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Abstract

Many economic and econometric applications require the integration

of functions lacking a closed form antiderivative, which is therefore a task

that can only be solved by numerical methods. We propose a new fam-

ily of probability densities that can be used as substitutes and have the

property of closed form integrability. This is especially advantageous in

cases where either the complexity of a problem makes numerical function

evaluations very costly, or fast information extraction is required for time-

varying environments. Our approach allows generally for nonparametric

maximum likelihood density estimation and may thus �nd a variety of

applications, two of which are illustrated brie
y:

� Estimation of Value at Risk based on approximations to the density

of stock returns.

� Recovering risk neutral densities for the valuation of options from

the option price { strike price relation.
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1 Introduction

Integrals of particular functions play a central role in economics, econometrics,

and �nance. For example, the notion of Value at Risk used to assess portfolio

risk exposure is de�ned in terms of an integral of the probability density func-

tion (pdf) of portfolio returns. As another example, the price of a European call

option can be expressed in terms of an integral of the cumulative distribution

function (cdf) of risk neutralized asset returns. For reasons of familiarity and

theoretical convenience, the normal distribution (or distributions derived from

the normal, such as the log-normal) plays a central role in such analyses. Never-

theless, the normal distribution does not provide an empirically plausible basis

for describing asset or portfolio returns, nor is it analytically tractable; neither

the normal probability density nor the normal cdf have closed form integrals.

Here we provide a family of probability density functions that contains the

normal or log-normal densities as limiting cases, but which are both more plau-

sible empirically because of their much greater 
exibility and more tractable

analytically, possessing closed form expressions for their integrals (cdf's), and

for integrals of their cdfs. In special cases, the inverse cdf (quantile function)

also has a closed form expression, especially convenient for analyzing Value at

Risk. We gain 
exibility by constructing our family as the output of a single

hidden layer arti�cial neural network; upon normalization, the output is a cdf or

pdf of a particular mixture distribution. Analytic tractability arises from careful

choice of the hidden unit activation function. Because of their 
exibility and

tractability, our new family of densities may be broadly useful for econometric

analysis of economic and �nancial data.

Section 2 provides a brief discussion of arti�cial neural networks; section 3

discusses the main results, which are then applied in section 4 to Value at Risk

estimation and in section 5 to recovering risk neutral densities from call option

price data. Several appendices contain certain mathematical details and proofs

of all results.

2 Arti�cial Neural Networks

Arti�cial neural networks (ANNs) have emerged as a prominent class of 
exible

functional forms for nonlinear function approximation. A leading case is the

single hidden layer feedforward neural network, written as:

f (x; �; 
) =

qX
j=1

�j � g
�
~xT 
j

�
; (1)

with ~x= (1; x1; x2; : : : ; xr), 
 =
�

T1 ; 


T
2 ; : : : ; 


T
q

�T
; 
j 2 Rr+1 and � =

�
�T1 ; : : : ; �

T

q

�T
.

See Kuan and White (1994) for additional background. When, for some �nite

non-negative integer `, g is `-�nite, that is, g is continuously di�erentiable of

order ` and has Lebesgue integrable `th derivative, then functions of the form

(1) are able to approximate large classes of functions (and their derivatives)
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arbitrarily well, as shown by Hornik, Stinchcombe, and White (1990) (HSW).

A common choice for g is that it be a given cdf; the logistic cdf is the leading

choice. We shall pay particular attention to the case in which g is a pdf, so

that its integral is a cdf. Imposing the constraint
Pq

j=1 �j = 1; �j � 0 when g
is a density permits us to interpret (1) as a mixture density with weights �j .
Such mixtures can approximate arbitrary densities as shown by White (1996,

theorem 19.1). The additive form of (1) not only delivers 
exibility, but it also

provides the foundation for analytic tractability: the properties of the integral

of f depend solely on the properties of the integral of g.
Note that we view g as a univariate pdf, but that its argument is the linear

combination ~xT 

j
. For the moment suppose that r = 1, so ~xT 


j
= 


j0+
j1 �x1.
We therefore allow x1 to be scaled and shifted inside g so that f (x; �; 
) can be
viewed as a mixture of univariate pdf's in the usual way. On the other hand, if

r > 1 we can view f (x; �; 
) as a conditional density for one of the elements of
x, say x1, given the rest: x2; : : : ; xr. The use of the linear transformation ~xT 
j
can be seen as permitting scaling and shifting as before, but with the shift now

incorporating conditioning e�ects of the form 
j0 +
Pr

i=2 xi
ji. Thus, we view
g and f as pdf's for a particular random variable, though possibly conditional

on other random variables. Treatment of multivariate densities in a framework

analogous to that proposed here is possible but is beyond our present scope and

is accordingly deferred.

We now turn our attention to choosing g in a way that delivers the desired

closed form expressions for the integral of g.

3 A Family of Density Functions

To motivate our new family of probability density functions consider the trans-

formation:

T� (x) =
1

�
ln (�x+ 1) x > 0; 0 < � � 1: (2)

We have T� (x) ! x as � ! 0. T� (x) is the logarithm of the inverse Box

{ Cox (1964) transformation. To see this, consider the standard Box - Cox

transformation given by

B�(!) =
!� � 1

�
0 < � � 1;

which converges to the natural logarithm as � ! 0. The inverse Box - Cox

transformation is thus

B�1
�

(x) = (�x+ 1)
1
� ;

which converges to the exponential function as � ! 0. Taking natural loga-

rithms gives

T� (x) = lnB�1
�

(x) =
1

�
ln (�x+ 1) :
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Our new family is based on the logarithm of the inverse power Box - Cox

transformation, given by

P�;�(!) =
!

�
�(1��)

1��1+�

�
� 1

�
(3)

for non-negative integer �. (We let Z+
0 denote the set of non-negative integers.)

This reduces to the standard Box - Cox transformation for � = 0.

Lemma 1 Let P�;�(!) be as de�ned in (3). Then for all � 2 Z+
0

lim
�!0

P�;�(!) = ln(!)

and

lim
�!1

P�;�(!) = ! � 1 :

By inverting the power Box Cox and taking natural logarithms we obtain our

extension of (2):

T�;�(x) =
1� �1+�

�(1� �)
ln (�x+ 1) � 2 (0; 1); � 2 Z+

0 : (4)

3.1 Analogs of the Normal Distribution

The normal distribution with pdf

�(x) �
1

p
2�

exp

�
�
x2

2

�

plays a central role in economics, econometrics, and �nance. Nevertheless, for

any function of the form

f(x) = a exp
�
bx2n + c

�
for real a; b; c, and natural number n, no closed form expressions for the an-

tiderivatives exist (Magid 1994). Consider, however, the replacement of x2 in

the exponential component of the normal density by its log inverse power Box

- Cox transform

T�;�(x2) =
1� �1+�

�(1� �)
ln
�
�x2 + 1

�
;

which yields

~h�;�(x) = exp

(
�
1� �1+�

2�(1� �)
ln
�
�x2 + 1

�)
for � 2 (0; 1)

=
�
�x2 + 1

�� 1��1+�

2�(1��) :
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As we will show, this provides the basis for a family of densities having closed

form expressions for its antiderivatives. Clearly, ~h�;� is a symmetric function of

x. Further, note that for � = 1 we obtain the well-known t distribution (Student
1908) with 1=� degrees of freedom, for which the pdf can be written

t(x) =
�
�
�+1
�

�
�
�

1
2�

�
r
�

�

�
�x2 + 1

�� 1
2 (1+

1
�) ;

where � is the Euler gamma function.

Our �rst result provides conditions on � under which ~h�;� is integrable, so

that with suitable normalization, ~h�;� is a density.

Theorem 2 Let ~h�;� be as de�ned above. Then for all � 2 Z+
0 and all 0 < � < 1

��;� �
Z 1

�1

~h�;�(x)dx =
�
�

1��1+�
2�(1��) �

1
2

�
�
�

1��1+�
2�(1��)

� r
�

�
<1:

We can now de�ne the density function

h�;� = ��;�
�1~h�;� : (5)

As noted previously h�;� contains Student's t-distribution. h�;� is a Pearson

distribution of Type VII (Kendall and Stuart 1977), i.e.

df

dx
=

(x� a)f

b0 + b1x+ b2x2
;

with a = 0, b1 = 0, b0 > 0, and b2 > 0. For general properties of Pearson

distributions the reader is referred to Kendall and Stuart (1977), chapter 6. h�;�

is also a special case of the generalized beta distribution proposed by McDonald

(1984).

Under further restrictions on �, h�;� has �nite m� th moment:

Theorem 3 Let h�;� be as in (5). Then for m > 0:Z 1

�1
jxjm~h�;�(x)dx <1

for all 0 < � < 1
1+m

, � 2 Z+
0 .

Furthermore, for these values of �, closed form expressions for the moments

are given by:

Z 1

�1
xmh�;�(x)dx =

8><
>:

0 m odd

��
m
2

�

�
1��1+�

2�(1��)
�m+1

2

�
�(m+1

2 )

�
�
1��1+�

2�(1��)
� 1

2

�p
�

m even:
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Thus, h�;� has �nite �rst moment for � < 1
2
, �nite second moment for � < 1

3
,

and so on.

As desired, h�;� approaches the normal as a limiting case. In fact, the

convergence is uniform.

Theorem 4 Let h�;� be as in (5). Then for each � 2 Z+
0 h�;� converges to �

uniformly as �! 0. Accordingly we de�ne h0;� � �.

Figure (1) presents a plot of the densities for � = 0 and various values of �
compared to the normal density.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Standard Normal φ
λ = .01
λ = .1
λ = 1/3

Figure 1: h�;0 and the normal density

Now we consider the antiderivatives of h�;� . For a scalar function f of x,

we write the �rst derivative as Df = df

dx
. The antiderivative D�1f is such

that D(D�1f) = f . In forming the antiderivative, the \constant of integration"

is here always taken to be zero. In the multivariate case, we denote partial

derivatives as

D�f =
@j�jf

@x�11 ; @x�22 ; � � � ; @x�rr
;

where � = (�1; �2; : : : ; �r) is a multi-index, i.e. a vector of non-negative inte-

gers, and j�j =
Pr

i=1 j�ij is the magnitude of �. The corresponding antideriva-
tive D��f is such that D� (D��f) = f . In what follows, we often use the

notation D�ei , which denotes the (�rst) antiderivative with respect to the ith

variable. Here ei is the unit vector with a 1 in the i
th position and 0's elsewhere.

As we are interested here only in derivatives with respect to x and not �, we
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shall understand D, D�1, D�, D�� to refer solely to derivatives or antideriva-

tives with respect to x.
In stating our result for the antiderivative of h�;� , we make use of the hy-

pergeometric function 2F1. This function is de�ned for complex a; b; c; and z as
the analytic continuation in z of the hypergeometric series

2F1(a; b; c; z) =
�(c)

�(a)�(b)

1X
k=0

�(a+ k)�(b+ k)

�(c+ k)

zk

k!
: (6)

The series converges absolutely for jzj < 1, as a ratio test shows. In our ap-

plications, we are interested in the hypergeometric function for any real x. For

this, we make use of the transformation z = �x
2

1+�x2
which yields jzj < 1 (the

derivation is given in Appendix A). Additional useful background can be found

in Bailey (1962) and Abramowitz and Stegun (1965).

Theorem 5 Let h�;� be as in (5). Then for all x 2 R, � 2 Z+
0 , and 0 < � < 1

D�1h�;�(x) =
1

2
+

x

��;�
p
(1 + �x2)

�2F1

 
1

2
;
3

2
�

1� �1+�

2� (1� �)
;
3

2
;

�x2

�x2 + 1

!
: (7)

To obtain a closed form solution one needs to reduce the hypergeometric

series to a �nite polynomial, which can be achieved for � = 0 by choosing the

appropriate �:

Corollary 6 For � = 0, D�1h�;�(x) has a closed form expression for all � of

the form �n = 1
2n+3

, n = 0; 1; 2; : : :.

For general � the choice of � is given by the solution of an algebraic equation
of order � in �, which for � > 4 does not necessarily possess solutions that allow

a convenient expression for � as a function of its coeÆcients (Artin (1973), The-

orem 45). Although the cases 0 � � � 4 can all be be handled straightforwardly,

we focus particular attention on the � = 0 case for the sake of convenience and

simplicity.

Since the resulting expression depends on the normalization factor ��;� ,
which in turn is a function of �, the following corollary provides a convenient

method to calculate ��;0.

Corollary 7 For � = 0 and � as in Corollary 6 the normalization factor ��;�
is given by

��n =
n!22n+1

(2n+ 1)!

p
2n+ 3 :

Note that no upper limit is imposed upon n; hence we can �nd arbitrarily

close approximations to the normal pdf, all having closed form integrals. Since

the polynomial expansion is proportional to the magnitude of n, some simple
solutions with � = 0 are given in Table 1.

Because of the central role played by the hypergeometric function in de�n-

ing the properties of our family of analogs to the normal, we call the family

6



� ��;0 D�1h�;0

1=3 2
p
3 1=2 + x

2�
p
3+x2

1=5 4
3

p
5 1=2 + 15x3+2x5

4
p

(5+x2)
3

1=7 16
15

p
7 1=2+ 735x+140x3+8x5

16
p

(7+x2)
5

Table 1: Simple choices for �.

fh�;� ; 0 � � < 1; � 2 Z+
0 g the \hypernormal" family. We say that h�;� is

hypernormal with index �; �.
The second antiderivative,D�2h�;� , is also of interest. For example, suppose

a risk manager requires to know the expected value of returns given that the

portfolio value has fallen below the Value at Risk (VaR). If returns have the den-

sity h�;� , then this conditional expectation has the form
R a
�1 xh�;�(x)dx=

R a
�1 h�;�(x)dx,

where a is an appropriate constant depending on the VaR. Applying integration
by parts to the numerator, we obtain:Z

a

�1
x � h�;�(x)dx = a �D�1h�;�(a)�

Z
a

�1
D�1h�;�(x)dx

= a �D�1h�;�(a)�D�2h�;�(a) ;

where we use the fact that D�1h�;�(�1) = D�2h�;�(�1) = 0. The second

antiderivative is given by our next result.

Theorem 8 Let h�;� be as in (5). Then for all x 2 R; � 2 Z+
0 and 0 < � < 1

D�2h�;�(x) =
x

2
+

p
(1 + �x2)

2�
�

1��1+�
2�(1��) � 1

�
��;�

� 2F1

 
�1
2
;
3

2
�

1� �1+�

2� (1� �)
;
1

2
;

�x2

�x2 + 1

!
:

For � = 0, these functions also have a closed form expression for all � of the

form �n = 1
2n+3

.

Now that we have an analytically tractable subfamily of densities, we add


exibility by forming arti�cial neural networks of the form (1). Our next result

shows that these networks can deliver arbitrarily accurate approximations to a

large class of densities, regardless of the value speci�ed for �.

Theorem 9 Let f belong to the Sobolev space Sm1(�) where � is an open,

bounded subset of Rr. Elements of this space are functions with continuous

derivatives of order m on the domain� which satisfy

jjf jjm;1;� � maxn�msupx2� jDnf(x)j <1 (8)

for some integer m � 0 (for further background see (Gallant and White 1992)).

For integer ` < 1=� � 1, h�;� is ` - �nite. Then for all m � `, f can be

7



approximated as closely as desired in Sm1(�) equipped with metric (8) using a

single hidden layer feedforward network of the form

 �;� (x; �) =

qX
j=1

�j � h�;�
�
~xT 
j

�
; (9)

where ~x = (1; x), and q is suÆciently large.

Observe that h�;� is always 0-�nite by construction.

Corollary 10 Let H�;� = D�eih�;� denote the antiderivative of h�;� with re-

spect to the i-th variable, and let l � u be real numbers. Then the integral of the

neural net (9) has the formZ
u

l

 
�;�

(x; �)dxi = 	�;�(x(i)(u); �)�	�;�(x(i)(l); �);

where x(i)(a) is the vector obtained by replacing the ith element xi from the

vector x with a, and

	�;�(x(i)(a); �) =

qX
j=1

�j �H�;�(aij(x(i)(a); 
ij));

where

aij(x(i)(a); 
ij) = a

ij
+

r+1X
k=1;k 6=i

~xk
kj :

Furthermore, for � = 0, 	�;�(x(i)(a); �) has a closed form expression for all �

of the form �n = 1
2n+3

, n = 0; 1; 2; : : :.

Note that the transformed integration boundaries are di�erent for each hid-

den unit because they depend on 

ij
.

The networks 	�;� of Corollary 10 have desirable approximation properties:

Theorem 11 Let f and h�;� be as in Theorem 9, and let H�;� be as in Corollary

10. Then for integer ` < 1=�, H�;� is `-�nite and for all m � `, f can be

approximated as closely as desired in Sm1(�) equipped with metric (8) using a

single hidden layer feedforward network of the form 	�;�(�) given in Corollary

10.

When f is a cdf, 	�;� can approximate it, and its derivative { the associated

pdf { is approximated by the derivative  
�;�

of 	�;� , due to the denseness in

Sobolev norm and the fact that 	�;� is always 1-�nite by construction.

We also have analogs of Corollary 10 and Theorem 11 for the integral of

	�;�

8



Corollary 12 Let �i;�;� = D�2eih�;� denote the second antiderivative of h�;�
with respect to the i-th variable. Let l � u be real numbers. Then the integral

Z
u

l

	�;�

�
x(i)(a); �

�
da

has the formZ
u

l

	�;�

�
x(i)(a); �

�
da = �i;�;�(x(i)(u); �)� �i;�;�(x(i)(l); �);

where �i;�;�(x(i)(b); �) =

qX
j=1

�i;�;�(bij(x(i)(b); 
ij)

with bij(x(i)(b); 
ij) = b

ij
+

r+1X
k=1;k 6=i

~xk
kj :

In addition, for � = 0, �i;�;� has a closed form expression for all � of the form

�n = 1
2n+3

, n = 0; 1; 2; : : :.

A similar result for D�(ei+ej )h�;� can be obtained, but as our focus here is

on the univariate case, we omit that result.

Corollary 13 Let f and h�;� be as in Theorem 5, and let �i;�;� be as in Corol-

lary 12. Then for integer ` < 1=�+1, �i;1�;� is `-�nite and for all m � `, f can

be approximated as closely as desired in Sm1(�) equipped with metric (8) using

a single hidden layer feedforward network of the form �i;�;� given in Corollary

12.

When f is the antiderivative of a cdf �i;�;� can approximate it, and its

derivatives (the cdf and pdf) can be approximated by the derivatives of �i;�;�

due to the denseness in Sobolev norm and the fact that the associated activation

function is always 2-�nite.

3.2 Analogs of the Lognormal Distribution

Economic theory may dictate nonnegativity: for example, prices are non-negative.

In such cases the normal distribution is not necessarily a reasonable assump-

tion for the data generating process. For example, to model asset prices the

lognormal density is frequently used. The lognormal pdf is given by

~�(!) =
1

!

1
p
2�

exp

 
�
(ln!)

2

2

!
:

9



The antiderivative of the lognormal is easily obtained. Just note that by sub-

stituting x = ln! we obtain

Z
u

l

~� (!) d! =

Z
u

l

1

!

1
p
2�

exp

 
�
(ln!)

2

2

!
d!

=

Z lnu

ln l

1
p
2�

exp

�
�
x2

2

�
dx

= �(lnu)��(ln l);

which just involves the antiderivative � of the standard normal.

We can replace the normal density appearing here with our new hypernormal

density to obtain results analogous to those of section 3.1. In particular, consider

~g�;� (!) =
1

!

�
� (ln!)

2
+ 1
� 1��1+�

2�(1��)

=
1

!
~h�;�(ln!):

This result allows us to obtain the following helpful analog of Theorem 2:

Theorem 14 Let ~g�;� be de�ned as above. Then for all � 2 Z+
0 and 0 < � < 1

L�;� �
Z 1

0

~g�;�(!)d! = ��;� <1: (10)

Hence we can now de�ne the density function

g�;� = L�;�
�1~g�;� (11)

for 0 < � < 1 and � 2 Z+
0 .

We call this density the log - hypernormal by analogy to the log-normal. By

substituting x = ln! we obtain for 0 < l < u <1
Z u

l

g�;� (!) d! =

Z lnu

ln l

h�;� (x) dx

= H�;�(ln u)�H�;�(ln l)

� G�;�(u)�G�;�(l):

Thus whenever H�;� has a closed form expression, G�;� will also.

Corollary 15 Let g�;� be as in (12). Then for all ! 2 R+, � 2 Z+
0 , and

0 < � < 1

D�1g�;�(!) =
1

2
+

ln!

��;�

q
(1 + �(ln!)

2
�2F1

 
1

2
;
3

2
�

1� �1+�

2� (1� �)
;
3

2
;

�(ln!)
2

�(ln!)
2
+ 1

!
:

(12)

For � = 0, D�1g�;�(!) has a closed form expression for all � of the form

�n = 1
2n+3

, n = 0; 1; 2; : : :.

10



Hence a closed form analytic solution analogous to the normal case can be

obtained for the log-hypernormal cumulative distribution (� = 0) by choosing

the appropriate �. Unfortunately, no moments exist for the log-hypernormal

nor can a convenient closed form be obtained for D�1G�;� .

Theorem 16 Let g�;� be as in (12). Then for all � 2 Z+
0 and � = 1

2n+3Z 1

0

j!jm g�;�(!)d! =1

if and only if m � 1.

Theorem 17 Let g�;� be as in (12). Then for all ! 2 R+, � 2 Z+
0 and

� = 1
2n+3

D�2g�;�(!)d! =
!

��;�

�( 3
2
)

�( 1
2
)�( 1��1+�

2�(1��) )0
@ 1X

k=0

�( 1
2
+ k)�( 1��1+�

2�(1��) + k)

�( 3
2
+ k)

(��)k

k!

2k+1X
i=0

(�1)2k+1�i (2k + 1)!

i!
(lnx)i

1
A :

Although the hypergeometric series 2F1 terminates after n terms for the ar-

gument
ln(!)2

1+ln(!)2
for speci�c values of � as shown in Theorem 5, for the argument

�ln(!)2 we do not get a similar termination. Intuitively (within the conver-

gence radius and for appropriate choices of �) the series of alternating terms of

�ln(!)2 converges towards the same limit as the �nite sum of the series with

argument
ln(!)2

1+ln(!)2
but the former series can not be reduced to a polynomial for

some choice of �. Hence, any true closed form solution for D�1G�;� can not be

obtained by these means.

Since closed form expressions for D�1G�;� or D
�1(1�G�;�) do not appear

readily available, the previous results are not entirely satisfactory - for example,

they do not deliver a closed form expression for pricing European call options.

To avoid excessive technicalities we only consider the case � = 0 forthwith.

Note, though, that the analysis carries through as in the hypernormal case for

higher values of � subject to the solvability by radicals of algebraic equations in
� of order 5 and above as previously noted.

The diÆculty arises from the presence of ln! in the relation G�(!) =

H�;�(ln!). Consider, then, replacing ln! with the Box { Cox transform of

! > 0,

BÆ(!) =
!Æ � 1

Æ
0 < Æ � 1;

which gives

G�;Æ(!) ' H� (BÆ(!)) � H�;Æ

11



(omitting the normalizing constant). For given 0 < � < 1, the associated

derivative h�Æ = DH�Æ is given by

~h�;Æ(!) = !Æ�1h�;� (BÆ(a))

= !Æ�1

 
�

�
!Æ � 1

Æ

�2

+ 1

!�1
2�

; 0 < Æ � 1: (13)

Our �rst result for ~h�;Æ concerns the normalization factor, used to convert
~h�;Æ into a density:

Theorem 18 Let ~h�;Æ be as de�ned above. If 0 < � < 1, then for all 0 < Æ < 1

we have

��;Æ �
Z 1

0

~h�;Æ(!)d! <1;

where ��;Æ can be calculated as:

��;Æ =
1p
�
�
�
�
3
2

�
� �
�
1��
2�

�
�
�

1
2�

� +
1
Æq

1 + �

Æ2

� 2F1

 
1

2
;
3

2
�

1

2�
;
3

2
;

�

Æ2

1 + �

Æ2

!
:

We can now de�ne the density function

h�;Æ = ��;Æ
�1~h�;Æ: (14)

As our next result makes precise, for �xed � and as Æ ranges from 0 to 1

we have densities that range from analogs of the log-normal to analogs of the

truncated normal (See Figures 2 { 5). When � = 0 and Æ = 0 we have precisely

the log normal, whereas � = 0 and Æ = 1 give the normal truncated at 0 (the

"half-normal"). Thus we can view Æ as a parameter a�ecting the skewness of

the associated distribution, whereas � a�ects the kurtosis.

Theorem 19 Let h�;Æ be as in (14). Then h�;Æ converges to �(�)1[��0] uniformly

as � ! 0, Æ ! 1 and h�;Æ converges to the log-normal ~� uniformly as � ! 0,

Æ ! 0.

Further analogs of our previous results for h�;� are as follows.

Theorem 20 Let h�;Æ be as in (14). Let � be any odd nonnegative integer and

t = m

Æ
be any non-negative integer. With the substitution

y = !Æ

and using the notation

��;Æ(y; t) �
yt

p
R
2u+1

;

where

R = �y2 � 2�y + �+ Æ2

12



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Truncated Normal φ
λ = .01,δ=1
λ = .1,δ=1
λ = 1/3,δ=1
Log−Normal

Figure 2: The densities of the log-normal, the truncated normal, and g�;Æ =

DG�;Æ for various �, Æ = 1.
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Figure 3: The densities of the log-normal, the truncated normal, and g�;Æ =

DG�;Æ for various Æ, � = 1=3.
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Figure 4: The extreme tail behavior of the log-normal, the truncated normal,

and g�;Æ = DG�;Æ for various Æ, � = 1=3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Truncated Normal φ
λ = .1,δ=1/3
λ = .1,δ=.1
λ = .1,δ=.01
Log−Normal

Figure 5: The densities of the log-normal, the truncated normal, and g�;Æ =

DG�;Æ for various Æ, � = :1.
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for convenience, we have:Z 1

0

j!jmh�;Æ(!)d! =
Æ
1
�
�1

��;Æ

Z 1

0

��;Æ(y; t)dy: (15)

If 0 < � < 1
1+m

and ��m
1�� < Æ < 1 then for all m > 0:Z 1

0

j!jmh�;Æ(!)d! <1;

and the m-th moment can be calculated using the following recursion formula

for the right-hand-side integral in 15:Z 1

0

��;Æ(y; t)dy = �1(t)

Z 1

0

��;Æ(y; t� 1)dy + �2(t)

Z 1

0

��;Æ(y; t� 2)dy;

where �1(t) =
(2u�2t+1)

(2u�t) and �2(t) =
(t�1)(�+Æ2)

(2u�t)� .

Each of the recursions terminates within t steps yielding as the �nal term:

Z 1

0

��;Æ(y; 0)dy =

�
1 +

Pu�1
k=1

Qk

i=1
(u�i)

(2u�2i�1)
�
�
2�+2Æ2

Æ2

�k�

(2u� 1)Æ2
�p

�+ Æ2
�2u�1

:

Theorem 21 Let h�;Æ be as in (14). Let 0 < � < 1
1+m

. For any 0 < Æ < 1 and

all x 2 R+ it holds that:

D�1h�;Æ(!)d! =
1

2
+

!
Æ�1
Æ

��;Æ

r
(1 + �

�
!Æ�1
Æ

�2
)

�2F1

0
B@1

2
;
3

2
�

1

2�
;
3

2
;

�
�
!
Æ�1
Æ

�2
�
�
!Æ�1
Æ

�2
+ 1

1
CA :

(16)

Corollary 22 For any 0 < Æ < 1, D�1h�;Æ has a closed form expression for all

� of the form �n = 1
2n+3

, n = 0; 1; 2; : : :.

The second antiderivativeD�2h�;Æ is also of interest because, for example, in

option pricing the price of a European Call option with strikeK and risk neutral

cdf F can be shown to be given by CK =
R1
K
S(t)dt, where S(t) = 1� F .

Theorem 23 Let h�;Æ be as in (14), � be any odd nonnegative integer and 1
Æ

be any non-negative integer. Then

D�2h�;Æ(!) = ! �D�1h�;Æ(!)���;Æ; (17)

where

��;Æ =
Æ
1
�

��;Æ

Z
!Æp

�!2Æ � 2�!Æ + �+ Æ2
1
�

d!: (18)
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Corollary 24 Let D�2h�;Æ(!), � and Æ be de�ned as in Theorem 23.

If � = 1
2n+3

; n = 0; 1; 2; : : : and �

1�� < Æ < 1 it holds for all ! 2 R+ that

D�2h�;Æ(!) is �nite and has a closed form expression.

While these results provide analytic tractability, the next set of results pro-

vides 
exibility, analogously to the normal case.

Theorem 25 Let f belong to the Sobolev space Sm1(�) as de�ned in Theorem

9 where � is an open, bounded subset of (R+)r. For integer ` < 1=�� 1, h�;Æ
is `-�nite. Then for all m � `, f can be approximated as closely as desired in

Sm1(�) equipped with metric (8) using a single hidden layer feedforward network

of the form

 �;Æ (!; �) =

qX
j=1

�j � h�;Æ
�
~!T 
j

�
; (19)

where ~! = (1; !), and q is suÆciently large.

Corollary 26 Let H�;Æ = D�eih�;Æ denote the antiderivative of h�;� with re-

spect to the i-th variable, and let l � u be real numbers. Then the integral of the

neural net (19) has the formZ
u

l

 
�;Æ

(!; �)d!i = 	�;Æ(!(i)(u); �)�	�;Æ(!(i)(l); �);

where !(i)(a) is the vector obtained by replacing the ith element !i from the

vector ! with a, and

	�;Æ(!(i)(a); �) =

qX
j=1

�j �H�;Æ(aij(!(i)(a); 
i));

where

aij(!(i)(a); 
i) = a

ij
+

r+1X
k=1;k 6=i

~!k
kj :

Furthermore, 	�;Æ(!(i)(a); �) has a closed form expression for � = 1
2n+3

; n =

0; 1; 2; : : : and Æ = 1
n
; n = 1; 2; : : : as long as �

1�� < Æ < 1.

Note that analogously to the normal case the transformed integration bound-

aries are di�erent for each hidden unit because they depend on �
iq
.

Theorem 27 Let f and h�;Æ be as in Theorem 25, and let H�;Æ be as in Corol-

lary 26. Then for integer ` < 1=�, H�;Æ is `-�nite and for all m � `, f can be

approximated as closely as desired in Sm1(�) equipped with metric (8) using a

single hidden layer feedforward network of the form 	�;Æ(�) given in Corollary

26.
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When f is a cdf, 	�;Æ can approximate it, and its derivative { the associated

pdf { is approximated by the derivative  �;Æ of 	�;Æ, due to the denseness in

Sobolev norm. We also have analogs of Corollary 26 and Theorem 27 for the

integral of 	�;Æ.

Corollary 28 Let �i;�;Æ = D�2eih�;Æ denote the second antiderivative of h�;Æ
Let l � u be real numbers. Then the integralZ

u

l

	�;Æ

�
!(i)(a); �

�
da

has the formZ u

l

	�;Æ

�
!(i)(a); �

�
da = �i;�;Æ(!(i)(u); �)� �i;�;Æ(!(i)(l); �);

where �i;�;Æ(!(i)(b); �) =

qX
j=1

�i;�;Æ(bij(!(i)(b); 
ij)

with bij(!(i)(b); 
i) = b
ij +

r+1X
k=1;k 6=i

~!k
kj :

In addition, �i;�;Æ(!(i)(b); �) has a closed form expression for � = 1
2n+3

, Æ =
1

n+1
; n = 0; 1; 2; : : : as long as �

1�� < Æ < 1.

Theorem 29 Let f and h�;Æ be as in Theorem 25, and let �i;�;Æ be as in Corol-

lary 28. Then for integer ` < 1=�+1, �i;�;Æ is `-�nite and for all m � `, f can

be approximated as closely as desired in Sm1(�) equipped with metric (8) using

a single hidden layer feedforward network of the form �i;�;Æ given in Corollary

28.

Thus, when f is the antiderivative of a cdf, �i;�;Æ can approximate it, and its

derivatives (the cdf and pdf) can be approximated by the derivatives of �i;�;Æ,

due to the denseness in Sobolev norm. This approximation property provides

an appealing basis for attempts to recover risk neutral densities from the option

price - strike price relation for European call options.
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4 Value at Risk

We �rst apply our results to estimating Value at Risk (VaR). For theoretical

background see DuÆe and Pan (1997) or Jorion (1997). For alternative ap-

proaches to VaR estimation see Bertail, Haefke, Politis, and White (1999) or

Danielsson and de Vries (1997). In general, we can model the density of returns

as a mixture of densities that can be integrated in closed form to yield a cdf

which can then be inverted to obtain VaR. Because returns can take both pos-

itive and negative values, we base our approximation on densities formed using

h�;� . In this application, both integrability in closed form and adjustable tail

fatness are convenient features of our approach.

Let Vt denote the value of a portfolio in period t and �t the one period net

return, de�ned as

�
t
=

Vt

Vt�1

� 1:

For convenience, �t is frequently assumed to be normally distributed. Many

authors have noted that this assumption is implausible (e.g. Campbell, Lo and

MacKinlay (1997)). To avoid this implausibility, we apply our speci�cation

from section 3.1, i.e. we take the density of �t to be  � (�; �) =  �;0 (�; �), where
� is either given a priori or may be appended to � and for convenience we set

� = 0. Let V aRp;t be the value that is \at risk" (i.e. can be lost) with a

probability of p, i.e.
P (Vt < V aRp;t) = p:

Although our notation does not re
ect it explicitly, we understand P to be the

probability conditional on information as of period t� 1. De�ne �p;t such that

V aRp;t = �p;tVt�1;

so that �p;t can be interpreted as the gross return at which the corresponding

value at risk is reached. We can then write

p = P (Vt < V aRp;t)

= P (Vt < �p;tVt�1)

= P

�
Vt

Vt�1

� 1 < �p;t � 1

�
= 	� (�p;t � 1; �)

�
Z

�p;t�1

�1
 
�
(�; �) d�: (20)

To obtain an estimate for � we can approximate the density of returns using
maximum likelihood, i.e.

�̂ = argmax
�

TX
t=1

ln 
�
(�

t
; �) ;
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where we impose the appropriate restrictions on � such that  � can be inter-

preted as a mixture of densities. If � is estimated instead of �xed a priori, a

�nal estimation setting �̂ = 1= (2n+ 3) for a suitable value of n can be per-

formed. Using the estimator for � (and �, if estimated) we can then solve for

�p;t using equation (20). The solution can be quickly and eÆciently found nu-

merically using Newton's method because we can calculate the �rst derivative

of the objective function in closed form. Further, the solution to (20) is unique:

Proposition 30 The function in equation (20) is continuous and strictly mono-

tone and hence �p;t is unique.

We illustrate this approach for the case with one hidden unit for � = 0 and

� = 1
3
, which implies a not implausible degree of kurtosis for returns. Then

p =

Z
�p;t�1

�1
h 1

3
;0(�)d�

=

"
1

2
+

�

2 �
p
3 + �2

#�p;t�1

�1

:

Noting that H1=3;0(�1) = 0 we have:

p =
1

2
+

�p;t � 1

2 �
p
3 + (�p;t � 1)2

:

Rearranging, squaring both sides and solving for �p;t yields

�p;t =
2
p
3
�
p� 1

2

�
q
1� 2

�
p� 1

2

�
�
q
1 + 2

�
p� 1

2

� + 1:

For smaller values of � (leading to larger exponents on �p;t) a closed form

solution might be impossible to obtain, but as previously remarked, Newton's

method is readily available.
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5 An Application to Option Pricing

Under standard assumptions (complete markets and the absence of arbitrage)

the price of a European call option is given by

c (K;x; t; T ) = exp f�� (T � t)g
Z 1

0

max (0; y �K) fT jt (yjx) dy; (21)

where K denotes the strike price, x the current price of the underlying asset, t
denotes current time, T the expiration date, � a discount rate, y the price of the
underlying asset at expiration, and fT jt(�j�) the unique risk neutral density of

the underlying asset price (y) at expiration given the current price x. The �rst
term can be interpreted as a discount factor and the integral is just the expected

payo� under the risk neutral probability. For background see e.g. Lamberton

and Lapeyre (1996).

The goal in this section is to derive a closed form expression for the ex-

pectation in equation (21) where we assume the risk neutral density to be one

of our new mixture densities. Once we have a closed form expression, we can

then readily estimate the free parameters using suitable nonlinear econometric

methods.

Letting � = T � t be the time to expiration, suppressing dependence on �
and denoting p (y; x; � ) � fT jt (yjx) ; we can write:

C0 (K;x; � ) � c (K;x; t; T ) exp f��g

=

Z 1

K

(y �K) p(y; x; � )dy

=

Z 1

K

(1� P (y; x; � )) dy;

where P (y; x; � ) � D�e1p(y; x; � ). We replace P with a neural net approxima-

tion ��Æ (�; �) = D�e1�
�Æ
(�; �) and de�ne the input vector x to be x = (y; x; � ).

When P is replaced with a log-normal analog we obtain

C�Æ (K;x; � ; �) =

Z 1

K

(1� ��Æ (y; x; � ; �)) dy :

Corollary 28 ensures that for suitable choices of � and Æ, C�Æ has a closed form

expression. For any given � and Æ we can compute the value of the call from

a closed form expression and then estimate the vector of parameters, �, by
nonlinear regression. For example, the least squares estimator is obtained by

solving

min
�

X
d;i;j

(exp f�d�d;jg Cd;i;j � C�Æ (Ki; xd; �d;j ; �))
2
;

where d denotes various dates of observation, i an index over di�erent strike

prices, and j a time index to capture di�erent expiration dates. Because the

approximation C�Æ
�
K;x; � ; �̂n

�
is, under regularity conditions, consistent for
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C0 (K;x; � ) in Sobolev norm (see e.g. Gallant and White (1992)), we can ap-

proximate the derivatives of C0 (K;x; � ) with those of C�Æ
�
K;x; � ; �̂n

�
. In par-

ticular �@
2C�Æ(K;x;�;�̂n)

@K2 can provide a good approximation (asymptotically) to

�@
2C0(K;x;�)

@K2 which is the desired risk neutral density (Breeden and Litzenberger

1978). Further it follows that the \greeks", delta, gamma, and theta, corre-

sponding to the �rst and second derivative of C0 with respect to x and the �rst

derivative of C0 with respect to � , respectively, can also be well approximated

at the same time.

6 Concluding Remarks

We propose a new family of density functions based upon the logarithm of

the inverse Box - Cox transform and the 
exible structure of arti�cial neural

networks. This yields mixtures of densities capable of arbitrarily accurate ap-

proximation to large classes of functions whose antiderivatives have closed form

expressions. As examples we consider applications to estimation of Value at

Risk and option pricing.
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Appendix A: The Integral Representation of the

2F1 Function

In this appendix we show how to obtain the transformation of equation (7). We

begin with Euler's transformation:

2F1(a; b; c; z) =
�(c)

�(a)�(c� b)

Z 1

0

tb�1(1� t)c�b�1(1� tz)�adt:

Now do a change of variable:

x = 1� t

�dx = dt

2F1(a; b; c; z) =
�(c)

�(b)�(c� b)
(�1)

Z 0

1

(1� x)b�1xc�b�1(1� (1� x)z)�adx

=
�(c)

�(b)�(c� b)

Z 1

0

(1� x)b�1xc�b�1(1� z + xz)�adx

=
�(c)

�(c� b)�(b)
(1� z)�a

Z 1

0

xc�b�1(1� x)b�1(1 + x
z

z � 1
)�adx

= (1� z)�a �2 F1
�
a; c� b; c;

z

z � 1

�
:

Appendix B: The Integral Recursion Formulas for

Algebraic Functions of Higher Powers

In this appendix we give the formulas that allow the step-wise reduction of

integer exponents of the numerator and denominator of a rational integrand. It

can be shown (e.g. Gradshteyn, Ryzhik (1994) Chapter 2) that for integer m
and positive integer n the following holds:Z

ymp
a+ by + cy2

2n+1
dy =

8>>>>><
>>>>>:

y
m�1

(m�2n)c
p
R
2n�1 � (2m�2n�1)b

2(m�2n)c

R
y
m�1

p
R
2n+1 dy � (m�1)a

(m�2n)c

R
y
m�2

p
R
2n+1 dy m 6= 2n

�y2n�1

(2n�1)c
p
R
2n�1 � b

2c

R
y
2n�1

p
R
2n+1 dy +

1
c

R
y
2n�2

p
R
2n�1 dy m = 2n

2(2cy+b)

(2n�1)(4ac�b2)
p
R
2n�1 +

8(n�1)c

(2n�1)(4ac�b2)

R
1p

R
2n�1 dy m = 0

2(2cy+b)

(4ac�b2)
p
R

n = 1;

where R = a+ by + cy2.
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Appendix C: Proofs

Proof of Lemma 1.

Note that for nonnegative integer �

�(1� �)

�1+� � 1
=

�P
�

i=0 �
i

so that

lim
�!0

P�;�(!) = lim
�!0

!

�
�P
�

i=0
�i

�
� 1

�
:

Apply L'Hopital's rule to obtain

lim
�!0

!

�
�P
�

i=0
�i

�

�
= lim

�!0
ln(!)

P
�

i=0 �
i
P

�

i=0 i�
i�1�P�

i=0 �
i

�2 !

�
�P
�

i=0
�i

�

= lim
�!0

ln(!)

P�

i=0 �
i (1� i)�P

�

i=0 �
i

�2 !

�
�P
�

i=0
�i

�

= ln(!):

Proof of Theorem 2.

Let us consider the general case of

f(t) = (1 + �t2)�b :

We exploit the symmetry property of f and note that

Mm =

Z 1

�1
jtjm f(t)dt = 2

Z 1

0

tmf(t)dt :

Now consider the substitution u = 1=(1 + �t2) and put b = 1��1+�
2�(1��) . Then we

obtain

t = ��1=2(1� u)1=2u�1=2

dt = �
1

2
��1=2(1� u)�1=2u�3=2

Mm = ��
m+1
2

Z 1

0

ub�
m+1
2 (1� u)

m�1
2 ,
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a complete beta { integral, the solution of which is given by

Mm = ��
m+1
2

�
�
b� m+1

2

�
�
�
m+1
2

�
�(b)

:

For m = 0 this reduces to

M0 =
�
�
b� 1

2

�
�(b)

r
�

�
; b >

1

2
:

It remains to be shown that b > 1
2
. For this, the following are equivalent:

1� �1+�

2� (1� �)
>

1

2

1� �1+� > �(1� �) � 6= 1

1 + �+ �2 + : : :+ �� > �;

which clearly holds for 0 < � < 1.

Proof of Theorem 3.

Use the proof of Theorem 2 to obtain:

Mm = ��
m+1
2

�
�
b� m+1

2

�
�
�
m+1
2

�
�(b)

:

Necessary and suÆcient for the existence ofMm is that b > m+1
2

. It is equivalent

that

1� �1+�

2� (1� �)
>
m+ 1

2

1� �1+� > �(1� �)(m+ 1) � 6= 1

1 + �+ �2 + : : :+ �� > �(m+ 1):

Since �1+� < � follows from 0 < � < 1 it holds that:

1� �1+�

�(1� �)
>

1

�
> m+ 1

� <
1

m+ 1
:

Since � = 1
2n+3

, a choice of n > m�2
2

always suÆces.

Proof of Theorem 4.

First we establish that h�;�(x) converges to � pointwise. We have

lim
�!0

h(�; �) = lim
�!0

1
p
2�

�
�x2 + 1

�� 1��1+�

2�(1��)
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=
1p
2�

lim
�!0

1

(�x2 + 1)
1��1+�

2�(1��)

=
1

p
2�

exp

(
lim
�!0

�
1� �1+�

2� (1� �)
ln
�
�x2 + 1

�)

=
1

p
2�

exp

�
lim
�!0

�x2

(�x2 + 1)

1

(2� 4�)

�
by L'Hôpital's rule

=
1p
2�

exp

�
�
x2

2

�
:

Uniform convergence follows from pointwise convergence provided that

sup
x2< jh�;�(x)� �(x)j ! 0 for �n ! 0 as n!1 (e.g. Rudin (1964, theorem

7.9)). Since supx2< jh�;�(x)� �(x)j = jh�;�(0)� �(0)j the uniform convergence

follows.

Proof of Theorem 5.

To establish our result, we take � > 0 so that

��D
�1g (x; �) = D�1

�
�x2 + 1

�� 1
2� .

Again consider the general case

f(t) = (1 + �t2)�b:

We have from Theorem 2 that

��

2
=

Z 0

�1
(1 + �t2)�bdt ;

so that for x < 0 we can write

F (x) =
��

2
�
Z 1

0

(1 + �t2)�bdt ;

and for x > 0 we can write

F (x) =
��

2
+

Z 1

0

(1 + �t2)�bdt :

To obtain the integral, substitute as in Theorem 2 to obtain

Z
x

0

(1 + �t2)�bdt = �
1

2
p
�

Z 1=(1+�x2)

1

ub�3=2(1� u)�1=2du :

Now substitute v = 1� u to obtain

Z x

0

(1 + �t2)�bdt =
1

2
p
�

Z �x2

1+�x2

0

(1� v)b�3=2v�1=2dv :
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This has the form of an incomplete beta integral which can be expressed as

a hypergeometric function (see Erdelyi, Magnus, Oberhettinger, and Tricomi

(1953), section 2.5.3) and we obtain

Z
x

0

(1 + �t2)�bdt =
1
p
�

�
�x2

1 + �x2

�1=2

�2 F1
�
1

2
;
3

2
� b;

3

2
;

�x2

1 + �x2

�
:

We can now write F (x) as

F (x) =
��

2
+ sign(x)

1
p
�

�
�x2

1 + �x2

�1=2

�2 F1
�
1

2
;
3

2
� b;

3

2
;

�x2

1 + �x2

�

=
��

2
+

xp
(1 + �x2)

� 2F1

 
1

2
;
3

2
�

1� �1+�

2� (1� �)
;
3

2
;

�x2

�x2 + 1

!
.

Normalizing by �� now gives the desired result.

Proof of Corollary 6.

For nonnegative integers n such that �n = 3=2�1=(2�) the in�nite sum breaks

o� after n terms. Solving for � gives �n = 1
2n+3

and the result follows.

Proof of Corollary 7.

Consider the normalizing constant ��. For � =
1

2n+3
we can write it as

�� =
�
�
1��
2�

�
�
�

1
2�

� r�

�

=
� (n+ 1)

�
�
n+ 3

2

�r�

�
.

Applying Legendre's duplication formula (Whittaker and Watson 1962, Corol-

lary to 12.15)

22z�1�(z)�(z +
1

2
) = �(2z)

p
�;

the above equation further simpli�es to

�� =
� (n+ 1) 22n+1

� (2n+ 2)
p
�

r
�

�

= 22n+1 n!

(2n+ 1)!

p
2n+ 3

= 2
1�2�
�

�
1�3�
2�

�
!�

1�2�
�

�
!
p
�

.
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Proof of Theorem 8.

Multiplying with ��;� and applying Euler's transformation yields:

��;�D
�1h�;�(x) =

��;�

2
+ x � 2F1

 
1

2
;
1� �1+�

2� (1� �)
;
3

2
;��x2

!
:

Direct integration gives

��;�D
�2h�;�(x) =

x��;�

2
+

1

2�
�

1��1+�
2�(1��) � 1

� � 2F1
 
�1
2
;
1� �1+�

2� (1� �)
� 1;

1

2
;��x2

!
;

and reapplying Euler's transformation gives

D�2h�;�(x) =
x

2
+

p
(1 + �x2)

2�
�

1��1+�
2�(1��) � 1

�
��;�

� 2F1

 
�1
2
;
3

2
�

1� �1+�

2� (1� �)
;
1

2
;

�x2

�x2 + 1

!
:

Proof of Theorem 9.

Theorem 3.1 of Gallant and White (1992) delivers the conclusion if

 �(x; �) =

qX
j=1

�jh�;�(~x
T 
j) (22)

is `-�nite. Due to the �nitely additive nature of (22) the result is not vacuous,

if h�;� is `-�nite for some `. From the continuity of h�;� and �� < 1 we have

that h�;� is `-�nite for ` = 0. We proceed to verify that h�;� is also `-�nite for
` < 1

�
� 1. Omitting the normalising factor �� for clarity we have the following:

1. Continuity of D`h�;� (�) follows from

D`h�;� (x; �) = (�1)`�`x`
�
�x2 + 1

� 1��1+�
2�(1��)

�`

which is continuous as long as �x2+1 > 0 which always holds for � 2 (0; 1].

2.
R1
�1

��D`h�;� (x)
�� dx <1 follows fromZ 1

�1

��D`h�;�(x)
�� dx =

Z 1

�1

�����`x` ��x2 + 1
� 1��1+�
2�(1��)

�`
���� dx

�
Z 1

�1

����x` ��x2 + 1
� 1��1+�
2�(1��)

�`
���� dx

�
Z 1

�1
jxj`

�
�x2 + 1

� 1��1+�
2�(1��)

�`
dx

�
Z 1

�1
jxj`

�
�x2 + 1

� 1��1+�
2�(1��) dx

=

Z 1

�1
jxj`~h�;�(x)dx <1
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by Theorem 3, provided � < 1=(1 + `) or ` < 1=�� 1.

Proof of Corollary 10.

By de�nition

Z u

l

 � (x; �) dxi =

qX
j=1

�j

Z u

l

h�;�

�
~xT 
j

�
dxi:

Let us de�ne

x := ~xT 


aij(a; x(i); 
ij) = a
ij +

r+1X
k=1;k 6=i

~xk
kj

uij := aij(u; x(i); 
ij)

lij := aij(l; x(i); 
ij)

H�;�(aij(a; x(i); 
ij)) := D�eih�;�(x);

which allows us to writeZ u

l

h�;�

�
xT 


�
dxi =

1

��;�

Z u

l

�
�(~xT 
)2 + 1

�� 1
2� dxi

=
1

�
i

p
2�

Z
ui

li

�
�x2 + 1

�� 1
2� dx:

De�ning

	�(x(i); a; �) =

qX
j=1

�
j
�H�;�(aij(a; x(i); 
ij)) ;

we may consequently write the integral of the neural net as

Z
u

l

 �(x; �)dxi =

qX
j=1

�j
�
	(x(i);uij ; �)�	(x(i); lij ; �)

�
.

Proof of Theorem 11.

Theorem 3.1, 3.2 and 3.3 of Gallant and White (1992) give suÆcient conditions

for uniform convergence of function approximators in Sobolev spaces. Single

hidden layer feedforward neural networks given by (1) are suÆcient for this

purpose if the activation function g is ell-�nite. This is shown in Theorem 9 for

h�;� and since the `-�niteness of any non-negative function implies the (`+ 1)-

�niteness of its antiderivative, the result follows for H�;� .
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Proof of Corollary 12.

This follows directly from Corollary 10 by substituting the functions from The-

orem 8.

Proof of Corollary 13.

This result follows from Theorems 9 and 11 by applying the recursive `-�niteness
argument given in the proof of Theorem 11 one more time.

Proof of Theorem 14.

The substitution x = ln! immediately yieldsZ 1

0

~g�;�(!)d! =

Z 1

�1

~h�;�(x)dx = ��;� : (23)

Proof of Corollary 15.

Follows from Corollary 6 and Theorem 14 via substitution.

Proof of Theorem 16.

For m = 0 Z 1

0

j!j0 g�;�(!)d! = ��;�

follows trivially from Theorem 14. For m = 1Z 1

0

j!j g�;�(!)d! =

Z 1

0

h�;�(ln!)d! (24)

=
1

��;�

Z 1

0

�
� (ln!)

2
+ 1
�� 1��1+�

2�(1��)

d! (25)

=
1

��;�

Z 1

�1

ex

(�x2 + 1)
1��1+�

2�(1��)

dx: (26)

Since for any value of � > 0 the denominator is a polynomial in x there exists

K 2 Z+
0 such that

1

��;�

Z 1

�1

ex

xK
dx <

1

��;�

Z 1

�1

ex

(�x2 + 1)
1��1+�

2�(1��)

dx: (27)

and the left hand side of the inequality does not converge since ex > xK for

large x. Hence the right hand side integral cannot be �nite either.

Proof of Theorem 17.

Given Corollary 15 we can integrate the in�nite series associated with G�;� term

by term with the argument (ln!)
2n+1

(n=0,1,...). Integration by parts of the

argument yields the recursive expression:Z
(ln!)

s
d! = !(ln!)

s �
Z

(ln!)
s�1

d!: (28)
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Integrating each argument thus givesZ
(ln!)

s
d! = !

sX
i=0

(�1)s�i
s!

i!
(ln!)

i
(29)

for each term. Summing up and noting that only odd powers of ln! occur in

the integrated series yields:

Z
g�;�(!)d! =

!

��;�

�( 3
2
)

�( 1
2
)�( 1��1+�

2�(1��) )

1X
k=0

�( 1
2
+ k)�( 1��1+�

2�(1��) + k)

�( 3
2
+ k)

(��)k

k!

2k+1X
i=0

(�1)2k+1�i (2k + 1)!

i!
(ln x)i:

Proof of Theorem 18. We have

��;Æ �
Z 1

0

~h�;Æ(!)d! =

Z 1

0

!Æ�1

 
�

�
!Æ � 1

Æ

�2

+ 1

!�1
2�

d! :

Substitution of y = !Æ yields

��;Æ =
1

Æ

Z 1

0

 
�

�
y � 1

Æ

�2

+ 1

!�1
2�

dy ;

and further substitution of x = y�1
Æ

gives:

��;Æ =

Z 1

� 1
Æ

�
�x2 + 1

��1
2� dx ;

which by the application of Theorem 5 can be calculated as

��;Æ =

"
1

2
+

xp
(1 + �x2)

� 2F1
�
1

2
;
3

2
�

1

2�
;
3

2
;

�x2

�x2 + 1

�#1
� 1
Æ

:

The result now follows by some simple algebra.

Proof of Theorem 19.

lim
�!0

lim
Æ!1

~h�;Æ(!) = lim
�!0

lim
Æ!1

!Æ�1

 
�

�
!Æ � 1

Æ

�2

+ 1

!� 1
2�

= lim
�!0

�
� (! � 1)

2
+ 1
�� 1

2�

;
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and through the substitution y = ! � 1 the problem is reduced to the proof of

Theorem 4. Similarly

lim
�!0

lim
Æ!0

~h�;Æ(!) = lim
�!0

lim
Æ!0

!Æ�1

 
�

�
!Æ � 1

Æ

�2

+ 1

!� 1
2�

= !�1 lim
�!0

�
� (ln!)

2
+ 1
�� 1

2�

= !�1 exp

(
�
(ln!)

2

2

)
by Theorem 4

= ~�:

Proof of Theorem 20.

This follows from the sequential application of the recursion formulae for in-

de�nite integrals of algebraic functions of higher powers given in Appendix B.

Noting that t < 2u by assumption and evaluating at the limits of integration

yields the result.

Proof of Theorem 21 After the substitutions of the Proof of Theorem 18

and by the application of Theorem 5, the results follows.

Proof of Corollary 22 Noting that the coeÆcient sequence of the 2F1 Theo-
rem 5 and Theorem 21 are identical, the result follows immediately from Corol-

lary 6.

Proof of Theorem 23 For any probability density f on R and its associated

distribution function F it follows from integration by parts that:Z
!

�1
F (x)dx = ! � F (!)�

Z
!

�1
x � f(x) dx:

De�ning f � h�;Æ and F � D�1h�;Æ it follows that � = D�1(! � h�;Æ).

Hence inserting the inde�nite integral of the �rst moment (m = 1) from Theorem

20 in place of D�1(! � h�;Æ) gives the result.

Proof of Corollary 24 The closed form of D�2h�;Æ(!) only depends on ��;Æ

since D�1h�;Æ(!) is of closed form based upon Corollary 22. Using the general

recursion formula for integrals of this type, given in Appendix B and noting

that t < 2u always holds under the conditions on � and Æ one gets:

Z
yt

p
R
2u+1

dy =

8><
>:

y
t�1

(t�2u)�
p
R
2u�1 +

(2t�2u�1)

(t�2u)

R
y
t�1

p
R
2u+1 dy � (t�1)(�+Æ2)

(t�2u)�

R
y
t�2

p
R
2u+1 dy t < 2u

(y�1)
�
1+
P

u�1

k=1

Q
k

i=1

(u�i)

(2u�2i�1)
�( 2R

Æ2
)
k
�

(2u�1)Æ2
p
R
2u�1 t = 0:
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Since t = 1
Æ
is an integer by assumption the repeated recursion of the �rst line

yields the closed form of the second line in at most n � 2 steps. The sum

over all the resulting recursion paths, which terminate in the same closed-form

�nal expression - albeit with di�erent coeÆcients - is hence also of closed form;

�niteness of D�2h�;Æ follows from Theorems 20, 21 (for m = 1), Corollary 22,

and the fact that the integral is a monotonic linear form.

Proof of Theorem 25.

The result follows from the argument of Theorem 9 by using the transformation

from Theorem 18.

Proof of Corollary 26.

The result follows from the proof of Theorem 10 by substituting h�;Æ for h�;� .

Proof of Theorem 27.

The result follows from the proof of Theorem 11 by substituting h�;Æ for h�;� .

Proof of Corollary 28.

The result follows from the proof of Corollary 12 by substituting h�;Æ for h�;� .

Proof of Theorem 29.

The result follows from the proof of Theorem 13 by substituting h�;Æ for h�;� .

Proof of Proposition 30.

Due to the additive nature of the integrand  � (�; �) it suÆces to consider the

individual mixture of densities components h�;� . Since these have already been

shown to be densities on R, strict monotonicity follows as long as no x 2 R
exists for which h�;�(x) = 0. This is clearly impossible for any �nite x 2 R,
therefore the result follows.
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