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Contract and Game Theory: Basic Concepts
for Settings with Finite Horizons

Joel Watson�

January 2006|

Abstract

This paper reports the analysis of a general model of contract in multi-period set-
tings with both external and self-enforcement. In the model, players alternately engage
in contract negotiation and take individual actions. A notion of contractual equilib-
rium, which combines a bargaining solution and individual incentive constraints, is
proposed and analyzed. The modeling framework helps identify the relation between
the manner in which players negotiate and the outcome of the long-term contractual
relationship. In particular, the model shows the importance of accounting for the self-
enforced component of contract in the negotiation process. Examples and guidance
for applications are provided. JEL Classification: C70, D74, K10.

Many economic relationships are contractual, in that the parties negotiate and agree
on matters of mutual interest and intend for their agreement to be enforced. Enforcement
comes from two sources: external agents who are not parties to the contract at hand (exter-
nal enforcement) and the contracting parties themselves (self-enforcement). Most contracts
involve some externally enforced component and some self-enforced component. When
parties negotiate an agreement, they are coordinating generally on both of these dimen-
sions.

In this paper, I further a game-theoretic framework for analyzing contractual settings
with both externally enforced and self-enforced components. I model a long-term con-
tractual relationship in which, alternately over time, the parties engage in contracting (or
recontracting) and they take individual productive actions. I discuss various alternatives in
the analysis of contract negotiation and I define a notion of contractual equilibrium that
combines a bargaining solution with incentive conditions on the individual actions. Exis-
tence results, examples, and notes for some applications are also provided.

�University of California, San Diego. Internet: http://weber.ucsd.edu/�jwatson/. I thank those in the
theory group at UC San Diego for their comments.

|Previous (preliminary) version: July 2004.
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Figure 1: Time line for the MW example.

The framework developed herein is designed to clarify the relation between the self-
enforced and externally enforced components of contract, to demonstrate the advantages
of explicitly modeling the self-enforced component in applied research, and to facilitate
this type of modeling. The framework emphasizes the roles of history, social convention,
and bargaining power in determining the outcome of contract negotiation and renegotia-
tion. The framework also helps one to compare the implications of various theories of
negotiation.

MW Example
Here is an example that illustrates some of the issues in modeling both the self- and

externally enforced components of contract. Suppose that a manager (player 1) and a
worker (player 2) interact over two periods of time, as shown in Figure 1. At the beginning
of the first period, the parties engage in contract negotiation. The contract includes vectors
mhh;mhl;mlh;mll 2 R2, which specify externally enforced monetary transfers between the
manager and the worker contingent on actions they take in the second period. Each vector
is of the form m D .m1;m2/, where m1 is the monetary transfer to player 1 and m2 is the
transfer to player 2. Transfers can be negative and I assume that m1Cm2 � 0, meaning that
the parties cannot create money. I also assume that the transfers are “relatively balanced”
in that mhh

1 C mhh
2 D mhl

1 C mhl
2 D mlh

1 C mlh
2 D mll

1 C mll
2.1 Later in the first period, the

worker selects an investment I 2 f0; 1; 2; 3; 4g; the investment yields an immediate benefit
8I to the manager and an immediate cost I2 to the worker. The manager observes I , but
external enforcer cannot observe I .

At the beginning of the second period there is another round of contracting, at which
point the specification of transfers may be changed. Then the parties simultaneously select
individual effort levels—“high” or “low”—and they receive monetary gains according to

1I elaborate on this assumption in Section 4, where the example is described more formally.
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the following table:

The table represents that the parties’ efforts generate revenue, which is 18 if both exert high
effort, 10 if exactly one of them exerts high effort, and zero otherwise. Each party’s cost of
high effort is 1. The manager obtains the revenue, minus his effort cost, plus the transfer
m1 (which can be negative). The worker receives the monetary transfer m2 minus his effort
cost. That there is a different vector m for each cell of the table means that the external
enforcer can verify the effort choices of both players.

Assume that each player’s payoff for the entire relationship is the sum of first- and
second-period monetary gains. Thus, an efficient specification of productive decisions is
one that maximizes the players’ joint value (the sum of their payoffs). Clearly, efficiency
requires the worker to choose I D 4 in the first period (it maximizes 8I � I2) and requires
the players to select .high; high/ in the second period. Note, however, that the parties
would not have the individual incentives to select .high; high/ in the second period unless
mhh

1 � mlh
1 � 7 and mhh

2 � mhl
2 C 1; that is, .high; high/ must be a Nash equilibrium of the

matrix shown above. Furthermore, the worker has the strict incentive to choose I D 0 if
the first period is viewed in isolation. Whether efficiency, or even I > 0, can be achieved
depends on the details of the contracting process.

Before thinking about contractual alternatives, consider the parties’ incentives regard-
ing their effort choices in the second period. Any of the four effort profiles can be made
a Nash equilibrium in dominant strategies with the appropriate selection of externally en-
forced transfers. This is true even if one restricts attention to balanced transfers (where no
money is discarded). For example, transfers satisfying

mhl
2 > mhh

2 � 1; mll
2 > mlh

2 � 1; mhh
2 > 7 C mlh

2 ; and mhl
2 > 9 C mll

2;

with
mhh

1 D �mhh
2 ; mhl

1 D �mhl
2 ; mlh

1 D �mlh
2 ; and mll

1 D �mll
2;

make “low” a dominant action for both players. Numbers that work are mhh
2

D mll
2

D 0,
mhl

2
D 10, and mlh

2
D �8. Transfers satisfying the reverse strict inequalities make “high”

a dominant strategy for both players. There are also transfers that make “low” dominant
for one player and “high” dominant for the other. All of these are examples of forcing
transfers, in that they force (through the players’ incentives) a particular effort profile to be
played.

I next sketch three contractual alternatives. While these are presented informally and
do not cover the full range of possibilities, they illustrate the contractual components and
issues that are formally addressed in this paper.

3



� Alternative 1:

The players make the following agreement at the beginning of the first period. They
choose a specification of transfers that satisfies mll D .0; 0/ and that forces .low; low/
to be played in the second period. With these transfers, the players would each obtain
zero in the second period. The players also agree that if the worker invests I D 4

then, at the beginning of period 2, they will recontract to specify transfers that force
.high; high/ to be played and mhh D .�17; 17/. For any other investment I , the
players expect not to change the specification of transfers.

If this contractual agreement holds, then it is rational for the worker to select I D 4

in the first period. If he makes this choice, he gets �16 in the first period and,
anticipating recontracting to force .high; high/, he gets 16 in the second period. If
he chooses any other effort level in the first period, the worker obtains no more than
zero. An efficient outcome results.

� Alternative 2:

In first-period negotiation, the players choose a specification of transfers that forces
.low; low/ with mll

2 D 0, as in Alternative 1. In the second period, the players
renegotiate to pick transfers that force .high; high/ with mhh D .�9; 9/, and they
do so regardless of the worker’s first-period investment level. In other words, the
outcome of second-period renegotiation is the ex-post efficient point in which the
players obtain equal shares of the bargaining surplus relative to their initial contract.
Anticipating that his second-period gains do not depend on his investment choice,
the worker optimally selects I D 0.

� Alternative 3:

The players’ initial contract specifies mhh D mhl D .�9; 9/, mlh D .�1; 1/, and
mll D .0; 0/, which yields the following matrix of second-period payoffs:

Note that, for this matrix, .high; low/, .low; high/, and .low; low/ are the Nash equi-
libria and that these are ex post inefficient.2 The players agree that, in the event that
they fail to renegotiate in the second period, the equilibrium on which they coordinate
will be conditioned on the worker’s investment choice. Specifically, if the worker

2The determination of efficiency includes consideration of transfers; the profile .high; low/ is inefficient
because, with the appropriate transfers, both players can be made better off if they select .high; high/. That
the Nash equilibria are weak is of little consequence for the point of the example; for simplicity of exposition,
this example was constructed to avoid having to examine mixed strategy equilibria.
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chose I � 3 then they coordinate on equilibrium .high; low/, whereas if I < 3

then they coordinate on equilibrium .low; high/. That is, the disagreement point for
second-period negotiation depends on the worker’s action in the first period.

Assume that the players do renegotiate in the second period so that the efficient pro-
file .high; high/ is achieved. The joint surplus of renegotiation is 16�9 D 7. Suppose
that player 1 has all of the bargaining power and thus negotiates a transfer that gives
him the entire surplus. The worker therefore gets 9 if .high; low/ is the disagreement
point, whereas he gets 0 if .low; high/ is the disagreement point. Clearly, with this
contractual arrangement, the worker optimally selects I D 3 in the first period.

External enforcement is represented by the way that the contract directly affects the
players’ payoffs (through vectors mhh;mhl;mlh;mll in the example). Self-enforcement re-
lates to the way in which the players coordinate their individual actions. For instance,
the players agree on the effort levels that they will choose in the second period; self-
enforcement requires that these effort levels constitute a Nash equilibrium.

Obviously, the self- and externally enforced components of contract interact, because,
at minimum, the externally enforced transfers influence which second-period action pro-
files are Nash equilibria. In Alternatives 1 and 2, the specification of transfers forces a
unique action profile in the second period. In Alternative 3, the initial specification of
transfers creates a situation in which there are three Nash equilibria. The self-enforced
component of contract specifies how the players will select among these equilibria.

Alternatives 1-3 represent different assumptions about second-period contracting. Al-
ternative 1 is viable only if renegotiation accommodates an ex post inefficient outcome
conditional on the worker failing to invest. Alternative 1 also assumes that the worker has
a great deal of bargaining power and can thus extract the entire renegotiation surplus. Al-
ternative 2 assumes that ex post efficiency is always reached in the renegotiation process.
In Alternative 3, the second-period disagreement point is made a function of first-period
play, via the self-enforced component of contract. Note that this manner of conditioning
could not be achieved through the externally enforced part, because the external enforcer
does not observe the worker’s investment (whereas the manager and worker, who coordi-
nate their effort choices, do). Thus, the example shows that, to determine what the players
can achieve in a contractual relationship, it is important to model the negotiation process
and to differentiate between self-enforced and externally enforced components of contract.

Themes
As the MW example illustrates, self-enforced and externally enforced components of

contract differ in important respects. Because the contracting parties may have different
information than do external agents, self-enforcement and external enforcement may be
conditioned on different sets of events. Furthermore, an “agreement” on the terms of the
self-enforced component entails subtleties not present with external enforcement. In par-
ticular, self-enforcement relies on the contracting parties to coordinate their behavior in the
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future; external enforcement, in contrast, does not require the same kind of coordination
because an external agent performs it.3

A key issue explored herein is how “actively” the parties engage in contracting. In
very active contracting, contract selection depends mainly on the current technology of
the relationship (including the bargaining protocol and the future productive alternatives)
rather than on historical distinctions that are not payoff relevant from the current time. In
less active contracting, social convention and history (including prior agreements) play a
greater role. Bargaining theories that represent more active contracting are refinements
(in terms of set inclusion) of those that represent less active contracting. My analysis
relates activeness of contracting to the extent one assumes that verbal statements made by
the players influence how they coordinate in the future. Stronger assumptions about the
relation between language and expectations imply more active contracting.

The activeness of contracting is particularly salient for the self-enforced component
of contract, because, on this dimension, a verbal statement of agreement does not force
the parties to subsequently act accordingly (as external enforcement can do) and there are
various possibilities for the link between the parties’ verbal agreement and the way they
actually coordinate. For example, the parties may say to each other that, at some later time,
they will coordinate on the individual-action profile a, whereas they both anticipate actually
coordinating on a0. Language is more meaningful, and contracting more active, when
statements of agreement—at least those that are consistent with individual incentives—
induce the parties to comply.

By differentiating between the two components of contract, this paper furthers my gen-
eral research agenda, part of which is to (i) discover how the technological details of con-
tractual settings influence outcomes, (ii) demonstrate the importance of carefully modeling
these details, and (iii) provide a flexible framework that facilitates the analysis of vari-
ous applications. By “technological details,” I mean the nature of productive actions, the
actions available to external enforcers, the manner in which agents communicate and nego-
tiate with one another, and the exact timing of these various elements in a given contractual
relationship. In other papers, I focus on the nature of productive actions (Watson 2005a,b),
the mechanics of evidence production (Bull and Watson 2004,2006), and contract writing
and renegotiation costs (Schwartz and Watson 2004, Brennan and Watson 2002). These
papers and the present one show that the technological details can matter significantly.

Relation to the Literature
This paper builds on the large and varied contract-theory literature. In many of the lit-

erature’s standard models (such as the basic principal-agent problem with moral hazard),
the self-enforced aspects of contracting are trivial. However, there are also quite a few
studies of contractual relations in which self-enforcement plays a more prominent role.
Finitely repeated games constitute an abstract benchmark setting in which there is no ex-
ternal enforcement. For this setting, Benoit and Krishna (1993) provide an analysis of

3There may be ambiguities in the language parties use to communicate with an external enforcer, which
could introduce a coordination problem, but herein I ignore this issue.
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renegotiation. The basic idea is that, at the beginning of the repeated game, the players
agree on a subgame-perfect Nash equilibrium for the entire game, but they jointly reeval-
uate the selection in each subgame. Benoit and Krishna assume that, in each period, the
parties select an equilibrium on the Pareto frontier of the set of feasible equilibria, where
feasibility incorporates the implications of negotiation in future periods.

Many papers look at the interaction of self-enforced and externally enforced compo-
nents of contract in applied settings. Prominent entries include Telser (1980), Bull (1987),
MacLeod and Malcomson (1989), Schmidt and Schnitzer (1995), Roth (1996), Bernheim
and Whinston (1998), Pearce and Stacchetti (1998), Ramey and Watson (2001, 2002),
Baker, Gibbons, and Murphy (2002), and Levin (2003). In each of these papers, a contract
specifies an externally enforced element that affects the parties’ payoffs in each stage of
their game. The parties interact over time and may sustain cooperative behavior by playing
repeated-game-style equilibria. Some of these papers address the issue of negotiation (and
renegotiation) over the self-enforced component of contract; this is typically done with
assumptions on equilibrium selection, such as Pareto perfection, rather than by explicitly
modeling how contracts are formed. Of these papers, the most relevant to the work reported
here is Bernheim and Whinston (1998). These authors show that, even when external en-
forcement can be structured to control individual actions, parties may prefer relying on
self-enforcement because it can generally be conditioned on more of the history than can
externally enforced elements. This is exactly the feature exhibited in the comparison of
Alternatives 2 and 3 in the example discussed above.

The distinction of the modeling exercise herein, relative to the existing literature, is the
depth of modeling how parties determine the self-enforced aspects of contract. That is, I
examine the negotiation process in more explicit terms than is done in the related literature.
Here, notions of bargaining power and disagreement points are addressed in the context of
self-enforcement. The detailed examination of negotiation yields a foundation for “Pareto
perfection” as well as the concepts used in some of my other work (Ramey and Watson
2002, Klimenko, Ramey, and Watson 2004, Watson 2005a,b). Furthermore, it helps one
understand the implications of various assumptions about the negotiation process, which
offer a guide for future applied work.

Part of the framework developed here was previously sketched in Watson (2002), which
contains some of the basic definitions and concepts without the formalities. My analysis
of negotiation over self-enforced elements of contract draws heavily from—and extends
in a straightforward way—the literature on cheap talk, most notably Farrell (1987), Rabin
(1994), Arvan, Cabral, and Santos (1999), and Santos (2000).

Outline of the Paper
The following section begins the theoretical exercise by describing single contracting

problems that include self-enforced and externally enforced components. Section 2 ad-
dresses how contract negotiation can be modeled. This section first describes bargaining
protocols to be analyzed using standard non-cooperative theory. Assumptions on the mean-
ing of language are described. Then, non-cooperative bargaining theories are translated
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into a convenient cooperative-theory form and the notion of activeness is discussed. Three
benchmark bargaining solutions are defined.

In Section 3, I develop a framework for analyzing long-term contractual relationships
in which the parties contract and take individual actions in successive periods of time.
I analyze contractual relationships in terms of the sets of continuation values from each
period in various contingencies. The notion of contractual equilibrium is defined and partly
characterized. Section 4 contains the formal analysis of the MW example and a repeated-
game example. Section 5 concludes the body of the paper with some notes for applications.

The appendices present technical details and existence results. Appendix A contains the
details of an example discussed in Section 2. Appendix B defines three classes of contrac-
tual relationships in which elements of the technology are finite; existence of contractual
equilibrium is proved for these classes of relationships. Appendix C contains the proofs of
the lemma and theorem that appear in the body of the paper.

1 Contractual Elements in an Ongoing Relationship

Suppose that there are two players in an ongoing relationship and that at a particular time—
call it a negotiation phase—they have the opportunity to establish a contract or revisit a
previously established contract. At this point, the players have a history (describing how
they interacted previously) and they look forward to a continuation (describing what is to
come). At the negotiation phase, the players form a contract that has two components: an
externally enforced part and a self-enforced part.

The externally enforced component of their agreement is a tangible joint action x,
which is an element of some set X . For example, x can represent details of a document
that the players are registering with the court, who later will intervene in the relationship;
x could be an immediate monetary transfer; or x might represent a choice of production
technology. There is a special element of X , called the default joint action and denoted x,
that is compelled if the players fail to reach an agreement.

The self-enforced component of the players’ joint decision is an agreement between
them on how to coordinate their future behavior. For example, if the players anticipate
interacting in a subgame later in their relationship, then, at the present negotiation phase,
they can agree on how each of them will behave in the subgame. The feasible ways in which
the players can coordinate on future behavior are exactly those that can be self-enforced, as
identified by incentive conditions. Coordination on future behavior yields a continuation
value following the negotiation phase.

To describe the set of feasible contracts, it is useful to start by representing the players’
alternatives in terms of feasible payoff vectors. Let Y x � R2 be the set of payoff vectors
(continuation values) on which the players can coordinate, conditional on selecting tangi-
ble joint action x. The set Y x is assumed to embody a solution concept for future play.
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Defining Y � fY xgx2X , the contracting problem is represented as .X;x;Y/. Define

Y �
[

x2X

Y x and Y � Y x:

In payoff terms, the contracting problem can be thought of as a joint selection of a vector
in Y , with disagreement leading to a vector in Y .

Some of the analysis uses the following assumption.

Assumption 1: The set Y is compact. Furthermore, the set Y is closed and satisfies Y �
fy 2 R2 j ˇ1y1 C ˇ2y2 � 1g for some numbers ˇ1; ˇ2 > 0.

The second part of this assumption is that Y is bounded above (separated) by a negatively-
sloped line in R2; this assures that arbitrarily large utility vectors are not available to the
players.

BoS Example
Here is a simple example that illustrates the determination of Y x . There are two players

who interact over two phases of time. The first is a negotiation phase, where the players
negotiate and jointly select tangible action x D .l;m/. The component l is a “level of
interaction” that can be either 1 or 2, whereas m D .m1;m2/ is a vector of monetary
transfers from the set

R2
� � fm 2 R2 j m1 C m2 � 0g:

Note that the players can transfer money between them and can throw away money. We
have X D f1; 2g � R2

�. In the second phase, the players simultaneously take individual
actions, with each player choosing between “left” and “right.” The players then receive
payoffs given by the following battle-of-the-sexes matrix:

Assume that the default joint action is .1; .0; 0//, where no money is transferred and l D 1.
Self-enforcement of behavior in the second phase is modeled using Nash equilibrium.

There are three Nash equilibria of the battle-of-the-sexes game. For the matrix shown
above, the two pure-strategy equilibria yield payoff vectors .6l C m1; 3l C m2/ and .3l C
m1; 6l C m2/, whereas the mixed-strategy equilibrium yields .2l C m1; 2l C m2/. Thus,
in this example, we have for any m 2 R2

�:

Y .1;m/ D f.6 C m1; 3 C m2/; .3 C m1; 6 C m2/; .2 C m1; 2 C m2/g

and
Y .2;m/ D f.12 C m1; 6 C m2/; .6 C m1; 12 C m2/; .4 C m1; 4 C m2/g:
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Figure 2: Y for the BoS example.

The set Y is given by the shaded region in Figure 2 (which shows the positive quadrant).
The figure also shows the three points composing Y .1;.0;0// and the three points composing
Y .2;.0;0//.

More on the MW Example
For another illustration of how to construct Y x , consider the manager-worker example

from the Introduction. Imagine that the parties are negotiating at the beginning of the
second period, in the contingency in which they had selected mhh D mhl D .�9; 9/, mlh D
.�1; 1/, and mll D .0; 0/ in the first period (recall the description of Alternative 3 in the
Introduction).

The parties’ tangible joint action at the beginning of the second period is a new selection
of transfers to supercede those chosen in the first period. Call the second period selections
Omhh, Omhl, Omlh, and Omll. The default action specifies Omhh D Omhl D .�9; 9/, Omlh D .�1; 1/,

and Omll D .0; 0/. Recall that the matrix induced my these default transfers is:

Thus, noting the three Nash equilibria of this matrix, we have

Y D f.9; 0/; .0; 0/; .0; 9/g:

As for the set Y , note that the greatest joint payoff attainable in the second period is 16.
Further, for any vector y D .y1;y2/ with y1 C y2 � 16, there is a specification of transfers

10



Figure 3: Y for the MW example in a second-period contingency.

such that .high; high/ is a Nash equilibrium, 17 C Omhh
1

D y1, and �1 C Omhh
2

D y2. This
implies that

Y D fy 2 R2 j y1 C y2 � 16g:

The sets Y and Y are pictured in Figure 3.

2 Modeling Contract Negotiation

Interaction in the negotiation phase leads to some contractual agreement between the play-
ers, which we can represent by a joint action x and a continuation value y 2 Y x . The
negotiation process can be modeled using a non-cooperative specification that explicitly
accounts for the details of the negotiation process. For example, we could assume that
negotiation follows a specific offer-counteroffer or simultaneous-demand protocol. This
approach basically “inserts” into the time line of the players’ relationship a standard non-
cooperative bargaining game.

For an illustration, consider the ultimatum-offer bargaining protocol whereby player 1
makes an offer to player 2 and then player 2 decides whether to accept or reject it, ending
the negotiation phase. Because the players are negotiating over both the tangible action
x and the intangible coordination of their future behavior, player 1’s “offer” comprises
both of these elements. Because the sets Y x represent (in payoff terms) the feasible ways
in which the players can coordinate future behavior, we can describe an offer by a tuple
.x;y/. Translated into plain English, .x;y/ means “I suggest that we take tangible action
x now and then coordinate our future behavior to get payoff vector y.”

If an offer is accepted by player 2, then x is externally enforced. Note, however, that
“y” is simply cheap talk. When player 1 suggests coordinating to obtain payoff vector
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y and player 2 says “I accept,” there is no externally enforced commitment to play ac-
cordingly. In fact, the players could then coordinate to achieve some other payoff vector.
Furthermore, there is no requirement that .x;y/ satisfy y 2 Y x; a player can say whatever
he wants to say.

Because y is cheap talk, there are always equilibria of the negotiation phase in which
this intangible component of the offer is ignored; in other words, the players’ future behav-
ior is not conditioned on what they say to each other in the negotiation phase (other than
through the externally enforced x). In such equilibria, there is a sense in which the players
are not actively negotiating over how to coordinate their future behavior. Rather, some so-
cial convention or other institution is doing so. To model more active negotiation, we can
proceed by combining standard equilibrium conditions with additional assumptions on the
meaning of language. These additional requirements can be expressed as constraints on
future behavior conditional on statements that the players make in the negotiation phase.
Farrell (1987), Rabin (1994), Arvan, Cabral, and Santos (1999), and Santos (2000) con-
duct such an exercise for settings without external enforcement.4 This section builds on
their work and offers the straightforward extension to settings with external enforcement.

Bargaining Protocols
To formalize these ideas, I begin with some general definitions. I assume that the

negotiation phase is modeled using standard noncooperative-theory tools.

Definition 1: A bargaining protocol � consists of (i) a game tree that has all of the stan-
dard elements except payoffs, (ii) a mapping  from the set of terminal nodes N of the
game tree to the set X , (iii) a partition fN A;N Dg of N , and (iv) a function � WN A ! R2.

The mapping  identifies, for each path through the tree, a tangible action from X that the
players have selected. Reaching terminal node n implies that  .n/ will then be externally
enforced. Although no payoff vector is specified for terminal nodes, it is understood that if
players reach terminal node n in the negotiation phase then their behavior in the continua-
tion leads to some payoff in Y  .n/. Note that a well-defined extensive-form game can be
delineated by assigning a specific payoff vector to each terminal node of � .

The additional structure provided by items (iii) and (iv) in the definition is helpful in
distinguishing between “agreement” and “disagreement.” The set N A comprises the ter-
minal nodes at which the players have reached an agreement, whereas N D comprises the
terminal nodes at which the players have not reached an agreement. The meaning of “dis-
agreement” requires that  .n/ D x for all n 2 N D; that is, the default action is taken when
the players fail to reach an agreement. I assume that N D is nonempty. The function �
associates with each terminal node in N A the continuation payoff vector that was verbally
stated in the players’ agreement.

Consider, as an example, the ultimatum-offer protocol in which player 1 makes an offer
and player 2 accepts or rejects it. For this game tree, each terminal node represents a path

4See also Farrell and Rabin (1996).
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consisting of player 1’s offer .x;y/ and player 2’s response (“accept” or “reject”). We have
 .x;yI accept/ D x and  .x;yI reject/ D x for every x 2 X and y 2 R2. That is, if
player 2 accepts .x;y/ then external enforcement of x is triggered; otherwise, the default
action x occurs. Furthermore,

N A D f.x;yI accept/ j x 2 X;y 2 R2g

and �.x;yI accept/ D y. That is, if player 1’s offer of .x;y/ is accepted by player 2,
then the players have identified the continuation payoff y. Remember, though, that y is not
necessarily a feasible payoff vector in the continuation.

Equilibrium Conditions
An equilibrium in the negotiation phase is a specification of behavior that is rational

given some feasible selection of future behavior.

Definition 2: Take a bargaining protocol � and let s be a strategy profile (mixed or pure)
for this extensive form. Call s an equilibrium of the negotiation phase if there is a
mapping ' WN ! R2 such that (i) '.n/ 2 Y  .n/ for every n 2 N , and (ii) s is a subgame-
perfect equilibrium in the extensive form game defined by � with the payoff at each node
n 2 N given by '.n/.5 Call y� an equilibrium negotiation value if it is the payoff vector
for some equilibrium of the negotiation phase.

Implied by the domain of ' is that the behavior in the negotiation phase becomes common
knowledge before the players begin interacting in the continuation. Clearly, studying equi-
librium in the negotiation phase is equivalent to examining a subgame-perfect equilibrium
in the entire game (negotiation phase plus continuation); here, I am simply representing
post-negotiation interaction by its continuation value.

Assumptions about the meaning of language can be viewed as constraints on the func-
tion ' in the definition of equilibrium of the negotiation phase. It may be natural to assume
that if a player accepts an offer .x;y/ and if y 2 Y x (that is, y is consistent with x), then
the continuation value y becomes focal and the players coordinate their future behavior to
achieve it. This is expressed by

Assumption 2 (Agreement Condition): '.n/ D �.n/ for all n 2 N A satisfying  .n/ 2
Y  .n/.

We could also make an assumption about the continuation value realized when the players
fail to agree. One such condition is that the players share responsibility for disagreement
in the sense that the continuation value does not depend on how the players arrived at the
impasse.

Assumption 3 (Disagreement Condition): There is a vector y 2 Y such that '.n/ D y

for all n 2 N D.

5One could use something other than subgame perfection for condition (ii), but subgame perfection is
suitable for my purposes herein.
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These assumptions are added to the conditions on ' in Definition 2. To refer to the re-
sulting equilibrium definitions, I use the language “equilibrium negotiation value under
Assumption’s [2, 3, or both].”

Even with Assumptions 2 and 3, the disagreement value y is an arbitrary vector that
can depend on the players’ history of interaction. One can imagine that y is selected by
a previous agreement between the players or by some social norm—either way, taken as
given by the players in the current negotiation phase. On the other hand, one can imagine a
more active form of negotiation in which communication in the current negotiation phase
determines how the players coordinate their future behavior when they disagree.

Here is a story for how y may be decided in the current negotiation phase. In the event
that bargaining ends at an impasse, there is one more round of communication in which
“Nature” selects one of the players to make a final declaration about how they should
coordinate their future behavior. Assume that Nature chooses player 1 with probability
�1 and player 2 with probability �2. Also suppose, along the lines of Assumption 2, that
the declaration becomes focal, so that the players actually coordinate appropriately. Then,
when player i gets to make the final declaration, he will choose the continuation value
Oyi 2 Y satisfying Oyi

i D max Y i. For simplicity, assume that

Oyi
j D maxfyj j . Oyi

i ;yj / 2 Y g

(player i is generous where it does not cost him). The disagreement value is thus given by:

Assumption 4 (Active Disagreement): The disagreement value is the constant vector y �
�1 Oy1 C �2 Oy2.

The vectors Oy1 and Oy2 exist by Assumption 1.

Example: BoS with the Ultimatum-Offer Protocol
To illustrate the implications of Assumptions 2-4, I consider as an example (i) the BoS

contracting problem described in Section 1 and (ii) the ultimatum-offer protocol described
at the end of the previous subsection. Recall that Figure 2 shows sets Y and Y for the
BoS contracting problem. What follows are brief descriptions of the sets of equilibrium
negotiation values with and without these assumptions. See Appendix A for more details.

The set of equilibrium negotiation values (without Assumptions 2-4) is given by the
shaded region in the left picture shown in Figure 4. The points with y1 < 3 are not
equilibrium values because, by making an offer of x D .2; Qm/ with Qm1 � �1 and Qm2 >

�2, player 1 guarantees himself a payoff of at least 3. This is because (i) if player 2 accepts
such an offer, then, regardless of which continuation value they coordinate on, player 1 gets
at least min Y .2; Qm/ D 4 C Qm1 � 3, and (ii) player 2 could rationally reject such an offer
only if he anticipates getting at least 4 C Qm2 himself, but the two such points in Y yield at
least 3 to player 1.

The set of equilibrium negotiation values is reduced under Assumption 2, as shown in
the right picture of Figure 4. Here, player 1 can guarantee himself a value of 12 � " by
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Figure 4: Equilibrium negotiation values in the BoS example.

offering x D .2; .�"; "// and y D .12 � "; 6 C "/ for any small " > 0; such an offer must
be accepted by player 2 in equilibrium. Points in the shaded region can be supported with
appropriately chosen disagreement values.

The set of equilibrium negotiation values is further reduced under Assumptions 2 and 3,
as shown in Figure 5. With these assumptions, we have the standard outcome of the
ultimatum-offer-bargaining game as though all aspects of the continuation value were ex-
ternally enforced and the disagreement value were some fixed element of Y . In the left
picture of Figure 5, the set of equilibrium negotiation values (for various y 2 Y ) comprises
the three points indicated on the efficient boundary of Y . The picture on the right shows
the single equilibrium negotiation value that results when Assumption 4 is added; the case
pictured has �2 2 .1=2; 1/.

Cooperative-Theory Representation
Whatever are the assumed bargaining protocol and equilibrium conditions, their impli-

cations can be given a cooperative-theory representation in terms of a bargaining solution
S that maps contracting problems into sets of equilibrium negotiation values. That is, for
a contracting problem .X;x;Y/, S.X;x;Y/ is the set of equilibrium negotiation values
for the given bargaining protocol and equilibrium conditions. It can be helpful to spec-
ify a bargaining solution S directly (with the understanding of what it represents) because
this allows the researcher to focus on other aspect of the strategic situation without getting
bogged down in the analysis of negotiation. One can then compare the effects of various
assumptions about negotiation by altering the function S .
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Figure 5: More equilibrium negotiation values in the BoS example.

On the technical side, note that S.X;x;Y/ is a subset of the convex hull of Y . For
some applications, it will be the case that S.X;x;Y/ is contained in Y . Points in the
convex hull of Y that are not in Y are possible in settings in which the bargaining protocol
involve moves of Nature or where players randomize in equilibrium. One can also use the
definition of S to model situations in which the players select lotteries over joint actions and
continuation values. In these cases, an equilibrium negotiation value may be a nontrivial
convex combination of points in Y .

Activeness of Contracting
When a bargaining solution contains more than one element for a given contracting

problem, there is a role for social convention and history to play in the selection of the
outcome. The selection may also be determined by a previous contract to which the players
agreed. If two bargaining solutions, S 0 and S , have the relation S 0 � S , then I say that S 0

represents more active contracting than does S . In this case, S imposes fewer constraints
on the outcome of the negotiation process and it allows a greater role for social convention,
history, and prior agreements to play in the selection of the outcome. For example, if the
players would arrive at a particular contracting problem .X;x;Y/ in two or more different
contingencies (from two different histories), then S affords wider scope for differentiating
between the histories than does S 0.

Benchmark Solutions
Various bargaining protocols and equilibrium conditions can be compared on the bases

of (i) the extent to which they support outcomes that are inefficient from the negotiation
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phase, and (ii) the extent to which they represent the players’ active exercise of bargaining
power. In this subsection, I describe three benchmark solutions that collectively represent
a range of possibilities on these two dimensions.

The first benchmark solution is defined by the set of equilibrium negotiation values for
the Nash-demand protocol without Assumptions 2-4. In the Nash-demand protocol, the
players simultaneously make demands .x1;y1/ and .x2;y2/. If the demands are equal,
so x1 D x2 and y1 D y2, then x1 is compelled by the external enforcer; otherwise, the
default action x is compelled. It is easy to verify that the equilibrium negotiation values in
this case are given by

SND.X;x;Y/ � fy� 2 Y j y�
1 � min Y 1 and y�

2 � min Y 2g:
The superscript “ND” here denotes “Nash demand.”

The second and third benchmark solutions refer to the set of equilibrium negotiation
values for a standard K-round, alternating-offer bargaining protocol under Assumptions 2
and 3. In any odd-numbered round, player 1 makes an offer to player 2, who then decides
whether to accept or reject it. If player 2 accepts, then the negotiation phase ends. If
player 2 rejects player 1’s offer, then a random draw determines whether the negotiation
phase ends or continues into the next round; the latter occurs with probability e���1 . In
an even-numbered round, the players’ roles are reversed and e���2 is the probability that
the following round is reached in the event that player 1 rejects player 2’s offer. I assume
that the values �1 and �2 are nonnegative and sum to one, and I write � D .�1; �2/. The
negotiation phase ends for sure after round K. Let �A.K; �;�/ denote this bargaining
protocol.6

It is easy to verify that, under Assumption 1, there is an equilibrium of �A.K; �;�/

that satisfies Assumptions 2 and 3 and that has agreement in the first round.7 For any
disagreement value y 2 Y , let Q.y;�/ be defined as the limit superior of the set of implied
equilibrium negotiation values as K ! 1. Define the limit in terms of the Hausdorff
metric, so that y� 2 Q.y;�/ if and only if there is a sequence of vectors fyK g1

KD1 such
that (i) yK is an equilibrium negotiation value for �A.K; �;�/ under Assumptions 2 and 3,
and (ii) fyK g has a subsequence that converges to y�.

Consider the limit superior of Q.y;�/ as the “time between offers” � converges to
zero:

Q.y/ � lim
�!0

Q.y;�/:

Q.y/ � Y is implied by Assumption 1 and by the construction of Q. I define the second
benchmark bargaining solution to be the set that results by looking at all feasible disagree-
ment values:

SAA.X;x;Y/ �
[

y2Y

Q.y/:

6One could have K D 1, but the case of a finite K has perhaps a more straightforward interpretation
whereby the continuation of the relationship must start at �K units of time from when negotiation begins.

7For some nonconvex examples of Y , one can find mixed equilibria and/or equilibria in which delay
occurs. I ignore these.
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For the third benchmark solution, I add Assumption 4 to focus on the “active disagreement”
vector:

SAD.X;x;Y/ � Q.�1 Oy1 C �2 Oy2/:

By taking advantage of Binmore, Rubinstein, and Wolinsky’s (1986) analysis, we can
show that, assuming Y is convex, Q.y/ is the generalized Nash bargaining solution eval-
uated on bargaining set Y , with disagreement value y, and with the players’ bargaining
weights given by � .

Lemma 1: If Y is convex then Q.y/ D arg max
y 2 SPB.Y /

y � y

.y1 � y
1
/�1.y2 � y

2
/�2 .

Here, SPB.Y / denotes the strong Pareto boundary of the set Y . Note, therefore, that if Y is
convex then bargaining solution SAA is a subset of, and bargaining solution SAD is a point
on, the strong Pareto boundary of Y .

3 Contractual Relationships

In this section, I develop a framework for examining multi-period contractual relationships.
Each period consists of two phases of time: the negotiation phase and the individual-action
phase. In the negotiation phase, the players make a joint contracting decision. Interaction in
the negotiation phase is modeled as described in the preceding sections. In the individual-
action phase, the players make independent decisions that are modeled as non-cooperative
interaction. I constrain attention to finite-horizon settings in which, in each negotiation
phase, all payoff-relevant information about future interaction is commonly known.

Formal Description of the Game with Joint Actions
Suppose that two players interact over a finite number of discrete periods. At the begin-

ning of each period, a state variable z represents the payoff-relevant aspects of the players’
history as well as any events on which the players are assumed to condition their behavior.
With common knowledge of z, the players first select a joint action x. Then, simultane-
ously and independently, the players choose individual actions a1 and a2 (for players 1
and 2, respectively) and an exogenous random draw a0 is realized. Write a D .a0; a1; a2/

as the individual-action profile. At the end of the period, the players receive payoffs given
by a vector u.z;x; a/. The state is then updated and interaction continues in the next period
or the game terminates.

To be more precise, fundamentals of the game include a set of states Z, a set of joint
actions X , and a set of individual-action profiles A. There is a correspondence X WZ -- X
and a function x W Z ! X such that X.z/ gives the set of joint actions available to the
players in a period that begins in state z, and x.z/ 2 X.z/ denotes the default joint action
in this state. Further, Ai.z;x/ denotes the set of feasible individual actions for player i in a

18



period in which z is the state and x is the joint action that the players selected. The feasible
individual-action profiles are given by

A.z;x/ D A0.z;x/ � A1.z;x/ � A2.z;x/;

where A.z;x/ � A. Assume that Nature selects a0 according to some probability distri-
bution ˛0.z;x/ in each period. Note that Nature’s actions and probability distribution may
be influenced by the state and joint action of the current period.

There is a transition function f WZ �X �A ! Z that defines the state in the following
period as a function of the current period’s state and actions.8 Specifically, if x and a are
the actions taken in a period that begins in state z, then z0 D f .z;x; a/ is the state in the
next period. There is an initial state of the relationship zinit 2 Z in effect at the beginning
of the first period. There is also a nonempty set of terminal states Z term � Z that mark the
end of the game. A feasible path of play is a sequence f.zt ;xt ; at /gT

tD1 such that

(i) z1 D zinit;

(ii) xt 2 X.zt /, at 2 A.zt ;xt /, and ztC1 D f .zt ;xt ; at /

for all t D 1; 2; : : : T � 1; and

(iii) f .zT ;xT ; aT / 2 Z term.

Assumption 5: There is a positive integer � such that every feasible path of play has T �
� and at least one feasible path has T D � .

This assumption is maintained hereinafter. It implies that Z can be partitioned into sets
Z1;Z2; : : : ;Z�C1 with the following properties. First, Z1 D fzinitg and Z�C1 D Z term.
Second, for each t 2 f1; 2; : : : ; �g, each z 2 Zt , and actions x 2 X.z/ and a 2 A.z;x/,
we have

f .z;x; a/ 2 Z tC1 �
�C1[

kDtC1

Zk :

Partitioning Z in this way facilitates backward-induction analysis.
Finally, there is a payoff function u W Z � X � A ! R2. For any given path of play

fzt ;xt ; at gT
tD1

, the payoff vector for the entire game is the sum of per-period payoffs:

TX

tD1

u.zt ;xt ; at /:

One can incorporate discounting by defining u and the state system appropriately.

8By making z the full history of the relationship, we have a setting of almost perfect information. From
this, assumptions about on what the players condition their behavior are achieved by restricting Z. Imperfect
information can be accommodated by specifying that the state does not fully record all of the players’ past
actions; in this case, one’s attention is limited to settings in which the events that are not common knowledge
are also not payoff relevant for future interaction, and then we are assuming public equilibrium.
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Contractual Equilibrium
To analyze the contractual relationships described in the previous subsection, I combine

a bargaining solution S with individual incentive conditions. The former models how
players select among joint actions in the negotiation phase, whereas the latter identify Nash
equilibria for the individual-action phase in each period. The analysis is most conveniently
conducted using a recursive formulation in which we focus on within-period payoffs and
continuation values.

In the recursive formulation, we posit a value correspondence V W Z -- R2 (a mapping
from states to subsets of R2) with the interpretation that, for each z 2 Z, V .z/ is a set
of continuation-value vectors for the players at the start of a period in state z. For V to
be consistent with the bargaining solution S , it must be that V .z/ � S.X.z/;x.z/;Y.z//,
where .X.z/;x.z/;Y.z// is the contracting problem that the players face at the beginning
of the period in state z.

In turn, Y.z/ D fY x.z/gx2X.z/ should correctly describe the feasible continuation val-
ues over the joint actions that are available to the players. For a specific x 2 X.z/, every
feasible continuation value is supported by some (possibly mixed) action profile .˛�

1
; ˛�

2
/

that is a Nash equilibrium in the individual-action phase of the current period. The Nash
equilibrium condition is

yi D E Œui.z;x; .a0; ai; aj //C vi.f .z;x; .a0; ai ; aj /// j ˛0.z;x/; ˛
�
i ; ˛

�
j �

� E Œui.z;x; .a0; a
0
i; aj //C vi.f .z;x; .a0; a

0
i ; aj /// j ˛0.z;x/; ˛

�
j �

(1)

for all a0
i 2 Ai.z;x/ and for i D 1; 2. In this expression, yi is player i’s continuation

payoff from the beginning of the current period and E denotes the expectation taken over
Nature’s probability distribution ˛0.z;x/ and whatever randomizing the players do. The
function v selects continuation-value vectors for the start of the next period. These should
be consistent with the behavioral theory, meaning that v.z0/ 2 V .z0/. Thus, for every
x 2 X.z/, we have

Y x.z/ � fy 2 R2 j there exists v WZ tC1 ! R2 and .˛�
1 ; ˛

�
2 / 2 4A�0.z;x/ such that

Condition (1) holds for i D 1; 2, and v.z0/ 2 V .z0/ for all z0 2 Z tC1g: (2)

In this expression, 4A�0.z;x/ denotes the set of uncorrelated probability distributions
over A1.z;x/ � A2.z;x/.

These elements compose the notion of rational behavior.

Definition 3: Let S be a given bargaining solution. A value correspondence V W Z -- R2

is said to represent contractual equilibrium if

(i) V .z/ � f.0; 0/g for every z 2 Z term and

(ii) for every z 2 Z nZ term, we have V .z/ D S.X.z/;x.z/;Y.z// ¤ ;, where
Y.z/ is defined by Equation (2).

If such a correspondence exists, say that contractual equilibrium exists.
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Theorem 1: Take as given a contractual relationship and a bargaining solution S . If
Assumption 5 is satisfied and contractual equilibrium exists, then there is a unique value
correspondence that represents contractual equilibrium.

This result is a straightforward consequence of the backward-induction construction. The
result is proved in Appendix C; existence results for three classes of contractual relation-
ships are presented in Appendix B.

4 Analysis of Examples

This section contains analysis of the MW example and an example of a repeated game
with contracting. These examples illustrate the procedure for characterizing contractual
equilibrium and they demonstrate how the activeness of contracting influences the outcome.

MW Example
In this subsection, I formally elaborate the MW example from the Introduction. A

state is denoted z D .h; �/, where h is the history of individual actions to a particular
period and � is a function that tells the external enforcer what monetary transfer to make
contingent on the history; that is, following history h, the external enforcer compels transfer
�.h/ D .m1;m2/, where mi is the amount given to player i . Let H � H 1 [ H 2 [ H 3,
where

H 1 D fhinitg is the set containing the initial (null) history of actions hinit,

H 2 D f�g� f0; 1; 2; 3; 4g is the set of individual-action profiles in the first period (invest-
ment levels for the worker and a null, trivial action “�” for the manager), and

H 3 D f�g � f0; 1; 2; 3; 4g � fhigh; lowg2 is the histories of individual actions through the
end of the second period.

Note that H 3 includes the worker’s first-period investment choice and both players’ second-
period effort choices.

The transfer function � maps H to R2 with the following constraints. First, recall
that, in the story, the external enforcer observes second-period effort choices but not the
worker’s first-period investment. This is represented by assuming that the transfer function
is measurable with respect to the partition

H �
˚
H 1;H 2;H 2 � f.high; high/g;H 2 � f.high; low/g;

H 2 � f.low; high/g;H 2 � f.low; low/g
	

of H . The story also indicates that the transfer function must be relatively balanced. The
interpretation I offer for this is that the transfer is actually the sum of (i) an immediate,
voluntary transfer that the players make as they reach agreement in the negotiation phase,
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and (ii) a contingent transfer compelled by the external enforcer after individual actions are
taken in a given period. Furthermore, the external enforcer only compels balanced transfers
that sum to zero. I make the additional technical assumption that transfers are contained in
some set M D fm 2 R2 j m1;m2 � �ˇ; m1 C m2 � 0g, where ˇ is arbitrarily large. To
represent this idea, define X to be the subset of transfer functions of the form � WH ! M

that are measurable with respect to H and have the following property. For t D 2; 3 and
h;h0 2 H t , �1.h/C �2.h/D �1.h

0/C �2.h
0/.

The initial state is defined as zinit D .hinit; �0/, where �0 denotes the constant transfer
function that always specifies zero transfers. At the beginning of any period in state z D
.h; �/, the set of feasible joint actions is X.z/ � X and the default joint action is �.
Regarding individual actions, there is no random draw. The set of feasible individual-
action profiles in the first period is given by A.zinit; �/ D f�g � f1; 2; 3; 4g. The set of
individual-action profiles in the second-period is A..h; �/; �/ D flow; highg2 for all h 2
H 2. The transition of the state works in the obvious way. From state z D .h; �/, where
h 2 H 1 [ H 2, if � is the joint action (transfer function selected) and a is the individual
action profile in the current period, then the state in the following period is z0 D .h0; �/
where h0 D .hI a/ is the history formed by appending a to h. Every state of the form
z D .h; �/ for h 2 H 3 is a terminal state.

On payoffs, in the first period for any a D .�; I/ and � 2 M , we have u.zinit; �; a/ D
.8I;�I2/C �.a/. Regarding the second period, take any z D .h; �/ where h 2 H 2 and
a 2 flow; highg2, the vector u.z; �; a/ is given by �.hI a/ plus the vector in the cell of the
matrix

that is relevant for action profile a.
Minor modifications represented by this formal description of the game, relative to the

description in the Introduction, are (i) that the monetary transfers are restricted to be in
some compact set and (ii) that an externally enforced transfer can be specified for the first
period in addition to those specified for the second period. Item (i) allows an existence
result from Appendix B to apply (in particular, Theorem 3); item (ii) was left out of the
description in the Introduction because it was not central to the discussion.

For convenience, given any transfer function �, I shall let mll be the vector specified for
each h 2 H 3 in which .low; low/ is the individual-action played in the second period, I let
mhl be the vector specified for each h 2 H 3 in which .high; low/ is the individual-action
played in the second period, and so on. This is in accord with the notation used in the
presentation of the example in the Introduction.
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I next characterize contractual equilibrium and find the maximum joint value that the
players can attain, for each of the benchmark bargaining solutions SND, SAA, and SAD

defined in Section 2. By Theorem 3 in Appendix B, contractual equilibrium exists in the
cases of SND and SAA; existence will be obvious for the case of SAD. Write V ND, V AA,
and V AD for the value correspondences that represent contractual equilibrium for these
three cases. The following analysis establishes that

maxfv1 C v2 j v 2 V ND.zinit/g D 32;

v1 C v2 D 31 for all v 2 V AA.zinit/;

and
v1 C v2 D 16 for all v 2 V AD.zinit/:

Thus, in this example, more active contracting implies a lower attainable joint value.
First consider SND. Let Q� denote a transfer function that forces .low; low/ to be played

in the second period and has Qmll D .0; 0/. This is the transfer function from Alternative 1 in
the Introduction. Take any h 2 H 2 and let z D .h; Q�/ be any state at the start of the second
period where Q� is the current transfer function. Note that Y .z/ D .0; 0/ because, unless the
transfer function is renegotiated, the players will have the incentive to play .low; low/ at
the end of the period. Also note that the players can renegotiate to pick a transfer function
that forces .high; high/ and arbitrarily divide or throw away the value. This means that

B � fy 2 R2 j y1;y2 � 0; y1 C y2 � 16g � Y .z/:

By the definition of SND, we therefore have

V ND.z/ D SND.X.z/;x.z/;Y.z// D B:

In the first period, the players can select Q� and agree on a second-period continuation
value of .0; 16/ if the worker chooses I D 4 and a value of .0; 0/ if the worker chooses any
I ¤ 4. That is, the players agree to coordinate on these history-dependent continuation
values in the negotiation phase at the start of the second period.

When the players anticipate coordinating in this way, player 2 has the incentive to
choose I D 4 in the first period and therefore (if no transfer is specified for period 1) the
payoff from the beginning of the game is .32;�16/C .0; 16/ D .32; 0/. All or part of the
joint value of 32 can be transferred to player 2 by way of an additional constant transfer (in
period 1, for instance). The bottom line is that

fy 2 R2 j y1;y2 � 0; y1 C y2 � 32g � Y .zinit/:

In addition, it is not difficult to check that

Y .zinit/ D fy 2 R2 j y1 � 9; y2 � 0; y1 C y2 � 16g:
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By the definition of SND, we conclude that

V ND.zinit/ D fy 2 R2 j y1 � 9; y2 � 0; y1 C y2 � 32g:

Next consider SAA with bargaining weights given by � D .1; 0/, as described in the
Introduction. Let Q� denote the transfer function associated with Alternative 3. That is,
Qmhh D Qmhl D .�9; 9/, Qmlh D .�1; 1/, and Qmll D .0; 0/. Take any h 2 H 2 and let

z D .h; Q�/ be any state at the start of the second period where Q� is the current transfer
function. Noting that

Y .z/ D f.0; 0/; .0; 9/; .9; 0/g

and B � Y .z/ (as with the previous case), and using the definition of SAA, we have

V AA.z/ D f.16; 0/; .7; 9/g:

In the first period, the players can select Q� and agree on a second-period continuation
value of .7; 9/ if the worker chooses I D 3 and a value of .16; 0/ if the worker chooses any
I ¤ 3. That is, the players agree to coordinate on these history-dependent continuation
values in the negotiation phase at the start of the second period. Importantly, it is the
disagreement point for their second-period negotiation that achieves history dependence.

When the players anticipate coordinating in this way, player 2 has the incentive to
choose I D 3 in the first period and therefore (if no transfer is specified for period 1) the
payoff from the beginning of the game is .24;�9/C .7; 9/D .31; 0/. One can easily verify
that no contract achieves a higher joint value than 31. To do so would require a specification
of second-period transfers such that (i) there are two equilibria in the individual-action
phase, and (ii) player 2’s payoffs in these two equilibria differ by strictly more than 9. It
is not difficult to calculate that, because the transfer function is constrained to be relatively
balanced (so mhh

1 C mhh
2 D mhl

1 C mhl
2 D mlh

1 C mlh
2 D mll

1 C mll
2), the maximum difference

in player 2’s payoffs in multiple equilibria of the individual-action phase is 9.
Continuing with the case of SAA, one can easily calculate that Y .zinit/ D f.16; 0/g.

Combining this with the analysis of the preceding paragraph, we conclude that V AA.zinit/ D
f.31; 0/g.

Finally, consider SAD, with bargaining weights given by � D .1; 0/. In this case,
V AD.z/ is a singleton for every z 2 H 2. Furthermore, on H 2, V AD is invariant in the “h”
part of the state. Thus, whatever contract is formed in the first period, player 2’s contin-
uation value from the beginning of the second period does not depend on his investment
choice. He optimally selects I D 0. The players can do no better than agree to the contract
of Alternative 2 in the Introduction. Player 1’s bargaining power gets him the entire joint
value, so V AD.zinit/ D f.16; 0/g.

A Repeated Game with Contracting
The next example is a repeated game with no transfers and no external enforcement.

Contracting thus relates only to the self-enforced activity. The example demonstrates that
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Figure 6: Example 1 stage game.

activeness of contracting is, in general, not monotonically related to the maximally attain-
able joint values.

Consider a three-period relationship with no joint actions and where the individual
actions and payoffs in each period are given by the stage-game matrix in Figure 6. Assume
that " is a small positive number (less than 1 suffices). Define the state to be the history of
individual actions. This is a finitely repeated game with contracting. Formally:

A1 D fa1
1
; a2

1
; a3

1
; a4

1
; a5

1
g

A2 D fa1
2
; a2

2
; a3

2
; a4

2
; a5

2
g

X D fxg
Z D fzinitg [ A [ A2 [ fztermg:

The transition function is defined by f .zinit;x; a/ D a, f .z;x; a/ D .zI a/ for each z 2 A,
and f .z;x; a/ D zterm for each z 2 A2. Here, “.zI a/” denotes the history formed by
appending a to z. Also, X.z/ D X and A.z;x/ D A for all z 2 Z.

Consider the bargaining solution S ı defined by:

S ı.X;x;Y/ � fy� 2 Y j there exists y 2 SPB.Y / and y 2 Y such that

y� � y and jy1 � y�
1 j C jy2 � y�

2 j � ıg; (3)

That is, S ı is the set of vectors that weakly dominate a disagreement value and are within ı
of the strong Pareto boundary of Y . If ı D 0 then this is simply the strong Pareto boundary
weakly above the disagreement set and, in the context of the repeated game, will yield
“strong Pareto perfection.” If ı > 0 then inefficient points are included. The bargaining
solution S ı is regular and exhibits an ordering by inclusion in the sense that S ı � S ı

0

whenever ı � ı0.
By Theorem 2 in Appendix B, contractual equilibrium exists. Note that, because the

set of joint actions is trivial, Y .z/ D Y .z/ for every z. Note also that, in this relationship,
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Figure 7: Example 1 equilibrium negotiation values.

the actions in a period have no direct effect on the set of feasible actions or the payoffs in
future periods. Therefore, for any two histories z and z0 of the same length (for example,
z; z0 2 A2), we have V .z/D V .z0/. I next calculate the value correspondences V 0 and V "

for the cases ı D 0 and ı D ", respectively.
Start with period 3 and consider any z 2 A2. In this period (after which the game ends),

the players must be playing a Nash equilibrium of the stage game. There are three Nash
equilibria: .a1

1; a
1
2/, .a

2
1; a

2
2/, and .a3

1; a
3
2/. Thus, we have

Y .z/ D
n
.1; 3/;

�
3 �

"

2
; 1 �

"

2

�
; .3; 1/

o
;

for each z 2 A2. The first and third are on the strong Pareto boundary of the equilib-
rium set; their payoff vectors compose the set S0.X.z/;x;Y.z//, with each one achieved
by using itself as the disagreement value. As for the S" bargaining solution, we have
S".X.z/;x;Y.z// D Y .z/; the vector .3 � "

2
; 1 � "

2
/ is included because it is within " of

the strong Pareto boundary with itself as the disagreement point. We have

V 0.z/ D f.1; 3/; .3; 1/g

and
V ".z/ D

n
.1; 3/;

�
3 �

"

2
; 1 �

"

2

�
; .3; 1/

o
;

as illustrated in Figure 7.
Next examine incentives in the individual action phase of period 2. Take any history

from the first period, z 2 A. Using continuation values from V 0, the only action profiles
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that can be supported in period 2 are the three stage-game Nash equilibria. In this case,
Y .z/ is the set of vectors achieved by adding the stage-game Nash payoff vectors to .1; 3/
and .3; 1/:

Y .z/ D
n
.2; 6/; .4; 4/; .6; 2/;

�
4 �

"

2
; 4 �

"

2

�
;
�

6 �
"

2
; 2 �

"

2

�o
:

The bargaining solution picks the points on the strong Pareto boundary of this set, so

V 0.z/ D S0.X.z/;x;Y.z// D f.2; 6/; .4; 4/; .6; 2/g:

As for S", note that an additional action profile is supported in period 2 using continuation
values from V ". Specifically, .a4

1; a
4
2/ satisfies the equilibrium incentive conditions if: (i)

play of .a4
1
; a4

2
/ leads to the continuation value .3; 1/ in period 3, and (ii) any deviation by

either player leads to the continuation value .3 � "
2
; 1 � "

2
/ in period 3. In this case, Y .z/

includes the vector .7; 7/. Furthermore, it is easy to check that .7; 7/ dominates (by more
than ") all other elements of Y .z/. This implies that

V ".z/ D S".X.z/;x;Y.z// D f.7; 7/g;

as shown in Figure 7.
Finally, consider the incentives in period 1. Using continuation values from V 0, play

of .a5
1
; a5

2
/ can be supported. Specifically, this profile leads to the period-2 continuation

value .4; 4/; any deviation by player 1 leads to the continuation value .2; 6/, whereas any
deviation by player 2 leads to .6; 2/. One can quickly confirm that the resulting payoff
vector .16; 16/ dominates all other elements of Y .zinit/, so

V 0.zinit/ D S0.X.zinit/;x;Y.zinit// D f.16; 16/g:

Regarding S", because V ".z/ is a singleton constant over all z 2 A, only stage-game Nash
equilibria can be supported in the first period in this case. Therefore,

V ".zinit/ D S".X.zinit/;x;Y.zinit// D
n
.8; 10/;

�
10 �

"

2
; 8 �

"

2

�
; .10; 8/

o
:

These sets are shown in Figure 7.
In this example, S0 � S" yet V 0.zinit/ dominates V ".zinit/ in that the vector in the

former set is strictly greater (for both players) than are the vectors in the latter set. From
the beginning of the game, the players fare strictly better if S0 describes their negotiation
behavior than if S" does—that is, the contractual outcome is better under more active
contracting.

5 Conclusion

The modeling exercise reported here has two objectives. First, it seeks to elaborate on the
existing contract-theory literature by clarifying some basic concepts and, in so doing, en-
couraging research that explicitly considers both the externally enforced and self-enforced
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aspects of contract enforcement. The framework I develop brings together elements of the
current contract-theory literature (which, although not exclusively, tends to focus on rene-
gotiation of externally enforced contracts), the repeated-game literature (which focuses on
renegotiation of self-enforced contracts), and the cheap-talk literature (which focuses on
how verbal statements may influence subsequent behavior in equilibria of non-cooperative
games).

The second objective of this modeling exercise is to introduce the idea of activeness of
contracting and to show that the relation between activeness and the predicted outcomes
of a contractual relationship is subtle and interesting. I do not take a position on whether
people in real contractual settings are more or less active in their contract negotiation,
for this is an empirical issue. Rather, the model helps define activeness and explore its
implications, which is a prerequisite for any empirical evaluation.

The modeling framework developed herein lends itself to a wide variety of applica-
tions. Repeated-game models are one special case. For example, using the terminology de-
veloped here, the analysis of Benoit and Krishna (1993) identifies contractual equilibrium
associated with the bargaining solution that selects weakly efficient continuation values.
The point of the present modeling exercise is not to reinvent the renegotiation-in-repeated-
games wheel, of course, but to expand the theory in terms of generalizing the bargaining
theory and including external enforcement. For instance, the framework can be used to
analyze more complicated and realistic settings than are commonly studied in the literature
(for example, settings with monetary transfers and external enforcement, and where players
take actions that directly affect the structure of the game in future periods). Another spe-
cial case are relationships with unverifiable investment and hold-up (Hart and Moore 1988,
Maskin and Moore 1999, and the ensuing body of work). In this category, the framework
facilitates the careful analysis of individual trade actions (Watson 2005a) and the exam-
ination of settings with more complicated dynamics than has been studied to date (such
as Watson 2005b). On the abstract side, the framework developed here may be useful in
analyzing problems of “design” with all sorts of real constraints (on, say, liquidity, the tim-
ing and alienability of actions, and external enforcement) that are currently not extensively
studied.9

Additional links to the literature are worth pointing out. Watson (2002) put forth an
informal version of the contractual equilibrium concept called negotiation equilibrium,
whose definition can be made more precise. A negotiation equilibrium is the instance
of contractual equilibrium in which the parties negotiate actively over only the externally
enforced component of contract. Specifically, a continuation value is selected and fixed for

9There are some obvious directions for further research. The relation between activeness and maximal
joint values should be clarified. Also, contracts along the lines of Alternative 3 in the MW example represent
a nuanced view of Bernheim and Whinston’s (1998) “strategic ambiguity,” where players take full advantage
of external enforcement to create situations with multiple equilibria and then select among these equilibria as
a function of the history. To create the multiplicity of equilibrium, players may want to use “less complete”
contracts rather than “more complete” ones (Bernheim and Whinston restrict attention to forcing contracts,
where multiplicity is negatively related to a notion of completeness). I plan to address these two theoretical
issues in future projects.
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each individual joint action, and then the bargaining set is defined as the set of these values,
yielding a conventional bargaining problem (with a single disagreement point) to which
a bargaining solution is applied. Ramey and Watson (2002) and Klimenko, Ramey, and
Watson (2004) examine another variant that the second group calls a recurrent agreement;
it is built on the theoretical foundation developed here but is based on the idea that, in a
repeated game, players revert to a Nash equilibrium of the stage game when they fail to
reach an agreement on how to play in the continuation.
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A Bargaining Protocol Example: Ultimatum Offer

This appendix contains details of the analysis of the ultimatum-offer protocol, which is
sketched (in the context of the BoS contracting problem from Section 1) in Section 2.

To calculate the set of equilibrium negotiation values, some additional notation is use-
ful. For any set D � R2, let Di denote the projection on dimension i (player i’s value).
Also, for any number d2, define �x

1
.d2/ to equal

min fy1 j there exists y2 � d2 such that .y1;y2/ 2 Y xg

if the bracketed set is nonempty and 1 otherwise. The following lemma characterizes the
equilibrium negotiation values for the ultimatum-offer protocol.

Lemma 2: For the ultimatum-offer bargaining protocol, the set of equilibrium negotiation
values is

S.X;x;Y/ D fy� 2 Y j y�
2 � min Y 2 and, for every x 2 X , either

y�
1

� �x
1
.min Y 2/ or y�

1
� �

x

1
.min Y x

2
/ or bothg:

This result is easily proved by calculating, for feasible continuation values, the offers that
player 2 can rationally accept or reject.

To calculate the set of equilibrium negotiation values under Assumption 2, define 
 x
1
.d2/

to equal
sup fy1 j there exists y2 > d2 such that .y1;y2/ 2 Y xg

if the bracketed set is nonempty and �1 otherwise.

Lemma 3: For the ultimatum-offer bargaining protocol, the set of equilibrium negotiation
values under Assumption 2 is

S.X;x;Y/ D fy� 2 Y j y�
2 � min Y 2, y�

1 � �
x

1 .max Y 2/,

and y�
1

� 
 x
1
.max Y 2/ for every x ¤ xg:

Next, I calculate the set of equilibrium negotiation values under Assumptions 2 and 3.
In this case, for a given value y, the model of negotiation is equivalent to one in which
both the tangible action x and the value y are externally enforced. Define 
1.d2/ �
supx2X 


x
1
.d2/.

Lemma 4: For the ultimatum-offer bargaining protocol, the set of equilibrium negotiation
values under Assumptions 2 and 3 is

S.X;x;Y/ D fy� 2 Y j y� � y and y�
1 � 
1.y

2
/ for some y 2 Y g:

With the addition of Assumption 4, the characterization is refined further.
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B Classes of Contractual Relationships and Existence

In this appendix, I delineate some classes of contractual relationships and provide existence
results for them. Consider the following classes.

Setting 1: Finite Actions
In this setting, X and A are finite sets, which means that Z can also be taken to be

finite.

Setting 2: Finite Except for Spot Transfers
In this setting, each joint action can be written as x D .l;m/, where m 2 R2

� is a
monetary transfer in the current period. For each z 2 Z, the feasible joint actions satisfy
X.z/ D L.z/ � R2

� for some set L.z/. The default action specifies a transfer of zero. Let
L �

S
z2Z L.z/. The sets A and L are assumed to be finite and there is a correspondence

QA W Z � L -- A such that, for each z 2 Z and x D .l;m/ 2 X.z/, we have A.z;x/ D
QA.z; l/.

Furthermore, there exist functions Qu W Z � L � A ! R2 and Qf W Z � L � A ! Z,
such that, for each z 2 Z, x D .l;m/ 2 X.z/, and a 2 A.z;x/, the payoff vector in
the current period satisfies u.z;x; a/ D Qu.z; l; a/C m and the transition function satisfies
f .z;x; a/ D Qf .z; l; a/. Thus, the action spaces and state transition do not depend on
transfers made previously, and the transfers affect payoffs additively. The assumptions
imply that Z can be taken to be finite.

The BoS example from Section 1 is a one-period contractual relationship that has finite
actions except for spot transfers.

Setting 3: Finite Except for Contingent Transfers
I shall first describe the particular structure of this setting and then show how it maps

into the general model. In a nutshell, there is an externally enforced productive action p

and an externally enforced transfer m in each period, in addition to the individual action
a. This public action .p;m/ takes place at the end of the period and is conditioned on the
history as specified by the externally enforced component of the players’ contract. Assume
a 2 A, p 2 P , and m 2 M , for some sets A and P , and assume that M � R2

�. Payoffs
and feasible actions are assumed to be functions of the productive actions a�0 D .a1; a2/

and p taken in each period.
Let H denote the set of histories of productive actions (the a’s and p’s); a representative

t -period history is .a1;p1I a2;p2I : : : I at ;pt /. The initial, null history is defined as hinit.
There is a set of terminal histories H term. Let OH � H n H term denote the non-terminal
histories. For h 2 OH , the set of feasible individual actions is QA.h/D QA0 � QA1.h/� QA2.h/,
where QA0 does not depend on the history (this is without loss of generality) and we have
QA.h/ � A. Given h and a 2 QA.h/, the set of feasible public actions is P .h; a/ � P . From

history h, if a and p are the individual and public actions selected in the current period,
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then the history at the start of the next period is h0 D .hI a;p/, where .hI a;p/ is the history
formed by appending a and p to h.

The players’ externally enforced contract is a vector of functions x D . Q̨0; �; �/, with
the mappings defined as Q̨0 W H ! � QA0, � W H � A ! P , and � W H � A ! M , with
the property that �.h; a/ 2 P .h; a/. Given history h to the start of the current period,
Q̨0.h/D ˛0 is the probability distribution for Nature’s action a0 that the contract specifies.
For history h and individual action profile a in the current period, the contract specifies
(and the external enforcer compels) the productive action p D �.h; a/ and the monetary
transfer m D �.h; a/. Note that the contract can effectively randomize over productive
actions by using the random draw a0. Thus, the function � can be viewed as a mapping
from OH � A�0 to �P . To represent limited verifiability, we can suppose that � and � are
measurable with respect to some partition H of OH � A.

There is an initial contract xinit in place at the start of the first period. At the begin-
ning of each period, the players can renegotiate the contract. Assume, however, that when
renegotiating from any history h, the players are restricted to contracts that are consis-
tent with h occurring—that is, the players are renegotiating on the contractual terms for
only the current and future periods. To make this formal, consider some t 0-period history
h D .a1;p1I a2;p2I : : : I at 0

;pt 0
/. Contract x is consistent with h if pt D �.ht ; at / for

t D 1; 2; : : : ; t 0, where ht is the t -period truncation (the first t elements) of h. Let QX .h/ de-
note the set of contracts that are consistent with history h and that satisfy the measurability
requirement relative to H, with the understanding that all contracts are consistent with hinit.

Payoffs are linear in money and are defined by a function Qu WH n H init ! R2. Specifi-
cally, in a period that began with history h and saw productive actions a and p and transfer
m (that is, p D �.h; a/ and m D �.h; a/), the payoff vector is given by Qu.h0/C m, where
h0 D .hI a;p/. Assume that the function Qu depends neither on the current-period random
draw a0 nor on the history of random draws.

I make the following extra technical assumptions. First, I assume that A and P are
finite sets, implying that H is finite. Second, I assume that M is compact and contains the
zero transfer .0; 0/. Third, I assume that there is a positive integer � such that all feasible
histories are no more than � periods in length; this implies Assumption 5.

Here is how Setting 3 maps into the general model. A state is given by z D .h;x/,
where h is the history of productive actions to the current period and x is the contract in
effect at the beginning of this period. The set of states is Z � f.h;x/ j x 2 QX .h/g. In the
negotiation phase in state z D .h;x/, players renegotiate their externally enforced contract
by taking a joint action x 2 X , where X is the set of all contracts of the form x D . Q̨0; �; �/

as described above. The set of feasible joint actions is X.z/ � QX .h/ and the default joint
action is x.z/ � x. In the individual-action phase, feasible actions are given by A.z;x/ �
QA.h/. The payoff function is given by u.z;x; a/ D Qu.hI a; �.h; a//C�.h; a/, where � and
� are components of x. Finally, for any state z, joint action x D . Q̨0; �; �/, and individual
action profile a, the state transition is given by f .z;x; a/ � ..hI a; �.h; a//;x/.

Note that Q̨0, as a probability distribution over the finite set QA0, is a point in the j QA0j-
dimensional simplex. Also, � is a function with a finite domain and codomain, and �
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has finite domain and compact codomain. Thus, X and X.z/ are compact subsets of a
Euclidean space. That H is finite further implies that Z is compact.

The MW example described in Section 4 (and less formally in the Introduction) is finite
except for contingent transfers. The MW example is especially simple in that there is no
public productive action p and no random draw a0. Also fitting into Setting 3 is the finite-
period contracting model of Watson (2005b).10

Existence Results
I next provide existence results for the settings just described. To state the first existence

result, I use the following definition.

Definition 4: A bargaining solution S is said to be regular if it is non-empty and compact-
valued on the set of contracting problems that satisfy Assumption 1.

The three benchmark solutions described in Section 2 are regular.

Theorem 2: Take as given a contractual relationship and a regular bargaining solution S .
If the contractual relationship satisfies Assumption 5 and either has finite actions (Setting
1) or is finite except for spot transfers (Setting 2), then contractual equilibrium exists.

The second existence result focuses on settings with externally enforced transfers and
some verifiability of actions (Setting 3). Additional assumptions on the bargaining solution
are required for this case. In the following definitions, it is understood that QY D f QY xgx2X ,
OY D f OY xgx2X , Y 0 D fY 0xgx2X , and Y 00 D fY 00xgx2X .

Definition 5: A bargaining solution S is said to be continuous in the disagreement set if
the following holds for any given X , QY , OY , x, and sequence fxkg � X , such that QY D OY
and QY xk

converges to OY x in the Hausdorff metric. We have that S.X;xk; QY/ converges to
S.X;x; OY/ in the Hausdorff metric.

Definition 6: A bargaining solution S is said to be monotone in the disagreement set if
the following holds for any given X , x, Y 0, and Y 00 that satisfy Assumption 1. If Y 0 D Y 00

and if Y 0x � Y 00x , then S.X;x;Y 0/ � S.X;x;Y 00/.

The three benchmark solutions are all continuous in the disagreement set; the first two (SND

and SAA, but not SAD) are monotone in the disagreement set.

10In Watson (2005b), P is allowed to be infinite (but compact) and it is assumed that M D R2
�. However,

the players’ individual actions are assumed to be payoff irrelevant (they are just messages), the payoff function
is continuous, and the implementation exercise in the paper does not rely on unbounded transfers. It is not
difficult to verify that, for these reasons, the second existence result here (Theorem 3) holds for the model
in Watson (2005b). Note also that in that paper the relevant history is defined as the history of messages
(the a’s) and the current externally enforced contract; it does not include the public actions, but these can be
reconstructed from the messages and contract.
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Theorem 3: Take as given a contractual relationship and a regular bargaining solution
S . Assume that the contractual relationship satisfies Assumption 5 and is finite except for
contingent transfers (Setting 3). If S is continuous and monotone in the disagreement set,
then contractual equilibrium exists.

Proofs of the two existence results follow.

Proof of Theorem 2
Take any t 2 f1; 2; : : : ; �g. Presume that V is well-defined on Z tC1 D

S�C1
kDtC1 Zk

and that, for each state z0 in this set, V .z0/ is nonempty and compact (as is true on Z term).
I will show that these properties extend to the domain of Zt . Take any z 2 Zt .

Referring to Step 1 of the inductive procedure described in the proof of Theorem 1, I
first show that Y x.z/ is nonempty for each x 2 X.z/. An arbitrary function v defined on
Z tC1 implies an induced simultaneous-move game in the individual-action phase (in state
z following a joint action x). This game has action spaces A1.z;x/ and A2.z;x/ and it
has payoffs given by E Œu.z;x; a/ C v.f .z;x; a// j ˛0�. This is a finite game under the
assumption that the contractual relationship is essentially finite; thus, the game has a Nash
equilibrium, which implies that Y x.z/ ¤ ;.

It is further true that Y x.z/ is compact. To see this, note that the graph of the Nash equi-
librium correspondence, as a function of the payoff parameters, is closed (see Fudenberg
and Tirole 1991, Section 1.3.2 for example). Also recall that the set of feasible v functions
is closed and bounded by the presumption that V is compact-valued on Z tC1. These prop-
erties together imply that Y x.z/ is closed; the boundedness of the set of v functions implies
that Y x.z/ is bounded.

I next show that the contracting problem at state z 2 Zt satisfies Assumption 1. The
preceding paragraphs establish the requirements for Y .z/. To check the properties of Y .z/,
I examine separately the two settings covered by the theorem. In the setting of finite actions,
Y .z/ is compact by virtue of each Y x.z/ being compact and X.z/ being finite; hence,
Assumption 1 is satisfied.

In a relationship that is finite except for spot transfers, Y .z/ is not compact, but the
arbitrary spot transfers add only R2

� to a compact set. To see this, note that the spot transfer
in the current period affects neither incentives in this period nor feasible continuation values
from the start of the next period (recall Equation (1) and the payoff specification). Thus,
for each l 2 L.z/ and m 2 R2

�, Y .l;m/ D Y .l;.0;0// C m holds.11 This implies that

Y .z/ D fy 2 R2 j y1 C y2 � �g;

where
� D maxfy1 C y2 j y 2 Y .l;.0;0//.z/; l 2 L.z/g:

The maximum exists because L.z/ is finite. The set Y .z/ is therefore closed and separated
by a line of negative slope, so it satisfies Assumption 1.

11For Y;Y 0 � R2 and y00 2 R2, Y C Y 0 � fy C y0 j y 2 Y; y0 2 Y 0g and Y C y00 � fy C y00 j y 2 Y g.
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Moving to Step 2 of the inductive procedure, and using the assumption that S is reg-
ular, we have that S.X.z/;x.z/;Y.z// exists and is compact. Thus, V extended to Zt is
nonempty and compact-valued. By induction, contractual equilibrium exists.

Proof of Theorem 3
This proof parallels that of Theorem 2. Note that, in the setting of the theorem, the

set H can be partitioned into sets H 1;H 2; : : : ;H �C1 such that, for any x 2 X and t 2
f1; 3; : : : ; �g, we have z D .h;x/ 2 Zt if and only if h 2 H t and x 2 QX .h/. Define
Ht �

S�C1
t 0Dt H t 0

and, as in the text, Z t �
S�C1

t 0Dt Zt 0
.

Take any t 2 f1; 2; : : : ; �g. Presume that V is well-defined on Z tC1 and that, for each
state z0 in this set, V .z0/ is nonempty and compact (as is true on Z term). Also presume that,
on this domain, V is upper hemi-continuous as a function of x on the feasible set X.z/;
that is, for a fixed h 2 HtC1 , presume that V .h; �/ is upper hemi-continuous. I will show
that these properties extend to the domain of Zt .

Take any z 2 Zt . The argument used in the proof of Theorem 2 establishes that Y x.z/

is nonempty and compact, for each x 2 X.z/. In addition, we have the following fact.

Lemma 5: Assume the presumptions of Theorem 3. Given z 2 Zt , take any sequence
fyk; vk ;xk ; ˛kg such that for all k, (i) yk 2 R2, (ii) vk maps Z tC1 to R2 and satisfies
vk.z0/ 2 V .z0/ for all z0 2 Z tC1, (iii) xk 2 X.z/, and (iv) ˛k is an uncorrelated distribu-
tion over A.z;xk/ with ˛k

0
being the distribution over Nature’s actions that is specified by

the contract xk . Further suppose that

yk D E Œu.z;xk ; a/C vk.f .z;xk ; a// j˛k �

holds and the Nash equilibrium Condition (1) is satisfied (using yk , vk , xk , and ˛k in place
of y, v, x, and ˛�) for every k. Then there is a subsequence fykr ; vkr ;xkr ; ˛kr g such that
xkr converges to some contract x 2 X.z/ and ykr converges to a point y 2 Y x.z/.

Proof of Lemma 5: Because A is finite and X.z/ is compact, we can assume (by taking
a subsequence) that ˛k converges to some distribution ˛ 2 �A and that xk converges to
some contract x 2 X.z/. The structure of feasible actions implies that ˛ 2 �A.z;x/.
Because A and P are finite, we can use the same argument to justify assuming that, for
every h0 2 HtC1 , vk.h0;xk/ converges (to a real number). Define function v WZ tC1 ! R2

by
v.h0;x/ � lim

k!1
vk.h0;xk/

for every h0 2 HtC1 , and v.h0;x/ is an arbitrary selection from V .h0;x/ for every h0 2
HtC1 and x ¤ x.

We have vk.h0;xk/ 2 V .h0;xk / for every k, so upper hemi-continuity of V on the
domain Z tC1 implies that v.h0;x/ 2 V .h0;x/. Thus, we have v.z0/ 2 V .z0/ for every
z0 2 Z tC1 . By the convergence of xk and finiteness of HtC1 , we know that, for a fixed a
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there is a history h0 2 HtC1 such that f .z;xk ; a/ D .h0;xk/ for all large k. By construction
of v, we thus have that vk.f .z;xk ; a// converges to v.f .z;x; a//. Also, noting that u is
continuous, we know that u.z;xk ; a/ converges to u.z;x; a/. Thus, we obtain

y D E Œu.z;x; a/C v.f .z;x; a// j˛�;

Another implication of the convergence is that the Nash equilibrium Condition (1) is sat-
isfied for y, v, x, and ˛ in place of y, v, x, and ˛�. To see this, first note that A.z;x/ is
independent of x, meaning that available individual actions do not depend on the current
contract. In addition, if the best-response inequality did not hold for some player i and
some action a0

i , it would imply failure of the same best-response condition for strategy pro-
file ˛k in the context of contract xk and continuation-value function vk for large enough k,
which is a contradiction. We can thus conclude that y 2 Y .z/, proving the lemma. Q.E.D.

Returning to the proof of Theorem 3, continue to consider any z D .h;x/ 2 Zt . Refer
to Step 1 of the inductive procedure described in the proof of Theorem 1. The argument
used in the proof of Theorem 2 establishes that Y x.z/ is nonempty for every x 2 X.z/.
Lemma 5 implies that Y .z/ is compact and that Y x.z/ is compact for every x 2 X.z/. For
any particular x, the latter conclusion follows from looking at a sequence fyk; vk ;xk ; ˛kg
with xk D x and yk 2 Y x.z/ and getting y 2 Y x.z/. Thus, for z D .h;x/ 2 Zt , the
contracting problem .X.z/;x;Y.z// satisfies Assumption 1.

Moving to Step 2 of the inductive procedure, and using the assumption that S is reg-
ular, we have that S.X.z/;x.z/;Y.z// exists and is compact. Thus, V extended to Zt is
nonempty and compact-valued.

Finally, I must establish that V .h; �/ is upper hemi-continuous for all h 2 H t . To
this end, fix h 2 H t . Note that X.h;x/ D X.h;x 0/ and Y x.h;x/ D Y x.h;x0/, for all
x;x 0 2 QX .h/. The second equality holds because the externally enforced contract in force
at the beginning of the period (x or x 0) does not directly affect the attainable continuation
payoffs; only the newly chosen contract x affects incentives and payoffs in the continuation.
Thus, since h is fixed for the remainder of this proof, I will suppress the state argument and
simply write X , Y x, and Y . Also note that, for the fixed h, Lemma 5 implies that Y x is
upper hemi-continuous in x. This follows by limiting attention to sequences such that xk

converges.
Next, take any specific sequence fxkg that converges to some x. I will compare various

contracting problems that are associated with the sequence. To formulate them, let Y be
the limit superior of Y xk

as k ! 1:

Y �
1\

k0D1

closure

" 1[

kDk0

Y xk

#
:

For each k, we have the contracting problem .X;xk;Y/, where Y D fY xgx2X . Consider
also the artificial contracting problem .X;xk; QY/, where we define QY by QY x � Y x [ Y for
all x 2 X . In addition, consider the contracting problem .X;x;Y/ and another artificial
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problem .X;x; OY/, where OY is identical to Y except for joint action x for which we define
OY x � Y .

By upper hemi-continuity of Y x, we have Y � Y x. Thus, Y � Y and QY D OY D Y .
That is, the sets of feasible continuation payoffs (over all x) in the artificial contract-
ing problems .X;xk; QY/ and .X;xk; OY/ are the same as that in the contracting problems
.X;xk;Y/ and .X;x;Y/. All of these contracting problems differ only in the disagree-
ment sets. Furthermore, one can easily verify that, by construction of QY x and because Y is
compact, QY xk

converges to Y in the Hausdorff metric.
Using the fact that Y xk � QY xk

and that S is monotone in the disagreement set, we
have

V .h;xk/ D S.X;xk;Y/ � S.X;xk; QY/: (4)

Because QY xk

converges to Y and S is continuous in the disagreement set, we obtain

S.X;xk; QY/ converges to S.X;x; OY/. (5)

Finally, using the monotone property of S again and that Y � Y x, we have

S.X;x; OY/ � S.X;x;Y/ D V .h;x/: (6)

Along with the sequence fxkg, take a convergent sequence fykg � R2 such that yk 2
V .h;xk/ for each k. Relations 4-6 above establish that the limit of fykg is contained in
V .h;x/, which proves upper hemi-continuity of V .h; �/. Q.E.D.

C Other Proofs

Lemma 1 and Theorem 1 are restated and proved here.

Lemma 1: If Y is convex then Q.y/ D arg max
y 2 SPB.Y /

y � y

.y1 � y
1
/�1.y2 � y

2
/�2 .

Proof: For i D 1; 2, let gi.yj / � maxfyi j .yi;yj / 2 Y g. Further, for any fixed y, define

Gi.yi/ � gi.e
���i gj .e

���j yi C .1 � e���j /y
i
/C .1 � e���i /y

j
/:

Consider these functions defined on strong Pareto boundary of the set Y , where (because
Y is convex) g1 and g2 are continuous and inverses. These functions characterize the
equilibrium of the K-round bargaining protocol under Assumptions 2 and 3. Suppose,
for example, that player 2 would have the offer in round k C 1, where his equilibrium
continuation value is y2. Then player 1’s equilibrium offer in round k is a vector that makes
player 2 indifferent between accepting and rejecting; this offer gives player 1 the amount
g1.e

���1y2 C .1 � e���1/y
2
/, which is player 1’s equilibrium value from round k.
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Function Gi relates player i’s equilibrium continuation values across two rounds where
player i makes the offer. Convexity of Y implies that g1 and g2 are convex functions,
which further implies that Gi is a contraction. To see this, consider the differentiable case,
where we have G0

i.yi/ D e���1e���2g0
i.yi/g

0
j.yj /. Here yi and yj are numbers satisfying

yi < gi.yj /. Recalling that g1 and g2 are inverses, this implies that g0
i.yi/g

0
j .yj / 2 .0; 1/.

Thus, G0
i 2 .0; 1/.

That Gi is a contraction implies that player i’s equilibrium payoff in the finite-round
protocol converges to the fixed point of Gi , which is i’s equilibrium payoff in the infinite-
round protocol. From here, one can use the asymmetric version of Binmore, Rubinstein,
and Wolinsky’s (1986) Proposition 5 to complete the proof. Q.E.D.

Theorem 1: Take as given a contractual relationship and a bargaining solution S . If As-
sumption 5 is satisfied and contractual equilibrium exists, then there is a unique value
correspondence that represents contractual equilibrium.

Proof: A value correspondence V can be identified by backward induction, using the
partition fZ1;Z2; : : : ;Z�C1g of Z that was described earlier in this section. We start
with Z�C1 D Z term and have, for each z in this set, V .z/ D f.0; 0/g. Then, for any
t 2 f1; 2; : : : ; �g, presume that we have defined V on

S�C1
kDtC1 Zk . We can extend V to Zt

as follows.

Step 1: For every z 2 Zt and every x 2 X.z/, define Y x.z/ by Equation (2).
In doing so, note that v need only be defined on

S�C1
kDtC1 Zk , because no other

states can be reached from z. If every Y x.z/ is nonempty, then this yields a
well-defined contracting problem .X.z/;x.z/;Y.z// at state z, for every z 2
Zt .

Step 2: Define V .z/� S.X.z/;x.z/;Y.z//, for every z 2 Zt .

If, during this procedure, we find that Y x.z/ D ; for some z and x in Step 1, then the
correspondence V is not well-defined and contractual equilibrium does not exist. Likewise,
if S.X.z/;x.z/;Y.z// is empty for some z in Step 2, then contractual equilibrium does
not exist. Otherwise, contractual equilibrium exists and the induction procedure identifies
a unique value correspondence by construction. Q.E.D.
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