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RESISTIVITY OF EuBaz(CUl_yZny)30  x AS A FUNCTION OF TEMPERATURE, 
MAGNETIC FIELD, PRESSURE AND Zn CONCENTRATION 

H.A.  B O R G E S ,  G.L.  WELLS*,  S.-W. C H E O N G ,  R.S. KWOK,  J.D. T H O M P S O N ,  
Z. FISK and J.L. SMITH 
Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

S . B . OS ER OF F  
San Diego State University, San Diego, CA 92182, USA 

Received 31 July 1987 

We report electrical resistance and magnetoresistance measurements on EuBa2(Cu 1 yZnv)30 x under pressures to 
17kbar. With Zn substitution, T c is depressed rapidly ( - -19K/at .%Zn)  and there are qualitative changes in the 
temperature and field response of the resistance. Pressure drives the Zn-substituted samples toward undoped EuBa2Cu30 ~ 
behavior. Analysis of the temperature dependent resistance for y =0.05 and P = 0, together with Hall effect and 
thermopower data, suggests that the suppression of superconductivity may arise from weak three-dimensional localization 
promoted by Coulomb interactions. 

Understanding the mechanism for high super- 
conducting transition temperatures  T c in the 
oxide compounds RBa2Cu30 x is among top- 
ics most actively pursued currently. The observa- 
tion [1] of virtual independence of T c when R is a 
rare earth highlighted the importance of the 
C u - O  planes/chains for superconductivity. Re- 
cent studies of the oxygen content [2] and 3d 
element substitution for Cu [3] have reinforced 
this viewpoint. However ,  there is still no consen- 
sus on the actual processes leading to supercon- 
ducting pair formation and condensation. 

We have studied the influence of small 
amounts of Zn in EuBa2(CUl_yZny)3Ox, where 
y = 1, 3.5 and 5 at. %, through electrical resistivi- 
ty and magnetoresistance under pressures P <  
17 kbar and Hall effect and thermopower  mea- 
surements using conventional ac and /o r  dc tech- 
niques. As shown in fig. 1 the superconducting 
transition temperature  is depressed by Zn substi- 
tution at a rate dTJdy = - 1 9  K / a t . % ,  which is 
over five times larger than for Cr and Mn doping 
[4] and nearly three times larger than for Ni [5]. 

* Permanent address: Physical Review Letters, 1 Research 
Road, Ridge, NY 11961, USA. 
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Because Zn has a full 3d shell, this depression 
clearly is not related to magnetic pair-breaking 
effects. 

In fig. 2 we show the resistance R of 
EuBa2 (Cu0.99Zn0.01)30 x at four different 
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Fig. 1. Superconducting transition of EuBa2(Cu 1 yZny)30 ̀ 
as a function of Zn concentration. T~ was determined from 
the onset of diamagnetic response sensed by dc susceptibility 
measurements. 
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Fig. 2. Resis tance  o f  E u B a 2 ( C u o 9 9 Z n 0 0 1 ) 3 0  ~ at four 
pressures  as a funct ion  o f  t emperature .  The  inset compares  
the pressure  d e p e n d e n c e  o f  the mid-po int  transi t ion tempera-  
ture of  E u B a 2 C u 3 0  ~ and EuBa2(Cu0 ~gZn o (t])30~ • 

pressures as a function of  temperature.  In con- 
trast to R(T) for EuBa2Cu3Ox,  which is linear in 
T from above T~ to room temperature,  the resist- 
ance for x = 0.01 varies non-monotonica l ly  with 
decreasing temperature,  reaching a maximum 
near 8 0 K  before dropping to zero at ~ 4 5  K. 
With increasing pressure, the region of linear 
resistance extends to lower temperatures,  T c in- 
creases, AT~ (10 -90%)  sharpens, and at the 
highest pressures the maximum in R disappears. 
The inset of  fig. 2 shows that dTjdP is almost 
ten times larger for x = 0.01 than for x = 0 and 
for other RBa2C%O ~ samples previously studied 
[6]. 

For x = 0.05 (fig. 3), the zero  pressure resist- 
ance increases monotonical ly  with decreasing 
temperature,  and there is no sign of  supercon- 
ductivity above 4 K. (Results  for x = 0.035, not 
shown,  are intermediate between  x = 0.01 and 
0.05 both at ambient and elevated pressures.) 
With pressure the low temperature resistance 
upturn is suppressed and a maximum appears 
near 10 K under 16.1 kbar, possibly signaling the 
appearance of a superconducting transition. The 
application of  an 8 T magnetic  field H (see fig. 4) 
restores the resistance of  its temperature de- 
pendence  in zero field for P_-< l l . 6 k b a r .  The 
sequence of curves in fig. 4 shows that the large 
magnetic field effect on the resistance depends 
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F ig .  3. Res is tance R o f  E u B a ~ ( C u o ~ s Z n o o s ) ~ O "  a t  t h r e e  

pressures  versus  t emperature  T. The  inset is a plot of  I/R 
versus  T z:3 for this sample  at P = 0 kbar.  
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Fig.  4. R e s i s t a n c e  v e r s u s  t e m p e r a t u r e  f o r  E u B a 2 ( C u o 9 5  
Zn0 o5)O < at P = 16.1 kbar in various  appl ied magnet ic  fields 
H.  Af ter  cool ing  the sample  in zero  field, m e a s u r e m e n t s  
u p o n  wa rming  to 20 K were  taken  in the sequence:  (9 (open 
circles with dot) ,  8, 7, 6, 5, 0.5, 0.05, and 0 T. After  the last 
H = 0 run,  the sample  was  w a r m e d  to 40 K, then coo led  and 
rerun in zero  field (squares) .  

on the magnetic and thermal history of the sam- 
ple. Magnetoresistance curves obtained in a simi- 
lar manner for P = 11.6 kbar resemble those in 
fig. 4 for H > 0.05 T, while for P = 0 the resist- 
ance changes by less than 0.5% under an 8 T  
field at all temperatures T < 300 K, as is also the 
case for undoped E u B a 2 C u 3 0  x. 
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In an earlier study of 3d e lement  substitutions 
for Cu in YBa2(Cu0.09A0.i)306+a, Xiao [3] 
noted,  on the basis of a modera te  resistance 
upturn for T > To, that the conduction electrons 
appeared to become weakly localized before 
superconductivity set in and that  this was most  
pronounced for Zn. The inset of fig. 3 shows a 
plot of electrical conductance v e r s u s  T 2/3. The 
linear variation, 1 / R ~  T 2/3, found for 4 <  T <  
120 K, is consistent with the power  law depend- 
ence expected [7] for weak three-dimensional  
localization. If the observed behavior  is due to 
localization, it arises f rom more  than simple 
disorder because 5% Cr or Mn substitutions, 
while causing a resistance upturn at low tempera-  
tures before the onset of superconductivity,  do 
not have such a dramatic effect. 

Both the the rmopower  and Hall  coefficient, 
positive for y = 0, remain positive but change 
substantially, by factors of  nine and three respec- 
tively, upon substituting 5 a t .% Zn,  indicative of 
strong modifications to the Fermi surface charac- 
ter. Previously we have argued [8] for the pres- 
ence of strong Coulomb correlations in 
YBa2Cu30  x. The data of figs. 1-4  might suggest 
that Coulomb effects become increasingly impor-  
tant with Zn doping. Reasoning for a plausible 
argument  is as follows: Because Zn  has a full 
d-band,  substitution of Zn  reduces the d-density- 
of-states at Ev ,  believed to be important  for 
superconductivity [9], and consequently inhibits 
conduction screening of Coulomb interactions. 
The enhanced Coulomb effects in turn promote  
localization at the expense of superconductivity. 
On the other hand, pressure favors superconduc- 

tivity as shown in fig. 2. These arguments  are 
consistent with a large body of data,  in addition 
to those presented here,  on the C u - O  supercon- 
ductors. 

In summary,  Zn substitution for Cu in 
EuBa2(Cu 1 yZny)30  x results in a strong depres- 
sion of superconductivity that may arise from 
Coulomb-correlat ion assisted localization. The 
application of pressure tends to drive y > 0 sam- 
ples towards behaviors found in undoped 
EuBa2Cu30  x. 
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