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H I G H L I G H T S
� Hourly electricity usage was collected from 124 comparable apartments for 24 months.

� Households overestimate lighting use by 75% and underestimate HVAC usage by 29%.
� Households using the same appliances show substantial variations in electricity use.
� Plug load accounts for the largest share of electricity use at all hours of the day.
� Savings of 11% were achieved by replacing old refrigerators.
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This study uses high-frequency appliance-level electricity consumption data for 124 apartments over 24
months to provide a better understanding of appliance-level electricity consumption behavior. We
conduct our analysis in a standardized set of apartments with similar appliances, which allows us to
identify behavioral differences in electricity use. The Results show that households' estimations of ap-
pliance-level consumption are inaccurate and that they overestimate lighting use by 75% and under-
estimate plug-load use by 29%. We find that similar households using the same major appliances exhibit
substantial variation in appliance-level electricity consumption. For example, households in the 75th
percentile of HVAC usage use over four times as much electricity as a user in the 25th percentile.
Additionally, we show that behavior accounts for 25–58% of this variation. Lastly, we find that replacing
the existing refrigerator with a more energy-efficient model leads to overall energy savings of
approximately 11%. This is equivalent to results from behavioral interventions targeting all appliances but
might not be as cost effective. Our findings have important implications for behavior-based energy
conservation policies.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Electricity generation accounts for over 40% of the carbon di-
oxide emitted by the United States, with residential and com-
mercial buildings collectively accounting for over two-thirds of
total U.S. energy consumption (EIA, 2014; EPA, 2013). Recent stu-
dies estimate that behavioral changes can reduce residential
en),
W.J. Kaiser),

l., What can we learn from
ttp://dx.doi.org/10.1016/j.en
energy consumption by about 7.4% (Delmas et al., 2013). Providing
more detailed feedback to consumers about their energy usage at
the appliance level can potentially encourage such behavioral
changes (Ehrhardt-Martinez et al., 2010; Fischer, 2008; Neenan
et al., 2009). However, currently, the majority of residents in the
United States and around the world do not receive such feedback.
Consumers' electricity bills report total consumption, rather than
consumption by each appliance, and do not provide information
about which appliances offer the consumer the highest potential
for energy savings. Kempton and Layne (1994) analogize a
household's electricity bill to getting a grocery-shopping receipt
each month without knowing how much each good contributed to
the total. The planned deployment of more than 65 million digital
electricity meters by 2015 (Edison Foundation, 2012) will allow
high-frequency appliance-level energy metering? Results from a
pol.2014.11.021i
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2 University Village apartments are rented with the following appliances: re-
frigerator, dishwasher, lights, microwave, and heating and cooling. We could not
control for additional appliances installed by the participants. These could include
appliances such as toasters, rice cookers, fans, space heaters, humidifiers/dehu-
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utilities to provide a wealth of new information to more than half
of the nation's electricity accounts, unlocking new conservation
potential (Armel et al., 2013). While this new information could
help consumers make better decisions about their appliance use,
little is known about energy consumption patterns by appliance
and the behavioral component of appliance energy use.

In this paper, high-frequency appliance-level electricity con-
sumption data was collected from 124 apartments over 24 months
to answer the following questions: Are consumers cognizant of
their electricity usage across different appliances? Are there im-
portant differences in the use of the same appliances across
households and what is the behavioral component of appliance
energy use? Which individual appliances are contributing to peak
demand usage? How do the savings from installing new appli-
ances compare with the savings from behavioral changes? The
answers to these questions have important implications for the
design of more effective policies to encourage energy conservation
behavior.

1.2. Related work

There is a growing interest in reducing energy consumption
and the associated greenhouse gas emissions in every sector of the
economy. According to the International Energy Agency, the con-
tinuing demand for newer appliances with improved functionality
and more power is leading to an increase in electricity consump-
tion even though appliances are becoming more energy efficient.1

This increase in energy consumption warrants a detailed under-
standing of the residential sector's consumption characteristics to
prepare for and help guide the sector's energy consumption.

Studies of the effect of different types of energy feedback on
energy savings indicate that information on real-time appliance-
level energy consumption data has the potential to empower
consumers to effectively manage their household energy con-
sumption and encourage conservation (Delmas and Lessem, 2014;
Ehrhardt-Martinez et al., 2010; Neenan et al., 2009).

The current study goes beyond previous work analyzing appli-
ance-level consumption in five ways. First, scholars have argued
that households are unaware of how much electricity is used by
specific appliances and the potential for energy savings from each
appliance (Attari et al., 2010). However, so far, the evidence pre-
sented is mostly based on surveys and expert recommendations –

not on observed household electricity usage. This study compares
each household's actual electricity usage with the estimated usage
they stated at the beginning of the study. This allows us to precisely
evaluate households' knowledge of energy use for each appliance.

Second, studies that have shown variation in usage across
households focus on total usage or on usage in a particular subset
of appliances. For example, Lutzenhiser (1993) notes that even in
energy consumption studies that use nearly identical units, elec-
tricity usage can vary as much as 200–300% but did not differ-
entiate among appliances. Other appliance studies include the
research by Wood and Newborough (2003), who focused mainly
on cooking appliances, Coleman et al. (2012), Rosen and Meier
(1999, 2000), and Rosen et al. (2001), who focused on entertain-
ment appliances, and Isaacs et al. (2010), who studied space
heating. In contrast, our study includes a broad set of appliances
and end uses that are found in most homes. We also use a study
site that consists of apartments with little variation in design and
identical major appliances, something that most previous studies
were unable to provide (Parker, 2003; Pratt et al., 1993). Ad-
ditionally, since all the apartments are in the same complex, our
1 https://www.iea.org/Textbase/npsum/Gigawatts2009SUM.pdf. Accessed Oc-
tober 29, 2014.

Please cite this article as: Chen, V.L., et al., What can we learn from
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results are not affected by variations in weather (Hart and de Dear,
2004).

Third, recent studies by de Almeida et al. (2011) and Saldanha
and Beausoleil-Morrison (2012) highlight the growing share of
non-HVAC sources in electricity consumption. However, neither
study was conducted in the United States and both had other
shortcomings: de Almeida et al. (2011) had a small sample size and
Saldanha and Beausoleil-Morrison (2012) used a non-standard set
of appliances across countries. Using a large sample size with a
common set of appliances across households, this study assesses
lighting and plug load usage during peak demand hours and
compares electricity usages for appliances throughout the day.

Fourth, previous studies have attempted to estimate the var-
iation in appliance usage across household types (Bladh and
Krantz, 2008; Pratt et al., 1993); however, they were unable to do
this for a standardized set of major appliances. The study site used
here allows an identical set of major appliances to be compared
across households in apartments with little variation in design.
Finally, this is the first study that uses real-world observations to
estimate energy savings from the installation of a new appliance;
previous research relied on simulation techniques to estimate
energy savings (de Almeida et al., 2011).
2. Methods

2.1. Field site

The field experiment site, University Village, is an apartment
complex for graduate student families. It comprises two sites with
1102 one-, two-, and three-bedroom rental apartment units. Of these,
124 apartments were occupied by residents who agreed to participate
in our experiment, also known as the ENGAGE project, and were
equipped with an electricity metering system that allows electricity
usage to be recorded in real time. During the study period, some
participants moved out of the apartment complex and the new oc-
cupants of their apartments agreed to participate in the ENGAGE
study. This led to a sample of 137 unique households. Each apartment
is equipped with heating and cooling systems and a full kitchen in-
cluding a refrigerator, microwave, stove, dishwasher, and garbage
disposal. Except for variations in size and floor plan, apartments are
standardized with the same major appliances and amenities.2 This
consistency ensures that variation in electricity usage results from
household behaviors and lifestyles, not differences in apartment or
appliance features. Furthermore, circuits in University Village are fairly
standardized with only minor variations which allowed for a hard-
ware installation kit that would accommodate all of the circuit breaker
panels without any hardware reconfiguration.

The electricity usage in the ENGAGE sample is comparable to
similar households across California based on information from a
nationally representative survey of the share of household elec-
tricity usage by appliance. Electricity usage for the current sample
was compared with data from the 2009 Residential Energy Con-
sumption Survey (RECS) administered by the United States Energy
Information Administration (EIA). To ensure that the comparisons
are meaningful, the RECS data was reduced to a subset of house-
holds that were similar to households in this study.3 Since the
midifiers, etc. Variations in these types of appliances will lead to differences in the
other kitchen and plug load categories across households.

3 The sample includes California households that lived in apartment complexes
with more than five units, are renters, have a bachelor's degree or higher, have two

high-frequency appliance-level energy metering? Results from a
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Table 1
Shares of total electricity usage.

ENGAGE RECS

Variable Mean S.D Variable Mean S.D p-Value

Heating/cooling 18.14 10.90 Heating/cooling 18.83 16.08 0.61
Refrigerator 24.93 10.50 Refrigerator 18.25 7.26 0.00
Lighting 14.45 9.43 All othera 62.91 14.92 0.00
Plug load 30.90 12.90
Dishwasher 2.72 2.28
Other kitchen 8.86 6.76

Notes: The average share for each appliance in the ENGAGE sample was calculated
by finding the daily share of electricity for each appliance for each household in the
sample. These daily shares were then averaged for each household providing a total
of 137 averages for each end use. The shares for the RECS dataset are based on the
frequency weighted totals that were provided in the 2009 RECS dataset for the
subset of respondents that are described in footnote 3.

a This category is compared to the sum of lighting, plug load, dishwasher, and
other kitchen in the ENGAGE dataset.

Fig. 1. Engage system.

5 Detailed electricity usage and apartment and household characteristics could
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RECS does not provide the same level of granularity as the data
collected here, only heating and cooling, refrigerator, and “all
other” categories can be compared. The average shares of elec-
tricity for each appliance in the sample and the corresponding
share based on the RECS data are shown in Table 1. In the
ENGAGE sample, heating and cooling accounts for 18.14% of total
electricity usage and the refrigerator accounts for 24.93%. Ac-
cording to the RECS data, California residents use 18.83% of total
electricity for heating and cooling and 18.25% for the refrigerator.
A t-test shows that the ENGAGE sample is similar to the RECS
sample of California households with respect to the share of
electricity used by HVAC. A t-test rejects the hypothesis that the
ENGAGE sample is similar to the RECS sample of California
households with respect to the refrigerator and “other” categories.
While the shares of electricity between these two samples are
statistically different, the differences are quite small (6–7 per-
centage points).

To compare the total monthly electricity usage of the ENGAGE
sample to a larger California population, we used data from the
California Energy Commission Residential Appliance Saturation
Study (RASS) that estimated energy consumption for 27 electricity
end uses in 2009.4 According to this survey, the average California
household living in a multi-family apartment complex with more
than five units consumes 309 kWh of electricity per month. The
average household in the current sample uses 230 kWh per
month, about 25% less than the California average. This lower
consumption is not surprising since the University Village apart-
ment units were built more recently (1994) than most California
units.

The electricity usage of the ENGAGE sample of 137 volunteer
households was compared to the rest of University Village to see
how representative the self-selected sample is of the larger
apartment community. Since there is a concern that households
who agreed to participate in the energy study are systematically
different than those who did not agree to participate, we com-
pared the electricity usage for those participating in the study with
all of the other households at the study site using data from the
outdoor electricity meters. The average daily usage for the self-
selected units is 7.90 kWh and the daily average for the rest of
(footnote continued)
to five occupants living in the apartment, and are in apartments that range from
595 to 1035 square feet.

4 Website: http://www.energy.ca.gov/appliances/rass/. Accessed May 30, 2014.

Please cite this article as: Chen, V.L., et al., What can we learn from
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University Village is 8.71 kWh. A t-test for the difference in
averages for the study sample compared to the rest of the
households fails to reject the hypothesis that the averages are the
same with a p-value of 0.18. This shows that the study sample is
similar with respect to electricity usage to other households at the
experimental site who chose not to participate in the study.5

2.2. System design and dashboard

Since the original metering system at University Village did not
provide detailed information about electricity usage, an end-to-
end system architecture was designed to measure real-time, ap-
pliance-level data and provide feedback to households. Appliance-
level electricity usage was measured at the circuit breaker panel in
each apartment, through which power is fed to various loads. By
measuring the current and voltage on each circuit, it was possible
to compute energy consumption for each circuit (lights, HVAC,
plug load, lighting, dishwasher, refrigerator, other kitchen).6 These
measurements were made using a commercial energy metering
device that was installed inside the electrical panel. The meter
transmitted data wirelessly to a gateway device, located elsewhere
inside the apartment, which performed further data processing
and then transmitted the data to the ENGAGE server. The elements
of the ENGAGE energy metering system are displayed in Fig. 1 and
described next.

2.2.1. Electrical system
University Village uses a 208/120 V 3-phase electrical service.

Each apartment receives two legs of this system, which will be
referred to as phase A and phase B. Each apartment at University
Village has its own electrical panel through which power is routed
to various loads. Many of these loads are powered by dedicated
circuits. For example, recessed lights in the kitchen and bathrooms
are powered by dedicated lighting circuits. Thus, it is convenient to
measure electricity consumption from an electrical panel and with
high granularity. However, all wall outlets for the apartments are
fed by one or two circuits so it is not possible to isolate power
consumption for plug-in devices.
not be collected from those that did not participate in the experiment. Because of
this limitation, we are unable to make detailed comparisons between the self-se-
lected sample and the rest of University Village.

6 Plug load included all appliance plugged into the wall such as TV, computer,
etc. Other kitchen included microwave, sink garbage disposal, and appliances
plugged in the kitchen such as toaster or rice cooker.

high-frequency appliance-level energy metering? Results from a
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7 This time period was chosen so that there would be a sufficient amount of
time to determine each household's electricity consumption behavior and also to
allow for variation in temperature that will affect how a household uses particular
appliances. While this paper does not discuss the results from the information
strategies that were used in the ENGAGE project, it is important to mention that
during this time period some participants were part of a treatment that did lead to
changes in their electricity usage. Results from the time period used in this study
were compared to those that use data that was collected before any treatments
were used and no significant differences were found. Because of turnover in the
apartments, two full years of data were not collected for everyone who participated
in the study.

8 To avoid problems with multicollinearity, the number of bedrooms is not
included in the regressions that follow. All one-bedroom apartments are 595
square feet and all 3 bedrooms are 1035 square feet.
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Electrical circuits in University Village are fairly standardized
with only minor variations. For example, the heating and cooling
system is usually powered by four circuits but sometimes three
circuits, the refrigerator and microwave are always each on dedi-
cated circuits, etc. This allowed us to design and install a hardware
installation kit that would accommodate all of the circuit breaker
panels without any hardware reconfiguration. Although circuit
types were fairly consistent (since refrigerator, HVAC, dishwasher,
etc. were standard across apartments), there was a lack of con-
sistency in circuit configurations. For example, the refrigerator
might be the first circuit on phase A in one apartment while it
might be the fifth circuit on phase B in a different apartment. It
was therefore necessary to record each circuit's configuration and
store it in the database for use in appliance load calculations. Data
processing is described in the Appendix.

2.2.2. Hardware
The hardware consists of energy meters for measuring energy

consumption and a wireless gateway for data transfer to our
backend system. We used a commercial energy metering device
which provides sensor inputs for measuring up to seven circuits
individually. Two meters were used to fully instrument the elec-
trical panel because the buildings use a two-phase electrical ser-
vice and the meters are designed only for single-phase measure-
ment. The energy meter uses personal area network (PAN) radios
(called XBee radios) to enable wireless communication between
the energy meters and the gateway. The gateway is an Asus 520-
gU wireless router which was modified to interface with an XBee
radio on its serial port for communicating with the energy meters.
The gateway uses a customized OpenWRT operating system with
library support for features like USB flash memory and time-based
job scheduling utilities. Additional software modules were devel-
oped to enable data processing and data transfer, as well as to
support remote device management.

2.2.3. Software
On the gateway, a software program (known as a daemon) was

developed to manage reading and local processing of the meter
data as well as uploading data to the server. The program is exe-
cuted via a boot script to enable automatic recovery in the event of
a hard reset. A status program is also executed periodically using a
job scheduling utility to ensure that the daemon process is run-
ning. If a fault is detected, the status check program issues a kill
signal or the process may be killed forcefully, after which the
daemon is restarted. The daemon is also responsible for ensuring
reliable upload in the event of a network failure, server processing
delay, or server crash.

Due to the distributed and remote nature of energy monitoring,
software for the gateways and server was designed to facilitate
system management. Data reliability is critical given the time and
cost of deployment and it is necessary to detect failures and re-
spond as quickly as possible. Since the gateways are installed as
clients on the residents' own routers and sit behind a network
address translation (NAT) wall, they are not directly accessible. To
circumvent this limitation, a virtual private network (VPN) was set
up to allow remote access to the gateways from the ENGAGE ser-
ver. Like the processing daemon, a VPN client on the gateway is
executed using a boot script and a status check script ensures that
the VPN connection is maintained.

Using the VPN, the server may be programmed to perform any
number of status checks remotely. As with any software devel-
opment, bugs can be discovered even after release; the gateway
software was no different. A script was developed to use the VPN
IP addresses of the gateways to remotely check the version of the
processing daemon and update to the latest version if a MD5
checksum mismatch was detected.
Please cite this article as: Chen, V.L., et al., What can we learn from
field experiment. Energy Policy (2014), http://dx.doi.org/10.1016/j.en
System status could also be determined by analyzing the data
upload history and an administrative dashboard was developed to
provide these analytics. This included a summary of hourly sample
counts for each apartment as well as VPN IP address and all
hardware ID numbers to facilitate debugging and repair. These
administrative tools were essential for effective system manage-
ment given the size of the deployment.

2.2.4. Dashboard
Information feedback was implemented using individualized

web dashboards and weekly email reports. The dashboard was
designed to inform the residents about various aspects of their
energy consumption using different graphical elements and pro-
vided them tips on how to reduce their energy consumption.
Weekly summaries of total energy usage and appliance-level en-
ergy breakdowns with comparison to a reference group were
provided. Daily total energy for the past four weeks, hourly total
energy for the past day, and real-time total power consumption
were also provided. This information is structured hierarchically
such that the weekly summary is the top-level information and
the other information is easily accessible for users who wish to
drill down and learn more. Each graphical element also provides
some level of interactivity so that users can get more details if they
wish. The weekly email report provides the same weekly summary
as the dashboard and also serves as a reminder to the residents
about their participation in the study and about accessing the
dashboard.
2.3. Data

Hourly electricity usage data was collected from January 1, 2012
to December 31, 2013 from 124 apartments that accounts for 137
unique households.7 Energy data for each monitored end use was
recorded along with basic demographic information so that dif-
ferences in usage caused by variation in household characteristics
could be accounted for. Summary statistics for each monitored end
use and demographics are shown in Table 2. The average head of
household is 31 years old, approximately 36% of households have
children, and 9% of the households had someone who was a
member of an environmental organization. The average apartment
is 863 square feet, 61% of the apartments have two bedrooms, 75%
of the apartments are on the second or third floor, and about 57%
face south.8 The average household used 7.58 kWh of electricity
per day with the majority of this coming from HVAC (1.77 kWh),
plug load (2.42 kWh), and the refrigerator (1.43 kWh). The data
shows that a user in the 75th percentile uses nearly twice as much
electricity as a user in the 25th percentile. Variation in each end
use is discussed in the next section.
high-frequency appliance-level energy metering? Results from a
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Table 2
Summary statistics for electricity usage and household characteristics.

Variable Mean Std. Dev. Min Max 25th 75th

Average daily electricity usage
Total 7.58 5.80 0 91.96 4.98 9.11
Heating/cooling 1.77 2.91 0 29.97 0.61 2.54
Lighting 1.10 1.67 0 31.18 0.53 1.24
Plug load 2.42 3.48 0 82.59 1.20 2.68
Refrigerator 1.43 0.76 0 4.79 1.12 1.88
Dishwasher 0.20 0.30 0 2.57 0.07 0.24
Other kitchen 0.66 1.03 0 22.66 0.30 0.77

Apartment characteristics & demographics
Age 31.09 4.28 20 47
Has children 0.36 0.48 0 1
Total occupants 2.47 0.80 2 6
Member of NGO 0.09 0.28 0 1
SquFt 862.77 103.44 595 1035
Two bedrooms 0.61 0.49 0 1
Second floor 0.36 0.48 0 1
Third floor 0.39 0.49 0 1
South facing 0.57 0.50 0 1

Notes: Average electricity usage is for all households for the entire two years data was
collected. Demographic data is for the 137 households that are included in the sample.

Table 3
Comparison of actual and predicted shares of electricity usage.

Category Estimated Actual Correct Correlation R2

Heating/cooling 26.72 18.14 6 0.39 0.152
Plug load 48.03 67.42 2 0.03 0.001
Lighting 25.25 14.45 6 �0.01 0.000

Notes: The actual shares are slightly different than the shares in Table 1 because not all
participants responded to the question concerning their estimated electricity usage. Of
the 137 households in the sample, 132 responded to this question. A correct guess
means the household's estimated share electricity consumption fell within the 95%
confidence interval based on their actual shares of electricity consumption. The R2

value is from a regression of the actual share of electricity on the predicted share that
was stated in the survey administered at the beginning of the study.
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3. Results

3.1. Predicted vs. actual electricity usage

Households need to know how much electricity is being used
for specific end uses in order to take effective steps toward redu-
cing their electricity usage (Fischer, 2008). To test this knowledge,
we compared each household's own electricity usage estimate
with their actual measured appliance usage for three major cate-
gories. Each household's estimate was reveled through a survey
conducted at the beginning of the study. The question on the
survey asked, “What percentage of your apartment's electricity
usage do you anticipate coming from the following sources?” The
three sources listed were overhead lighting, heating and cooling,
and items plugged into electric outlets (TV, laptop, refrigerator,
etc.). For each household in the sample, the daily share of elec-
tricity used for each of these three categories was calculated using
their actual electricity usage. These values were then averaged and
a 95% confidence interval was constructed for each household. If
the estimated share fell within the 95% confidence interval, the
household was credited for correctly estimating the share of
electricity in that category. The actual versus predicted electricity
usage is summarized in Table 3 and shows that very few house-
holds correctly estimated appliance usage. Of the 132 households
in the sample that completed this question, only six correctly es-
timated the share of HVAC, six correctly estimated the share of
Please cite this article as: Chen, V.L., et al., What can we learn from
field experiment. Energy Policy (2014), http://dx.doi.org/10.1016/j.en
lighting, and two correctly estimated the share of electricity used
by items plugged into electrical outlets. More importantly, no
household estimated more than one category correctly.

Columns 2 and 3 of Table 3 show that the typical household
overestimated the share of electricity used by lighting and HVAC and
underestimated the share used by plug-in devices. The fifth column of
Table 3 shows the correlation between the actual and estimated shares
for each category. For lighting and plug load, estimated and actual
electricity usage are uncorrelated (p-values of 0.94 and 0.72, respec-
tively). For HVAC, there is a positive and statistically significant cor-
relation between actual and predicted usage even though the ob-
served values are much different than each household predicted. This
result, which is consistent with Attari et al. (2010), reinforces the point
that households are unaware of the distribution of electricity usage
across these common categories.

3.2. Variation in usage by appliance

We were able to assess differences in electricity usage by ap-
pliance due to differences in behavior across households because
all the major appliances at the study site are standardized (i.e.,
each apartment has the same appliances) and the characteristics of
each apartment are known. Indeed, household characteristics such
as work schedules and environmental consciousness could influ-
ence howmuch electricity is consumed for specific appliances. The
distribution of average daily electricity usage for each of the 137
households in the sample for each metered end use is shown in
Fig. 2. The data reveals important differences in usage by appli-
ance. Interestingly, the distribution for refrigerator usage is ap-
proximately normal while all of the other end uses are positively
skewed. The lower skewness in refrigerator electricity usage can
be explained by the fact that once the refrigerator is plugged in,
there are few behavioral actions a household can take that will
lead to drastic changes in electricity usage (Ueno et al., 2006;
Wood and Newborough, 2003). Each of the other end uses de-
pends heavily on the household's behavior (how often they are
home, how many children are in the apartment, etc.) and can re-
flect preferences for each end use. The last two columns of Table 2
compared the 25th and 75th percentiles for each appliance and
reported large differences. To understand whether such large
variations in energy usage were primarily driven by the differ-
ences in household characteristics, we examined the sample of
households that live in two-bedroom apartments and have chil-
dren. While the results are not shown here, they are very similar
with differences in electricity usage from 200% to 300% still found
for dishwasher and heating and cooling, respectively. These large
differences are discussed next.

Results from three separate regressions that determine the
driving factors behind the large differences in electricity usage are
shown in Table 4. The first specification attempts to explain the
variation in electricity usage using only observable apartment
characteristics. As shown in Table 4a, observable characteristics
explain only 6–16% of the variation in electricity usage across
households. The next specification provided in Table 4b adds ob-
servable household demographics but these do not add ex-
planatory power with little change to the R2. This suggests that the
main drivers in variation in electricity usage across households are
unobservable apartment and household characteristics. To test this
hypothesis, the last specification, provided in Table 4c, includes
household fixed effects to control for unobservable time-invariant
apartment and household characteristics. In this specification, the
unobservable apartment and household characteristics explain an
additional 25–58% of the variation in electricity usage across
households. The largest increase are for lighting and dishwasher
usage; two end uses that have a large behavioral component.
These results highlight the importance of accounting for
high-frequency appliance-level energy metering? Results from a
pol.2014.11.021i
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Fig. 2. Distributions of daily average electricity usage.

9 Each of the other end uses were plotted by season and showed little varia-
tion. Plug load was slightly higher in the winter, which may indicate that residents
were using space heaters instead of HVAC for heating.

10 These peak times are slightly different than those reported for similar areas
in California in Herter et al. (2007) which show electricity usage peaking around
8:00 a.m. and 9:00 p.m. and at its minimums around 5 a.m. and 3 p.m. These small
differences in critical times are likely due to the schedules of graduate students
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behavioral differences when comparing electricity usage across
households in similar housing units.

3.3. Time- and appliance-specific usage

Knowing how much electricity is being used for each end use is
important, but time-specific usage is also critical for utilities de-
signing grid management systems. The data generated in this
study allows for the determination of peak demand hours to
identify which appliances are the largest contributors to peak
usage. Variations in electricity usage and temperature by season
are presented in Fig. 3. As expected, electricity usage varies
throughout the day with household's schedule, and usage varies
by season due to changes in the weather (Hart and de Dear, 2004).
Please cite this article as: Chen, V.L., et al., What can we learn from
field experiment. Energy Policy (2014), http://dx.doi.org/10.1016/j.en
Total electricity usage is consistent in the early morning hours
across the four seasons with noticeable differences after 10 a.m.
for the winter and summer months. This is largely driven by in-
creased HVAC usage in the summer months after 10 a.m.9

Total electricity usage peaks around 9 a.m. and 9 p.m. and is at
its lowest around 6 a.m. and 6 p.m. in every season.10 The shares of
high-frequency appliance-level energy metering? Results from a
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Table 4a
Regression results for total and appliance specific electricity usage observable apartment characteristics.

Variables (1) (2) (3) (4) (5) (6) (7)
Total (sum) HVAC Lighting Plug load Fridge Dishwasher Kitchen

SquFt 0.00993nnn 0.00250nn 0.00287n 0.00332 0.000316 0.000240n 0.000687
(0.00328) (0.000997) (0.00162) (0.00221) (0.000332) (0.000134) (0.000566)

Second floor 0.186 0.491 �0.601 0.234 0.102 �0.0420 0.00204
(0.906) (0.330) (0.517) (0.442) (0.124) (0.0389) (0.124)

Third floor 0.662 0.339 �0.617 0.499 0.215n 0.0163 0.209
(0.840) (0.288) (0.453) (0.463) (0.124) (0.0614) (0.190)

South facing �0.448 �0.196 0.330 �0.323 �0.00898 �0.101n �0.149
(0.660) (0.265) (0.277) (0.362) (0.0913) (0.0517) (0.166)

Average daily temperature 0.0413nnn 0.0346nnn �0.000744 �0.00466 0.0105nnn 0.000248 0.00129
(0.0135) (0.0106) (0.00262) (0.00595) (0.000978) (0.000397) (0.00146)

Constant �3.125 �2.848nn �1.071 0.266 0.523n 0.0489 �0.0442
(3.269) (1.226) (1.188) (2.367) (0.301) (0.124) (0.520)

Observations 49,162 49,162 49,162 49,162 49,162 49,162 49,162
R2 0.059 0.107 0.066 0.027 0.160 0.050 0.023
Year–month dummies Yes Yes Yes Yes Yes Yes Yes
Clustered SE Yes Yes Yes Yes Yes Yes Yes

Notes: Regressions use household level daily electricity consumption collected from January 1, 2012 to December 31, 2013.
n po0.1.
nn po0.05.
nnn po0.01.

Table 4b
Regression results for total and appliance specific electricity usage observable apartment and household characteristics.

Variables (1) (2) (3) (4) (5) (6) (7)
Total (sum) HVAC Lighting Plug load Fridge Dishwasher Kitchen

SquFt 0.0102nnn 0.00274nnn 0.00321n 0.00338 0.000313 0.000122 0.000483
(0.00333) (0.00102) (0.00187) (0.00226) (0.000357) (0.000137) (0.000535)

Second floor 0.168 0.475 �0.644 0.235 0.105 �0.0281 0.0241
(0.925) (0.339) (0.528) (0.450) (0.124) (0.0381) (0.133)

Third floor 0.618 0.392 �0.617 0.470 0.201 0.000210 0.173
(0.827) (0.296) (0.457) (0.483) (0.124) (0.0517) (0.163)

South facing �0.476 �0.207 0.308 �0.331 �0.0110 �0.0952n �0.140
(0.661) (0.267) (0.259) (0.368) (0.0907) (0.0492) (0.164)

Has children �0.343 0.149 �0.242 �0.145 �0.0546 �0.000913 �0.0486
(0.657) (0.300) (0.247) (0.343) (0.0904) (0.0467) (0.159)

Age �0.0117 �0.0363 �0.0164 0.00204 0.00334 0.0116n 0.0239
(0.0737) (0.0385) (0.0235) (0.0359) (0.0111) (0.00603) (0.0175)

Member of NGO �0.481 �0.445nn 0.367 �0.265 �0.104 �0.0496 0.0162
(1.205) (0.212) (0.625) (0.509) (0.153) (0.0422) (0.162)

Average daily temperature 0.0411nnn 0.0345nnn �0.000743 �0.00476 0.0105nnn 0.000238 0.00129
(0.0136) (0.0106) (0.00274) (0.00596) (0.000977) (0.000397) (0.00142)

Constant �2.813 �1.948 �0.771 0.248 0.458 �0.208 �0.592
(3.708) (1.511) (0.941) (2.356) (0.362) (0.201) (0.683)

Observations 49,162 49,162 49,162 49,162 49,162 49,162 49,162
R2 0.060 0.111 0.077 0.028 0.162 0.077 0.031
Year–month dummies Yes Yes Yes Yes Yes Yes Yes
Clustered SE Yes Yes Yes Yes Yes Yes Yes

Notes: Regressions use household level daily electricity consumption collected from January 1, 2012 to December 31, 2013.
n po0.1.
nn po0.05.
nnn po0.01.
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Table 4c
Regression results for total and appliance specific electricity usage household fixed effects.

Variables (1) (2) (3) (4) (5) (6) (7)
Total (sum) HVAC Lighting Plug load Fridge Dishwasher Kitchen

Average daily temperature 0.0366nnn 0.0330nnn �0.00123 �0.00737 0.0104nnn 0.000281 0.00153
(0.0134) (0.0105) (0.00269) (0.00580) (0.000921) (0.000439) (0.00175)

Constant 0.986 �1.263n 0.358nn 1.352n 0.164nn 0.0742nnn 0.301nnn

(1.107) (0.718) (0.145) (0.714) (0.0748) (0.0262) (0.0925)

Observations 49,162 49,162 49,162 49,162 49,162 49,162 49,162
R2 0.455 0.357 0.660 0.460 0.539 0.527 0.502
Year–month dummies Yes Yes Yes Yes Yes Yes Yes
Clustered SE Yes Yes Yes Yes Yes Yes Yes

Notes: Regressions use household level daily electricity consumption collected from January 1, 2012 to December 31, 2013.
n po0.1.
nn po0.05.
nnn po0.01.

Fig. 3. Average hourly electricity usage and temperature by season.

V.L. Chen et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
total electricity usage for each appliance are shown in Fig. 4.
During peak demand (9 p.m.), the average household uses
0.47 kWh of electricity with 31% coming from plug load, 21%
coming from HVAC, and 19% coming from lighting. This is con-
sistent with the results in de Almeida et al. (2011) and Saldanha
and Beausoleil-Morrison (2012) that show the importance of non-
HVAC loads during peak demand hours. While not unusual, the
(footnote continued)
which might differ slightly than those of the rest of the population. The Los Angeles
Department of Water and Power defines peak hours as 1–5 p.m. for customers on
time of use pricing.

Please cite this article as: Chen, V.L., et al., What can we learn from
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significant share of electricity consumed by lighting during peak
demand hours reinforces the importance of the public utilities'
efforts to promote energy-efficient lighting as a means to achieve
conservation goals.11 It is important to note that these trends may
vary substantially in climates within California that are not as
moderate as Los Angeles.
11 http://www.ladwpnews.com/go/doc/1475/264244/LADWP-GIVES-AWAY-2-
MILLION-COMPACT-FLUORESCENT-LIGHT-BULBS-TO-RESIDENTIAL-CUSTOMERS.
Accessed September 5, 2014.
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Fig. 4. Hourly appliance share of total electricity consumption.

12 This is using an average electricity price of 21.5 cents based on data from the
Bureau of Labor Statistics. Website: http://www.bls.gov/ro9/cpilosa_energy.htm.
Accessed May 30, 2014.
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3.4. Savings from new refrigerators

Households can conserve energy by making behavioral changes
that lead to reductions or by upgrading old appliances with newer,
more energy efficient models. Between April 15 and May 10, 2013
University Village installed new refrigerators in units where the
current refrigerator was more than ten years old. This allowed us
to measure the savings that result from installing a new major
appliance and to compare those savings to those achieved using
behavioral interventions. Of the 124 apartments that are included
in the sample, 90 received a new refrigerator. The savings resulting
from the installation of a new refrigerator were estimated using
observed changes in electricity usage, an improvement over pre-
vious studies that use simulation techniques (de Almeida et al.,
2011). The distribution of electricity usage for the new and old
refrigerators using all of the daily energy usage data collected in
2013 is shown in Fig. 5a. This time period was chosen to make the
pre- and post-installation time periods comparable. As expected,
the new refrigerators use less electricity than the old refrigerators
and have a smaller variance in electricity usage.

In Fig. 5b, the daily refrigerator energy usage before and after
the installation of the new refrigerator on April 15, 2013 is plotted
to illustrate the savings resulting from the installation of this new
appliance for one particular apartment. It shows a significant de-
crease in electricity usage after the installation of the new re-
frigerator along with a decrease in variance. Summary statistics for
the daily kWh usage for the new and old refrigerators are shown
in Table 5. The average usage for the old refrigerators is 1.35 kWh
per day compared to 0.82 kWh per day for the new refrigerator. In
both cases, the observed average is below the estimated usage
shown on the U.S. Energy Star energy guide label; the new re-
frigerators use 78.0% of the estimated usage on the label compared
to 71.0% for the old refrigerators.

Since the graph in Fig. 5b is based on only one apartment, the
energy savings could be over- or understated. In Table 6, we pre-
sent the results of several regressions estimating the impact of the
installation of new refrigerators after controlling for household
and apartment characteristics. Column 1 includes housing and
household factors and also includes month–day fixed effects to
capture any time invariant factors, such as average daily tem-
perature, that could be correlated with daily refrigerator usage. In
this specification, the installation of a new refrigerator leads to an
Please cite this article as: Chen, V.L., et al., What can we learn from
field experiment. Energy Policy (2014), http://dx.doi.org/10.1016/j.en
average decrease of 0.43 kWh per day (12.9 kWh per month).
Column 2 includes month fixed effects so that average daily
temperature can also be included and shows a reduction of
0.44 kWh per day (13.2 kWh per month). This is similar to the raw
difference in means show in Table 5, but slightly less than the
estimated reduction based on the energy guide labels.

One concern when estimating the savings from the installation
of a new refrigerator is that the allocation of the new refrigerators
is not random. To address this concern, column 3 of Table 6 in-
cludes household fixed effects to control for any time-invariant
apartment and household characteristics. The results suggest that
using observable household and apartment characteristics to es-
timate the savings from the installation of a new refrigerator un-
derstates the actual savings. The estimate in column 3 suggest that
the installation leads to a 0.84 kWh per day (25.2 kWh per month)
reduction in electricity usage, and this effect is estimated more
precisely than the specifications that use observable character-
istics as controls.

While 25.2 kWh per month corresponds to an 11% decrease in
total electricity use based on the average participant's electricity
consumption, this is equal to a savings of only $65 a year.12 Because
research has described the potential for energy conservation from
behavioral intervention (Stern, 1992), it is important to compare such
savings to those that have been found in behavioral experiments. The
savings from a new refrigerator are slightly larger than the 7.4%
average reduction in electricity consumption found in Delmas et al.'s
(2013) meta-analysis of 156 studies that use information strategies to
achieve energy conservation. These savings are, however, much lar-
ger than the 2% savings reported in Delmas et al. (2013) for the
highest quality studies that include a control group as well as
weather and demographics controls such as Allcott (2011).
4. Discussion

Armel et al. (2013) discuss the benefits of disaggregated elec-
tricity usage for consumers, policy makers, and public utilities. Our
study illustrates these benefits by taking advantage of a state-of-
the-art field experiment that monitors appliance-specific electricity
usage in real time. We address four important areas that consumers,
policy makers, and public utilities can incorporate to promote en-
ergy conservation. First, we found that households are generally not
aware of how much each electricity end use contributes to their
overall electricity consumption. This finding is consistent with At-
tari et al. (2010) who estimate consumer awareness of electricity
consumption using an online survey. By comparing estimated ap-
pliance-level energy use to actual measured values, we confirm that
household electricity usage differs greatly from their perception.
We find that the average household in our sample overestimated
the electricity used by lighting by 75%, while they underestimated
the share of electricity used by plug-in devices by 29%. This could
cause them to direct their conservation efforts towards lighting
when they would be more effective if targeted at plug load usage.
This finding leads to the conclusion that if households perceive one
category of appliances to be more or less important than they ac-
tually are their conservation efforts may be misguided.

The data also reveals that plug load accounts for the largest
share of electricity consumption at all hours of the day, a result
consistent with the RECS survey. During peak demand hours,
HVAC and lighting are the second and third largest sources of
electricity consumption, respectively. While most public utilities
high-frequency appliance-level energy metering? Results from a
pol.2014.11.021i
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Fig. 5. (a) Distribution of electricity usage for old and new refrigerators. (b) Reduction in electricity usage with new refrigerator.

Table 5
Daily summary statistics for new and old refrigerators.

Appliance N Mean
(kWh)

Predicted USAGE
(kWh)a

Std. Dev. Min Max

New refrigeratorb 7452 0.82 1.05 0.39 0 2.72
Old refrigeratorb 11,155 1.35 1.91 0.69 0 4.79

a Estimated daily kWh usage is based on the energy guide label.
b The old refrigerators are General Electric model # TBX18SAXERWW. The new

refrigerators are General Electric model # GTH18GBDWW.
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focus on reducing HVAC loads through their demand response
programs, the results presented here suggest that plug load should
also be considered when developing programs to reduce peak
demand electricity usage, and that the public utilities focus on
energy efficient lighting should continue.

Next, the data shows that in this sample there is a significant
amount of variation in electricity usage across households. The
differences in usage can be attributed to differences in behavior
and household composition since all of the major appliances are
the same, there are only minor variations in design for the
apartments, and the temperature is the same for everyone in the
sample. In Table 2, we show that households in the 75th percentile
of HVAC usage use over four times as much electricity as a user in
the 25th percentile. Since HVAC usage depends heavily on a
household's preference and behavior, large differences are ex-
pected. For the refrigerator, an appliance whose usage depends
very little on behavior, much smaller differences are found. The
regression results presented in Table 4 support this hypothesis.
Regressions that explain the variation in electricity consumption
across households using observable household and apartment
characteristics perform poorly when compared to a specification
that controls for time-invariant observable and unobservable
household and apartment characteristics. The distributions in
Fig. 2 show that for most appliances electricity usage is highly
skewed with the average user consuming much more electricity
than the median user. While those who are in the right tail of the
distribution in our sample could benefit from installing energy
efficient appliances and lighting, the typical resident in this study
would see little benefit from purchasing these items. For example,
if the average household in this study invested in new appliances
and achieved a 15% reduction in overall electricity usage, they
would only save approximately $7.44 per month.13
13 A new refrigerator similar to the ones installed at University Village costs
around $750 and generated an overall energy savings of 11%.
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Lastly, the energy savings that were realized after the in-
stallation of new refrigerators were estimated. As expected, after
the installations took place there was an immediate decrease in
the mean and variance in electricity used by the new refrigerators.
Holding weather, housing, and household characteristics constant,
the installation led to a decrease of approximately 0.44 kWh per
day. When unobservable time-invariant household and apartment
characteristic were held constant to account for behavioral dif-
ferences and the possibility that refrigerators were not randomly
assigned, the estimates show a 0.84 kWh per day (11% overall)
decrease in daily electricity usage. At a price of 21.5 cents per kWh,
this leads to a savings of $5.42 per month for the average user in
this study. This result makes the point that ignoring differences in
how consumers use different appliances can lead to biased esti-
mates of the energy savings that can be gained from the installa-
tion of a new major appliance.

Our study is not without limitations. First, the experimental site
was located at an apartment complex for graduate students and
their families. Even though the sample was similar to the rest of
California in terms of electricity usage, the participants are more
educated than the typical California household. However, this
characteristic indicates that the results are conservative. Indeed, if
an educated population does not know much about appliance-
level usage, it is unlikely that the rest of the population knows
more. Second, for households that are away from their apartment
during academic holidays, electricity usage for those households
will appear much lower than normal. Third, due to technical
limitations and user error, some electricity measurements were
missing or recorded with some error. This implies that some of the
outliers in Fig. 2 might be due to technical issues and not above-
average electricity usage. Since each circuit panel was inspected,
these errors are thought to be minimal. Finally, since the Los An-
geles climate is more moderate than that of the rest of the United
States, these results may not hold in other parts of the country
where heating and cooling usage is more common. Future work
should address these questions in areas with climates that are not
as moderate as in Southern California.
5. Conclusions and policy implications

This paper presented results from a state-of-the-art electricity
field experiment that provided participants with high-resolution,
highly granular electricity consumption information. The data from
this experiment was used to answer important questions that
previous research could not answer due to technological and data
high-frequency appliance-level energy metering? Results from a
pol.2014.11.021i

http://dx.doi.org/10.1016/j.enpol.2014.11.021
http://dx.doi.org/10.1016/j.enpol.2014.11.021
http://dx.doi.org/10.1016/j.enpol.2014.11.021


Table 6
Regression results estimating the impact of new refrigerators on daily energy use.

Variables (1) (2) (3)
Refrigerator Refrigerator Refrigerator

New refrigerator installeda �0.429nnn �0.441nnn �0.837nnn

(0.113) (0.109) (0.0866)

SquFt 0.000421 0.000420
(0.000406) (0.000402)

Second floor 0.0624 0.0636
(0.139) (0.139)

Third floor 0.159 0.162
(0.138) (0.137)

South facing �0.111 �0.110
(0.0973) (0.0972)

Member of NGO �0.259 �0.264
(0.182) (0.179)

Has children �0.138 �0.140
(0.0981) (0.0976)

Age 0.00530 0.00555
(0.0109) (0.0108)

Average daily temperature 0.00992nnn 0.00964nnn

(0.00144) (0.00127)

Constant 0.781n 0.224 0.368nnn

(0.418) (0.435) (0.0808)

Observations 18,607 18,607 18,607
R2 0.269 0.242 0.660
Old fridge mean 1.345 1.345 1.345
Time effects Month–day Month Month
Clustered SE Yes Yes Yes
Household fixed effects No No Yes

aThere are 7452 observations for the new refrigerators and 11,155 observations for
the old refrigerators.
n po0.1.
nn po0.05.
nnnpo0.01.
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limitations. First, the data shows that households are unaware of
how much electricity is being used by three major categories of
appliances and end uses. The results show that households over-
estimate lighting use by 75% and underestimate plug-load by 29%.

Second, the data also reveals that there is a significant amount
of variation in appliance-level electricity usage for a standardized
set of major appliances in a setting where the housing units have
minor variations in design. In this setting, unobservable apartment
and household behavior account for 25–58% of the variation in
appliance-level electricity consumption. Lastly, the savings from
installing a new refrigerator were estimated. The savings were
equivalent to an 11% decrease in electricity usage for the average
household; however, the monetary savings only amount to ap-
proximately $65 per year. Since the monthly monetary savings
that results from appliance specific reductions can be quite small
for households that are low users of electricity, there needs to be a
careful cost–benefit analysis of policies that encourage investment
in new major appliances.

Our results have important implications for energy conserva-
tion policies. First, we find that differences in electricity usage are
mostly driven by differences in behavior rather than apartment or
household characteristics. This indicates that policies should focus
on understanding how to influence energy conservation behavior.
Please cite this article as: Chen, V.L., et al., What can we learn from
field experiment. Energy Policy (2014), http://dx.doi.org/10.1016/j.en
Providing tailored information about energy use seems to be
particularly important in this respect since most households are
ignorant of the energy used by their appliances. Second, because
the behavioral component of electricity consumption varies by
appliance, appliance level information policies need to target ap-
pliances with the largest behavioral component. For example, this
study showed that HVAC is the appliance with the most potential
for energy savings from changes in behavior. In our sample that
includes households that live in the same size apartment with the
same number of people, we find that households in the 75th
percentile use more than four times the amount electricity from
HVAC as compared to households in the 25th percentile. There is
much less potential for energy conservation through behavioral
change for refrigerators, which account for 19% of total electricity
usage in this sample. In such cases, technological solutions might
be preferable. Our research confirms the increasing share of plug
load in electricity consumption as key contributors to the power
demand. This indicates that plug load should be a priority target
especially for peak demand usage policies.
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Appendix. Data processing

Data from the meters consist of energy measurements in units
of watt-seconds for each of seven channels. The meters record
energy using monotonically increasing counters which function
much like the dials on analog utility meters. These counters in-
crease monotonically until a maximum byte value is reached and
then start over at 0. Data packets are transmitted wirelessly to the
gateway at 1 Hz. A custom Python daemon running on the gate-
way receives and parses the packets, preprocesses the data, and
then uploads measurements to the gateway along with identifiers.

With 4 bytes per channel, 7 channels per meter along with
timestamp and identifiers, 2 meters per apartment, and 124
apartments recruited in the study, the system would generate al-
most 300 GB per year. To reduce the amount of data stored, the
data is down sampled by the gateway at 1/30 Hz (1 sample every
30 s). The incoming data packets are monitored constantly and at
the end of the 30 s window the total energy per channel is com-
puted as the difference of the energy from the first and last packets
received. This energy is divided by time (nominally 30 s) to pro-
duce power measurements. = − −P t E t E t T T( ) ( ( ) ( ))/ .m c m c m c, , ,i j i j i j

The gateway then uploads the power measurements to a da-
tabase on an ENGAGE server via a POST handler. Once every hour,
a software script processes the new power data into hourly energy
measurements as follows. Let = …A a a a{ , , , }M1 2 be the set of
apartments. For each apartment ∈a A, there are a set of meters

= …M m m m{ , , , }a N1 2 . For each meter m, there are a set of
measurement channels = …C c c c{ , , , }m Q1 2 . The meters used
support 7 channels and as such the number of meters N was
limited to two as this is sufficient to instrument each circuit in the
electrical panel. For each apartment ∈a A, the power for channel i
on meter j is given by Pm c

a
,j i
.

Next, a set of appliance loads = …L l l l{ , , , }R1 2 were defined
corresponding to the categories “plug load,” “lighting,” “HVAC,”
high-frequency appliance-level energy metering? Results from a
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“refrigerator,” “dishwasher,” and “other kitchen.” The power for
each load ∈l L in apartment a is given by =P f P( )l

a
l
a

m c
a

, for each
∈m Ma and each ∈c Cm, where f a

1 is some known function based
on the circuit configuration of a particular apartment. For example,
in apartment 305, the HVAC circuits may comprise channels 3 and
4 on meter 1 and channels 5 and 6 on meter 2 so the HVAC power
function would be = + + +f P P P P P( )HVAC m c

305
,

305
1, 3
305

1, 4
305

2, 5
305

2, 6
305. Each of

these load power functions is defined and stored in the database.
Conveniently, circuit configurations were not completely unique
for each apartment and most used a few “templates.” Nonetheless,
a great deal of effort was needed to collect the configuration in-
formation and still resulted in some errors which required
rechecking.
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