadly distributed 
(figure 4) than was found with a similar protocol for unim-
paired individuals (McFarland et al 2015). This is a known 
phenomenon: movement-related signals are often more 
widely distributed in people with stroke (Cramer et al 1997). 
They are also known to be significantly smaller in magnitude 

for people with stroke than in those without impairment (Fu 
et al 2006). Despite these confounding effects, we could pre-
dict the intent to move in people with chronic stroke over the 
course of multiple EEG recording sessions and with similar 
success rates to previous work in people without neurological 
injury (McFarland et al 2015).

Figure 5. Participants a, b, c, and d exhibited narrow-band BCI 
control above chance level. Participants e and f exhibited broad-
band artifactual (i.e. head/neck muscle-based) control. Participants 
g and h did not achieve control. Thus, further analyses of the effects 
of BCI training on motor performance excluded participants e–h.

Figure 6. All Phase-3 index finger movements from participants 
a, b, c, and d. Index finger position (left) and normalized MCP 
torque (right) are plotted versus time where t  =  0 corresponds to 
the movement cue. Yellow traces represent responses to stimuli that 
increased SMR and blue traces represent responses to stimuli that 
decreased SMR. Movement latencies were significantly shorter for 
a, c, and d when they decreased pre-movement SMR amplitude 
versus when they increased it. MCP torques were significantly 
higher for participants a and c when they decreased pre-movement 
SMR amplitude. Note that the torque values were normalized by 
the maximum torque generated by each subject in all three different 
finger movement conditions, although only the index finger 
movements are shown here.
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Baseline indicators of performance change

The effect of motor cortical power on subsequent movement 
latency appears to be dependent on participants’ performance 
before training. McFarland et al found that people with poorer 
initial performance experienced a larger SMR-dependent 
change in movement latency (McFarland et al 2015). Here, 
we found that people with poorer baseline scores of clinical 
function (BBT) exhibited a smaller SMR-dependent change 
in performance, although the sample size was small. One key 
difference between these findings is that, in this study, people 
had moderate to severe motor impairments as the result of a 
stroke. To enable force assistance, the robot required the par-
ticipants to generate small amounts of extension torque in the 
cued finger(s) and only the cued finger(s). The most severely 
impaired participants had more difficulty reliably producing 
this torque, and often could not limit the torque to a single 
finger. Thus, the more severely impaired people may not have 
responded as well in this study because they had less residual 
motor capability. Conversely, in the McFarland study, unim-
paired people with higher function at baseline may have expe-
rienced a ceiling effect, again limiting performance change. 
Although further investigation is necessary, these studies 
present preliminary evidence that training pre-movement 

SMR to enhance subsequent motor performance may be most 
effective for people that avoid such edge cases, i.e. people with 
mild to moderate impairment or unimpaired people starting 
with modest performance.

Figure 7. SMR amplitudes and corresponding Phase-3 performance for each movement (i.e. index finger, middle finger, both fingers) from 
participants a, b, c, and d for SMR increase (yellow) and SMR decrease (blue) trials. Left: average pre-movement SMR amplitude; middle: 
average latencies to movement onset; right: average peak MCP torques. Stars indicate significance (p  <  0.05) and black bars indicate 
standard error. When SMR amplitude was lower, latencies for Participants a and c were significantly shorter for all three movements, and 
latencies for Participant d were significantly shorter for index and both-finger movements. When SMR amplitude was lower, Participant 
a had significantly higher torque for index finger movement but significantly lower torque for middle finger movement; Participant c had 
significantly higher torque for both-finger movement, and participant d had significantly higher torque for index finger movement.

Figure 8. Box and block scores for each participant taken at 
baseline and the beginnings and ends of Phase 1 (sessions 1 and 3)  
and Phase 3 (sessions 10 and 12). Participants who gained 
SMR control are shown in black. Participants e and f, who used 
broadband (i.e. muscle-based) activity to control the BCI, are shown 
in blue. Participants g and h, who did not gain any control, are 
shown in red.
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Therapeutic effect of BCI-enhanced robot-assisted training 
on hand movement after stroke

The eight participants increased their BBT scores from session 
1 to 12 by an average of 4.3  ±  4.5 blocks, a modest increase. 
Interestingly, the improvement in BBT score trended toward 
being higher for the four participants who demonstrated SMR 
control (7.3  ±  7.5) than in the three who did not (3.5  ±  3.1), 
although the difference was not significant (p  =  0.199). This 
trend merits further investigation, ideally with a larger sample 
size and a control group (e.g. a group that does not modulate 
SMR amplitude prior to movement).

What are the potential mechanisms by which control-
ling pre-movement SMR during movement training might 
induce a therapeutic benefit? BCI feedback of SMR con-
trol may be a form of guided mental practice, where only 
brain states that produce SMR down-regulation are consid-
ered successful. Mental practice has been shown to enhance 
physical performance even in isolation from physical activity 
(Cocks et al 2014). However, these benefits have not trans-
lated well to rehabilitation programs for people with stroke 
(Malouin et  al 2013), perhaps because people with neuro-
logical injury struggle to produce brain states consistent with 
quality movement (without BCI feedback). However, it is 
likely that physical practice is equally or more important to 
motor learning and therapeutic benefit (Bernardi et al 2013). 
Controlling SMR into a movement-favorable state before 
moving may allow individuals to repeatedly practice move-
ment with improved motor cortex excitability (Pichiorri et al 
2011), thereby improving learning (Stinear et al 2008, Stinear 
et al 2014, Hsieh et al 2017). Sensory feedback may also play 
an important role. Using the same FINGER exoskeleton and 
participants with chronic stroke with a similar range of initial 
hand function, we recently found that the functional benefit of 
three weeks of robot-assisted finger movement practice (again 
measured by BBT score) depended on the integrity of finger 
proprioception at baseline (Rowe et  al 2017). Participants 

with poor baseline finger proprioception did not benefit from 
FINGER training. Additionally, we and others found previ-
ously that ERD is related to the generation and processing of 
afferent input (Formaggio et al 2013, Norman et al 2016a); 
in our recent study, participants who remained relaxed exhib-
ited ERD when the FINGER robot moved their fingers in a 
predictable way. Learning to control SMR before attempting 
finger extension may better prepare sensorimotor systems to 
receive the afferent information that is important for driving 
motor learning after stroke.

BCI-based protocols have been suggested as new thera-
pies for people with stroke, with an emphasis on people with 
more severe motor impairment (Daly and Wolpaw 2008). In 
contrast, the present results suggest that baseline BBT scores 
correlate positively with the change in BBT score caused by 
training (figure 9). That is, people with a higher hand function 
score at screening tended to have a larger increase in hand 
function after training, although the sample size was small. 
The present finding may also be contrasted to the results from 
the Rowe et al study (Rowe et al 2017), in which participants 
with lower hand function score (but still BBT  >  0) showed 
a greater benefit from FINGER-assisted training. It may be 
that BCI-assisted robotic training and non-BCI robotic finger 
training can be matched to different types of individuals, to 
optimize person-specific results.

Limitations

We selected participants with intact primary somatosensory/
motor cortices on the premise that they would be able to gen-
erate SMR activity and that their EEG patterns would be more 
easily interpreted compared to people with damage to these 
areas that might alter the propagation of electrical activity 
from the remaining cortical and subcortical regions to the 
scalp. However, many strokes do damage primary somatosen-
sory and motor cortices, and thus future studies should include 
persons with such damage. Identifying patient-specific SMR 

Figure 9. Left: box and block test (BBT) score, measured at baseline, was correlated with a change in BBT score after therapy, measured 
as the change in score at the end of therapy compared to the average of the baseline and session 1 score. Higher BBT scores at baseline 
were correlated with larger gains in BBT score after therapy for all participants. Right: relationship between BBT measured at baseline and 
the change in latency for finger movements after therapy (session 12 veruss session 1). Positive change in latency values indicates slower 
response times and negative values indicate faster response times. Higher BBT scores at baseline were correlated with larger reductions 
in latency after therapy for participants with BCI-control (a–d). Participants e and f, who used artifactual (i.e. head/neck muscle-based) 
activity to control the BCI, are shown in blue. Participants g and h, who did not gain control of the BCI, are shown in red.
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features that correspond to the intent to move, as we did here, 
may improve the robustness of the SMR training approach 
when there is damage to specific brain regions. It will be 
important to analyze the results of BCI-enhanced, robot-
assisted training based on lesion location.

Four of the eight participants did not demonstrate sig-
nificant SMR control, two because of muscle activity con-
tamination and two because they could not reliably generate 
differences in the selected features. Although most people 
can learn to control SMR-based BCIs, a non-negligible 
portion do not. About 20% of unimpaired individuals do 
not achieve SMR control with prevailing training methods 
(McFarland et al 2005). This failure rate may be higher in 
people with strokes, even though these individuals do typi-
cally exhibit movement-related SMR modulation, albeit 
with reduced amplitude (Fu et  al 2006). EMG contamina-
tion appeared to preempt acquisition of actual SMR control 
in two of the participants. This problem can occur in unim-
paired individuals as well, and methods for preventing it have 
been suggested (Goncharova et al 2003). It is of interest that 
these two participants were observed to have increased tone 
in the hand and difficulty relaxing the hand during the BCI 
trials, and, as noted in the results, increased neck tone and 
shoulder movement during trials. The relationship of EMG 
contamination to impairment level is an important direction 
for future study.

This is the initial test of SMR-based training of pre-move-
ment brain state to improve subsequent motor performance in 
people with stroke. The sample size was small; four of eight 
people achieved SMR control and three of those improved 
their finger extension ability, as measured by the robot. 
Increases in clinical outcome, measured by the BBT, were 
modest but encouraging. This study showed that this method-
ology is feasible in a fraction of people with stroke; its thera-
peutic efficacy is not yet clear. Future work must study many 
more people and include appropriate control groups.

Conclusion

BCI technology, paired with robot-assisted movement 
practice, has shown promise as a tool for enhancing motor 
recovery after stroke. In the approach studied here, training 
participants to down-regulate sensorimotor rhythms before 
movement immediately enhanced the ensuing movements 
for some participants. This approach may also enhance motor 
learning, manifested as changes in functional hand perfor-
mance. These results merit further investigation in a larger 
population of people with motor impairment after stroke in a 
rehabilitation context.
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