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r\ REVIEW

Vitamin B-12 and the Gastrointestinal Microbiome:
A Systematic Review

Heather M Guetterman,’ Samantha L Huey," Rob Knight,>*>*> Allison M Fox," Saurabh Mehta,"%” and Julia L Finkelstein'7:
"Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; 2 Department of Pediatrics, University of California San Diego, La Jolla, CA, USA;
3Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; *Department of Bioengineering, University of
California San Diego, La Jolla, CA, USA; ® Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA; ®Division of Epidemiology,
Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA; 7Institute for Nutritional Sciences, Global Health, and Technology,
Cornell University, Ithaca, NY, USA; and &St John’s Research Institute, Bangalore, India

Vitamin B-12 deficiency is a major public health problem affecting individuals across the lifespan, with known hematological, neurological, and
obstetric consequences. Emerging evidence suggests that vitamin B-12 may have an important role in other aspects of human health, including
the composition and function of the gastrointestinal (gut) microbiome. Vitamin B-12 is synthesized and utilized by bacteria in the human gut
microbiome and is required for over a dozen enzymes in bacteria, compared to only 2 in humans. However, the impact of vitamin B-12 on the
gut microbiome has not been established. This systematic review was conducted to examine the evidence that links vitamin B-12 and the gut
microbiome. A structured search strategy was used to identify in vitro, animal, and human studies that assessed vitamin B-12 status, dietary intake, or
supplementation, and the gut microbiome using culture-independent techniques. A total of 22 studies (3 in vitro, 8 animal, 11 human observational
studies) were included. Nineteen studies reported that vitamin B-12 intake, status, or supplementation was associated with gut microbiome
outcomes, including beta-diversity, alpha-diversity, relative abundance of bacteria, functional capacity, or short-chain fatty acids (SCFA) production.
Evidence suggests that vitamin B-12 may be associated with changes in bacterial abundance. While results from in vitro studies suggest that vitamin
B-12 may increase alpha-diversity and shift gut microbiome composition (beta-diversity), findings from animal studies and observational human
studies were heterogeneous. Based on evidence from in vitro and animal studies, microbiome outcomes may differ by cobalamin form and co-
intervention. To date, few prospective observational studies and no randomized trials have been conducted to examine the effects of vitamin B-12
on the human gut microbiome. The impact of vitamin B-12 on the gut microbiome needs to be elucidated to inform screening and public health
interventions. Adv Nutr 2022;13:530-558.

Statement of Significance: Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required by over a
dozen enzymes in bacteria. However, to date, no systematic reviews have been conducted to evaluate the impact of vitamin B-12 on the gut
microbiome, or its implications for human health.

Keywords: vitamin B-12, cobalamin, gut microbiota, microbiome, systematic review

Introduction (2). Inadequate vitamin B-12 status has also been linked
Vitamin B-12 deficiency is an important public health to neurological impairments and pregnancy complications
problem globally (1, 2). Its classic deficiency syndrome (3-5). Emerging evidence suggests that vitamin B-12 may
is hematological, as pernicious or megaloblastic anemia have an important role in other aspects of human health,
including modulating the composition and function of the
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methionine synthase in the cytoplasm (2). In the mito-
chondria, adenosylcobalamin is required for isomerization
of methyl-malonyl-CoA to succinyl-CoA and is involved
in branched-chain amino acid and odd-chain fatty acid
catabolism. Methylcobalamin is required for methionine
synthase to convert 5-methyl-tetrahydrofolate to tetrahy-
drofolate for subsequent purine synthesis, and to remethy-
late homocysteine to methionine for production of S-
adenosylmethionine (SAM) (6), a methyl donor involved in
over 100 methylation reactions (7). Vitamin B-12 is required
for DNA synthesis and methylation and folate metabolism;
vitamin B-12 deficiency can lead to impairments in cell
division, erythropoiesis, DNA stability, and neurological
function (3, 4).

Vitamin B-12 is synthesized exclusively by bacteria and
is obtained in the diet through consumption of animal-
source foods (1, 8). In addition to inadequate dietary intake,
vitamin B-12 deficiency can result from low bioavailability
or impaired absorption, due to pernicious anemia (an
autoimmune disease affecting parietal cells and release
of intrinsic factor, required for vitamin B-12 absorption);
atrophic gastritis, malabsorption, and risk of pernicious
anemia, which increase with age; medications (e.g., pro-
ton pump inhibitors); and gastrointestinal diseases (e.g.,
inflammatory bowel disease) or gastrointestinal infections
(e.g., Helicobacter pylori, intestinal helminths) (2, 4, 8, 9).
Studies in humans suggest that bacterial overgrowth in the
small intestines [i.e., predominantly Gram-negative colonic
bacteria (10)] can lead to vitamin B-12 deficiency, likely via
competition and malabsorption of available vitamin B-12
(11-13).

Vitamin B-12 and the gastrointestinal microbiome
Bacteria in the human gastrointestinal (gut) microbiome
synthesize vitamin B-12 and utilize unabsorbed vitamin B-
12 from the host (14); however, the impact of vitamin B-12
on the gut microbiome remains largely unexplored. Humans
absorb ~50% of vitamin B-12 ata 1-j1g oral dose in the ileum
(lower part of the small intestine), and absorption decreases
with increasing dose (15). Vitamin B-12 not absorbed in
the ileum can reach the large intestine, where gut bacteria
metabolize and convert ~80% of vitamin B-12 into vitamin
B-12 analogs (i.e., cobamides with no known vitamin B-12
activity) by altering the benzimidazole base of vitamin B-
12 (12, 16). The ability to utilize vitamin B-12 (and vitamin
B-12 analogs) may be a competitive advantage for certain
bacteria (14, 17, 18). Further, the gut microbiota composition
and function may differ in environments that are replete in
vitamin B-12 compared with those with inadequate vitamin
B-12.

Vitamin B-12 is required for over a dozen enzymes
in bacteria (e.g., methyltransferases, isomerases), but only
2 enzymes in mammals. Vitamin B-12 also regulates bacterial
genes through riboswitches and other mechanisms (14). Ad-
ditionally, the majority of gut bacteria have genes encoding
transporters for vitamin B-12 and its analogs. Degnan et
al. (18) demonstrated that loss-of-function mutations of the

genes for these transporters reduced the abundance and
competitive ability in the gut of the corresponding strains.

Research gap

Vitamin B-12 is synthesized and utilized by bacteria in the
human gut microbiome and is required by over a dozen
enzymes in bacteria. Narrative reviews have examined the
potential role of vitamin B-12 in human gut microbiome
composition and function, mostly through evidence from
model bacteria (14, 19, 20). However, to date, no systematic
reviews have been conducted to evaluate the effects of
vitamin B-12 on the gut microbiome, or its implications for
human health.

The objective of this systematic review was to examine the
evidence that links vitamin B-12 and the gut microbiome.
We evaluated evidence from in vitro, animal, and human
studies on the impact of vitamin B-12 on gut microbiome
composition and function.

Methods

Search strategy

A structured literature search was conducted using the
MEDLINE database via PubMed on 28 March 2020 and
updated on 26 March 2021. The following search strategy,
including terms for vitamin B-12 and the gut microbiome,
was used: (Vitamin B 12 [MeSH] OR Vitamin B 12
Deficiency [MeSH] OR Anemia, Macrocytic [MeSH] OR
(Vitamin [all fields] AND (B12 [all fields] OR B 12 [all
fields] OR B-12 [all fields])) OR cobalamin*® [all fields]
OR transcobalamin® [all fields] OR cyanocobalamin® [all
fields] OR methylcobalamin®* [all fields] OR methylmalonic
acid* [all fields] OR hydroxycobalamin* [all fields] OR
holotranscobalamin® [all fields] OR holo-transcobalamin*
[all fields] OR holo transcobalamin* [all fields] OR ((perni-
cious [all fields] OR macrocytic [all fields] OR megaloblastic
[all fields]) AND (anemia [all fields] OR anaemia [all
fields]))) AND (microbiota [MeSH] OR microbiota [all
fields] OR microbiom* [all fields] OR ((Gastrointestinal
[all fields] OR Gastro-intestinal [all fields] OR Gut [all
fields] OR Intestin® [all fields] OR Fecal [all fields] OR
colon* [all fields]) AND (flora [all fields] OR microflora [all
fields]))). This search strategy was translated and performed
in CINAHL, Scopus, Web of Science, Biosis Review, and
CABI (CAB Abstracts and Global Health). No date or
language filters were applied. The protocol for this review
was registered in PROSPERO, the international prospective
register of systematic reviews of the University of York and
the National Institute for Health Research, under the number
CRD42020163772 (21).

Study design

Randomized trials (randomization at the individual or
cluster level), quasi-randomized trials (randomization by
another method, e.g., alternate allocation), nonrandomized
trials, and observational studies were eligible for inclusion.
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We also included data from studies using in vitro (i.e., gut
simulators) and animal models.

Participants

Studies of interventions in participants with critical ill-
nesses or severe comorbidities, including conditions affecting
vitamin B-12 metabolism or the gut microbiome, were
excluded. Data from animal models with induced colitis were
excluded. There were no other restrictions on participants
or population. Studies were also eligible for inclusion if
the exposure (vitamin B-12) and outcome (gut microbiome
composition/function) were evaluated in mother-infant
pairs, respectively.

Exposure: vitamin B-12

Vitamin B-12 as an exposure included vitamin B-12
supplementation (tablet, capsule, dispersible tablet),
fortification (any food vehicle), intramuscular/intravenous
injection, vitamin B-12 status [i.e, serum/plasma total
vitamin B-12, methylmalonic acid (MMA), holo-
transcobalamin], and dietary intake. We also considered
genetic polymorphisms in host genes involved in vitamin
B-12 metabolism (e.g., rs9473555 polymorphism in methyl-
malonyl-CoA mutase). Vitamin B-12 interventions were
not restricted by dose, frequency, formulation, or form
of cobalamin (e.g., cyanocobalamin, methylcobalamin).
Studies with co-interventions were eligible for inclusion,
provided they were the same in both the intervention and
control groups.

Outcomes: gut microbiome

Primary outcomes for gut microbiota composition included:
I) beta-diversity (i.e., differences among microbiome sam-
ples or groups of samples), 2) alpha-diversity (i.e., diversity
within a microbiome sample), and 3) relative abundance or
concentration of bacteria. Secondary outcomes included I)
functional capacity, 2) gut-derived metabolites, and 3) other
biomarkers of gut health. Data on gut microbiome composi-
tion or functional capacity were considered if determined by
culture-independent methods [e.g., shotgun sequencing, 16S
ribosomal RNA (rRNA) gene sequencing].

Study selection

References captured by the search strategy were screened
using Covidence (Veritas Health Innovation, Melbourne,
Australia; www.covidence.org). Titles and abstracts were in-
dependently screened by 2 reviewers (HMG and SLH/AMEF).
Full texts were retrieved for potentially eligible studies
and independently assessed for inclusion by 2 reviewers.
Discrepancies were resolved through discussion with the
senior author.

Data extraction and management

Using a piloted data extraction form, 2 authors (HMG and
SLH/AMF) independently extracted the following data from
figures, tables, text, and supplementary materials of included
studies: author’s last name, publication year, study design,
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setting and study population or experimental in vitro/animal
model, vitamin B-12 intervention or exposure, laboratory
methods for gut microbiome assessment (i.e., sample collec-
tion, DNA extraction, sequencing techniques, microbial gene
region amplification, bioinformatics), and results reported
at any time point using any analysis method. Vitamin B-
12 concentrations were converted from picograms/milliliter
to picomoles/liter (by a factor of 0.7378), for interpretation
and comparability of findings. Study authors were contacted
via e-mail to clarify population characteristics, methods, or
results, as needed. We planned a priori to conduct meta-
analyses, subgroup analyses (i.e., by vitamin B-12 status;
dose, frequency, and duration of vitamin B-12 intervention;
co-interventions), and risk-of-bias assessment for random-
ized trials, quasi-randomized trials, and nonrandomized
trials. Studies were summarized in narrative form and in
tables.

Results

Literature review

The structured literature search resulted in 1939 records.
After 797 duplicates were removed, 1142 records were
reviewed for potential inclusion in the review; and after 966
records were excluded, 176 full-text articles were extracted
for review. Of these studies, 154 studies were excluded: n =11
reviews, n = 4 duplicates, n = 2 in clinical populations,
n = 51 no vitamin B-12 data, n = 15 no gut microbiome
data, n = 52 for ineligible laboratory methods (i.e., not using
culture-independent sequencing techniques), and n = 19
did not report associations between vitamin B-12 and gut
microbiome outcomes. A total of 22 studies were included in
the review: 3 in vitro, 8 animal, and 11 observational human
studies. The structured search is summarized in Figure 1.

Characteristics of included studies
Characteristics of included in vitro, animal, and human
studies are summarized in Tables 1-3, respectively.

In vitro studies.

The 3 studies (22-24) using in vitro models provided vitamin
B-12 supplementation: 8 treatment groups administered
0.5 mM of vitamin B-12 (cyanocobalamin or adenosylcobal-
amin) and/or whey protein (beta-lactoglobulin or alpha-
lactalbumin) (22), methylcobalamin or cyanocobalamin (i.e.,
300 mL of 1.25 mg/L) compared with a control group (23),
or cyanocobalamin supplementation alone as 1 of 2 doses
or provided in cyanocobalamin-enriched spinach (0.94 mg/g
spinach or 0.78 mg/g spinach) compared with a control
group (24). Studies providing co-interventions reported that
whey protein increased the stability of cyanocobalamin and
adenosylcobalamin by 2.2% and 19.7%, respectively (22), and
spinach increased cyanocobalamin stability by 5% (24).

Animal studies.

Eight of the included laboratory studies were conducted in
animal models, including a wide range of organisms with
different microbiomes: 5 in rodents (25-29), 2 in geese
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Flowchart of the search strategy and results of

(30, 31), and 1 in shrimp (32). In studies with rodent
models, vitamin B-12 supplementation was administered as
cyanocobalamin (3.94 pg/mL) (25); cyanocobalamin at a
0-mg/kg (deficient), 50-mg/kg (sufficient), or 200-mg/kg
dose (27); cyanocobalamin or methylcobalamin at a high
dose (1.25 mg/L) (26); or cobalamin (unspecified form,
25 pgl/kg diet) provided with or without folic acid (28). One
study in rats evaluated serum vitamin B-12 concentrations as
the exposure (29). The vitamin B-12 content of diets provided
to the control group in rodent studies varied between studies,
and study authors provided a small amount of vitamin B-12
(i.e., 0.08 mg/kg cyanocobalamin) (25), a diet with ethanol-
washed casein to reduce background vitamin B-12 (27), no
vitamin B-12 (28), or did not specify (26, 29). In studies
in geese, vitamin B-12 supplementation was administered
as low (0.009 mg/kg), medium (0.018 mg/kg), or high
(0.036 mg/kg) doses in combination with folic acid (at 0.55 or
2.50 mg/kg) in a 2 x 3 factorial design (30) or as 6 different
doses (0.0, 0.005, 0.010, 0.015, 0.020, or 0.025 mg/kg) (31).
In the study conducted in shrimp, MMA was assessed in
hemolymph (fluid equivalent to blood in invertebrates) (32).

Observational studies.

All 11 studies conducted in human populations were
observational, including 6 cross-sectional studies (33-38);
4 cohort studies with durations of 2 (39), 3 (40, 41) or
9 (42) mo; and 1 publication that reported results from

a cross-sectional analysis at baseline and a 4-wk interven-
tion study without a control group (43). Nine of the 11
observational studies evaluated dietary intake of vitamin
B-12 using 24-h recalls (33, 36, 40), 3-d food records
(38), or food-frequency questionnaires (34, 35, 37, 41, 42).
Total serum vitamin B-12 concentrations were evaluated
in 2 studies (39, 43). Boran et al. (43) also administered
intramuscular vitamin B-12 (hydroxycobalamin) injections
in a subset of infants with vitamin B-12 deficiency, as part of
an intervention study without a control group.

Study populations included infants (1 study; n = 88, 4-
6 mo) (43); children (1 study; n = 75, 2-9 y) (36); mother—
infant pairs (2 studies; n = 22 and n = 73 dyads) (37, 41);
women of reproductive age who were lactating (33) or not
pregnant or lactating (38, 40) (3 studies; n = 20 to 102, 18-
40 y), and adults over 50 y of age (35), over 65 y of age (34,
39), or with an unknown age (42) (4 studies; n = 35 to 69).

Qualitative synthesis of evidence from in vitro studies
Findings from the 3 included in vitro studies are summarized
in Table 4 (primary outcomes) and Table 5 (secondary
outcomes).

Alpha-diversity.

Findings from in vitro studies suggest that vitamin B-12 sup-
plementation may increase alpha-diversity, and results varied
by the form and dose of cobalamin administered and co-
interventions. In 1 study (22), adenosylcobalamin resulted
in increased alpha-diversity compared with cyanocobal-
amin, but lower diversity when both were combined with
alpha-lactalbumin. Cyanocobalamin or adenosylcobalamin
in combination with whey proteins resulted in increased
alpha-diversity compared with beta-lactoglobulin alone, but
not alpha-lactalbumin alone. In a different study, methyl-
cobalamin resulted in lower alpha-diversity based on Chaol
(measurement of richness) but higher diversity based on
Shannon index (measurement of richness and evenness),
compared with cyanocobalamin and control groups (23).
The cyanocobalamin group had a similar Chaol index
compared with the control group, but higher diversity based
on the Shannon index compared with the control group.
In the study where cyanocobalamin was administered in
a supplement or in spinach (24), alpha-diversity increased
in the group receiving the low dose of cyanocobalamin-
enriched spinach, did not change in the control group, and
decreased in all of the other groups (24).

Beta-diversity.

Three in vitro studies (22-24) reported changes in beta-
diversity: findings indicated that vitamin B-12 shifted mi-
crobiome composition. In the aforementioned study of whey
protein (22), although principal component analyses (PCA)
did not provide relevant data for this review, based on hier-
archical clustering, groups receiving alpha-lactalbumin alone
and cyanocobalamin in combination with beta-lactoglobulin
appeared to cluster together. In another study (23), the
cyanocobalamin and control groups were clustered more
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TABLE 1 In vitro studies assessing the association between vitamin B-12 and the gut microbiome'

Multiple

First author, Vitamin B12 comparison

year (ref) In vitro model intervention Specimen DNA extraction Sequencing method

Wang, 2019 In vitro colon 8 groups receiving 0.5 Fermentation MicroElute V3-V4 165 rRNA Duncan’s multiple

(22) fermentation using uM/d of 1 of the broth (daily) Genomic DNA kit region, lllumina comparison test
stool samples from following for 10 d: (Omega Inc) MiSeq
a 3-y-old and arice whey protein alone
starch—based (BL, AL), B12 alone
nutritive medium (AC, CQ), or whey
protein with B12
(AC + BL, CC + BL,
AC + AL, CC + AL)

Xu, 2018 (23) In vitro colon 3 groups receiving 1 Fermentation Genomic DNA kit V3-V4 16S rRNA Duncan’s multiple
fermentation using of the following for  broth (day 4 and 7) (Qiagen) region, lllumina comparison test
stool samples from 7 days: MC MiSeq
5 vitamin (1.25 mg/L), CC
B-12-deficient (1.25 mg/L),
patients and a corn control (no
starch—based supplementation)
nutritive medium

Zheng, 2021 In vitro colon 5 groups receiving 1 Fermentation Genomic DNA kit V3-V4 16S rRNA Duncan’s multiple

(24) fermentation using of the following for  broth (day 0 and 2) DP320 (Tiangen) region, PCR comparison test

stool samples from
3individuals aged
20-25yand a
nutritive medium
(starch type not
specified)

3 days: CC
supplementation
at a high or low
dose, or
CC-enriched
spinach at a high
(0.94 ug CC/g
spinach) or low
(0.78 ug CC/g
spinach) dose,
compared with
control (no
supplementation)

TAC, adenosylcobalamin; AL, alpha-lactalbumin; B12, vitamin B-12; BL, beta-lactoglobulin; CC, cyanocobalamin; MC, methylcobalamin; ref, reference; rRNA, ribosomal RNA; V,

hypervariable region.

closely than the group that received methylcobalamin, based
on hierarchical clustering. In this same study based on PCA
plots (23), treatment groups appeared distinct from one
another and between days 4 and 7 within each group. In an-
other study (24), groups receiving low-dose cyanocobalamin
supplementation and high-dose cyanocobalamin-enriched
spinach appeared to cluster further from baseline and from
the other groups, based on PCA plots.

Bacterial abundance.

The 3 in vitro studies reported associations between vi-
tamin B-12 supplementation and the relative abundance
of bacteria. At the phylum level, adenosylcobalamin or
cyanocobalamin supplementation alone resulted in higher
Bacteroidetes:Firmicutes ratios compared with most other
groups receiving whey protein alone or in combination
with vitamin B-12, but the 2 forms of vitamin B-12 were
not significantly different from one another (22). The
ratio of Bacteroidetes:Firmicutes in the groups receiving
cyanocobalamin or adenosylcobalamin in combination with
whey protein did not differ from each other or from
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whey protein alone. Another study (24) reported within-
group changes in the relative abundance of 3 major
phyla; in most groups, cyanocobalamin supplementation or
cyanocobalamin-enriched spinach increased Proteobacteria
and decreased Firmicutes and Bacteroidetes. However, Pro-
teobacteria decreased and Firmicutes did not change in the
low-dose cyanocobalamin-enriched spinach group and Bac-
teroidetes did not change in the high-dose cyanocobalamin-
enriched spinach group.

Bacteroidetes phylum. The relative abundances of the
order Bacteroidales and genus Bacteroides were differentially
enriched in the control group compared with methyl-
cobalamin and cyanocobalamin groups (23). Similarly,
cyanocobalamin and adenosylcobalamin in combination
with beta-lactoglobulin resulted in a lower abundance
of Bacteroidaceae compared with beta-lactoglobulin alone
(22). However, cyanocobalamin in combination with alpha-
lactalbumin resulted in a higher relative abundance of
Bacteroidaceae compared to alpha-lactalbumin alone and
compared to adenosylcobalamin with alpha-lactalbumin;
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and cyanocobalamin alone had a higher abundance of Bac-
teroidaceae compared with adenosylcobalamin alone (22),
possibly due to differences in cobalamin stability. In another
study (24), the genus Bacteroides decreased after supplemen-
tation with high- or low-dose cyanocobalamin and high-
dose cyanocobalamin-enriched spinach, but increased after
supplementation with low-dose cyanocobalamin-enriched
spinach. The relative abundance of the family Rikenel-
laceae and genus Alistipes (both within the Bacteroidales
order) were differentially enriched in the control group
compared with the groups that received methylcobalamin
and cyanocobalamin supplementation (23), and the relative
abundance of Rikenellaceae was lower in groups receiving
cyanocobalamin or adenosylcobalamin in combination with
beta-lactoglobulin, compared with beta-lactoglobulin alone
(22).

Firmicutes phylum. The relative abundances of the order
Clostridiales and family Ruminococcaceae were differentially
enriched in the control group compared with groups receiv-
ing methylcobalamin and cyanocobalamin (23). Ruminococ-
caceae abundance was also lower after cyanocobalamin
supplementation alone compared with adenosylcobalamin
alone (22). Also within the Clostridiales order, the relative
abundance of the family Clostridiaceae and genus Clostrid-
ium were differentially enriched in the methylcobalamin
group compared with the cyanocobalamin or control group
(23). When compared with whey protein supplementa-
tion alone, cyanocobalamin or adenosylcobalamin with
alpha-lactalbumin resulted in lower abundance of Clostridi-
aceae, while cyanocobalamin supplementation with beta-
lactoglobulin resulted in higher abundance of Clostridiaceae,
compared with beta-lactoglobulin alone or the combination
of adenosylcobalamin with beta-lactoglobulin (22).

Proteobacteria phylum. Within the order Pseudomon-
adales, the relative abundances of the family Moraxel-
laceae and an unclassified genus in Moraxellaceae were
differentially enriched in the methylcobalamin group, and
the genus Acinetobacter (in the family Moraxellaceae) was
differentially enriched in both the methylcobalamin and
adenosylcobalamin groups compared with the control group
(23). The relative abundance of Acinetobacter was higher in
the groups receiving high and low doses of cyanocobalamin
supplementation and high-dose cyanocobalamin-enriched
spinach compared with the control (24).

The family Enterobacteriaceae (order Enterobacterales,
phylum Proteobacteria) increased after supplementation
with adenosylcobalamin in combination with beta-
lactoglobulin ~ compared =~ with  beta-lactoglobulin
alone or cyanocobalamin in combination with beta-
lactoglobulin (22). Adenosylcobalamin or cyanocobalamin
supplementation in combination with alpha-lactalbumin
resulted in a lower abundance of Enterobacteriaceae
compared with alpha-lactalbumin alone (22). Within
this family, the relative abundance of Escherichia-Shigella
was differentially enriched in the methylcobalamin

supplementation group (23) but decreased after
cyanocobalamin supplementation or cyanocobalamin-
enriched spinach compared with control (24); and Klebsiella
increased after cyanocobalamin supplementation or low-
dose cyanocobalamin-enriched spinach (24).

Actinobacteria  phylum. The control group was
differentially enriched in the relative abundance of the
order Bifidobacteriales, family Bifidobacteriaceae, and genus
Bifidobacteria, compared with methylcobalamin and
cyanocobalamin supplementation (23). In another study, the
relative abundance of Bifidiobacteriaceae was higher after
supplementation with adenosylcobalamin alone compared
with cyanocobalamin alone (22).

Bacterial function.
Two of the included in vitro studies (23, 24) reported data for
predicted functional outcomes.

Metabolism. Methylcobalamin and cyanocobalamin
supplementation (23) and high-dose cyanocobalamin-
enriched spinach (24) promoted lipid metabolism pathways
and degradation of exogenous substances. High-dose
cyanocobalamin supplementation decreased the capacity
for glycan biosynthesis and metabolism, while high-dose
cyanocobalamin-enriched spinach increased the capacity for
this pathway (24). Methylcobalamin and cyanocobalamin
groups (23) had a lower capacity for biosynthesis of
secondary metabolites and tertiary pathways within
carbohydrate (starch and sucrose) and energy (nitrogen)
metabolism pathways.

Environmental and genetic information processing.
Methylcobalamin and cyanocobalamin supplementation
resulted in a lower capacity for the ABC transporter
(ko02010) and synthesis of transcription factors and higher
capacity for DNA repair and recombinant protein pathway
(23).

Cellular  processes. The high-dose cyanocobalamin-
enriched spinach group promoted pathways for transport
and catabolism (24).

Other outcomes. Two of the included studies (23, 24)
reported data for other outcomes: short-chain fatty acids
(SCFA) concentrations (23, 24) and enzyme activity of
protease, amylase, and cellulase (23). In canonical correspon-
dence analysis (23), methylcobalamin was associated with
higher propionate and butyrate concentrations. In the other
study (24), the butyrate and acetate concentrations decreased
in all groups over time, except low-dose cyanocobalamin-
enriched spinach increased butyrate over time and ended
with higher acetate concentrations compared with other
groups, although statistical significance was not reported for
these findings.

For enzyme activity (23), the authors reported that
the control group had higher protease activity than the
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cobalamin groups; protease and cellulase activity had the
greatest fluctuations over time in the methylcobalamin and
cyanocobalamin groups, respectively, compared with the
other groups, while amylase activity was more stable in the
control group.

Qualitative synthesis of evidence from animal studies
The results from the 8 included animal studies are sum-
marized in Table 6 (primary outcomes) and in Table 5
(secondary outcomes).

Alpha-diversity.

Three studies conducted in mice (25-27) and 2 studies in
geese (30, 31) reported heterogeneous results for alpha-
diversity. In mice, alpha-diversity (Chaol, Shannon index,
Simpson index) was not significantly different in the group
that received cyanocobalamin compared with a nonsupple-
mented control group (25). In another study in mice (27),
alpha-diversity based on the Chaol and Shannon indices did
not significantly differ by cyanocobalamin dose (0 mg/kg,
50 mg/kg, or 200 mg/kg in feed pellets). In the third study in
mice (26), reported alpha-diversity (Chaol, Shannon index)
was lower in the cyanocobalamin and methylcobalamin
groups compared with the control group, although statistical
significance was not reported.

In studies in geese, results from statistical tests were not
reported for between-group differences. However, in geese
receiving high-dose folic acid, alpha-diversity was U-shaped
based on operational taxonomic units (OTUs), abundance-
based coverage estimators (ACE), and Chaol indices, with
the lowest diversity in the group receiving the medium
vitamin B-12 dose (0.018 mg/kg), while diversity increased
from low (0.009 mg/kg) to high (0.036 mg/kg) doses of
vitamin B-12, based on Simpson and Shannon indices
(30). In geese receiving the low-dose folic acid, diversity
decreased for low to high doses of vitamin B-12 for OTU,
ACE, and Chaol indices; diversity was an inverted U-shape
based on Simpson and Shannon indices, with the highest
alpha-diversity in the group receiving the medium dose of
vitamin B-12 (30). In another study in geese, 6 different
doses of vitamin B-12 were administered; geese that received
the 0.010-mg/kg dose had the highest diversity based on
observed OTUs, ACE, and Chaol, while geese in the group
that received the 0.020-mg/kg dose had the highest diversity
based on Shannon and Simpson indices (31).

Beta-diversity.
Four of the studies in rodents (25-28) and both studies in
geese (30, 31) reported beta-diversity, with mixed results. In
mice, beta-diversity was significantly different at the genus
level before and after cyanocobalamin supplementation,
and between the cyanocobalamin and control groups (25).
Conversely, beta-diversity did not differ by vitamin B-12
intervention in the other studies of mice (27, 28, 44).
Among geese receiving vitamin B-12 and folic acid (30),
in principal coordinates analysis (PCoA) and the unweighted
pair group method with arithmetic mean (UPGMA), groups
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receiving the medium dose of vitamin B-12 appeared to
cluster further from groups receiving the low and high doses.
In the study evaluating 6 different doses of vitamin B-12 (31),
unexpectedly, the group with the lowest vitamin B-12 dose
(0 mg/kg) clustered the closest to the group that received the
highest dose of vitamin B-12 (0.025 mg/kg), and clustered the
furthest from the group that received the second highest dose
(0.020 mg/kg).

Bacterial abundance.

All of the included animal studies reported associations
between vitamin B-12 supplementation or status and relative
abundance of bacteria; however, findings varied by the form
of vitamin B-12 and co-interventions. At the phylum level,
the relative abundances of Bacteroidetes and Proteobacte-
ria were higher and Firmicutes was lower in mice that
received cyanocobalamin compared with methylcobalamin,
while both cobalamin supplementation groups had a lower
abundance of Bacteroidetes and higher Firmicutes compared
with the control group (26). Although a study in rats did not
report phylum-level results, classes within the Proteobacteria
phylum (Alphaproteobacteria, Gammaproteobacteria) were
higher in the vitamin B-12-deficient group compared with
the control group (28). Among geese receiving vitamin B-12
and folic acid (30), the relative abundance of Bacteroidetes
increased from the lowest to highest doses of vitamin B-
12; the relative abundances of Proteobacteria and Firmicutes
were U-shaped, with the medium dose of vitamin B-12
(0.018 mg/kg) having the lowest abundance of Proteobacteria
and highest abundance of Firmicutes.

Bacteroidetes phylum. Several studies reported the rela-
tive abundance of the genus Bacteroides. Cyanocobalamin
supplementation (3.94 pg/mL and 200 mg/kg) in mice de-
creased the abundance of Bacteroides (25, 27); interestingly,
the relative abundance of Bacteroides also decreased in the
groups receiving low but not medium doses (0 and 50 mg/kg)
(27). In geese, Bacteroides abundance was higher in groups
that received high (0.036 mg/kg) or medium (0.018 mg/kg)
vitamin B-12 doses (30). Other genera in the Bacteroidetes
phylum include Prevotella, which increased in mice that
received 0 mg/kg or 50 mg/kg of cyanocobalamin but not
the higher dose (200 mg/kg) (27), and Alistipes, which was
highest in geese that received the highest dose of vitamin B-
12, among groups receiving the higher dose of folic acid (30).
In shrimp, higher MMA concentrations (i.e., lower vitamin
B-12 status) were associated with increased abundance of
several genera in the Flavobacteriaceae family (32).

Firmicutes phylum. Several families and genera in the
Clostridiales order were impacted by vitamin B-12. In
mice receiving 3 different doses of cyanocobalamin (0, 50,
200 mg/kg) (27), relative abundance of the genus Clostridium
(in the Clostridiaceae family) increased in groups receiving
0- and 50-mg/kg cyanocobalamin supplementation, but not
200 mg/kg. The relative abundance of the Lachnospiraceae
family decreased in the medium-dose group (50 mg/kg) but
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did not change in the other groups (0 and 200 mg/kg). Within
this family, higher serum vitamin B-12 concentrations were
associated with lower relative abundance of Clostridium
cluster XIVb and higher Clostridium cluster XIVa in rats
(29).

Proteobacteria phylum. Within the family Desulfovibri-
onaceae (Deltaproteobacteria class), the relative abundance
of Bilophila increased in mice receiving 0 and 50 mg/kg, but
not 200 mg/kg, of cyanocobalamin (27), and Desulfovibrio
was highest among geese receiving the lower vitamin B-12
dose (0.009 mg/kg) (30). The relative abundance of the class
Alphaproteobacteria was higher in vitamin B-12-deficient
rats compared with the control group (28); within this class,
higher MMA concentrations (i.e., lower vitamin B-12 status)
in shrimp were associated with increased abundance of
several genera in the Rhodobacteraceae family (32).

Bacterial function.

Two of the included studies reported data on functional
outcomes (26, 29). In 1 study (26), there were no significant
differences in predicted genes between intervention groups
(i.e., control, cyanocobalamin, methylcobalamin), including
genes related to vitamin B-12. In another study (29), higher
vitamin B-12 concentrations in rats were associated with
lower capacity for energy and carbohydrate metabolism
pathways.

Other outcomes.

In 1 study in mice (25), there were no significant effects
of cyanocobalamin on acetate, propionate, or butyrate
concentrations in cecum; cobinamide and cobalamin con-
centrations in stool increased in the group that received
cyanocobalamin but not the control group. Two studies in
mice found no differences in the colonic expression of in-
flammatory cytokines between cyanocobalamin supplemen-
tation and control groups (25, 27). In proteomics analyses in
a study in rats (29), higher vitamin B-12 concentrations were
associated with concentrations of several serum proteins
(Table 5).

Qualitative synthesis of evidence from observational
human studies

Findings from the 12 observational studies in humans are
summarized in Table 7 (primary outcomes) and in Table 5
(secondary outcomes).

Alpha-diversity.

Four of the observational human studies reported results
for alpha-diversity (35, 36, 40, 43). Vitamin B-12 intake
was associated with increased alpha-diversity in adults;
however, vitamin B-12 intake or status was not associated
with alpha-diversity in infants or children. In a cohort
study in lactating women (40), the Simpson evenness
index was significantly higher among lactating females in
the third quartile of vitamin B-12 intake (3.0-6.3 ug/d),
compared with the other quartiles. In a study in older male

veterans (50-75 y) (35), higher vitamin B-12 intake was
associated with a higher Shannon index. In contrast, alpha-
diversity (Shannons diversity index, observed OTUs) did
not differ between vitamin B-12-sufficient (>150 pmol/L)
and —deficient (<150 pmol/L) infants, or among vitamin B-
12-deficient infants before and after intramuscular vitamin
B-12 injection (43). A study among children (36) reported
that vitamin B-12 intake was not associated with Shannon
index, phylogenetic diversity, or richness.

Beta-diversity.

Four observational studies reported heterogenous findings
for beta-diversity (35, 36, 40, 43). There were no differences
in beta-diversity of the gut microbiota between vitamin B-
12—deficient and -sufficient infants, or in vitamin B-12-
deficient infants before and after intramuscular vitamin B-12
injection (43). However, when stratified by age, beta-diversity
differed by vitamin B-12 deficiency in infants at 6 mo of age,
but not at 4 or 5 mo of age. The beta-diversity of the gut
microbiota did not differ by vitamin B-12 intake in children
(36) or by quartiles of vitamin B-12 intake in a study in
lactating women (40). However, beta-diversity differed by
median vitamin B-12 intake in a study in older male veterans
(35).

Bacterial abundance.

Four studies in adults reported associations between vitamin
B-12 intake and bacterial abundance at the phylum level
(33, 35, 40, 42). Higher vitamin B-12 intake was associ-
ated with lower relative abundance of Bacteroidetes (42)
and higher relative abundance of Proteobacteria (40) and
Verrucomicrobia (35). One study in women (33) reported a
differential abundance of Proteobacteria by median vitamin
B-12 intake, but the direction of this association was not
reported.

Bacteroidetes phylum. Vitamin B-12 intake was associated
with a lower relative abundance of Bacteroides in studies
in older male veterans (35) and lactating women (40).
Additionally, Odoribacteraceae was differentially abundant
among women by median vitamin B-12 intake (33), and
higher vitamin B-12 intake was associated with higher
relative abundance of the genus Odoribacter in older male
veterans (35). In a study in lactating women (40), vitamin
B-12 intake was associated with a higher abundance of
Prevotella; in contrast, in a study in breastfed infants, higher
vitamin B-12 status was associated with a lower abundance of
this genus (43). Vitamin B-12 intake in older male veterans
was also associated with a greater abundance of Alistipes (35).

Firmicutes  phylum. The relative abundance of
Ruminococcaceae was differentially enriched in women
with vitamin B-12 intake below the median (33). Higher
vitamin B-12 intake in adults (35, 40) and higher
vitamin B-12 status in breastfed infants (43) were
associated with a greater abundance of Faecalibacterium
(Ruminococcaceae family), and maternal vitamin B-12
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intake (37) was associated with a higher abundance of
Faecalibacterium in infants. In the Clostridiaceae family, the
genus Clostridium was differentially abundant by median
vitamin B-12 intake (33); however, the direction of this
association was not specified.

Actinobacteria phylum. Increased total serum vitamin B-
12 concentrations were associated with greater increases in
the genus Bifidobacteria (16S rRNA gene copy number/ng
stool) in older European adults with low-grade inflammation
but not among participants without inflammation (39).
Higher maternal vitamin B-12 intake was also associated with
greater relative abundance of Bifidobacteria in infants (37).

Proteobacteria phylum. Vitamin B-12 intake was associ-
ated with a lower abundance of Enterobacteriaceae in older
adults (65-84 y) in Japan (34). Higher maternal intake of
vitamin B-12 was associated with a higher abundance of
Klebsiella (genus within the Enterobacteriaceae family) in
their infants (37). Within the Desulfovibrionaceae family,
higher vitamin B-12 status in breastfed infants was associated
with a lower relative abundance of Bilophila (43).

Four of the included studies reported no significant
associations between vitamin B-12 (intake or intervention)
and bacteria abundance, including a cross-sectional study
in children (36), before and after intramuscular vitamin B-
12 injections (i.e., bypassing intestinal absorption) among
breastfed infants with vitamin B-12 deficiency (43), maternal
vitamin B-12 intake in mother-infant dyads (41), and a cross-
sectional study in women (20-22 y) using the terminal re-
striction fragment length polymorphism (T-RFLP) method
to assess the gut microbiome (38).

Other outcomes.

One study in older adults in Japan (34) found that higher
vitamin B-12 intake was associated with greater quercetin (a
polyphenol with anti-inflammatory properties) degradation
in stool samples incubated with quercetin, indicating a
greater reduction in bioactivity. Another study in women
in Austria (33) found that higher vitamin B-12 intake was
associated with higher concentrations of zonulin, a marker
of gut permeability.

Discussion

Vitamin B-12 is synthesized and utilized by bacteria in the
human gut microbiome. However, the impact of vitamin B-
12 on the gut microbiome has not been fully established.
To our knowledge, this is the first systematic review to
date, to assess the impact of vitamin B-12 status on the gut
microbiome. Nineteen of the 22 included studies reported vi-
tamin B-12 intake, status, or supplementation was associated
with gut microbiome outcomes, including alpha-diversity
and beta-diversity, relative abundance of bacteria, functional
capacity, or SCFA production (Table 8; summary of overall
findings). Findings from in vitro, animal, and human studies
suggest that vitamin B-12 may be associated with changes
in bacterial abundance. While evidence from in vitro studies

indicates that vitamin B-12 may increase alpha-diversity and
shift gut microbiome composition (beta-diversity), results
from animal studies and observational human studies were
heterogeneous. Findings from laboratory studies suggested
that the impact of vitamin B-12 supplementation on the
gut microbiome may differ by cobalamin form and co-
intervention. To date, few prospective studies and no ran-
domized trials have been conducted to examine the effects
of vitamin B-12 on the gut microbiome.

Gut microbiome alpha-diversity and beta-diversity
Findings regarding the associations between vitamin B-
12 and alpha-diversity were heterogeneous, and varied
with cobalamin form (22, 23), index used (23), and co-
interventions (22-24, 30). Higher alpha-diversity reflects a
redundancy in gut microbiome function and stability. Lower
alpha-diversity has been associated with cardiometabolic
outcomes (45-49) and undernutrition (45-47). Given the
association of lower alpha-diversity with adverse health
outcomes, further understanding of the potential role of
vitamin B-12 in gut microbial richness and evenness is
warranted.

Vitamin B-12 was associated with shifts in beta-diversity
in some studies (22-24, 30, 31, 35, 43), suggesting that
vitamin B-12 may modulate gut microbiome composition,
although evidence was mixed (26-28, 36, 40). Beta-diversity
has been used to differentiate the microbial community
structure between healthy controls and individuals in dis-
eases such as inflammatory bowel disease (48), colorectal
cancer, liver cirrhosis (49), obesity (49, 50), and type 2
diabetes (49, 51). Results for beta-diversity and alpha-
diversity suggest that vitamin B-12 may alter gut microbiome
composition; however, host factors, form of cobalamin, and
co-interventions may affect the direction and magnitude of
these changes and need to be elucidated.

Phyla abundances

In studies reporting results at the phylum level, vitamin
B-12 intake or interventions were associated with higher
Firmicutes (26) and Proteobacteria (24, 26, 33, 40) and lower
Bacteroidetes (24, 26, 42) and Actinobacteria (28)—or the
opposite direction of these trends (22, 24, 30). The relative
abundance of phyla, such as lower Bacteroidetes:Firmicutes
ratio, have been associated with obesity (51-54) and type 2
diabetes (51); however, this association is not consistent in
all populations, and reasons for the discrepancy are unclear
(55). Further studies are needed to understand these shifts at
the phylum level and subsequent health outcomes.

Genera abundances

Relative abundance of genera has been used to characterize
the gut microbiome into enterotypes (56, 57), and long-term
diet has been identified as a main driver of enterotype classifi-
cation (58). Changes from short-term diet and interventions
may differ by baseline enterotype.
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Bacteroides.

In several studies, higher vitamin B-12 intakes in humans
(35, 40) or vitamin B-12 supplementation in rodents (25,
27) and in vitro models (23, 24) were associated with a
lower relative abundance of Bacteroides. Bacteroides encodes
several vitamin B-12 transporters (18), suggesting that they
may have an advantage in utilizing vitamin B-12 in the gut
environment. However, a vitamin B-12-rich environment
may hinder this competitive advantage (25). Bacteroides,
a Gram-negative genus of the Bacteroidetes phylum, can
metabolize glycans and polysaccharides in the gut and have
both commensal and pathogenic implications for immune
function (59) and metabolic disease (52, 60).

Faecalibacterium.

Higher vitamin B-12 intake (35, 37) and status (43) were
associated with increased relative abundance of Faecalibac-
terium. Although 1 study found no association with vitamin
B-12 intake (40), the 24-h recall used may not reflect habitual
intake. No studies in murine or in vitro models reported
associations with Faecalibacterium, which may be due to a
lower abundance of Faecalibacterium in rodents compared
with humans (61). A recent metabolic reconstruction of F.
prausnitzii’s metabolism found that it is not able to produce
cobalamin (62), suggesting increased growth in a vitamin
B-12-replete environment. Faecalibacterium is a Gram-
positive genus in the Firmicutes phylum that includes E
prausnitzii, a commensal taxon that is one of the most
abundant microbial species in humans and an important
contributor to gut microbiome function and production of
butyrate, an SCFA with anti-inflammatory effects (63).

Differences by cobalamin form

Findings from in vitro and animal studies suggest that
specific cobalamin forms may differentially impact alpha-
diversity and beta-diversity and bacterial abundance. Al-
though in humans, all cobalamin forms are interconverted
and transported within the cell (64), different forms of
cobalamin may have distinct roles in bacteria metabolism.
Differences in cellular transport among forms is unlikely,
as the predominant transporter, an ATP-binding cassette
(ABC)-type BtuFCD transport system, recognizes the lower
ligand of cobalamin that is shared among all forms (18). In
contrast, cobalamin forms may differ in enzyme affinity (i.e.,
adenosylcobalamin-dependent enzymes) or ability to control
gene expression through riboswitches—regulatory elements
of mRNA.

Most cobalamin riboswitches are thought to be
adenosylcobalamin-dependent, as demonstrated in some
model bacterial species (65-67), but some Escherichia
coli riboswitches have over 500 times higher affinity
for methylcobalamin and aquocobalamin, compared
with adenosylcobalamin (68). Zhu et al. (26) found that
cyanocobalamin improved growth and increased Shiga
toxin production of E. coli compared with methylcobalamin,
whereas Lactobacillus reuti had similar growth with both
cobalamin forms. Cyanocobalamin and methylcobalamin

also had different effects on enzyme activity, and
cyanocobalamin had greater inhibition of riboswitch
expression. In contrast, in the Propionibacterium strain UF1,
cyanocobalamin, methylcobalamin, hydroxycobalamin, and
adenosylcobalamin had similar regulation of genes involved
in vitamin B-12 biosynthesis (69). As genomic studies
elucidate mechanisms of gene regulation in bacteria, in vivo
studies are needed to determine how different cobalamin
forms impact the bacterial community.

Limitations

This systematic review has several limitations. The lack of
randomized trials and few prospective studies conducted in
humans constrain the interpretability of findings and causal
inference. Methodological differences among the included
studies, such as sequencing techniques (e.g., targeted, 16S
rRNA gene, metagenome) and microbiome samples (e.g.,
stool in humans, cecum contents in animals), and hetero-
geneity in model organisms (i.e., rodents, birds, shrimp),
population characteristics (e.g., age, sex), and vitamin B-
12 interventions and exposures limit interpretation and
comparability of findings. Studies have demonstrated that gut
microbiome varies by age (70-72) and host organism (61,
73, 74), while differences between methods can explain a
larger variation than biological differences (75, 76). Detection
of subtle effects on the gut microbiome requires use of
consistent methods (77, 78).

Research gaps and future directions

Study design.

Randomized trials are needed to determine the effects of
vitamin B-12 supplementation on the human gut micro-
biome, particularly in populations with variation in baseline
vitamin B-12 status. Large randomized trials and controlled-
feeding studies that assess the effects of low-dose supple-
ments or fortification, would further inform public health
interventions. Prospective studies with both dietary intake
and biomarkers of vitamin B-12 status, and consideration
of confounding variables, would enhance inference and
comparability between studies.

Cross-population replication.

Studies in a specific population (i.e., age, sex, country) need
to be replicated in different microbiome backgrounds to
determine which associations between vitamin B-12 and the
gut microbiome are consistent, as previously demonstrated
for microbiota—disease associations in varying geographic
locations in China (79).

Vitamin B-12 and microbiome assessment.

Dietary analyses that evaluate food groups and other indi-
vidual nutrients typically consumed with vitamin B-12 could
help to differentiate observed associations from other dietary
components. In addition to total vitamin B-12, analysis
of other circulating (i.e., holotranscobalamin) and func-
tional (i.e., MMA) biomarkers would improve assessment
of vitamin B-12 status. Leveraging advances in the field of
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microbiome research (e.g., -omics data, high-dimensional
statistics) would allow for investigation of functional changes
in the gut microbiome and implications for human health.

Additional nutrients in one-carbon metabolism.
B-vitamins and other nutrients involved in one-carbon
metabolism can also be synthesized and utilized by gut bacte-
ria (14, 80-83). Folate status, intake, and/or supplementation
(28,30, 39, 84-90) may influence relative bacterial abundance
and other gut microbiome outcomes. Other B-vitamins,
such as riboflavin (40, 85, 91-93), niacin (94), vitamin B-5
(40), and vitamin B-6 (40, 85, 95), and choline (85, 96, 97)
and methionine (85, 98, 99) have also been associated with
changes in relative bacterial abundance.

Potential mechanisms. Modulation of the gut microbiome
by vitamin B-12 or other nutrients in one-carbon metabolism
may occur via several potential mechanisms. The impact
of vitamin B-12 on the gut microbiome may be explained
by vitamin B-12-dependent enzymes and riboswitches (14,
18); however, the mechanisms that link vitamin B-12 and
the human gut microbiome have not been fully established.
One-carbon metabolism. The role of other nutrients in one-
carbon metabolism may provide further insights into the
links between vitamin B-12 and the gut microbiome. For
example, SAM production (i.e., a methyl donor and product
of one-carbon metabolism) can be used for DNA methylation
in bacteria to alter gene expression (100) or in mucosal cells,
which could impact the intestinal environment (99, 101,
102). SAM is also a substrate for production of metabolites
used in communication between bacteria (i.e., quorum
sensing) (103, 104). Through B-vitamin sharing among
bacteria in the gut microbiome (20), bacteria may benefit
from an abundance or stability of B-vitamin availability in
the gut environment (105). Additionally, products of B-
vitamin metabolism may be used by other bacteria in the
gut (20, 105, 106), which may offer competitive advantage
to some bacteria without B-vitamin-dependent enzymes.
Other mechanisms. Choline can be metabolized by bacteria
in the gut microbiome to produce trimethylamine (82),
which may decrease choline availability for the host (107)
and limit production of SAM. Additionally, niacin may
have a role in decreasing bacterial endotoxin production
and improving intestinal barrier function (108, 109), and
Steinert and colleagues (92, 110) hypothesized that riboflavin
may reduce oxidative stress via NADH-redox reactions in
bacteria.

Alterations in one-carbon metabolism through deficiency
in 1 or more nutrients could interact with vitamin B-12 to
impact gut microbiome composition and function. Future
research is needed to examine the independent effects of
vitamin B-12 and potential interactions with folate and other
nutrients in shaping the gut microbiome.

Translational research.

In vitro and animal models differ from the human gastroin-
testinal tract—in terms of structure, transit time, abundance
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of some bacteria, and sample type (61, 73, 74). However,
laboratory-based models provide a controlled environment
to evaluate the effects of vitamin B-12 on the gut microbiome,
which can inform mechanistic hypotheses and studies in
humans. Given the findings from experimental in vitro
and animal models and observational human studies on
vitamin B-12 and gut microbiome, further evidence is needed
from mechanistic studies and randomized trials in human
populations.

Impact of microbiome on vitamin B-12 status.

The studies included in this review focused on the impact of
vitamin B-12 on modulating the gut microbiome. However,
few studies have evaluated the potential impact of gut
bacteria on host vitamin B-12 status (14, 80, 111, 112). One
study estimated that 42% of the human gut microbiome
genome synthesizes vitamin B-12, and the human gut
microbiome has the capacity to produce approximately one-
third of the daily recommended intake of vitamin B-12 (80).
However, only approximately 2% of corrinoids found in
human feces are cobalamin, while the remainder are vitamin
B-12 analogs (16), suggesting that vitamin B-12 analogs
produced by bacteria are more likely to enter the circulation
than vitamin B-12. Another study found that elevated MMA
(>0.75 mmol/L) was associated with higher concentrations
of vitamin B-12 analogs bound to holohaptocorrin, the
circulating form of vitamin B-12 thought to be inactive (112),
suggesting that concentrations of vitamin B-12 analogs could
impact vitamin B-12 status.

In humans, vitamin B-12 transporters are found only in
the small intestine; vitamin B-12 analogs produced by bacte-
ria in the large intestine would likely enter the circulation via
passive diffusion (14). However, passive diffusion of vitamin
B-12 through the small intestine only accounts for 1-2% of an
oral dose (15), so passive diffusion in the large intestines may
not account for a substantial amount of absorption. Stable-
isotope methods could elucidate the potential impact of the
gut microbiome on host vitamin B-12 status.

Clinical and public health implications.

Further understanding of the impact of vitamin B-12 on
the gut microbiome is needed to inform clinical and public
health interventions. Vitamin B-12 supplementation may
be beneficial to gastrointestinal conditions, beyond treating
malabsorption-induced vitamin B-12 deficiency, through
interactions with the gut microbiome. In colitis-induced
mice, methylcobalamin supplementation (25, 26), but not
cyanocobalamin (26), yielded improvements in disease
activity score and colonic weight loss (26). This could be
due to gut microbial production of propionate, which has
a demonstrated role in gut integrity and host health (63):
in gut simulators, methylcobalamin supplementation, but
not cyanocobalamin, increased propionate production (23).
Although intramuscular vitamin B-12 is most commonly
used to treat vitamin B-12 deficiency in individuals with
malabsorption disorders, some studies have found that oral
doses of vitamin B-12 are as effective (113), and may incur



additional benefits via the gut microbiome. Understanding
the mechanisms and impact of vitamin B-12 on gastroin-
testinal health could help to inform recommendations for co-
interventions.

Conclusions

Vitamin B-12 is synthesized and utilized by bacteria in the
human gut microbiome. However, the impact of vitamin B-
12 on the gut microbiome has not been established. Evidence
from laboratory studies suggests that vitamin B-12 may be
associated with changes in bacterial abundance and diversity,
but may differ by cobalamin form, co-interventions, or other
host factors. However, overall findings from observational
human studies and in vitro and animal studies regarding
alpha-diversity and beta-diversity, bacterial abundances, and
function are heterogeneous. To date, few prospective studies
and no randomized trials have been conducted to determine
the effects of vitamin B-12 on the human gut microbiome.
The impact of vitamin B-12 on the gut microbiome needs
to be elucidated to inform public health and clinical
interventions.
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