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Abstract of the Dissertation

Making Decisions Under Uncertainty

for Large Data Domains

by

Alan James Roytman

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Rafail Ostrovsky, Chair

In this thesis, we study key questions that touch upon many important problems in practice

which are data-intensive. How can we process this influx of data while using a small amount

of memory without sacrificing solution quality? We study this question in the context of

the classical k-means clustering problem for the streaming model under a data separability

assumption. We design a near-optimal streaming approximation algorithm that uses small

space and makes one pass over the stream.

The streaming model may be too restrictive for certain problems that demand more

computational resources. Can we still provide provable guarantees for such applications,

where the input arrives online? We consider this question in the context of load balancing

problems for data centers and study various scheduling problems which are energy-aware.

Moreover, we show that our algorithmic techniques have applications to the machine learning

community for a fundamental online convex optimization problem by giving insight into fine-

tuning the tradeoff between two performance benchmarks: the competitive ratio and regret.
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Bareinboim, Chongwon Cho, Aaron Coté, Sanjam Garg, Ran Gelles, Abishek Kumarasub-

ramanian, Michael Shindler, Brian Tagiku, and Akshay Wadia. They have left an indelible

mark on my life, and my years at UCLA would not have been the same without them. I

would also like to thank my friends and colleagues – Shweta Agrawal, Prabhanjan Ananth,

Vladimir Braverman, Nishanth Chandran, David Felber, Divya Gupta, Abhishek Jain, Bha-

vana Kanukurthi, Dakshita Khurana, Chen-Kuei (James) Lee, Hemanta Maji, Omkant

Pandey, Anat Paskin-Cherniavsky, Vanishree Rao, Alessandra Scafuro, Tomer Weiss, Arman

Yousefi, and Vassilis Zikas, who have all greatly contributed to my wonderful experience as

a graduate student.

vii



Vita

2008 B.A. in Computer Science, B.A. in Mathematics, University of California,

Berkeley.

2008 Dorothea Klumpke Roberts Prize, University of California, Berkeley.

2008 Camp Fellowship, University of California, Los Angeles.

2011 M.S. in Computer Science, University of California, Los Angeles.

Publications
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CHAPTER 1

Introduction

In this thesis, we propose two key questions that touch upon many important applications in

practice and address problems which are accurately modeled within the context of theoret-

ical computer science. Applications which are extremely data-intensive are indeed growing

in importance today, as more data becomes available and is being generated at an expo-

nential rate. As data continues to grow, algorithms which are able to handle a constant

stream of incoming data while simultaneously using a very small amount of memory can

have a significant impact in practice (since storing such a large amount of data is infeasible).

Applications which have vast amounts of information to analyze include stock market trans-

actions, DNA sequences, and packets flowing through a network, and they naturally give

rise to the so-called “streaming” model. Here, the input is a stream of elements revealed to

the algorithm over time, so it is inherently an “on-the-fly” process. Hence, a very pressing

question arises: how can we make a single pass over the incoming data while using a small

amount of memory, and yet still guarantee near-optimal solutions?

We study this question in the context of clustering problems. For the classical k-means

problem, we provide a streaming algorithm that uses O(k log n) memory and makes a single

pass over the stream, where n is the number of points to be clustered. Under a data sep-

arability assumption, our algorithm produces a near-optimal clustering in high-dimensional

Euclidean space. The data assumption is practical, as it captures the notion that using k

means to serve as cluster centers is very meaningful.

The streaming model may be too restrictive for certain applications that may have larger

memory requirements, but many applications can still benefit from algorithms which op-

erate under uncertainty. Hence, this leads us to the second part of this thesis regarding
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online algorithms. In practice, especially for applications with a large amount of data, it is

unreasonable to assume that the input is given up front to the algorithm. As a motivating

example, every year companies spend billions of dollars to maintain and run data centers,

so even a modest improvement via energy-aware scheduling can lead to significant savings.

However, in practice, computer systems are unaware of what tasks will need to be run in the

future. A natural question is, how do we design algorithms that can handle input arriving

on the fly while providing provable guarantees on solution quality?

To address this question, we model applications in a theoretical framework and design ef-

ficient algorithms that provide provable guarantees on solution quality relative to an optimal

solution that knows the future. We study various scheduling and load balancing problems

which are energy-aware and design algorithms that optimize an objective function which

captures the notion of minimizing energy. We introduce the notion of multidimensionality

(where each dimension represents a system component such as, say, the CPU) in the context

of load balancing. For an arbitrary number of dimensions d, we give an O(log d)-competitive

algorithm on the makespan for the identical machines setting. We also study the setting

in which machines have an activation cost and give polylogarithmic competitive results for

both the makespan and the total activation cost.

In addition, we study a data center optimization problem (for one dimension) and give

a 2-competitive algorithm. Moreover, we show how our algorithm is not only important for

the online algorithms community, but it can also be modified to have applications for the

machine learning community. In particular, we formulate and design an algorithm for a very

general problem that is closely related to the classical metrical task systems problem studied

within the online algorithms community and the fundamental online convex optimization

problem studied within the machine learning community. We show that our algorithm is

able to fine-tune the tradeoff between two popular benchmarks: the competitive ratio and

regret. In fact, we prove that our algorithm is tight by showing an inherent incompatibility

between the two benchmarks.

We now discuss the organization of this thesis and provide a general overview of our

results in each chapter.
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Chapter 2: One of the most fundamental problems in data analysis is known as the k-

means clustering problem. This problem has received considerable attention in the literature,

and more recently, the streaming version of this problem has been studied, culminating in a

series of results [HM04, FS05, FMS07, Che09] that produced a (1 + ε)-approximation for k-

means clustering in the streaming setting. Unfortunately, optimizing the k-means objective

is Max-SNP hard. This implies that all algorithms which achieve a (1 + ε)-approximation

must take time exponential in k, unless P = NP.

If we wish to avoid this exponential dependence on k, some additional assumptions must

be made about the input in order to simultaneously guarantee a high quality approximation

and polynomial running time. The paper of [ORS06] introduced the very natural assumption

of data separability : the notion that using k means is somehow much better than using k−1

means. This assumption closely reflects how k-means is used in practice, as it implies that

there is a particularly meaningful choice for k. In particular, the assumption allowed the

authors to create a high quality approximation for k-means clustering in the non-streaming

setting with polynomial running time, even for large values of k. Their work left open a

natural and important question: are similar results possible in the streaming setting? This

is the question we answer in this chapter, by providing a positive result using substantially

different techniques.

In particular, we show a near-optimal streaming approximation algorithm for the k-means

problem in high-dimensional Euclidean space with sublinear memory while making a single

pass over the stream, under the same data separability assumption. Our algorithm offers

significant improvements in both space and running time over previous work.

The novel techniques we develop along the way imply a number of additional results: we

improve the performance guarantee for online facility location by showing that the algorithm

achieves the same guarantees within constants of its expected behavior with high probabil-

ity (in contrast, the algorithm in [Mey01] gave bounds only in expectation); we develop a

constant approximation algorithm for the general class of semi-metric clustering problems;

we improve (even without the data separability assumption) the space requirements of the

best previous result for streaming k-median by a logarithmic factor; finally, we design a
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“re-sampling method” in the Euclidean setting to convert our constant approximation al-

gorithm for the general semi-metric clustering class of problems to a near-optimal solution

when the data is well-clusterable. In particular, our approximation factor approaches one as

the separability of the data increases.

The work presented in this chapter is based on [BMO11].

Chapter 3: Energy efficient algorithms are becoming critically important, as huge data

centers and server farms have an increasing impact on monetary and environmental costs.

Motivated by such issues, we study online load balancing from an energy-aware perspective

in this chapter. We consider the setting in which we are given m machines, each with some

energy activation cost ci and d dimensions (where each dimension represents a component on

the machines). There are n jobs which arrive on the fly and must be assigned to machines.

Each job induces a load on its assigned machine along each dimension. We must select a set

of machines to activate and assign jobs to active machines as they arrive so that the total

activation cost of the machines falls within an energy budget B and the largest load over all

machines and dimensions (i.e., the makespan) is at most Λ.

We first study the model in which machines are unrelated and can have arbitrary activa-

tion costs (that is, the load of a job on a dimension can change arbitrarily depending on its

assigned machine). For this problem, which we call Machine Activation, our framework ex-

tends the recent work of [KLS10] to the online model, in which we assume that jobs arrive on

the fly, and the work of [ABF13] to the multidimensional case. We consider a variant where

the target makespan Λ and budget B are given. The first main result is an online algorithm

which is O(log(md) log(nm))-competitive on the load Λ and O(d log2(nm))-competitive on

the energy budget B. We also address cases where one parameter is given and we are asked

to minimize the other, or where we want to minimize a convex combination of the two. Run-

ning our previous algorithm in phases gives results for these variants. We prove lower bounds

indicating that the effect on the competitive ratio due to multiple phases is necessary.

Our second main result for this chapter is in the same setting, except that all machines

are identical (i.e., the load of a job on a dimension is the same across all machines) and
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have no activation cost. We call this problem Vector Load Balancing, for which we have

two objectives: minimize the largest load induced over all machines and dimensions (the

makespan objective), and minimize the sum of the largest loads induced on each machine

(the energy objective). We give an online algorithm that is O(log d)-competitive on the

makespan objective, which improves even on the best prior offline result, and O(log d)-

competitive on the energy objective if the target makespan is given; without this knowledge,

we show that it is impossible to get a competitive ratio independent of m.

The work presented in this chapter is based on [MRT13].

Chapter 4: In this chapter, we consider algorithms for very general “smoothed online

convex optimization” problems. In particular, our formulation is a variant of the class of

online convex optimization problems typically studied within the machine learning commu-

nity and is strongly related to the classical metrical task systems problem studied within

the online algorithms community. Prior literature on these problems has focused on two

performance metrics: regret (typically studied in the machine learning literature) and the

competitive ratio (typically studied in the online algorithms literature). There exist known

algorithms with sublinear regret and known algorithms with constant competitive ratios;

however, no known algorithm achieves both simultaneously. Moreover, because the two per-

formance metrics are so different, the algorithms developed within the two communities tend

to have very different styles and techniques.

We show that this is due to a fundamental incompatibility between these two performance

metrics – no algorithm (deterministic or randomized) can simultaneously achieve a sublin-

ear regret and a constant competitive ratio, even in the simple setting when the objective

functions are linear and the decision space is one-dimensional. However, we also exhibit an

algorithm that, for the important special case of one-dimensional decision spaces, provides

sublinear regret while maintaining a competitive ratio that grows arbitrarily slowly. In this

sense, our results are essentially tight in fine-tuning the tradeoff between the competitive

ratio and regret.

The work presented in this chapter is based on [ABL13].
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CHAPTER 2

Streaming k-means on Well-Clusterable Data

2.1 Introduction

In this chapter, we consider the problem of Euclidean k-means in the streaming model. There

are n points in Euclidean space that are read sequentially; when the data stream finishes,

we must select k of these to designate as facilities. Our cost is the sum of squared distances

from each point in the stream to its nearest facility.

A series of recent results [HM04, FS05, FMS07, Che09] produced (1 + ε)-approximations

for streaming k-means. The general approach first appeared in the paper of Har-Peled and

Mazumdar [HM04]. They used the concept of a (k, ε)-coreset: a weighted set of points such

that the cost of any set of k facilities on the coreset is within 1 + ε of the cost on the original

points. Subsequent results improved the time and space bounds for computing coresets.

Frahling and Sohler [FS05] designed a new way to construct coresets based on grids and

Chen [Che09] designed a new way to generate coresets by randomly sampling from rings

around an approximate set of facilities. In addition, Feldman, Monemizadeh, and Sohler

[FMS07] used the concept of a weak coreset (due to [BHI02]), where the size of the coreset

is independent of n.

While these recent results claimed a (1 + ε)-approximation for streaming k-means, this

requires producing an exact solution on the coreset itself, which takes time 2Õ(k/ε). When k

is part of the input, this is exponential time, and it cannot be substantially improved since

the objective is Max-SNP hard to optimize [BBG09].

In this work, we are interested in algorithms with truly polynomial running times. We

seek to produce good approximations while optimizing space and runtime requirements.
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Since we cannot obtain a (1 + ε)-approximation in polynomial time, we will make the natu-

ral assumption of data separability, introduced by Ostrovsky, Rabani, Schulman, and Swamy

[ORS06]; this closely reflects how k-means is used in practice and allowed the authors to

create a good approximation in the non-streaming setting. Our main result is a streaming

algorithm, which produces a set of k means after processing a stream of n data points that

arrive one at a time while making only a single pass through the data. We guarantee that

the space requirement and processing time per point are logarithmic in n, and we produce

an approximation factor of 1 + O(ε) + O(σ2) when the original data is σ-separable. While

it is possible to modify the prior coreset-based approaches to obtain similar approximation

bounds, our algorithm improves substantially on both space and time requirements. In fact,

our algorithm requires less space (by a factor of log n) than the best previous constant ap-

proximation for the problem. We give both results in expectation and with high probability;

our results are compared to previous coreset-based results for k-means in Table 2.1.

The techniques that we develop along the way allow us to establish additional results: we

provide a high probability performance guarantee for online facility location (Meyerson’s

results [Mey01] gave bounds only in expectation); we develop a constant approximation

method for the general class of semi-metric clustering problems; we improve (even without

σ-separability) by a logarithmic factor the space requirements of the previous best streaming

algorithm for k-median; finally we show a novel “re-sampling method” in the streaming

setting to reduce any constant approximation for clustering to 1 +O(σ2).

Related Work

The k-means problem was considered as early as 1956 by Steinhaus [Ste56]. A simple local

search heuristic for the problem was proposed in 1957 by Lloyd [Llo82]. The heuristic be-

gins with k arbitrarily chosen points as facilities. At each stage, it allocates the points into

clusters (where each point is assigned to its closest facility) and then computes the center of

mass for each cluster. These centers of mass become the new facilities for the next phase,

and the process repeats until the solution stabilizes. Lloyd’s algorithm has a rich history,
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Result Space (points) Runtime PROB

[HM04] + [ORS06] O
(
k
εd

log2d+2 n
)

Od

(
n
(
k5 + log2

(
k
ε

)))
EXP

[FS05] + [ORS06] O
(

(log ∆+logn)3k2 log4 ∆
ε2d+6

)
Od

(
n log2 ∆ (log ∆ + log n)

)
EXP

Ours O
(
k
ε

log n
)

Od (nk log n) EXP

[FMS07] + [ORS06] O
(
k2

ε5
log10 n

)
Od

(
nk2

ε
log2 n

)
WHP

[Che09] + [ORS06] O
((

dk
ε

)2
log8 n

)
Od

(
nk log2 n polylog

(
k
ε

))
WHP

Ours O
(
k
ε

log2 n
)

Od (nk log n) WHP

Table 2.1: Streaming (1 +O(ε) +O(σ2))-approximations to k-means

receiving attention from psychologists in 1959-67 [TB70] and the computer science commu-

nity from 1960 to the modern day [Max60, Mac67, DLR77, LBG80, GG92, GN98, JMF99,

Tot59, Zad64, For65, Fis58, BH65, Bal65, Jan66, ARS98, PM99, Phi02, KMN02, ORS06].

Unfortunately, Lloyd’s algorithm has no provable approximation bound, and arbitrarily bad

examples exist. Furthermore, the worst-case running time is superpolynomial [AV06]. De-

spite these drawbacks, Lloyd’s algorithm (frequently known simply as k-means) remains

common in practice.

The best polynomial-time approximation factor for k-means is by Kanungo, Mount, Ne-

tanyahu, Piatko, Silverman, and Wu [KMN02]. They based their result on the k-median

algorithm of Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [AGK01]. Both pa-

pers use local search; the k-means case produces a (9 + ε)-approximation. However, Lloyd’s

experimentally observed runtime is superior, and this is a high priority for real applications.

Ostrovsky, Rabani, Schulman and Swamy [ORS06] observed that the value of k is typi-

cally selected such that the data is “well-clusterable” rather than being an arbitrary part of

the input. They defined the notion of σ-separability, where the input to k-means is said to

be σ-separable if reducing the number of facilities from k to k − 1 would increase the cost

of the optimum solution by a factor 1
σ2 . They designed an algorithm with approximation

ratio 1 + O(σ2). They also showed that their notion of σ-separability is robust and gener-

alizes a number of other intuitive notions of “well-clusterable” data. The main idea of their
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algorithm is a randomized seeding technique which guarantees (with high probability) one

initial facility belonging to each optimum cluster. They then perform a “ball k-means” step

(Lloyd-like re-clustering) using only points which are near facilities. Subsequently, Arthur

and Vassilvitskii [AV07] showed that the same procedure produces an O(log k) approximation

for arbitrary instances of k-means.

When a k-means type algorithm is run in practice, the goal is to group the data based on

a natural clustering. Balcan, Blum, and Gupta [BBG09] used this observation to extend the

notion of σ-separability to η-closeness: two clusterings are η-close if they disagree on only

an η-fraction of the points, and an instance of the problem has the (c, η) property if any c-

approximation is η-close to the target clustering for that instance. Their main contribution is

to show how to use an existing constant approximation to modify a solution on an agreeable

dataset to be a better solution. When the (c, η) property assumption holds, they are able

to find very accurate approximations to the subjective correct clustering. In particular, any

instance of k-means that has a (1+α, η)-property can be clustered to be O(η/α) close to the

target. However, their approach is memory intensive and not amenable to direct adaptation

for the streaming model.

Each of these algorithms assumed that the entire input was available for processing in

any form the algorithm designer needed. Our work focuses instead on the streaming model,

where the set of points to cluster is extremely large and the algorithm is required to make

only a single in-order pass through the data. This is typically used to model the case where

there is a vast amount of data and it must be read without random access.

The early work on the more general problem of streaming k-service clustering focused on

streaming k-median. In 2000, Guha, Mishra, Motwani, and O’Callaghan [GMM00] produced

an O(21/ε)-approximation for streaming k-median using O(nε) memory. Their algorithm

reads the data in blocks, clustering each using some non-streaming approximation, and then

gradually merges these blocks when enough of them arrive. An improved result for k-median

was given by Charikar, O’Callaghan, and Panigrahy in 2003 [COP03], producing an O(1)-

approximation using O(k log2 n) space. Their work was based on guessing a lower bound

on the optimum k-median cost and running O(log n) parallel versions of the online facility
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location algorithm of Meyerson [Mey01] with facility cost based on the guessed lower bound.

When these parallel calls exceeded the approximation bounds, they would be terminated

and the guessed lower bound on the optimum k-median cost would increase.

A recent result for streaming k-means due to Ailon, Jaiswal, and Monteleoni [AJM09]

is based on a divide and conquer approach, similar to the k-median algorithm of Guha,

Meyerson, Mishra, Motwani, and O’Callaghan [GMM03]. It uses the result of Arthur and

Vassilvitskii [AV07] as a subroutine, finding 3k log k centers and producing an approximation

ratio of 64 with probability at least 1/4 in the non-streaming setting. By dividing the input

stream and running this repeatedly on pieces of the stream, they achieve an O
(
2O(1/ε) log k

)
-

approximation using O(nε) memory.

High Level Ideas

Our goal is to produce a fully polynomial-time streaming approximation for k-service clus-

tering. A natural starting point is the algorithm of Charikar, O’Callaghan, and Panigrahy

[COP03]; however, their result as stated applies only to the k-median problem. Since their

algorithm depends heavily on calls to the online facility location algorithm of Meyerson

[Mey01], we first consider (and improve) results for this problem.

We produce new high probability bounds on the performance of online facility location,

showing that the algorithm achieves within constants of its expected behavior with prob-

ability 1 − 1
n

(Theorem 2.1). To achieve this result, we inductively bound the probability

of any given service cost being obtained prior to opening a facility in each of a collection

of facility-less regions. We then combine this with deterministic bounds on the service cost

subsequent to opening a facility in the local region, and with Chernoff bounds on the num-

ber of facilities opened. Coupling our result with the algorithm of Charikar, O’Callaghan,

and Panigrahy [COP03] improves our memory bound and processing time per point by a

Θ(log n)-factor. Our analysis extends to cases where the triangle inequality holds only ap-

proximately, allowing us to apply the streaming algorithm to k-means as well. This yields

the first streaming O(1)-approximation for k-means and k-median to store only O(k log n)
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points in memory (Theorem 2.2).

The execution of the algorithm of [COP03] is divided into phases, each of which cor-

responds to a “guess” at the optimum cost value. Each phase induces overhead to merge

the existing clusters from the previous phase. The number of these phases is bounded by

O(n); we show that a modification of the algorithm along with an appropriate choice of

constants can guarantee that each phase processes at least k(1 + log n) new points from the

data stream (Theorem 2.3), thus reducing the number of phases to O(n/(k log n)). This

reduction improves the overall running time to O(nk log n).

Next, we would like to improve our approximation result to an FPTAS for the impor-

tant case of Euclidean k-means. This is hard in general, as the problem is Max-SNP hard

[BBG09]. We instead make the σ-separability assumption of Ostrovsky, Rabani, Schulman,

and Swamy [ORS06] and show that we can obtain a (1 +O(ε) +O(σ2))-approximation that

stores O
(
k
ε

log n
)

points in memory and has polynomial running time.

The first step is to consider applying a ball k-means step to our O(1)-approximation;

this involves selecting the points which are much closer to one of our facilities than to any

other (the “ball” of that facility) and computing the center of mass on those points. We

show that, given any O(1)-approximation to k-means, applying the ball k-means step will

reduce the approximation factor to 1 +O(σ2). The main idea is that the optimum facilities

for such an instance must be far apart; any O(1)-approximation must include a facility close

to each of the optimal facilities. Combining these facts gives a one-to-one mapping between

our facilities and the optimal facilities, and we show that the points which are very close to

each of our facilities must therefore belong to distinct optimal clusters. This would enable

us to produce a (1 + O(σ2))-approximation to k-means by making two passes through the

stream – the first pass would run the algorithm of Charikar, O’Callaghan, and Panigrahy

[COP03] with our modifications, and the second pass would run the ball k-means step.

Of course, we wish to compute our entire solution with only one pass through the data.

To do this, we prove that sampling works well for approximating the center of mass. In

particular, a random sample of constant size (independent of the size of the cluster) provides
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a constant approximation (Theorem 2.4). Our goal is thus to produce a suitable random

sample of the points belonging to each of the balls for our final ball k-means step.

Unfortunately, we do not know what our final cluster centers will be until the termination

of the stream, making it difficult to sample uniformly from the balls. Instead, we show that

the clusters from our solution are formed by adding points one at a time to clusters and

by merging existing clusters together. This process permits us to maintain at all times a

uniformly random sample of the points belonging to each of our clusters (Section 2.3). Of

course, randomly sampling from the points in these clusters is not the same as randomly

sampling from the balls in the ball k-means step. However, we can show that the set we

are actually sampling from (our cluster about a particular facility) and the set we should be

sampling from (the points which are much closer to a particular facility than to any other

one of our facilities) are roughly (within constants) the same set of points, and that as the

separability value σ approaches zero, these sets of points converge and become effectively

identical (Theorem 2.6).

Putting it all together, our overall result maintains a sample of size 1
ε

from each of

our clusters at all times. The number of clusters will never exceed O(k log n), so the total

memory requirement is O
(
k
ε

log n
)

points for a chosen constant ε. The approximation factor

for our final solution is 1+O(ε)+O(σ2) for σ-separable data, and our overall running time is

O(nk log n). While this result holds in expectation, we also give a similar result which holds

with high probability, namely at least 1− 1
n
. Our space requirement for the high probability

result is O
(
k
ε

log n log(nd)
)
, and by applying the result of Johnson and Lindenstrauss [JL84]

we can reduce this to O
(
k
ε

log2 n
)
. We also note that the value of σ need not be known to

our algorithm at runtime.

We stress that our result improves over all previous streaming algorithms for k-means

(or k-median) in the memory requirement and running time, while obtaining very good

approximation results provided the data set is “well-clusterable” (as per [ORS06]).
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Our Techniques Versus Prior Work

Our improvement of the analysis from Meyerson’s online facility location result [Mey01] uses

similar techniques to the original paper. As before, the optimum clusters are divided up into

“regions” based on proximity to the optimum center, and arguments are made about the

cost prior to and subsequent to opening a facility in each region. Extending this approach to

handle the approximate triangle inequality is straightforward. The main new idea involves

producing a high probability bound, specifically on the service cost paid prior to opening

facilities in each region. Here we use induction to produce an upper bound on the actual

probability of paying at least a given cost prior to opening the facilities; by setting the target

probability appropriately, we can show that the chance of exceeding the expected cost by

more than a constant is exponentially small in the number of regions. Combining this with a

straightforward application of Chernoff bounds (for the number of facilities that are opened)

completes the result.

While our overall algorithm bears some similarity to the result of Charikar, O’Callaghan,

and Panigrahy [COP03], our techniques are quite different. They break their process into

phases, then show that each phase “succeeds” with reasonably high probability. They then

require substantial work to bound the number of phases to be linear in the number of points.

In contrast, we show that we only require “success” of a randomized algorithm at a particular

critical phase; prior phases are always guaranteed to have bounded cost. This allows a

substantial improvement, and unlike their work, our performance and success probability

do not depend on the number of phases. Nonetheless, bounding the number of phases is

important for the running time. We obtain a sublinear bound by simply requiring each phase

to read in at least a logarithmic number of new points; this analysis is much simpler and

enables us to perform a simple matching at the end of each phase (reducing the number

of facilities sufficiently) rather than approximating k-means on the facilities of the prior

phase. Of course, our ideas about using sampling and a ball k-means step to improve the

approximation were not part of [COP03], although the general idea (without the sampling

or streaming aspect) appeared in Ostrovsky, Rabani, Schulman, and Swamy [ORS06].
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Definitions and Notation

Throughout this chapter, we use n to denote the number of points in the stream to be

clustered, k to denote the desired number of means, and d to denote the dimensionality of

the points. We also use ε as a parameter of our algorithm that controls the quality of the

approximation guarantee, and ∆ to denote the diameter of a dataset. For a set of points A,

we let com(A) denote the center of mass of A, so that com(A) =
∑
x∈A x

|A| .

Definition 2.1 (k-service clustering). We have a finite set X of points, a possibly infinite set

Y (with X ⊆ Y ) of potential facilities, and a cost function δ : X × Y → <+. Our goal is to

select K ⊆ Y of size k to be designated as facilities, so as to minimize
∑

i∈X minj∈K{δ(i, j)}.

The cost function is known as the service cost to connect a point to a facility.

This encapsulates a family of problems, including k-median, where δ is a metric on space

Y , and k-means, where Y is Euclidean space and δ is the square of Euclidean distance.

The related facility location problem is formed by removing the constraint that |K| = k,

replacing it with a facility cost f , and adding f |K| to the objective function. For a point

a and set A, we let C(a,A) be the one-means cost of using point a as a mean for set A, so

that C(a,A) =
∑

x∈A δ(x, a). Note that the k-means service costs satisfy the 2-approximate

triangle inequality:

Definition 2.2. (α-Approximate Triangle Inequality) If, for any points a, b, c the

following applies: α[δ(a, b) + δ(b, c)] ≥ δ(a, c), then we say that the α-approximate triangle

inequality is satisfied.

Definition 2.3 (σ-separable dataset). A set of input data for the k-service clustering problem

is said to be σ-separable if the ratio of the optimal k-service clustering cost to the optimal

(k − 1)-service clustering cost is at most σ2.

This captures the notion that the kth facility must be meaningful for the clustering to be

as well. This has been applied to k-means by [ORS06].
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2.2 A Constant Approximation

In this section, we will provide an O(1)-approximation for k-service clustering, for any in-

stance in which X ⊆ Y and where the α-approximate triangle inequality applies to δ.

Algorithm 2.1 summarizes our entire process for streaming k-service clustering. It takes

as input a data stream known to contain n points and a value k for the number of desired

means. The algorithm is defined in terms of the constants β, γ, which will be determined later

(when analyzing the algorithm). The algorithm as described also requires a (non-streaming)

O(1)-approximation for k-service clustering, which is used as a subroutine. One candidate

algorithm for this when running k-means is the approximation of Kanungo et al. [KMN02].

At several points in our algorithm, we refer to placing points at the front of the data

stream. An easy way to implement this is to maintain a stack structure. When placing

an item at the front of the stream, push it to the stack. When reading from the stream,

check first if the stack is empty: if it is not, read by popping from the stack. If the stack is

empty, read from the stream as normal. This also allows us to place items with weight on

the stream, and we consider each item from the stream to be of weight one.

Our algorithm is quite similar to that of Charikar, O’Callaghan, and Panigrahy [COP03].

Both approaches run online facility location [Mey01] (lines 5-12 in our algorithm) with fa-

cility costs based on gradually improving lower bounds on the optimum cost. We show an

improved online facility location analysis, which enables us to run only a single copy of online

facility location (instead of O(log n) copies as in [COP03]) while maintaining a high success

probability. We also show that the randomized online facility location algorithm need not

“succeed” at every phase, only at the critical final phase of the algorithm; this allows us to

improve our approximation factor from that of [COP03]. Finally, we show that the number

of phases is bounded by O(n/(k log n)) rather than O(n); this improves the running time of

our algorithm substantially from that of [COP03], obtaining O(nk log n) time.
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1: L1 ← 1

2: i← 1

3: while solution not found do

4: K ← ∅

5: cost ← 0

6: f ← Li/(k(1 + log n))

7: while there are points still in the stream do

8: x← next point from stream

9: y ← facility in K that minimizes δ(x, y)

10: if probability min{weight(x)·δ(x,y)
f

, 1} then

11: K ← K ∪ {x}

12: else

13: cost ← cost + weight(x) · δ(x, y)

14: weight(y) ← weight(y) + weight(x)

15: if cost > γLi or |K| > (γ − 1)(1 + log n)k then

16: break and raise flag

17: if flag raised then

18: push facilities in K onto stream

19: Li+1 ← βLi

20: i← i+ 1

21: else

22: Cluster K to yield exactly k facilities

23: Declare solution found

Algorithm 2.1: One pass, constant approximation k-service clustering algorithm

Improved Analysis of Online Facility Location

The online facility location algorithm of Meyerson [Mey01] is used implicitly in lines 7-16 of

Algorithm 2.1 and works as follows. We are given a facility cost f . As each point arrives,

we measure the service cost δ for assigning that point to the nearest existing facility. With
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probability min{ δ
f
, 1} we create a new facility at the arriving point. Otherwise, we assign

the point to the nearest existing facility and pay the service cost δ. Let OPT denote the

optimal k-service clustering.

Theorem 2.1. Suppose we run the online facility location algorithm of [Mey01] with f =

L
k(1+logn)

where L ≤ OPT and that the service costs satisfy the α-approximate triangle in-

equality. Then the expected total service cost is at most (3α + 1)OPT and the expected

number of facilities generated by the algorithm is at most (3α+ 1)k(1 + log n)OPT
L

. Further,

with probability at least 1 − 1
n

, the service cost is at most
(
3α + 2e

e−1

)
OPT and the number

of facilities generated is at most (6α + 1)k(1 + log n)OPT
L

.

Proof. Consider each optimum facility c∗i . Let C∗i be the points assigned by OPT to c∗i , A
∗
i

be the total service cost of optimum cluster C∗i , and a∗i = A∗i /|C∗i |. Let δ∗p be the optimum

service cost for point p. We divide the optimum cluster C∗i into regions Sji for j ≥ 1 where

|Sji | = |C∗i |/2j and all the points in Sji have optimum service cost at most the optimum

service cost of points in Sj+1
i . This will probably produce “fractional” points (i.e., points

which are split between many regions); however, this does not affect the analysis. Let Aji be

the total optimum service cost of points in Sji , so that ΣjA
j
i = A∗i .

For each region Sji , we may eventually open a facility at some point q in this region. Once

we do so, subsequent points p arriving in the region must have bounded service cost of at

most α(δ∗p + δ∗q ). Since q ∈ Sji and all points in Sji have smaller optimum service cost than

points in Sj+1
i , we can conclude that δ∗q ≤ Aj+1

i /|Sj+1
i |. Summing the resulting expression

over all points in Sji gives us a service cost of at most α(Aji + 2Aj+1
i ). Summing this over all

the regions gives a service cost of at most 3αA∗i subsequent to the arrival of the first facility

in the regions. Note that this is a deterministic guarantee.

It remains to bound the service cost paid prior to the first facility opened in each region.

In expectation, each region will pay at most f in service cost before opening a facility.

Further, regions labeled j > log n contain only one point in total, and the overall service

cost for this point cannot exceed f . Thus, the expected total service cost is at most k(1 +

log n)f + 3αΣiA
∗
i ≤ L+ 3αOPT . Since L ≤ OPT , this gives an expected service cost of at
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most 1+3α times optimum. For the high probability guarantee, let P [x, y] be the probability

that given x regions which do not yet have a facility, the remaining service cost due to points

in these regions arriving prior to the region having a facility is more than yf . We will prove

by induction that P [x, y] ≤ ex−y(
e−1
e ), where e is the base of the natural log. Note that this

is immediate for x = 0 and for very small values of y (i.e., y ≤ x · e
e−1

). To prove this is

always true, suppose that x is the smallest value where this can be violated, and y is the

smallest value where it can be violated for this x. Thus, P [x, y] > ex−y(
e−1
e ). Suppose that

the first request in one of the facility-less regions computes a service cost of δ > 0. Then we

have: P [x, y] = δ
f
P [x− 1, y] +

(
1− δ

f

)
P [x, y − δ

f
].

The first term corresponds to opening a facility at this point, thus reducing the number of

facility-less regions by one; the second term corresponds to paying the service cost. Applying

the definition of x and y:

ex−y(
e−1
e ) < P [x, y] ≤ δ

f
ex−1−y( e−1

e ) +

(
1− δ

f

)
ex−(y− δf )( e−1

e ).

Dividing both sides by the left hand expression leaves 1 < δ
ef

+
(

1− δ
f

)
e
δ
f ( e−1

e ). This

provides a contradiction.

Thus, the probability that the total cost prior to opening facilities in each region is more

than e
e−1

(2k)(1 + log n)f is at most P [k(1 + log n), e
e−1

(2k)(1 + log n)] ≤ e−k(1+logn) ≤ 1
2n

.

Substituting for f gives the bound claimed.

We now consider the facility count. The first in each region gives us a total of k(1+log n)

facilities; this is a deterministic guarantee. Now we must bound the number of facilities

opened in the various regions subsequent to the first. Each point p has probability δp/f of

becoming a new facility, where δp is the service cost when p arrives. Note that we already had

a deterministic guarantee that for points arriving after a facility is opened in their region,

we have Σpδp ≤ 3αOPT . Thus, we have a sum of effectively independent Bernoulli trials

with expectation at most 3αOPT
f

= 3αk(1 + log n)OPT
L

. We can now apply Chernoff bounds

for the result.
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Algorithm Analysis

We first need to define the constants β, γ. Let cOFL be the constant factor on the service cost

obtained from the high probability result for online facility location given by Theorem 2.1,

and let kOFL be such that the online facility location algorithm guarantees to generate at

most kOFLk(1 + log n)OPT
L

facilities. Note that cOFL, kOFL are constants which depend on

α and on the desired “high probability” bound for success. We now define the constants as

β = 2α2cOFL + 2α; γ = max{4α3c2
OFL + 2α2cOFL, βkOFL + 1}.

We assume that cOFL ≥ 2α from this point on; this is implicit in the proof of Theorem 2.1

and we can always replace cOFL with a larger value since it is a worst-case guarantee.

Define a phase in Algorithm 2.1 to be a single iteration of the outermost loop. Within

each phase i, we maintain a lower bound Li on OPT and run the online facility location

algorithm using facility cost f = Li
k(1+logn)

. We try reading as many points as we can until

either our service cost grows too high (more than γLi) or we have too many facilities (more

than (γ − 1)k(1 + log n)). At this point, we conclude that our lower bound Li is too small,

so we increase it by a factor β and start a new phase.

In a phase, we pay at most f = Li/k(1 + log n) for a weighted point and there are at

most (γ− 1)k(1 + log n) weighted points from the previous phase. Our service cost for these

points can be at most (γ − 1)Li, so we successfully cluster all weighted points in a phase.

Thus, at the start of each phase, the stream looks like some weighted points from only the

preceding phase followed by unread points. Additionally, we can show that all these points

on the stream have a clustering with service cost comparable to OPT .

Lemma 2.1. Let X ′ be any subset of points in the stream at the start of phase i. Then the

total service cost of the optimum k-service clustering of X ′ is at most α ·OPT +γ
(

α2

β−α

)
Li.

Proof. Consider an original point x ∈ X. Say that y ∈ K represents x in phase ` if y is the

assigned facility for x or for x’s phase `− 1 representative. Note that the weight of y ∈ K is

the number of points it represents. Moreover, once a point x becomes represented in phase

`, it is represented for all future phases.
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At the start of phase i, the stream looks like the weighted facilities from phase i − 1

followed by unread points. Let us examine our cost if we use the optimum facilities (for

X) to serve all of these points. Fix a point x ∈ X and let us bound the service cost due

to this point. Let j be the phase in which x was first clustered. Let yj, yj+1, . . . , yi−1 be

x’s respective representatives in phases j up through i − 1. Then the service cost due to x

will be δ(yi−1, y
∗), where y∗ is the cheapest optimum facility for yi−1. By the α-approximate

triangle inequality:

δ(yi−1, y
∗) ≤ αδ(x, y∗) + αδ(x, yi−1) ≤ αδ(x, y∗) +

i−j∑
`=2

α`δ(yi−`, yi−`+1) + αi−jδ(x, yj).

Thus, summing over all points x in or represented by points in X ′, and noting that our

service cost in phase ` is bounded by γL` ≤ γLi
1

βi−`
, gives a total service cost of at most

α ·OPT + γαLi

i−1∑
`=1

(
α

β

)i−`
= α ·OPT + γ

(
α2

β − α

)
Li.

The above lemma shows that there exists a low cost clustering for the points at each

phase, provided we can guarantee that Li ≤ OPT . Call the last phase where Li ≤ OPT the

critical phase. We will show that we in fact terminate at or before the critical phase with

high probability.

Lemma 2.2. With probability at least the success probability of online facility location from

Theorem 2.1, Algorithm 2.1 terminates at or before the critical phase.

Proof. Let i be the critical phase, and let OPTi be the optimum cost of clustering all the

points (weighted or not) seen on the stream at the start of phase i. By Lemma 2.1 and the

fact that OPT ≤ βLi, we have

OPTi ≤ α ·OPT + γ

(
α2

β − α

)
Li ≤

(
αβ + γ

α2

β − α

)
Li.

Theorem 2.1 guarantees the online facility location algorithm yields a solution with at

most βkOFL(1 + log n)k facilities and of cost at most cOFLOPTi with high probability. Our
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definitions for β, γ guarantee that cOFLOPTi ≤ γLi. In addition, our definition for γ guaran-

tees that (γ−1)k(1+log n) ≥ βkOFLk(1+log n). Thus, if online facility location “succeeds,”

the critical phase will allow the online facility location algorithm to run to completion.

Corollary 2.1. With high probability (the same as that for online facility location), Algo-

rithm 2.1 completes the final phase with a solution of cost at most αβγ
β−α · OPT . Applying

the values for the constants gives an approximation factor of 4α4c2
OFL + 4α3cOFL provided

4α3c2
OFL + 2α2cOFL ≥ βkOFL + 1.

Proof. Consider a point x ∈ X. As in the proof of Lemma 2.1, let yj, yj+1, . . . , yi−1, yi be x’s

respective representatives in phases j up through i. The service cost due to x is δ(x, yi). By

the α-approximate triangle inequality, we can bound this by

δ(x, yi) ≤ αi−jδ(x, yj) +

i−j∑
`=1

α`δ(yi−`, yi−`+1).

Summing over all points x, and noting that our service cost in phase ` is bounded by

γL`, combined with the knowledge that with high probability, we terminate at a phase where

Li ≤ OPT , gives a total service cost of at most:

αγLi + α2γLi−1 + α3γLi−2 + · · ·+ αiγL1 ≤ αγLi

i−1∑
`=0

(
α

β

)`
≤ αβγ

β − α
·OPT.

However, this solution uses much more than k facilities. To prune down to exactly k

facilities, we can use any non-streaming O(1)-approximation to cluster our final (weighted)

facilities (line 22 of the algorithm). If this non-streaming clustering algorithm has an approxi-

mation ratio of cKS, our overall approximation ratio increases to (α+4α5c2
OFL+4α4cOFL)cKS.

Theorem 2.2. With high probability, our algorithm achieves a constant approximation to

k-service clustering if the α-approximate triangle inequality holds for a fixed constant α. This

uses exactly k facilities and stores O(k log n) points in memory.
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Pruning the Runtime

As presented, Algorithm 2.1 can see as many as O(logβ OPT ) phases in expectation, which

gives the runtime an undesirable dependence on OPT . We now show how to modify Algo-

rithm 2.1 so that it has at most O(n/(k log n)) phases and running time at most O(nk log n).

Theorem 2.3. For any fixed α, Algorithm 2.1 can be modified to run in O(nk log n) time.

Proof. Consider any phase. The phase starts by reading the weighted facilities from the

previous phase and paying a cost of at most f = Li
k(1+logn)

for each, at the end of which the

cost is at most (γ − 1)Li. Each additional point gives us a service cost of at most Li
k(1+logn)

,

so the phase must read at least k(1 + log n) additional unread points before it can terminate

due to the cost exceeding γLi.

Now suppose that the phase ends due to having too many facilities without reading at

least k(1 + log n) additional points. Since each new point can create at most one facility,

the previous phase must have had at least (γ − 2)k(1 + log n) facilities already. Consider

an optimal k-service clustering over the set X ′ of all the weighted points during this phase.

Let OPT ′ denote the total service cost of this solution and OPT ′r denote the optimum total

service cost if we are instead restricted to only selecting points from X ′. Note that by the

α-approximate triangle inequality, we have OPT ′r ≤ 2αOPT ′. Thus, by Lemma 2.1, we have

OPT ′r ≤ 2α
(
α + γ α2

β−α

)
OPT .

Since OPT ′r is only allowed k facilities, it must pay non-zero service cost for at least

(γ−3)(1 + log n)k weighted points. Define the nearest neighbor function π : X ′ → X ′ where

for each point x ∈ X ′, π(x) denotes the closest other point (in terms of service costs) in X ′.

Then note that ∆x = weight(x) · δ(x, π(x)) gives a lower bound on the service cost for x if it

is not chosen as a facility. Thus, the sum η of all but the k highest ∆x gives a lower bound

on OPT ′r. It follows that η

2α
(
α+γ α2

β−α

) ≤ OPT.

We will set Li to be the maximum of this new lower bound and βLi−1, and eliminate

k(1 + log n) facilities, increasing the service cost by at most Li. This guarantees that the

next time the number of facilities grows too large we will have read Ω(k log n) new points,
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bounding the number of phases by O
(

n
k logn

)
.

Let X̂ ⊆ X ′ denote the set of points with ∆x ≤ η[2α(α+ γ α2

β−α)(1 + log n)k]−1. Suppose

that |X̂| < 2k(1+log n). The number of points which contribute to η is at least (γ−3)k(1+

log n), and at least (γ−5)k(1 + log n) of these points would not belong to X̂. Thus, the sum

of ∆x for such points is bounded by η(γ−5)

2α
(
α+γ α2

β−α

) ≤ η. Canceling and solving this equation

for γ yields γ
(

1− 2α3

β−α

)
≤ 2α2 + 5.

Plugging in the values for β and γ along with cOFL ≥ 2α and α ≥ 1 yields a contradiction.

Thus, it follows that |X̂| ≥ 2k(1 + log n). We assume |X̂| is even for simplicity of analysis.

Some points in X̂ have their nearest neighbor in X ′ − X̂. For the remaining points in X̂,

consider the nearest neighbor graph induced by these points. This graph has no cycles of

length 3 or longer. Thus, the graph is bipartite and we can find a vertex cover C of size at

most |X̂|/2. We can add additional points to C from X̂ to get precisely |X̂|/2 points. Note

that all points in X̂ −C have a nearest neighbor not in X̂ −C. Thus, we can remove X̂ −C

as facilities and increase our service cost by at most

η(1 + log n)k

2α(α + γ α2

β−γ )(1 + log n)k
=

η

2α(α + γ α2

β−α)
≤ Li.

We can compute η in time O(k2 log2 n), X̂ in time O(k log n), and the vertex cover in

time linear in |X̂| (using a greedy algorithm; note that it need not be a minimum vertex

cover). Additionally, all these can be computed using space to store O(k log n) points. The

running time for reading a new (unweighted) point is O(k log n), so the total running time is

the time to read unweighted points plus the overhead induced by starting new phases (and

reading weighted points). Each of these is at most O(nk log n).

2.3 Maintaining Samples During Streaming k-means

We now turn our attention to the important case of Euclidean space, where the distance

function d is the Euclidean distance.

Definition 2.4. Let S be a set of cardinality n. Let <q = {p ∈ Sq : ∀i, j ∈ [q] pi 6= pj}.
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A random element E is a q-random sample without replacement from S if E has uniform

distribution over <q.

First, we establish that we can maintain a uniformly random sample for each facility’s

service points. This is identical to the problem of sampling uniformly at random from a

stream, as all the points assigned to the facility can be treated as a single stream. Methods

for streaming sampling are well-known (e.g., see [Vit85]). In particular, the following lemma

is well-known.

Lemma 2.3. There exists an algorithm that, given a stream X and q, maintains a q-random

sample without replacement from X and uses O(q) memory.

For our purposes, it will be useful to use the following alternative definition of a q-

random sample without replacement. We prove that this definition is equivalent to the

original definition.

Lemma 2.4. Let S be a set and let X1, . . . , Xq be the following random variables. X1

is distributed uniformly on S, and, for 1 < i ≤ q, Xi is distributed uniformly over the set

S \{X1, . . . , Xi−1}. Then an ordered q-tuple X = 〈X1, . . . , Xq〉 is a q-random sample without

replacement from S.

Proof. Consider a fixed q-tuple p = 〈p1, . . . , pq〉 ∈ <q. We shall show that P (X = p) =

1
|<q | = 1

q!(nq)
. We have

P (X = p) = P (X1 = p1)× P (X2 = p2|X1 = p1)× · · · × P (Xq = pq|∀j<qXj = pj).

By the definition of X1, P (X1 = p1) = 1
n
. By the definition of Xi, and since pi /∈

{p1, . . . , pi−1}, we have for all fixed X1, . . . Xi−1: P (Xi = pi|∀j<iXj = pj) = 1
n−i+1

. Thus,

P (X = p) =
∏q

i=1
1

n−i+1
= 1

q!(nq)
.

Recall that com(A) denotes the center of mass for a point set A. Note the following

relation in any cluster of the difference in cost for replacing the center of mass with an

arbitrary other point:
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Fact 2.1.
∑

x∈X d
2(x, y) = |X|d2(com(X), y) +

∑
x d

2(x, com(X)).

Now, we show how to maintain a uniformly at random sample from the union of two

clusters, for the two times in our algorithm in which this occurs.

Lemma 2.5. Let S1, S2 be two disjoint sets. Given independent q-random samples without

replacement from S1 and S2 and |S1|, |S2|, it is possible to obtain a q-random sample without

replacement from S1 ∪ S2. The algorithm requires O(q) time and O(q) additional memory.

Proof. The algorithm is similar in spirit to the merging process in Merge Sort. Let X =

{X1, . . . , Xq} and Y = {Y1, . . . , Yq} be q-random samples without replacement from S1 and

S2. Take the first element of X with probability |S1|
|S1|+|S2| ; otherwise, take the element from

Y . Repeat this until q are chosen (reducing the set sizes |S1|, |S2| appropriately depending

on whether previous samples came from X or Y ), and call the set formed by those taken Z.

The performance bounds follow from the description of the algorithm. To show correct-

ness, it is enough to show that Zi is distributed uniformly over (S1 ∪ S2) \ {Z1, . . . , Zi−1}

and then use Lemma 2.4. For i = 1, by Lemma 2.4, X1 and Y1 are distributed uniformly

over S1 and S2 respectively. Consider an arbitrary, fixed w ∈ S1 ∪ S2. Without loss of

generality, assume w ∈ S1. Since the algorithm’s randomness is independent of X, we get:

P (Z1 = w) = |S1|
|S1|+|S2|P (X1 = w) = 1

|S1|+|S2| . Thus, Z1 is distributed uniformly over S1 ∪ S2.

Let i > 1, and consider any fixed Z1, . . . , Zi−1. By Lemma 2.4, Xi1 is distributed uni-

formly over S1 \ {X1, . . . , Xi1−1} and Yi2 is distributed uniformly over S2 \ {Y1, . . . , Yi2−1}.

Consider any fixed w ∈ (S1 ∪ S2) \ {Z1, . . . , Zi−1}. Without loss of generality, assume

that w ∈ S1. Since {Z1, . . . , Zi−1} = {Y1, . . . , Yi2−1} ∪ {X1, . . . , Xi1−1}, it follows that

w ∈ S1 \ {X1, . . . , Xi1−1}. Thus, we have

P (Zi = w) =
n1

n1 + n2

P (Xi1 = w) =
n1

n1 + n2

(
1

n1

)
=

1

n1 + n2

,

where n1 = |S1 \ {X1, . . . , Xi1−1}| and n2 = |S2 \ {Y1, . . . , Yi2−1}|. The values of n1 and n2

imply that the probability is uniform over (S1 ∪ S2) \ {Z1, . . . , Zi−1}. Indeed,

n1 + n2 = |S1| − i1 + 1 + |S2| − i2 + 1 = |S1 ∪ S2| − i+ 1.
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Thus, we have shown that Z1 is a uniform sample from S1 ∪ S2 and for any i > 1, Zi is a

uniform sample from (S1∪S2)\{Z1, . . . , Zi−1}. The correctness follows from Lemma 2.4.

We now show that samples of optimal clusters are sufficient to find approximate centers

of mass, by first proving the following useful lemma. Recall that C(a,A) is the one-means

cost of using point a as a mean for set A.

Lemma 2.6. Let X be a set of points and Y ⊆ X. Then C(com(Y ), X) ≤ |X|
|Y |C(com(X), X).

Proof. Let d1 = d(com(X), com(Y )) and d2 = d(com(X − Y ), com(X)). By the triangle

inequality, d(com(Y ), com(X − Y )) ≤ d1 + d2. Applying Fact 2.1 repeatedly gives:

C(com(Y ), X) = C(com(Y ), Y ) + C(com(X − Y ), X − Y ) + |X − Y |(δ1 + δ2)2,

C(com(X), X) = C(com(Y ), Y ) + |Y |d2
1 + C(com(X − Y ), X − Y ) + |X − Y |d2

2,

C(com(Y ), X)

C(com(X), X)
≤ |X − Y |(d1 + d2)2

|Y |d2
1 + |X − Y |d2

2

.

To maximize the ratio, we take the derivative with respect to d2 and set the resulting

expression to zero, obtaining |Y |d2
1 + |X − Y |d2

2 = |X − Y |(d1 + d2)d2; solving this yields

d2 = |Y |
|X−Y |d1. Note that the other boundary conditions for the expression are at d2 = 0 and

d2 tending to infinity, both of which easily satisfy the required inequality. Substitution gives:

C(com(Y ), X)

C(com(X), X)
≤ |X|2/|X − Y |
|Y |+ (|Y |2/|X − Y |)

≤ |X|
|Y |

.

Theorem 2.4. Suppose we have a set X of points and are given some arbitrarily selected

Y ⊆ X. If Z is a set of q points selected uniformly at random from Y (without replacement),

then the center of mass for Z is a
(

1 + 1
q
− q−1

q(|Y |−1)

)(
|X|
|Y |

)
-approximation to the optimum

one-mean solution for X in expectation.

Proof. By linearity of expectation, it is sufficient to show that the above holds in one-

dimensional space. Applying Fact 2.1 gives us C(com(Z), X) ≤ |X|d2(com(Z), com(X)) +
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C(com(X), X). We will need to bound the expected value of d2(com(Z), com(X)). Since we

can assume one-dimensional space, we use the definition of center of mass to get:

E[d2(com(Z), com(X))] = E

[(∑
z∈Z z

|Z|
−
∑

x∈X x

|X|

)2
]
.

We can compute the square and use linearity of expectation, noticing that since the

points of Z are uniformly chosen from Y , we have E[(1/|Z|)Σz∈Zz] = (1/|Y |)
∑

y∈Y y. We

need to bound E[(
∑

z∈Z z)2]. For each y1 ∈ Y , there is a probability |Z|/|Y | that this point

appeared also in the randomly selected set Z. If so, we will obtain an expected contribution

to the sum of squares which looks like y2
1 + y1E[Σz∈Z−{y1}z|y1 ∈ Z], where the latter term is

just |Z|−1
|Y |−1

∑
y2∈Y,y2 6=y1

y2. Summing these gives us:

E

(∑
z∈Z

z

)2
 =

|Z|
|Y |

∑
y∈Y

y2 +
|Z|
|Y |

∑
y1∈Y

∑
y2∈Y,y2 6=y1

|Z| − 1

|Y | − 1
y1y2.

We can rewrite this, adding and subtracting terms representing the sum of squared

elements of Y , as:

E

(∑
z∈Z

z

)2
 =

|Z|
|Y |

(1− |Z| − 1

|Y | − 1

)∑
y∈Y

y2 +
|Z| − 1

|Y | − 1

(∑
y∈Y

y

)2
 .

We have C(com(Y ), Y ) = Σy∈Y y
2 − 1

|Y | (Σy∈Y y)2, and we can substitute this to get:

E

(∑
z∈Z

z

)2
 =

|Z|
|Y |

(1− |Z| − 1

|Y | − 1

)
C(com(Y ), Y ) +

|Z|
|Y |

(∑
y∈Y

y

)2
 .

We observe that d2(com(Y ), X) can be formulated similarly to d2(com(Z), X), and when

we combine the various terms we obtain the following bound:

E[d2(com(Z), com(X))] =
1

|Y ||Z|

[(
1− |Z| − 1

|Y | − 1

)
C(com(Y ), Y )

]
+ d2(com(Y ), com(X)).

To compute the cost of C(com(Z), X), we multiply by |X| and add C(com(X), X). We

also observe that since Y ⊆ X, we will have C(com(Y ), Y ) ≤ C(com(X), X), and we apply

Lemma 2.6 to reach:

E[C(com(Z), X)] ≤ |X|
|Y |

(
1 +

1

|Z|
− |Z| − 1

|Z|(|Y | − 1)

)
C(com(X), X).
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There is an analog to this theorem that applies with high probability, which we will now

show in the following series of lemmas.

Lemma 2.7. If X = {x1, . . . , xn} ⊆ R and Y = Z − S, where Z is a random sample

from X and S = com(X) = 1
n

∑
i xi, then E[Y ] = 0 and V ar[Y ] = 1

n
OPT (1), where

OPT (1) = C(com(X), X) (i.e., OPT (1) is the optimal 1-means solution for X).

Proof. The expected value of Y is E[Y ] = E[Z − S] = E[Z]− S = S − S = 0. The variance

of Y is given by

V ar[Y ] = E[Y 2]− E[Y ]2 = E[Y 2] =
1

n

n∑
i=1

(xi − S)2 =
1

n
OPT (1).

Now consider taking the mean of q random samples from X, with replacement:

Lemma 2.8. If X = {x1, . . . , xn} ⊆ R and Y = 1
q
(Z1 + · · · + Zq) − S, where each Zi

is a random sample from X (with replacement) and S = com(X), then E[Y ] = 0 and

V ar[Y ] = 1
qn
OPT (1), where OPT (1) is the optimal 1-means solution for X.

Proof. The expected value of Y is E[Y ] = E
[

1
q

∑q
i=1 Zi − S

]
= 1

q

∑q
i=1E[Zi]−S = S−S = 0

(here we used Lemma 2.7). Notice that we can rewrite Y as Y = 1
q

∑q
i=1 Yi, where the

Yi = Zi − S are independent random variables. Hence, the variance of Y (by Lemma 2.7) is

given by

V ar[Y ] =
1

q2

q∑
i=1

V ar[Yi] =
1

q2

q

n
OPT (1).

Using the same notation, we now have the following constant probability bound:

Lemma 2.9. If B = 1
q
(Z1 + · · ·+ Zq), where q = 100

ε
, then P

[
|B − S| ≥

√
εOPT (1)

n

]
≤ 1

100
.

Proof. By Chebyshev’s inequality, we have:

P

[
|B − S| ≥

√
εOPT (1)

n

]
= Pr

[
|Y | ≥

√
εOPT (1)

n

]
≤ nV ar[Y ]

εOPT (1)
=

1

qε
=

1

100
,

where Y is the same as in Lemma 2.8.

28



We now take the median of means:

Lemma 2.10. Let B1, . . . , Bt be independent random variables, each from Lemma 2.9, where

t = O(log nd). Let B = median(B1, . . . , Bt). Then P

[
|B − S| ≥

√
εOPT (1)

n

]
≤ 1

nd
.

Proof. This follows from a standard application of Chernoff bounds.

We now concentrate on points from Rd and give some notation and definitions. Let

X = {x1, . . . , xn} ⊆ Rd and let xij denote the jth coordinate of xi. Let S = 1
n

∑
i xi,

and define Sj = 1
n

∑
i xij (so that S = (S1, . . . , Sd)). Define OPTj(1) =

∑n
i=1(xij − Sj)

2.

Observe that OPT (1) =
∑n

i=1

∑d
j=1(xij−Sj)2 =

∑d
j=1OPTj(1), where OPT (1) denotes the

optimal 1-means solution for X. The analog of Theorem 2.4 for the high probability setting

essentially follows from the lemma below.

Lemma 2.11. Let U ∈ Rd be a vector with coordinates U = (U1, . . . , Ud), where the Ui are

independent and each has the same distribution as B from Lemma 2.10 with respect to the

set of jth coordinates {x1j, . . . , xnj}. Let A =
∑n

i=1 d
2(U, xi). Then A ≤ (1 + ε)OPT (1) with

probability at least 1− 1
n

.

Proof. By Lemma 2.10, we know that P

[
|Uj − Sj| ≥

√
εOPTj(1)

n

]
≤ 1

dn
. By applying the

union bound, we know that with probability at least 1 − 1
n
, the inequality |Uj − Sj|2 ≤

εOPTj(1)

n
holds over all dimensions (i.e., for all 1 ≤ j ≤ d). By Fact 2.1, we know that

A =
∑n

i=1 d
2(U, xi) = nd2(U, S) +OPT (1). We have the following upper bound on d2(U, S):

d2(U, S) =
d∑
j=1

(Uj − Sj)2 ≤
d∑
j=1

εOPTj(1)

n
=
εOPT (1)

n
.

The lemma follows.

We can now apply similar methods used in our result for the expectation guarantee and

achieve the same result for sufficiently large Y which are subsets of the set X.
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2.4 From Constant to Converging to One

Given a c-approximation to k-means (where c is constant) for a σ-separable point set, we

now show that we can perform a single recentering step, called a ball k-means step, and

obtain an approximation ratio of 1 + σ2 which converges to one as σ approaches 0. While a

full ball k-means step requires another pass through the point stream, we will establish that

it is sufficient to use a smaller random sample of points.

In what follows, for each optimum mean i, we let C∗i be the points OPT assigns to i,

ν(i) be the closest mean to i in our c-approximate solution, and Bν(i) be the ball around ν(i)

(the formal definition of which is given later).

Theorem 2.5. Suppose we have a c-approximation to k-means, and a σ-separable data set

where 1
σ2 > 2γ(c+ 1) + 1 for γ ≥ 169

4
. Then we can apply a ball k-means step, by associating

with each of our approximate means ν(i) the set of points Bν(i), then computing a new mean

ν(i)′ = com
(
Bν(i)

)
. This yields an approximation to k-means which approaches one as σ

approaches zero.

We prove the above theorem with the following sequence of lemmas. First, we show that

i and ν(i) are in fact very close together.

Lemma 2.12. For any i, we have d(ν(i), i) ≤
√

2(c+1)OPT
|C∗i |

.

Proof. Consider the points S = {x ∈ C∗i | d(i, x) ≤ d(i, ν(i))}. For each x ∈ S, we can

bound d2(i, ν(i)) using the 2-approximate triangle inequality. Summing over all x ∈ S gives

d2(i, ν(i)) ≤ 2

|S|

(∑
x∈S

d2(i, x) +
∑
x∈S

d2(x, ν(i))

)
.

The first term in the right hand side is bounded by OPT −
∑

x/∈S d
2(i, x) whereas the second

term is at most c · OPT . Substituting and using the fact that d2(i, ν(i)) < d2(i, x) for all

x /∈ S proves the claim.

We now show that a σ-separable point set implies that the optimum means are far apart.
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Lemma 2.13. In a σ-separable point set, any two distinct optimum means i, j must satisfy

d(i, j) ≥
√

OPT
σ2|C∗i |

− OPT
|C∗i |

.

Proof. For any two means i, j, we can always eliminate mean i and reassign any points in

C∗i . This produces a solution using k − 1 means and, since i is the center of mass of C∗i ,

increases the cost by at most |C∗i |d2(i, j). By σ-separability, the total cost of this solution

must be at least OPT
σ2 , which gives the above bound on d(i, j).

Lemma 2.12 and Lemma 2.13 show that for sufficiently small σ, each optimum mean i

has unique ν(i) which is much closer to i than to any other optimum mean. In particular,

if 1
σ2 > 2γ(c+ 1) + 1 for some γ to be specified later, it follows that for any optimum mean

i, the next closest optimum mean is at least distance
√
γ
√

2(c+1)OPT
|C∗i |

away and the closest

mean ν(i) is at most distance
√

2(c+1)OPT
|C∗i |

away.

Lemma 2.14. Define Bν(i) to consist of all points x such that 2d(x, ν(i)) ≤ d(x, ν(j)) for

any j 6= i. Then Bν(i) ⊆ C∗i and |Bν(i)| ≥
(

1− 9
2(c+1)(

√
γ−5)2

)
|C∗i | when γ ≥ 169

4
.

Proof. We first show Bν(i) ⊆ C∗i . Fix i, j and suppose x ∈ Bν(i). By definition, 2d(x, ν(i)) ≤

d(x, ν(j)). Applying the triangle inequality gives 2d(x, i) ≤ 2d(i, ν(i)) + d(j, ν(j)) + d(x, j).

If d(x, j) ≤ d(x, i), then it will follow that d(x, i) ≤ 2d(i, ν(i)) + d(j, ν(j)). Each of these is

bounded according to Lemma 2.12, so we can conclude that

d(i, j) ≤ 2d(x, i) ≤ 4

√
2(c+ 1)OPT

|C∗i |
+ 2

√
2(c+ 1)OPT

|C∗j |
≤ 6

√
2(c+ 1)OPT

min{|C∗i |, |C∗j |}
.

However, Lemma 2.13 implies that d(i, j) ≥
√

2γ(c+1)OPT
min{|C∗i |,|C∗j |}

. If γ > 36, this gives a

contradiction. We conclude that d(x, i) < d(x, j) and that therefore x ∈ C∗i and Bν(i) ⊆ C∗i .

Notice that the service cost of points in C∗i is at most OPT . By Markov’s inequality, for

any µ ≥ 1
2(c+1)

, there are at least
(

1− 1
2(c+1)µ

)
|C∗i | points of C∗i within distance

√
2µ(c+1)OPT

|C∗i |

of i. For any such point x and optimum mean j 6= i, the triangle inequality along with
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Lemma 2.12 and Lemma 2.13 give

d(x, ν(j)) ≥ d(i, j)− d(i, ν(i))− d(j, ν(j))− d(x, ν(i))

≥ (
√
γ − 2)

√
2(c+ 1)OPT

min{|C∗i |, |C∗j |}
− d(x, ν(i)).

Setting µ = 1
9

(√
γ − 5

)2
ensures that d(x, ν(j)) ≥ 2d(x, ν(i)) and that x ∈ Bν(i). However,

this imposes the additional constraint that γ ≥ 169
4

in order to ensure that µ ≥ 1
4
≥ 1

2(c+1)
.

By Lemma 2.14, we have Bν(i) ⊆ C∗i and |Bν(i)| ≥ |C∗i |
(

1− 9
2(c+1)(

√
γ−5)2

)
. It follows from

Lemma 2.6 that we obtain an approximation to k-means of ratio at worst 1+ 9
2(c+1)(

√
γ−5)2−9

.

As σ becomes smaller, γ becomes larger, and thus the approximation ratio converges to one.

We finally seek to prove the main theorem in this chapter.

Theorem 2.6. Suppose we have a c-approximation to k-means for a σ-separable data set

where 1
σ2 > 2γ(c + 1) + 1 for γ ≥ 169

4
. Additionally, suppose that instead of being given the

entire point set, we are only given small random samples Zν(i) of size 1
ε

of each cluster Cν(i)

in this approximate solution. Then we can apply a ball k-means step computing a new mean

ν(i)′ by computing the center of mass of (Bν(i) ∩ Zν(i)). This yields a Θ((1 + ε)(1 + σ2c))-

approximation to k-means which approaches one as ε and σ approach zero.

To prove this theorem, first note that we have shown how to perform a ball k-means

step on our approximate solution to achieve an approximation ratio which approaches 1 as

σ approaches 0. While performing a full ball k-means step requires another pass through

the point set, we can avoid this second pass if we are given a random sample of 1
ε

points

from each of the balls Bν(i) and perform the ball k-means step on just these sample points.

By Theorem 2.4, this gives us an approximation ratio of
(

1 + ε−
1
ε
−1

1
ε
(|Bν(i)∩Cν(i)|−1)

)
|C∗i |

|Bν(i)∩Cν(i)|

within each cluster.

However, our algorithm only returns a random sample of q points in each of our clusters

Cν(i). Thus, we need to show that, in expectation, a constant fraction of these points are in

Bν(i). Indeed, we now show that this fraction approaches 1 and that |Bν(i)∩Cν(i)| approaches
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|Bν(i)| as σ tends toward 0. Thus, our overall approximation ratio still converges to 1 as ε

and σ approach 0.

We first give an upper bound on the number of points in Bν(i) that are not in Cν(i). These

points are never candidates in the randomly selected points from Cν(i) and so may hurt our

approximation if there are too many. Fortunately, we can prove that there is only a small

number of them.

Lemma 2.15. |Bν(i) − Cν(i)| ≤ c
8(
√
γ−2)2(c+1)

|C∗i |.

Proof. Consider x ∈ Bν(i)−Cν(i) and let ν(j) be the mean such that x ∈ Cν(j). The triangle

inequality and the fact that x /∈ Bν(j) give

d(x, ν(j)) ≥ d(i, j)− d(i, ν(i))− d(j, ν(j))− 1

2
d(x, ν(j)).

Solving for d(x, ν(j)), applying Lemma 2.12 and Lemma 2.13, and squaring give

d(x, ν(j))2 ≥

(
2 (
√
γ − 2)

√
2(c+ 1)OPT

min{ni, nj}

)2

≥ 4 (
√
γ − 2)2

(
2(c+ 1)OPT

|C∗i |

)
.

If we sum over all such x, then we should get no more than c · OPT since we have a c-

approximation. This bounds |Bν(i) − Cν(i)| as desired.

We can now use Lemma 2.14 and Lemma 2.15 to give a lower bound on the fraction of

Bν(i) contained in Cν(i). Accordingly, this fraction approaches 1 as σ diminishes, showing

that roughly the entirety of Bν(i) is in our sample space. We can also bound the cardinality

of Bν(i) ∩ Cν(i) in terms of C∗i which will become useful later.

Corollary 2.2. |Bν(i) ∩ Cν(i)| ≥
(

1− c(
√
γ−5)2

4(
√
γ−2)2(2(c+1)(

√
γ−5)2−9)

)
|Bν(i)|.

Corollary 2.3. |Bν(i) ∩ Cν(i)| ≥
(

1− 9
2(c+1)(

√
γ−5)2 − c

8(
√
γ−2)2(c+1)

)
|C∗i |.

Though roughly all of Bν(i) lies in Cν(i), there are other points in Cν(i). If there are too

many of these points, then we would expect that a very small fraction of the q′ sampled

points are actually in Bν(i), driving our approximation ratio upwards. Thus, we must show

that the number of these points tends towards 0.
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Lemma 2.16. |Cν(i) ∩Bν(i)| ≥

(
1− 9

2(c+1)(
√
γ−5)2

− c
8(
√
γ−2)2(c+1)

)
(

1+ c
2(c+1)(

√
γ−2)2

) |Cν(i)|.

Proof. Consider an x ∈ Cν(i) − Bν(i). Since j /∈ Bν(i), we must have 2d(x, ν(i)) ≥ d(x, ν(j))

for some j. Proceeding in a fashion similar to the proof of Lemma 2.15 shows

|Cν(i) −Bν(i)| ≤
c

2(c+ 1)(
√
γ − 2)2

|C∗i |.

Thus, we can bound the number of elements in our cluster by

|Cν(i)| = |Cν(i) ∩Bν(i)|+ |Cν(i) −Bν(i)| ≤
(

1 +
c

2(c+ 1)(
√
γ − 2)2

)
|C∗i |.

Combining with Corollary 2.3 gives the desired result.

Together, these results prove Theorem 2.6.

2.5 Concluding Remarks

This chapter studies the k-means clustering problem in the streaming model. Given that it

is difficult to design an efficient approximation algorithm with near-optimal guarantees for

this problem (under standard complexity assumptions), it is natural to place some restriction

on the input that is practical. We show how the assumption of separable data allows us to

break the difficulty barrier and obtain a near-optimal approximation guarantee for k-means

in Euclidean space. Our assumption on the data is reasonable and not too restrictive, and

there are still many practical applications that can be impacted by our results.

In the end, for σ-separable data, we design a streaming algorithm and show that the

separability assumption is amenable to analysis, yielding a (1+O(ε)+O(σ2))-approximation.

Our algorithm is efficient and its guarantees hold with high probability, using O
(
k
ε

log2 n
)

space and running in time O(nk log n). Along the way, we give an O(1)-approximation

algorithm for a general semi-metric clustering class of problems (even without σ-separability),

and improve the online facility location algorithm’s guarantees by showing they hold with

high probability. Finally, we show how to maintain samples and turn our O(1)-approximation

into a near-optimal solution under the separability assumption for Euclidean space.
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CHAPTER 3

Online Multidimensional Load Balancing

3.1 Introduction

Motivation and Applications

Billions of dollars are spent every year to power computer systems, and any improvement

in power efficiency could lead to significant savings [RSM09]. With the rise of huge data

centers and server farms, energy costs and cooling costs have become a significant expense as

demand for computing power, servers, and storage grows. Indeed, energy costs and cooling

costs are likely to exceed the cost of acquiring new hardware and servers. Managers of

data centers wish to optimize power consumption without sacrificing any performance to

minimize energy costs and cooling costs due to heat dissipation [MCR05]. For these reasons,

algorithms for energy efficient scheduling are very valuable, and even a small improvement

could lead to significant savings and a positive impact on the environment.

As data centers and server farms grow in size, it becomes increasingly important to decide

which machines should stay active and which should be shut down. In particular, there are

opportunities for energy conservation and monetary savings due to cooling costs [MCR05].

Moreover, these larger data centers have huge fluctuations in work loads, ranging from very

high peaks to very low valleys. Hence, when demand is low, it is possible to shut down

some machines which would allow for significant savings [KLS10]. Certain jobs may need

access to particular machines (due to data availability or device capability), and hence it

makes sense to consider a subset of machines to activate for a given set of jobs. Once the

appropriate machines have been activated, the pending jobs may then be scheduled. Note

that the process of choosing which machines to activate is naturally an online problem, since
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jobs arrive dynamically over time.

In [RSR08, RSM09, SMK08], methods were developed to measure power consumption at

a high sampling rate. This allows us to measure energy requirements of recurring jobs at var-

ious speeds, and also to use machine learning techniques to estimate these requirements for

new jobs. In [RSM09] measurements were made for the energy effects of resource contention

between jobs. The results indicated that jobs which make heavy use of different system

components can be parallelized in a power-efficient manner, whereas jobs which make heavy

use of the same components do not parallelize well. Their results motivate our belief that

optimizing the scheduling of jobs to minimize power consumption is a non-trivial problem in

real systems. It is important to effectively distribute jobs among machines so that resource

contention (and thus energy use) is minimized. Multidimensional load balancing has applica-

tions in cutting stock, resource allocation, and implementation of databases for share-nothing

environments [DG92, GI95, GI96]. This problem also has applications in multidimensional

resource scheduling for parallel query optimization in databases. Query execution typically

involves multidimensionality, particularly among time-sharing system resources such as the

CPU or disk [GI95]. This motivates representing jobs as having d dimensions where each

dimension represents the load induced by the job on the component. Real jobs often involve

more than two components (and real network speeds depend on internet congestion). It

is important to model the load placed on various system components (processor, network,

memory, etc.) and the key to obtaining good performance (both in terms of completion

times and power) is to balance the loads appropriately.

Problem Definitions

We consider two problems in this domain. Our first problem considers online allocation of

jobs to unrelated machines with arbitrary activation costs and d dimensions, which we call

the Machine Activation problem:

Definition 3.1 (Machine Activation Problem). We are given a set of m unrelated machines

each with d dimensions (i.e., components such as CPU, memory, network) and an activation
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cost ci. Moreover, a set of n jobs j arrive online, each inducing a load of pkij if assigned

to machine i on dimension k. We must select a set A of machines to activate such that∑
i∈A ci ≤ B for a constraint budget B, and assign jobs to active machines such that the

total pkij for jobs assigned to machine i along dimension k is at most a load constraint Λ.

The main setting we study is when Λ and B are given to the algorithm. Our competitive

guarantees hold if there is an offline integral solution with makespan Λ and budget B. Note

that we also consider variants in which the load Λ or budget B may not necessarily be

specified, in which case we seek to minimize the corresponding objective.

Our second problem considers online allocation of jobs to identical machines with multiple

components and no activation costs.

Definition 3.2 (Vector Load Balancing Problem). We have m identical machines each with

d components. Jobs ~pj arrive online and are to be assigned to machines upon arrival. Here,

the kth coordinate pkj gives the load placed on component k by job j. Let `ki denote the sum

of pkj over all jobs j on machine i. The load `i of machine i is maxk `
k
i . Our goal is to

simultaneously minimize the makespan, maxi `i, and the energy,
∑

i `i.

Our Contributions and Techniques

For the Machine Activation problem, we design an online algorithm in Section 3.2 with

competitive ratios O(log(md) log(nm)) on the load and O(d log2(nm)) on the energy budget

for the case when the load Λ and the budget B are given. It extends the result of [KLS10]

to an online setting and the work of [ABF13] to the multidimensional setting. Our main

technique considers the linear relaxation of an integer program. We approximately solve the

linear relaxation online as constraints arrive, such that everything except the budget and load

constraints is feasible. We develop a novel algorithm and technique for analyzing the primal

linear program, with a unique combination of multiplicative and additive updates. This

innovative approach ensures that key inequalities are feasible and keeps the total number of

iterations of the algorithm small. Our fractional solution is O(log(md) log(nm))-competitive

on the load and O(d log(nm))-competitive on the energy budget. Our analysis includes a
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non-trivial potential function to obtain our competitive result on the load. We then describe

an online randomized rounding scheme to produce a competitive ratio of O(log(md) log(nm))

on the load and O(d log2(nm)) on the budget. Combining our approach with the rounding

scheme of the Generalized Assignment Problem [ST93] also gives an offline result similar to

[KLS10] with a substantially simpler rounding scheme. Since our problem generalizes both

set cover even in the one-dimensional setting (by setting the processing times to 0 or∞) and

load balancing (by setting all ci to 0), we can apply lower bounds from the online versions of

these problems from [AAA03, AAF93] to get polylogarithmic online lower bounds. We also

show that no deterministic algorithm can be competitive.

In Section 3.3, we give upper and lower bounds for variants of the Machine Activation

problem. We consider variants where one parameter (either B or Λ) is given up front and

the goal is to minimize the other. We obtain our positive results by running our online

algorithm from Section 3.2 in phases. Though this induces a logarithmic dependence on the

value of the optimal solution, we show that such dependence is necessary for a fully online

algorithm, suggesting a semi-online algorithm that is given a good estimate of the optimum

performs much better. Lastly, we consider the case where neither parameter is given and

the goal is to minimize a linear combination of the maximum load and the energy cost (say

cΛΛ∗ + cBB
∗, where Λ∗, B∗ are the makespan and energy cost of a schedule, respectively).

Our algorithm is O(d log2(nm))-competitive on this objective.

In Section 3.4, for the Vector Load Balancing problem, we design an online algorithm

which is O(log d)-competitive on the makespan, improving even the best known offline result

[CK99]. Our algorithm is simultaneously O(log d)-competitive on the energy usage if we are

given a small piece of information (the maximum load induced by any single job on any

single component). Without this information, we show our competitive ratios on the two

criteria must have product Ω(min(d, logm)). Our main technique involves adapting a result

of Aspnes et al. [AAF93] which works by assigning jobs greedily based on an exponential

cost function. A direct application of their proof technique requires a near-optimum offline

solution (which we do not have) and obtains competitive ratio O(logmd), matching random

assignment [CK99]. We modify their technique to make use of suitable rough bounds on
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the optimum load and exploit the fact that our machines are identical to obtain an O(log d)

bound. Our analysis also includes the use of a non-trivial potential function argument. The

work of [ACK13] considers a similar problem from a bin packing perspective. They also

develop a greedy algorithm based on exponential cost functions and some of the techniques

they use are similar, though the works were done independently of one another. It is perhaps

interesting that similar algorithms can be used for both online multidimensional bin packing

and load balancing to obtain strong competitive ratios for the two problems.

Related Work

For the Machine Activation problem, the recent work of [KLS10] studies the same problem

in the offline setting. They give an algorithm for the unrelated Machine Activation problem

which produces a schedule with makespan at most (2 + ε)Λ and activation cost at most

2(1 + 1
ε
)(ln n

OPT
+ 1)B for any ε > 0 (where OPT is the number of active machines in the

optimal solution), assuming there is a schedule with makespan Λ and activation cost B. They

also give a polynomial time approximation scheme for the uniformly related parallel machines

case (where machine i has speed si and pij =
pj
si

), which outputs a schedule with activation

cost at most B and makespan at most (1 + ε)Λ, for any ε > 0. In [LK11], a generalized

version of the Machine Activation problem is considered in the offline setting where each

machine’s activation cost is a function of the load assigned to the machine. An algorithm is

given which assigns at least n− ε jobs fractionally with cost at most (1 + ln(n/ε))OPT .

In addition, [LK11] studies an offline version of the Machine Activation problem in

which each machine has d linear constraints. For this version, they give a solution which

is O
(

1
ε

log n
)

times the optimal activation cost while breaking the d machine constraints

by at most a factor of 2d + ε. This can be compared with our online, multidimensional

guarantees of O(log(nm) log(md)) on the load and O(d log2(nm)) on the activation cost.

There is also the recent work of [ABF13], which we extend to the multidimensional setting.

The work of [ABF13] studies several problems. For their generalized framework, which is

referred to as the Online Mixed Packing and Covering (OMPC) problem, a deterministic
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O(logP log(vρκ))-competitive algorithm is given, where P is the number of packing con-

straints, v is the maximum number of variables in any constraint, and ρ (respectively, κ) is

the ratio of the maximum to the minimum non-zero packing (respectively, covering) coeffi-

cient respectively. Hence, if all coefficients are either 0 or 1, this is O(logP log v)-competitive.

Note that we cannot simply apply the general scheme in [ABF13] for OMPC, since our pack-

ing constraints are not given offline (indeed, this is precisely where the online nature of our

problem comes into play). The OMPC framework only models programs in which packing

constraints are given offline. The work of [ABF13] also studies a problem called Unrelated

Machine Scheduling with Startup Costs (UMSC), which is similar to our problem in the

single-dimensional case. In particular, when d = 1, they give an O(logm)-competitive result

on the makespan and an O(log(mn) logm)-competitive result on the energy budget. We

extend this result to the multidimensional setting. Note that it is not clear how to adapt

their algorithm to the multidimensional setting, and we develop our own framework which

uses a novel combination of additive and multiplicative updates in our fractional algorithm.

In [AAF93], they consider the online load balancing problem without activation costs.

They give an O(logm)-competitive algorithm for unrelated machines and an 8-competitive

algorithm for related machines. In [AAG95], they consider the online load balancing problem

without activation costs where the load on a machine is measured according to the Lp norm.

Their main result is that the greedy algorithm is O(p)-competitive under the Lp norm, and

any deterministic algorithm must be Ω(p)-competitive. In [ST93], they give the first constant

approximation (offline) for the unrelated machines case. In [BN06], the identical machines

case is studied in the online setting without activation costs. It is shown that greedy is glob-

ally O(logm)-balanced in the restricted assignment model and globally O(logm)-fair in the

1-∞ model (see [BN06] for details). Our problem and techniques are substantially different,

as we do not design or analyze a greedy algorithm. For a survey on power management and

energy minimization, see [IP05]. Also, see [PST04] for a comprehensive survey on the online

scheduling literature.

For the Vector Load Balancing problem, the single-dimensional case has an offline PTAS

algorithm [HS87] and a (2 − ε)-competitive online algorithm for a small fixed ε [BFK92].
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The multidimensional version was introduced by [CK99], which includes an offline PTAS

with running time exponential in the number of dimensions d and an offline O(log2 d)-

approximation with polynomial running time. They also prove that a simple randomized

algorithm is O
(

logmd
log logmd

)
-competitive (with m machines and d dimensions), and that no

polynomial-time offline algorithm can attain a constant-factor approximation under standard

complexity assumptions.

Most prior work (including a substantial portion of [CK99]) focuses on vector bin packing,

where we have a hard constraint on the makespan and must minimize the number of machines

(bins). Some of these results include [BCS06, CK99, GI97, KLM84, KM77, LS07, LCH07]

with the best being O(log d)-approximations. The recent work of [ACK13] studied vector bin

packing in the online setting. The algorithm they design for their positive result is similar

to ours for Vector Load Balancing, though the two works were done independently.

3.2 Machine Activation

LP and Fractional Algorithm

We formulate the problem as an integer program, where yi = 1 means machine i is activated,

and xij = 1 means job j is assigned to machine i. We assume the target load Λ and budget

B are given, and that there is an offline integral solution with makespan at most Λ and

budget at most B.

1. For all 1 ≤ i ≤ m, we have 0 ≤ yi ≤ 1.

2. For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have xij ≥ 0.

3. For all j, we have
∑m

i=1 xij ≥ 1.

4. For all i, j, we have xij ≤ yi.

5. For all i, k, we have
∑n

j=1 xijp
k
ij ≤ Λyi.

6. We have
∑m

i=1 yici ≤ B.
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Our goal is to design an online algorithm to solve the integer version of this linear system,

while violating constraints 1 and 6 by at most a bounded factor. We will do this by first

providing an online solution to the linear relaxation above, which may also violate the first

constraint by possibly having yi ≥ 1, then describe an online rounding technique to produce

an integer solution. We will assume that either B
m
≤ ci ≤ B or ci = 0 for all i (if more

then discard machine i as offline cannot use it, if less then simply buy machine i and assume

ci = 0 for a constant-factor increase in the total cost). Note that we can normalize B to

anything we wish – we will choose B = Θ(m) so that any non-zero ci is at least a constant

(for instance, at least 1). We define qkij = pkij/Λ and `ki =
∑

j q
k
ij max{xij − 1

jm
, 0}. Let a ≥ 1

be a value to be set later.

We first give some intuition for our algorithm. When a job j arrives, most constraints

are satisfied except for
∑m

i=1 xij ≥ 1. To fix this, we need to raise the xij variables until

this inequality is satisfied. However, this may cause other inequalities such as xij ≤ yi and∑n
j=1 xijp

k
ij ≤ Λyi to be violated. Hence, we will only increase xij if xij ≤ yi will continue to

hold (if we do raise xij, then we also increase yi to satisfy the load inequalities). If increasing

xij would cause xij > yi, then we simply increase yi. We increase xij multiplicatively, so that

the larger xij is, the larger the increase. Moreover, it seems intuitively clear that we should

increase xij for job j less aggressively if pkij, ci, or `ki is large (in fact, we penalize machine i

with an exponential cost function for the load `ki to obtain our competitive ratio on the load

constraints). We also increase yi multiplicatively whenever it is too small (again, intuitively,

yi should be increased less aggressively if ci is large). When a variable is small, it may

take many iterations for multiplicative updates to increase its value substantially. We use

additive updates to avoid this issue, and couple the additive updates with multiplicative ones

to achieve our feasibility and competitive guarantees by keeping the number of iterations in

our algorithm small. See Algorithm 3.1 for details.

Analysis

We prove certain feasibility properties which our algorithm maintains.
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1 Initialize xij ← 0 for all i, j and yi ← 0 for all i

2 When job j arrives, set xij ← 1
jm

for each i such that pkij ≤ Λ for all k and

yi ← yi + 1
jm

for all i

3 while job j has
∑m

i=1 xij < 1 do

4 for each 1 ≤ i ≤ m : pkij ≤ Λ for all k do

5 Set zij ← xij∑
k p

k
ij(a

`k
i +ci)+1

6 if xij + zij ≤ yi then

7 Set xij ← min{xij + zij, 1} and yi ← yi + zij maxk q
k
ij

8 else

9 Set yi ← yi

(
1 + 1

dΛci

)
Algorithm 3.1: Fractional Assignment

Theorem 3.1. Inequalities 3, 4, and 5 of the linear program are satisfied.

Proof. Inequality 3 follows from the termination condition of step three of the algorithm.

The other two inequalities hold initially since all variables are zero. When j arrives, we set

xij ← 1
jm

for every i where qkij ≤ 1 along each dimension k, but we also increase all yi by 1
jm

,

so both inequalities will continue to hold.

Later, we might increase xij by some zij. However, we will only do this if xij +zij ≤ yi, so

xij ≤ yi still holds. When we increase xij in this way, we will also increase yi by zij maxk q
k
ij,

which guarantees that
∑

j xijp
k
ij ≤ Λyi will continue to hold for all i and all k.

Each time through the loop at line three of the algorithm will be called a reinforcement

step. Let rj represent the number of reinforcement steps which occur on the arrival of j.

Lemma 3.1. For a ≥ 1, when a job j arrives, the rj reinforcement steps due to the job’s

arrival increase
∑m

i=1

∑d
k=1 a

`ki by at most a−1
Λ
rj.

Proof. Each reinforcement step increases `ki by at most zijq
k
ij for each i and k. Thus, the

total increase in the summation is bounded by
∑m

i=1

∑k
i=1 a

`ki (azijq
k
ij − 1). By the definition

of zij, we will always have zijq
k
ij ≤ 1. In general for any a ≥ 1 we will have ax − 1 ≤
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(a − 1)x whenever 0 ≤ x ≤ 1, and applying this allows us to bound the summation by∑m
i=1

∑d
k=1 a

`ki (a − 1)(zijq
k
ij). We can substitute zij ≤ xij∑

k p
k
ija

`k
i +1

and use the fact that∑
i xij < 1 prior to the reinforcement to get that

∑m
i=1

a−1
Λ
xij ≤ a−1

Λ
.

Lemma 3.2. The total number of reinforcement steps after all jobs have arrived is bounded

by
∑

j rj ≤ Λ(log nm)(
∑

i

∑
k a

`ki + 2dB) + n(1 + logmn).

Proof. We split the reinforcements occurring on the arrival of j into two sets. Suppose i is

the machine to which j is assigned by the optimum solution. We have r̄j load reinforcing

steps where xij+zij ≤ yi and r̂j cost reinforcing steps where the opposite was true. Clearly,

rj = r̄j + r̂j.

Each time a load reinforcing step occurs, xij increases by a factor of at least 1 +

1∑
k p

k
ij(a

`k
i +ci)+1

(except for possibly the last and only reinforcement step for job j in which

xij is set to 1 instead of xij + zij at line seven). Thus, every
∑

k p
k
ij(a

`ki + ci) + 1 such steps

increase xij by a constant factor. Since xij is initially at least 1
mn

, the total number of such

steps is bounded by log(nm)(
∑

k p
k
ij(a

`ki + ci) + 1) + 1. Summing over all machines i used by

the optimum solution, we get
∑

j r̄j ≤ Λ log(nm)(
∑

i∈OPT
∑

k a
`ki + dB) + n log(mn) + n.

Consider all cost reinforcing steps for jobs which the optimum assigns to machine i. The

initial value of yi is 1
m

. Each time we apply a cost reinforcing step, we increase this by a

multiplicative 1 + 1
dΛci

. Note that we will never have xij + zij ≥ 2, as we would not perform

a reinforcing step unless xij < 1, from which zij < 1 follows. Thus, to perform a cost

reinforcing step we must have yi ≤ 2. It follows that the total number of cost reinforcing

steps performed for j with optimum assignment i is at most dΛci log 2m. If we sum this over

all active machines i in the optimum solution (and observe that the optimum solution must

not exceed the budget B) we get
∑

j r̂j ≤ dBΛ log 2m. Combining the equations along with

the assumption n ≥ 2 gives the lemma.

Lemma 3.3. If we set a = 1 + 1
2 lognm

, then the final value of the potential function Φ =∑
i

∑
k a

`ki after all jobs have arrived is at most 3md+ 2dB.

Proof. Initially, the potential function equals md (since all loads `ki = 0). The function Φ
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increases with each reinforcement step, so by Lemma 3.1 and Lemma 3.2, the final value

is Φ ≤ md + a−1
Λ

∑
j rj ≤ md + a−1

Λ
(Λ log(nm)(

∑
i

∑
k a

`ki + 2dB) + n(1 + logmn)). For

a = 1 + 1
2 lognm

, this implies that the final value is Φ ≤ 3md + 2dB (we can normalize Λ to

anything, so we choose Λ = Θ(n)).

Theorem 3.2. For a = 1+ 1
2 lognm

, we have yi ≤
[

logn
m

+ 4 + 2 log(nm) log(3md+ 2dB)
]

for

all machines i.

Proof. Applying Lemma 3.3 along with the value of a specified in the theorem, we know for

any k that
∑

i a
`ki ≤ 3md + 2dB (where `ki is the final load on machine i). Since each term

in the summation is non-negative, we can bound the `ki values after taking the log of both

sides by `ki ≤ 2 log(nm) log(3md+ 2dB).

We observe that yi increases at several points in the algorithm. The total increase at

step two of the algorithm can be at most logn
m

. The increases at line nine can only occur if

yi ≤ 2, and will not cause yi to exceed four (since we can ensure 1 + 1
dΛci
≤ 2 by scaling Λ

and B appropriately). The increases at line seven always increase `ki by the same amount

as yi, so the total increase in yi due to these steps is at most `ki , which is bounded as above.

Combining these gives the result.

Theorem 3.3. The algorithm satisfies
∑

i yici ≤ B log n+ (6md+ 8dB + 4) log nm.

Proof. Initially, the left side of the equation is 0. When j arrives, every yi increases by 1
jm

.

Since each yi has ci ≤ B (otherwise we drop that machine), the total increase in cost due to

this is at most B
j

. Thus, in total, all arrivals increase the cost by at most
∑

j
B
j

= B log n.

We also increase the yi values when we perform a reinforcing step. Some yi values

increase by an additive zij maxk q
k
ij ≤

xij
Λci

, while others increase by a multiplicative 1 + 1
dΛci

.

The increase in cost due to additive increases is at most
∑
i xij
Λ

, while for multiplicative

increases it is at most
∑

i
yi
dΛ

. For the multiplicative increase to happen we must have

yi < xij + zij < 2xij, so the multiplicative increase is at most
2
∑
i xij
dΛ

. Since each i appears in

only one of the two summations, the total increase in cost is at most 2
Λ

for each reinforcement
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step. The number of reinforcement steps is bounded in Lemma 3.2 along with Lemma 3.3

(note that we normalize Λ as in Lemma 3.3). Combining these gives the result.

We can normalize B to whatever value we like. Given the expressions for the competitive

ratio on the load and the cost, it is natural to set B = Θ(m). This will guarantee a

competitive ratio of O(d log nm) on the cost, and a competitive ratio of O(log(md) log(nm))

on the load.

Rounding

We now show how to round our fractional solution to an integral solution. Our integral solu-

tion is O(log(nm) log(md))-competitive on the load with high probability and O(d log2 nm)-

competitive on cost. Suppose we have some online fractional algorithm which guarantees

that the values of xij and yi never decrease, and maintains inequalities from the linear

program except that it relaxes the first inequality to 0 ≤ yi ≤ ρΛ and the last inequal-

ity to
∑m

i=1 yici ≤ BρB. In fact, our fractional algorithm also guarantees that xij ≤ 1.

We will show that this can be rounded in an online manner to produce integral x̂ij and

ŷi. Observe that our fractional algorithm (Algorithm 3.1) will satisfy the constraints with

ρΛ = O(log(nm) log(md)) and ρB = O(d log nm).

Our rounding procedure is as follows. For each machine i, we compute a uniformly

random ri ∈ [0, 1]. We set ŷi ← 1 as soon as yi log 2nm ≥ ri. We define M(j) as the set of

machines with ŷi = 1 immediately after job j arrives. For each job j, let yi(j) = min{yi, 1}

immediately after job j arrives. We observe that xij ≤ yi(j), since the fourth linear program

equation must hold at all times and xij ≤ 1. We define sj =
∑

i∈M(j)
xij
yi(j)

. If sj <
1
2
, then we

immediately set ŷi ← 1 for all machines i and recompute sj. We select exactly one machine

i from M(j) to assign j, setting x̂ij ← 1 for this machine only. Each machine is selected

with probability
xij

yi(j)sj
.

Lemma 3.4. The probability that we ever have sj <
1
2

after any j arrives is at most 1
m

; thus

the increase in the expected total cost of the solution due to this case is at most B.
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Proof. Let A(j) be the set of machines for which yi(j) ≥ 1
log 2nm

. Clearly, A(j) ⊆ M(j)

since all of these machines are active with probability one. Observe that if
∑

i∈A(j) xij ≥
1
2
,

then sj ≥ 1
2

with probability 1. Hence, we consider the case when
∑

i∈A(j) xij <
1
2
. Since∑

i xij ≥ 1, it follows that
∑

i/∈A(j) xij >
1
2
. The actual value of sj will depend on the random

choices of ri, since sj is computed by summing over only the active machines. We can write

the equation sj ≥
∑

i/∈A(j)
xij
yi(j)

ŷi. Since i /∈ A(j), we can guarantee E[ŷi] = yi(j) log 2nm,

implying E[sj] ≥ 1
2

log 2nm.

The value of sj is a sum of independent Bernoulli variables, each of which has value

at most 1 (since xij ≤ yi(j)). Even though the variables range in between 0 and 1, we

can still apply Chernoff type bounds to conclude: P
[
sj <

1
2

]
≤ P

[
sj < (1− 1

2
)E[sj]

]
≤(

e−.5

.5.5

)E[sj ]

≤
√

2
e

1
2

log 2nm

≤ 1
nm

(assuming the base of the logarithm is a sufficiently small

constant). Applying the union bound, we can sum this over all j and conclude that the

probability of ever having sj <
1
2

for any j is less than 1
m

. Hence, the increase in expected

total cost due to this case is at most 1
m

∑
i ci ≤ B.

Lemma 3.5. Every job is assigned to exactly one active machine. The expected total cost

of the solution is bounded by E [
∑

i ŷici] ≤ BρB log 2nm.

Proof. The rounding scheme assigns each job to exactly one active machine, and the set of

active machines only grows over time as the yi values are non-decreasing. The manner in

which the ŷi are determined along with the inequality
∑

i yici ≤ BρB produce the cost bound

(since E [ŷi] ≤ yi log 2nm). Note that the additional expected cost as specified in Lemma 3.4

in the case that sj <
1
2

is small and does not change the competitive ratio asymptotically.

Lemma 3.6. For any active machine i and dimension k, with high probability the total load

satisfies
∑

j x̂ijp
k
ij ≤ Λ[2ρΛ + 4 logm+ β log(md)], where β is a suitably chosen constant.

Proof. Consider any active machine i (note that ŷi = 1). Each job j is assigned to this

machine with probability
xij

yi(j)sj
. The total load of the machine on dimension k is

∑
j x̂ijp

k
ij;

we will assume that pkij ≤ Λ since otherwise xij = 0 and thus x̂ij = 0. The problem here is

that the yi(j) values change over time; if we could replace them all with the final yi then we
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could use the linear program inequalities to conclude that the expected load is at most ρΛΛ

and then apply Chernoff bounds.

Instead, we define phase α to consist of those times when 2α

m
≤ yi(j) <

2α+1

m
, for each

0 ≤ α ≤ logm. Even though yi > 1 is possible, we will never have yi(j) > 1 so every j

arrives in some phase. Let J(α) be the jobs which arrive during phase α. For α < logm,

we have: E
[∑

j∈J(α) x̂ijp
k
ij

]
≤
∑

j∈J(α)
xij

yi(j)sj
pkij ≤

∑
j∈J(α) 2xijp

k
ij
m
2α

. However, we know∑
j∈J(α) xijp

k
ij ≤ Λ2α+1

m
for any phase except the last, so we can apply this inequality to

conclude E
[∑

j∈J(α) x̂ijp
k
ij

]
≤ 4Λ. Thus, the expected total load is at most 4Λ logm from

all phases but the last. For the last phase, the expected load is at most 2ρΛΛ, since yi(j) = 1

throughout. We observe that the loads are sums of Bernoulli variables with values at most

Λ, so we can apply Chernoff bounds to show that with high probability the load will not

exceed its mean plus βΛ log(md) on any dimension of any machine.

Offline Scheme and Lower Bound

For the offline case, we can simply solve the linear program, so ρΛ = ρB = 1. Instead of

rounding up when yi log 2nm ≥ ri, we can round up when yi log 2n ≥ ri. This increases the

probability of the bad event where some sj <
1
2

to be a small constant instead of 1
m

, but we

can simply discard our solution and retry whenever this occurs. This means we can get a

solution of cost O(log n) times B, such that a fractional solution exists which exceeds Λ by

at most a constant factor on any machine. We can then convert our fractional solution to an

integer solution using the rounding approach of the Generalized Assignment Problem [ST93].

This attains roughly the same bounds as [KLS10] for the offline case with a substantially

simpler rounding scheme.

There is a simple example which indicates that no deterministic approach to this problem

can succeed. We simply give a series of requests each of which can run on every machine

except the ones where the preceding requests were scheduled. This forces a deterministic

algorithm to pay for all m machines, whereas the offline optimum could activate only a

single machine. The Online Set Cover result of Alon et al. [AAA03] got around this by
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presuming that we know in advance the set of elements (jobs) which might be requested in

the future, and allowed the competitive ratio to depend on the size of this set. This approach

seems less reasonable for our problem than theirs, but in any case a modification of their

derandomization should work in the same model.

3.3 Machine Activation Variants

We study four versions of online load balancing with activation costs. For the version

where both Λ and B are given, Section 3.2 gives an algorithm that is O(log(nm) log(md))-

competitive on the load and O(d log2(nm))-competitive on cost. We also consider variants

where either B is not given up front or Λ is not given up front (or both are not given). Our

positive results are obtained by guessing the value of the objective function to be optimized

in an online manner using doubling techniques combined with our randomized algorithm

from Section 3.2. The logarithmic dependence on the optimum load (or budget) in some

of the results is undesirable, and we observe that it would not occur in the offline setting

(where we can discard the solution of previous phases and start over with each new phase).

However, we can show that this dependence is necessary for a fully online algorithm.

Theorem 3.4. For the version where we are given a budget B and asked to minimize load

Λ, we can produce a solution which spends at most ρBB and has competitive ratio ρΛ on

the load against the optimum offline with budget B. Here, ρΛ = O(log(md) log(nm)) but

ρB = O(d log2(nm) log Λ∗), where Λ∗ is the optimum load (assuming we have a lower bound

on the load of one; otherwise it is the ratio of maximum to minimum possible non-zero load).

Proof. We are given the value B up front, and we are asked to minimize the load Λ. This

theorem is obtained by using standard doubling techniques in combination with running our

online randomized algorithm from Section 3.2.

In particular, a natural approach to this version is to guess the value of the parameter

Λ∗, and then run the online algorithm until it becomes apparent that this value is too small.

We then double the parameter and continue. The algorithm therefore runs in a number
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of phases, and the total activation cost budget will be the sum of the budgets spent at

each phase (similarly, the total load is the sum of loads generated at each phase). For the

parameter Λ, this sum is geometric and therefore increases the end value by only a constant;

however, our activation cost increases by a factor of the number of phases, which is log Λ∗.

Theorem 3.5. For the version where we are given load Λ and asked to minimize the budget

B, we can produce a solution with load at most ρΛΛ which has competitive ratio ρB against

the optimum offline which does not exceed load Λ. Here, ρB = O(d log2 nm) but ρΛ =

O(log(md) log(nm) logB∗), where B∗ is the ratio of the optimum budget to the minimum

non-zero cost of a machine.

Proof. The proof is similar to the proof of Theorem 3.4, except that we guess the optimal

solution’s activation cost B∗ (as opposed to guessing the optimal load Λ∗).

Theorem 3.6. Consider the version where we are given a budget B and asked to mini-

mize load Λ. Suppose that the actual optimum load is Λ∗, and we are to guarantee that

we spend a budget at most ρBB and obtain load at most ρΛ times optimum. Then ρB =

Ω(min{ log Λ∗

log log Λ∗+log ρΛ
,m}).

Proof. Our lower bound will apply even in the single-dimensional case. We are given m

machines, each of which has activation cost ci = 1. Our budget is B = 1, and we are

asked to minimize the load online. The adversary submits up to n jobs, where n =

min{ log Λ∗

log(2ρΛ log Λ∗)
,m}. Each job j can run only on machines j through m. To run job j

on machine i, we will induce a load pij = Li−1. We will define L = 2ρΛ log Λ∗. Note that

Ln ≤ Λ∗ and n < L.

We observe that the offline solution can handle jobs 1 through j using only machine j

while staying within its budget, and the total load in this case will be jLj−1 ≤ nLn−1 < Ln ≤

Λ∗. If our algorithm were to place any job on machine j+ 1 or higher with probability more

than half, then our expected load would be at least 1
2
Lj > ρΛjL

j−1, violating our competitive

ratio on the load. Thus, our algorithm places job j on machine j with probability at least

half, implying that we activate machine j with probability at least half. This applies to the
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first n machines, so our algorithm pays a cost of at least 1
2
n in expectation, implying that

ρB = Ω(min{ log Λ∗

log log Λ∗+log ρΛ
,m}).

Theorem 3.7. If a deterministic algorithm guarantees to be ρΛ-competitive on the makespan

and uses at most ρBB budget, then ρB = Ω
(

log Λ∗(logn−log logm−log log Λ∗)(logm−log log Λ∗)
(log ρΛ+log logn+log logm+log log Λ∗)(log logn+log logm)

)
.

Proof. Our lower bound will apply even in the single-dimensional setting. We first consider a

variant of the problem where a universe U of n jobs is pre-announced, but only some subset

of n′ ≤ n jobs arrive. It is clear that this problem is no harder than the original problem

since this is only providing more information to the online algorithm (and n only gets larger).

Hence, a lower bound for this variant provides a lower bound for the original version. Let

OPT denote the optimal solution and let ALG denote the deterministic algorithm. Let

p, q, r be positive integers. Our universe U = {0, 1, 2, . . . , n− 1} where n = 2ppq2r. We will

partition U into r “phases” and each phase into pq2 “blocks.” The first phase will contain

precisely the first 2ppq2 jobs, the second phase will contain the next 2ppq2 jobs, and so on.

Within each phase k, the first block Xk
1 contains the first 2p jobs of the phase, the second

block Xk
2 contains the second 2p jobs of the phase, and so on up to block Xk

pq2 , which contains

the last 2p jobs of the phase.

For each set B = {b1, b2, . . . , bq} ⊆ {1, 2, . . . , pq2} with b1 < b2 < · · · < bq and each set

I = {i1, i2, . . . , iq} where 1 ≤ it ≤ p for all t and each 1 ≤ k ≤ r, we will have a machine

Mk
B,I . This machine will be able to run any job from phases 1, 2, . . . , k − 1, and any job

in Xk
bt

that has the itht least significant bit in its binary encoding set to 1. Each of these

jobs will induce load 1
pqk
Lk on machine Mk

B,I for some L > ρΛpq(r + 1). Each machine will

have activation cost 1 and our total allowed budget will be 1. We note that the number of

machines is m =
(
pq2

q

)
pqr.

The instance will work in phases. In each phase k, exactly pq jobs will arrive. We will

ensure that at any time OPT can place all jobs (including those from previous phases) on

a single machine within the current phase. Since in phase k a total of pqk jobs will have

arrived, this means the optimal makespan is at most Lk at the end of phase k.

Jobs arrive within phase k as follows: take the job from Xk
1 that has all p least significant
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bits set to 1. The algorithm ALG must select one machine on which to place this job. This

job cannot go on any machine in a previous phase. Moreover, if ALG places the job on a

machine in a future phase then this will induce load:

1

pq(k + 1)
Lk+1 >

1

pq(k + 1)
(ρΛpq(r + 1))Lk ≥ ρΛL

k.

Thus, since ALG guarantees to be ρΛ-competitive on the makespan, this cannot happen. So

it follows that ALG must place this job on some machine in the current phase. This machine

is able to do all jobs in Xk
1 with some bit b1 set to 1. Thus, the next job to arrive will be the

job from Xk
1 that has all p least significant bits except b1 set to 1. Clearly, ALG must now

choose a different machine to process this job. This continues for k steps, at which point

ALG has activated k machines, but OPT could have activated only one.

At this point, ALG has k different machines which can accommodate jobs from at most

pq blocks in phase k. Since there are pq2 blocks, there must be another block we can select

and repeat the above process. In fact, we can repeat this q times, forcing ALG to activate

pq machines. Notice that OPT can select the single machine that handles elements from

exactly the blocks we select (and exactly the correct bit in each block). In total, ALG will

be forced to activate pqr machines whereas OPT is able to activate only one machine.

Notice that p < log n, q < logm, and r + 1 < log Λ∗. Hence, we can set the value

L = ρΛ log n logm log Λ∗ > ρΛpq(r + 1), so that r = log Λ∗

log ρλ+log logn+log logm+log log Λ∗
. Since

n = 2ppq2r, we have p ≥ Ω(log n − log logm − log log Λ∗). Finally, since m ≤ (pq2)qpqr, we

have q ≥ logm−log log Λ∗

log logn+log logm
. It follows that

ρB ≥ Ω

(
log Λ∗(log n− log logm− log log Λ∗)(logm− log log Λ∗)

(log ρΛ + log log n+ log logm+ log log Λ∗)(log log n+ log logm)

)
.

Theorem 3.8. Consider the version where we are given a load Λ and asked to minimize the

cost B. Suppose that the optimum cost is B∗ to stay within load Λ. We are to guarantee

load at most ΛρΛ and cost at most ρB times B∗. Then ρΛ = Ω(min{ logB∗

log 2ρB
,m}).

Proof. Our lower bound will again apply even for the single-dimensional setting. We are

given m machines labeled i = 0 through i = m− 1, where machine i has an activation cost

52



of ci = (2ρB)i. We are asked to maintain a load of at most Λ = 1. The adversary gives

at most n requests, where n = min{ logB∗

log 2ρB
,m}. Request j ≥ 1 has pij = 1 for machines

i = 0 and i = j and otherwise has infinite load. We observe that the optimum can obey

the load constraints on the first k jobs by activating machines 0 through k − 1, placing job

k on machine 0 and job j < k on machine j. This has cost
∑k−1

i=0 (2ρB)i < 2(2ρB)k−1 < B∗.

Thus, the online algorithm cannot activate any machine k or higher without violating the ρB

bound on the competitive ratio, from which it follows that job k must be placed on machine

0. Yet this applies to every job, so we must place all n jobs on machine 0, violating the load

by ρΛ = Ω(min{ logB∗

log 2ρB
,m}).

Theorem 3.9. There is an O(d log2 nm)-competitive algorithm for minimizing a linear com-

bination of the cost B and load Λ, namely cBB + cΛΛ. Here, the coefficients cB, cΛ are con-

stants and cBB+ cΛΛ is the value of the objective function on a schedule with energy cost B

and makespan Λ.

Proof. We will run in phases, where in phase i we assume that B = 2i

cB
and Λ = 2i

cΛ
, and run

the online randomized algorithm of Section 3.2 for each phase.

Suppose that the actual optimum value is 2α−1 < OPT ≤ 2α. Thus, we have B∗ ≤ 2α

cB

and Λ∗ ≤ 2α

cΛ
, so the algorithm will terminate on phase α or earlier.

The total load generated by the algorithm is the sum of loads from each phase up

to α. The load from phase i is at most (log nm)(logmd)2i, and summing these gives

Λ ≤ O(2α+1(log nm)(logmd)). The total cost can be bounded by B ≤ O(2α+1d(log nm)2).

Combining these gives the result.

3.4 Vector Load Balancing

We give an O(log d)-competitive algorithm to minimize the makespan, improving over the

offline O(log2 d)-approximation in [CK99] (for arbitrary d). Note that [CK99] shows that

even in the offline case, no constant approximation is possible unless NP = ZPP. We extend

our algorithm to be simultaneously O(log d)-competitive on energy, provided that we are
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1 Initialize Λ← 1, x← 0, `kti ← 0 for all i, k, t

2 while jobs j arrive do

3 Update Λmax and Λtot

4 if Λ < max{Λmax,
1
m

Λtot} then

5 End phase x; let x← dlog2 max{Λmax,
1
m

Λtot}e, Λ← 2x

6 Place job j on machine s = argmini
∑d

k=1[a`
kx
i +qkj − a`kxi ]; let `kxs ← `kxs + qkj for all k

Algorithm 3.2: Assign-Jobs

given Λmax = maxk,j p
k
j in advance (pkj is the load of job j on component k). We show that

this additional information is necessary.

Minimizing the Makespan

The algorithm of [AAF93] depends heavily on maintaining an estimate Λ of the optimum

value. We use the maximum coordinate of any single job Λmax = maxk,j p
k
j and the load

induced by placing all jobs on one machine Λtot = maxk
∑

j p
k
j as lower bounds in Algo-

rithm 3.2. We run in phases where for each phase, we use an estimate Λ of the optimum

makespan. If Λ is too small, we adjust and start a new phase. We also make use of a = 1+ 1
γ

for some γ > 1. Let `kxi (j) be the load normalized by Λ on component k of machine i during

phase x after all jobs up through j are assigned (we sometimes omit j if the context is clear).

Let pkj be the load induced on dimension k by job j, and qkj = pkj/Λ. The proof of the

following lemma is a modification of the proof in [AAF93].

Lemma 3.7. In Algorithm 3.2, during each phase x:
d∑

k=1

m∑
i=1

a`
kx
i (γ − 1) ≤ γmd.

Proof. We first let λkj = 1
m

∑j
t=1 q

k
t . We also define the following potential function Φ(j) =∑d

k=1

∑m
i=1 a

`kxi (j)(γ − λkj ).

Note that at the beginning of phase x, all the values `kxi (j) are zero, so the value of the

potential is at most γmd. We claim that as the phase continues, this potential function can

only decrease. Observing that throughout the phase λkj ≤ 1 (since otherwise we would have
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1
m

Λtot > Λ and the phase would end) will then establish the lemma. Now suppose that job

j during phase x is placed upon machine s. The potential function will change as follows:

Φ(j)− Φ(j − 1) =
d∑

k=1

(γ − λkj−1)(a`
kx
s (j) − a`kxs (j−1))−

d∑
k=1

m∑
i=1

(λkj − λkj−1)(a`
kx
i (j))

≤
d∑

k=1

γ(a`
kx
s (j) − a`kxs (j−1))− 1

m

d∑
k=1

m∑
i=1

qkj (a`
kx
i (j))

≤ 1

m

d∑
k=1

m∑
i=1

γ(a`
kx
i (j−1)+qkj − a`kxi (j−1))− qkj (a`

kx
i (j))

≤ 1

m

d∑
k=1

m∑
i=1

a`
kx
i (j−1)(γaq

k
j − γ − qkj )

≤ 0.

The first inequality follows from the definition of λk and the observation that λkj−1 ≤ Λ.

The second from our choice of machine s. The third inequality comes from the observation

that for any i, a`
kx
i (j) ≥ a`

kx
i (j−1). The last inequality comes from the definition of a, γ; in

particular, the fact that for any y ∈ [0, 1], we have γ(ay − 1) ≤ y along with the fact that

qkj ∈ [0, 1] because Λ ≥ Λmax ≥ pkj . Since the potential can never increase, we conclude that

the final potential is at most the initial potential of γmd.

At this point, we can follow [AAF93] and use Lemma 3.7 for an O(log dm) bound. We

will improve our competitive ratio by exploiting the identical nature of our machines. Let

µx = maxi,k `
kx
i .

Lemma 3.8. For all machines i, i′ and phases x, we have
∑d

k=1 a
`kxi (f) ≤ d+ µx

γ

∑d
k=1 a

`kx
i′ (f),

where f is the final job of phase x.

Proof. Let Ji be the set of jobs given to machine i during phase x. If j ∈ Ji, machine i

must minimize ∆i(j) =
∑d

k=1 a
`kxi (j−1)+qkj − a`kxi (j−1). Hence, for any i′,

∑d
k=1(a`

kx
i (f) − 1) =∑

j∈Ji ∆i(j) ≤
∑

j∈Ji ∆i′(j) ≤
∑d

k=1 a
`kx
i′ (f)

∑
j∈Ji(a

qkj −1). Since pkj ≤ Λ, we have 0 ≤ qkj ≤ 1

and thus γ(aq
k
j − 1) ≤ qkj . This allows us to bound

∑d
k=1 a

`kx
i′ (f)

∑
j∈Ji(a

qkj − 1) by

d∑
k=1

a`
kx
i′ (f)

∑
j∈Ji

qkj
γ

=
d∑

k=1

a`
kx
i′ (f) `

kx
i (f)

γ
≤ µx

γ

d∑
k=1

a`
kx
i′ (f).
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Putting our inequalities together and rearranging terms finishes the proof.

Theorem 3.10. Algorithm 3.2 is O(log d)-competitive on the makespan.

Proof. Fix phase x and let s and s′ be the machines with maximal and minimal
∑d

k=1 a
`kxi

(respectively) at the end of phase x. Combining Lemma 3.7 and Lemma 3.8 gives

aµ
x ≤

d∑
k=1

a`
kx
s (f) ≤ d+

µx

γ

d∑
k=1

a`
kx
s′ (f) ≤ d+

µx

γ

(
γd

γ − 1

)
= d+

µxd

γ − 1
.

Taking the logarithm of both sides gives µx ≤ loga

(
d

γ−1

)
+ loga(µ

x + γ − 1). Thus,

µx−loga(µ
x+γ−1) = O(log d). Note that if for some constant c we have c−loga(c+γ−1) = c

2
,

then for all µx ≥ c, we have µx = O(log d). The makespan during phase x is 2xO(log d). For

our last phase g, our total load is at most 2g+1O(log d). Since g = dlog(max{Λmax,
1
m

Λtot})e

and max{Λmax,
1
m

Λtot} is a lower bound on the optimal solution, we conclude that our

algorithm is O(log d)-competitive.

Simultaneously Minimizing Energy

Given the value of Λmax in advance, we compress all jobs onto a small number of machines,

then gradually open up more machines as our estimate of Λtot increases. Algorithm 3.3 does

this with virtual machines. As there are at most 2m virtual machines in total, we identify two

virtual machines with each real machine. Theorem 3.12 establishes that advance knowledge

of Λmax (or some comparable advance knowledge) is necessary to have a competitive ratio

independent of m.

Theorem 3.11. Algorithm 3.3 is O(log d)-competitive on both makespan and power.

Proof. Within a call to Assign-Jobs, we guarantee that Λtot ≤ MΛmax. Thus, by Theo-

rem 3.10, we place a load of at most ΛmaxO(log d) on any virtual machine. Then, after

all jobs are placed, the load of any real machine is at most the sum of the loads of two

virtual machines (each at most ΛmaxO(log d)), plus any load placed by the last instance of

Assign-Jobs when M = m. Thus, the makespan is at most 2ΛmaxO(log d) + 1
m

ΛtotO(log d).
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1 Initialize M ← 1

2 while M < m do

3 Run algorithm Assign-Jobs on M new virtual machines until Λtot > MΛmax

4 M ← min{2M,m}

5 while jobs are still arriving do

6 Run algorithm Assign-Jobs on all real machines ignoring previous loads

Algorithm 3.3: Power-and-Makespan

We observe that at most 2M machines have non-zero load, so the total power is at most

4MΛmaxO(log d) + 2ΛtotO(log d). The optimal power is Λtot and the algorithm guarantees

Λtot >
M
2

Λmax, which completes the proof.

Theorem 3.12. Suppose we have an online algorithm that is α-competitive on the makespan

and β-competitive on energy. Then β ≥ 1
2α

min(d, log2αm).

Proof. Jobs will arrive in p = min(d, log2αm) phases. During phase i, we receive m
(2α)i−1

vectors each with (2α)i−1 in the ith coordinate and zero elsewhere. After i phases, since

vectors from different phases place load on different coordinates, the optimum makespan of

(2α)i−1 can be achieved by assigning all jobs from any given phase to different machines.

Then the algorithm must guarantee makespan at most α(2α)i−1 at the end of phase i. It

follows that we cannot place more than α of the phase i job vectors on the same machine,

and thus at least mi ≥ m
α(2α)i−1 machines received at least one phase i job.

The optimum energy is m, achieved by scheduling all jobs on one machine. However, for

the algorithm to be β-competitive on energy, we need

βm ≥
∑
i

mi[(2α)i−1 − (2α)i−2] ≥ m
∑
i

1

2α
≥ mp

2α
.
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3.5 Concluding Remarks

This chapter studies online load balancing from an energy-aware perspective. Even a small

improvement in energy efficiency can lead to significant savings, both monetary and envi-

ronmental. Hence, we formalize the notion of multidimensionality, and model the fact that

jobs may place a different load on machines along different dimensions (i.e., machine compo-

nents). This is very useful in practice, as it has been observed that resource contention can

lead to inefficient load balancing. In particular, jobs which place a large load on different

dimensions can be parallelized in a power-efficient manner, whereas jobs which make heavy

use of the same components hurt quality of service if placed together. Moreover, our results

hold in the more practical online setting, which models the reality that systems are unaware

of what jobs will need to be processed in the future.

To this end, we design algorithms for online load balancing in the multidimensional set-

ting and measure our algorithm’s performance by analyzing how well it competes against

an adversary that knows the entire input in advance. For the Machine Activation problem,

we design an algorithm that is O(log(md) log(nm))-competitive on the makespan objective

and O(d log2(nm))-competitive on the activation cost objective. For the Vector Load Bal-

ancing problem, we design a single algorithm that is simultaneously O(log d)-competitive on

the makespan objective and O(log d)-competitive on the energy objective. This is perhaps

surprising, as these two objectives are at odds with each other. In particular, to do well on

the makespan objective, it is important to spread jobs out on as many machines as possi-

ble, while to perform well on the energy objective, it is important to place jobs on as few

machines as possible.
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CHAPTER 4

Simultaneous Bounds on Competitiveness and Regret

4.1 Introduction

In an online convex optimization (OCO) problem, a learner interacts with an environment in

a sequence of rounds. During each round t: (i) the learner must choose an action xt from a

convex decision space F ; (ii) the environment then reveals a convex cost function ct, and (iii)

the learner experiences cost ct(xt). The goal is to design learning algorithms that minimize

the cost experienced over a (long) horizon of T rounds.

In this chapter, we study a generalization of online convex optimization that we term

smoothed online convex optimization (SOCO). The only change in SOCO compared to OCO

is that the cost experienced by the learner each round is now ct(xt) + ‖xt−xt−1‖, where ‖ · ‖

is a seminorm (recall that a seminorm satisfies the axioms of a norm except that ‖x‖ = 0

does not imply x = 0). That is, the learner experiences a “smoothing cost” or “switching

cost” associated with changing the action, in addition to the “operating cost” c(·).

Many applications typically modeled using online convex optimization have, in reality,

some cost associated with a change of action. For example, switching costs in the k-armed

bandit setting have received considerable attention [AT96, GM09]. Additionally, a strong

motivation for studying SOCO comes from the recent developments in dynamic capacity

provisioning algorithms for data centers [KK07, LWA11, LLW12, UUN11, LCA13, ZZZ12,

YZH12], where the goal is to dynamically control the number and placement of active servers

(xt) in order to minimize a combination of the delay and energy costs (captured by ct) and

the switching costs involved in cycling servers into power saving modes and migrating data

(‖xt − xt−1‖). Further, SOCO has applications even in contexts where there are no costs
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associated with switching actions. For example, if there is concept drift in a penalized

estimation problem, it is natural to make use of a regularizer (switching cost) term in order

to control the speed of the drift of the estimator.

Two Communities, Two Performance Metrics

Though the precise formulation of SOCO does not appear to have been studied previously,

there are two large bodies of literature on closely related problems: (i) the online convex op-

timization (OCO) literature within the machine learning community (e.g., [Zin03, HAK07])

and (ii) the metrical task system (MTS) literature within the algorithms community (e.g.,

[BLS92, MMS88]). We discuss these literatures in detail in Section 4.3. While there are

several differences between the formulations in the two communities, a notable difference is

that they focus on different performance metrics.

In the OCO literature, the goal is typically to minimize the regret, which is the difference

between the cost of the algorithm and the cost of the offline optimal static solution. In this

context, a number of algorithms have been shown to provide sublinear regret (also called “no

regret”). For example, online gradient descent can achieve O(
√
T ) regret [Zin03]. Though

such guarantees are proven only in the absence of switching costs, we show in Section 4.3

that the same regret bound also holds for SOCO.

In the MTS literature, the goal is typically to minimize the competitive ratio, which

is the maximum ratio between the cost of the algorithm and the cost of the offline optimal

(dynamic) solution. In this setting, most results tend to be “negative” (e.g., when ct is

arbitrary, for any metric space the competitive ratio of an MTS algorithm with states chosen

from that space grows without bound as the number of states grows [BLS92, BKR92]).

However, these results still yield competitive ratios that do not increase with the number of

tasks (i.e., with time). Throughout, we will neglect dependence of the competitive ratio on

the number of states, and describe the competitive ratio as “constant” if it does not grow

with time. Note also that positive results have emerged when the cost function and decision

space are convex [LWA11].
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Interestingly, the focus on different performance metrics in the OCO and MTS communi-

ties has led the communities to develop quite different styles of algorithms. The differences

between the algorithms is highlighted by the fact that all algorithms developed in the OCO

community have poor competitive ratio and all algorithms developed in the MTS community

have poor regret.

However, it is natural to seek algorithms with both low regret and low competitive ratio.

In learning theory, doing well for both corresponds to being able to learn both static and

dynamic concepts well. In the design of a dynamic controller, low regret shows that the

control is not more risky than static control, whereas low competitive ratio shows that the

control is nearly as good as the best dynamic controller.

The first work to connect the two metrics was [BB00], who treat the special case where

the switching costs are a fixed constant, instead of a norm. In this context, they show how

to translate bounds on regret to bounds on the competitive ratio, and vice versa. A recent

breakthrough was made in [BCN12], where a primal-dual approach was used to develop

an algorithm that performs well for the “α-unfair competitive ratio,” which is a hybrid of

the competitive ratio and regret that provides comparison to the dynamic optimal when

α = 1 and to the static optimal when α = ∞ (see Section 4.2). Their algorithm was not

shown to perform well simultaneously for regret and the competitive ratio, but the result

highlights the feasibility of unified approaches for algorithm design across competitive ratio

and regret. There is also work on achieving simultaneous guarantees with respect to the

static and dynamic optimal solutions in other settings (e.g., decision making on lists and

trees [BCK02]), and there have been applications of algorithmic approaches from machine

learning to MTS [BBK99, ABB10].

Summary of Contributions

This chapter explores the relationship between minimizing regret and minimizing the com-

petitive ratio. To this end, we seek to answer the following question: “Can an algorithm

simultaneously achieve both a constant competitive ratio and a sublinear regret?”
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To answer this question, we show that there is a fundamental incompatibility between

regret and competitive ratio — no algorithm can maintain both sublinear regret and a con-

stant competitive ratio (Theorems 4.1, 4.2, and 4.3). This “incompatibility” does not stem

from a pathological example: it holds even for the simple case when ct is linear and xt is

scalar. Further, it holds for both deterministic and randomized algorithms and also when

the α-unfair competitive ratio is considered.

Though providing both sublinear regret and a constant competitive ratio is impossible,

we show that it is possible to “nearly” achieve this goal. We present an algorithm, “Ran-

domly Biased Greedy” (RBG), which achieves a competitive ratio of 1 + γ while maintaining

O(max{T/γ, γ}) regret for γ ≥ 1 on one-dimensional action spaces. If γ can be chosen as

a function of T , then this algorithm can balance between regret and the competitive ra-

tio. For example, it can achieve sublinear regret while having an arbitrarily slowly growing

competitive ratio, or it can achieve O(
√
T ) regret while maintaining an O(

√
T ) competitive

ratio. Note that, unlike the scheme of [BCN12], this algorithm has a finite competitive ratio

on continuous action spaces and provides a simultaneous guarantee on both regret and the

competitive ratio.

4.2 Problem Formulation

An instance of smoothed online convex optimization (SOCO) consists of a convex decision

or action space F ⊆ (R+)n and a sequence of cost functions {c1, c2, . . . }, where each function

ct : F → R+. At each time t, a learner (i.e., algorithm) chooses an action vector xt ∈ F and

the environment chooses a cost function ct. Define the α-penalized cost with lookahead i for

the sequence . . . , xt, ct, xt+1, ct+1, . . . to be

Cα
i (A, T ) = E

[
T∑
t=1

ct(xt+i) + α‖xt+i − xt+i−1‖

]
,

where x1, . . . , xT are the decisions of algorithm A, the initial action is xi = 0 without loss of

generality, the expectation is over the randomness of the algorithm, and ‖ · ‖ is a seminorm

on Rn. The parameter T will usually be suppressed.
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In the OCO and MTS literatures, the learners pay different special cases of this cost. In

OCO, the algorithm “plays first” giving a 0-step lookahead and switching costs are ignored,

yielding C0
0 . In MTS, the environment plays first giving the algorithm 1-step lookahead

(i = 1), and uses α = 1, yielding C1
1 . Note that we sometimes omit the superscript when

α = 1, and the subscript when i = 0.

One can relate the MTS and OCO costs by relating Cα
i to Cα

i−1, as done by [BB00]

and [BCN12]. The penalty due to not having lookahead is

ct(xt)− ct(xt+1) ≤ Oct(xt)(xt − xt+1) ≤ ‖Oct(xt)‖2 · ‖xt − xt+1‖2, (4.1)

where ‖·‖2 is the Euclidean norm. We adopt the assumption, common in the OCO literature,

that ‖Oct(·)‖2 are bounded on a given instance; which thus bounds the difference between

the costs of MTS and OCO (with switching cost), C1 and C0.

Performance Metrics

The performance of a SOCO algorithm is typically evaluated by comparing its cost to that

of an offline “optimal” solution, but the communities differ in their choice of benchmark,

and whether to compare additively or multiplicatively.

The OCO literature typically compares against the optimal offline static action, i.e.,

OPTs = min
x∈F

T∑
t=1

ct(x),

and evaluates the regret , defined as the (additive) difference between the algorithm’s cost

and that of the optimal static action vector. Specifically, the regret Ri(A) of Algorithm

A with lookahead i on instances C, is less than ρ(T ) if for any sequence of cost functions

(c1, . . . , cT ) ∈ CT ,

C0
i (A)−OPTs ≤ ρ(T ). (4.2)

Note that for any problem and any i ≥ 1, there exists an algorithm A for which Ri(A) is

non-positive; however, an algorithm that is not designed specifically to minimize regret may

have Ri(A) > 0.
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This traditional definition of regret omits switching costs and lookahead (i.e., R0(A)).

One can generalize regret to define R′i(A), by replacing C0
i (A) with C1

i (A) in (4.2). Specifi-

cally, R′i(A) is less than ρ(T ) if for any sequence of cost functions (c1, . . . , cT ) ∈ CT ,

C1
i (A)−OPTs ≤ ρ(T ). (4.3)

Except where noted, we use the set C1 of sequences of convex functions mapping (R+)n to

R+ with (sub)gradient uniformly bounded over the sequence. Note that we do not require

differentiability; throughout this chapter, references to gradients can be read as references

to subgradients.

The MTS literature typically compares against the optimal offline (dynamic) solution,

OPTd = min
x∈FT

T∑
t=1

ct(xt) + ‖xt − xt−1‖,

and evaluates the competitive ratio. The cost most commonly considered is C1. More

generally, we say the competitive ratio with lookahead i, denoted by CRi(A), is ρ(T ) if for

any sequence of cost functions (c1, . . . , cT ) ∈ CT ,

Ci(A) ≤ ρ(T )OPTd +O(1). (4.4)

Bridging Competitiveness and Regret

Many hybrid benchmarks have been proposed to bridge static and dynamic comparisons.

For example, Adaptive-Regret [HS09] is the maximum regret over any interval, where the

“static” optimum can differ for different intervals, and internal regret [BM05] compares

the online policy against a simple perturbation of that policy. We adopt the static-dynamic

hybrid proposed in the most closely related literature [BKR92, BB00, BCN12], the α-unfair

competitive ratio, which we denote by CRα
i (A) for lookahead i. For α ≥ 1, CRα

i (A) is

ρ(T ) if (4.4) holds with OPTd replaced by

OPTαd = min
x∈FT

T∑
t=1

ct(xt) + α‖xt − xt−1‖.
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Specifically, the α-unfair competitive ratio with lookahead i, CRα
i (A), is ρ(T ) if for any

sequence of cost functions (c1, . . . , cT ) ∈ CT ,

Ci(A) ≤ ρ(T )OPTαd +O(1). (4.5)

For α = 1, OPTαd is the dynamic optimal solution; as α→∞, OPTαd approaches the static

optimal solution.

To bridge the additive versus multiplicative comparisons used in the two literatures, we

define the competitive difference . The α-unfair competitive difference with lookahead i

on instances C, CDα
i (A), is ρ(T ) if for any sequence of cost functions (c1, . . . , cT ) ∈ CT ,

Ci(A)−OPTαd ≤ ρ(T ). (4.6)

This measure allows for a smooth transition between regret (when α is large enough) and

an additive version of the competitive ratio when α = 1.

4.3 Background

In the following, we briefly discuss related work on both online convex optimization and

metrical task systems, to provide context for the results in this chapter.

Online Convex Optimization

The OCO problem has a rich history and a wide range of important applications. In computer

science, OCO is perhaps most associated with the k-experts problem [HW98, LW94], a

discrete-action version of online optimization wherein at each round t the learning algorithm

must choose a number between 1 and k, which can be viewed as following the advice of

one of k “experts.” However, OCO also has a long history in other areas, such as portfolio

management [Cov91, Cal08].

The identifying features of the OCO formulation are that (i) the typical performance

metric considered is regret, (ii) switching costs are not considered, and (iii) the learner must

act before the environment reveals the cost function. In our notation, the cost function
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in the OCO literature is C0(A) and the performance metric is R0(A). Following [Zin03]

and [HAK07], the typical assumptions are that the decision space F is non-empty, bounded

and closed, and that the Euclidean norms of gradients ‖Oct(·)‖2 are also bounded.

In this setting, a number of algorithms have been shown to achieve “no regret” (i.e.,

sublinear regret, R0(A) = o(T )). An important example is online gradient descent (OGD),

which is parameterized by learning rates ηt. OGD works as follows.

Algorithm 4.1 (Online Gradient Descent, OGD). Select arbitrary x1 ∈ F . In time step

t ≥ 1, select xt+1 = P (xt − ηtOct(xt)), where P (y) = arg minx∈F ‖x − y‖2 is the projection

under the Euclidean norm.

With appropriate learning rates ηt, OGD achieves sublinear regret for OCO. In particular,

the variant of [Zin03] uses ηt = Θ(1/
√
t) and obtains O(

√
T ) regret. Tighter bounds are

possible in restricted settings. The work of [HAK07] achieves O(log T ) regret by choosing

ηt = 1/(γt) for settings when the cost function additionally is twice differentiable and has

minimal curvature. That is, O2ct(x) − γIn is positive semidefinite for all x and t, where In

is the identity matrix of size n. In addition to algorithms based on gradient descent, more

recent algorithms such as Online Newton Step and Follow the Approximate Leader [HAK07]

also attain O(log T ) regret bounds for a class of cost functions.

None of the work discussed above considers switching costs. To extend the literature

discussed above from OCO to SOCO, we need to track the switching costs incurred by the

algorithms. This leads to the following straightforward result.

Proposition 4.1. Consider an online gradient descent algorithm A on a finite dimensional

space with learning rates such that
∑T

t=1 ηt = O(ρ1(T )). If R0(A) = O(ρ2(T )), then R′0(A) =

O(ρ1(T ) + ρ2(T )).

Proof. Recall that, by assumption, ‖Oct(·)‖2 is bounded. So, let us define D such that

‖Oct(·)‖2 ≤ D. Next, due to the fact that all norms are equivalent in a finite dimensional

space, there exist m,M > 0 such that for every x, m‖x‖a ≤ ‖x‖b ≤ M‖x‖a. Combining
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these facts, we can bound the switching cost incurred by an OGD algorithm as follows:

T∑
t=1

‖xt − xt−1‖ ≤M
T∑
t=1

‖xt − xt−1‖2 ≤M

T∑
t=1

ηt‖Oct(·)‖2 ≤MD

T∑
t=1

ηt.

The second inequality comes from the fact that projection to a convex set under the Euclidean

norm is non-expansive (i.e., ‖P (x) − P (y)‖2 ≤ ‖x − y‖2). Thus, the switching cost causes

an additional regret of
∑T

t=1 ηt = O(ρ1(T )) for the algorithm, completing the proof.

Interestingly, the choices of ηt used by the algorithms designed for OCO also turn out

to be good choices to control the switching costs of the algorithms. The algorithms of

[Zin03] and [HAK07], which use ηt = 1/
√
t and ηt = 1/(γt), still have O(

√
T ) regret and

O(log T ) regret respectively when switching costs are considered, since in these cases ρ1(T ) =

O(ρ2(T )). Note that a similar result can be obtained for Online Newton Step [HAK07].

Importantly, though the regret of OGD algorithms is sublinear, it can easily be shown

that the competitive ratio of these algorithms is unbounded.

Metrical Task Systems

Like OCO, MTS also has a rich history and a wide range of important applications. Histori-

cally, MTS is perhaps most associated with the k-server problem [CMP08]. In this problem,

there are k servers, each in some state, and a sequence of requests is incrementally revealed.

To serve a request, the system must move one of the servers to the state necessary to serve

the request, which incurs a cost that depends on the source and destination states.

The formulation of SOCO in Section 4.2 is actually, in many ways, a special case of the

most general MTS formulation. In general, the MTS formulation differs in that (i) the cost

functions ct are not assumed to be convex, (ii) the decision space is typically assumed to

be discrete and is not necessarily embedded in a vector space, and (iii) the switching cost

is an arbitrary metric d(xt, xt−1) rather than a seminorm ‖xt − xt−1‖. In this context, the

cost function studied by MTS is typically C1 and the performance metric of interest is the

competitive ratio, specifically CR1(A), although the α-unfair competitive ratio CRα
1 also

receives attention.
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The weakening of the assumptions on the cost functions, and the fact that the competitive

ratio uses the dynamic optimum as the benchmark, means that most of the results in the MTS

setting are “negative” when compared with those for OCO. In particular, it has been proven

that, given an arbitrary metric decision space of size n, any deterministic algorithm must be

Ω(n)-competitive [BLS92]. Further, any randomized algorithm must be Ω(
√

log n/ log log n)-

competitive [BKR92].

These results motivate imposing additional structure on the cost functions in order to

attain positive results. For example, it is commonly assumed that the metric is the uniform

metric, in which d(x, y) is equal for all x 6= y; this assumption was made by [BB00] in a

study of the tradeoff between competitive ratio and regret. For comparison with OCO, an

alternative natural restriction is to impose convexity assumptions on the cost function and

the decision space, as done in this work.

Upon restricting ct to be convex, F to be convex, and ‖ · ‖ to be a seminorm, the

MTS formulation becomes quite similar to the SOCO formulation. This restricted class has

been the focus of a number of recent papers, and some positive results have emerged. For

example, [LWA11] show that when F is a one-dimensional normed space, a deterministic

online algorithm called Lazy Capacity Provisioning (LCP) is 3-competitive. Note that we

need only consider the absolute value norm for such spaces, since for every seminorm ‖ · ‖

on R, ‖x‖ = ‖1‖|x|.

Importantly, though the algorithms described above provide constant competitive ratios,

in all cases it is easy to see that the regret of these algorithms is linear.

4.4 The Incompatibility of Regret and the Competitive Ratio

As noted in the introduction, there is considerable motivation to perform well for the concepts

of regret and competitive ratio simultaneously. See also [BKR92, BB00, BCN12, HS09,

BM05]. None of the algorithms discussed so far achieves this goal. For example, Online

Gradient Descent has sublinear regret but its competitive ratio is infinite. Similarly, Lazy

Capacity Provisioning is 3-competitive but has linear regret.
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This is no accident. We show below that the two goals are fundamentally incompatible:

any algorithm that has sublinear regret for OCO necessarily has an infinite competitive ratio

for MTS; and any algorithm that has a constant competitive ratio for MTS necessarily has

at least linear regret for OCO. Further, our results give lower bounds on the simultaneous

guarantees that are possible.

In discussing this “incompatibility,” there are some subtleties that arise due to differences

in formulation between the OCO literature, where regret is the focus, and the MTS literature,

where competitive ratio is the focus. In particular, there are four key differences which

are important to highlight: (i) OCO uses lookahead i = 0 while MTS uses i = 1; (ii)

OCO does not consider switching costs (α = 0) while MTS does (α = 1); (iii) regret uses

an additive comparison while the competitive ratio uses a multiplicative comparison; and

(iv) regret compares to the static optimal solution while competitive ratio compares to the

dynamic optimal solution. Note that the first two are intrinsic to the costs, while the latter

are intrinsic to the performance metric. The following results tease apart which of these

differences create incompatibility and which do not. In particular, we prove that (i) and (iv)

each create incompatibilities.

Our first result in this section states that there is an incompatibility between regret in

the OCO setting and the competitive ratio in the MTS setting (i.e., between the two most

commonly studied measures R0(A) and CR1(A)). Naturally, the incompatibility remains if

switching costs are added to regret, where R′0(A) is considered. Further, the incompatibility

remains when the competitive difference is considered, and so both the comparison with

the static optimal solution and the dynamic optimal solution are additive. In fact, the in-

compatibility remains even when the α-unfair competitive ratio and difference is considered.

Perhaps most surprisingly, the incompatibility remains when there is lookahead, where Ci

and Ci+1 are considered.

Theorem 4.1. Consider an arbitrary seminorm ‖ · ‖ on Rn, constants γ > 0, α ≥ 1

and i ∈ N. There is a C containing a single sequence of cost functions such that, for all

deterministic and randomized algorithms A, either Ri(A) = Ω(T ) or, for large enough T ,

both CRα
i+1(A) ≥ γ and CDα

i+1(A) ≥ γT .
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The incompatibility arises even in “simple” instances; the proof of Theorem 4.1 uses

linear cost functions and a one-dimensional decision space, and the construction of the cost

functions does not depend on T or A.

The cost functions used by regret and the competitive ratio in Theorem 4.1 are “off by

one,” motivated by the different settings in OCO and MTS. However, the following shows

that parallel results also hold when the cost functions are not “off by one,” namely for R0(A)

versus CRα
0 (A) and R′1(A) versus CRα

1 (A).

Theorem 4.2. Consider an arbitrary seminorm ‖ · ‖ on Rn, constants γ > 0 and α ≥ 1,

and a deterministic or randomized online algorithm A. There is a C containing two cost

functions such that either R0(A) = Ω(T ) or, for large enough T , both CRα
0 (A) ≥ γ and

CDα
0 (A) ≥ γT .

Theorem 4.3. Consider an arbitrary norm ‖ · ‖ on Rn. There is a C containing two cost

functions such that, for any constants γ > 0 and α ≥ 1, and any deterministic or randomized

online algorithm A, either R′1(A) = Ω(T ) or, for large enough T , CRα
1 (A) ≥ γ.

The impact of these results can be stark. It is impossible for an algorithm to learn static

concepts with sublinear regret in the OCO setting, while having a constant competitive ratio

for learning dynamic concepts in the MTS setting. More strikingly, in control theory, any

dynamic controller that has a constant competitive ratio must have at least linear regret,

and so there are cases where it does much worse than the best static controller. Thus, one

cannot simultaneously guarantee the dynamic policy is always as good as the best static

policy and is nearly as good as the optimal dynamic policy.

Theorem 4.3 is perhaps the most interesting of these results. Theorem 4.1 is due to

seeking to minimize different cost functions (ct and ct+1), while Theorem 4.2 is due to the

hardness of attaining a small CRα
0 (i.e., mimicking the dynamic optimal solution without

1-step lookahead). In contrast, for Theorem 4.3, algorithms exist with strong performance

guarantees for each measure individually, and the measures are aligned in time. However,

Theorem 4.3 must consider the (non-standard) notion of regret that includes switching costs

(i.e., R′), since otherwise the problem is trivial.
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Proofs

We now prove the results above. We use one-dimensional examples; however these exam-

ples can easily be embedded into higher dimensions if desired. We show proofs only for

competitive ratio; the proofs for competitive difference are similar.

Let ᾱ = max(1, ‖α‖). Given a > 0 and b ≥ 0, define two possible cost functions on

F = [0, 1/ᾱ]: fα1 (x) = b+axᾱ and fα2 (x) = b+a(1−xᾱ). These functions are similar to those

used by [GBZ12] for studying online gradient descent to learn a concept of bounded total

variation. To simplify notation, let D(t) = 1/2−E [xt] ᾱ, and note that D(t) ∈ [−1/2, 1/2].

Proof of Theorem 4.1

To prove Theorem 4.1, we prove the stronger claim that CRα
i+1(A) +Ri(A)/T ≥ γ.

Consider a system with costs ct = fα1 if t is odd and fα2 if t is even. Then Ci(A) ≥

(a/2 + b)T + a
∑T

t=1(−1)tD(t + i). The static optimum is not worse than the scheme that

sets xt = 1/(2ᾱ) for all t, which has total cost no more than (a/2+b)T+‖1/2‖. The α-unfair

dynamic optimum for Ci+1 is not worse than the scheme that sets xt = 0 if t is odd and

xt = 1/ᾱ if t is even, which has total α-unfair cost at most (b+ 1)T . Hence

Ri(A) ≥a
T∑
t=1

(−1)tD(t+ i)− ‖1/2‖,

CRα
i+1(A) ≥(a/2 + b)T + a

∑T
t=1(−1)tD(t+ i+ 1)

(b+ 1)T
.

Thus, since D(t) ∈ [−1/2, 1/2],

(b+ 1)T (CRα
i+1(A) +Ri(A)/T ) + (b+ 1)‖1/2‖ − (a/2 + b)T

≥ a
T∑
t=1

(−1)t(D(t+ i+ 1) + (b+ 1)D(t+ i))

= ab
T∑
t=1

(−1)tD(t+ i)− a
(
D(i+ 1) + (−1)TD(T + i+ 1)

)
≥ −abT/2− a.

To establish the claim, it is then sufficient that (a/2 + b)T − (b + 1)‖1/2‖ − abT/2 − a ≥

γT (b+ 1). For b = 1/2 and a = 30γ + 2 + ‖6‖, this holds for T ≥ 5.
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Proof of Theorem 4.2

To prove Theorem 4.2, we again prove the stronger claim CRα
0 (A) +R0(A)/T ≥ γ.

Consider the cost function sequence over the decision space [0, 1] with ct(·) = f 0
2 for

E [xt] ≤ 1/2 and ct(·) = f 0
1 otherwise, where xt is the (random) choice of the algorithm at

round t. Here, the expectation is taken over the marginal distribution of xt conditioned on

c1, . . . , ct−1, averaging out the dependence on the realizations of x1, . . . , xt−1. Notice that this

sequence can be constructed by an oblivious adversary before the execution of the algorithm.

We now prove the following lemma.

Lemma 4.1. Given any algorithm, the sequence of cost functions chosen by the above obliv-

ious adversary makes

R0(A), R′0(A) ≥ a
T∑
t=1

|1/2− E
[
xt
]
| − ‖1/2‖, (4.7)

CRα
0 (A) ≥ (a/2 + b)T + a

∑T
t=1 |1/2− E [xt] |

(b+ ‖α‖)T
. (4.8)

Proof. Recall that the oblivious adversary chooses ct(·) = f 0
2 for E [xt] ≤ 1/2 and ct(·) = f 0

1

otherwise, where xt is the (random) choice of the algorithm at round t. Therefore,

C0(A) ≥ E

 T∑
t=1


a(1− xt) + b if E [xt] ≤ 1/2

axt + b otherwise


= E

[
bT + a

T∑
t=1

(
1/2 + (1/2− xt)sgn(1/2− E

[
xt
]
)
)]

= bT + a
T∑
t=1

(
1/2 + (1/2− E

[
xt
]
)sgn(1/2− E

[
xt
]
)
)

= (a/2 + b)T + a
T∑
t=1

|1/2− E
[
xt
]
|,

where sgn(x) = 1 if x > 0 and −1 otherwise. The static optimal solution is not worse

than the scheme that sets xt = 1/2 for all t, which has total cost (a/2 + b)T + ‖1/2‖. This

establishes (4.7).

72



The dynamic scheme which chooses xt+1 = 0 if ct = f 0
1 and xt+1 = 1 if ct = f 0

2 has total

α-unfair cost not more than (b+ ‖α‖)T . This establishes (4.8).

From (4.7) and (4.8) in Lemma 4.1, we have CRα
0 (A) +R0(A)/T ≥ (a/2+b)T

(b+‖α‖)T −
‖1/2‖
T

. For

a > 2γ(b+‖α‖), the right hand side is bigger than γ for sufficiently large T , which establishes

the theorem.

Proof of Theorem 4.3

Let a = ‖1‖/2 and b = 0. Let M = 4αγ‖1‖/a = 8αγ. For T � M , divide [1, T ] into

segments of length 3M . For the last 2M of each segment, set ct = fα1 . This ensures that the

static optimal solution is x = 0. Moreover, if for all t in the first M time steps, ct is either

fα1 or fα2 , then the optimal dynamic solution is also xt = 0 for the last 2M time steps.

Consider a solution on which each segment has non-negative regret. Then to obtain

sublinear regret, for any positive threshold ε at least T/(3M) − o(T ) of these segments

must have regret below ε‖1/ᾱ‖. We will then show that these segments must have high

competitive ratio. To make this more formal, consider the single segment [1, 3M ] without

loss of generality.

Let c̃ be such that c̃t = fα2 for all t ∈ [1,M ] and c̃t = fα1 for t > M . Then the optimal

dynamic solution on [1, 3M ] is xtd = 1t≤M/ᾱ, which has total cost 2α‖1/ᾱ‖ consisting entirely

of switching costs.

We prove the following lemma.

Lemma 4.2. For any δ ∈ (0, 1/ᾱ) and integer τ > 0, there exists an ε(δ, τ) > 0 such that,

if ct = fα2 for all 1 ≤ t ≤ τ and xt > δ for any 1 ≤ t ≤ τ , then there exists an m ≤ τ such

that C1(x,m)− C1(OPTs,m) > ε(δ, τ)‖1/ᾱ‖.

Proof. We will consider only the case that ᾱ = 1; other cases are analogous. We prove the

contrapositive (that if C1(x;m)−C1(OPTs,m) ≤ ε‖1‖ for all m, then xt ≤ δ for all t ∈ [1, τ ]).

We consider the case that xt are non-decreasing; if not, the switching and operating costs

can both be reduced by setting (xt)′ = maxt′≤t x
t′ .
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Note that OPTs sets xt = 0 for all t, so that C1(OPTs,m) = am, and

C1(x;m) = xm‖1‖ − a
m∑
i=1

xi + am.

Thus, we want to show that if xm‖1‖ − a
∑m

i=1 x
i ≤ ε for all m ≤ τ , then we have xt < δ for

all t ∈ [1, τ ].

Define fi(·) inductively by f1(y) = 1/(1− y), and

fi(y) =
1

1− y

(
1 + y

i−1∑
j=1

fj(y)

)
.

If y < 1, then {fi(y)} are increasing in i.

Notice that {fi} satisfy

fm(y)(1− y)− y
m−1∑
i=1

fi(y) = 1.

Expanding the first term, we get that, for any ε̂,

ε̂fm(a/‖1‖)− a

‖1‖

m∑
i=1

ε̂fi(a/‖1‖) = ε̂. (4.9)

If for some ε̂ > 0,

xm − a

‖1‖

m∑
j=1

xj ≤ ε̂ (4.10)

for all m ≤ τ , then by induction xi ≤ ε̂fi(a/‖1‖) ≤ ε̂fτ (a/‖1‖) for all i ≤ τ , where the last

inequality uses the fact that a < ‖1‖, and hence {fi(a/‖1‖)} are increasing in i.

The left hand side of (4.10) is (C1(x;m) − C1(OPTs,m))/‖1‖. We define ε = ε̂ =

δ/(2fτ (a/‖1‖)). If (C1(x;m)− C1(OPTs,m)) ≤ ε‖1‖ for all m, then (4.10) holds for all m,

and hence xt ≤ ε̂fτ (a/‖1‖) = δ/2 < δ for all t ∈ [1, τ ].

Let δ = 1/[5ᾱ] ∈ (0, 1). For any decisions such that xt < δ for all t ∈ [1,M ], the

operating cost of x under c̃ is at least 3αγ‖1/ᾱ‖. Let the adversary choose a c on this

segment such that ct = fα2 until (a) the first time t0 < M that the algorithm’s solution x

satisfies C1(x, t0)− C1(OPTs, t0) > ε(δ,M)‖1/ᾱ‖, or (b) t = M . After this point in time, it

chooses ct = fα1 .
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In case (a), C1(x, 3M) − C1(OPTs, 3M) > ε(δ,M)‖1/ᾱ‖ by Lemma 4.2, since OPTs

incurs no cost after t0. Moreover, C1(x, 3M) ≥ C1(OPTd, 3M).

In case (b), C1(x, 3M)/C1(OPTd, 3M) ≥ 3αγ‖1/ᾱ‖/(2α‖1/ᾱ‖) = 3γ/2.

To complete the argument, consider all segments. Let g(T ) be the number of segments

for which case (a) occurs. The regret then satisfies

R′1(A) ≥ ε(δ,M)‖1/ᾱ‖g(T ).

Similarly, the ratio of the total cost to that of the optimum cost is at least

C1(x, T )

C1(OPTd, T )
≥ [T/(3M)− g(T )]3αγ‖1/ᾱ‖

[T/(3M)]2α‖1/ᾱ‖
=

3

2
γ

(
1− 3Mg(T )

T

)
.

If g(T ) = Ω(T ), then R′1(A) = Ω(T ). Conversely, if g(T ) = o(T ), then for sufficiently large

T , 3Mg(T )/T < 1/3, and so CRα
1 (A) > γ.

4.5 Balancing Regret and the Competitive Ratio

Given the above incompatibility, it is necessary to reevaluate the goals for algorithm design.

In particular, it is natural now to seek tradeoffs such as being able to obtain εT regret for

arbitrarily small ε while remaining O(1)-competitive, or being log log T -competitive while

retaining sublinear regret.

To this end, in the following we present a novel algorithm, Randomly Biased Greedy

(RBG), which can achieve simultaneous bounds on regret R′0 and competitive ratio CR1,

when the decision space F is one-dimensional. The one-dimensional setting is the natural

starting point for seeking such a tradeoff given that the proofs of the incompatibility results

all focus on one-dimensional examples and that the one-dimensional case has recently been

of practical significance (e.g., [LWA11]). The algorithm takes a norm N as its input:

Algorithm 4.2 (Randomly Biased Greedy, RBG(N)).

Given a norm N , define w0(x) = N(x) for all x and wt(x) = miny{wt−1(y)+ct(y)+N(x−y)}.

Generate a random number r uniformly in (−1, 1). For each time step t, go to the state xt

which minimizes Y t(xt) = wt−1(xt) + rN(xt).
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RBG is motivated by [CMP08], and makes very limited use of randomness – it param-

eterizes its “bias” using a single random r ∈ (−1, 1). It then chooses actions to greedily

minimize its “work function” wt(x).

As stated, RBG performs well for the α-unfair competitive ratio, but performs poorly

for regret. Theorem 4.4 will show that RBG(‖ · ‖) is 2-competitive, and hence has at best

linear regret. Note that this guarantee improves the best known competitive ratio within this

setting from 3 (achieved by Lazy Capacity Provisioning) to 2. However, the key idea behind

balancing regret and competitive ratio is to run RBG with a “larger” norm to encourage

its actions to change less. This can make the coefficient of regret arbitrarily small, at the

expense of a larger (but still constant) competitive ratio.

Theorem 4.4. For a SOCO problem in a one-dimensional normed space ‖ · ‖, running

RBG(N) with a one-dimensional norm having N(1) = θ‖1‖ as input (where θ ≥ 1) attains

an α-unfair competitive ratio CRα
1 of (1 + θ)/min{θ, α} and a regret R′0 of O(max{T/θ, θ}).

Note that Theorem 4.4 holds for the usual metrics of MTS and OCO, which are the

“most incompatible” case since the cost functions are mismatched (see Theorem 4.1). Thus,

the conclusion of Theorem 4.4 still holds when R0 or R1 is considered in place of R′0.

The best CRα
1 , 1 + 1/α, achieved by RBG is obtained with N(·) = α‖ · ‖. However,

choosing N(·) = ‖ · ‖/ε for arbitrarily small ε gives εT regret, albeit larger CRα
1 . Similarly,

if T is known in advance, choosing N(1) = θ(T ) for some increasing function achieves an

O(θ(T )) α-unfair competitive ratio and O(max{T/θ(T ), θ(T )}) regret; taking θ(T ) = O(
√
T )

gives O(
√
T ) regret, which is optimal for arbitrary convex costs [Zin03]. If T is not known

in advance, N(1) can increase in t, and bounds similar to those in Theorem 4.4 still hold.

Proof of Theorem 4.4

To prove Theorem 4.4, we derive a more general tool for designing algorithms that simul-

taneously balance regret and the α-unfair competitive ratio. In particular, for any algo-

rithm A, let the operating cost be OC(A) =
∑T

t=1 c
t(xt+1) and the switching cost be

SC(A) =
∑T

t=1 ‖xt+1 − xt‖, so that C1(A) = OC(A) + SC(A). Define OPTN to be the
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dynamic optimal solution under the norm N(1) = θ‖1‖ (θ ≥ 1) with α = 1.

Lemma 4.3. Consider a one-dimensional SOCO problem with norm ‖ · ‖ and an online

algorithm A which, when run with norm N , satisfies OC(A(N)) ≤ OPTN +O(1) along with

SC(A(N)) ≤ βOPTN + O(1) with β = O(1). Fix a norm N such that N(1) = θ‖1‖ with

θ ≥ 1. Then A(N) has α-unfair competitive ratio CRα
1 (A(N)) = (1 + β) max{ θ

α
, 1} and

regret R′0(A(N)) = O(max{βT, (1 + β)θ}) for the original SOCO problem with norm ‖ · ‖.

Proof. We first prove the α-unfair competitive ratio result. Let x̂1, x̂2, . . . , x̂T denote the

actions chosen by algorithm ALG when running on a normed space with N = ‖ · ‖ALG

as input. Let ŷ1, ŷ2, . . . , ŷT be the actions chosen by the optimal dynamic offline algo-

rithm, which pays α times more for switching costs, on a normed space with ‖ · ‖ (i.e.,

OPTαd ). Similarly, let ẑ1, ẑ2, . . . , ẑT be the actions chosen by the optimal solution on a

normed space with ‖ · ‖ALG, namely OPT‖·‖ALG (without an unfairness cost). Recall that

we have C1(ALG) =
∑T

t=1 c
t(x̂t+1) + ‖x̂t+1 − x̂t‖, OPTαd =

∑T
t=1 c

t(ŷt) + α‖ŷt − ŷt−1‖, and

OPT‖·‖ALG =
∑T

t=1 c
t(ẑt) + ‖ẑt− ẑt−1‖ALG. By the assumptions in our lemma, we know that

C1(ALG) ≤ (1 + β)OPT‖·‖ALG +O(1). Moreover,

OPTαd =
T∑
t=1

ct(ŷt) + α‖ŷt − ŷt−1‖

≥
T∑
t=1

ct(ŷt) +
α

θ
‖ŷt − ŷt−1‖ALG ≥

OPT‖·‖ALG
max{1, θ

α
}
.

The first inequality holds since ‖ · ‖ALG = θ‖ · ‖ with θ ≥ 1. Therefore, C1(ALG) ≤

(1 + β) max{1, θ
α
}OPTαd .

We now prove the regret bound. Let dmax denote the diameter of the decision space (i.e.,

the length of the interval). Recall that C0(ALG) =
∑T

t=1 c
t(x̂t) + ‖x̂t − x̂t−1‖ and OPTs =

minx
∑T

t=1 c
t(x). Then we know that C0(ALG) ≤ C1(ALG) + D

∑T
t=1 ‖xt+1 − xt‖+ ‖dmax‖

for some constant D by (4.1). Based on our assumptions, we have
∑

t c
t(x̂t+1) ≤ OPT‖·‖ALG+

O(1) and
∑

t ‖x̂t+1− x̂t‖ ≤ βOPT‖·‖ALG +O(1). For convenience, we let E = D+ 1 = O(1).
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Then C0(ALG) is at most:

T∑
t=1

ct(x̂t+1) + E‖x̂t+1 − x̂t‖+ ‖dmax‖+O(1)

≤ (1 + Eβ)OPT‖·‖ALG + ‖dmax‖+O(1)

≤ (1 + Eβ)(OPTs + ‖dmax‖ALG) + ‖dmax‖+O(1).

Therefore, we get a regret C0(ALG)−OPTs of at most

EβOPTs + ‖dmax‖(1 + E(1 + β)θ) +O(1)

= O(βOPTs + (1 + β)θ) = O(max{βOPTs, (1 + β)θ}).

In the OCO setting, the cost functions ct(x) are bounded from below by 0 and are typically

bounded from above by a value independent of T [HW98, LW94], so that OPTs = O(T ).

This immediately gives the result that the regret is at most O(max{βT, (1 + β)θ}).

Theorem 4.4 then follows from the following two lemmas.

Lemma 4.4. Given a SOCO problem with norm ‖ · ‖, the RBG algorithm with input norm

N satisfies E [OC(RBG(N))] ≤ OPTN .

Proof. We argue that the expected operating cost of RBG (when evaluated under ‖ · ‖) with

input norm N(·) = θ‖ · ‖, θ ≥ 1, is at most the cost of the optimal dynamic offline algorithm

under norm N (i.e., OPTN). Let M denote our decision space, and let x̂1, x̂2, . . . , x̂T+1

denote the actions chosen by RBG (similarly, let x1
OPT , . . . , x

T+1
OPT denote the actions chosen

by OPTN). Before proving this result, we make the following observation: wt(x̂t+1) =

wt−1(x̂t+1) + ct(x̂t+1). To see why, we note that for any state x ∈ M , we have wt(x) =

miny∈M{wt−1(y)+ct(y)+θ‖x−y‖}. Suppose instead wt(x̂t+1) = wt−1(y)+ct(y)+θ‖x̂t+1−y‖

for some y 6= x̂t+1. Then

Y t+1(x̂t+1) = wt(x̂t+1) + θr‖x̂t+1‖

= wt−1(y) + ct(y) + θ‖x̂t+1 − y‖+ θr‖x̂t+1‖

> wt−1(y) + ct(y) + θr‖y‖

= Y t+1(y),
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which contradicts x̂t+1 = arg miny∈M Y t+1(y). Therefore, wt(x̂t+1) = wt−1(x̂t+1) + ct(x̂t+1).

Now let us prove the expected operating cost of RBG is at most the total cost of the

optimal solution, OPTN .

Y t+1(x̂t+1)− Y t(x̂t) ≥ Y t+1(x̂t+1)− Y t(x̂t+1)

= (wt(x̂t+1) + θr‖x̂t+1‖)− (wt−1(x̂t+1) + θr‖x̂t+1‖)

= ct(x̂t+1).

The lemma follows by summing up the above inequality for t = 1, . . . , T , since Y T+1(x̂T+1) ≤

Y T+1(xT+1
OPT ) and E

[
Y T+1(xT+1

OPT )
]

= OPTN by E [r] = 0.

Note that this approach also holds when the decision space F ⊂ Rn for n > 1.

Lemma 4.5. Given a one-dimensional SOCO problem with norm ‖ · ‖, the RBG algorithm

with input norm N satisfies E [SC(RBG(N))] ≤ OPTN/θ with probability 1.

To prove Lemma 4.5, we make a detour and consider a version of the problem with a

discrete state space. We first show that on such spaces the lemma holds for a discretization

of RBG, which we name DRBG. Next, we show that as the discretization becomes finer, the

solution (and hence the switching cost) of DRBG approaches that of RBG. The lemma is

then proven by showing that the optimal cost of the discrete approximation approaches the

optimal cost of the continuous problem.

To begin, define a discrete variant of SOCO where the number of states is finite as

follows. Actions can be chosen from m states, denoted by the set M = {x1, . . . , xm}, and the

distances δ = xi+1 − xi are the same for all i. Without loss of generality we define x1 = 0.

Consider the following algorithm.

Algorithm 4.3 (Discrete RBG, DRBG(N)).

Given a norm N and discrete states M = {x1, . . . , xm}, define w0(x) = N(x) and wt(x) =

miny∈M{wt−1(y) + ct(y) +N(x− y)} for all x ∈M . Generate a random number r ∈ (−1, 1).

For each time step t, go to the state xt which minimizes Y t(xt) = wt−1(xt) + rN(xt).
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Note that DRBG looks nearly identical to RBG except that the states are discrete.

DRBG is introduced only for the proof and need never be implemented; thus we do not need

to worry about the computational issues when the number of states m becomes large.

Bounding the Switching Cost of DRBG

We now argue that the expected switching cost of DRBG (evaluated under the norm ‖ · ‖

and run with input norm N(·) = θ‖ · ‖) is at most the total cost of the optimal solution in

the discrete system (under norm N). We first prove a couple of useful lemmas. The first

lemma states that if the optimal way to get to some state x at time t is to come to state y

in the previous time step, incur the operating cost at state y, and travel from y to x, then

in fact the optimal way to get to state y at time t is to come to y at the previous time step

and incur the operating cost at state y.

Lemma 4.6. If ∃x, y : wt(x) = wt−1(y) + ct(y) + θ‖x− y‖, then wt(y) = wt−1(y) + ct(y).

Proof. Suppose towards a contradiction that wt(y) < wt−1(y) + ct(y). Then we have:

wt(y) + θ‖x− y‖ < wt−1(y) + ct(y) + θ‖x− y‖

= wt(x) ≤ wt(y) + θ‖x− y‖

(since one way to get to state x at time t is to get to state y at time t and then travel from

y to x). This is a contradiction, which proves the lemma.

Let SCt =
∑t

i=1 ‖xi − xi−1‖ denote the total switching cost incurred by DRBG up until

time t, and define the potential function φt = 1
2θ

(wt(x1) + wt(xm))− ‖xm−x1‖
2

. Then we can

show the following lemma.

Lemma 4.7. For every time step t, E [SCt] ≤ φt.

Proof. We will prove this lemma by induction on t. At time t = 0, clearly it is true since the

left hand side E [SC0] = 0, while the right hand side φ0 = 1
2θ

(w0(x1) +w0(xm))− ‖xm−x1‖
2

=

1
2θ

(0 + θ‖xm− x1‖)− ‖xm−x1‖
2

= 0. We now argue that at each time step, the increase in the

left hand side is at most the increase in the right hand side.
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Since the operating cost is convex, it is non-increasing until some point xmin and then

non-decreasing over the set M . We can imagine our cost vector arriving in ε-sized increments

as follows. We imagine sorting the cost values so that ct(i1) ≤ ct(i2) ≤ · · · ≤ ct(im), and

then view time step t as a series of smaller time steps where we apply a cost of ε to all states

for the first ct(i1)/ε time steps, followed by applying a cost of ε to all states except state i1

for the next (ct(i2)− ct(i1))/ε time steps, etc., where ε has a very small value. If adding this

epsilon-sized cost vector would cause us to exceed the original cost ct(ik) for some k, then we

just use the residual ε′ < ε in the last round in which state ik has non-zero cost. Eventually,

these ε-sized cost vectors will add up precisely to the original cost vector ct.

Under these new cost vectors, the behavior of our algorithm will not change (and the

optimal solution cannot get worse). Moreover, we would never move to a state in which ε

cost was added. If the left hand side does not increase at all from time step t− 1 to t, then

the lemma holds (since the right hand side can only increase). Our expected switching cost

is the probability that the algorithm moves multiplied by the distance moved. Suppose the

algorithm is currently in state x. Observe that there is only one state the algorithm could

be moving from (state x) and only one state y the algorithm could be moving to (we can

choose ε to be sufficiently small in order to guarantee this). Notice that the algorithm would

only move to a state y to which no cost was added. First, we consider the case x ≥ xmin.

The only reason we would move from state x is if wt(x) increases from the previous

time step, so that we have wt(x) = wt−1(x) + ε. Notice that for any state z > x, we must

have wt(z) = wt−1(z) + ε. If not (i.e., wt(z) < wt−1(z) + ε), then we get a contradiction

as follows. The optimal way to get to z at time step t, wt(z), must go through some point

j in the previous time step and incur the operating cost at j. If j ≥ x, then we know

wt−1(j) + ε + θ‖z − j‖ = wt(z) < wt−1(z) + ε ≤ wt−1(j) + θ‖z − j‖ + ε, which cannot

happen. On the other hand, by Lemma 4.6, if j < x then we get wt(x) + θ‖z − x‖ ≤

wt(j) + θ‖1‖|x − j| + θ‖1‖|z − x| = wt(j) + θ‖z − j‖ = wt−1(j) + ct(j) + θ‖z − j‖ =

wt(z) < wt−1(z) + ε ≤ wt−1(x) + θ‖z− x‖+ ε, which cannot happen either. Hence, we know

wt(z) = wt−1(z) + ε for all z ≥ x.

By the above argument, we can conclude a couple of facts. The state y we move to cannot
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be such that y ≥ x. Moreover, we also know that wt(xm) = wt−1(xm) + ε (since xm ≥ x).

Notice that for us to move from state x to state y, the random value r must fall within a

very specific range. In particular, we must have Y t(x) ≤ Y t(y) and Y t+1(y) ≤ Y t+1(x):

(wt−1(x) + θr‖1‖x ≤ wt−1(y) + θr‖1‖y) ∧ (wt(y) + θr‖1‖y ≤ wt(x) + θr‖1‖x)

=⇒ wt−1(y)− wt−1(x)− ε ≤ wt(y)− wt(x) ≤ θr‖x− y‖ ≤ wt−1(y)− wt−1(x).

This means r must fall within an interval of length at most ε/θ‖x− y‖. Since r is chosen

from an interval of length 2, this happens with probability at most ε/(2θ‖x− y‖). Hence,

the increase in our expected switching cost is at most ‖x − y‖ · ε/(2θ‖x− y‖) = ε/2θ. On

the other hand, the increase in the right hand side is φt − φt−1 = 1
2θ

(wt(x1) − wt−1(x1) +

wt(xm) − wt−1(xm)) ≥ ε/2θ (since wt(xm) = wt−1(xm) + ε). The case when x < xmin is

symmetric. This finishes the inductive claim.

Now we prove the expected switching cost of DRBG is at most the total cost of the

optimal solution for the discrete problem.

By Lemma 4.7, for all times t we have E [SCt] ≤ φt. Denote byOPT t the optimal solution

at time t (so that OPT t = minxw
t(x) and OPT T = OPTN). Let x∗ = argminxw

t(x) be

the final state which realizes OPT t at time t. For all times t, we have:

E
[
SCt

]
≤ φt =

1

2θ
(wt(x1) + wt(xm))− ‖xm − x1‖

2

≤ 1

2θ
(wt(x∗) + θ‖x∗ − x1‖+ wt(x∗) + θ‖xm − x∗‖)−

‖xm − x1‖
2

=
1

θ
OPT t.

In particular, the equation holds at time T , which gives the bound.

Convergence of DRBG to RBG

We are now going to show that if we keep splitting δ, the output of DRBG, which we denote

by xtD, converges to the output of RBG, which we denote by xtC .

Lemma 4.8. Consider a SOCO problem with F = [xL, xH ]. Consider a sequence of discrete

systems such that the state spacing δ → 0 and for each system, [x1, xm] = F . Let xi denote
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the output of DRBG in the ith discrete system, and x̂ denote the output of RBG in the

continuous system. Then the sequence {xi} converges to x̂ with probability 1 as i increases.

That is, for all t, limi→∞ |xti − x̂t| = 0 with probability 1.

Proof. To prove the lemma, we just need to show that xi converges pointwise to x̂ with

probability 1. For a given δ, let Y t
D denote the function Y t used by DRBG in the discrete

system (with state space M = {x1, . . . , xm} ⊂ F ) and Y t
C denote the function Y t used by

RBG in the continuous system (with state space F ). The output of DRBG and RBG at

time t are denoted by xtD and xtC respectively. The subsequence on which |xtC − xtD| ≤ 2δ

clearly has xtD converge to xtC . Now consider the subsequence on which this does not hold.

For each such system, we can find a value x̄tC ∈ {x1, . . . , xm} and |x̄tC − xtC | < δ (and thus

|x̄tC −xtD| ≥ δ) such that Y t
C(x̄tC) ≤ Y t

C(xtD), by the convexity of Y t
C . Note that the minimum

of a convex function over a convex set is convex, so wt is a convex function by induction.

Therefore, Y t
C is convex as well. Moreover, Y t

D(xtD) ≤ Y t
D(x̄tC) and Y t

C(xtD) ≤ Y t
D(xtD). So far,

we have only rounded the tth component. Now let us consider a scheme that will round to

the set M all components τ < t of a solution to the continuous problem.

For an arbitrary trajectory x = (xt)Tt=1, define a sequence xR(x) with xτR ∈ {x1, . . . , xm}

as follows. Let l = max{k : xk ≤ xτ}. Set xτR to xl if cτ (xl) ≤ cτ (xl+1) or l = m, and xl+1

otherwise. This rounding will increase the switching cost by at most 2θ‖δ‖ for each timeslot.

If l = m, then the operating cost is unchanged. Next, we bound the increase in operating

cost when l < m.

For each timeslot τ , depending on the shape of cτ on (xl, xl+1), we may have two cases:

(i) cτ is monotone; (ii) cτ is non-monotone. In case (i), the rounding does not make the

operating cost increase for this timeslot. Note that if xτC ∈ {xL, xH}, then for all sufficiently

small values δ, case (ii) cannot occur, since the location of the minimum of cτ is independent

of δ. We now consider case (ii) with xτC ∈ (xL, xH). Note that there must be a finite left

and right derivative of cτ at all points in (xL, xH) for cτ to be finite on F . Hence, these

derivatives must be bounded on any compact subset of (xL, xH). Since xτC ∈ (xL, xH), there

exists a set [x′L, x
′
H ] ⊂ (xL, xH) independent of δ such that, for sufficiently small δ, we have
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[xl, xl+1] ⊂ [x′L, x
′
H ]. Hence, there exists an Hτ such that, for sufficiently small δ, the gradient

of cτ is bounded by Hτ on [xl, xl+1]. Thus, for sufficiently small δ, the rounding will make

the operating cost increase by at most Hτδ in timeslot τ .

Define H = maxτ{Hτ}. If we apply this scheme to the trajectory which achieves Y t
C(x̄tC),

we get a decision sequence in the discrete system with cost+rθ‖x̄tC‖ not more than Y t
C(x̄tC)+

(Hδ + 2θ‖δ‖)t (by the foregoing bound on the increase in costs) and not less than Y t
D(x̄tC)

(because the solution of Y t
D(x̄tC) minimizes cost + rθ‖x̄tC‖). Specifically, we have Y t

D(x̄tC) ≤

Y t
C(x̄tC) + (Hδ + 2θ‖δ‖)t. Therefore,

Y t
C(x̄tC) ≤ Y t

C(xti) = Y t
C(xtD) ≤ Y t

D(xtD) ≤ Y t
D(x̄tC) ≤ Y t

C(x̄tC) + (Hδ + 2θ‖δ‖)t.

Notice that the gradient bound H is independent of δ and so (Hδ + 2θ‖δ‖)t→ 0 as δ → 0.

Therefore, |Y t
C(xti)− Y t

C(x̄tC)| converges to 0 as i increases.

Independent of the random choice r, the domain of wtC(·) can be divided into countably

many non-singleton intervals on which wtC(·) is affine, joined by intervals on which it is

strictly convex. Then Y t
C(·) has a unique minimum unless −r is equal to the slope of one of

the former intervals, since Y t
C(·) is convex. Hence, it has a unique minimum with probability

one with respect to the choice of r.

Hence, with probability one, xtC is the unique minimum of Y t
C . To see that Y t

C(·) is

continuous at any point a, apply the squeeze principle to the inequality wtC(a) ≤ wtC(x) +

θ‖x− a‖ ≤ wtC(a) + 2θ‖x− a‖, and note that Y t
C(·) is wt(·) plus a continuous function. The

convergence of |x̄tC−xtC | then implies |Y t
C(x̄tC)−Y t

C(xtC)| → 0 and thus |Y t
C(xti)−Y t

C(xtC)| → 0,

or equivalently Y t
C(xti) → Y t

C(xtC). Note that the restriction of Y t
C to [xL, x

t
C ] has a well-

defined inverse Y −1, which is continuous at Y t
C(xtC). Hence, for the subsequence of xti such

that xti ≤ xtC , we have xti = Y −1(Y t
C(xti)) → Y −1(Y t

C(xtC)) = xtC . Similarly, the subsequence

such that xti ≥ xtC also converges to xtC .

Convergence of the Optimal Solution

To show that the competitive ratio holds for RBG, we also need to show that the optimal

costs converge to those of the continuous system.
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Lemma 4.9. Consider a SOCO problem with F = [xL, xH ]. Consider a sequence of discrete

systems such that the state spacing δ → 0 and for each system, [x1, xm] = F . Let OPT iD

denote the optimal cost in the ith discrete system, and OPTC denote the optimal cost in

the continuous system (both under the norm N). Then the sequence {OPT iD} converges to

OPTC as i increases. That is, limi→∞ |OPT iD −OPTC | = 0.

Proof. We can apply the same rounding scheme in the proof of Lemma 4.8 to the solution

vector of OPTC to get a discrete output with total cost bounded by OPTC +(Hδ+2θ‖δ‖)T ,

and thus we have OPT iD ≤ OPTC + (Hδ + 2θ‖δ‖)T . Notice that the gradient bound H is

independent of δ and so (Hδ+2θ‖δ‖)T → 0 as δ → 0. Therefore, OPT iD converges to OPTC

as i increases.

4.6 Concluding Remarks

This chapter studies the relationship between regret and competitive ratio when applied to

the class of SOCO problems. It shows that these metrics, from the learning and algorithms

communities respectively, are fundamentally incompatible, in the sense that algorithms with

sublinear regret must have infinite competitive ratio, and those with constant competitive

ratio have at least linear regret. Thus, the choice of performance measure significantly affects

the style of algorithm designed. It also introduces a generic approach for balancing these

competing metrics, exemplified by a specific algorithm, RBG.

There are many interesting directions that this work motivates. In particular, the SOCO

formulation is still under-explored, and many variants of the formulation discussed here are

still not understood. For example, is it possible to tradeoff regret and the competitive ratio

in bandit versions of SOCO? More generally, the message from this chapter is that regret and

the competitive ratio are incompatible within the formulation of SOCO. It is quite interesting

to try to understand how generally this holds. For example, does the “incompatibility result”

proven here extend to settings where the cost functions are random instead of adversarial

(e.g., variations of SOCO such as k-armed bandit problems with switching costs)?
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