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Immunosuppression causes dynamic
changes in expression QTLs in psoriatic skin

Qian Xiao1,2,3,4,11, Joseph Mears1,2,3,4,11, Aparna Nathan1,2,3,4,5,
Kazuyoshi Ishigaki 1,2,3,4,6, Yuriy Baglaenko1,2,3,4, Noha Lim7, Laura A. Cooney7,8,
Kristina M. Harris7, Mark S. Anderson 7, David A. Fox8, Dawn E. Smilek7,
James G. Krueger9 & Soumya Raychaudhuri 1,2,3,4,5,10

Psoriasis is a chronic, systemic inflammatory condition primarily affecting
skin. While the role of the immune compartment (e.g., T cells) is well estab-
lished, the changes in the skin compartment are more poorly understood.
Using longitudinal skin biopsies (n = 375) from the “Psoriasis Treatment with
Abatacept andUstekinumab: A Study of Efficacy”(PAUSE) clinical trial (n = 101),
we report 953 expression quantitative trait loci (eQTLs). Of those, 116 eQTLs
have effect sizes that were modulated by local skin inflammation (eQTL
interactions). By examining these eQTL genes (eGenes), we find that most are
expressed in the skin tissue compartment, and a subset overlap with the NRF2
pathway. Indeed, the strongest eQTL interaction signal – rs1491377616-LCE3C
– links a psoriasis risk locuswith a gene specifically expressed in the epidermis.
This eQTL study highlights the potential to use biospecimens from clinical
trials to discover in vivo eQTL interactions with therapeutically relevant
environmental variables.

Psoriasis is a chronic inflammatory systemic disorder primarily invol-
ving skin that affects approximately 125 million people across the
world1. Genetic predisposition, environmental factors, and immune
dysregulation all play a critical role in disease development2. Psoriasis
can cause thickened red skin lesions characterized by keratinocyte
hyperproliferation, angiogenesis, and immune cell infiltration3,4. In
about 30% of cases, psoriasis is associated with an inflammatory
arthritis5. Dermal and epidermal cell changes in psoriatic lesions are
the consequence of a pathogenic immune response in the skin. As
current knowledge suggests6, activated dendritic cells and IL-17-
producing T cells trigger an inflammatory cascade, promoting down-
stream keratinocyte proliferation and other dermatological disease

manifestations4,7–10. The clinical efficacy of immunomodulatory cyto-
kine antagonists, such as ustekinumab (anti-IL-12/IL-23) and adalimu-
mab (anti-TNF), confirms the key function of the immune system in
psoriasis11–13.

However, the dermal and epidermal compartments are increas-
ingly recognized as an important part of disease initiation and sus-
tained chronic inflammation through induction of the innate immune
response and recruitment of inflammatory immune cells14,15. For
instance, in the early events of psoriasis, keratinocytes are a key source
of innate immune mediators such as antimicrobial peptides that can
activate plasmacytoid and myeloid dendritic cells, which can in turn
initiate subsequent adaptive immune responses14. Understanding the

Received: 13 October 2022

Accepted: 25 September 2023

Check for updates

1Center for Data Sciences, Brigham andWomen’s Hospital, Boston,MA, USA. 2Division of Genetics, Department ofMedicine, Brigham andWomen’s Hospital,
Boston, MA, USA. 3Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Boston,MA,USA. 4Program inMedical and PopulationGenetics, Broad Institute ofMIT andHarvard, Cambridge,MA,USA. 5Department of Biomedical
Informatics, Harvard Medical School, Boston, MA, USA. 6Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama
City, Kanagawa, Japan. 7Immune Tolerance Network, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA. 8Division of Rheuma-
tology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA. 9Laboratory for Inves-
tigativeDermatology, TheRockefeller University, NewYork, NY,USA. 10Centre forGenetics andGenomicsVersusArthritis, Centre forMusculoskeletal Research,
The University of Manchester, Manchester, UK. 11These authors contributed equally: Qian Xiao, Joseph Mears. e-mail: soumya@broadinstitute.org

Nature Communications |         (2023) 14:6268 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2881-0657
http://orcid.org/0000-0003-2881-0657
http://orcid.org/0000-0003-2881-0657
http://orcid.org/0000-0003-2881-0657
http://orcid.org/0000-0003-2881-0657
http://orcid.org/0000-0002-3093-4758
http://orcid.org/0000-0002-3093-4758
http://orcid.org/0000-0002-3093-4758
http://orcid.org/0000-0002-3093-4758
http://orcid.org/0000-0002-3093-4758
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://orcid.org/0000-0002-1901-8265
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41984-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41984-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41984-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41984-2&domain=pdf
mailto:soumya@broadinstitute.org


dynamics of dermal and epidermal cells in the context of psoriasismay
open unexplored avenues for novel therapeutics targeting inflamma-
tion initiation.

Genome-wide association studies (GWAS) have characterized the
genetic architecture of psoriasis in diverse populations, and identified
risk loci related to the immune system, such as Major Histocompat-
ibility Complex (MHC) and NF-kappa B pathways16–21. However, the
majority of psoriasis-associated loci reside in non-coding regions, like
functional enhancers, that may regulate expression of nearby genes22.
One way to understand gene regulation in psoriasis tissue is to
examine expression quantitative loci (eQTLs), genetic variants (i.e.,
eSNPs) that alter the expression level of a gene (i.e., eGene) located
nearby (cis-eQTL) or distant (trans-eQTL). eQTLs can be shared
between cell types or cell states, or can be context-dependent23. For
instance, an environmental factor may alter regulatory factors that
bind the eSNP, resulting in a genotype-by-environment statistical
interaction, where the eQTL effect is amplified or dampened by the
presence of the environmental factor24–29. In the context of psoriasis,
inflammatory status of the skin may alter regulatory factors that bind
the eSNP, leading to different degrees of eQTL gene expression
changes upon the same eQTL. Here, eQTL interactions may serve as a
proxy for regulatory changes in the immune or dermal and epidermal
cell states when the status of the skin shifts from its non-lesional state
to a psoriatic lesion.

Other approaches such as differential expression or single-cell
genomics may also be deployed to investigate molecular changes in
psoriasis. Single-cell studies have reported enrichment of IL-17A-
expressing T cells and antimicrobial peptide-expressing differentiated
keratinocytes in lesional psoriatic skin30–32. Just as single-cell data may
be a useful strategy to capture differences in cell states; analytical
approaches such as pseudotime analysis and differential abundance
analysis33–35 help infer the progression of cells through biological
processes. However, these approaches may not reveal systematic
changes in gene regulation and the potentially pathogenic variants
mediating these changes. For example, differentially expressed genes
or differentially abundant cell states suggest downstream functional
consequences or disease characteristics, but eQTL interactions can
point to shared upstream regulatory mechanisms by prioritizing TFs
with relevant bindingmotifs, and identify potential causal variants and
genes involved in complex diseases36. Therefore, eQTL interactions
may complement other approaches.

Here we analyzed genotype and tissue transcriptional data from
77 participants with psoriasis from Immune Tolerance Network (ITN)
Psoriasis Treatment with Abatacept and Ustekinumab: A Study of
Efficacy (PAUSE) trial37. The trial was conducted to determine whether
costimulatory blockadewith abatacept couldprevent psoriasis relapse
after withdrawal of ustekinumab, an FDA-approved treatment for
psoriasis. In this trial abatacept did not successfully suppress the
pathogenic psoriasis transcriptional signature in skin after ustekinu-
mab withdrawal, nor did it prevent clinical psoriasis relapse37.

In observational studies, disease-specific effects can be hard to
disentangle from the effect of drugs that the patients may be using38.
Often since patients with more aggressive disease are treated with
more aggressive therapies, separating the effect of the medications
and disease is challenging. Randomized clinical trials are designed for
valid comparison between two ormore groups of subjects that, due to
randomization, are well-controlled for therapeutically important vari-
ables. Moreover, the PAUSE trial collected genotyping data, alongwith
repeat measurements of clinical psoriasis response metrics and skin
biopsy transcriptional profiles. In this first eQTL study of psoriasis
using data from a clinical trial, longitudinal skin biopsies from parti-
cipants allows assessment of cis-eQTL associations between genetic
variants and expression levels of nearby genes. By leveraging the
power of repeat clinicalmeasurements, we also explore how eQTLs are
modified by the inflammatory status of the skin or other clinical

variables. These eQTL interactions can inform our understanding of
the regulatory mechanisms and immune, dermal, and epidermal cell
involvement in the disease.

Results
Mapping eQTLs in patients with psoriasis
We obtained longitudinal lesional and non-lesional skin biopsies from
participants at baseline, during treatment, and at the time of psoriasis
relapse after studymedication withdrawal over a course of 22months.
We used genome-wide genotyping and RNA-seq to assay samples.
After stringent quality control, we had RNA-seq data on 375 samples
from 77 genotyped patients (Fig. 1a, b, Supplementary Table 1, and
Supplementary Data 1).We had genotyping data on 731,068 SNPs from
the Illumina Infinium Multi-Ethnic Global BeadChip. After imputation,
we had a total of 2,074,125 SNPs with imputation score r2 > 0.99 and
MAF >0.05.

First, we identified cis-eQTLs using all skin biopsies. To ensure
robust expression measurements, we restricted our analysis to 27,100
well-expressed genes (>0.1 TPM and counts >6 across for >20% of
samples). To detect cis-sQTLs, we queried SNPs within 250 kb of the
TSS of each gene, as recommended in previous studies36,39,40. Since
individuals had both longitudinal lesional and non-lesional skin biop-
sies, we used a linear mixed effects model to test the effect of SNP
genotype on gene expression while accounting for repeat expression
measurements from the same individual with a random effect
(“Methods”). We included 20 gene expression PCs to control for
genotype-independent differences in global expression between cell
states, 3 genotyping PCs to control for ancestry, and recruitment site
as covariates. We included principal components as covariates in our
model to account for confounding sources of gene expression varia-
tion that arenot limited to those that have beenmeasured in the study.
We chose 20 PCs to maximize the number of eQTL genes detected
while minimizing the number of principal components that explain a
reasonable amount of variance (82.7% variance, Supplementary
Fig. 1a). We observed that the number of eQTLs identified was not very
sensitive to the choice of n = 20 PCs, with a similar number of eQTLs
being identified using 15-25 PCs (Supplementary Fig. 1b).

Of 6,305,752 SNP–gene pairs tested, using a stringent Bonferroni
p value threshold (p < 6.69e−9 =0.05/6,305,752), we reported 24,374
significant SNP–gene pairs (Fig. 1c). With only the lead SNP for each
gene, we identified 953 genes with at least one significant eQTL
(eGenes) (Supplementary Data 2).

As a complementary analysis, we reran the analyses without
accounting for multiple visits to see how the current model compares
to a linear model using only the baseline samples (N = 140 samples
versus 375 samples). For thefirst visit analysis we included 140 samples
(generally one lesional and one non-lesional sample) from 74 indivi-
duals. For the analysis with all visits we included 375 samples from 77
individuals. As expected, linear mixed model including all the visits
detectedmore eQTLs than thefirst time-point linearmodel (N = 953 vs.
N = 575).While the effect sizes of the twomodels arehighly concordant
comparing significant eQTLpairs identified using the fullmodel (R = 1),
the t-values from the linear mixed model are consistently higher than
the linear model (Supplementary Fig. 2a, b), indicating that including
repeat visits increases the power of detecting eQTL signals.

To confirm that our eQTLs were consistent with prior eQTLs
reported in the skin,wecompared significant SNP–genepairs from this
dataset to cis-eQTLs reported by the GTEx consortium among 517
healthy skin samples from 449 individuals who were not selected for a
particular condition28. We examined significant eQTLs from GTEx and
the pair of lead SNPs and eGenes for each of these eQTLs (N = 2621
eGenes). We observed a high degree of concordance between t-values
of deduplicated SNP–gene pairs the PAUSE study and GTEx, suggest-
ing our study identified highly concordant results with a study that is
substantially larger in size (with 98.5% of effects in the same direction,
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Fig. 1 | Identifying eQTLs in patients with psoriasis. a PAUSE clinical trial struc-
ture and sampling strategy for the individuals used for eQTL analysis.bHeatmapof
lesional and non-lesional sample number per subject before and after treatment.
c Volcano plot of eQTL effects for the significantly associated SNP for each gene
(red color indicates p < 6.7e−9). d Concordance of ITN PAUSE deduplicated lead

variant-gene pairs with significant eQTLs observed in the GTEx consortium28

(FDR<0.05) of 449 individuals. Each point represents a significant SNP–gene
pair in this study. Concordant pairs are colored in black, discordant pairs are
colored in gray.
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Fig. 1d and Supplementary Data 3). Specifically, we observed con-
cordant eQTL effects for several interesting eGenes with known asso-
ciations with psoriasis risk. Consider the rs62121377 eQTL for LGALS7
(beta = −1.60, p = 4.47e−13) and the rs2927608 eQTL for ERAP2 (beta =
1.06, p = 5.60e−32) (Supplementary Fig. 3). Previous studies have
shown that LGALS7 expression is reduced in lesional skin frompatients
with psoriasis and that this reduction is associated with keratinocyte
hyperplasia via increased cytokine (IL-6 and IL-8) expression and ERK
signaling41. Similarly, studies have shown SNPs in ERAP1 and ERAP2
predict risk for development of psoriasis in an HLA dependent
manner42.

Using coloc43, we performed colocalization analysis to assess the
probability of sharing one commoncausal variant (i.e., PP.H4) between
PAUSE skin eGenes and psoriasis GWAS variants19. We also calculated
linkage disequilibrium (LD) r2 between the lead eSNPs and psoriasis
GWAS hits based on European population (EUR) in 1000 Genomes
Project44. We noted 6 of our eGenes colocalize (PP.H4 >0.75) with
psoriasis loci, and 5 lead eSNPs have r2 > 0.5 with psoriasis variants
(Supplementary Data 4). For example, eSNPs influencing IFNLR1
expression colocalize with psoriasis variants (PP.H4 = 0.834) and the
lead eSNP rs59960858 is in almost perfect LD (r2 = 0.961) with the
psoriasis risk allele rs7552167 (Supplementary Data 4). IFNLR1 encodes
a subunit of a cytokine receptor and has been shown to exert antiviral
effect in the context of psoriasis skin barrier breakdown45. The gene
has also been mapped to psoriasis risk alleles across different
studies19,46–48. Other colocalizing loci included eSNPs affecting
expression of LCE3C, MTMR9, CTSW, SNX32, and RNA gene
ENSG00000255389 (Supplementary Data 4).

To investigate the functional impact of psoriatic skin cis-eQTLs in
inflammatory skin diseasesmore broadly, we expanded our analysis to
include eczema and systemic scleroderma risk loci. We extracted
GWAS summary statistics for the two additional traits and performed
colocalization analysis of the identified cis-eQTLs and disease GWAS
loci to identify potential shared causal variants49,50. Our results
revealed 10 colocalizing loci, including 7 eSNPs colocalizing with
eczema risk loci, and 3 colocalizing with scleroderma risk loci (Sup-
plementary Data 4). The eGene that most strongly colocalized with
eczema risk alleles was PGLYRP4 (PP.H4 = 0.989) (Supplementary
Data 4), which is an innate immunity-related gene encoding for pep-
tidoglycan recognition protein. The deficiency of Pglyrp4 in mice has
been reported to be involved in the development of eczema through
reduced recruitment of Tregs and increased activation of Th17
responses51. In addition, eSNPs affecting PDHB expression colocalize
with scleroderma risk alleles (PP.H4 = 0.992; Supplementary Data 4).
PDHB encodes for a subunit of pyruvate dehydrogenase complex,
which plays an essential role in metabolism and has been associated
with cancer and neurological diseases52,53. Additionally, a study con-
ducted inmice showed that pyruvate dehydrogenase deficiency (PDH)
can lead tometabolic shift in keratinocytes whichmay in turn result in
loss of epidermal stem cells54. The overlap between psoriatic cis-eQTLs
and risk loci for other skin conditions provides another way of con-
firming and exploring the important inflammation-related signal pre-
sent in our data.

Assessing skin inflammation with transcriptional data. We hypo-
thesized that gene regulation was altered in active psoriasis skin
lesions compared to non-lesional skin. In this case, eQTLs may have
different magnitudes of effect as the inflammatory status of the skin
changes. As psoriatic lesions represent active skin inflammation, we
can compare lesional versus non-lesional skin biopsies to define a
signature of skin inflammation. However, in the PAUSE trial, lesional
and non-lesional status were determined on the first visit; future
lesional or non-lesional biopsies were taken from the same site based
on its appearance at the first visit. Therefore, the lesional status pro-
videdby the cliniciansonly indicates thepresenceof skin inflammation

at the first visit and does not necessarily reflect its status at subsequent
visits, where local inflammation may have abated after treatment. In
this trial, lesional status of the skin biopsies are subject to change, as
participants showed clinical improvement in lesional skin following
treatmentwith ustekinumab11,12. PCAof samples reveals that at baseline
the lesional and non-lesional samples separate along PC1 and PC2;
however, at subsequent timepoints following ustekinumab treatment,
the baseline lesional samples were less distinguishable from baseline
non-lesional samples along the same PCs (Supplementary Fig. 4a).

We thereforedefined a skinpsoriatic inflammation transcriptional
score (SPITS) based on lesional and non-lesional biopsies at baseline,
recognizing that biopsies undergoing active inflammation should have
higher inflammation signatures that could be captured by gene
expression level. We applied linear discriminant analysis (LDA), using
the skin transcriptional data from thefirst visit (baseline) as training set
(N = 140); these samples had their status determined by a clinician
(“Methods”). We applied this classifier to post-first visit samples, which
were unlabeled (N = 235) (“Methods”). We calculated a SPITS for each
sample based on the first 48 RNA-seq PCs (>90% variance explained)
(Supplementary Fig. 4b). Positive SPITS corresponded to lesional-like
(i.e., inflamed) samples, while negative SPITS corresponded to non-
lesional-like (i.e., less inflamed) samples—which presumably includes
non-lesional and resolving lesional samples. Based on 10-fold cross-
validation, we observed that SPITS was 95.00% (s.d. = 4.82%) accurate
at separating the baseline lesional and non-lesional skin samples
(Supplementary Fig. 4c).

Based on SPITS, we assigned the post-first visit samples to
lesional-like SPITS-positive or non-lesional-like SPITS-negative sta-
tuses. Following treatment with ustekinumab, a total of 111 biopsies
from resolving lesional skin areas demonstrated a negative SPITS score
that resembled the baseline non-lesional biopsies, while 60 post-
treatment biopsies from lesional areas demonstrated positive SPITS
scores, most likely reflecting incomplete response to ustekinumab or
clinical recurrence of psoriasis in the same location following usteki-
numab withdrawal. In contrast, almost all non-lesional samples
remained consistently negative atbaseline, during treatment, and after
withdrawal of study lead-in medication (Fig. 2a and Supplemen-
tary Fig. 5a).

To compare SPITS-based sample classification to non-psoriatic
samples, we focused on the top 30% of genesmost highly expressed in
non-psoriatic GTEx skin samples (N = 2195 genes)28. We found that
median expression of these genes was strongly correlated between
baseline non-lesional samples and SPITS-negative lesional samples
(R =0.99). Expression in GTEx was more strongly correlated with non-
lesional and SPITS-negative samples (GTEx and baseline non-lesional
R = 0.78, GTEx and lesional SPITS negative R =0.77) than with SPITS-
positive samples (R =0.67) (Supplementary Fig. 5b).

When comparing SPITS-positive to SPITS-negative samples, we
found 457 upregulated and 384 downregulated genes (FDR <0.05 and
|log2FC| > 1.5, “Methods,” Supplementary Fig. 6a, and Supplementary
Data 5). Many differentially expressed genes (DEGs) are classical mar-
kers of keratinocyte hyper-proliferation or were previously described
in psoriasis, suggesting that SPITS is capturing biologically relevant
phenomena. For example, VNN3 has higher expression in SPITS-
positive samples and is up-regulated in psoriasis and induced by
psoriatic-related pro-inflammatory Th1/Th17 cytokines (e.g., IL-17)55.
The SPITS-positive up-regulated keratin genes, KRT6A, KRT16, and
KRT17, are also known to be over-expressed in psoriasis, and are
important regulators of innate immunity in the epidermis56.

To further investigate the biological meaning of SPITS, we per-
formed gene ontology (GO) analysis with the SPITS DEGs. We found
that the upregulated genes in SPITS-positive samples are most highly
enriched in GO terms related to keratinocyte-related psoriasis
pathology such as keratinization (proportion of gene set = 0.36,
FDR = 4.05e−17) and keratinocyte differentiation (proportion of gene
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Fig. 2 | eQTL interactions with inferred inflammation status (i.e., SPITS). a At
baseline, SPITS clearly separates lesional (SPITS positive) and non-lesional (SPITS
negative) samples. With treatment, SPITS of lesional samples shift toward negative
over time. Points correspond to biopsy samples. b, c SPITS interactions with IL37,
BTC eQTL plotted with respect to rs2708954, rs13107535 genotype (left) and

LocusZoom95 regional association plots (right). The middle line in the box plots
show medians, and the hinges correspond to the 25th and 75th percentiles. The
whiskers extend the largest and smallest value no further than 1.5 × IQR from the
hinges (n = 375 samples). dMedian skin and whole blood expression of interacting
eGenes from GTEx consortium. Points correspond to interaction eGenes.
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set = 0.18, FDR = 3.39–14), or immune cell infiltration such as neu-
trophil chemotaxis (proportion of gene set = 0.19, FDR = 2.55e−11) and
granulocyte chemotaxis (proportion of gene set = 0.17, FDR = 1.33e−11,
Supplementary Fig. 6b). On the other hand, the genes upregulated in
SPITS-negative samples are enriched in intermediate filament-related
pathways, such as intermediate filament organization (proportion of
gene set = 0.33, FDR = 8.07e−12, Supplementary Fig. 6b).

Given the role of IL-17 in inducing a psoriatic-like response in
human keratinocytes (KC), we also calculated an IL-17 pathway score
for each sample using a previously reported list of genes induced by
IL-17 in human keratinocytes (“Methods”)57. The keratinocyte IL-17
pathway score is strongly correlated with SPITS (r = 0.92, p < 1e−26,
Supplementary Fig. 6c, d). We repeated the analysis with a curated
IL-17 signalingpathway gene set that encompasses genes from the IL-17
cytokine family and their corresponding receptors and noted that the
correlation between this systemic IL-17 pathway and SPITS is much
weaker (r =0.20, p = 1.18e−04, Supplementary Fig. 6c, d)58. These
results demonstrate that SPITS reflects a local, but not systemic,
response to IL-17 and other inflammatory factors in skin.

Defining dynamic eQTLs whose effects are modulated by skin
inflammation
Next, we identified dynamic eQTLs (i.e., eQTLsmodulated by different
contexts) with a statistical interaction model. For the 953 cis-eQTLs
identified in our data set, we examined whether inflammation status
(i.e., SPITS-positive vs SPITS-negative) alters the relationship between
genomic variation and gene expression (i.e., SPITS status–eQTL
interactions).

For the binary SPITS status interactionmodel, we compared its fit
to one without the interaction term using likelihood ratio test. Both
models included genotype and SPITS inflammation status as main
effects (to capture baseline eQTL effects and differential expression,
respectively), as well as the other covariates we used in our original
eQTL analysis (“Methods”). To evaluate whether including PCs would
be sufficient for correcting potential confounding factors such as age
or sex, we re-ran the interaction analysis including age and sex as fixed
effects. We found that including age and sex in addition to PCs has
almost no effect on the interaction betas (R = 1, p < 1e−15, average
change in nominal betas = 1.4%), suggesting the principal components
are capturing these known confounders (Supplementary Fig. 7a).
We also considered the possibility that the inclusion of expression
PCs might be reducing the power to detect interactions. To further
explore this, we repeated the SPITS status interaction analysis without
correcting for principal components 1 and 2, which are significantly
correlated with SPITS status (PC1-SPITS status R =0.64, p = 1.94e−45;
PC2-SPITS status R = 0.66, p = 2.17e−47). We found the betas for the
interaction term are highly correlated (R =0.99, p < 1e−15, Supple-
mentary Fig. 7b), and that including these PCs increased the number of
eQTLs discovered (90 at FDR <0.05 without PC1 and 2, versus 98 at
FDR <0.05 with PC1 and 2).

We observed a total of 98 interactions at FDR <0.05 when com-
paring SPITS positive to SPITS negative samples. We observed 116
interactions at a more permissive FDR<0.2 threshold (Supplementary
Data 6), Permuting SPITS status, we found the results to be robust at
both FDR <0.2 and FDR <0.05 (all permutation p <0.01 from 100
permutations). The eQTL interaction with local inflammation defined
by SPITSwere all significant whetherweconditioned on treatment arm
or not (Supplementary Data 6), suggesting that local inflammation
rather than systemic treatment was driving interaction effects.

We considered whether a less stringent p-value threshold for
original cis-eQTLs may have enabled us to identify more eQTL inter-
actions. Arguably, a Bonferroni corrected p < 6.69e−9 threshold is too
stringent since it does not account for LD within loci which would
reduce the effective number of tests being conducted. To explore
the effect of a more relaxed threshold, we ran a separate analysis

using a lowered threshold (p < 1e−7). Further, we explored skin
inflammation–eQTL interactions using a similarly relaxed threshold.
Lowering the threshold by more than 100-fold led to the discovery of
1266 significant eQTLs (N = 953 if Bonferroni p-value is applied), 145
SPITS interactions at FDR <0.20 (N = 116 if Bonferroni p-value is
applied) and 115 SPITS interactions at FDR <0.05 (N = 98 if Bonferroni
p-value is applied) (Supplementary Fig. 8a). This relaxation resulted in
only a moderate increase in signal with small effect sizes and larger
FDRs (Supplementary Fig. 8b). We therefore used the more con-
servative Bonferroni threshold to ensure that wewere confident in the
eQTL main effect before testing that effect for an interaction. We also
tested a continuous SPITS score, which detected fewer eQTL interac-
tions (88 interactions at FDR <0.05, 93 interactions at FDR<0.20). An
alternative strategy testing interactions with lesional versus non-
lesional labels as assigned at baseline resulted in even fewer eQTLs (39
eQTL interactions at FDR <0.5, 42 eQTL interactions at FDR <0.2).
These results suggested that local inflammation at the time of the
biopsy was more informative than the status of the skin during base-
line assessment. We thus chose to use the binary SPITS status-eQTL
interactions for subsequent analyses. We further subdivided SPITS
interactions into magnifiers (n = 51, FDR <0.2), where skin inflamma-
tion (SPITS-positive) increases the size of the eQTL effect, and damp-
eners (n = 65, FDR <0.2) where inflammation decreases the size of the
eQTL effect.

We also detected 98 significant IL-17 keratinocyte pathway score
interactions at FDR <0.2 (86 at FDR <0.05), among which 97 over-
lapped with SPITS interactions (Supplementary Data 6). In contrast,
the same analysis approach revealed no significant eQTL interactions
with treatment arm and found few interactions with PASI score at
FDR <0.05 (N = 2) or FDR <0.20 (N = 5) (Supplementary Data 6). The
number of PASI interactions remain the same after adjusting for SPITS
status, possibly suggesting that dynamic gene regulation is more
strongly connected to local skin inflammation, rather than global dis-
ease burden, as captured by PASI.

As an example of a SPITS-eQTL interaction, IL37 expression is
associated with rs2708954 (main effect beta = −0.77, p = 3.73e−10)
and this negative effect is significantly magnified in inflamed skin
samples (SPITS interaction beta = −0.79, FDR = 7.73e−7, Fig. 2b). The
beta in SPITS positive samples is the sum of the main effect and
interaction effect from the model with interaction term (beta =
−0.77 – 0.79 = −1.56). IL37 is an anti-inflammatory cytokine, and has
been shown to mitigate the inflammation in psoriasis experimental
models by suppressing proinflammatory cytokines59,60. Another
example is BTC, which belongs to the epidermal growth factor (EGF)
family. BTC expression is associated with rs13107535 (main effect
beta = −0.41, p = 2.86e−11), and the effect is dampened in inflamed
skin samples (interaction beta = 0.49, FDR = 2.46e−10, Fig. 2c). BTC
is reported to be downregulated in psoriatic lesions and has an
important role in skin morphogenesis and homeostasis61–64. Our
SPITS-eQTL interactions captured disease relevant signal whose
upstream regulation may play an important role in the development
or progression of psoriasis.

Understanding the role of cell type in dynamic eQTLs
We sought to understand whether these dynamic eQTLs were related
to specific cell types or cell states. Psoriatic lesions involve the infil-
tration and activation of haematopoietically derived immune cells
interacting with skin cells in the dermal and epidermal layers. We
initially hypothesized that, due to higher levels of immune cell infil-
tration and activation, the dynamic eQTLs might be related to
changes in immune cell state or activation rather than dermal and
epidermal cells.

To assess this hypothesis, we obtained median gene-level TPM by
tissue datasets from the GTEx consortium, and compared the median
expression of interacting eGenes in skin with that in whole blood28.
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Among the 112 (out of 116 total eGenes with FDR <0.2) interacting
eGenes present in GTEx data, the vast majority have a higher expres-
sion level in skin (n = 99, 90.83%) than in whole blood (n = 10, 9.18%)
(p < 0.001) (Fig. 2d). These results suggested that eQTL interactions
maybe predominantly related to changes in dermal and epidermal cell
states, possibly as a result of interactions with immune cells or cyto-
kines. We recognized however that GTEx skin and blood data capture
unperturbed skin cell states and CD45+ immune cells in a resting state.
Hence, it is critical to investigate this question in cells obtained from
skin tissue itself.

We examined expression of eQTL interaction genes using a
dataset of single cells obtained from skin, including psoriatic skin
lesions32. With this psoriatic single-cell data, we quantified the
expression levels of interacting eGenes in each cell type. Among the
eGenes that were present in the single-cell data (N = 84), we found that
some eGenes are expressed across cell types (e.g., RPL9, RPS26), while
some are more cell-type-specific (e.g., macrophage-specific SIGLEC12)
(Supplementary Fig. 9). Consistent with our findings in GTEx data, we
observed that the majority of the eGenes are maximally expressed in
dermal and epidermal cells (N = 62) including keratinocytes (N = 22),
melanocytes (N = 14) and fibroblasts (N = 11), while only 22 of 84 genes
were immune cell-specific (Fig. 3c).

Cell fraction deconvolution and eGene expression across
cell types
Given that our inflammation-interacting eGenes are mostly expressed
in dermal and epidermal cells, we hypothesized that some of our
observed interactions could reflect variability in cell type or cell state
proportions altered by inflammation status. To estimate these pro-
portions from bulk RNA-seq, we used CIBERSORTx65 to deconvolute
the relative proportions of 14 cell populations (7 immune, 7 dermal and
epidermal) (“Methods”). For this analysis, we used the previously
mentioned psoriatic single-cell dataset. In brief, for each cell type, we
sampled at most 1000 cells from the single-cell data32, trained the
model on these expression profiles, and inferred cell fractions in each
PAUSE trial bulk RNA-seq sample with a linear regression model65. We
observed 10/14 cell types are differentially abundant between SPITS-
positive and SPITS-negative samples by Wilcoxon rank sum test
(p < 0.001 for 9/10, p <0.05 for 10/10) (Fig. 3a). For example, SPITS-
positive samples contain higher proportions of keratinocytes (mean
percent proportion 38.71% in SPITS-positive vs 17.57% in SPITS-nega-
tive) and macrophages (3.05% in SPITS-positive vs 0.02% in SPITS-
negative), while SPITS negative samples have more fibroblasts (12.24%
in SPITS-positive vs 23.22% in SPITS-negative), pericytes (6.09% in
SPITS-positive vs 10.52% in SPITS-negative) and Langerhans cells
(4.07% in SPITS-positive vs 6.18% in SPITS-negative) (Fig. 3b). By con-
trast, estimated T cell proportions are not differentially abundant
(11.13% in SPITS-positive vs 10.93% in SPITS-negative) between the
SPITS positive and SPITSnegative samples. These differencesmight be
related to the useof immunosuppressive agents. Additionally, the bulk
RNAseq data comes from a punch biopsywhich cannot provide spatial
context of T cells residing in epidermis vs. dermis, nor can it provide
the functional status of T cells, which could be very different in SPITS-
positive vs. SPITS-negative samples.

Given the crucial roles ofmacrophages in skin inflammation and
wound healing3, we further explored the trajectory of macrophage
proportions before and after treatment. To do that, we split the
samples from first visit (before treatment) and after first visit (after
treatment) and compared the inferred relative abundance of mac-
rophages in SPITS positive negative and positive groups, respec-
tively. We observed that after treatment, there is a significant
decrease in macrophage abundance in both SPITS groups
(p value = 6.39e−3 in SPITS negative samples, p value < 1e−10 in
SPITS positive samples), while the change is more prominent in
SPITS positive samples (mean fraction drops by 3.36e−4 in SPITS

negative samples, by 1.15e−2 in SPITS positive samples, Supple-
mentary Fig. 10).

Although most major cell type proportions are altered by
inflammatory states, some cell types are more important in defining
inflammation status. To better understand the relative importance of
the cell types present in the bulk RNAseq, we fit logistic regression
models with SPITS status as the outcome and cell type proportions as
predictors (“Methods”). Using forward stepwise selection, we identi-
fied cell types associated with SPITS based on a decrease in deviance
(entry significance level = 0.05, “Methods”). Among all the cell types
included in the model with lowest deviance, the proportions of kera-
tinocytes lead to the highest decrease in deviance (76.89%) (Supple-
mentary Fig. 11a, b). Since the proportion of macrophages and
fibroblasts rank second and third respectively with regards to con-
tribution to univariate logistic regression model, they are also likely
informative in distinguishing the samples (Supplementary Fig. 11c).
With LDA, the proportions of KC, along with fibroblast and macro-
phage were excellent predictors in differentiating SPITS-positive and
SPITS-negative samples (area under the receiver-operator curve
[AUC] = 0.9828, Supplementary Fig. 11d).

As expected, the predicted cell type fractions suggested a shift in
cell populations between SPITS-positive and SPITS-negative samples.
We also found that the interacting eGenes were mostly expressed in
the same differentially abundant cells (e.g., keratinocyte, fibroblast,
melanocyte) between SPITS-positive and negative-samples (Fig. 3c).
We next assessed whether the eQTL interactions were also linked to
these cell type proportions, whichmight be the result of a higher level
of inflammation. We performed interaction analysis with three cell
types of largest predicted proportions: keratinocytes (mean percent
proportion = 25.07%), fibroblasts (19.33%) and T cells (11.00%). We
identified cell type–eQTL interactions and compared them with the
SPITS inflammation status interactions. In total, we found 103 kerati-
nocyte proportion-eQTL interactions, 65 fibroblast proportion-eQTL
interactions and 11 T cell proportion–eQTL interactions at FDR <0.20.
Among them, 94 keratinocyte interactions (91.26%), 58 fibroblast
interactions (89.23%) and 4 T cell interactions (36.36%) overlap with
the 116 SPITS inflammation status interactions (Supplementary Fig. 12).
This supports our initial hypothesis that interactions correlate with
variability in cell type proportions when SPITS status changes, and
again indicates the importance of the dermal and epidermal com-
partments in psoriasis.

Given that macrophages play a crucial role in managing skin
inflammation and promoting wound healing3, and that we reported
higher proportion of macrophages in SPITS-positive samples com-
pared to SPITS-negative, we further assessed interactions with mac-
rophage proportion. We found 71 interactions at FDR <0.05, and 82
interactions at FDR <0.20. Among them, 69/71 (97.2%) and 77/82
(93.90%) were overlapping with SPITS interactions, respectively.
Among the macrophage proportion-interacting eGenes, only one of
them, SIGLEC12, is highly expressed in macrophages (logFC = 4.76,
Fig. 3c). Many of these other eGenes may be occurring in non-
macrophage cell-types; thus, eQTL interactions with macrophage
proportion may be due to the proportion being a marker of
inflammation level.

Detecting Molecular Pathways underlying eQTL interactions
To unravel the molecular pathways underlying the SPITS interactions,
we first identified the functional pathways involving the eGenes. To do
that, we ranked the eGenes by the absolute value of interaction coef-
ficient, and performed GSEA using fgsea and MSigDB gene sets58,66–68.
Although none of the gene sets tested passed FDR <0.05 from 10,000
permutations, it is interesting to note that the eGenes overlap with
skin-related pathways like “formation of the cornified envelope” (per-
mutation p = 6.90e−03, normalized enrichment score = 1.73, Supple-
mentary Fig. 13) and “keratinization” (permutation p = 7.70e−03,
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Fig. 3 | Cell fraction deconvolution and eGene expression across cell types.
a CIBERSORTx65 predicted cell proportions in the samples. b Fractions of KC,
fibroblast and macrophage in SPITS positive and SPITS negative samples. The
middle line in the box plots show medians, and the hinges correspond to the 25th
and 75th percentiles. The whiskers extend the largest and smallest value no further
than 1.5 × IQR from the hinges (n = 375 samples). c The 84 eGenes with the highest

relative expression as identifiedby the log fold change of the expression against the
per-gene mean expression across the 14 cell types. LE lymphatic endothelium,
ILC_NK innate lymphoid cells and natural killer cells, DC dendritic cells, LC Lan-
gerhans cells, VE vascular endothelium, KC keratinocyte, APC antigen
presenting cells.
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normalized enrichment score = 1.72, Supplementary Fig. 13). We also
found that the NRF2 pathway (permutation p = 1.16e−02, enrichment
score = 1.71, Supplementary Fig. 13) overlaps with the interacting
eGenes GSTM3, CBR3, UGT2B7 and GSTT2 (Fig. 4a, b). NRF2 is a master
transcription factor regulating expression of antioxidative genes. It is
activated under oxidative stress and also plays a key role in repressing
inflammation69,70. Previous studies report that upon stimulation with
IL-17 in psoriasis mouse models, Nrf2 promoted keratinocyte pro-
liferation by up-regulating keratin genes71.

We went on to identify potential common regulatory elements
overlapping interacting eQTLs. We used HOMER72 to assess overlap
between transcription factor binding motifs and the eQTL interaction
SNPs. For the input sequences, we included the eSNPs (FDR <0.20)
and the SNPs in high linkage disequilibrium (LD, r2 > 0.8) within 500kB
window around the TSS using the EUR reference panel, and then
defined +/− 20 bp intervals around these SNPs44. We merged the
sequences into a non-overlapping set of intervals before runningmotif
enrichment analysis. We compared the target sequences to

Fig. 4 | Regional association plots and motif enrichment analysis. a Regional
eQTL associationplotsof rs7435274-UGT2B7(top) and rs881712-CBR3(bottom), two
eQTL interactions with eGenes overlappingwith NRF2 gene set.b SPITS interaction
with the UGT2B7(top), CBR3 (bottom) eQTLs plotted with respect to rs7435274,
rs881712 genotypes, respectively. The middle line in the box plots show medians,

and the hinges correspond to the 25th and 75th percentiles. The whiskers extend
the largest and smallest value no further than 1.5 × IQR from the hinges
(n = 375 samples).cTheAREmotifsdisruptedby interacting eQTLs. Arrows indicate
positions of themotif disruptedby eSNPs in strong LDwith the interaction eSNPs in
UGT2B7 (left), CBR3 (right) eQTLs.
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background sequences generated from SNPs matched to interaction
eSNPs byMAF, number of SNPs in LD, and gene density73. We observed
enrichment of ARE (antioxidant response element) motifs that NRF2
binds in response to oxidative stress (Fig. 4c, left motif enrichment:
p = 1e−7, right motif enrichment: p = 1e−2)74,75. Moreover, the SNPs
rs7442394 and rs2105749, which are both in high linkage dis-
equilibrium (r2 = 0.91 and r2 = 0.83, respectively) in EUR population
with the interaction eSNPs for UGT2B7 and CBR3, disrupt the ARE
motifs44 (Fig. 4c). Alongside the (non-significant) enrichment of inter-
acting eGenes in the NRF2 pathway, this finding indicates a potential
role of NRF2 in mediating interactions with inflammation state in
psoriasis.

LCE3C eQTL interaction colocalizes with psoriatic risk locus
As mentioned previously, we detected 6 colocalizations between our
eQTL variants and psoriatic variants. Among them, we reported a
posterior probability of 0.996 that skin eQTLs and psoriasis risk
alleles share a same casual variant at the LCE3C locus. Furthermore,
the eSNP rs1491377616 influencing LCE3C is in perfect LD (r2 = 1) with
the psoriasis-associated variant rs6677595 (Supplementary Data 4).
Indeed, the rs1491377616-LCE3C eQTL (main effect beta = −2.69,
p = 1.14e−22) has the most significant interaction with SPITS score,
and its effect is dramatically magnified (more than doubled) in skin
samples with more inflammation (interaction beta = −3.86, FDR =
1.59e−79, Fig. 5a, b). LCE3C expression is restricted to epidermis
(Fig. 3c), and is induced in both psoriatic and stimulated skin barrier
disruption76. Moreover, the LCE3C deletion allele is a widely repli-
cated psoriasis risk factor, possibly related to inappropriate skin
repair as a result of the deletion76–78. Consistent with previous find-
ings, we found increased levels of LCE3C in inflammatory skin biop-
sies (SPITS-positive), and the eQTL interaction analysis allows us to
demonstrate potential differential regulation of LCE3C in epidermal
cells, during inflammation, extending the mechanistic relationship
between LCE3C and psoriasis76.

Discussion
Randomized clinical trials, such as the PAUSE trial, provide a unique
opportunity to query the molecular basis of a disease. Genomic data
from clinical trials offer a well-controlled environment with high
internal and external validity. Specifically, the PAUSE study provided
the opportunity to explore cis-eQTLs, genetic variants that alter the
expression level of a nearby gene, across matched psoriatic lesional
and non-lesional skin. These interactions between eQTL and inflam-
mation status can illuminate gene regulatory mechanisms underlying
the switch from normal appearing skin to psoriatic lesional skin, or
alternatively reflect changes in cell states. With data from a controlled
clinical trial, we were able to separate out systemic effects, such as
medications, from local inflammatory effects.

This study is the first of its kind to examine the effect of SNPs on
expression in psoriatic skin in a clinical setting. While the role of
immune activation on eQTLs in immune cells is well-established, its
effect on tissue cell types is much less well understood. Our study
highlights the dynamic nature of gene regulation within the dermal
and epidermal compartments in disease. We found the eGenes whose
effects are modulated by disease-mediated inflammation (i.e., SPITS)
are more highly expressed in skin cells such as keratinocytes, fibro-
blasts, and melanocytes, compared to immune cells. Furthermore,
deconvolution analysis revealed that differences in epidermal and
dermal cell proportions, not immune cells, was associated with dif-
ferences between inflammatory and non-inflammatory samples. In the
chronic disease process of psoriasis, cytokines produced by T cells
interact with epidermal and dermal cells, which in response become T
cell co-activators, sustaining adaptive immunity3. Previous tran-
scriptomic studies of psoriasis reported that, in the mix of genes that
are differentially expressed in psoriasis lesions, most are specific to

keratinocyte (56% of upregulated DEG), epidermis (14% of down-
regulated DEGs) and dermis (4% of downregulated DEGs), while fewer
are found in immune cells (14% and 11% of upregulated DEGs are
explained by infiltration of T cells and macrophages, respectively)79.
Our results consistently point to more changes in gene regulation in
skin cell types compared to immune cell types in the context of
inflammation.

The role of immune cells, such as IL-17-producing T cells, is well-
established in the pathogenesis of psoriasis, and indeed some ther-
apeutic interventions target IL-17. In our study, a minority of identified
eQTL interactions could be attributed to immune cell populations.
However, by defining the keratinocyte IL-17 response pathway score of
each sample, we found 98 IL-17 pathway–eQTL interactions, in which
97 overlapped with SPITS–eQTL interactions. IL-17 is the major effec-
tor cytokine in the pathogenesis of psoriasis, and its primary targets
include keratinocytes80. Our results again show that IL-17 production
may lead to an inflamed environment that causes regulatory changes
in epidermal and dermal cells.

We alsoobserved few eQTLsmodulatedby the therapeutic agents
used in the treatment arms of the trial or global disease activity,
whether or not we controlled for local skin inflammation (i.e., SPITS),
suggesting that altered regulatory effects were largely driven by local
factors, rather than systemic ones. This ability to separate local and
systemic factorswasonly possible becauseof the clinical trial setting in
which this study was conducted.

Our results point to NRF2 as a potential mediator of many reg-
ulatory interactions with inflammation. Studies have reported the
important role of NRF2 both in immune responses and keratinocyte
proliferation. It is well established that NRF2 is activated under stress
conditions, and through different pathways, is able to exert cytopro-
tective effects and repress inflammation69. Conversely, recent studies
have also implicated NRF2 in the activation of the pentose phosphate
pathway and the proliferation of keratinocytes that might contribute
to psoriasis pathogenesis81. In mouse psoriasis models, Nrf2 was
reported to translocate to the nucleus in response to inflammatory
cytokines such as IL-17 and IL-22, and upregulate the expression of key
keratin genes in lesional epidermis, ultimately leading to keratinocyte
proliferation71. The role of NRF2 pathway in psoriasis, whether it
induces a cytoprotective mechanism or promotes keratinocyte
hyperproliferation remains to be seen. Future studies to examine the
NRF2 pathway in psoriasis pathogenesis may point to therapeutic
avenues for the disease.

We detected LCE3C as themost significant interaction eGene with
local skin inflammation (interaction beta = −3.86, FDR= 1.59e−79).
Studies have reported the association between deletion of LCE3C and
psoriasis susceptibility across different populations76,78,82. The gene is
proposed to play a role in skin barrier repair, possibly through its
antibacterial activity, and has increased expression in psoriatic lesions
and induced skin injury76,77,83. Our study consistently reported higher
LCE3C levels in inflamed skinbiopsies and found that the rs1491377616-
LCE3C eQTLeffect ismagnified in inflamed skin, suggestingdifferential
regulation of the gene in psoriatic lesions. In addition, eSNPS influen-
cing LCE3C expression colocalize with psoriasis variants, and the lead
eSNP rs1491377616 is in perfect LD with rs6677595, a psoriasis risk
allele. Our results not only point to a possible role for LCE3C in the
genetic risk of psoriasis, but also suggest local skin inflammation could
modify this pathway to contribute to psoriatic disease.

We also performed colocalization analysis between psoriatic skin
eQTLs andGWAS of other inflammatory skin diseases, like eczema and
scleroderma. This comparative approach allowed us to identify
potential shared causal variants between psoriatic skin eQTLs and
other skin diseases. For instance, we found that psoriatic skin eSNPs
and eczema risk loci colocalize at PGLYRP4, which has been linked to
eczema development in mouse models through Th17 activation51.
Similarly, we observed colocalization at the PDHB gene with
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Fig. 5 | LCE3C interaction and regional association plots. a SPITS-interactions
with LCE3C eQTL plotted with respect to rs1491377616 genotype (left) and SPITS
status of the sample (right). Themiddle line in the box plots showmedians, and the
hinges correspond to the 25th and 75thpercentiles. Thewhiskers extend the largest

and smallest value no further than 1.5 × IQR from the hinges (n = 375 samples).
b Regional association plots with respect to LCE3C locus, with P-value obtained
from previous psoriasis GWAS study19 (top), and eQTL association (bottom).
rs881712 and rs1491377616 are in perfect LD.
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scleroderma. The gene encodes for a subunit of pyruvate dehy-
drogenase, and the PDH enzyme was reported to be associated with
skin homeostasis in mice52. By examining colocalization of eQTLs
across different skin diseases, we may gain a more comprehensive
understanding of the genetic basis of these conditions and potentially
identify common pathways that underlie these conditions or that can
be targeted for therapeutic interventions. Our skin eQTL dataset thus
provides a valuable resource for identifying potentially causal variants
that are involved in the pathogenesis of inflammatory skin diseases.

One limitation to this study is that it is smaller than some of the
large-scale eQTL studies28,84, but is the first examining diseased skin
tissues obtained from a clinical trial. The relatively small size might
limit power to detect cis-eQTL main effects and interaction effects,
and the fact that the cohort is largely European ancestry limits our
ability to examine population-specific eQTL signals (Supplementary
Fig. 14). Our power was bolstered, though, by having repeat samples,
which reduces noise and enables detection of interactions36. More-
over, we employed a strict Bonferroni p-value threshold to suppress
Type I error, but we may have also excluded many true positive
signals that we would have been able to detect with decreased
stringency or increased sample size. We acknowledge that our
approach for eQTL discovery using a stringent Bonferroni corrected
p-value threshold may be conservative and might reduce our ability
to detect eQTLs with a modest effect. Consequently, this may reduce
the number of interactions we observe. However, given the challenge
of identifying interactions, we wanted to ensure that we were con-
fident in the eQTL effect before testing that effect for an interaction.
Additionally, all participants in the PAUSE study received immuno-
modulatory anti-IL-12, anti-IL-23 (ustekinumab), and the experi-
mental group also received anti-CTLA-4 (abatacept) treatment
during the trial. This context may have reduced our power to detect
regulatory differences in immune cells between inflammatory and
non-inflammatory samples, making it easier to detect the dermal and
epidermal effects we highlight.

Psoriasis is an immune-mediated disease, driven by T cells and
dendritic cells along with their associated cytokines and chemokines
as the key players in activating keratinocyte proliferation3,4,7. Studies to
understand the genetic basis of immune-mediated diseases have thus
often focused on blood samples and assayed immune cells like T cells
in the blood. However, these studies may be missing important gene
regulatory effects in the tissue. Our study is thefirst of its kind focusing
on eQTLs in lesional and non-lesional skin samples and may serve as
motivation for other studies in the future to include inflammatory
disease tissue samples.

Methods
Study design and ethical approval
The purpose of this study was to identify eQTLs in a cohort of
individuals with psoriasis participating in the ITN PAUSE clinical trial
(NCT01999868)37. The trial was described in detail by Harris et al. in
the previous clinical paper37. Briefly, 108 participants with moderate
to severe plaque psoriasis received ustekinumab at weeks 0 and 4
during the lead-in period. At 12 weeks, 91 patients who met the
psoriasis response eligibility criteria (≥75% improvement in Psoriasis
Activity and Severity Index [PASI]) were randomized 1:1 to blinded
treatment with ustekinumab or abatacept. 45 participants received
weekly subcutaneous abatacept from week 12 to week 39, while 46
participants continued to receive ustekinumab at week 16 and 28.
Each group received the corresponding placebo to preserve blind-
ing. Participants were followed for up to 88 weeks or until relapse
(defined as a 50% loss of the PASI improvement achieved at week 12).
A summary of participants included in this study is described in
the published paper and Supplementary Table 137. All participants
provided written informed consent. The trial was conducted in

compliance with the Declaration of Helsinki and was approved by
the institutional review boards at all of the investigational sites (US:
Dermatology Research Associates, Los Angeles, California; North-
western University,Chicago, Illinois; Tulane University School of
Medicine, New Orleans,Louisiana; University of Michigan, Ann
Arbor; The Rockefeller University, New York, New York; Wake Forest
University,Winston-Salem, North Carolina; CaseWestern University,
Cleveland, Ohio; and University of Utah, Salt Lake City; Canada: Kirk
Barber Research, Calgary, Alberta, and Innovaderm Research Inc,
Montreal, Quebec).

RNA-sequencing
Weobtained skin punchbiopsies froma representative active psoriasis
lesion and a non-lesional area, placed in RNAlater, and stored frozen at
−70 to −80 °C. We collected longitudinal biopsies repeatedly from the
same area of skin.We isolated total RNA using Qiagen kits. We assayed
samples with RNA Integrity Number (RIN) > 7 using RNA sequencing
(Illumina HiSeq4000, paired-end 100bp × 2 cycle, polyA selection of
total stranded RNA) at a sequencing depth of ~47 million reads per
sample. We aligned raw sequencing reads to the Ensembl GRCh38
v100 reference genome and quantified using kallisto v0.46.2. We
summarized transcripts per million (TPM) counts using the tximport
package to obtain gene-level TPM.We included genes with expression
>0.1 TPM and >6 counts across at least 20% of samples in RNA-seq and
eQTL analyses (27,100 genes).We excluded RNA-seq samples with RIN
score <7.

Genotyping
We genotyped 101 participants across 1,748,250 variants using the
Infinium Multi-Ethnic Global BeadChip from Illumina. We removed
5 samples due to high missingness (>10%) and filtered SNPs with call
rate <0.99, MAF <0.05, or Hardy–Weinberg Equilibrium (HWE) p < 1e
−6.We removed an additional 19 samplesdue to a lackof or low-quality
RNA-seq data from these individuals, leaving 77 patients for eQTL
analyses. Phasing and imputationwere conductedusing SHAPEIT85 and
minimac386. We included reference data to phase samples from 1000
Genomes due to the small sample size of the study. After imputation,
we removed SNPs with imputation quality (R2) < 0.99 and MAF <0.05,
leaving 2,074,125 SNPs for further analysis.

Colocalization analysis
For each of the significant cis-eQTL genes, we performed colocaliza-
tion analysis with publicly available GWAS studies using coloc (v.5.1)43.
We downloaded GWAS summary statistics of three diseases involving
skin inflammation from GWAS Catalog (https://www.ebi.ac.uk/gwas/),
including psoriasis (GCST005527), scleroderma (GCST009131) and
eczema (GCST90044763). To detect colocalizing signals between
eQTLs and GWAS variants, wematched the GWAS SNPs based on their
effect/risk alleles to both reference and altered alleles of eQTLs, and
used the posterior probability of sharing one common causal variant
(i.e., PP.H4) > 0.75.We noted that for all three diseases we had p-values
for each SNP. For scleroderma and eczema GWAS studies the effect
coefficients were not publicly available. So for the coloc analysis, we
calculated the probability of colocalization using coefficients and
variance for psoriasis, and p-values for eczema and scleroderma. To
assess linkage disequilibrium (LD) between the previously reported
psoriasis-associated variants andour eQTL leadSNPs,we calculated LD
r2 between them, and identified the eSNPs that have high LD (r2 > 0.5)
with psoriasis risk SNPs19.

Principal components analysis
The 2942 genes withmean expression and standard deviation >70% of
all genes (i.e., top 30% most variable genes) were included to conduct
principal component (PC) analysis using the prcomp function from the
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stats R package87. We used the top 20 expression PCs for downstream
analysis.

Skin Psoriatic Inflammation Transcriptional Score (SPITS)
SPITS is a continuous score capturing the range of inflammation
observed across lesional and non-lesional samples. It is defined by
centered linear discriminant score from linear discriminant analysis
(LDA); samples with positive SPITS values (i.e., positive linear dis-
criminant score, above LDA line) have the highest level of
inflammation (characteristic of lesional samples at baseline), and the
samples with negative values (i.e., negative linear discriminant score,
below LDA line) have low inflammation (characteristic of non-lesional
samples at baseline). We denoted samples with positive SPITS to be
SPITS positive, and samples with negative SPITS to be SPITS negative.
In order to fit the LDA model, we used the lda() function from
the MASS package88. The data were split into training set (first visit
samples N = 140) and unlabeled validation set (post-first visit samples
N = 235). The first 48 RNAseq PCs (accounting for >90% variance of the
data) were used as the predictor variables and the biopsy type
(lesional/non-lesional) as the response variable. The centered linear
discriminant score of each sample was defined as SPITS.

To evaluate the predictive power of keratinocyte, macrophage
and fibroblast proportions, we tested these cell types as predictors in
LDA. 200 samples were randomly selected for the training set, and the
rest were included in the test set. To evaluate the performance of the
classifier, we used the roc() function from the pROC package89.

Differential gene expression analysis
We used the R package edgeR90 to find the differentially expressed
genes between SPITS-positive and -negative samples (N = 375). Genes
with CPM> 1 in more than 20% of the samples were included for ana-
lysis.Differential expression is definedby FDR <0.05 and |log2FC| > 1.5.

Gene Ontology (GO) analysis
We performed pathway analysis of the SPITS differentially expressed
genes (DEGs) using clusterProfiler R package91. We accessed C5
ontology collection from MSigDB (v7.4.1) using R package msigdbr,
and only tested for Biological Process sets58,66,67. The proportion of
DEGs in a gene set and FDR were employed to assess the GO pathway
enrichment of DEGs.

Cis-eQTL search
After QC, our eQTL analysis included 375 RNA-seq samples across 77
individuals. We tested variant–gene pairs for an eQTL effect if the
variant was within 250 kb of the transcription start site (TSS) of the
nearby gene. In total, we tested 7,475,856 SNP–gene pairs after
removal of variants within the major histocompatibility complex
(MHC) region of chromosome 6. The followingmodel was used for the
initial eQTL search:

Ei,j =θ +βgeno � gj + κij,j
� �

+
X20

l = 1

βPCl
� PCi,l +

X3

m= 1

βgPCm
� gPCj,m +

X10

n = 1

βn � Sitej,n

ð1Þ

where Ei,j is the expression of gene for sample i from the individual j. θ
is an intercept term, and βgeno is the effect (eQTL) of the genotype of
individual j (gj). We included donor (ki) as a random effect, and 20
expression PCs (βPC l) and 3 genotyping PCs (βgPC_m) and 10 recruit-
ment sites asfixedeffects.We chose20PCs tomaximize thenumberof
eQTL genes detected while minimizing the number of principal com-
ponents we corrected for.

This model (1) was fit using the lmer() function from lme492.

To identify eQTL interactions, we tested the lead SNP for
each eGene, fitting two models (2) and (3) for each SNP–gene pair
tested36:

Ei,j =θ+βgeno � gj + κij,j
� �

+
X20

l = 1

βPCl
� PCi,l +

X3

m= 1

βgPCm
� gPCj,m

+
X10

n= 1

βn � Sitej,n +βvar � xi

ð2Þ

Ei,j =θ+βgeno � gj + κij,j
� �

+
X20

l = 1

βPCl
� PCi,l +

X3

m= 1

βgPCm
� gPCj,m

+
X10

n= 1

βn � Sitej,n +βvar � xi +βint � xi � gj

ð3Þ

with additional terms for the effect of the variable (xi) being tested
(βvar) and interaction effect (βint). We determined the significance of
the interaction effect with a likelihood ratio test comparing these two
models.

A significant interaction can either increase the original eQTL
effect (magnifier) or decrease the eQTL effect (dampener) as the
variable of interest (xi) changes. In order to classify a eQTL interaction
into magnifier or dampener, we multiplied the interaction z-score by
the sign of the original eQTL effect (βgeno). The interactions with an
adjusted z-score >0 are defined as magnifiers, and those with an
adjusted z-score <0 are dampeners.

IL-17 pathway score
Given the role of IL-17 in psoriasis disease activity, we calculated two
types of IL-17 pathway score for each sample by summing the
expression of IL-17 response genes. For the first, we usedWikiPathways
curated IL-17 signaling gene set that encompasses 32 genes from IL-17
cytokine family, their downstream receptors and response genes
(CEBPB, CEBPD, TRAF3IP2, IL17F, IL17RE, AKT1, IL17RA, IL17C, IL17B,
GSK3B, IKBKB, IL17A, JAK1, JAK2, NFKB1, NFKBIB, PIK3CA, IL17D, IL17RD,
IL17RB, MAPK1, MAPK3, RELA, IL25, SP1, STAT3, MAP3K7, TRAF3, TRAF6,
IL17RC, IKBKG, MAP3K14)58,93.

We also calculated a keratinocyte-specific IL-17 pathway score
with 23 IL-17 response genes (IL19, SPRR2C, C15orf48, SLC6A14,
S100A7A, DEFB4A, VNN3, CXCL8, IL6, CCL20, NES, S100A12, ALOX12B,
SERPINB4, SERPINA3, CFB, RHCG, LCN2, SAA2, PDZK1IP1, IL36G, S100A7,
IL17A) selected from a previous study, in which Miura et al. stimulated
human keratinocytes with IL-17A and profiled transcriptional respon-
ses to IL-17A stimulation57. Only differentially expressed genes with
fold change >5 were included.

GTEx tissue expression of interaction eGenes
To assess whether the SPITS-interaction eGenes are skin-expressed or
immune-expressed, we obtainedmedian gene-level TPMby tissue data
from Genotype-Tissue Expression Portal (GTEx)28. We then compared
expression of SPITS-interaction eGenes inwhole blood and in skin (sun
exposed and not sun exposed).

Single-cell expression of interaction eGenes
To identify the specific cell type that a SPITS-interaction eGene is
expressed in, we used data from a published single-cell study, which
includes 141,626 cells from3psoriatic samples32.We re-grouped the pre-
defined 41 cell states into 14 representative cell types, with seven types
from the stromal compartment (keratinocytes, Schwann cells, lymphatic
endothelium, melanocytes, pericytes, vascular endothelium, fibroblast),
and the rest from the immune compartment (ILC_NK, T cells, plasma
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cells, Langerhans cells, macrophages, dendritic cells, mast cells). We
then compared mean expression of SPITS–interaction eGenes within
each individual cell typewith its globalmean expression todetermine its
cell specificity.

Motif enrichment analysis
We used the HOMER software suite72 to look for enrichment of tran-
scription factor binding motifs in the 116 SPITS-eQTL interactions
(FDR < 0.2). We tested eQTL interactions for the lead SNP—the SNP
with the strongest main effect—for that eQTL, but the lead SNP is not
necessarily the functional SNP. Hence, we additionally considered all
SNPs in the cis window with an r2 ≥ 0.8 with the lead SNP in the 1000
Genomes Europeanpopulation44.We defined ourmotif searchwindow
as 20bp on either side of each SNP (i.e., 41 bp wide). To prevent false
enrichment due to overcounting of intersecting windows, we merged
them into non-overlapping windows prior to motif enrichment analy-
sis. HOMER reported the transcription factor motifs that were sig-
nificantly enriched in the sequences of interest, and the motifs were
plotted using the SeqLogo R library94.

Cellular deconvolution
We used CIBERSORTx65 to deconvolute cell fractions from the bulk
RNA-seq data. We generate the signature matrix from the psoriatic
single-cell data described above32. To avoid bias due to imbalanced
counts of different cell types in the single-cell reference, we randomly
sampled 1000 cells from each cell type; for the cell types that have
fewer than 1000 cells, we included all of them in the reference. Since
the reference profile used droplet-based single-cell sequencing, we
applied S-mode batch correction as suggested65. To run CIBERSORTx,
we set permutation to 500, and left all the other parameters as default.

Forward selection
We performed forward stepwise logistic regression to determine the
relative importance of the cell types in distinguishing SPITS of the
samples. To fit the model, we used SPITS status as the outcome vari-
able andpredicted cell typeproportions as predictor variables.Wefirst
built univariate logistic models that included only one cell type, and
selected the cell type with chi-square p value < 0.05 and the largest
decrease in deviance compared to the null model. After that, we fit
bivariate models conditioning on the selected variable, and again
selected the model with largest decrease in deviance. The process
continued until no variable had p <0.05.

Gene set enrichment analysis (GSEA)
Weperformed gene set enrichment analysis with the R package fgsea68

using the gsea function.MSigDBgene sets (v7.4.1)were importedusing
the package msigdbr58,66,67. p-values were obtained from 10,000
permutations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawgene expression data, sequencing data and summary statistics
are deposited in dbGaP (accession code: phs003395). Access to
dbGaP’s data requires meeting NIH criteria, including holding a posi-
tion equivalent to a tenure-track professor or senior scientist. To
request access, a formal request has to be submitted, including
research intent and policy adherence, for review by an institutional
Signing Official and NIH Data Access Committee(s) (DAC). One can
expect a response post DAC review, with timelines varying by dataset
and process. The clinical data of PAUSE trial is available on the ITN
TrialShare website (www.itntrialshare.org). GTEx eQTL (https://
storage.googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/all_

snp_gene_associations/Skin_Not_Sun_Exposed_Suprapubic.allpairs.txt.
gz) and median TPM data (https://storage.googleapis.com/gtex_
analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.
9_gene_median_tpm.gct.gz) were obtained from GTEx portal (gtex-
portal.org). The skin scRNAseq data was obtained from ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8142).
GWAS summary statisticsweredownloaded fromGWAScatalog (www.
ebi.ac.uk/gwas), including psoriasis (GCST005527), systemic scler-
oderma (GCST009131) and eczema (GCST90044763).

Code availability
Codes used for the analysis are publicly available at https://github.
com/immunogenomics/PAUSE_eQTL.
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