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Abstract

We study infinite covolume discrete subgroups of higher rank semisimple Lie groups,
motivated by understanding basic properties of Anosov subgroups from various viewpoints
(geometric, coarse geometric and dynamical). The class of Anosov subgroups constitutes
a natural generalization of convex cocompact subgroups of rank one Lie groups to higher
rank. Our main goal is to give several new equivalent characterizations for this important
class of discrete subgroups. Our characterizations capture “rank one behavior” of Anosov
subgroups and are direct generalizations of rank one equivalents to convex cocompactness.
Along the way, we considerably simplify the original definition, avoiding the geodesic flow.
We also show that the Anosov condition can be relaxed further by requiring only non-
uniform unbounded expansion along the (quasi)geodesics in the group.
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1 Introduction

This paper is devoted to studying basic properties of Anosov subgroups of semisimple Lie groups
from various viewpoints (geometric, coarse geometric and dynamical). The class of Anosov
subgroups, introduced by Labourie [La] and further extended by Guichard and Wienhard [GW],
constitutes a natural generalization of convex cocompact subgroups of rank one Lie groups to
higher rank. Our main goal here is to give several new equivalent characterizations for this
important class of discrete subgroups, including a considerable simplification of their original
definition. For convex cocompact subgroups as well as for word hyperbolic groups, it is very
fruitful to have different viewpoints and alternative definitions, as they were developed by many
authors starting with Ahlfors’” work on geometric finiteness in the 60s, and later by Beardon,
Maskit, Marden, Thurston, Sullivan, Bowditch and others. Besides a deeper understanding,
it enables one to switch perspectives in a nontrivial way, adapted to the situation at hand.
A main purpose of this paper is to demonstrate that much of this theory extends to Anosov
subgroups, and we hope that the concepts and results presented here will be useful for their
further study. In our related work, they lay the basis for the results on the Higher Rank Morse
Lemma [KLP3], compactifications of locally symmetric spaces for Anosov subgroups [KIL1], the
local-to-global principle and the construction of Morse-Schottky subgroups [KLP2]. We refer
to the surveys [KLP4) [KL2] for more details on these developments.

In rank one, among Kleinian groups and, more generally, among discrete subgroups of rank
one Lie groups, one distinguishes geometrically finite subgroups. They form a large and flex-
ible class of discrete subgroups which are strongly tied to the negatively curved symmetric
spaces they act on. Therefore they have especially good geometric, topological and dynamical
properties and one can prove many interesting results about them. The simplest are geomet-
rically finite subgroups without parabolics, which are lie at the root of this paper. They can
be characterized in many (not obviously) equivalent ways: As convex cocompact subgroups,
as undistorted subgroups, as subgroups with conical limit set, as subgroups which are expand-
ing at their limit set, and as intrinsically word hyperbolic subgroups with Gromov boundary
equivariantly homeomorphic to their limit set, to name some.

In higher rank, a satisfying and sufficiently broad definition of geometric finiteness, with
or without parabolics, remains yet to be found. Convex cocompactness turns out to be much
too restrictive a condition: it was shown by Kleiner and the second author [KIL2] that in
higher rank only few subgroups are convex cocompact. Undistortion by itself, on the other
hand, is way too weak: undistorted subgroups can even fail to be finitely presented. Thus,
one is forced to look for suitable replacements of these notions in higher rank. It turns out



that some of the other equivalent characterizations of convex cocompactness in rank one do
admit useful modifications in higher rank, which lead to the class of Anosov subgroups. The
Anosov condition is not too rigid and, at the same time, it imposes enough restrictions on the
subgroups making it possible to analyze their geometric and dynamical properties. One way
to think of Anosov subgroups is as geometrically finite subgroups without parabolics which
exhibit some rank one behavior. Indeed, they are intrinsically word hyperbolic and we will see
that also extrinsically they display hyperbolic behavior in a variety of ways.

In this paper, we primarily consider four notions generalizing convex cocompactness to
higher rank, all equivalent to the Anosov condition, see the Equivalence Theorem [Tl below:

(i) asymptotic embeddedness
(ii) expansivity

(iii) conicality

(iv) Morse property

Whereas the conditions Anosov, (i) and (ii) are dynamical, (iii) is a condition on the asymp-
totic geometry of the subgroup, and (iv) is coarse geometric.

We now describe in more detail some of our concepts and results.

Let X = G/K be a symmetric space of noncompact type and, for simplicity, let the semisim-
ple Lie group G be the connected component of its isometry group. Our approach to studying
Anosov subgroups I' < GG begins with the observation that they satisfy a strong form of discrete-
ness which we call reqularity and which is primarily responsible for their extrinsic “rank one
behavior” alluded to above. Discreteness of a subgroup I' < G' means that for sequences (7,)
of distinct elements the distance d(x,y,x) in X diverges to infinity. For higher rank symmetric
spaces there is a natural vector-valued refinement da of the Riemannian distance d, which takes
values in the euclidean Weyl chamber A of X. The regularity assumption on I, in its strongest
form of 0,,0q-reqularity, means that da(x,y,x) diverges away from the boundary of A. We will
work more generally with relaxations of this condition, called 7,,,4-regularity, associated with
a face 7,,,q of the model spherical Weyl chamber ¢,,,4, where one only requires divergence of
da(z,v,x) away from some of the faces of A, depending on 7,,,4. To be precise, think of 7,4
as the visual boundary of the euclidean Weyl chamber, ,,,q = 0,A. Given a face Tioq S Timod,
we define 7,,,q-reqularity by requiring that da(x,v,z) diverges away from the faces of A whose
visual boundaries do not contain 7,,,g. We will also need the stronger notion of uniform 7,,04-
reqularity where one requires the divergence to be linear in terms of d(x,~,x). Most of the
discussion in this paper will take place within the framework of 7,,,4-regular subgroups.

Classically, the asymptotic behavior of discrete subgroups I' < G is captured by their visual
limit set A(T") which is the accumulation set of their orbits 'z < X in the visual boundary
0xX. In our context of 7,,,¢-regular subgroups, the visual limit set is replaced by the 7,,04-
limit set A, (I') contained in the partial flag manifold Flag, = G/P,  and defined as the
accumulation set of I'-orbits in the bordification X LiFlag, . of X, equipped with the topology
of flag convergence (see section [d5)). Here, P, is a parabolic subgroup in the conjugacy class
corresponding to 7,,,¢. The notion of 7,,,¢-limit set extends to arbitrary discrete subgroups.



We call a 7,,,4-regular subgroup I' < G nonelementary it |A,  (I')] = 3, and antipodal if it
satisfies the visibility condition that any two distinct limit simplices in A, (I') are antipodal.
The latter means that they can be connected by a geodesic in X in the sense that the geodesic
is asymptotic to interior points of the simplices. It is worth noting that the action of a 7,,,4-
regular antipodal subgroup on its 7,,,¢-limit set enjoys the classical convergence property, which
is a typical rank one phenomenon.

Regularity, which is a condition on the asymptotic geometry of orbits in the symmetric space,
can be converted into an equivalent dynamical condition about a certain contraction behavior
of the subgroup on suitable flag manifolds (see Definition [.1]), allowing one to switch between
geometry and dynamics. The contraction behavior here is a higher rank version of the classical
convergence (dynamics) property in the theory of Kleinian groups. This yields an equivalent
characterization of 7,,,q-regular subgroups as 7,,,q-convergence subgroups (see Definition [A.3]).
Also the limit sets, respectively, limit simplices can be defined purely dynamically as the possible
limits of contracting sequences in I'; i.e. of sequences converging to constants on suitable open
and dense subsets of the flag manifolds, see Definition

Much of the material in section @ can be found in some form already in the work of Benoist,
see [Bé, §3], in the setting of Zariski dense subgroups of reductive algebraic groups over local
fields, notably the notions of reqularity and contraction, their essential equivalence, and the
notion of limit set. For the sake of completeness we give independent proofs in our setting
of discrete subgroups of semisimple Lie groups. Also our methods are rather different. We
give here a geometric treatment and present the material in a form suitable to serve as a basis
for the further development of our theory of discrete isometry groups acting on Riemannian
symmetric spaces and euclidean buildings of higher rank, such as in our papers [KLP1bl [KTLP2l
KLP3, [KL1].

We now (mostly) restrict to the class of 7,,,4-regular, equivalently, 7,,,4-convergence sub-
groups and introduce various geometric and dynamical conditions in the spirit of geometric
finiteness. We begin with three dynamical ones:

1. We say that a subgroup I' < G is 7,,0q-asymptotically embedded if it is an antipodal 7,,,4-
convergence subgroup, I' is word hyperbolic and there exists a ['-equivariant homeomorphism

(67 a(x)r i) ATmod (F> = Flangod

from its Gromov boundary onto its 7,,,¢-limit set.

This condition can be understood as a continuity at infinity property for the orbit maps
0, : I' > I'r ¢ X: By extending an orbit map o, to infinity by the boundary map «, one
obtains a continuous map

o, Ua:I'udel’ — X uFlag, .

from the Gromov compactification of I' (see Proposition [5.27]).

2. Our next condition is inspired by Sullivan’s notion of expanding actions [Sul. Following
Sullivan, we call a subgroup I' < G expanding at infinity if its action on the appropriate partial
flag manifold is expanding at the limit set. More precisely:



We call a 7,,,g-convergence subgroup I' < G 7,.q-expanding at the limit set if for every
limit flag in A, _,(I") there exists a neighborhood U in Flag, , and an element v € I' which is
uniformly expanding on U, i.e. for some constant ¢ > 1 and all 71, 75 € U it holds that

d(y71,772) = - d(11, T2).

Here, and in what follows the distance d is induced by a fixed Riemannian background metric
on the flag manifold.

Now we can formulate our second condition:

We say that a subgroup I' < G is Tp,0q-CEA (Convergence Expanding Antipodal) if it is an
antipodal 7,,,q-convergence subgroup which is expanding at the limit set.

We note that the CEA condition does not a priori assume word hyperbolicity, not even
finite generation.

3. The next condition is motivated by the original definition of Anosov subgroups. It is a
hybrid of the previous two definitions, where we weaken asymptotic embeddedness (to boundary
embeddedness) and strengthen expansivity. We drop the regularity/convergence assumption
and, accordingly, make no use of the limit set in our definition. Compared to asymptotic
embeddedness, we keep the word hyperbolicity of the subgroup but, instead of identifying
its Gromov boundary with the limit set as in asymptotic embeddedness, we only require a
boundary map embedding the Gromov boundary into the flag manifold. Compared to CEA,
we require a stronger form of expansivity, now at the image of the boundary map.

We call a subgroup I' < G 7y,0q-boundary embedded if T' is word hyperbolic and there exists
a [-equivariant continuous embedding

5 . awr — Flangod

sending distinct visual boundary points to antipodal simplices. If I' is virtually cyclic, we
require in addition that it is discrete in G. (Otherwise, discreteness is a consequence.) We will
refer to (8 as a boundary embedding. In general, boundary embeddings are not unique.

The infinitesimal expansion factor of an element g € G at a simplex 7 € Flag, _ is
e(g.7) = min|dg ()
where the minimum is taken over all unit tangent vectors u € T;Flag, ., again using the
Riemannian background metric.

Now we can formulate our version of the Anosov condition:

We say that a subgroup I' < G is 7y,0q-Anosov if it is 7,,,¢-boundary embedded with bound-
ary embedding  and satisfies the following expansivity condition: For every ideal point ( € oI’
and every normalized (by 7(0) = e € I') discrete geodesic ray r : N — I' asymptotic to ¢, the
action I' = Flag, . satisfies

e(r(n)™", B(¢)) = Ae"

for n > 0 with constants A, C > 0 independent of r. (Here, we fix a word metric on I'.)
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The uniformity of expansion in this definition can be significantly weakened:

We say that a subgroup I' < G is non-uniformly T,,.q-Anosov if it is 7,,,q-boundary embed-
ded with boundary embedding £ and, for every ideal point { € d,[" and every discrete geodesic
ray r : N — I asymptotic to (, the action I' —~ Flag, . satisfies

sup €(r(n) ", (¢)) = +0.

neN

The original definition of Anosov subgroups in [Lal [GW] is rather involved. It is based on
geodesic flows for word hyperbolic groups and formulated in terms of expansion/contraction
properties for lifted flows on associated bundles over the geodesic flow spaces (see section [5.1T]).
Our definition requires only an expansion property for the group action on a suitable flag
manifold and avoids using the geodesic flow, whose construction is highly technical for word
hyperbolic groups which do not arise as the fundamental group of a closed negatively curved
Riemannian manifold. The geodesic flow is replaced by a simpler coarse geometric object, the
space of quasigeodesics.

Now we come to the geometric notions.

4. The first geometric condition concerns the orbit asymptotics. The notion of conicality
of limit simplices, due to Albuquerque [Al, Def. 5.2], generalizes a well-known condition from
the theory of Kleinian groups: In the case Tioq = Oimod, @ limit chamber o € A, (') of a
Omod-regular subgroup I' < G is called conical if there exists a sequence 7, — oo in I' such that
for a(ny) point x € X the sequence of orbit points 7, is contained in a tubular neighborhood
of the euclidean Weyl chamber V' (z,0) with tip 2 and asymptotic to o. For general 7,,,; and
limit simplices 7 € A, (') of 7,0q-regular subgroups I' < G, one replaces the euclidean Weyl
chamber with the Weyl cone V' (z,st(7)) over the star of 7, that is, by the union of the euclidean
Weyl chambers V(z, o) for all spherical Weyl chambers o © 7. A 7,,,4-regular subgroup I' < G
is called conical if all limit simplices are conical. Here is our forth condition:

We say that a subgroup I' < G is 7,,0q-RCA if it is 7,,0,4-regular, conical and antipodal.

For nonelementary 7,,,q-regular antipodal subgroups, this extrinsic notion of conicality is
equivalent to an intrinsic one defined in terms of the dynamics on the 7,,,4-limit set (Proposi-
tion [5.47]), which enables one to relate it to the dynamical notions above.

5. The last set of definitions concerns the coarse extrinsic geometry. We recall that a
finitely generated subgroup I' < G is undistorted if the orbit maps I' — X are quasiisometric
embeddings. They then send discrete geodesics in I' (with respect to a fixed word metric) to
uniform quasigeodesics in X. Undistortion by itself is too weak a restriction, compared with
the other notions defined previously. We will strengthen it in two ways. The first is by adding
uniform regularity:

We say that a subgroup I' < G is 7y,,0¢- URU if it is uniformly 7,,,4-regular and undistorted.

According to the classical Morse Lemma in negative curvature, quasigeodesic segments in
rank one symmetric spaces are uniformly Hausdorff close to geodesic segments with the same
endpoints. This is no longer true in higher rank because it fails already in euclidean plane.



Another way of strengthening undistortion is therefore by imposing a “Morse” type property
on the quasigeodesics arising as orbit map images of the discrete geodesics in I'.

As in the case of conicality above, where one replaces rays with Weyl cones when passing
from rank one to higher rank, it is natural to replace geodesic segments with “diamonds” in a
higher rank version of the Morse property. (This is suggested, for instance, by the geometry of
free Anosov subgroups, see our examples of Morse-Schottky subgroups [KLP2, [KL2].) We define
diamonds as follows: If 7,0 = Omeq and xy is a o,,.4-regular segment, then the o,,,q-diamond
with tips x,y is the intersection

Olz,y) = V(z,0) nV(y,0)
of the euclidean Weyl chambers with tips at x and y containing xy. In the case of general 7,04,
the euclidean Weyl chambers are replaced with 7,,,4-Weyl cones (see section 2.5.3]).

We say that a subgroup I' < G is T,,0q-Morse if it is T,,.q-regular, I' is word hyperbolic and
an(y) orbit map o, : I' > 'z © X satisfies the following Morse condition: The images o, o s of
discrete geodesic segments s : [n_,n,|NnZ — I are contained in uniform tubular neighborhoods
of Tyeq-diamonds with tips uniformly close to the endpoints of 0, o s (see Definition [5.27)).

The definition does not a priori assume undistortion, but we show in this paper that Morse
implies URU. That, conversely, URU implies Morse may seem unexpected at first but follows
from our Higher Rank Morse Lemma for regular quasigeodesics [KLP3].

We now arrive at our main result on the equivalence of various conditions introduced above.
We state it for nonelementary subgroups because we use this assumption in some of our proofs.

Equivalence Theorem 1.1. The following properties for subgroups I' < G are equivalent in
the nonelementary case:

(1) Tmoa-asymptotically embedded

(1) Trmoa-CEA.

(111) Timoa-Anosov

(1v) non-uniformly Tpeq-Anosov

(v) Timoa-RCA

(Vi) Tmoa-Morse

These properties imply Tpoq-URU.

Moreover, the boundary maps for properties (i), (iii) and (iv) coincide.

Here, “nonelementary” means |0,'| = 3 in the Anosov conditions (iii) and (iv), which
assume word hyperbolicity but no 7,,,4-regularity, and means |[A,  (I')| = 3 in all other cases.

Remark 1.2. (i) We prove in [KLP3] that, conversely, 7,,,¢-URU implies 7,,,4-Morse (without
assuming nonelementary).

(ii) All implications between properties (i)-(vi) hold without assuming nonelementary, with
the exception of (ii)=(v)=>(i). In particular, the properties (i),(iii),(iv),(vi) and 7,,¢-URU are
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equivalent in general.
(iii) The implication Anosov=URU had been known before [GW].

(iv) Some of the implications in the theorem can be regarded as a description of geometric
and dynamical properties of Anosov subgroups. Different characterizations of Anosov subgroups
are useful in different contexts. For example: Expansivity (ii) is used in [KLPla, [KLP1b| to
establish the cocompactness of I'-actions on suitable domains of discontinuity in flag manifolds.
Asymptotic embeddedness is used in [KLI] to construct Finsler compactifications of locally
symmetric spaces for Anosov subgroups. The Morse property is used in [KLP2| to prove
a local-to-global principle for Anosov subgroups. The latter in turn leads to new proofs of
openness and structural stability of Anosov representations, to a construction of free Anosov
subgroups (Morse-Schottky subgroups), and to the semidecidability of Anosovness, see [KLP2].

(v) In our paper [KL1] we establish two more characterizations of Anosov subgroups among
uniformly regular subgroups, namely as coarse retracts and by S-cocompactness. The former
property is a strengthening of undistortion. The latter means the existence of a certain kind of
compactification of the corresponding locally symmetric space.

(vi) Other characterizations of Anosov subgroups can be found in [GGKW].

Remark 1.3. Boundary embeddedness appears to be a considerable weakening of asymptotic
embeddedness, even in the regular case. Nevertheless two results in this paper establish a close
relation between the two concepts:

(i) For o,,04-regular subgroups, boundary embeddedness, conversely, implies asymptotic
embeddedness, while the boundary embedding may have to be modified (see Theorem [B.15]).

(ii) For general 7,,,4-regular subgroups, there is the following dichotomy for boundary em-
beddings (see Theorem [5.11]) which is useful for verifying asymptotic embeddedness:

Either the image of the boundary embedding equals the 7,,,4-limit set and the subgroup is
asymptotically embedded. Or the image is disjoint from the limit set, and the limit set is not
Zariski dense. The latter cannot happen for Zariski dense subgroups.

While the main results in this paper concern discrete subgroups of Lie groups, in section[5.10]
motivated by the Morse property, we discuss Morse quasigeodesics and Finsler geodesics. We
characterize Morse subgroups as word hyperbolic subgroups whose intrinsic geodesics are ex-
trinsically uniform Morse quasigeodesics. Furthermore, we characterize Morse quasigeodesics
as bounded perturbations of Finsler geodesics. Lastly, we analyze the A-distance along Finsler
geodesics and Morse quasigeodesics. We show that, via the A-distance function, they project
to Finsler geodesics and Morse quasigeodesics in A.

Most of the results in this paper were already contained in chapters 1-6 of the preprint
[KLP2], however the presentation in this paper is more efficient. The further material on the
Morse property in [KLP2l, §7] will appear elsewhere.

Acknowledgements. The first author was partly supported by the NSF grants DMS-
12-05312 and DMS-16-04241. He is also thankful to KIAS (the Korea Institute for Advanced
Study) for its hospitality. The third author was partially supported by grant FEDER/Mineco



MTM2015-66165-P.

2 Geometry of symmetric spaces

In this section, we collect some material from the geometry of symmetric spaces and buildings.
We explain the notions which are most important for the purposes of this paper, establish
notation and give proofs for some of the less standard facts. No attempt of a complete review
is made. For more detailed discussions, we refer the reader to [Eb], [BGS|, [KIL1] and [Le].

We give a brief description of where various parts of this section are used in the paper:
Sections [2.2H2.5] are used essentially everywhere.

While the vector valued distance function da is used in many places in the paper, the rest
of the material in sections and 2.7 is used primarily in section 2.9.1] on the separation of
nested Weyl cones and in section where we analyze projections of Morse quasigeodesics to
the euclidean model Weyl chamber A.

The material of section dealing with shadows at infinity is used in section .4 when we
prove the equivalence of reqularity and contractivity for sequences of isometries of X. The main
result of section 2.9.1] on the separation of nested Weyl cones is used in section [5.3] to prove
that Morse subgroups are URU (Theorem [5.24)).

The main results of sections 2.10] and 2.11] are Theorem and Proposition 2.64] estab-
lishing estimates for the contraction and expansion of isometries of X acting on flag manifolds.
(The other results are only used only in sections and 2.10). Theorem and Proposi-
tion[2.64l are used in sections 5. 7and 5.8 while discussing discrete subgroups satisfying expansion
properties (CEA and Anosov).

The material of section 2.12] is used only in section B.I0l where it is proven that Morse
quasigeodesics are uniformly closed to Finsler geodesics and that A-distance projections of
Finsler geodesics are again Finsler geodesics.

2.1 General metric space notation

We will use the notation B(p, ) for the open 7-ball with center p in a metric space, and B(p, )
for the closed r-ball.

A geodesicin a metric space (Z, d) is an isometric embedding [ — Z from a (possibly infinite)
interval I < R. In the context of finitely generated groups equipped with word metrics, we will
also work with discrete geodesics; these are isometric embeddings from intervals I n Z in Z.
The notion of discrete quasigeodesic will be used similarly.

10



2.2 Spherical buildings

Spherical buildings occur in this paper as the visual boundaries of symmetric spaces of non-
compact type, equipped with their structures of thick spherical Tits buildings.

2.2.1 Spherical geometry

Let S be a unit sphere in a euclidean space, and let 0 < .S be a spherical simplex with dihedral

angles < 7. Then diam(c) < 7.

For a face 7 < o, we define the 7-boundary 0,0 as the union of faces of o which do not
contain 7, and the T-interior int, (o) as the union of open faces of o whose closure contains 7.
We obtain the decomposition

o =int, (o) U d,0.

If 7 < 7, then 00 < 0.0 and int (o) o int. (o). Note that d,0 = do and int, (o) = int(o).

We need the following fact about projections of spherical simplices to their faces:

Lemma 2.1. The nearest point projection int. (o) — int(7) is well-defined.

In other words, for every point z € int, (o) there exists a point p € int(7) such that pz L 7.
In view of diam(o) < 7, this point is necessarily unique.

Proof. We argue by induction on the dimension of o.

Let z € int, (o). We apply the induction assumption to the link ¥,0 at a vertex v of 7. Note
that oy, ,>,0 = ¥,0,0. Since 07 € inty, . (X,0), the nearest point projection d of this direction

T

to X,7 is contained in int(¥,7) and has angle < 7 with vZ. It follows that the nearest point
projection p of x to 7 is different from v and lies on the arc in direction 6, ¥p = §. In particular,
it is not contained in a face of 7 with vertex v. Letting run v through the vertices of 7, we

conclude that p € int (7). O

As a consequence of the lemma, the nearest point projection int,.(c) — 7 agrees with the
nearest point projection int, (o) — s to the geodesic sphere s ¢ S spanned by 7 (i.e. containing
7 as a top-dimensional subset), and its image equals int(7).

2.2.2 Spherical Coxeter complexes

A spherical Cozeter complex (amoq, W) consists of a unit sphere (in a euclidean space) d,,,q and
a finite reflection group W acting isometrically on a,,,q. We will refer to a,,,q as the model
apartment (because it will serve as the model for apartments in spherical buildings, see below).

A wall in a,,,q is the fixed point set of a reflection in W. A half-apartment is a closed
hemisphere in a,,,q bounded by a wall. A singular sphere in a,,,q is an intersection of walls.

A chamberin a,,.q is the closure of a connected component of the complement of the union
of the walls. The group W acts transitively on the set of chambers. The chambers are simplices
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with diameter < 7 iff W fixes no point in a4, equivalently, the Coxeter complex does not split
off a spherical join factor (in the category of Coxeter complexes). In this case, the collection of
chambers defines on a,,.,4 the structure of a simplicial complex, the simplices being intersections
of chambers.

Every chamber is a fundamental domain for the action W — a,,,q. The spherical model
chamber can be defined as the quotient ¢,,04 = @moa/W. We identify it with a chamber in the
model apartment, 0,,04 < Gmoq, Which we refer to as the fundamental chamber.

We call the natural projection
9  Qmod — a'mod/W = Omod

the type map for a,,.q. It restricts to an isometry on every chamber. A face type is a face
of 0imoa- The type of a simplex T C @04 is then defined as 6(7). Throughout the paper, we
will use the notation Tiod, 770> Vmods Vinods - - - 10T face types. Furthermore, we will denote by
W. < W the stabilizer of the face type 704 S Tmod-

Tmod

The longest element of the Weyl group is the unique element wy € W sending 0,,,4 to the
opposite chamber —a,,,4. The standard involution (also known as the opposition involution) of
the model chamber is given by ¢ := —wy : Gpmod — Tmod-

2.2.3 Spherical buildings

A spherical building modeled on a Coxeter complex (@04, W) is a CAT(1) metric space B
equipped with a collection of isometric embeddings & : a,,,q — B, called charts. The image of
a chart is an apartment in B. One requires that any two points are contained in an apartment
and that the coordinate changes between charts are induced by isometries in W. (The precise
axioms can be found e.g. in [KIL1] and [Le].) We will use the notation Z for the metric on B.

We assume that W fixes no point, equivalently, that 0,4 is a simplex with diameter < 7.

Via the atlas of charts, the spherical building inherits from the spherical Coxeter complex a
natural structure of a simplicial complex where the simplices are the images of the simplices in
the model apartment. As already mentioned, the images of the charts are called apartments.
Accordingly, the images of chambers (walls, half-apartments, singular spheres) in a,,.q are called
chambers (walls, half-apartments, singular spheres) in the building. The codimension one faces
are called panels. The interior int(7) of a simplex 7 is obtained by removing all proper faces;
the interiors of simplices are called open simplices. The simplex spanned by a point is the
smallest simplex containing it, equivalently, the simplex containing the point in its interior. We
will sometimes denote the simplex spanned by £ by 7¢.

A spherical building is thick if every wall is the bounds at least three half-apartments,
equivalently, if every panel is adjacent to (i.e. contained in the boundary of) at least three
chambers. One can always pass to a thick spherical building structure by reducing the Weyl
group, thereby coarsifying the simplicial structure.

The space of directions X¢ B at a point £ € B is the space of germs 5_7)7 of nondegenerate
geodesic segments {n < B, equipped with the natural angle metric Z,. Two segments 7 and £’
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represent the same direction in ¢ B, 5_7)) = 5_7])’ , iff they initially agree. The space of directions
is again a spherical building.

A subset C' < B is called (7-) convez if for any two points &, n € C' with distance Z(§,n) < m
the (unique) geodesic {n connecting £ and 7 in B is contained in C.

Due to the compatibility of charts, i.e. the property of the building atlas that the coordinate
changes are induced by isometries in W, there is a well-defined type map

92B—>0’m0d.

It is 1-Lipschitz and restricts to an isometry on every chamber o < B. We call the inverse
ko = (0|s)™' 1 Omoa — o the chart of the chamber o. For a simplex 7 = B, we call the face
0(T) S Omoa the type of the simplex and k, = (0|,)"! : 0(7) — 7 its chart. We define the type
of a point £ € B as its image 0(§) € 0,,04- A point £ € B is called regular if its type is an interior
point of g4, £ € int(0meq), and singular otherwise.

We will sometimes say that a singular sphere has type 7,,,q if it contains a top-dimensional
simplex of type Ty0q- (A singular sphere has in general several types.)

For a singular sphere s ¢ B, we define B(s) B as the union of all apartments containing s.
It is a convex subset and splits off s as a spherical join factor. Moreover, B(s) is a subbuilding,
i.e. it inherits from B a spherical building structure modeled on the same Coxeter complex; the
apartments of B(s) are precisely the apartments of B containing s. This building structure is
however not thick, except in degenerate cases. In order to pass to a thick spherical building
structure, take a maximal atlas of charts & : @,,0q — B(s) for which the maps k'],
coincide, and reduce the Weyl group to the pointwise stabilizer of s in W.

0 S — Amod

Two points &, £ € B are antipodal or opposite if Z(&, ¢ ) = m, equivalently, if they are antipodal
in one (every) apartment containing them. We then define the singular sphere s(£ ,é) c B
spanned by the points &, é as the smallest singular sphere containing them. Moreover, we define
the suspension B(€,€) < B of {€, £} as the union of all geodesics connecting & and €, equivalently,
as the union of all apartments containing & and €. Then B(€,€) = B(s(&,€)). As above, a thick
spherical building structure on B(E,€) is obtained by taking all charts & : ameq — B(E,€) so
that k71(&) = 0(€) € 0,04, and reducing the Weyl group to the stabilizer of (£) in W.

Similarly, one defines antipodal or opposite faces 7,7 < B as faces which are antipodal in
the apartments containing them both, equivalently, whose interiors contain a pair of antipodal
points & € int(r) and € € int(7). We define the singular sphere s(7,7) © B spanned by the
simplices 7,7 again as the smallest singular sphere containing them, and the suspension B(r, 7)
as the union of all apartments containing 7 U 7; then s(r,7) = s(¢,€) and B(r,7) = B(&, €).

We will need some facts about antipodes.

Recall that in a spherical building B every point £ € B has an antipode in every apartment
a < B, and hence for every simplex 7 < B there exists an opposite simplex 7 < a, cf. e.g. the
first part of [KIL1, Lemma 3.10.2]. We need the more precise statement that a point has several
antipodes in an apartment unless it lies itself in this apartment:

Lemma 2.2. Suppose that & € B has only one antipode in the apartment a < B. Then £ € a.
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Proof. Suppose that £ ¢ a and let € € a be an antipode of £. We choose a‘“generic” segment
55 of length 7 tangent to a at é as follows. The suspension B(& ,é) contains an apartment a’
with the same unit tangent sphere at é , Eéa/ = Ya. Inside a’ there exists a segment 55 whose
interior does not intersect simplices of codimension > 2. Hence ég leaves a at an interior point
n # g,é of a panel m < a, i.e. an Sé = né and ™ N Sé = 1, and n¢ initially lies in a chamber
adjacent to m but not contained in a. Let s < a be the wall containing 7. By reflecting é at s,
one obtains a second antipode for £ in a. O

In thick buildings, simplices can be represented as intersections of apartments:

Lemma 2.3. In a thick spherical building B, any simplex T € B equals the intersection of the
apartments containing it.

Proof. Since every simplex is an intersection of chambers, we are reduced to the case when 7
is a chamber. Furthermore, since every chamber is an intersection of half-apartments, we are
reduced to the corresponding assertion for half-apartments. The latter holds by thickness. [

2.3 Hadamard manifolds

In this section only, X denotes a Hadamard manifold, i.e. a simply connected complete Rie-
mannian manifold with nonpositive sectional curvature. We will use the notation Isom(X) for
the full isometry group of X.

Any two points in X are connected by a unique geodesic segment. We will use the notation
xy for the oriented geodesic segment connecting x to y.

For points = # y, z we denote by Z,(y, z) the angle of the geodesic segments zy and xz.
Furthermore, we denote by >,X the space of directions of X at x equipped with the angle
metric Z,. It coincides with the unit tangent sphere at x.

A basic feature of Hadamard manifolds is the convexity of the distance function: Given any
pair of geodesics ¢1(t), co(t) in X, the function t — d(cq(t), c2(t)) is convex.

Two geodesic rays pq, pa : [0, +00) — X are called asymptotic if the convex function ¢ —
d(p1(t), p2(t)) on [0, +00) is bounded, and they are called strongly asymptotic if d(py(t), p2(t)) —
0 as t — +oo0.

Two geodesic lines [y, Iy < X are parallel if they have finite Hausdorff distance. Equivalently,
[y Ul bounds a flat strip in X.

The ideal or visual boundary 0,X of X is the set of asymptote classes of geodesic rays in
X. Points in d, X are called ideal points. For x € X and £ € 0,X we denote by x£ the unique
geodesic ray emanating from x and asymptotic to &, i.e. representing the ideal point £&. There
are natural identifications log, : 0, X — X, X sending the ideal point ¢ to the direction :c—é .

The cone or visual topology on 0, X is characterized by the property that the maps log, are
homeomorphisms with respect to it. Thus, d,X is homeomorphic to the sphere of dimension
dim(X) — 1. The visual topology has a natural extension to X = X U d,,X which can be
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described as follows in terms of sequential convergence: A sequence (z,,) in X converges to an
ideal point £ € 0, X iff, for some (any) base point = € X, the sequence of geodesic segments
or rays zx, converges to the ray xz£ (in the pointed Hausdorff topology with base points at x).
This topology makes X into a closed ball. We define the wvisual boundary of a subset A — X as
the set 0, A = A N 0, X of its accumulation points at infinity.

The visual boundary 0,X carries the natural Tits angle metric Z ;s defined as

LTits (57 77) = Sup Lx(ga n>’

zeX

where £, (&, n) is the angle between the geodesic rays x€ and xn. The Tits boundary Or;s X is the
metric space (0pX, Z1its). The Tits metric is lower semicontinuous with respect to the visual
topology and, accordingly, the Tits topology induced by the Tits metric is finer than the visual
topology. It is discrete if there is an upper negative curvature bound, and becomes nondiscrete
if X contains nondegenerate flat sectors. For instance, the Tits boundary of flat r-space is the
unit (r—1)-sphere, drysR” =~ S""1(1). An isometric embedding X — Y of Hadamard manifolds
induces an isometric embedding Or;:s X — OpisY of their Tits boundaries.

Let £ € 0, X be an ideal point. For a geodesic ray p : [0, +00) — X asymptotic to £ one
defines the Busemann function b; on X as the uniform monotonic limit

be(x) = lim (d(z,p(t)) - 1).

t—+400

Along the ray, we have
be(p(t)) = —t.

Altering the ray p changes be by an additive constant. The point at infinity £ thus determines
be up to an additive constant. To remove this ambiguity, given x € X, we define b¢ , to be the
Busemann function b, normalized at the point x by b ,(x) = 0.

The Busemann function b is convex, 1-Lipschitz and measures the relative distance from
the ideal point &. The sublevel sets
Hbg, := {be < be(2)} = X
are called (closed) horoballs centered at £. As sublevel sets of convex functions, they are convex.
The visual boundaries of horoballs are 7-balls at infinity with respect to the Tits metric,

™

000 I‘Ibg7m = E(g, ) = {LTits(ﬁ, ) < 7T/2} C (?OOX

nO |

The level sets
HSS@ = {bg = bg(l’)} = aHbg’x
are called horospheres centered at €.
As convex Lipschitz functions, Busemann functions are asymptotically linear along rays. If

p: |0, +w) — X is a geodesic ray asymptotic to 1 € 0, X, p(+00) = 7, then

lim M = —cos Lris(§,1).

t—+00 t
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2.4 Symmetric spaces of noncompact type: basic concepts

In this section, we go through some well known material and establish notation. Standard
references are [Eb] and [BGS].

A symmetric space, denoted by X throughout this paper, is said to be of noncompact type if
it is nonpositively curved and has no euclidean factor. In particular, it is a Hadamard manifold.

We will write the symmetric space as
X =G/K

where G is a connecte semisimple Lie group with finite center acting isometrically and
transitively on X, and K < G is a maximal compact subgroup. The natural epimorphism
G — Isom(X), then has compact kernel. Every connected semisimple Lie group with finite
center occurs in this way. The Lie group G carries a natural structure of a real algebraic group.

By the definition of symmetric spaces, in every point x € X there is a point reflection or
Cartan involution, that is, an isometry o, which fixes z and has differential —idr, x in x.

A transvection of X is an isometry which is the product o,.0, of two point reflections; it
preserves the oriented geodesic through x and x’ and the parallel vector fields along it. The
transvections preserving a geodesic line ¢(t) form a one parameter subgroup (7f) of Isom(X),
where T denotes the transvection mapping c(s) — c(s + t).

An isometry ¢ of X is called axial if it preserves a geodesic [ and does not fix | pointwise.
Thus, ¢ acts as a nontrivial translation on [. (Note that an axial isometry need not be a
transvection.) The geodesic [ is called an axis of ¢. Axes are in general not unique, but they
are parallel to each other. For each axial isometry ¢, the displacement function x — d(x, ¢(z))
on X attains its minimum on the convex subset of X which is the union of axes of ¢. An
isometry ¢ of X is parabolic if

inf d(z,¢(x)) =0
rzeX
but g does not fix a point in X. Isometries fixing points are called elliptic.

A flat in X is a complete totally geodesic flat submanifold, equivalently, a convex subset
isometric to a euclidean space. A maximal flat in X is a flat which is not contained in any
larger flat; we will use the notation F' for maximal flats. The group Isom(X), acts transitively
on the set of maximal flats; the common dimension of maximal flats is called the rank of X.
The space X has rank one if and only if it has strictly negative sectional curvature.

A maximal flat F is preserved by all transvections along geodesic lines contained in it. In
general, there exist nontrivial isometries of X fixing F' pointwise. The subgroup of isometries of
F which are induced by elements of G' is isomorphic to a semidirect product Wyss := R" x W,
the affine Weyl group, where r is the rank of X. The subgroup R" acts simply transitively on
F by translations. The linear part W is a finite reflection group, called the Weyl group of G

'What is really needed is a weaker property than connectedness, namely that G has finitely many connected
components and acts on the Tits building of X by (type preserving) automorphisms. The latter is equivalent
to the triviality of the G-action on the model chamber o,,,4, equivalently, on the Dynkin diagram. Under this
assumption, the theory of discrete subgroups presented in this paper goes through unchanged.
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and X. Since maximal flats are equivalent modulo G, the action W, ;s — F' is well-defined up
to isometric conjugacy.

We will think of the Weyl group as acting on a model flat F,,,q =~ R" fixing the origin
0 € F},.q4, and on its visual boundary sphere at infinity, the model apartment a,oq = Orits Fnod =
S™=1. The pair (amoq, W) is the spherical Cozeter complex associated to G. We identify the
euclidean model Weyl chamber A with the complete cone V (0, 00q) © Finog With tip in the
origin and visual boundary the spherical model Weyl chamber 04 © Gmod-

For every maximal flat F' = X, we have an induced Tits isometric embedding 0, F' < 0, X
of its visual boundary sphere. The natural identification F' =~ F},,4, unique up to the action of
Wasy, induces a natural identification 0, F = @04, unique up to the action of W.

The Coxeter complex structure on a,,,q induces simplicial structures on the visual boundary
spheres 0y F' of the maximal flats FF < X. The spheres d,F cover 0, X, and their simplicial
structures are compatible (i.e. the intersections are simplicial and the simplicial structures on
the intersections agree). One thus obtains a G-invariant piecewise spherical simplicial structure
on 0y, X which makes 0, X into a thick spherical building and, also taking into account the visual
topology, into a topological spherical building. It is called the spherical or Tits building Opys X
associated to X. The Tits metric is the path metric with respect to the piecewise spherical
structure, unless rank(X) = 1, in which case 07X is discrete with distance 7 between distinct
points. We will sometimes refer to the simplices in 075X also as faces. The visual boundaries
of the maximal flats in X are precisely the apartmentsin 0, X, which in turn are precisely the
convex subsets isometric, with respect to the Tits metric, to the unit sphere S™71.

We call a flat f < X singular if it is the intersection of maximal flats. Its visual boundary

O f 1s then a singular sphere in 0, X .

We define the Weyl sector V.= V(z,7) < X with tip x and asymptotic to a simplex
T C 0 X as the union of rays x¢ for the ideal points £ € 7. Weyl sectors are contained in
flats; they are isometric images of Weyl sectors V (0, Ty0q) € A under charts F,,q — X. These
apartment charts restrict to canonical sector charts ky; = Ky(zr) @ V(0,Tmoa) — V(z,7); at
infinity, they induce simplex charts, Opkyr = k7.

If 0 € 0, X is a chamber, the sector V(z,0) is a euclidean Weyl chamber.

For a flat f < X, the parallel set P(f) < X is the union of all flats f' < X parallel to f,
equivalently, with the same visual boundary sphere 0o, f* = 0o f. The parallel set is a symmetric
subspace and splits as the metric product

P(f) =[x C5(f) (2.4)

of f and a symmetric space C'S(f) called the cross section. The latter has no euclidean factor
iff f is singular. Accordingly, the Tits boundary metrically decomposes as the spherical join

Orits P(f) = Oritsf 0 OraesCS(f). (2.5)

It coincides with the subbuilding (07;sX)(0xf) © OrisX consisting of the union of all apart-
ments in 0, X containing d. f, see section 2.2.3l
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For a singular sphere s ¢ 0, X, we define the parallel set P(s) < X as the union of the
(necessarily singular) flats f < X with visual boundary sphere 0 =5, le. P(s) = P(f); we
denote its cross section by C'S(s). For a pair of opposite points &, £ € 0,X, we define P(€,
X as the parallel set of the singular sphere s(&, f) C 0, X spanned by them, P(¢, f) P(s(
Similarly, for a pair of opposite simplices 7,7 < 0, X, we define P(7_,7,) = P(s(7_,74)).

1)AC
,€))-

The action G — 05, X on ideal points is not transitive if rank(X) > 2. However, every G-
orbit meets every chamber exactly once. The quotient is naturally identified with the spherical
model chamber, and the projection

0 : 6OOX — @OOX/G = Omod

is the type map, cf. section 223

A nondegenerate geodesic segment xy < X is called regular if the unique geodesic ray x&
extending zy is asymptotic to a regular ideal point & € 0, X .

Two ideal points £, € . X are antipodal, Z145(&,m) = m, iff there exists a geodesic line
[ € X asymptotic to them, 0,0l = {&,n}. Their types are then related by 6(&) = ¢(0(&1)).

We say that two simplices 7,75 < 0,X are x-antipodal or x-opposite if 75 = 0,7, using
the induced action of the point reflection o, on d,X. Two simplices 71, 75 are opposite iff they
are z-opposite for some point x € X. Their types are then related by 0(7) = ¢(6(m1)). We
will frequently use the notation 7,7 and 74 for pairs of antipodal simplices. A pair of opposite
chambers o4 is contained in a unique apartment, which we will denote by a(o_, 0, ). It is the
visual boundary of a unique maximal flat Fl(oc_,0,) < X.

We will sometimes say that a singular flat f < X has type Ti,0q if its visual boundary do, f has
tYD€ Timod, 1-€. contains a top-dimensional simplex of type T,04- (A singular flat has in general

several types.) The set F. of singular flats of type 7,,,¢ is @ homogeneous G-manifold. The

Tmod
flats of type 0,04 are the maximal flats and we denote F = F, . A family of flats in F_, is
bounded if these flats intersect a fixed bounded subset of X.

Also, we will sometimes call the parallel set P(s) of a singular sphere < 0o, X of type Tynoa
or a Tyeq-parallel set if s has type Toq-

The stabilizers P, < G of the simplices 7 < 05, X are the parabolic subgroups of G. The space
Flag, . of simplices of type 7,04 is called a (generalized) (partial) flag manifold. The action
G —~ Flag, . is transitive and we can write the flag manifold as a quotient Flag, , =~ G/P.

where P

Tmod

mnod

Tmod?

stands for a parabolic subgroup in the conjugacy class of parabolic subgroups P, of
type 0(7) = Tmoq- Flag manifolds are compact smooth manifolds; they admit natural structures
of projective real algebraic varieties (see e.g. [J, p. 160]). The topology on flag manifolds
induced by the visual topology on 0, X agrees with their manifold topology as homogeneous
G-spaces. For ideal points £ € 0, X with type 0(§) € int(7,,04), there is a natural G-equivariant
homeomorphic identification of the G-orbit G¢ < 0, X with Flag, . by assigning to the point
g€ the (unique) simplex of type 7,04 containing it.

The flag manifolds Flag, , and Flag,  are oppositein the sense that the simplices opposite
to simplices of type T4 have type t7,,0,4. To ease notation, we will denote the pair of opposite
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flag manifolds also by Flag,  whenever convenient, i.e. we put Flag, := Flag, . and

Flag_. = Flag, . The lattder is also reasonable, because the simplices —7,,0d, tTimod < Amod
lie in the same W-orbit, i.e. —T,,0q has type tToq. (Here we extend the notion of type to the
model apartment, defining the type of a simplex in a,,,q as its image under the natural quotient
projection amoed — Amod/W = Opmoq.) Similarly, we will use the notation Py, . for a pair of

parabolic subgroups fixing opposite simplices in Flag .

The stabilizers B, < G of the chambers 0 < 0, X are the minimal parabolic subgr’oupég of
G; they are conjugate. The space 0y X := Flag, . of chambers is called the (generalized) full
flag manifold or Furstenberg boundary of X, and we can write dp; X = G/B, where again B
stands for a minimal parabolic subgroup.

For a simplex 7 € Flag,  we define the open Schubert stratum C(7) < Flag,, , as the

d
subset of simplices opposite to 7; it is the open and dense P;-orbit. With respect to the

algebraic structure on Flag, ., it is Zariski open, i.e. its complement is a proper subvariety.

We note that, if rank(X) = 1, then there is only one flag manifold, namely 0., X, and the
open Schubert strata are the complements of points.

2.5 Stars, cones and diamonds

2.5.1 Stars and suspensions

We first work inside the spherical model chamber o,,,04.

We recall from section 2.2.T]that, for a face type Tod S Omod, the Timea-boundary 0, 0 moq Of

Omod 1s the union of the faces of 0,4 which do not contain 7,,,4. The 7,0q-interiorint, . (Tmoed)

Tmod

of 0,04 18 the union of the open faces of 0,,,g whose closure contains 7,,,q. There is the
decomposition

Omod = intrmod(gmod) U a'r7,wd0-7710d-
In particular, int,, ,(Omod) = It Opea and 0y, Omod = 00med-

We say that a type in 0,04 1S Tiea-regular if it lies in int,  (0mod)-

Now let B be a spherical building. As before, we assume that diam(om.q4) < 3.

A point £ € B is called 7,,04-regular if its type is, 0(§) € int,,_ (0moa). We will quantify 7,04
regularity as follows: Given a compact subset © < int,  (004), We will say that a 7,,,4-regular
point & € B is O-regular if 6(§) € ©.

It will often be natural to impose a convexity property on ©:

Definition 2.6 (Weyl convex). A subset © € 0,04 IS Tinoa- Weyl convez if its symmetrization
w.

Tmod

O C aq 1S convex.

Let 7 < B be a simplex of type Ty0q- The Ty0q-star st(7) < B is the union of all chambers

2When the group G is complex, the minimal parabolic subgroups are the Borel subgroups, which is why we
use the notation B for these subgroups.
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containing 7. Its boundary dst(7) is the union of all simplices in st(7) which do not contain
T; it consists of the points in st(7) with type in 0,  0moa. The open Tpeq-star ost(r) is the
complement ost(7) = st(7) — dst(7); it consists of the 7,,,q-regular points in st(7) and is open
in B. For any simplex 7 opposite to 7, the star st(7) is contained in the suspension B(7, 7).

Furthermore, we define the O-star stg(7) < ost(7) as the subset of points with type O, that
is, ste(7) = st(r) n 071(O).
We will use the following separation property: If Z(0,0, 0mod) = € > 0, then ost(7)

contains the open e-neighborhood of stg(7).

Note that for chambers o we have st(o) = o and ost(o) = int(0).
The next result implies that stars are convez:

Lemma 2.7 (Convexity of stars). (i) st(7) is an intersection of simplicial -balls.

(i1) For any simplex T opposite to T, the star st(T) is an intersection of the suspension
B(7,7) with simplicial 5 -balls containing st(7) and centered at points in B(7, 7).

Proof. (i) Let o ¢ st(7) be a chamber, and let a be an apartment containing o and 7. We can
separate o and st(7) na by a wall in q, i.e. there exists a half-apartment h < a which contains
st(7) n a but not o. Indeed, choose points £ € int(7) and 7 € int(0) such that the segment &n
intersects do in a panel, and take the wall containing this panel. The simplicial F-ball with the
same center as h then contains st(7) but not o.

(ii) Note first that st(7) < B(7, 7). Then we argue as in part (i), observing that if o = B(r, 7)
then a can be chosen inside B(r, 7). O

We extend convexity to ©-stars:

Lemma 2.8 (Convexity of O-stars). Let © S 0,00 b€ Tinoa- Weyl convex, and let T be a
simplex of type Timoa. Then ste(T) is an intersection of 7 -balls.

Proof. For any apartment a © 7, the intersection ste(7) N a is convex, as a consequence of the
Weyl convexity of ©.

Let ¢ € B. Every point in stg(7) lies in an apartment a > 7, (.

For any two apartments a,a’ © 7, { there exists an isometry a — d' fixing 7 and ¢. (This fol-
lows from the compatibility of apartment charts axiom in the definition of spherical buildings.)
It carries ste(7) N a to ste(T) N a’. Hence, B((, %) contains the first intersection iff it contains
the second. Letting a’ vary, it follows that B(C, ;) contains stg(7) iff it contains ste(7) N a.

Let £ ¢ sto(7). Then there is an apartment a > 7, £ and, due to the convexity of stg(7) na, a

point ¢ € a such that B((, 5) contains stg(7) na but not €. By the above, sto(1) = B(¢,%). O

In the following, we restrict ourselves to the case B = 0, X and, besides the metric, also
take into account the visual topology on the flag manifolds Flag. .. The discussion readily
generalizes to arbitrary topological spherical buildings.
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The Tooq-reqular part 0?9 X of the visual boundary equals the union of the open 7,,04-
stars. The natural projection

Olmod ™9 X = U ost(r) — Flag, . (2.9)
TEFlango d

is a fiber bundle.

Let 7 € Flag, , and let 7 be opposite to 7. Then 7 is the only simplex in B(r, 7) which is
opposite to 7. In other words, the closed subset

{r' € Flag, ,:7 < B(r,7)} (2.10)
intersects the open Schubert stratum C'(7) in the single point 7, which is therefore an isolated

point of this subset.
We know that ost(7) is an open subset of B(7,7) with respect to the (Tits) metric.

Lemma 2.11 (Open stars). ost(7) is open in B(7,7) also with respect to the visual topology.

Proof. Consider the fiber bundle (2.9]). The union U of the open 7,,,4-stars over the simplices
in C(7) is open in 05, X. Since 7 is an isolated point of (ZI0)), the suspension B(7, 7) intersects
U precisely in ost(7), which is therefore open in the suspension. O

2.5.2 Cones and parallel sets

We transfer notions about stars by coning off. Our discussion takes place in X and F},,q.

Consider first the euclidean model chamber A = V(0, 0,n04)- 1tS Tinoa-boundary
Or AN :=V(0,0.  Omoa) S OA

A = 0A.

In the symmetric space X, we define for a point z € X and a subset A < 0, X the cone
V(z, A) € X as the union of the rays z¢ for £ € A. We put V(z, &) := {z}.

Let 7 < 05, X be a simplex of type T,,0q. The Weyl cone V(z,st(7)) with tip at € X is the
union of the euclidean Weyl chambers V (z, o) for all chambers o  st(7), equivalently, o 2 7.
Its boundary is given by oV (x,st(7)) = V(x,dst(7)), and its interior by V(x,ost(7)) —{z}. We
call the Weyl sector V(x,7) the central sector of the Weyl cone V(x,st(7)). Similarly, we will
refer to V(0, Timea) S A as the central sector of the cone W, A =V(0,W,  0mod) © Finod-

is the union of the faces which do not contain the face V(0, 7,,04). In particular ¢

Omod

For the unique simplex 7 z-opposite to 7, the Weyl cone V(z,st(7)) is contained in the
parallel set P(7,7). We say that the cone spans the parallel set.

Furthermore, for a compact subset © < int, . (0mod), we define the O-cone V(z, stg(7)).

Note that for chambers o < 0, X we have V(z,st(0)) = V(x,0).

We will call two Weyl cones or ©-cones asymptotic if their visual boundary stars coincide.
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The Hausdorff distance of asymptotic Weyl cones V (y,st(7)) and V (y/,st(7)) is finite and
bounded by the distance d(y, y') of their tips. This follows immediately from the corresponding
fact for rays.

The distance between boundaries of Weyl cones will be discussed later in section 2.9.11

We will need a fact about projections. Let
Ter = TV () V(2,st(1)) = V(z,7) (2.12)
denote the nearest point projection of the Weyl cone to its central sector.

Lemma 2.13. 7, . maps the interior of the Weyl cone to the interior of its central sector.

In other words, for every point y in the interior of the Weyl cone there exists a point p in
the interior of its central sector such that py L V(z, 7).

Proof. This is a consequence of the general Lemma [2.1] on projections of spherical simplices to
their faces. It yields at infinity that, for every chamber ¢ 2 7, the nearest point projection
int, (o) — int(7) is well-defined. Equivalently, the nearest point projection ost(7) — int(7) is
well-defined. The assertion follows by coning off. O

As a consequence of the lemma, 7, . agrees with the nearest point projection of the Weyl
cone to the singular flat spanned by the sector V' (z,7), because it does so on the interior.

Now we address converity. We will see that the results on stars carry over to cones. First
of all, by the definition of Weyl convexity, the cone V(0,W, 0) =W, V(0,0) C Fpuq is

Tmod

convex iff O is 7,,,4- Weyl convex.

Proposition 2.14 (Convexity of cones). (i) The cones V(x,st(7)) are conver.

(1) If © is Tioa- Weyl convex, then also the cones V (z,ste(T)) are conver.

Proof. 1t suffices to verify (ii). We show that cones are intersections of horoballs.
The horoball Hbe , contains the cone V(z, ste(7)) iff sto(7) = B(¢,5) in 0,X.

Let y # = be a point and let € be a ray extending xy. Then y ¢ V (z,stg(7)) iff £ ¢ ste(7).
Let F' < X be a maximal flat such that xy < F and 7 € dF. According to the proof of

Lemma 28 there exists a point ¢ € 0. F such that B((,Z) contains ste(7) but not £. Since

Hb¢ . nF' is a half-space containing z in its boundary, it follows that also y ¢ Hb ,. O

The convexity of cones implies their nestedness:

Corollary 2.15 (Nestedness of cones). (i) Ify € V(z,st(7)), then V(y,st(7)) < V(x,st(r)).
(11) If y € V(z,ste(T)), then V(y,ste(7)) S V(z,ste(T)).

Next we show an openness property for Weyl cones in the parallel sets spanned by them:
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Lemma 2.16 (Open cones). Let x € P(7,7). Then the boundary 0V (x,st(1)) of the Weyl
cone V(x,st(T)) disconnects the parallel set, and its interior V (x,ost(7)) — {z} is one of the
connected components.

Proof. Since parallel sets are cones over their visual boundaries, P(7,7) = V(z, 0, X (7,7)),
this follows from the visual openness of stars, cf. Lemma 2.T11. O

2.5.3 Diamonds

We say that a nondegenerate oriented geodesic segment xy < X is 7y,0q-regular if the unique
geodesic ray z€ extending xy is asymptotic to a 7,,.4-regular ideal point & € 0, X . In this case,
we denote by 7(zy) € Flag, . the unique simplex such that £ € ost(7). Furthermore, we say
that zy is ©-regular with © € int, _ (0meq) if 0(&) € ©.

Note that xy is T,,0q-regular if and only if yx is (7,.q-regular, and O-regular iff yx is 1O-

regular. The types of the simplices 7(xy) and 7(yz) € Flag,, are then related by

0(7(yx)) = 10(7(xy)).

Let xy be a 7,,,q-regular segment. We define its 7,,,4-diamond as the intersection of Weyl cones

Or (@ y) = Vieyst(ry)) n V(y,st(r-)) < P(r—,74)

where 7, = 7(zy) and 7_ = 7(yx). The points z,y are the tips of the diamond. Furthermore,

d

if xy is O©-regular, we define its O-diamond
Qolz,y) = V(z,ste(r4)) nV(y,ste(1-)) = Or,0a (2, 9).
The convexity of cones (Proposition [2.14]) implies:
Proposition 2.17 (Convexity of diamonds). (i) $.  (x,y) is conver.
(1) If © is Tyoa- Weyl convez, then also $eo(x,y) is conver.
And furthermore:

Corollary 2.18 (Nestedness of diamonds). Suppose that xy and =y’ are Ty0q-regular seg-
ments such that T(2'y’) = 7(zy), T7(y'2") = 7(yz) and 2’y < &, (2, y). Then:
(7') <>Tmod ("'Ij/7 y/) = <>Tmod (‘,L” y)

(i1) If xy and 2’y are ©-regular, where © is Tyoq- Weyl conver, and if 'y’ < $o(x,y), then
Qo(2',y) < Qelz,y).

2.6 Vector valued distances

The Riemannian distance is not the complete two-point invariant on the symmetric space X,
if rank(X) > 2. In view of the natural identifications X x X /G =~ X/K =~ A, the full invariant
is given by the quotient map

dA X xX - A
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arising from dividing out the G-action, which we refer to as the A-distance. We will think of
the elements of A < F,,,4 as vectors and of da as a vector-valued distance. It relates to the
Riemannian distance d on X by

d = |dal,

where | - || is the euclidean norm on F,,q.

For the model flat, there are corresponding identifications Foq X Finod/Wass = Finod/W = A
and a A-distance
dA:Fmod X Fmod_’A~
It is compatible with the A-distance on X in that the charts F},,q — X are da-isometries.

Similarly, one defines the A-distance on euclidean buildings via apartment charts, see [KLM]J.

The distance da is not symmetric, but satisfies

da(y,x) = vda(x,y).

We refer the reader to [KLM]| and [P] for the detailed discussion of metric properties (such as
“triangle inequalities” and “nonpositive curvature behavior”) of da.

We note that a geodesic segment zy < X is regular iff da(z,y) € int(A). Similarly, xy is
O-regular iff da(z,y) € V(0,0).
We define certain coarsifications of da by composing it with linear maps: For a face type
Tmod, let
72 A V(0, Tiod)

Tmo

denote the nearest point projection. The composition

d. =72 odp (2.19)

Tmod Tmod

can also be regarded as a vector-valued distance on X, with values in the Weyl sector V' (0, Tyneq) <
A. Note that d,,_, = da. Obviously,

d

HdTmodH < d (220)
A

Tmo

because m is 1-Lipschitz.

Given a compact subset © < int, (0mea), for O-regular segments xy < X it holds that
|dr,a(z,y)| = €(©) - d(z,y) (2.21)
with a constant €(©) > 0, where | - | denotes the euclidean norm. For the constant ¢(©) one
can take the sine of the angular distance Z(0, 0y, Omod)-
2.7 Refined side lengths of triangles

In this section, we assume more generally that X is a CAT(0) model space, i.e. a nonpositively
curved Riemannian symmetric space or a thick euclidean building. We denote by

Ps(X) c A3
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the set of possible A-side lengths (da(z1, 2), da (22, x3), da (3, 1)) of triangles A(xq, o, z3) in
X. The following general result reduces the problem of determining Ps(X) from the symmetric
space case to the euclidean building case:

Theorem 2.22 ([KLM), Thm. 1.2]). P3(X) depends only on the Weyl group W, and not on
whether X s a Riemannian symmetric space or a thick euclidean building.

In the paper [KLM], a detailed description of the set P3(X) is given.

The next result concerns the A-side lengths of triangles A(z, y, z) in X such that the broken
geodesic zyz is a Finsler geodesic (in the sense of section 2.12] below):

Proposition 2.23. (i) If y € V(x,st(7)) and z € V(y,st(r)) with T € Flag, ., then
da(z,z) € V(da(z,y), Wr Omod) N A.
(11) If z € V(y,ste(7)), where © < int,  (Omod) S Tmoea- Weyl convex, then

da(z,z) € V(da(z,y), W, ©)n A.

Tmod
Here, the cones V (da(z,y),-) are to be understood as subsets of F,,q.

Proof. We prove the stronger claim (ii).

The triangle A(x,y, ) lies in the parallel set P = P(7,7) for the simplex 7 € Flag,,
x-opposite to 7. The parallel set P is itself a symmetric space (with euclidean factor) with
Weyl group W’ = W,

Tmod

< W. There is a natural inclusion 0,04 < 0,,,; < Gmoea Of spherical
Weyl chambers such that o/, equals the convex hull of 0,,,s and the simplex —7,,,4 opposite
tO Tmod, and a corresponding inclusion A ¢ A’ c F,,,q of euclidean Weyl chambers such that
A’ is the convex hull of A and the sector —V (0, Ty04)-

Our claim is then a consequence of the following assertion on A’-side lengths: If da/(x,y) € A
and da (y, z) € V(0,0) < A, then

da(z, z) € V(da(z,y), W, O)nA.

Tmod

Using Theorem 2.22] we may pass from symmetric spaces to euclidean buildings: The assertion
is equivalent to the same assertion for any thick euclidean building P with the same Weyl group
W'. (For instance, one can take P to be the complete euclidean cone over the spherical building
Orus P, which is a non-locally compact euclidean building with just one vertex.) It is easier
to verify the statement in the building case due to the locally conical geometry of euclidean
buildings.

Suppose therefore that A(Z, g, Z) is a triangle in a euclidean building P with Weyl group
W', satisfying the same assumptions da/(Z,7) € A and da/(7, 2) € V(0,0). Taking advantage
of the local conicality of buildings, we will do “induction along yz” and show that

dA/(ZZ’, 2/) € V(dA/(:Z",gj), W, @) N A (2.24)

Tmod
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for all points Z’ € yZ. Since this is a closed condition on Z’, it suffices to show that the subset of
points satisfying it is half-open to the right. Moreover, since the points Z’ € 2 satisfying (2.24])
also satisfy, like g, the assumptions that da/(z,2") € A and da/(Z',2) € V(0,0), it suffices to
verify (2.24) for all points Z’ € §Z sufficiently close to 7.

This however reduces our claim to the flat case, because there exists a maximal flat F < P
which contains zy along with a nondegenerate initial portion of the segment gjiﬁ We may
therefore assume that the triangle A(Z, g, 2) lies entirely in F. Identifying F =~ F,,4, we can
once more reformulate our claim: If § € A and v e V(0,W, ©), then

dar(0,8 +tv) € V(8, W, O) A A (2.25)

for all sufficiently small ¢ > 0.
The stabilizer of § in W' = W,

Tmod

Timod S Vmod S Omoa (namely, for the minimal face type Vioq 2 Timoq Such that § € V(0, Vnoq))-
We observe that the cone § + V(0,W, ) is W,

W,

Tmod

is a subgroup W, for a face type Vg with

<
mod >

-invariant and can be represented locally

Tmod Vmod
near J as
5 + V(O’ WTmod@) = V[/vl/mod(((S + V(O’ WTmod(—))) N A)
The W, -invariance of da/(0,-) yields the assertion. O

2.8 Strong asymptote classes

Let p;(t) and p2(t) be asymptotic geodesic rays in X, i.e. with the same ideal endpoint p; (+o0) =
p2(+00) = £. Equivalently, the convex function ¢ — d(py(t), p2(t)) on [0, +00) is bounded. The
rays are called strongly asymptotic if d(p1(t), p2(t)) — 0 as t — +00. One sees then using Jacobi
fields that d(pi(t), p2(t)) decays exponentially with rate depending on the type of £ (see [ED]).

Strong asymptote classes are represented by rays in a parallel set:

Lemma 2.26. Let &, é € 0 X be antipodal. Then every geodesic ray asymptotic to £ is strongly
asymptotic to a geodesic ray in the parallel set P = P(&,§).

Proof. Let ¢1(t) be a geodesic line forward asymptotic to ¢ (extending the given ray). Then
the function t — d(c1(t), P) is convex and bounded on [0, +0), and hence non-increasing. We
claim that the limit

D := lim d(c¢(t), P)

t—+00

equals zero. To see this, we choose a geodesic line ¢y(t) in P forward asymptotic to £ and
use the transvections 7y along ¢o to “pull back” ¢;: The geodesics ¢f := T%¢;(- + s) form a
bounded family as s — +c0 and subconverge to a geodesic ¢f . Since the transvections T2
preserve P, the distance functions d(¢i(-), P) = d(c1(- + s), P) converge locally uniformly on R
and uniformly on [0, +00) to the constant D. It follows that the limit geodesic ¢ * has distance

3This is clear for discrete euclidean buildings. (In particular, for buildings with only one vertex, like the
complete euclidean cone over dr;:s P.) For the general case, see e.g. [KILI] §4.1.3].
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= D from P. The same argument, applied to ¢ instead of the parallel set, implies that ¢f® is
parallel to ¢o. Thus, ¢* < P(cy) = P and, hence, D = 0.

Now we find a geodesic in P strongly asymptotic to ¢; as follows. Let ¢, — +o0. We
choose geodesics ¢, (t) in P forward asymptotic to £ by requiring that ¢, (¢,) € P is the nearest
point projection of ¢(t,). Then d(ci(t,),c,(tn)) = d(ci(tn), P) — 0. The geodesics ¢, < P
are parallel, and their mutual Hausdorff distances d,,, are bounded above by the distances
d(c,(t),c,(t)) independent of t. To estimate the Hausdorff distances, we observe that

i < d(cy (1), €,(1)) < d(cn (), e1(t)) + dlea(t), ¢ (1) < d(ch(tm), c1(tm)) + dlcr(tn), c(tn))
for t > t,,,t,. The right-hand side converges — 0 as m,n — 400, and hence also d,,,. Thus,
the geodesics ¢, form a Cauchy sequence and therefore converge to a geodesic in P. The limit
geodesic is strongly asymptotic to ¢;. O

We now derive a criterion for the strong asymptoticity of rays.

Consider a geodesic line ¢(t) asymptotic to & € 0, X. We observe that for every n € 0., P(c)
the restriction b, o c is linear, because there exists a flat f containing ¢ with n € df.

As a consequence, for any two strongly asymptotic geodesic lines ¢;(t) and ¢5(t) asymptotic
to &, the restricted Busemann functions b, o¢; coincide for every n € st(7e) < 0o P(c1) N0 P(c2),
where 7¢ denotes the simplex spanned by &.

There is the following useful criterion for strong asymptoticity:

Lemma 2.27. For geodesic lines ¢1(t) and co(t) asymptotic to £ the following are equivalent:
(i) c1(t) and c3(t) are strongly asymptotic.
(it) by o c1 = b, 0 co for every n € st(7e).

(1”) by o c1 = by o cy for every n e B(&, €) for some e > 0.

Proof. (i)=(ii) follows from the above discussion and (ii)=(ii") is immediate.

In order to prove (ii’)=(i), we replace the geodesics ¢; by a pair of parallel ones without
changing their strong asymptote classes, applying Lemma [Z26l Using the implication (i)=-(ii),
which we already proved, we see that the ¢; keep satisfying hypothesis (ii’). Since they now lie
in a common flat, (ii’) immediately implies that they coincide, i.e. (i) follows. O

We generalize the discussion of strong asymptoticity to sectors.

Two Weyl sectors in X are asymptotic iff their visual boundary simplices coincide, equiva-
lently, iff they have finite Hausdorff distance.

Fix a simplex 7 € Flag, _ and consider two asymptotic sectors V' (zy,7) and V (xg, 7). The
function V' (0, Tynea) — [0, +00) given by

y = d(KZII,T(y)? I{'SCZ,T(y))? (228)

where k,, ; are the sector charts, is convex and bounded. We denote its infimum by d, (1, xﬁ
This defines a pseudo-metric d, on X, viewed as the set of (tips of) sectors asymptotic to 7

4Observe that d,(r1,x2) depends only on the strong asymptote classes of the sectors V (x;,7), and hence d,
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We say that the sectors V(x1,7) and V (x4, 7) are strongly asymptotic if d.(xq,z5) = 0. For
any ideal point £ € int(7) this is equivalent to the rays x1£ and z5¢ being strongly asymptotic.
We denote by

XPT — X[~
the space of strong asymptote classes of Weyl sectors asymptotic to .

We show now that, also in the case of sectors, parallel sets represent strong asymptote
classes. For a simplex 7 opposite to 7 we consider the restriction

P(r,7) — XPo (2.29)
of the natural projection X — XP".

Proposition 2.30. The map (2.29) is an isometry.

Proof. For points z1, x5 € P(7,7) the function (2.28) is constant = d(z1, z3). Hence (2.29) is an
isometric embedding. To see that it is also surjective, we need to verify that every sector V' (z, 7)
is strongly asymptotic to a sector V(2/,7) < P(7, 7). This follows from the corresponding fact
for geodesic rays, see Lemma O

2.9 Asymptotic Weyl cones
2.9.1 Separation of nested Weyl cones

Suppose that y € V(z,st(7)) with 7 € Flag, .. By nestedness (Coroillary 2.19]), we have the
inclusion of Weyl cones V' (y,st(7)) < V(x,st(7)). We now determine the separation of their
boundaries:

Proposition 2.31 (Separation). The nearest point distance of the boundaries oV (x,st(T))
and oV (y,st(7)) equals d(6, 0, A) = d(y,dV(x,st(7))), where 6 = da(z,y).

Tmod

Proof. The natural submersion
dA (l’ s ) X - A

is 1-Lipschitz and restricts to an isometry on every euclidean Weyl chamber with tip at . By
restricting it to the Weyl cone V' (z,st(7)), one sees that

d(-, 0V (z,st(7))) = d(da(z,-), 0r,,.0)

on V(z,st(7)). According to Proposition 2.23(i), the values of da(z,-) on V(y,st(r)) are con-
tained in

V (5, W,

mod

Umod) N Aa

descends to XP" x XP%" The triangle inequality is a consequence of Proposition[2.30lbelow. One can also verify
the triangle inequality for d, directly, using the fact that, for bounded convex functions ¢, : V(0, Trod) —
[0, 4+00), it holds that inf ¢ + inf ¢ = inf(¢ + ).
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and clearly all these values are attained (on a euclidean Weyl chamber with tip at = and
containing y). It follows that the nearest point distance of V (y,st(7)) and 0V (z,st(7)) equals
Omod) N A and 0, A.

In order to see that the latter is given by d(9, 0, ,A), note that d(-, d;,
of finitely many root functionals on A, namely of those corresponding to the walls of A not

the nearest point distance of V (5, W,

mod d

,A) is the minimum

containing the sector V (0, 7,04), equivalently, of those which are nonnegative on W, A. Each

of these functionals attains its minimum on the cone V(§, W,  o,.04) at its tip 0. O

mod

2.9.2 Shadows at infinity and strong asymptoticity of Weyl cones

For a simplex 7_ € Flag,,  and a point x € X, we consider the function

d
T d(x, P(T_,7)) (2.32)
on the open Schubert stratum C(7_) < Flag, .. We denote by 7. € C(7_) the simplex

r-opposite to 7_.

Lemma 2.33. The function (2.32) is continuous and proper.

Proof. This follows from the fact that C'(7_) and X are homogeneous spaces for the parabolic
subgroup P, . Indeed, continuity follows from the continuity of the function

g = d(l’,P(T_,g7‘+)) = d(g_ll’,P(T_,T+))

on P, which factors through the orbit map P, — C(7_),9 — g74.

Regarding properness, note that a simplex 7 € C(7_) is determined by any point y contained
in the parallel set P(7_,7), namely as the simplex y-opposite to 7_. Thus, if P(7_,7) n
B(z, R) # & for some fixed R > 0, then there exists g € P._ such that 7 = g7, and d(z, gx) <
R. In particular, g lies in a compact subset. This implies properness. O

Moreover, the function (Z32]) has a unique minimum zero in 7.

We define the following open subsets of C'(7_) which can be regarded as shadows of balls in
X with respect to 7_. For z € X and r > 0, we put

Ur zri={1€C(r_)|d(x, P(1_,T)) < r}. (2.34)
The next fact expresses the strong asymptoticity of asymptotic Weyl cones:

Lemma 2.35. Forr, R > 0 there exists d = d(r, R) > 0 such that:
If y e V(x,st(r_)) with d(y, oV (x,st(r-))) = d(r,R), then U, . r < U, ,,.

Proof. If U, ,r ¢ U, ,, then there exists 2’ € B(xz, R) such that d(y, V(2 st(1_))) = r.
Thus, if the assertion is wrong, there exist a sequence x,, — z., in B(z, R) and an (7,,,4-regular
sequence (y,) in V(x,st(7_)) such that d(y,, V (x,,st(r-))) = r.
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Let p : [0,+00) — V(x,7_) be a geodesic ray with initial point x and asymptotic to an
interior point of 7_. By t7,0q-regularity, the sequence (y,) eventually enters every Weyl cone
V(p(t),st(7-)). Since the distance function d(-,V(z,,st(7_))) is convex and bounded, and
hence non-increasing along rays asymptotic to st(7_), we have that

R = d(x,V(z,st(72))) = d(p(t), V(Tn,st(12))) = d(yn, V(Tn,st(72))) = r
for n > n(t). It follows that
R=d(p(t),V(xe,st(t_))) =7

for all t = 0. However, the ray p is strongly asymptotic to V(z,st(7_)), cf. Proposition 2.30
a contradiction. O

2.10 Horocycles

We discuss various foliations of X naturally associated to a simplex 7 < 05, X.

We begin with foliations by flats and parallel sets: First, we denote by F, the partition of
X into the singular flats f < X such that 7 < 0, f is a top-dimensional simplex. Second, we
consider the partition P, of X into the parallel sets P(,7) for the simplices 7 opposite to 7.
Note that P, is a coarsening of F,, and coincides with it iff 7 is a chamber. The parabolic
subgroup P, preserves both partitions and acts transitively on their leaves. This implies that
these partitions are smooth foliations.

We will now show that there exist complementary orthogonal foliations. To do so, we
describe preferred mutual identifications between the leaves of F, as well as of P, by the actions
of certain subgroups of P,. Their orbits will be submanifolds orthogonal and complementary
to the foliations, i.e. the integral submanifolds of the distributions normal to them.

The tuple (b¢)eevert(r) of Busemann functions for the vertices ¢ of 7 (well-defined up to
additive constants) provides affine coordinates simultaneously for each flat f € F,. The Buse-
mann functions at the other ideal points in 7 are linear combinations of these. The group P,
preserves the family of horospheres at every £ € 7, and the action on it yields a natural “shift”
homomorphism ¢, : P, — R. The intersection of their kernels forms the normal subgroup

(] Stab(be) = () Stab(be) < P (2.36)
&eVert () Eer
It acts transitively on the set F, of flats and preserves the coordinates; it thus provides consistent
identifications between these flats. The level sets of (be)eevers(r) are submanifolds orthogonal
and complementary to these flats, because the gradient directions of the Busemann functions
be at a point x € f € F, constitute a basis of the tangent space T, f. These level sets form a
smooth foliation F and are the orbits of the subgroup (2.36).

In order to describe the foliation normal to P,, we define the horocyclic subgroup at T as
the (smaller) normal subgroup N, < P given by

N, = (1) Stab(be) < Fix(st(r)) < P
Eest(T)
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It is the kernel of the P,-action on the set of all (unnormalized) Busemann functions centered
at ideal points in st(7).

Note that as a consequence of Lemma 2.27] N, preserves the strong asymptote classes of
geodesic rays at all ideal points £ € ost (7).

We now give a method for constructing isometries in V.

Let & € int(7), and let ¢(t) be a geodesic line forward asymptotic to it, ¢(+o) = £. Consider
the one parameter group (7f),r of transvections along c¢. The transvections Tf fix 0. P(c)
pointwise and shift the Busemann functions b, centered at ideal points n € 0, P (c) by additive
constants:

bn O T‘tc - bn = —t-cos LTitS(/'% 6)
Note that st(7) < 0y P(c).

Lemma 2.37. Let ¢1(t) and c5(t) be geodesic line:g‘orward asymptotic to & € int(7), which are

strongly asymptotic. Then there exists an isometryl n € G with the properties:

(i) nocy = co.
(i1) n fizes O P(c1) N 0 P(c) pointwise.
(iit) by on = by, for all n € 0P (c1) N 0 P(c2).

In particular, n € N,.

Proof. By our observation above, the isometries 7% o Ty fix 0, P(c1) N 05 P(c2) 2 st(7) point-
wise and preserve the Busemann functions b, for all n € 0, P(c1) N 0 P(c2). Thus, they belong
to N,. Moreover, they form a bounded family. Therefore, as ¢ — +o0, they subconverge to an
isometry n € N, which maps ¢; to co while preserving parameterizations. O
Corollary 2.38. N, acts transitively on

(i) every strong asymptote class of geodesic rays at every ideal point £ € int(7);

(i1) the set of leaves of P;.

Proof. Part (i) is a direct consequence of the lemma.
Also (ii) follows because every parallel set in P, contains a (in fact, exactly one) geodesic

ray of every strong asymptote class at any point £ € int(7), cf. Proposition 230 O

Remark 2.39. One also obtains that every geodesic asymptotic to an ideal point £ € 07 can
be carried by an isometry in N, to any other strongly asymptotic geodesic. However, N, does
not preserve strong asymptote classes at & in that case.

Lemma 2.40. If n € N, preserves a parallel set P(T,7T), nT = 7, then it acts trivially on it.

Proof. The hypothesis implies that n fixes st(7) and 7 pointwise, and hence also their convex
hull 0, P(7,7) in OpysX. Thus n preserves every maximal flat F' < P(7,7). Moreover it

5This isometry is unipotent but we will not need this fact.
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preserves all Busemann functions b¢ centered at points £ € 0, F nst(7), and therefore must fix
I pointwise, compare Lemma 2.27] [

Corollary 2.41. The stabilizer of P(1,7) in N, is its pointwise fizator K, < G.

Proof. The claim follows from the obvious inclusion K, ; < N, together with the lemma. [

Remark 2.42. The subgroup N, decomposes as the semidirect product U, x K, ;, where
U, < P, is the unipotent radical of P;.

By the above, N, provides consistent identifications between the parallel sets P(7,7). The
N,-orbits are submanifolds orthogonal to the parallel sets and must have complementary di-
mension. They form a smooth foliation

H, = Pt (2.43)

refining F, which we call the horocyclic foliation and its leaves the horocycles at 7. We denote

T

the horocycle at 7 through the point « by He, ,, i.e. He,, = N .

For incident faces, the associated subgroups and foliations are contained in each other: If
v C 7, then st(v) o st(7) and N, < N,. Therefore, e.g. H, refines H.,.

Note that in rank one, horocycles are horospheres.

We also see how horocycles and strong asymptote classes relate; by Corollary 2.38|(i):

Corollary 2.44 (Strong asymptote classes are horocycles). The sectors V(xy,7) and
V(xq,T) are strongly asymptotic if and only if x1 and x5 lie in the same horocycle at T.

Moreover, the discussion shows that for the stabilizer P, n P; of P(7,7) in P, it holds that
N (P, nP;) =P, and P, n P; n N, = K, 7, and so the sequence

1 — N, - P, — Isom(XP")

1s exact.

Remark 2.45. Note that the homomorphism P, — Isom(XP%) is in general not surjective.
Namely, let XP" =: f. x C'S(7) denote the decomposition (2.4]) of X?* =~ P(r,7). Then P,
acts on the flat factor f, only by the group A, of translations. On the cross section, it acts by
a subgroup M, < Isom(CS(7)) containing the identity component. The above exact sequence
is then a part of the Langlands’ decomposition of P,

1> N, »>P. - A x M, -1,
which, on the level of Lie algebras, is a split exact sequence.

We return now to Lemma .37, For later use, we elaborate on the special case when the
geodesics ¢; are contained in the parallel set of a singular flat of dimension rank minus one.
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Consider a half-apartment h < Jdy, X; it is a simplicial §-ball in 0, X. We call its center ¢
the pole of h. We define the star st(h) as the union of the stars st(7) where 7 runs through
all simplices with int(7) < int(h), equivalently, which are spanned by interior points of h.
Similarly, we define the open star ost(h) as the union of the corresponding open stars ost(7).
Note that int(h) < ost(h). Furthermore, we define the subgroup N, < G as the intersection of
the horocyclic subgroups N, at these simplices 7,

N, = ﬂ N,.

int(7)cint(h)

We observe that N, preserves the strong asymptote classes of geodesic rays at all ideal
points £ € ost(h), and it preserves the family of maximal flats F' with 0, F > h. The action on
this set of flats is transitive. Indeed, parallel to Lemma 2.37] we have:

Lemma 2.46. Let F\,F5, < P(0h) be mazximal flats with 0nF; > h. Then there exists an
isometry n € Ny, with the properties:

(Z) TLFl = Fg.
(ii) n fizes st(h) pointwise.
(iit) by, on = by, for all n € st(h).

Proof. The parallel set P(0h) splits as the product f x CS(0h), see (2.4), where f < X is
a singular flat with d,f = 0h, and the cross section C'S(0h) is a rank one symmetric space.
Accordingly, the maximal flats F; split as products f x ¢; with geodesics ¢; = C'S(0h) asymptotic
to the pole ¢ € C'S(0h) of h.

Let & € int(h). We choose geodesics ¢ (t), co(t) in Fy, Fy asymptotic to . Their f-com-
ponents are parallel geodesics in f, and their C'S(0h)-components are geodesics in C'S(0h)
asymptotic to (, equal to ¢, up to reparametrization. The geodesics ¢y, co are strongly
asymptotic iff they have the same f-component and their C'S(dh)-components are strongly
asymptotic. We choose them in this way, using the fact that any two asymptotic geodesics in
a rank one symmetric space become strongly asymptotic after suitable reparameterization.

We then can apply the limiting argument (in the proof of Lemma 2.37) to the compositions
T o Ty and obtain an isometry n € N,, where 7¢ < h denotes the simplex spanned by §. The
isometry n carries F) to I}, fixes st(7¢) pointwise and satisfies (iii) for all 7 € st(7¢).

We observe that the isometries T%oT* act trivially on f and the limiting isometry n depends
only on the C'S(0h)-components of the geodesics ¢;. Thus, by replacing the f-component of the
¢;, we are not affecting n, but we can change the ideal endpoint £ of the ¢; to any other ideal
point & € int(h). (We work here with constant speed parametrizations ¢;(t).) It follows that
n fixes also st(7e) pointwise and satisfies (iii) also for all € st(7¢). Varying &', we let 7 run
through all simplices with int(7) < int(h) and conclude also parts (ii)+(iii) of the assertion. [

We obtain an analogue of Corollary [2.38]

Corollary 2.47. N, acts transitively on
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(i) every strong asymptote class of geodesic rays at every ideal point £ € int(h);

(i1) the set of maximal flats F with 0 F > h.

We describe a consequence of our discussion for the horocyclic foliations.

The maximal flats F' with 0, F S h are contained in the parallel set P(0h) =~ f x C'S(0h)
and form the leaves of a smooth foliation P, of P(dh). This foliation is the pullback (via the
natural projection P(0h) — C'S(0h)) of the one-dimensional foliation of the rank one symmetric
space C'S(0h) by the geodesics asymptotic to the ideal point ( € 0,,CS(0h), the center of h.
There exists a foliation Hj, of P(0h) whose leaves are normal (orthogonal and complementary)
to those of P,. The leaves of H; have the form {y} x Hs. ., where y € f and Hs., = CS(dh)
is the horosphere centered at ¢ and passing through z € C'S(0h). We call the leaves of H,, the
horocycles at h and the foliation H;, the horocyclic foliation. The leaf of H; passing through
x € P(0h) will be denoted Hcy, .. Corollary 2.47 implies that Hcy, , = Ny

Let 7 be a simplex so that int(7) < int(h). Then the foliation P, of X by parallel sets
restricts on P(0h) to the foliation Pj, by maximal flats, and the horocyclic foliation H., restricts
to the horocyclic foliation Hj,. (This follows from the fact that the foliations P, and H, are
normal to each other, cf. (Z43]).) In other words, the horocyclic foliations ., for the various
simplices 7 with int(7) < int(h) coincide on the parallel set P(0h).

2.11 Contraction at infinity
2.11.1 Identifications of horocycles

We fix a simplex 7 < 0, X. Since every horocycle at 7 intersects every parallel set P(7,7),
7 € C(71), exactly once, there are N -equivariant diffeomorphisms

He,, = C(7) (2.48)

sending a point y € He, , to the unique simplex 7 € C(7) such that He,, nP(7,7) = {y}. (The
smoothness of these identifications follows from their N, -equivariance.) Composing the maps
(248) and their inverses, we obtain N,-equivariant diffeomorphisms

Ty @ Hepp — Her oy, (2.49)

sending the intersection point He, , nP(7,7) to the intersection He, .o nP(7,7) for 7€ C(7).

Let h < 0, X be a half-apartment such that int(7) < int(h). Then, as discussed in the end
of the previous section, the horocycles at 7 intersect the parallel set P(dh) in the horocycles at
h. The latter are homogeneous spaces for the subgroup N, < N,. Thus, for z, 2’ € P(dh), the
diffeomorphisms (2.49)) restrict to Ny-equivariant diffeomorphisms

h . =
Tt - HCh@ - HCh@/

between the horocycles at h, while the diffeomorphisms (Z48)) restrict to Ny-equivariant diffeo-
morphisms

Hey,, = C(h)
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between the horocycles at h and the Nj-orbit C'(h) < C(7) consisting of the simplices which
are contained in 0, P(0h).

h

We estimate now the contraction-expansion of the identifications 7).

We build on the discussion at the end of the previous section. As we saw, the horocycles
Heyp, , in P(0h) = f x C'S(0h) are horospheres in the cross sections pt x C'S(0h). They therefore
project isometrically onto the horospheres Hs. ; in C'S(0h), where Z denotes the projection of

x. Under these projections, the identifications 7"

z'x

correspond to the identifications

7S, Hses = Hsew (2.50)

of horospheres, i.e. for x,z’ € P(dh), we have the commutative diagram:

7Th,
x'x

Hch,m - Hch,x’

! !
HSC’Q—D — HSC@/

8l

81

Estimating the contraction rate of 7%, therefore reduces to estimating it for ﬂé,i in the rank
one symmetric space C'S(0h).

We estimate the infinitesimal contraction. We assume that Z’ is closer to ¢ than z, b.(Z) >
be(Z'). Then there is actual contraction, at a uniform rate in terms of the distance between the
¢

horospheres. For the differential dﬁg,i of m2,., one has the estimate

e~ 1@~ 5| < || (dr,

T

for all tangent vectors v € T'Hs z, with constants ¢; > ¢, > 0 depending only on the rank one
symmetric space C'S(0h), in fact, depending only on X, because there are only finitely many
isometry types of rank one symmetric spaces occurring as cross sections of parallel sets in X.
The estimate follows from the standard fact that the exponential decay rate of decaying Jacobi
fields along geodesic rays in C'S(0h) is bounded below and above (in terms of the eigenvalues
of the curvature tensor).

In view of be(x) — be(a') = be(Z) — be(Z'), we obtain for 7!, :

Lemma 2.51 (Infinitesimal contraction of horocycle identifications). Ifb;(x) = bc(2'),
then
o—c1(be (2)=b¢ (2')) lv] < [(dxh o] < e*CQ(bg(w)*bc(m'))HUH (2.52)

for all tangent vectors v to Hey, ,, with constants c1,co > 0 depending only on X.

2.11.2 Infinitesimal contraction of transvections

We now focus on transvections and their action at infinity.

Suppose that z, 2’ € P(1,7) are distinct points. Let 9., denote the transvection with axis
[ =l through z and 2’ mapping 2’ — z; we orient the geodesic [, from 2’ to z, i.e. so that
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¥4 translates along it in the positive direction. The transvection v, preserves the parallel
set P(7,7) and fixes the simplices 7,7 at infinity.

We consider the action of ¥,,» on C(7) and its differential at the fixed point 7. Modulo
the identifications (248) and (2:49), the action of 9., on C(7) corresponds to the action of
Vyp o, on Hel, and the differential (di,.)z of U, at 7 to the differential of J,,, o 77, at x.

We first consider the case when ¥,,» when £ := l,,/(—00) € ost(7), equivalently, when 2’ lies
in the interior of the Weyl cone V' (z,st(7)). Then (di,, )+ strictly contracts:

Lemma 2.53. If { € ost(7), then (d,.): is diagonalizable with eigenvalues in (0, 1).

Proof. Since £ € ost(1), the group NN, preserves the strong asymptote classes of geodesic rays at
& cf. section 2.10] i.e. the geodesics nl,, for n € N, are strongly backward asymptotic to [, .
Thus, by assigning to n7 € C(7) the geodesic nl,,s, which is the unique geodesic in the parallel
set P(1,nT) strongly backward asymptotic to ../, we obtain a smooth family of geodesics in
the strong backward asymptote class of [,,/, parametrized by the manifold C'(7).

By differentiating this family, we obtain a linear embedding of the tangent space T:>C(T)
into the vector space Jac; ¢ of Jacobi fields along l,,» which decay to zero at . The effect of
the differential (dv,./)> on C(7) is given, in terms of these Jacobi fields, by the push-forward

J = (ﬂmm’)*(J> = dﬁxw’ o Joﬁm’m

The Jacobi fields in Jac;¢, which are of the form of a decaying exponential function times a
parallel vector field along [,,/, correspond to the eigenvectors of (di),,/); with eigenvalues in
(0,1). It is a standard fact from the Riemannian geometry of symmetric spaces that the vector
space Jac; , ¢ has a basis consisting of such special Jacobi ﬁeldsﬂ The same then follows for
the linear subspace L < Jac; , ¢ corresponding to 7>C(7). Thus the eigenvectors of (di,.r)»
for positive eigenvalues span T:C(T). O

We now give a uniform estimate for the contraction of (d),.)::
Lemma 2.54. If { € ost(1), then the eigenvalues \ of (d¥..)+ satisfy an estimate
—log A = c-d(z', 0V (x,st(7))) (2.55)
with a constant ¢ > 0 depending only on X.

Proof. We continue the argument in the previous proof.

Let F o I, be a maximal flat. Then F < P(7,7). The smooth family n7 — nl, of
geodesics parametrized by C(7) embeds into the smooth family of maximal flats n7 — nF.
They are all asymptotic to st(7) N 0 F, i.e. On(nF') D st(7) N 0 F'. Accordingly, each Jacobi
field J € L < Jac,_, ¢ extends to a Jacobi field J along F which decays to zero at all ideal
points in ost(7) N 0, F. (Here we use again that N, preserves the strong asymptote classes of

SHowever, N, does not act transitively on it, unless & € int(7).
TA transvection along a geodesic acts on the space of Jacobi fields along this geodesic as a diagonalizable
transformation, see [Eb [Hell.
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geodesic rays at all points in ost(7).) Thus, we obtain a natural identification of T:C(7) and
L with a linear subspace L of the vector space Jacgsi(r)no,r Of Jacobi fields along F' which
decay to zero at all ideal points in ost(7) N 0, F.

The decomposition of Jacobi fields mentioned in the previous proof works in the same way
along flats1 The vector space Jacp ost(r)nar has a basis consisting of Jacobi fields of the form
e~V with an affine linear form « on F' and a parallel vector field V' along F. Furthermore,
since G acts transitively on maximal flats, only finitely many affine linear forms « occur for
these basis elements, independently of F'. (The possible forms are determined by the root
system of G, but we do not need this fact here.)

The decay condition on the forms a occurring in our decomposition is equivalent to the
property that a = a(x) on V(z,st(7) n 0 F) < F and o > «(x) on the interior of this cone.
It implies an estimate

alx’) —alz) =c- El(:c’, OV (z,st(T) N OOOF)z

=d(x’,a‘;?l‘,5t(7')))

with a constant ¢ = ¢(a) > 0. (The equality of distances follows from Proposition 2.311) Since
there are only finitely many forms « involved, the constant ¢ can be taken independent of «.

Notice that the eigenvalues A of (di,,/); are of the form

o~ (ola)—a(z))
The claimed upper bound for the eigenvalues follows. O

By continuity, the result extends to the case when 2’ lies in the boundary of the Weyl cone
V(x,st(r)). We obtain:

Corollary 2.56. If 2’ € V(x,st(7)), then (d¥.. )+ is diagonalizable with eigenvalues in (0, 1]
satisfying an estimate (2.55]).

In particular, the eigenvalues lie in (0, 1), if 2 lies in the interior of V (x,st(7)).

If 2" lies outside the Weyl cone V(x,st(7)), then d(d,,/); has expanding directions. In
order to see this, we consider the action of ¥J,,» on certain invariant submanifolds of C(7)
corresponding to parallel sets of singular hyperplanes.

Again, there exists a maximal flat F' with [, ¢ F < P(7,7). Let h < 0,F be a half-
apartment such that int(7) < int(h). Then l,,» = F' < P(0h). The transvection ., fixes 0, F
pointwise. Hence it preserves the parallel set P(0h) and the submanifold C(h) = N,7 < C(7).

If [, is parallel to the euclidean factor of P(0h), equivalently, if 0y l,,r < Oh, then 0.,/
acts trivially on 0, P(0h). Hence, 9., acts also trivially on C(h), because the latter consists
of simplices contained in 0, P(0h).

In the general case, the action of ¥,,» on C'(h) corresponds to the restriction of the action
of ¥y o7l to Hep, = HerpnP(0h). When projecting to C'S(dh), the latter action in

8As in the case of geodesics, a transvection along a flat acts on the space of Jacobi fields along this flat as a
diagonalizable transformation, see [Eb] [Hell.
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turn corresponds to the action of ¥zz o Wg,i, on the horosphere Hs; ;. Here, ¥z denotes the
transvection on C'S(0h) with axis lzz through Z and ' mapping ¥’ — Z, and ﬂé,f is the natural
identification (Z50). The axis lzz is the image of F' under the projection (if Z = &', we define
it in this way). It is asymptotic to ¢ and another ideal point (e C(¢) = 0x,CS(0h) —{C}. The
simplex 7 corresponds to ¢ under the natural Nj-equivariant identification C(h) =~ C/(¢), and
the action of 9., on C(h) corresponds to the action of ¥z on C(().

We now obtain analogues of Lemmas and 2541 Recall that £ = l,,/(—00).

Lemma 2.57. If { € int(h), then (dUya):|r.cn) 5 diagonalizable with eigenvalues A € (0,1)

satisfying an estimate
—log A

— SO
be(x) = b (')

with constants c1,co > 0 depending only on X.

(2.58)

62<

Proof. The diagonalizablility follows by applying Lemma to C'S(0h) and (d¥zz) ¢

Since £ € int(h), we have that b.(x) —b¢(2') = b (Z) —be(Z') > 0, and the eigenvalue estimate
follows from the contraction estimate (2.52]) O

Corollary 2.59. Ifx' € P(1,7) — V(x,st(7)), then (d¥.); has some eigenvalues in (1, +00).

Proof. By our assumption, we have that £ ¢ st(7). Therefore, the half-apartment h < 0, F' can
be chosen so that its interior contains, besides int(7), also l,./(+0). (Recall that the convex
subcomplex st(7) N0y F' is an intersection of half-apartments in 0y F, cf. Lemmal[23]) Then the
estimate (Z58) applied to 9., = 9.} yields that (dd,,);" has some eigenvalues in (0,1). O

Complementing Corollary 2.56] we bound the contraction rate from above, if 2’ € V(x, st(7)):
Lemma 2.60. If¢ € st(7), then (d¥,.): has some eigenvalue A € (0, 1] satisfying an estimate
—log A < ¢ - d(2', 0V (z,t(7)))

with a constant ¢ > 0 depending only on X.

Proof. Since xz' — F, some nearest point ¢’ to 2’ on 0V (x,st(7)) lies in F, cf. Proposition 2311
Hence we can choose the half-apartment h < 0., F such that b:(y') = bc(x) and

A, OV (@, (7)) = be(a) — b (@),
Now let A be an eigenvalue of (d;)#|7.c(n) and apply the upper bound in (2.58). O

Putting the information (Corollaries 2.56] 259 and Lemmas 257 [Z60) together, we obtain:

Proposition 2.61 (Infinitesimal contraction of transvections at infinity). Let 7,7 <
00X be opposite simplices, and let ¥ be a nontrivial transvection with an axis | < P(1,7T)
through the point x. Then the following hold for the differential d¥; of O on C(7) at the fized
point 7:
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(1) dV; is diagonalizable with eigenvalues in (0,1] iff 9"tz € V(x,st(7)), and diagonalizable
with eigenvalues in (0,1) iff 'z € V(x, 08t(7)).

(ii) If 9 x € V(x,st(7)), then the eigenvalues \ of dV; satisfy an estimate
co - d(0 1, 0V (z,5t(7))) < —log A < ¢; - d(9'x, 0V (x,8t(7)))
with constants c1,co > 0 depending only on X.

We deduce a consequence for the action of general isometries in G. For later use, we will
formulate it in terms of expansion (of their inverses) rather than contraction.

We need the following notion: For a diffeomorphism & of a Riemannian manifold M, we
define the expansion factor at x € M as
|d®(v)]

_ : _ —1-1
E(QD’;L’) - veT:J\r}[ff{O} HUH H(dq)x> H ) (262)

compare (3.2) in section Bl below.

We equip the flag manifolds Flag, _, with auxiliary Riemannian metrics.

Theorem 2.63 (Infinitesimal expansion of isometries at infinity). Let 7 € Flag, .,
v e X, and g € G such that d(gx,V (z,st(1))) < r. Then for the action of g=* on Flag, . we
have the estimate

C™-d(gx, 0V (x,st(1))) — A <loge(g~",7) < C-d(gx,dV(x,st(7))) + A
with constants C, A > 0 depending only on x, r and the chosen Riemannian metric on Flag, H

Proof. We write g as a product g = tb of a transvection ¢ along a geodesic [ through = with
[(+0) € st(7) and an isometry b € G such that d(z,bxr) < r. Then t fixes 7 on Flag, ., and

-1

the expansion factor (¢!, 7) equals ¢(t~!,7) up to a multiplicative constant depending on r

and the chosen Riemannian metric on Flag, ..

When replacing the metric, €(t~!,7) changes at most by another multiplicative constant,
and we may therefore assume that the Riemannian metric is invariant under the maximal
compact subgroup K, < G fixing . Now the eigenspace decomposition of dt, on T, Flag, .
is orthogonal. Consequently,

et ) =Xt

max

where A, denotes the maximal eigenvalue of dt.,.

Let 7 denote the simplex z-opposite to 7. Applying Proposition 261I(ii) to ¢ = ¢ while
exchanging the roles of 7 and 7, we obtain the estimate

Co d(tilx, aV(l’, St(%))) < — 10g>\ <Cc d(tilflf, OV(x, St(%)))

=d(tz,0V (z,5t(1)))

9The estimate depends also on the point z because the choice of the auxiliary metric on Flag,, , reduces the
symmetry: The action of a compact subgroup of G on Flag, . is uniformly bilipschitz, but not the G-action.
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for the eigenvalues A of dt,, and so
cy - d(tx, 0V (z,st(7))) <loge(t™',7) < ¢ - d(tx, OV (z,st(7))),
which is the desired estimate. O

Let us now consider sequences (g,) in G. The theorem can be used to draw conclusions from
the expansion behavior at infinity of the sequence of inverses (g, !) on the geometry of an orbit
sequence (g,x) in X: If (g,2) lies in a tubular neighborhood of the Weyl cone V' (x,st(7)), then
the expansion factors (g, ', 7) on Flag, . are bounded below, and their logarithms measure
the distance of (g,x) to the boundary of the Weyl cone. In particular, if the expansion factors
diverge, €(g, !, 7) — 40, then (the projection of) (g,z) enters deep into the cone V(z,st(7)).

The next result shows how to recognize from expansion whether the orbit sequence (g,z)

remains in a tubular neighborhood of the Weyl cone V' (z,st(7)), once it stays close to the
parallel set spanned by it:

Proposition 2.64. Let 7,7 < 0, X be opposite simplices. Suppose that (g,) is a sequence in
G such that, for some point x € X, the sequence (g,x) is contained in a tubular neighborhood
of the parallel set P(,7), but drifts away from the Weyl cone V (x,st(7)),

d(gnx, V(z,st(1))) — +0
asn — +o. Then e(g;t,7) — 0.

Proof. We may assume that z € P = P(7,7). As in the proof of Theorem 2.63, we can reduce
to the case that the g, are transvections along geodesics [, in P through the point z. We need
to show that the differentials (dg, '), on Flag, . have (some) small eigenvalues, i.e. that their
minimal eigenvalue goes — 0.

We proceed as in the proof of Corollary Let F,, € P be a maximal flat containing [,,.

Then also
d(gnx,V(z,st(1)) N F,) - 40,

cf. Proposition 2.311 There exist half-apartments h,, 0, F,, with centers (,, so that b, <
be,(x) on V(x,st(r)) n F, (and hence also on V (z,st(7))) and be,(gnz) — b, (xr) — +00. Let
izn C O F;, denote the complementary half-apartments, 6% = 0h,,, and fn their centers. Then
b¢, +be, = const on F,,. It suffices to show that the differentials (dg,, 1), are contracting on the
invariant subspaces T,,C' (izn) < T, C(7) with norms going — 0. According to Lemma [2Z.57], the
eigenvalues of (dg,, 1>T|TTC(an) are positive and bounded above by

e—c2(bg, (@)=be, (gn@)) _ ,—calbe, (9n2)=be, (@) _, ().

This finishes the proof. O

2.12 Finsler geodesics

We will work with the following notion of Finsler geodesic:
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Definition 2.65 (Finsler geodesics). A continuous path ¢ : [ — X is a 7p,q-Finsler geodesic
if it is contained in a parallel set P(7_,7,) with 7, € Flag,_ such that

c(ty) € V(e(t-),st(r4)) (2.66)
for all subintervals [t_,t,] < I. It is ©-regular if, moreover,

c(ty) € V(e(t-), ste(r+)) (2.67)

We call a 7,,,4-Finsler geodesic uniformly 7,,.q-regular if it is ©-regular for some W,  -convex
compact subset © < int, (0med)-

Note that we do not require the parameterization of Finsler geodesics to be by arc length.
The terminology is justified by the fact that 7,,,4-Finsler geodesics are (up to parameterization)
the geodesics for certain G-invariant “polyhedral” Finsler metrics, see [KL1|, §5.1.3].

The condition (2.66]) is equivalent to c(t_) € V(e(ty),st(7-)), and it follows that the sub-
paths c[;_ 4, are contained in the diamonds <, (c(t-),c(t)). Similarly, ([2.67) is equivalent
to c(t—-) € V(c(ty),ste(7-)), because O is assumed ¢-invariant, and in the ©-regular case c|p_ 4, ]
is contained in {$g(c(t_),c(ty)).

It is worth mentioning the following Finsler geometric interpretation of diamonds: They are
Finsler versions of Riemannian geodesic segments in the sense that the union of all 7,,,4-Finsler
geodesic segments with endpoints x4 fills out <, (r_,z.), see also [KL1], §5.1.3].

We now discuss the “drift” component of 7,,,q4 Finsler geodesics.

— 12 oda. introduced in ZI9). We first
consider the case of broken geodesics zyz which are 7,,,4-Finsler geodesics:

We work with the vector valued distance d

Tmod

Lemma 2.68 (Additivity). Let 7 € Flag, .. Ifye V(x,st(7)) and z € V(y,st(7)), then

dTmod (l’, y) + dTmod (y7 Z) = dTmod(x7 Z)

Proof. The 7,,,4-distance can be expressed in terms of the projections of Weyl cones to their
central sectors. Consider the nearest point projection

e V(x,st(1)) = V(z,7),

cf. (212). Note that it coincides with the nearest point projection from V(z,st(7)) to the
singular flat spanned by the sector V(x, 7), compare Lemma 213 and the comment thereafter.
Then

dTmod(x’ ) = dA(l’, 71-5577'(.))
on V(z,st(1)).
In order to relate d, ,(y,z) tod,, . (z,y)andd, . (z,z), we observe that the sectors V (y, 7)
and V(m,.-(y),7) € V(x,7) are parallel and isometrically identified by 7, .. Moreover,

7Tx,T|V(y,st(T)) = (7Tx,T|V(y,T)) O Ty r-
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Therefore,
Aryoa (Y, 2) = da(y, 7,2 (2)) = da(mor (), To,r(2))-

The additivity formula follows in view of the nestedness 7, ,(z) € V(7. (v), 7). O
Applying the lemma to 7,,,¢-Finsler geodesics yields:

Proposition 2.69 (Additivity of 7,,,,-distance along Finsler geodesics). Ifc: [ — X
1S @ Tmoq-Finsler geodesic, then

dTmod(c(tO)’ C(tl)) + dTmod(c(tl)’ C(t2)) = dTmod (C(t0)> C(t2>>

forallty <ty <ty inl.

We reformulate this as:

Proposition 2.70 (7,,.s-projection of Finsler geodesics). If ¢ : [0,T] — X is a Tmod-
Finsler geodesic, then so is

ETmod = dTmod<c<0)7 C) : [07 T] - V(O, Tmod>7

and
Crinoa(t2) = Cr,pog(t1) + dor L, (c(t1), c(t2))

forall0 <ty <ty <T.
Note that the equality in the last proposition implies:

d(ETmod (t1)> Crinod (t2)) = Hd'rmod (C(tl)’ C(t2))H (2'71)

We now study the A-distance along Finsler geodesics.

This is based on Proposition [Z23] which concerns the A-side lengths of triangles A(x,y, 2)
in X such that the broken geodesic xyz is a Finsler geodesic. Applying this proposition to
Finsler geodesics, we obtain our main result concerning their geometry:

Theorem 2.72 (A-projection of Finsler geodesics). (i) Ifc: [0,T] — X is a Tyea-Finsler
geodesic, then so is
CA = dA(C(O),C) : [O,T] — A.

(11) If ¢ is also ©-reqular, with © < int,  (Omeq) compact and Tpoq- Weyl convex, then so is
ca. Moreover, the distances between points on ¢ and ca are comparable:

d(ca(tr), caltz)) = €(©) - d(e(tr), c(t2))

for 0 <ty <ty < T with a constant €(©) > 0.

We note that d(¢a(t1),ca(t2)) < d(c(t1),c(t2)), because da(c(0),-) is 1-Lipschitz.
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Proof. (i) Applying Proposition to the triangles A(c(0),c(t1),c(t2)), 0 < t1 < to < T,
yields
EA(T’2> € V(5A<t1)7 WTmodA>7

the cone being understood as a subset of Fj,,,q, which means that ¢a is a 7,,,¢-Finsler geodesic.

(ii) That ¢a is now O-regular, follows similarly. The comparability of distances we deduce
using our earlier discussion of 7,,,4-distances along Finsler geodesics. We estimate:

d(ea(tr), ca(tz)) 2 d(¢r,,,,(h), Cr,0a(t2)) = |dr,,,.(c(tr), c(t2))]| = €(O) - d(c(t), c(t2))

= 12 0¢éx and 7r7_Amod is 1-Lipschitz. The equality

od Tmod

The first inequality holds, because ¢
follows from (2.71)). The last inequality comes from the lower bound for the length of the
Tmoa-component of O-regular segments, cf. ([2.2T]). O

3 Topological dynamics

3.1 Expansion

Let first Z be a metric space and let I' —~ Z be a continuous action by a discrete group. We
will use the following notions of metric expansion, compare [Sul, §9]:

Definition 3.1 (Metric expansion). (i) A homeomorphism % of Z is ezpanding at a point
z € Z if there exists a neighborhood U of z and a constant ¢ > 1 such that h|y is c-expanding
in the sense that

d(hz, hzy) = ¢ - d(z1, 22).

for all points 21, z0 € U.

(ii) A sequence of homeomorphisms h,, of Z has diverging expansion at the point z € Z if
there exists a sequence of neighborhoods U, of z and numbers ¢, — +00 such that h,|y, is
cp-expanding.

(iii) The action I' —~ Z is expanding at z € Z if there exists an element v € I" which is
expanding at z. The action has diverging expansion at z € Z if I' contains a sequence which
has diverging expansion at z.

(iv) The action I' ~ Z is ezpanding at a compact [-invariant subset E' c Z if it is expanding
at all points z € F.

We observe that the properties of diverging expansion depend only on the bilipschitz class
of the metric. Furthermore, if an action is expanding at an invariant compact subset then, due
to iteration, it has diverging expansion at every point of the subset.

Now let M be a Riemannian manifold and let I' —~ M be a smooth action. There are
infinitesimal analogs of the above expansion conditions.
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We recall from (2.62) that, for a diffeomorphism ® of M, the expansion factor e(®,z) at a
point x € M is defined as:

. [d® ()] _ 11
€(P,x) = UGT:?}?{O} ol [(d®,)" (3.2)

Definition 3.3 (Infinitesimal expansion). (i) A diffeomorphism ® of M is infinitesimally
expanding at a point x € M if e(®, z) > 1.

(ii) A sequence of diffeomorphisms ®,, of M has diverging infinitesimal expansion at x if
e(®,, x) —> +00 as n — 4.

(iii) The action I' —~ M is infinitesimally expanding at x if there exists an element v € T
which is infinitesimally expanding at x. The action has diverging infinitesimal expansion at x
if I contains a sequence which has diverging infinitesimal expansion at x.

(iv) The action I' ~ M is infinitesimally expanding at a compact I'-invariant subset E < M
if it is infinitesimally expanding at all points x € M.

If the manifold M is compact, the properties of diverging infinitesimal expansion are inde-
pendent of the Riemannian metric. In the general case, if an action is infinitesimally expanding
at an invariant compact subset then it has diverging infinitesimal expansion at every point of
the subset.

We note that for smooth actions on Riemannian manifolds infinitesimal and metric expan-
sion are equivalent.

3.2 Discontinuity and dynamical relation

Let Z be a compact metrizable space, and let I' < Homeo(Z) be a countably infinite subgroup
(although in the definition of a proper action below we allow for subsemigroups). We consider
the action I' —~ Z.

Definition 3.4 (Discontinuous). A point z € Z is called wandering with respect to the I'-
action if the action is discontinuous at z, i.e. if z has a neighborhood U such that U n~yU # ¢
for at most finitely many v € I'.

Nonwandering points are called recurrent.
Definition 3.5 (Domain of discontinuity). We call the set
Qdisc cZ
of wandering points the wandering set or domain of discontinuity for the action I' —~ Z.
Note that 4. is open and I'-invariant.

Definition 3.6 (Proper). The action of a subsemigroup I' < Homeo(X) on an open subset
U c Z is called proper if for every compact subset K < U K nyK # J for at most finitely
many v € .
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If I is a subgroup of Homeo(X) acting properly discontinuously on U < X then the action
of I on U is then discontinuous, U < (4., and therefore is called properly discontinuous.

Definition 3.7 (Domain of proper discontinuity). If I' < Homeo(X) is a subgroup, we call
a ['-invariant open subset 2 € 4, on which I' acts properly a domain of proper discontinuity
for I.

The orbit space Q/I" is then Hausdorff. Note that in general there is no unique maximal
proper domain of discontinuity.

Discontinuity and proper discontinuity can be nicely expressed using the notion of dynamical
relation. The following definition is due to Frances [EFral, Def. 1]:
Definition 3.8 (Dynamically related). Two points z, 2z’ € Z are called dynamically related

with respect to a sequence (h,) in Homeo(Z),

(hn)
z ~z

if there exists a sequence z, — z in Z such that h,z, — 2.

The points z, 2z’ are called dynamically related with respect to the I'-action,

r
z~ 7

if there exists a sequence 7, — o0 in ' such that z Cn) .

Here, for a sequence (7,) in I we write ~,, — 0 if every element of I" occurs at most finitely
many times in the sequence.

One verifies (see e.g. [KL2]):
(i) Dynamical relation is a closed relation in Z x Z.

(i) Points in different I-orbits are dynamically related if and only if their orbits cannot be
separated by disjoint I'-invariant open subsets.

The concept of dynamical relation is useful for our discussion of discontinuity, because:
(i) A point is nonwandering if and only if it is dynamically related to itself.

(ii) The action is proper on an open subset U < Z if and only if no two points in U are
dynamically related.

3.3 Convergence groups

Let Z be a compact metrizable space with at least three points.

A sequence (h,,) in Homeo(Z) is contracting if there exist points z4 € Z such that
holz—zy = 24 (3.9)
uniformly on compacts as n — +00. Equivalently, there is no dynamical relation z )
between points z # z_ and 2’ # z,. This condition is clearly symmetric, i.e. (8.9) is equivalent
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to the dual condition that
h;1|Z7{z+} — Z_ (3.10)

uniformly on compacts as n — +00. The points z1 are uniquely determined, since |Z| > 3.
A sequence (h,,) in Homeo(Z) is said to converge to a point z € Z,
hy, — z (3.11)
if every subsequence contains a contracting subsequence which, outside its exceptional point,
converges to the constant map = z.

One considers the following stronger form of convergence:

Definition 3.12 (Conical convergence). A converging sequence h,, — z converges conically,
h, <% 2 (3.13)

if for some relatively compact sequence (Z,,) in Z — {z}, the sequence of pairs of distinct points

h,t(2,, 2) is relatively compact in (Z x Z)%t.

Here, (Z x Z)%st = Z x Z denotes the complement of the diagonal.

con

Lemma 3.14. If h, = z, then the condition in the definition holds for all relatively compact
sequences (Z,) in Z —{z}.

Proof. Let (z,) be a relatively compact sequence in Z —{z}. For every contracting subsequence
(hn, ) there exists a point 2 € Z such that

-1 ~
hnk |Z,{Z} — Z

uniformly on compacts. In particular, h,'Z,, — £ and the relative compactness of (b, !(Z,,, 2))
in (Z x Z)%s* becomes equivalent to the condition that the sequence (h,,'z) does not accumulate

at z. The latter condition is independent of the sequence (Z,). O
The following criterion for being a conical limit point of a subsequence is immediate

Lemma 3.15. A sequence (h,) in Homeo(Z) has a subsequence conically converging to z € Z
iff there exists a subsequence (hy,) and a point z_ € Z such that the following conditions are
satisfied:

(i) byt z—zy — 2— uniformly on compacts.

(i) (h,lz) converges to a point different from z_.

Now we pass to group actions.

A continuous action I' —~ Z of a discrete group I" is a convergence action if every sequence
(vn) of pairwise distinct elements in I' contains a subsequence converging to a point, equiv-
alently, a contracting subsequence. The kernel of a convergence action is finite, and we will
identify T" with its image in Homeo(Z) which we will call a convergence group.

0Here it suffices that |Z]| > 2.
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The limit set A = Z of a convergence group I' < Homeo(Z) is the subset of all points which
occur as limits z, as in ([39), equivalently, as limits z as in (3I1]) for sequences 7, — o0 in T'.
The limit set is I'-invariant and compact. A limit point A € A is conical if it occurs as the limit
of a conically converging sequence. A convergence group is said to have conical limit set if all
limits points are conical, and to be non-elementary if |A| = 3. Tukia [Tul, Thm. 2S] has shown
that in the non-elementary case the limit set is perfect and the ['-action on it is minimal.

If the limit set is conical, then I' and its action on A are very special:

Theorem 3.16 (Bowditch [Bo]). Suppose that I' < Homeo(Z) is a non-elementary conver-
gence group with conical limit set A. Then I' is word hyperbolic and A = 0., equivariantly.

The converse is easier to see:

Theorem 3.17 ([Grl, [Tu, Fre]). The natural action of a non-virtually cyclic word hyperbolic
group on its Gromov boundary is a minimal conical convergence action.

3.4 Expanding convergence groups

The following result connects expansion with convergence dynamics.

Lemma 3.18. IfI" =~ Z is an expanding convergence action on a perfect compact metric space,
then all points in Z are conical limit points.

Proof. We start with a general remark concerning expanding actions. For every point z € Z
there exist an element v € I' and constants r > 0 and ¢ > 1 such that v is a c-expansion on the
ball B(z,r) and v(B(z,r")) © B(vyz, cr’) for all radii 7 < r. To see this, suppose that c is a local
expansion factor for v at z and, by contradiction, that there exist sequences of radii r, — 0
and points 2, ¢ B(z,r,) such that vz, € B(yz,cr,). Then z, — z due to the continuity of 4!
and, for large n, we obtain a contradiction to the local c-expansion of . Since Z is compact,
the constants r and ¢ can be chosen uniformly. It follows by iterating expanding maps that for
every point z and every neighborhood V' of z there exists 7 € I" such that v(V) > B(vz, 1),
equivalently, v(Z — V) ¢ Z — B(yz,r).

To verify that a point z is conical, let V,, be a shrinking sequence of neighborhoods of z,
(V= {z},

and let v, € T’ be elements such that v, (Z — V,,) ¢ Z — B(v,'2,7). Since V,, is shrinking
and 7, %(V,)) © B(v,'2,r) contains balls of uniform radius r, it follows that the 7, ! do not
subconverge uniformly on any neighborhood of z; here we use that Z is perfect. In particular,
v, — 0. The convergence action property implies that, after passing to a subsequence, the
vt must converge locally uniformly on Z — {z}. Moreover, we can assume that the sequence
of points v, 'z converges. By construction, its limit will be different (by distance > r) from the
limit of the sequence of maps 7, '|z_.;. Hence the point z is conical. O

Combining this with Bowditch’s dynamical characterization of hyperbolic groups, we obtain:
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Corollary 3.19. IfI' —~ Z is an expanding convergence action on a perfect compact metric
space, then I' is word hyperbolic and Z = 01" equivariantly.

Note that, conversely, the natural action I' —~ 0,I'" of a word hyperbolic group I' on its
Gromov boundary is expanding with respect to a wvisual metric, see e.g. [CP].

4 Regularity and contraction

In this section, we discuss a class of discrete subgroups of semisimple Lie groups which will be
the framework for most of our investigations in this paper. In particular, it contains Anosov
subgroups. The class of subgroups will be distinguished by an asymptotic reqularity condition
which in rank one just amounts to discreteness, but in higher rank is strictly stronger. The
condition will be formulated in two equivalent ways. First dynamically in terms of the action
on a flag manifold, then geometrically in terms of the orbits in the symmetric space.

4.1 Contraction
Consider the action
G —~ Flag, .

on the flag manifold of type 7,,,q. Recall that for a simplex 7_ of type (7,04 We denote by
C(7-) < Flag,__, the open dense P, -orbit; it consists of the simplices opposite to 7_.

We introduce the following dynamical conditions for sequences and subgroups in G

Definition 4.1 (Contracting sequence). A sequence (g,) in G i8S Tyq-contracting if there
exist simplices 7, € Flag, ., 7 € Flag,  such that

Iuloey = T+ (4.2)
uniformly on compacts as n — +0.

Definition 4.3 (Convergence type dynamics). A subgroup I' < G is a 7,,0q-convergence
subgroup if every sequence (7,) of distinct elements in I' contains a 7,,,q-contracting subse-
quence.

Note that 7,,,4-contracting sequences diverge to infinity and therefore 7,,,4-convergence sub-
groups are necessarily discrete.

A notion for sequences in G equivalent to 7;,,4-contraction had been introduced by Benoist
in [Bel, see in particular part (5) of his Lemma 3.5.

The contraction property exhibits a symmetry:

Lemma 4.4 (Symmetry). Property (4.9) is equivalent to the dual property that
gy:1|c(7'+) - T— (45)
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uniformly on compacts as n — +oo.

Proof. Suppose that (£2) holds but (L) fails. Equivalently, after extraction there exists a
sequence &, — § # 7_ in Flag, such that g,§, — & € C(74). Since { # 7_, there exists
7_ € C(7_) not opposite to €. (For instance, take an apartment in 0, X containing 7_ and
¢, and let 7_ be the simplex opposite to 7_ in this apartment.) Hence there is a sequence
T, — 7— in Flag,  such that 7, is not opposite to &, for all n. (It can be obtained e.g. by
taking a sequence h,, — e in G such that &, = h,¢ and putting 7, = h,7_.) Since 7_ € C(1_),
condition (2] implies that g,7,, — 7. It follows that 7, is not opposite to £, because ¢, 7,
is not opposite to g,&, and being opposite is an open condition. This contradicts &' € C(1).
Therefore, condition (42]) implies ([A3). The converse implication follows by replacing the
sequence (g,) with (g !). O

Lemma 4.6 (Uniqueness). The simplices 7+ in ({{.3) are uniquely determined.

Proof. Suppose that besides ([4.2) we also have g|c() — 7, with simplices 7} € Flag, .
Since the subsets C'(7_) and C'(7") are open dense in Flag,. . their intersection is nonempty and
hence 7/, = 7. Using the equivalent dual conditions (4.5]) we similarly obtain that 7/ = 7_. O

4.2 Regularity

The second set of asymptotic properties concerns the geometry of the orbits in X.

We first consider sequences in the euclidean model Weyl chamber A. Recall that 0, A =
V(0,0r,...0moa) = A is the union of faces of A which do not contain the sector V (0, 7;n04). Note
that 0;, ,A NV (0, Timed) = OV (0, Timoed) = V (0, 0Timod)-

Definition 4.7. A sequence (4,) in A is

(i) Timoa-regular if it drifts away from o, A

Tmod =)

(6,0, A) — +o.

Tmod

(ii) Tmoq-pure if it is contained in a tubular neighborhood of the sector V (0, 7,,0¢) and drifts

away from its boundary,
d(0p, OV (0, Tynoa)) — +00.

Note that (d,,) iS Tynea-regular /pure iff (¢0,,) is tTm0q-regular/pure.
We extend these notions to sequences in X and G:
Definition 4.8 (Regular and pure). (i) A sequence (z,,) in X is Ty,0q-regular, respectively,

Tmoa-pure if for some (any) base point o € X the sequence of A-distances da(o,z,) in A has
this property.

(ii) A sequence (g,) in G is Tyeq-reqular, respectively, T,,.q-pure if for some (any) point
x € X the orbit sequence (g,z) in X has this property.
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(iii) A subgroup I' < G is Tyeq-regular if all sequences of distinct elements in I' have this
property.

That these properties are independent of the base point and stable under bounded perturba-
tion of the sequences, is due to the triangle inequality |da(z,y) —da(2’,y")| < d(z,2") +d(y, y).

Subsequences of 7,,,4-regular/pure sequences are again T,,,q4-regular/pure.

Clearly, 7,0q-pureness is a strengthening of 7,,,4-regularity; a sequence in A is 7,,4-pure iff
it is Tyueq-regular and contained in a tubular neighborhood of V (0, Tp04)-

The face type of a pure sequence is uniquely determined. Moreover, a 7,,,q-regular sequence

is 7, ,q-regular for every face type 7,4 < Tinod, because oy A < dr A

A sequence (g,) is Tmea-regular/pure iff the inverse sequence (g, ') is (T,u0q-regular/pure,
because da(z, g, ') = da(gnz, ) = tda(T, guT).

Note that 7,,,4-regular subgroups are in particular discrete. If rank(X) = 1, then dis-
creteness is equivalent to (0,,04-)regularity. In higher rank, regularity can be considered as a
strengthening of discreteness: A discrete subgroup I' < GG may not be 7,,,4-regular for any face
type Tmoq; this can happen e.g. for free abelian subgroups of transvections of rank > 2.

A property for sequences in G equivalent to regularity had appeared in [Be, Lemma 3.5(1)].

Lemma 4.9 (Pure subsequences). FEvery sequence, which diverges to infinity, contains a
Tmod-pure subsequence for some face type Tmod S Tmod-

Proof. In the case of sequences in A, take 7,,,4 to be a minimal face type so that a subsequence
is contained in a tubular neighborhood of V (0, Ty,04)- O

Note also that a sequence, which diverges to infinity, is 7,,.¢-regular iff it contains v,,,q-pure
subsequences only for face types Viod 2 Timod-

The lemma implies in particular, that every sequence ~, — o0 in a discrete subgroup I' < GG
contains a subsequence which is 7,,,4-regular, even 7,,,4-pure, for some face type 704-

Remark 4.10. Regularity has a natural Finsler geometric interpretation, cf. [KLI]: A sequence
in X is 7,,0¢-regular iff, in the Finsler compactification X Z XU oFins X of X, it accumulates
c oFins X at infinity.

at the closure of the stratum S,

4.3 Contraction implies regularity

In this section and the next, we relate contractivity and regularity for sequences and, as a con-
sequence, establish the equivalence between 7,,,4-regularity and the 7,,,q-convergence property
for discrete subgroups.

To relate contraction and regularity, it is useful to consider the G-action on flats. We recall
that F. denotes the space of flats f < X of type Tnoq (see section 24). Two flats f1 € F,.

Tmod mod
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are dynamically related with respect to a sequence (g,) in G,

(gn)
f* g\" f+7

if there exists a sequence of flats f, — f_ in F,

Tmod

such that g, f, — f+. The action of (g,) on
Fr...q 18 proper iff there are no dynamical relations with respect to subsequences, cf. section

Dynamical relations between singular flats yield dynamical relations between maximal ones:

Lemma 4.11. If fy € F, , are flats such that f_ (g2) f4, then for every maximal flat Fy = f,

there exist a mazimal flat F— 2 f_ and a subsequence (g, ) such that F_ (9 F,.

Proof. Let f, — f_ be a sequence in F,

mod

of maximal flats F,, © f, such that g,F, — F.. The sequence (F,) is bounded because the
sequence (f,,) is, and hence (F},) subconverges to a maximal flat F_ 2 f_. O

such that g, f, — f+. Then there exists a sequence

For pure sequences there are dynamical relations between singular flats of the corresponding
type with respect to suitable subsequences:

Lemma 4.12. If (g,) is Tmoea-pure, then the action of (g,) on F.

a1 MOL proper.
More precisely, there exist simplices 7. € Flag, . such that for every flat f, € F.
asymptotic to T, there exist a flat f_ € F,

oo asymptotic to 7 and a subsequence (g, ) such
that

(gny,)
fo N fe
Proof. By pureness, there exists a sequence (7,,) in Flag, . such that

sup d(gnz, V(x,7,)) < +00 (4.13)

for any point x € X. There exists a subsequence (g, ) such that 7, — 7. and g, 'z, — 7_.

Let f, € F,

mod

fx € F, ., through z asymptotic to 7,,,. Then frx — f,. The sequence of flats (g,'fx) is

k
bounded as a consequence of (A.I3]). Therefore, after further extraction, we obtain convergence

be asymptotic to 7,. We choose = € f, and consider the sequence of flats

ggkl fr — f—. The limit flat f_ is asymptotic to 7_ because the f; are asymptotic to g;lenk. O

By a diagonal argument one can also show that the subsequences (g, ) in the two previous
lemmas can be made independent of the flats F, respectively f,.

For contracting sequences, the possible dynamical relations between maximal flats are re-
stricted as follows:

Lemma 4.14. Suppose that (g,) is Tmea-contracting with ({4.3), and that F_ (g2)

mal flats Fy. € F. Then T4 € 0 Fy.

F. for maxi-

Proof. Suppose that 7_ ¢ 0, F_. Then the visual boundary sphere d, F_ contains at least two
different simplices 7_, 7’ opposite to 7_, cf. Lemma
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Let F,, — F_ be a sequence in F such that ¢,F,, — F,. Due to F, — F_, there exist
sequences of simplices 7,,, 7, 0w F}, such that 7, - 7_ and 7, — 7”. In particular, 7,, # 7/,
for large n. After extraction, we also obtain convergence g,7, — 74 and g, 7, — 7. Moreover,

since g, F,, — F, it follows that the limits 7, 7, are different simplices in 0y F .

This is however in conflict with the contraction property (£2). In view of 7_, 7" € C(7_), the

latter implies that g, 7,, — 74 and g, 7/, — 7, convergence to the same simplex, a contradiction.
Thus, 7 < 0, F_.

Considering the inverse sequence (g, ') yields that also 7, < 0 F, cf. Lemma 4 O
Combining the previous lemmas, we obtain:

Lemma 4.15. If a sequence in G 1S Tyoq-contracting and Vy,oq-pure, then Tmod S Vinod-

Proof. We denote the sequence by (g,) and assume (4.2). According to Lemmas .12 and [4.1T]
by Vmeq-purity, there exist simplices vy € Flag, .
O Fy D vy there exist a maximal flat F_ with 0,F_ D v_ and a subsequence (gy, ) such that

such that for every maximal flat F', with

(gf\bf‘)

F F,.
By Lemma [4.14] always 7, < 0, F,. Varying F\,, it follows that 7, < v, cf. Lemma O

From these observations, we conclude:

Proposition 4.16 (Contracting implies regular). If a sequence in G is Tpoq-contracting,
then it is Tyoq-reqular.

Proof. Consider a sequence in G which is not 7,,.¢-regular. Then a subsequence is v,,,q-pure
for some face type Vpod S 0r,,,,0mod, compare Lemma 4.9 The condition on the face type is
equivalent to V04 2 Timod- By the last lemma, the subsequence cannot be 7,,,4-contracting. [

4.4 Regularity implies contraction

We now prove a converse to Proposition [4.16 Since contractivity involves a convergence con-
dition, we can expect regular sequences to be contracting only after extraction.

Consider a 7,,,4-regular sequence (g,) in G. After fixing a point x € X, there exist simplices

71 € Flag, . (unique for large n) such that

gtr e V(x,st(t))). (4.17)
Note that the sequence (g, 1) is (T,n0q-regular, compare the comment after Definition EL8

Lemma 4.18. If 7, — 73 in Flag . then (gn) iS Tmoq-contracting with ([{.3).

Proof. Since x € g,V (x,st(7,,)) = V(gnz,st(gn7, )), it follows together with g,z € V(z,st(7,"))
that the Weyl cones V' (g,2,st(g,7, )) and V(z,st(7,})) lie in the same parallel set, namely in
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P(gn7,,7,7), and face in opposite directions. In particular, the simplices g,7, and 7,7 are

x-opposite, and thus g, 7, converges to the simplex 7, which is z-opposite to 7,
gnT,, — Ti.

1

Since the sequence (g, 'x) is tTpeq-regular, it holds that

d(g, w, 0V (z,st(7)))) — +oo.
By Lemma [2.35] for any r, R > 0, one has for n > n(r, R) the inclusion of shadows (cf. (Z:34))

U n ST, R = U

- -1 .
Tn Tn »gn T,T

Consequently, there exist sequences of positive numbers R,, — +o0 and r,, — 0 such that

U wr, © U

-
Tn Tn s9n T,Tn

for large n, equivalently
(4.19)

Since 7,7 — 7_ and R,, — +o0, the shadows U_- , p < C(7,) < Flag,, , erhaust C(7_) in the
sense that every compact in C(7-) is contained in U~ , p for large n On the other hand
shrink, i.e. Hausdorff converge to the point 7‘+

— (e — .
9n Tn s T, Rn InTn ;ZT,Tn

since g7, — 74 and r, — 0, the U, -
Therefore, (4.19) implies that
Inlc_y = Ty

uniformly on compacts, i.e. (g,) i8S Toq-contracting. ]

With the lemma, we can add the desired converse to Proposition [4.16] and obtain a charac-
terization of regularity in terms of contraction:
Proposition 4.20. The following properties are equivalent for sequences in G':

(i) Every subsequence contains a Tpeq-contracting subsequence.

(i1) The sequence is Tmoq-regular.

Proof. This is a direct consequence of the lemma. For the implication (ii)=>(i) one uses the com-
pactness of flag manifolds. The implication (i)=>(ii) is obtained as follows, compare the proof
of Proposition If a sequence is not 7,,,q-regular, then it contains a v,,,q-pure subsequence
for some face type Vpoq P Tmod- Every subsequence of this subsequence is again v,,,q-pure and
hence not 7,,,¢-contracting by Lemma [£.15] O

A version of Propostition [.20] had already been proven by Benoist in [Be, Lemma 3.5].

We conclude for subgroups:

HTndeed, for fixed R > 0 we have Hausdorff convergence U,- . r = Ur_ar in Flag, ,, which follows
e.g. from the transitivity of the action K, — Flag,  of the maximal compact subgroup K, < G fixing z.
Furthermore, the shadows U,_ , g exhaust C(7_) as R — 400, cf. the continuity part of Lemma [2.33]

PIndeed, U, - = — Us, u, in Flag,,, for fixed 7 > 0, and Uy, 4, — 74 as r — 0, using again the
continuity part of Lemma and the fact that the function (Z32)) assumes the value zero only in 7.
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Theorem 4.21. A subgroup I' < G is Ty,eq-reqular iff it is a Tynoq-convergence subgroup.

Proof. By definition, I" is 7,,,¢4-regular iff every sequence (7,) of distinct elements in I" is 7,04~
regular, and 7,,,4-convergence iff every such sequence (7,) has a 7,,,4-contracting subsequence.
According to the proposition, both conditions are equivalent. O

4.5 Convergence at infinity and limit sets

The discussion in the preceding two sections leads to a natural notion of convergence at infinity
for regular sequences in X and G. As regularity, it can be expressed both in terms of orbit
geometry in X and dynamics on flag manifolds.

We first consider a 7,,,4-regular sequence (g,) in G. Flexibilizing condition (4.17]), we choose
points z, 2" € X and consider a sequence (7,,) in Flag, . such that

sup d(gnz, V(2',st(7,))) < +00. (4.22)

Note that the condition is independent of the choice of the points x and :.l?’

Lemma 4.23. The accumulation set of (7,) in Flag. . depends only on (gy).

Proof. Let (7)) be another sequence in Flag, . such that d(g,z,V (2',st(7],))) is uniformly
bounded. Assume that after extraction 7, — 7 and 7, — 7/. We must show that 7 = 7’

We may suppose that 2’ = z. There exist bounded sequences (b,,) and (),) in G such that
gnbnz € V(x,st(7,)) and gnbl,x € V(x,st(7)))

for all n. Note that the sequences (g,,b,) and (g,b),) in G are again 7,,,q-regular. By Lemmal[4.T8]
after further extraction, they are 7,,,4-contracting with

Gnblcy = T and G loEy — 7'

uniformly on compacts for some 7_,7" € Flag,, . Moreover, we may assume convergence

b, — b and b/, — /. Then

a°

Gnlcwr) = T and Gnlowry =7

uniformly on compacts. With Lemma it follows that 7 = 7'. O
In view of the lemma, we can define the following notion of convergence:

Definition 4.24 (Flag convergence of sequences in G). A 7,,,4-regular sequence (g,) in
G Tmod-flag converges to a simplex 7 € Flag,__,,

gn — T,

if 7, — 7 in Flag, , for some sequence (7,) in Flag, . satisfying (£.22]).

13Recall that the Hausdorff distance of asymptotic Weyl cones V (y,st(7)) and V (y/,st(7)) is bounded by the
distance d(y,y’) of their tips.
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We can now characterize contraction in terms of flag convergence. We rephrase Lemma [4.1§]
and show that its converse holds as well:

Lemma 4.25. For a sequence (g,) in G and simplices T+ € Flag, . the following are equiv-
alent:
(1) (gn) 1S Tmoa-contracting with gn|c(-_y — T+ uniformly on compacts.

(ii) (gn) 1S Tmoa-Tegular and g*' — 7.
In part (ii), the sequence (g, ') is tTmoa-regular and g, ' — 7_ means (7,,,4-flag convergence.

Proof. The implication (ii)=(i) is Lemma .18

Conversely, suppose that (i) holds. Since the sequence (g,) is Teq-contracting, it is Tyeq-
regular by Proposition I6l Let (7.7) be sequences satisfying ([EIT). We must show that
7;f — 7¢. Otherwise, after extraction we obtain that 7,7 — 74 with 7/ # 7 or 7/ # 7_. Then
also gn|c( ) — 74 by Lemma [4.I8, and Lemma implies that 7. = 74, a contradiction. O

Vice versa, we can characterize flag convergence in terms of contraction and thus give an
alternative dynamical definition of it:
Lemma 4.26. For a sequence (g,) in G, the following are equivalent:

(1) (gn) S Timoa-regular and g, — T.

(ii) There exists a bounded sequence (b,) in G and 7_ € Flag,,  such that g,bu|c(y — T

uniformly on compacts.

d

(1) There exists a bounded sequence (b)) in G such that bl,g,|c(r) converges to a constant
map uniformly on compacts.

Proof. (ii)=>(i): According to the previous lemma the sequence (g,b,) iS Tieq-regular and 7,04~
flag converges, g,b, — 7. Since d(g,x, g,b,x) is uniformly bounded, this is equivalent to (g,,)
being 7,,04-regular and ¢, — 7.

(i)=(ii): The sequence (g,') is tTyeq-regular. There exists a bounded sequence (V) in G

—1 -1 EVES IS
such that (0,9, ") tTmea-flag converges, v, g, — 7_ € Flag, . We put b, = b, . Since also

(gnby) is Tmoa-regular and g,b, — 7, it follows from the previous lemma that g,b,|c() — 7
uniformly on compacts.

The equivalence (ii)<>(iii) with b/, = b, ! follows from Lemma .4l O

We carry over the notion of flag convergence to sequences in X.

Consider now a 7,,,q-regular sequence (z,) in X. We choose again a base point € X and
consider a sequence (7,) in Flag, . such that

sup d(z,,, V (z,5t(1,))) < +00, (4.27)

n

analogous to (£.22)). As before, the condition is independent of the choice of the point z, and
we obtain a version of Lemma [4.23}
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Lemma 4.28. The accumulation set of (7,,) in Flag, . depends only on (x,).

Proof. Let (g,) be a sequence in G such that the sequence (g, 'z, ) in X is bounded. Then (g,,) is
Tmoa-Tegular and (£.27]) becomes equivalent to (A.22]). This reduces the claim to Lemmald23l O

We therefore can define, analogous to Definition [4£.24] above:

Definition 4.29 (Flag convergence of sequences in X). A 7,,,4-regular sequence (z,) in

X Tmoa-flag converges to a simplex 7 € Flag, .,

Ty — T,
if 7, — 7 in Flag, , for some sequence (7,,) in Flag, . satisfying (£.27).

For any 7,,,¢-regular sequence (g,) in G and any point x € X, we have g, — 7 iff g,z — 7.

Flag convergence and flag limits are stable under bounded perturbations of sequences:

Lemma 4.30. (i) For any Tmeq-regular sequence (g,) and any bounded sequence (b,) in G, the
sequences (gn) and (gnb,) have the same Tpoq-flag accumulation sets in Flag, ..

(i1) If (z,) and (z)) are Tmoa-reqular sequences in X such that d(x,,z!) is uniformly

bounded, then both sequences have the same Ty0q-flag accumulation set in Flag, ..
Proof. (i) The sequence (g,b,) is also Teq-regular and satisfies condition (£22) iff (g,,) does.
(ii) The sequence (z,) satisfies condition (E27) iff (z/,) does. O

Remark 4.31. There is a natural topology on the bordification X wu Flag, . which induces
Tmoq-Hlag convergence. Moreover, the bordification embeds into a natural Finsler compactifica-
tion of X, compare Remark Z.10

Flag convergence leads to a notion of limit sets in flag manifolds for subgroups:

Definition 4.32 (Flag limit set). For a subgroup I' < G, the 7,,,4-limit set
ATmod(F) = Fla'g'rmod

is the set of possible limit simplices of 7,,,4-flag converging 7,,,q-regular sequences in I'; equiv-
alently, the set of simplices 7, as in (L2) for all 7,,,4-contracting sequences in T'.

The limit set is I'-invariant and closed, as a diagonal argument shows.

Remark 4.33. Benoist introduced in [Bel §3.6] a notion of limit set Ar for Zariski dense
subgroups I' of reductive algebraic groups over local fields which in the case of real semisimple
Lie groups is equivalent to (the dynamical version of) our concept of 0,,,4-limit set A, d
What we call the 7,,,-limit set A,  for other face types Tioa & Omoa is mentioned in his

4 Benoist’s limit set Ar is contained in the flag manifold Yr which in the case of real Lie groups is the full
flag manifold G/B, see the beginning of §3 of his paper. It consists of the limit points of sequences contracting
on G/B, cf. his Definitions 3.5 and 3.6.
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Remark 3.6(3), and his work implies that, in the Zariski dense case, A,  is the image of A

Tmod Omod

under the natural projection Flag, . — Flag,  of flag manifolds.

4.6 Uniform regularity

In this section we introduce stronger forms of the regularity conditions discussed in section

We first consider sequences in the euclidean model Weyl chamber A.

Definition 4.34. A sequence 6, — oo in A is uniformly T,..q-reqular if it drifts away from
Or..,A at a linear rate with respect to its norm,

(6,0, A)

Tmod

lim inf > (.

n—+ [0
We extend these notions to sequences in X and G, compare Definition 4.8

Definition 4.35 (Uniformly regular). (i) A sequence (z,,) in X is uniformly Tmeq-regular if
for some (any) base point o € X the sequence of A-distances da(o,z,) in A has this property.

(ii) A sequence (g,) in G is uniformly Tyeq-regular if for some (any) point « € X the orbit
sequence (g,x) in X has this property.

(iii) A subgroup I' < G is uniformly T,.q-regular if all sequences of distinct elements in T’
have this property.

For a subgroup I' < G, uniform 7,,,4-regularity is equivalent to the visual limit set A(T")
0 X being contained in the union of the open 7,,,4-stars.

5 Asymptotic and coarse properties of discrete subgroups

This chapter is the core of the paper. In section [5.2] motivated by the boundary map part
of the original Anosov notion, we study equivariant embeddings of the Gromov boundaries
of word hyperbolic subgroups into flag manifolds. We show how these boundary embeddings
can be used, especially for regular subgroups, to control the geometry of the orbits in the
symmetric space: Intrinsic geodesic lines in the group are uniformly close to parallel sets in
the symmetric space. Moreover, in the generic case, for instance for Zariski dense subgroups,
intrinsic rays in the group are close to Weyl cones. This conicality property implies in par-
ticular that the boundary map continuously extends the orbit maps to infinity and identifies
the Gromov boundary with the limit set. This leads us to notion of asymptotically embedded
subgroups discussed in section 5.3l We find that asymptotic embeddedness has strong implica-
tions for the coarse extrinsic geometry of subgroups: They are undistorted, and moreover their
intrinsic geodesics satisfy a higher rank version of the “Morse property”; they are uniformly
close to diamonds. This motivates the notion of Morse subgroups studied in section 5.4l The
higher rank Morse property immediately implies that the limit set is conical and antipodal. We
call regular subgroups with the latter properties RCA and study them in section Using
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Bowditch’s dynamical characterization of hyperbolic groups, we show that RCA subgroups are
asymptotically embedded, closing part of the circle. In section [5.7], we observe that conicality
implies expansive dynamics at the limit set, which yields another equivalent property for sub-
groups, this time formulated purely in terms of the dynamics on flag manifolds. In sections 5.8
and B.11] we discuss different (uniform and non-uniform) versions of our Anosov condition and
show that it is equivalent to the previous conditions as well as to the original definition of
Anosov subgroups. In section we take up the discussion of the Morse property. Leaving
the context of discrete subgroups, we study the geometry of Morse quasigeodesics in symmetric
spaces. We characterize them as bounded perturbations of Finsler quasigeodesics and study
the behavior of the A-distance along them: we prove that via the A-distance they project to
Morse quasigeodesics in A. We also obtain another characterization of Morse subgroups by the
quasiconvexity property that their intrinsic geodesics are extrinsically Morse quasigeodesics,
equivalently, are uniformly close to Finsler geodesics.

5.1 Antipodality

If X has rank one, then G acts transitively on pairs of distinct points in 0,.X. Thus there are
only two possibilities for the relative position of two points in the visual boundary: They can
coincide or be different. In higher rank, the G-actions on the associated flag manifolds are in
general not two point transitive and there are more possibilities for the relative position.

We recall (see section [24]) that two simplices 7,7 < 0, X are called opposite or antipodal
if they are opposite simplices in the apartments a < 0, X containing them both. Their types
are then related by 0(7') = 10(7). In particular, if three simplices are pairwise opposite, their
types must be equal and ¢-invariant.

Definition 5.1 (Antipodal). Suppose that 7,4 is t-invariant.
(i) A subset of Flag, . is antipodal if it consists of pairwise opposite simplices.
(ii) A map into Flag, . is antipodal if it sends different elements to opposite simplices.

(iii) A subgroup I' < G is Typea-antipodal if A, (I') is antipodal.

Being antipodal is an open condition for pairs of points in flag manifolds. It is the generic
relative position. Antipodal maps are in particular injective.

We note that for a 7,,,4-antipodal 7,,,4-convergence subgroup I' < G the action
F - ATmod (F>

has convergence dynamics in the usual sense, see section B3t If (v,) is a sequence in I" such
that v,|c(_y — 74+, then 7o € A (I'). Due to antipodality, A, . (I') = {7_} < C(7-) and we
obtain the intrinsic convergence property.
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5.2 Boundary embeddings and limit sets

In this section, we study embeddings of word hyperbolic groups into semisimple Lie groups
which admit a certain kind of continuous boundary map. We will assume that 7,,,4 is ¢~
invariant.

Definition 5.2 (Boundary embedded). A subgroup I' < G is Ty,0q-boundary embedded if it is
intrinsically word hyperbolic and there exists an antipodal I'-equivariant continuous embedding

B: 0.l — Flag, (5.3)

of the Gromov boundary d,I' of I'. The map £ is called a boundary embedding. If |0,1'| < 2,
we require in addition that I' is discrete in G.

Thus, T,,0¢-boundary embedded subgroups are necessarily discrete, since I' acts on 3(0I)

as a discrete convergence group if |0,'| = 3

Boundary embeddings are in general not unique. This is so by trivial reasons if [0, I'| = 2,
cf. below, but it also happens if [0,,['| = 3, see [KLP2, Example 6.20].

In order to understand the implications of a boundary embedding, we will first use it to
obtain control on the geometry of the I'-orbits in X.

We fix a word metric on I'. Via the antipodal boundary embedding [ one can assign to
every discrete geodesic zm [ :Z — T a parallel set in X. Namely, let (4 := [(£00) € 0,
denote the ideal endpoints of the line. Their image simplices 5(¢+) € Flag, . are opposite and
determine the parallel set

P(B(¢-), B(¢4)) = X.

We consider the images of the discrete geodesic lines [ in I under the orbit map o, : I' - ' € X
for a point x € X (fixed throughout the discussion) and claim that the discrete paths Iz : Z — X
are uniformly close to the corresponding parallel sets

Lemma 5.4 (Lines go close to parallel sets). The discrete path lx is contained in a tubular
neighborhood of the parallel set P(5(¢_), B((y)) with uniform radius p = p(I', x).

Here and below, we mean by the dependence of a constant on I' that it depends on I" as a
subgroup of G and also on the chosen word metric on I'.

Proof. This can be seen by a simple compactness argument: Let
(Flag, , x Flag, )% < Flag,  x Flag, (5.5)

denote the subspace of pairs of opposite simplices. It is the open and dense G-orbit and in partic-
ular a homogeneous G-space. The latter implies that the function on (Flag, , x Flag, )PPxX

> Note that boundary embedded subgroups are not required to be regular, although they frequently are, see
Theorem 3.11 in [KT2].

16Recall that by a discrete geodesic line, we mean an isometric embedding of Z, cf, section 211

17 For amap ¢ : N — I' and a point = € X we denote by ¢z : N — X the map sending n € N to ¢(n)z € X.
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assigning

(vaTJrux/) — d(x/7P<T*77—+>) (56)
is continuous, because d(gz’, P(ht_,h7y)) = d(h tgz’, P(t_,7.)) for g,h € G. Also the map

£ - (FlagTrxlod X Fla’ngod)OPp x X

from the space L of discrete geodesic lines [ : Z — F sending [ — (S(I(—0)), B(l(+0)),1(0)x)
is continuous. Composing both, we see that the map

L d(1(0)z, P(B(I(=%)), B(1(+0))))

is continuous. Since it is also I'-periodic, the cocompactness of the action I' —~ £ implies that
it is bounded, whence the assertion. O

From now on, we assume that the subgroup I' < G is, in addition to being 7,,,4-boundary
embedded, also 7,,,q-reqular. This assumption will enable us to further restrict the orbit ge-
ometry and will lead to information on the relation between the boundary embedding and the
limit set.

We now analyze the position of the images of rays in I' along the parallel sets. Let r : Ng — I'
be a discrete geodesic ray with ideal endpoint ¢ := r(+0) € dy['. There is a dichotomy for the
position of the orbit path rz : Ny — X relative to the Weyl cone V (r(0)z,st(8(())) with tip at
its initial point, namely the path must either drift away from the cone or dive deep into it:

Lemma 5.7 (Rays dive into Weyl cones or drift away). There exist constants p' =
P (L, x) >0 and for all R > 0 numbers ng = ng(I', x, R) € N such that the following holds:

For all n € N with n = ny, the point r(n)x either has
(1) distance = R from the Weyl cone V (r(0)z,st(5(C))), or has

(11) distance < p' from this Weyl cone and distance = R from its boundary.

Proof. In a word hyperbolic group, discrete geodesic rays are contained in uniformly bounded
neighborhoods of discrete geodesic lines. Thus, r is contained in a tubular neighborhood with
uniform radius ¢(I") of a line [ : Z — I" asymptotic to ¢ = r(+o0) and some ¢ € d,,I" — {C}.

It follows from the previous lemma that the path rx is contained in a tubular neighborhood
of the parallel set P = P(B((),(¢)) with uniform radius p"(I',x). Let xy € P be a point

with d(zg,7(0)x) < p”. The Weyl cone V(r(0)z,st(8(())) is then p”-Hausdorff close to the
asymptotic Weyl cone V'(x¢,st(5(())) < P.

Now we use that the interior of the Weyl cone V' (zg,st(5(())) is open in the parallel set P
and the boundary 0V (zg,st(8(C))) of the cone disconnects the parallel set, see Lemma [2.T6l
The T,0q-regularity of I' implies (along with the triangle inequality for A-lengths) that the path
ra drifts away from 0V (xg,st(5(())) at a uniform rate,

d(r(n)z, 0V (zo,st(5(¢)))) = é(n)

8The space L of discrete geodesic lines [ : Z — I is equipped with the topology of pointwise convergence. It

is a locally compact Hausdorff space on which I' acts properly discontinuously and cocompactly.
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with a function ¢(n) — +o0 as n — +0oo independent of the ray r. The assertion follows. [
For all rays in I' the same of the two alternatives must occur:

Lemma 5.8 (Dichotomy). For all discrete geodesic rays r : Ng — I, either

(1) rx drifts away from the Weyl cone V (r(0)x,st(5(C))), ¢ = r(+w), at a uniform rate,

d(r(n)z, V(r(0)z,st(8(¢)))) — +=

uniformly as n — +o0, or

(11) rx is contained in the tubular p'(I', x)-neighborhood of the cone V(r(0)z,st(8(())) and
drifts away from its boundary at a uniform rate,

d(r(n)z, oV (r(0)z,st(8(¢)))) — +o
uniformly as n — +oo.

Proof. We give two arguments. The first one is restricted to the nonelementary case: As a
consequence of the previous lemma, for every ray r one of the alternatives (i) and (ii) occurs
with growth rates independent of the ray. Which alternative occurs, depends only on the
asymptote class ( = r(+0o0) of the ray, and depends on it continuously, i.e. the subsets of
endpoints for either alternative are open in 0, I'. Since they are also I'-invariant, if [0,I'| > 3,
the minimality of the action I' —~ 0,I" implies that one of the subsets must be empty.

The second argument works in the general case: Again we use that it depends only on the
asymptote class of the ray, which alternative occurs. We show that the same alternative occurs
for any two distinct asymptote classes ( ,f € Opl'. After replacing a ray r asymptotic to ¢
with a subray, we may assume that we are in the situation of the proof of the previous lemma
(whose notation we adopt), i.e. that r lies in a uniform tubular neighborhood of aline ! : Z — I’
asymptotic to é and (. Moreover, we assume that alternative (ii) holds for ¢ and claim that it
holds for ¢, as well.

To see this, fix R >> p/,p”" and n >> nyg. Let x, € P = P(ﬁ(f),ﬁ(()) be a point
with d(x,,r(n)x) < p”. Since (ii) holds for r, the point x, must lie deep inside the cone

V(zo,st(8(¢))) = P. This is equivalent to xy lying deep inside the cone V (z,,st(5(())) < P
opening towards the opposite direction. This however implies that r(0)z is uniformly close

(with distance < 2p” << R) to the cone V (r(n)z,st(3(¢))). Thus alternative (i) holds for the
subray [|(—on)~z of I, and hence also for its ideal endpoint . O

On the other hand, in the nonelementary case, the ray images always drift away (at non-
uniform rates) from “opposite” Weyl cones:

Lemma 5.9 (Drifting away from opposite cones). Suppose that |0,I'| = 3. Then for
every discrete geodesic ray v : Ng — I' and ideal point ¢ € 0,I' — {C}, ( = r(+0), it holds that

d(r(n)z, V(r(0)z,st(8(C)))) — +w©

as n — +0.
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Proof. The ray r is contained in a (non-uniform) tubular neighborhood of a line [ : Z — T’
asymptotic to ¢ and (. The line image [z, and therefore also the ray image rx is contained in
a tubular neighborhood of the parallel set P = P(5(¢), 8(())-

It follows that the accumulation set acc, (r) < Flag, . of r (with respect to Tp.qa-flag
convergence, compare section [L.0]) consists of simplices contained in 0., P: Indeed, the nearest
point projections z, € P of r(n)zx lie in euclidean Weyl chambers V (zg,0,) < P. Therefore,
in view of Lemma A.23] acc,, ,(r) equals the accumulation set of the sequence (7,) in Flag,
consisting of the type 7,4 faces 7, < 0, < 0, P.

Now we use nonelementarity and vary the ideal point opposite to (. Since |0, I'| = 3, there
exists a third ideal point ' € 0,['—{¢, C}. It determines another parallel set P’ — ( B(C), BQ)),
and the simplices in acc, () must also be contained in d,P’. In view of 3(() & 0P,
follows that 8(C) ¢ acc,. (7).

Since rx is contained in a tubular neighborhood of P, we also again have the dichotomy, anal-

it

ogous to the previous lemma, that rz either drifts away from the Weyl cone V (r(0)z, st(8(¢)))
at a uniform rate, as claimed, or stays in a tubular neighborhood of it and drifts away only from
its boundary. However, in the latter case, we would have (conical) flag convergence r(n) — 3(¢)
as n — +o0, equivalently, acc, () = {8(C)}, a contradiction. O

If T is virtually cyclic, i.e. if [0,]'| = 2, there is a trivial way of modifying the boundary
embedding. Namely, then the action I' —~ 0,,I" commutes with the transposition t : 0, " — 0o I’
exchanging the points, and therefore —( := ot is a boundary embedding as well. Therefore
the previous lemma may fail. However, if it fails for 3, then it holds for —3, because case (ii)
of the dichotomy in Lemma [5.8 arises.

From the above observations on the orbit geometry we will now deduce information about
the limit set and its position relative to the image of the boundary embedding.

Let
0, =0, uf3:T =T 100, — X uFlag, (5.10)
denote the extension of the orbit map o, : I' = 'z = X to the Gromov compactification ' of

I’ by 0.|a,r := 5. We say that the extension 0, is continuous at infinity if for all sequences
Yn — o0 in I we have flag convergence v, — 3({) whenever v, — ( € 0, in T.

We obtain the following dichotomy corresponding to the one in Lemma

Theorem 5.11 (Boundary embedding and limit set). Let I' < G be a Tpeq-regular Tmoq-
boundary embedded subgroup. Then for every boundary embedding 5 either

(1) B(0)NA, (') = &, and no simplex in 5(0,1") is opposite to a simplex in A

(I)

Tmod
or

(11) B(0xI") = A, (I'). Moreover, the extension o, is continuous at infinity, after replacing
B with —f in the case |0,1'| = 2, if necessary.

Proof. Assume first that case (ii) of Lemma occurs. Consider a sequence v, — o0 in I".

YNote that in view of the antipodality of 3 the second part of (i) implies the first part.
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There exist rays 7, : Ng — I starting in r,(0) = e and passing at uniformly bounded distance
of 7,. We denote their ideal endpoints by (, := r,(+00). Then the orbit points v,z lie
in uniform tubular neighborhoods of the Weyl cones V (z,st(58(¢,))). If 4, — ¢ € 0l in T,
equivalently, ¢, — ¢ in 0,1, then 3((,) — B(¢) in Flag,__,, and it follows 7,,,,4-flag convergence
Yo — B(¢). This shows that o, is continuous at infinity and B(d.I') < A, ,(I'). To see the
opposite inclusion, suppose that v,z — A € A, (I'). After extraction, we get convergence
Yn — ¢ € 0p]" and conclude from the above that A = §(¢). Thus also A, (I') € B(0,I"), and

conclusion (ii) of the theorem is satisfied.

If |0,T'| = 2 and case (ii) of Lemma [5.8 occurs for —f, we reach the same conclusion after
replacing [ with —f.

Assume now that we are in case (i) of Lemma [5.8 After replacing § with —f in the case
|0x'| = 2, if necessary, we may also assume that the conclusion of Lemma holds. As
before, we consider a sequence 7, — oo in I and rays r,. Suppose that 7, — ¢ € 0, [" and let
¢ € 0., — {C} be arbitrary. Since ¢, — ¢, there exist for all large n lines [, : Z — I’ with ideal
endpoints I,(—o0) = ¢ and [,,(+o0) = (,. The lines I, pass at uniformly bounded distance from
e and 7,, and they contain the rays r, in uniform tubular neighborhoods. (For the rest of this
argument, uniformity will mean that bounds are independent of 7.)

By Lemma [5.4] the ray images r,x lie in uniform tubular neighborhoods of the parallel sets

~ ~

P, = P(5(¢), 5(¢,)) and drift away from both Weyl cones V(x,st(8(¢))) and V(x,st(8((n)))-
The drift is uniform in the latter case by Lemma [5.8(i), and also in the former case since
r,(0)z = x and d(x, P,) is bounded.

The uniformity implies that the orbit points ~,x lie in uniform tubular neighborhoods of
Weyl cones V(z,st(r,)) for simplices 7, € Flag, . with 7, < 0P, but 7, # B((), ().
(Indeed, as in the proof of the previous lemma, 7,z is uniformly close to a euclidean Weyl

chamber V(z,0,,) with visual boundary chamber o, < 0P, but o, ¢ st(8(C)) U st(8(()),
and we let 7,, € 0, be the type 7,04 face.) In particular, 7,, is not opposite to both B(é) and
B(¢,). The accumulation set of the sequence (7,) in Flag, .. which coincides with the 7,,,4-flag
accumulation set of the sequence (7,), therefore consists of simplices which are not opposite to
both (é ) and ((), because oppositeness is an open property. Letting ¢ run through d,,'— {C},

it follows that these simplices are not opposite to any simplex in 5(0,I).

Every limit simplex in A, (') arises as the 7,,,4-flag limit of a sequence (7,,) which con-
verges at infinity in T. We obtain that no simplex in A, (T') is opposite to a simplex in
B(0xI"). In particular, A, (I') n B(0,1") = &. Thus, conclusion (i) of the theorem holds. O

Consequently, as soon as a boundary embedding hits the limit set, it identifies it with the
Gromov boundary of the subgroup and moreover continuously extends the orbit maps:

Corollary 5.12. Let I’ < G be a Typoq-reqular Tpoq-boundary embedded subgroup with boundary
embedding 5. If B(01") N A, (I') # &, then B(0.I') = A, ,(I'). Moreover, the extension o,
is continuous at infinity, after replacing B with —f in the case |0,I'| = 2, if necessary.

Otherwise, if the boundary embedding avoids the limit set, the image of the boundary
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embedding and the limit set must have special position:

Lemma 5.13. In case (i) of Theorem[5.11, both 5(0,I") and A, ,(I') are not Zariski dense
in Flag, .. In particular, I' is not Zariski dense in G.

Proof. Since no simplex in 5(0,I") is opposite to a simplex in A, (I"), it follows that (0, I")
is disjoint from the union of open Schubert strata C'(\) over all limit simplices A € A, ().
In other words, B(0,I") is contained in the intersection of the proper subvarieties dC(\) =
Flag, ,—C(X). Similarly, A, (I') lies in the intersection of the 0C(7) over all simplices
7 € B(0,"). In particular, both are I'-invariant proper subvarieties, which forces I' to be
non-Zariski dense. 0

Therefore, the first alternative in the theorem cannot occur in the Zariski dense case, com-
pare [GW], Thm. 1.5]:

Corollary 5.14. Let ' < G be a Zariski dense Ty,oq-reqular Tyoq-boundary embedded subgroup.
Then it admits a unique boundary embedding 3, and B(0,I') = A, _,(I).

Proof. By the lemma, for any boundary embedding /3, only case (ii) in the theorem can occur.
It follows that S(0,I") = A, (I'). Moreover, /5 is uniquely determined because, due to the
density of attractive fixed points of infinite order elements, there are no I'-equivariant self
homeomorphisms of d,,I" besides the identity. (Note that |0, '| = 3 by Zariski density.) O

It is worth noting that in the case 7,04 = 0moq¢ the boundary embedding can always be
modified so that it maps onto the limit set:

Theorem 5.15. Let I' < G be a 0p0q-reqular o,,0q-boundary embedded subgroup. Then there
exists a boundary embedding B with B(0I') = A,, ().

Proof. In the case Ty0q = Omod, the parallel sets considered above are maximal flats and the
Weyl cones are euclidean Weyl chambers. What makes it possible to push the argument further,
is the fact that the walls in a maximal flat through a fixed point disconnect the flat into euclidean
Weyl chambers. Therefore, the above discussion now yields more precise information about the
position of the paths ra:

Since the rz are uniformly close to maximal flats (provided by a boundary embedding [’
for T, cf. Lemma [5.4]), 0,,,4-regularity forces them to dive into (uniform tubular neighborhoods
of) Weyl chambers inside these flats. It follows that the paths rz are contained in uniform
tubular neighborhoods of euclidean Weyl chambers with tips at the initial points r(0)z. Again
by regularity, the asymptote class of the Weyl chamber depends only on the asymptote class
of the ray r. We therefore obtain a new boundary map /3 : d,I' — Flag, __, such that rz is
contained in the tubular p'(I", z)-neighborhood of the euclidean Weyl chamber V' (r(0)z, 3(())
for ¢ = r(+). Clearly, B(0I') € A, (I') and f is I'-equivariant. An argument as in the last
part of the proof of Lemma shows that 3 is antipodal.

To verify that (3 is continuous, suppose that ¢, — ¢ in d,I" and 5(¢,) — o in Flag, .. We
must show that o = (¢). Let r,,7 : Ny — T' be rays starting in e and asymptotic to (,, (.
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We note that for any sequence m,, — +00 in Ny, we have o,,,4-flag convergence r,(m,,) — o,
because 7, (m,,)z lies in a uniform tubular neighborhood of V'(z,st(3((,))). On the other hand,
if m,, grows sufficiently slowly, then the sequence (r,(m,)) in I' is contained in a tubular
neighborhood of r, and hence r,(m,) — 5(¢). This shows that o = 5((), as desired.

Thus, § is a boundary embedding. Since also B(dI') < A, ,(I'), we conclude using
Theorem .1 that 8(0.I) = A,, (). O

5.3 Asymptotic embeddings and coarse extrinsic geometry

The discussion in the previous section, notably part (ii) of the conclusion of Theorem [B.IT]
motivates the following strengthening of the notion of boundary embeddedness:

Definition 5.16 (Asymptotically embedded). A subgroup I' < G is Ty,0q-asymptotically
embedded if it is 7,,.q-regular, 7,,,¢q-antipodal, intrinsically word hyperbolic and there is a I'-
equivariant homeomorphism

a aoor i) ATmod(F) = Fla'g'rmod
from its Gromov boundary onto its 7,,,¢-limit set.

The definition can also be phrased purely dynamically in terms of the I'-action on Flag, .,
by replacing 7,,,q-regularity with the 7,,,4-convergence condition.

Note that 7,,,,q-asymptotically embedded subgroups are necessarily discrete by 7,,.q-regularity.
We also keep assuming that 7,,,q is t-tnvariant; this is implicit in 7,,,4-antipodality.

We observe that the boundary map « is antipodal, because it is injective with antipodal
image. It is therefore a boundary embedding for I'; i.e. 7,,,4-asymptotically embedded implies
Tmoa-boundary embedded. According to Corollary [5.12], the extension

0, =0,ua:L=Tu0Udl — X uFlag, (5.17)

cf. (510), is continuous, after replacing o with —c« in the case |0,I'| = 2, if necessary. We will
refer to a then as the asymptotic embedding for I'.

We rephrase the criteria for asymptotic embeddedness obtained in the previous section (cf.

Corollaries [5.12] [5.14] and Theorem [5.15]):

Theorem 5.18. Let I' < G be a Tyoq-reqular Tpoq-boundary embedded subgroup with boundary
embedding 5. If B(0) n A, ,(I) # &, then I is Tpoq-asymptotically embedded, and ( is the
asymptotic embedding, after replacing it with —f in the case |0,I'| = 2, if necessary.

Theorem 5.19. Zariski dense Tp,0q-reqular Tp,oq-boundary embedded subgroups are Tp,oq-asymp-
totically embedded and admit no other boundary embedding besides their asymptotic embedding.

Theorem 5.20. 0,,,4-Reqular 0,,,q4-boundary embedded subgroups are opmoq-asymptotically em-
bedded. (But they may admit boundary embeddings different from the asymptotic embedding.)
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We also summarize what the discussion in the previous section yields for the orbit geometry
of asymptotically embedded subgroups. In addition to the continuity at infinity (5.17) of the
orbit maps o,, z € X, we obtained (cf. Lemmas [5.4] and (.8)):

Proposition 5.21 (Orbit geometry of asymptotically embedded subgroups). LetI' <
G be a Toq-asymptotically embedded subgroup with asymptotic embedding a.. Then:

(i) For every discrete geodesic line l : Z — T, the path lx is contained in a tubular neighbor-
hood of uniform radius p(I',x) of the parallel set P(a(C_),a(C)), where (4 := [(+0) € Ox L.

(i1) For every discrete geodesic ray r : Ng — I, the path rx is contained in a tubular neighbor-
hood of uniform radius p/(I', z) of the Weyl cone V (r(0)z,st(ca(())), where ¢ := r(+0) € 0,1,
and drifts away from its boundary at a uniform rate,

d(r(n)z, oV (r(0)z,st(a(()))) — +x (5.22)
uniformly as n — +oo.

These properties motivate the Morse property to be introduced and discussed below. Let us
first draw some further immediate consequences for the coarse extrinsic geometry of subgroups
and see how property (ii) leads to undistortion and uniform regularity.

We consider the orbit path rz for a discrete ray r. According to property (ii), the path rz
must stay uniformly close to the Weyl cone V (r(0)x, st(«(())) predicted by the boundary map
and drift away from the boundary of the cone at a uniform rate. Since the same applies to all
subrays of r, it follows that the cones V(r(n)z,st(«(¢))) must, up to bounded perturbation,
be uniformly nested. This forces the orbit path rx to have a linear drift away from the bound-
ary of the Weyl cone and in particular towards infinity, i.e. rz is uniformly 7,,,4-regular and
undistorted.

We combine these properties in the following notion:

Definition 5.23 (URU). A finitely generated subgroup I' < G is Tyq-URU, if it is
(i) uniformly 7,,04-regular, and

(ii) undistorted, i.e. the inclusion I' © G, equivalently, the orbit maps I' — 'z < X are
quasiisometric embeddings with respect to a word metric on I'.

Note that URU subgroups cannot contain parabolic elements.

The above discussion before the definition thus leads to:

Theorem 5.24. 7,,,q-Asymptotically embedded subgroups I' < G are Tyoq-URU.

Proof. We add some details to the discussion above:

Let z,, € V(r(0)z,st(a(¢))) be the nearest point projections of the points r(n)z, n € Ny.
Then d(r(n)z,z,) < p/ = p'(I',x) by part (ii) of the proposition. We consider the sequence of
Weyl cones V (z,,st(«(C))) < V(r(0)z,st(x(¢))). Note that the cones V(r(n)z,st(a(())) and
V(x,,st(a(¢))) are asymptotic to each other and have Hausdorff distance < d(r(n)z,x,) < p/,
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as do their boundaries. Applying (ii) to the subrays of r, it follows that the paths m — r(n+m)x
are contained in uniform neighborhoods of the cones V(x,,st(a(¢))) and drift away from their
boundaries at uniform rates. Thus, for every dy > 0 there exists a number mg = mo(I', z,dy) € N
such that

Tnim € V(Im St(a(C»)
and

d(Tnim, OV (25, 5t((C)))) = do

for all n > 0 and m > my. The latter inequality implies that the boundaries of the Weyl
cones V(z,,st(a(())) and V(x,1m,st(a(¢))) have (nearest point) distance > dy, cf. Proposi-
tion [2Z31](ii). From the uniform nestedness of the cones V (zgm,,st(«(())) for k € Ny, it follows
that the drift (5.22) away from the boundary of the Weyl cone is uniformly linear. Conse-
quently, the ray images rz are uniformly undistorted and uniformly 7,,,4-regular. Since any
pair of elements in I lies in a uniform tubular neighborhood of some discrete geodesic ray, our
assertion follows. O

Remark 5.25. (i) That, conversely, URU implies asymptotic embeddedness is proven in
[KLP3]. In particular, URU subgroups are necessarily word hyperbolic.

(ii) In [KLI] we prove that URU subgroups I' < G satisfy the even stronger coarse geometric
property of being coarse Lipschitz retracts of G.

Similarly, we also derive a version of Proposition [5.21] for discrete geodesic segments in I':

Consider a line [ : Z — I" and denote (4 = I(+®). Let z,, € P(a((-), a((;)) be the nearest
point projections of the points I[(n)x, n € Z. As in the proof of the previous theorem, we see
using Proposition B.2T|(i+ii), that for any dy > 0 there exists m{, = m{ (L', x,dy) € N such that

Tptm € V(zp,st(a(ls)))

and
d(Tnsm, OV (0, 5t((C4)))) = do

for all n and m > mj. It follows that, for ny € Z with n, —n_ > my, the diamond

o (Tn_s T, ) = V(wn_,st(a(Cr))) 0 V(n, ,st(a(C-))) = Pla(C-), a(Cy))

is defined and, using Proposition [5.2I(ii) again, contains the finite subpath I|f,_,,j~z2 in a
uniform tubular neighborhood.

Our discussion yields the following complement to, respectively, strengthening of Proposi-
tion [0.21], saying that the images of discrete geodesic segments in I' are contained in uniform
neighborhoods of diamonds with tips at uniform distance from the endpoints:

Proposition 5.26 (Segments go close to diamonds). Let I' < G be a Tyoq-asymptotically
embedded subgroup. Then for every discrete geodesic segment s : [n_,n,|nZ — T, the path sx is
contained in a tubular neighborhood of uniform radius p” = p"(I', ) of a diamond &, (x—, xy)

with d(z4, s(ng)x) < p”.
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Proof. This is a consequence of the above discussion, because every discrete geodesic segment
in I' lies in a uniform neighborhood of a discrete geodesic line. O

5.4 Morse property

The Morse Lemma for Gromov hyperbolic spaces asserts that quasigeodesic segments are uni-
formly close to geodesic segments with the same endpoints. Proposition along with Propo-
sition [5.2T]in the previous section can be interpreted as saying that, for asymptotically embed-
ded subgroups I' < GG, the images of discrete geodesic segments, rays and lines in I' under the
orbit maps into X satisfy a higher rank version of the Morse Lemma, with geodesic segments
replaced by diamonds.

This motivates the following notion (we keep assuming that 7,,,q is ¢t-invariant):

Definition 5.27 (Morse). A subgroup I' < G is Ty,0q-Morse if it is T,,04-regular, intrinsically
word hyperbolic and satisfies the following property:

For every discrete geodesic segment s : [n_,n, | nZ — T, the path sx is contained in a
tubular neighborhood of uniform radius p” = p”(I', x) of a diamond <, ,(z_,z;) with tips at
distance d(z, s(n4)x) < p” from the endpoints.

Note that the definition does not a priori assume the existence of a boundary map, neither
does it assume undistortion. These will be consequences.

As we saw, asymptotically embedded subgroups are Morse. We will now show that, con-
versely, asymptotic embeddedness follows from the Morse property, in fact from an a priori
weaker version of it for rays in I" (instead of segments):

Theorem 5.28. For a subgroup I' < G the following properties are equivalent:
(1) T is Timoq-asymptotically embedded.
(11) T is Tinoa-Morse.

(111) T is Toq-regular, intrinsically word hyperbolic and satisfies the following property: For
every discrete geodesic ray r : Ng — ', the path rx is contained in a tubular neighborhood of
uniform radius p” = p" (L', x) of a Tymea- Weyl cone with tip at the initial point r(0)x.

The Timoa- Weyl cone in (iii) is then the cone V(r(0)x, a(r(+w0))) where «v is the asymptotic
embedding for T.

Proof. The implication (i)=(ii) is Proposition [5.260 The implication (ii)=(iii) is immediate by
a limiting argument. It remains to show that (iii)=(i).

We first observe that the 7,,,4-Weyl cone V' (r(0)z, st(7)) containing the path rz in a tubular
neighborhood is uniquely determined. This follows from the 7,,,4-flag convergence r(n) — 7.
Moreover, 7 depends only on the asymptote class r(+o0) of the ray r. Hence there is a well-
defined map at infinity

&:0ypl — Flag,
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such that for every ray r the path rx is contained in a uniform tubular neighborhood of the
Weyl cone V(r(0)z, st(q(r(+90)))). Our goal is to show that & is an asymptotic embedding.

Lemma 5.29. & is continuous and continuously extends the orbit maps o, at infinity.

Proof. We proceed as in the proof of Theorem [B.15] (continuity of ). Consider a converging
sequence (, — ¢ in d,I'. Let r,,7 : Ny — I' be rays starting in e and asymptotic to (,,(. We
note that for any sequence m,, — + in Ny, the flag accumulation set of the sequence (r,(my,))
in Flag,

.4 equals the accumulation set of the sequence (&((,)) in Flag, ., and in particular

does not depend on the sequence (m,). On the other hand, if (m,) grows sufficiently slowly,
then the sequence (r,(m,)) in I" is contained in a tubular neighborhood of r, and hence flag
converges to &((). It follows that &((,) — &(¢). This shows that ¢ is continuous.

Proceeding as in the first part of the proof of Theorem [5.11], we then see that, for a sequence
Yo — o0 in T, convergence v, — ( € 0,I in T' implies flag convergence v, — &((), i.e. &
continuously extends o, at infinity. O

The continuous extension part of the lemma implies

Corollary 5.30. &(d,.I') = A, ().

In order to see that A, (I") is antipodal and ¢ is an asymptotic embedding for I, it remains
to verify:

Lemma 5.31. The map & is antipodal.

Proof. Let (+ € 0y @' be distinct, and let [ : Z — I be a line with [(+00) = (.. Applying
property (iii) to the subrays I|[_ o) for large n € N, we get that the point {(0)z is uniformly
close to the cones V (I(—n)x,st(&((y))), equivalently, there exists a bounded sequence of points
Yn € V(I(—n)z,st(&(C+))). By Tmoa-regularity, d(y,, 0V (I(—n)z,st(q((y)))) — +w0 asn — +o.
We denote by 7, € Flag, . the simplex [(—n)z-opposite to y,, 2 Then [(—n)z € V (y,,st(7,)),
and hence I(—n)x is uniformly close to V (I(0)z, st(7,)). In view of the flag convergence I(—n) —
a(¢_), it follows that 7, — &((_) in Flag,__,. Since the parallel sets P(7,,, &((4)) lie at bounded
distance from [(0)z, as they contain the points y,, the sequence (7,,) is relatively compact in the
open Schubert stratum C'(&({y)). Hence &(¢_) € C(&(¢,)), i.e. &((_) is opposite to &((y). O

This concludes the proof of the theorem. O

Note that the theorem implies in particular that 7,,,q-Morse subgroups are Tp,.q- URU, be-
cause asymptotically embedded subgroups are URU by Theorem [5.24]

Remark 5.32. We restricted our definition of the Morse property to word hyperbolic subgroups
because, as shown in [KLP3], URU subgroups are always word hyperbolic. This had been
unknown at the time of writing the first version of [KLP2].

20 Le. I(—n)x € V(yn,st(r;7)). Then I(—n)x,yn € P(7,,,&(y)).
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5.5 Conicality

The condition for discrete subgroups which we study in this section concerns the asymptotic
geometry of their orbits, i.e. how they approach infinity. To state it, we first need to elaborate
on our discussion of convergence at infinity for sequences from section [£.5l

For arbitrary 7,,,4, consider a 7,,,4-flag converging sequence (x,) in X,
x, — 7€ Flag, ..

The following notion of going “straight” to the limit simplex generalizes conical or radial con-
vergence at infinity in rank one symmetric spaces where one requires the sequence to stay in a
tubular neighborhood of a geodesic ray. Working with rays also in higher rank turns out to be
too restrictive and we replace the rays with Weyl cones, compare [Al, Def. 5.2]:

Definition 5.33 (Conical convergence). A 7,,,4-flag converging sequence x,, — 7 € Flag,

CONVETEES T,oq-conically,

con
Ln — T,

if it is contained in a tubular neighborhood of a Weyl cone V' (x,st(7)) for some point x € X.

Accordingly, T.q-flag converging sequences in G are said to converge 7,,,4-conically if their
orbit sequences in X do.

Note that the Weyl cones V (x,st(7)) for different points = € X are Hausdorff close to each
other, and the conical convergence condition is therefore independent of the choice of x.

The next result describes a situation for sequences close to parallel sets where flag conver-
gence already implies the stronger form of conical convergence:
Lemma 5.34. Suppose that a sequence (z,,) in X Tpea-flag converges, x, — 7 € Flag, ..
(i) If (x,,) is contained in a tubular neighborhood of a parallel set P(7,T) for some 7 € C(1),
(1) or if, more generally, there exists a relatively compact sequence (7,) in C(T) such that

sup d(zp, P(7,, 7)) < +0,

n

con
then x, — T.

Proof. Suppose first that the stronger condition (i) holds and that z,, % 7. Let z € P(7,7). As
in the proof of Lemma [5.7, it follows from the openness of the cone V' (x,st(7)) in the parallel
set P(7,7) that, after extraction, the sequence (x,) drifts away from V'(x,st(7)). As in the
proof of Theorem [5.11] the points x, are then contained in uniform neighborhoods of cones
V(z,st(r,)) with simplices 7,, € Flag, _ satistying 7,, € 0, P(7,7) but 7, # 7. Since 7 is the
only simplex in C'(7) which lies in P(7,7), see (2.10) and the discussion preceding Lemma 2.1T]

2'From our construction of Anosov Schottky subgroups, see [KLP2|, it immediately follows that in higher
rank they are generically not ray conical, for instance never in the Zariski dense case. This implies furthermore
that Zariski dense Anosov subgroups are never ray conical.
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the sequence (7,) is contained in the closed set Flag, , —C/(7), and hence so is its accumulation
set. In particular, 7 does not belong to the accumulation set of (7,) in Flag,_ .. Since the latter

set equals the flag accumulation set of the sequence (z,) in Flag, . it follows in particular

od?
that x,, -» 7, a contradiction.

Suppose now that the weaker condition (ii) holds. Since C'(7) is a homogeneous P,-space,
there exist 7 € C'(7) and a bounded sequence (b,) in P, such that 7,, = b,7. The sequence
(b, 'z,) is then contained in a tubular neighborhood of P(7,7), i.e. it satisfies condition (i).
Moreover, we also have flag convergence b, 'z, — 7' Hence, by the above, it follows that
b 'z, 5 7. By the definition of conical convergence, this means that the sequence (b, 'z,,) lies
in a tubular neighborhood of the cone V (z,st(7)) for some point x € X, equivalently, that

sup d(zp, V(bpz,st(1))) < +c0.

n

Now the cones V' (b,xz,st(7)) are asymptotic to V(z,st(7)) and have finite Hausdorff distance
< d(z, byx) from it. This Hausdorff distance is uniformly bounded and it also follows that the
sequence (z,,) lies in a tubular neighborhood of V' (z,st(7)), i.e. z, <> 7. O

As we did with regularity and flag convergence, we will now also rephrase conical convergence
for sequences in G in terms of their dynamics on flag manifolds.

For a flag convergent sequence, conical convergence is reflected as follows by the dynamics

on the space of parallel sets, equivalently, on the space of pairs of opposite simplices, cf. (B.5]):

Lemma 5.35. Suppose that a sequence (g,,) in G Tmea-flag converges, g, — 7 € Flag, .. Then
for a relatively compact sequence (7,,) in C(7), the following are equivalent:

con

(i) gn = 7.
(i1) The parallel sets g, ' P(,,7) all intersect a fized bounded subset in X.

(') The sequence of pairs g, (7,,T) is relatively compact in (Flag,, ~ xFlag, . )%P.

Proof. We first note that conditions (ii) and (ii’) are equivalent as a consequence of:

Sublemma 5.36. A subset A — (Flag,,  xFlag, )P is relatively compact iff the corre-
sponding parallel sets P(1_,7y) for (1_,7y) € A all intersect a fized bounded subset of X, i.e.

sup d(z,P(1_,74)) < +©
(t—,74)EA

for a base point x € X.

Proof. The forward direction follows from the continuity of the function (IBEI)

For the converse direction we note that for a pair (7_,7,) € (Flag,,  xFlag, . ) the
intersection of parabolic subgroups P, n P, preserves the parallel set P(7_,7,) and acts
transitively on it. Consequently, the set of triples (7_, 7, 2') € (Flag,,  xFlag, . )"’ xX such

22Because the b,, are bounded and fix 7 on Flag,__,.
?3Since here Ty0q4 is not required to be t-invariant, we consider the function on (Flag,,  x Flag, )" x X.
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that 2/ € P(7_, 7, ) is still a homogeneous G-space. Let us fix in it a reference triple (75, 75", 7).
Then the parallel sets P(7_,7,) intersecting a closed ball B(x, R) are of the form gP(r; ,7")
with g € G such that d(z, gz) < R. It follows that the set of these pairs (7_,7,) = g(7y , 75") is
compact. U

Continuing with the proof of the lemma, let x € X be a base point. In view of
d(SL’, grjlp(%na T)) = d(gnx, P<7A—n7 T))
condition (ii) is equivalent to

sup d(gnx, P(7y, 7)) < +00. (5.37)

The implication (ii)=(i) thus follows from the previous lemma. The reverse implication (i)=(ii)
is easy: Since sup,, d(x, P(7,,,7)) < +00, compare the sublemma, the cone V(x,st(r)) is con-
tained in uniform tubular neighborhoods of all parallel sets P(7,,7), and conical convergence
implies the same for the sequence (g,), i.e. (5.37) is satisfied. O

Combining the lemma with our earlier dynamical characterization of flag convergence, see
Lemma [4.26] we obtain:

Proposition 5.38 (Dynamical characterization of conical convergence). A sequence
(gn) in G 1S Tiea-regular and g, Bre Flag, . iff there exists a bounded sequence (b,) in G

and a simplex 7_ € Flag,,  such that the following conditions are satisfied:

(i) bugy oy = T— uniformly on compacts.

ii) The accumulation set of the sequence (bng,'7) in Flag, . is contained in C(7_).
n mod

Proof. Suppose first that (g,,) is Tmeg-regular and g,, <> 7 € Flag, . Then we have in particular
flag convergence ¢, — 7, and Lemma [£.26] yields (b,,) and 7_ with (i). The conical convergence
gn 5 7 is equivalent to g,b;! “% 7, and so the previous lemma implies for any 7 € C'(7) that
the sequence b, g, (7, 7) is relatively compact in (Flag,.  xFlag, ). Since b,g,'7T — 7_

by (i), the sequence (b, g, '7) therefore cannot accumulate at points outside C(7_).

Suppose now vice versa that (b,) and 7_ with (i+ii) are given. By Lemma .26 (i) implies
that (¢,) iS Tmea-regular and g, — 7, and the same follows for the sequence (g,b,'). Fur-
thermore, (i+ii) imply that for any 7 € C(7) the sequence b, g, ' (7, T) is relatively compact in
(Flag,, x Flag, .)". Thus g,b, 1% 7 by the previous lemma, and hence g, % 7. O

We deduce the following criterion for being a conical limit simplex of a subsequence:

Corollary 5.39. A sequence (g,,) in G has a Tyeq-reqular subsequence T,oq-conically converging
to T € Flag,, . iff there exists a subsequence (gn,) and a simpler 7_ € Flag,  such that the
following conditions are satisfied:

(i) g;k1|0(7) — 7_ uniformly on compacts.

(i) (g, ') converges to a simplex in C(7_).
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Proof. Suppose that there is a 7,,,4-regular subsequence (g,,) with g,, > 7. The proposition

yields a bounded sequence (b;) and 7_ such that properties (i+ii) in the proposition are satisfied
for the sequence (brg,!). After extraction, we obtain convergence b, — b in G and byg, 't —
7_ € C(7_) in Flag,__,. The asserted properties (i-+ii) then result from replacing 7 with b='7_.
The converse is immediate in view of the proposition. O

Now we turn to subgroups.

Definition 5.40 (Conical limit set). For a subgroup I' < G, a limit simplex A € A, (I
1S Tnoa-conical if there exists a 7,,,4-regular sequence (,) in I' such that -, ' \. The conical
Tmod-limit set AL (I') < A, (') is the subset of conical limit simplices. The subgroup I' has

conical Tooq-limit set or is Tyeq-conical if all limit simplices are conical, A" (I') = A, (T).

We restrict ourselves to 7,,,¢-antipodal 7,,,4-regular subgroups and assume in particular that
Tmod 18 t-invariant. Recall that then the action

P — ATmod (F)

is a convergence action, see section [B.Il This raises the question how the 7,,,4-conicality of
limit simplices compares to their intrinsic conicality with respect to this convergence action, cf.
section [3.31 We show that these properties are equivalent:

Proposition 5.41 (Conical versus intrinsically conical limit simplex). Let I' < G be a
Timod-antipodal Tmeq-reqular subgroup with |A, (I')] = 3. Then a limit simplex in A, (') is
conical iff it is intrinsically conical for the convergence action I' ~ A, (I').

Proof. That conicality implies intrinsic conicality is, in view of the corollary, an immediate
consequence of antipodality and Lemma

Suppose that, conversely, A € A, (') is intrinsically conical. Again invoking Lemma [3.15]
this means that there exist a sequence (7,) in I' and a limit simplex A_ € A, (I') such that
Yo' IA- (m)—a — A- uniformly on compacts and 7, 'A — A_eA, (I)—{I\_}cC(A). On
the other hand, since T' is a 7,,,4-convergence subgroup, after extraction, the sequence (v, 1)
becomes T,04-contracting and there are limit simplices X', X € A, (T') such that v, '|coy —
A_ uniformly on compacts. In view of antipodality, C'(\') contains A, (I') — {\}. Since
|A;, . (I")] = 3, it follows that C'(\’) intersects A, (I') —{A} and therefore A = A_. Moreover,
from 7 'A — A_ # A_ it follows that A ¢ C(X) and hence also A = X\. We conclude that
Yo ey — A— uniformly on compacts and v, 'A — A_ e C(\_). Corollary now yields that
the limit simplex A is 7;,,,4-conical. ]

Corollary 5.42 (Conical versus intrinsically conical subgroup). Let I' < G be a Tyoa-

antipodal Tp,oq-reqular subgroup with |A (I')| = 3. Then T is Typoq-conical iff all simplices in

Tmod

A, (') are conical limit points for the convergence action I' ~ A, (T').

We introduce the following asymptotic condition on the orbit geometry of subgroups:

Definition 5.43 (RCA). A subgroup I' < G is Ty0q-RCA if it is Tpeq-regular, 7,,,4-conical
and 7,,,¢-antipodal.
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From the corollary we deduce, using the dynamical characterization of word hyperbolic
groups and their boundary actions, the following equivalence:

Theorem 5.44. For a subgroup I' < G with |A,_,(I')| = 3 the following properties are equiv-
alent:

(Z) Tmod-RCA
(1) Tmoa-asymptotically embedded

The implication (ii)= (i) holds without restriction on the size of the limit set.

Proof. Since this is part of both conditions, we assume that I is 7,,.,4-regular and 7,,,4-antipodal.

The implication (ii)=>(i) follows, without restriction on the size of A, (I"), from the im-

plication (i)=>(iii) of Theorem (.28

Tmod

Suppose now that |[A, (I')] = 3. According to the previous corollary, the subgroup I is
Tmoa-RCA if and only if the convergence action I' ~ A, (I') is (intrinsically) conical. In view
of Theorems and B.I7 this is equivalent to I' being word hyperbolic and A, _,(I') being
I'-equivariantly homeomorphic to d, I, i.e. to I' being 7,,.,q-asymptotically embedded. O

5.6 Subgroups with two-point limit sets

For antipodal regular subgroups with two-point limit sets, some of our conditions are automat-
ically satisfied:

Lemma 5.45. Suppose that I' < G is Tpeq-antipodal Toeq-regular with |\, (T')| = 2. Then:
(7,) I' is Tmod—RCA,
(11) T is virtually cyclic,

(i1i) The orbit maps o, : I' — T'e < X extend continuously to infinity by an asymptotic
embedding. In particular, I' is T,,0q-asymptotically embedded.

Proof. (i) By antipodality, A, (I") consists of a pair of opposite simplices A+ € Flag, .. The
subgroup I' therefore preserves the parallel set P(A_,A;). The limit simplices Ay must be
conical by Lemma [5.34. Hence I' is 7,,,,4-RCA.

(ii) Pick a point z € P(A_, A, ). By conicality, there exists an element v, € [' which fixes A4
and so that vz lies in the interior of the Weyl cone V' = V' (z,st(Ay)) < P(A_, A;). We consider
the biinfinite nested sequence of Weyl cones V" for n € Z. The cones vV cover P(A_, A} ), cf.
Proposition 231 Moreover, 4{ 'V is contained in the interior of vV and has finite Hausdorff
distance from it. By regularity, the difference of cones V' — 3V can only contain finitely many
points of the orbit I'z. The corresponding elements in I' form a set of representatives for the
cosets of the infinite cyclic subgroup I'y generated by ~y in I'. Hence I is virtually cyclic.

(iii) Since 77" — A+ asn — +00, the restrictions of the orbit maps to I'y extend continuously
to 0]y = 01" by an asymptotic embedding a.. Since I'y has finite index in I', the map « is a
continuous extension also of the orbit maps of I' itself. Moreover, it is I'-equivariant. O
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5.7 Expansion

We define another purely dynamical condition for subgroups, inspired by Sullivan’s notion of
expanding actions [Su], namely that their action on the appropriate flag manifold is expanding
at the limit set in the sense of Definition B.Il As before, we equip the flag manifolds with
auxiliary Riemannian metrics.

Definition 5.46 (CEA). A subgroup I' < G is T,,0q- CEA (convergence, expanding, antipodal)
if it is Tineq-convergence, T,og-antipodal and the action I' —~ Flag,  is expanding at A, . (T').

The next result relates conicality to infinitesimal expansion, cf. Definition 8.3l For smooth
actions on Riemannian manifolds, metric and infinitesimal expansion are equivalent.

Lemma 5.47 (Expansion at conical limit simplices). Let (g,) be a Timoq-regular sequence
in G such that g, “> 7 € Flag, .. Then the inverse sequence (g,;') has diverging infinitesimal
expansion on Flag, . at T, i.e.

g7, 7) = +o0

Proof. This follows from the expansion estimate in Theorem [2Z.63] O]

Applied to subgroups, the lemma yields:

Proposition 5.48 (Conical implies expansive). Let I' < G be a subgroup. If A € A" ('),

Tmod

then the action I' ~ Flag, . has diverging infinitesimal expansion at \.

In particular, if I' is Tyoq-conical, then I' ~ Flag, . is expanding at A, (T').

Proof. This is a direct consequence of the lemma, together with the fact that infinitesimal
expansion implies metric expansion. ]

We obtain the equivalence of conditions:

Theorem 5.49. For a subgroup I' < G with |\, ,(I')| = 2, the following properties are
equivalent:

(7,) Tmod—RCA
(1) Tmoa-CEA

The implication (i)= (ii) holds without restriction on the size of the limit set.

Proof. We recall that 7,,,4-regularity is equivalent to the 7,,,4-convergence property, cf. Theo-
rem 4211 Thus either condition implies that I' is 7,,,4-regular and 7,,,4-antipodal.
The implication (i)=>(ii) is the previous proposition. (We do not need that |[A, (I')] = 2.)

For the direction (ii)=(i) we first assume that |[A, (I')] = 3 and consider the convergence
action I' ~ A, (). Since A, ,(I') contains at least three points, it must be perfec (see
[Tu, Thm. 2S]). By assumption, the action I' —~ A, (I') is expanding. Therefore all points

241.e. has no isolated points.
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Ae A, (') are intrinsically conical, cf. Lemma [3.18, and hence (extrinsically) conical, i.e. I'
is Tmoq-conical, cf. Corollary [5.42]

In the case |A,, ()] = 2, the assertion follows from Lemma [5.45] O

5.8 Anosov property

The Anosov condition combines boundary embeddedness with an infinitesimal expansion con-
dition at the image of the boundary embedding:
Definition 5.50 (Anosov). A subgroup I' < G is Tyeq-Anosov if:

(i) T is Tpog-boundary embedded with boundary embedding (.

(ii) For every ideal point ¢ € 0,I" and every normalized (by 7(0) = e € I') discrete geodesic
ray 7 : N — I asymptotic to ¢, the action I' — Flag, . satisfies

e(r(n)™", B(¢)) = A"

for n = 0 with constants A, C' > 0 independent of r.

We recall that boundary embedded subgroups are discrete.

Our notion of 7,,,4-Anosov is equivalent to the notion of P-Anosov in [GW] where P < G
is a parabolic subgroup in the conjugacy class corresponding to 7,4, see section B.I11 We
note also that the study of (P, , P_)-Anosov subgroups quickly reduces to the case of P-Anosov
subgroups by intersecting parabolic subgroups, cf. [GW| Lemma 3.18].

In both our and the original definition uniform exponential expansion rates are required. We
will see that the conditions can be relaxed without altering the class of subgroups. Uniformity
can be dropped, and instead of exponential divergence the mere unboundedness of the expansion
rate suffices.

Definition 5.51 (Non-uniformly Amnosov). A subgroup I' < G is non-uniformly Teq-
Anosouv if:
(i) T is Typeq-boundary embedded with boundary embedding .

(ii) For every ideal point ¢ € d,I" and every normalize discrete geodesic ray r: Ng —» I
asymptotic to ¢, the action I' — Flag, . satisfies

sup €(r(n)~!, B(Q)) = +oo. (5.52)

neN

In other words, we require that for every ideal point ¢ € d,,I" the expansion rate (v, ', 3(¢))
non-uniformly diverges along some sequence (7,,) in I" which converges to ¢ conically.

We relate the Anosov to the Morse property, building on our discussion of the coarse extrinsic
geometry of subgroups in sections 5.3 and [5.41

25Here, the normalization can be dropped because no uniform growth is required.
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Theorem 5.53 (Non-uniformly Anosov implies Morse). Each non-uniformly T,.q-Anosov
subgroup I' < G is Typoq-Morse.

Moreover, the boundary embedding B of I' sends 05, I" homeomorphically onto A, (T').

Proof. Let I' < G be non-uniformly 7,,,g-Anosov. Since non-uniformly Anosov subgroups
are boundary embedded by definition, discrete geodesic lines in I' are mapped into uniform
neighborhoods of 7,,,4-parallel sets prescribed by the boundary embedding, see Lemma [5.4]
The same follows for discrete geodesic rays in I because they lie in uniform neighborhoods of
lines, compare the proof of Lemma b7 For every ray r : Ny — I' asymptotic to ¢ = r(+0o0)
there exists an ideal point ¢ € d,,I'— {¢} such that the path rz lies in the p"(I', z)-neighborhood

~

of the parallel set P = P(5((),3(¢)). Here, as usual, z € X is some fixed base point.

The expansion condition (5.52)) further restricts the position of the path rz along the parallel
set: Let x, € P denote points at distance < p” from the points r(n)z, e.g. their nearest point
projections to P. For a strictly increasing sequence n;, — +o0 with diverging expansion rate

e(r(ne) ™, B(C)) — +o0

we have in view of Proposition [Z64] and Theorem that z,, € V(zo,st(8(())) for large k
and

d(xnk, oV (xo, st(ﬁ((’)))) — 400

(non-uniformly) as k — +oo. Fix a constant d >> p”. It follows that there exists a smallest
“entry time” T" = T'(r) € N such that the point r(7")z lies in the open 3p”-neighborhood of the
cone V (r(0)z,st(5(¢))) and has distance > d from its boundary.

We observe next that T'(r') < T'(r) for rays r’ sufficiently close to r, because ( varies
continuously with r, and rays sufficiently close to r agree with r up to time 7'(r). Thus, T
is locally bounded above as a function of r. Since I' acts cocompactly on rays, equivalently,
since the space of rays with fixed initial point is compact, we conclude that T is bounded above
globally, i.e. there exists a number Ty = Ty(I', z, d) such that T'(r) < Tj for all rays r.

As a consequence, for every ray r the above sequence of natural numbers (n;) can be chosen
with bounded increase ny,1 — ni < Ty and so that

x”k+1 € V(l’nk, St(ﬁ(C)))

and

Ut OV (5 BO) > 5

for all k, i.e. the sequence (ny) increases uniformly linearly and the Weyl cones V' (x,, , st(5(C)))
are uniformly nested, compare the proof of Theorem (.24l

It follows that the paths rz are uniformly 7,,,4-regular and undistorted, and are contained in
uniform neighborhoods of the cones V(r(0),st(5(r(4+0)))). In particular, I" satisfies property
(iii) of Theorem .28 and therefore is 7,,,4-Morse. It also follows that 5(0,I") < A, _,(I"). The
equality 5(0,I") = A, _,(T") follows from Theorem [5.111 O

A converse readily follows from our earlier results:
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Theorem 5.54. 7,,,q-Morse subgroups I' < G are Typoq-Anosov.

Proof. Let I' < G be T,,0g-Morse. By Theorems (.28 and[5.24] T is then also 7,,,4-asymptotically
embedded and uniformly 7,,,4-regular. Furthermore, denoting the asymptotic embedding by «
and fixing a point x € X, we know that for every ray r : Ny — I' the path rx is contained in a
uniform neighborhood of the Weyl cone V (r(0)x, a(r(+0))) and drifts away from its boundary
at a uniform linear rate. With Theorem it follows that the infinitesimal expansion factor
e(r(n)~!, a(r(+w))) for the action I' — Flag, . grows at a uniform exponential rate. Thus, T
iS Tynoq-Anosov. -

5.9 Equivalence of conditions

Combining our results comparing the various geometric and dynamical conditions for discrete
subgroups, we obtain:

Theorem 5.55 (Equivalence). The following properties for subgroups I' < G are equivalent
in the nonelementam@ case:

(1) Tmoa-asymptotically embedded

(1) Tmoa-CEA

(111) Timoa-Anosov

(1v) non-uniformly Tpeq-Anosov

(v) Timoa-RCA

(Vi) Tmoa-Morse.

These properties imply Tpoq- URU.

Moreover, the boundary maps in (i), (i4i) and (iv) coincide.

Proof. By Theorem [5.28 (i) and (vi) are equivalent. By Theorems and [5.54] conditions
(iii), (iv) and (vi) are equivalent. The fact that the boundary maps in (i), (iii) and (iv) coincide
follows from the second part of Theorem

By Theorem [(.24] (i) implies 7,,,0-URU. By Theorem [(.44] (i) and (v) are equivalent. By
Theorem [£.49] (ii) and (v) are equivalent. O

Remark 5.56. (i) The equivalence of the conditions (i), (iii), (iv) and (vi), the fact that they
imply 7.,0¢-URU, and the implications (i)=>(v)=>(ii) hold without restriction on the size of the
limit set.

(ii) It is shown in [KLP3| that, conversely, 7,,,¢-URU implies 7,,,4-Morse.

For subgroups with small limit sets we have the following additional information, see
Lemma [5.45¢

ZMeaning that |A,,, ,(T)| = 3 in (i), (ii), (v), (vi) and that T is word hyperbolic with |0,,I'| = 3 in (iii), (iv).
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Addendum 5.57. For a Tpeq-antipodal Tpeq-reqular subgroup I' < G with A, (I')] = 2,
properties (i)-(vi) and Tpea-URU are always satisfied.

We are unaware of examples of 7,,,-RCA or 7,,s-CEA subgroups with one limit point in
higher rank. Note that such subgroups cannot be 7,,,4-asymptotically embedded.

5.10 Morse quasigeodesics

When studying the coarse geometry of Anosov subgroups in sections 5.3l and (5.4 we were lead
to the Morse and URU properties. We also saw that Morse implies URU. (The converse is true
as well, but harder to prove, see [KLP3].)

Thus, for Morse subgroups I' < GG, the images of the discrete geodesics in I" under an orbit
map are uniform quasigeodesics in X which are uniformly regular and satisfy a Morse type
property involving closeness of subpaths to diamonds. Leaving the group-theoretic context, we
will now make this class of quasigeodesics precise and study some of its geometric properties.
(See also [KLP2] for further discussion.) We will build in the uniform regularity into the Morse
property by replacing the diamonds with smaller “uniformly regular” ©-diamonds.

In the following, © < int, _,(0mea) denotes an (-invariant 7,,,4- Weyl convex compact subset
which is used to quantify uniform regularity. We work with discrete paths; I € R denotes an
interval and n4 integers.

Definition 5.58 (Morse quasigeodesic). A quasigeodesic ¢: [ nZ — X is (0, p)-Morse if
for every subinterval [n_,n,| < I the subpath ¢|f,_,,}~z is contained in the p-neighborhood
of a diamond $g(z_,z, ) with tips at distance d(z+, ¢(n+)) < p from the endpoints.

We say that an infinite quasigeodesic is ©-Morse if it is (O, p)-Morse for some p, and we
say that it is 7,,,4-Morse if it is ©-Morse for some O.

The ©-Morse property for quasigeodesics is clearly stable under bounded perturbation.

We sai that some paths are uniform 7,,,q-Morse quasigeodesics if they are uniform quasi-

geodesics?] and (O, p)-Morse with the same O, p.

We can now interpret the Morse subgroup property in terms of Morse quasigeodesics:

Proposition 5.59. An intrinsically word hyperbolic subgroup I' < G is Tyeq-Morse if and only
if an orbit map o, : I' —» ' < X sends uniform quasigeodesics in I' to uniform 7,.q-Morse
quasigeodesics in X .

Proof. Suppose that I' is 7,,,g-Morse. We fix a word metric on I'. In view of the Morse Lemma
for word hyperbolic groups (Gromov hyperbolic spaces) it suffices to prove that o, sends discrete
geodesics in I' to uniform 7,,,g-Morse quasigeodesics in X.

First of all, since Morse subgroups are URU, we know that I' is undistorted in G, i.e. o, is

2"1.e. quasigeodesics with the same quasiisometry constants.
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a quasiisometric embedding. Equivalently, the o,-images of discrete geodesics in I' are uniform
quasigeodesics. We need to show that they are uniformly 7,,,4-Morse.

Consider a discrete geodesic segment s : [n_,n|NnZ — I'. According to the Morse subgroup
property of I', the image path sx = 0, o s is contained in a tubular neighborhood of uniform
radius p” = p"(T', z) of a diamond <, (z_,x) with d(z4, s(ny)z) < p”. It will be enough to
verify that sx is also contained in a uniform tubular neighborhood of the smaller ©-diamond
Oo(x_, xy) for some © independent of s.

For n_ < n < ng, let p, € &, (x_,x,) denote the nearest point projection of s(n)x.
In view of the uniform upper bound p” for the distances d(z, s(n4)z) and d(p,, s(n)z), the
uniform regularity of I" implies: If n —n_,n, —n > Cj (with a uniform constant Cy), then

dA<xi7pn) € V(07 ®>

with a compact © < int, (0meq) independent of s. Moreover, after enlarging ©, we may
assume that it is ¢-invariant and 7,,,4-Weyl convex. It follows that the diamond $g(z_,z,)
is defined and p, € $g(x_,z,). Hence, sz is contained in a uniform tubular neighborhood of
Qelr—, z4).

Conversely, suppose that o, sends discrete geodesics in I' to uniform 7,,,4-Morse quasi-
geodesics in X. Then I' is undistorted and the geodesic segments with endpoints in the orbit
[z are uniformly close to O-regular segments, equivalently, the A-distances da(z,yz) between
orbit points are contained in a tubular neighborhood of the cone V(0,0). It follows that I' is
(uniformly) 7,,04-regular, and hence 7,,,q-Morse. O

Next, we briefly discuss the asymptotics of infinite Morse quasigeodesics. There is much
freedom for the asymptotic behavior of arbitrary quasigeodesics in euclidean spaces, and there-
fore also in symmetric spaces of higher rank. However, the asymptotic behavior of Morse
quasigeodesics is as restricted as for quasigeodesics in rank one symmetric spaces.

Morse quasirays satisfy a version of the defining property for Morse quasigeodesic segments,
with diamonds replaced by cones. As a consequence, although Morse quasirays in general do
not converge at infinity in the visual compactification, they flag converge:

Lemma 5.60 (Conicality of Morse quasirays). A (0, p)-Morse quasiray q : Ny — X
is contained in the p-neighborhood of a ©-cone V (z,ste(T)) with d(z,q(0)) < p for a unique
simplex T € Flag, . Furthermore, g(n) — T conically.

Proof. The existence of the cone V' (z, stg(7)) follows from the definition of Morse quasigeodesics
by a limiting argument. Obviously, we have conical 7,,,4-flag convergence ¢(n) — 7, which also
implies the uniqueness of 7. O

Now we give a Finsler geometric characterization of Morse quasigeodesics. We show that
they are the coarsification of (uniformly regular) Finsler geodesics (cf. Definition [Z65]). Even
though this is true in general, we will give the proof only in the infinite case (of rays and lines),
since it is simpler and suffices for the purposes of this paper:
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Theorem 5.61 (Morse quasigeodesics are uniformly close to Finsler geodesics). Uni-
form T,0q-Morse quasigeodesic rays and lines are uniformly Hausdorff close to uniformly T,eq-
reqular Tmeq-Finsler geodesic rays and lines.

Proof. Tt suffices to treat the ray case. The line case follows by a limiting argument.

Let ¢ : Ng — X be a (0, p)-Morse quasigeodesic ray. According to Lemma [(.60, ¢ is
contained in a uniform tubular neighborhood of a Weyl cone V' = V(¢(0),st(7)). As in the
proof that asymptotically embedded implies URU (Theorem [5.24]), we consider the sequence of
nearest point projections x, € V of the points ¢(n), n € Ny. Again by Lemma [5.60, the point
Tpim lies in a uniform tubular neighborhood of the ©-cone V' (z,,,ste(7)) = V for all n,m = 0.

We slightly enlarge © to ©’, such that © < int(©’) as subsets of int, . (0meqa). Then there
exists mg € N depending on O, ©’, p and the quasiisometry constants of ¢, such that

Tp4+m € V(:L’n, stor (T))
for all n = 0 and m = my. The piecewise geodesic path

L0LmoL2moL3mg - - -
is then a ©'-regular 7,,,4-Finsler geodesic ray uniformly Hausdorff close to q. O

We use the approximation of Morse quasigeodesics by Finsler geodesics to coarsify Theo-
rem [2.72] and deduce an analogous result on the A-distance along Morse quasigeodesics. Again,
we restrict ourselves to the infinite case of rays:

Theorem 5.62 (A-projection of Morse quasirays). If ¢ : Ng — X is a 7T,0q-Morse
quasiray, then so is

da = da(q(0),q) : Ng — A.

Moreover, uniform T,,.,q-Morse quasirays q yield uniform 7,.q-Morse quasirays qa .

Proof. Suppose that ¢ is a (©, p)-Morse quasiray. We enlarge © to ©" such that © — int(©’).
According to the proof of Theorem (.61l there exists a ©'-regular 7,,,4-Finsler geodesic ray
¢ : 0, +00) — X which is uniformly close to ¢ in terms of the data ©,©’, p and the quasiisometry
constants, i.e. d(c(n), q(n)) is uniformly bounded. In particular, ¢ is also a uniform quasiray.
For the A-projections ¢a = da(c(0), ¢) and ga, the pointwise distance d(¢a(n), ga(n)) is also
uniformly bounded. According to Theorem [2.72] ¢a is again a ©'-regular 7,,,4-Finsler geodesic
ray and a uniform quasiray. It follows that ga is a (©’, p')-Morse quasiray with uniform p’ and
uniform quasiisometry constants. 0

5.11 Appendix: The original Anosov definition

A notion of Anosov representations of surface groups into P.SL(n, R) was introduced by Labourie
in [La], and generalized to a notion of (P, P_)-Anosov representations I' — G of word hyper-
bolic groups into semisimple Lie groups by Guichard and Wienhard in [GW]. The goal of this
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section is to review this definition of Anosov representations I' — G using the language of
expanding and contracting flows and then present a closely related and equivalent definition
which avoids the language of flows.

Let T" be a non-elementary (i.e. not virtually cyclic) word hyperbolic group with a fixed word
metric dr and Cayley graph Cr. Consider a geodesic flow T of I'; such a flow was originally
constructed by Gromov |Gr] and then improved by Champetier [Ch] and Mineyev [Mi], resulting
in definitions with different properties. We note that the exponential convergence of asymptotic
geodesic rays will not be used in our discussion; as we will see, it is also irrelevant whether the
trajectories of the geodesic flow are geodesics or uniform quasigeodesics in [. In particular, it
will be irrelevant for us which definition of T is used. Only the following properties of [ will be
used in the sequel:

1.Tisa proper metric space.
2. There exists a properly discontinuous isometric action I' —~ I

3. There exists a ['-equivariant quasi-isometry 7 : [>T ; in particular, the fibers of 7 are
relatively compact.

4. There exists a continuous action R — T , denoted ¢, and called the geodesic flow, whose
trajectories are uniform quasigeodesics in I, i.e. for each m € I' the flow line

t — my = ¢r(h)

is a uniform quasi-isometric embedding R — I
5. The flow ¢; commutes with the action of T'.

6. Each 7 € I defines a uniform quasigeodesic m : t — m, in I’ by the formula:
my = W(mt)

Following the notation in section B.3, we let (0, x 0,')¥*! denote the subset of d,,I' x 0"
consisting of pairs of distinct points. The natural map

e=(e_,e.): T — (0,1 x d,,I)%st

assigning to m the pair of ideal endpoints (m_q, m,4) of m is continuous and surjective. In
particular, every uniform quasigeodesic in I' is uniformly Hausdorff close to a flow line.

The reader can think of the elements of I' as parameterized geodesics in Cr, so that ¢, acts
on geodesics via reparameterization. This was Gromov’s original viewpoint, although not the
one in [Mi].

We say that 7 € [ is normalized if m(m) =1¢€T'. Similarly, maps¢:Z - I';and ¢ : N - T’
will be called normalized if ¢(0) = 1. It is clear that every m € I’ can be sent to a normalized
element of I' via the action of mgtel.

Since trajectories of ¢; are uniform quasigeodesics, for each normalized m € T we have
Cl_lt — (5 < dr(l, mt) < Chit + Cy (563)
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for some positive constants C, Cs.

Let F* = Flag,,  be a pair of opposite partial flag manifolds associated to the Lie group
G, i.e. they are quotient manifolds of the form F* = G/P., . see section 24l As usual, we
will regard elements of F* as simplices of type Tiod; tTmod in the Tits boundary of X.

Define the trivial bundles
Ef =T xFt > T.

For every representation p : I' — G, the group I' acts on both bundles via its natural action
on ' and via the representation p on F¥. Put a I'-invariant background Riemannian metric
on the fibers of theses bundles, which varies continuously with respect to m € T. We will use
the notation Fi for the fiber above the point m equipped with this Riemannian metric. Since
the subspace of r consisting of normalized elements is compact, it follows that for normalized
m,m’ the identity map

Ff - F%,

m m

is uniformly bilipschitz (with bilipschitz constant independent of m,m'). We will identify I'-
equivariant (continuous) sections of the bundles E* with equivariant maps sy : I' — F*. These
sections are said to be parallel along flow lines if

forall t e R and i e T.

Definition 5.64. Parallel sections sy are called strongly parallel along flow lines if for any two
flow lines m, m’ with the same ideal endpoints, we have sy (1) = s4 (/).

Note that this property is automatic for the geodesic flows constructed by Champetier and
Mineyev since (for their flows) any two flow lines which are at finite distance from each other
are actually equal. Strongly parallel sections define I'-equivariant boundary maps

By : 0 — F*
from the Gromov boundary d,I" of the word hyperbolic group I' by:

Bioer =54 . (5.65)
Lemma 5.66. The maps B+ are continuous.

Proof. Let (£",&") — (£-,&4) be a converging sequence in (Jy,I' x 95, )45, There exists a
bounded sequence (/") in T' such that ey (/™) = £, After extraction, the sequence (")
converges to some € I'. Continuity of s; implies that B+(£L) = s+(m") — s+(m) = B+(&+).
This shows that no subsequence of (54 (£})) can have a limit # (1 (£+), and the assertion follows
from compactness of F*. O

Conversely, equivariant continuous maps [+ define I'-equivariant sections si strongly par-
allel along flow lines, by the formula (5.63]).
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Consider the identity maps
Dy - Fr = F o

These maps distort the Riemannian metric on the fibers. Using (3.2]), we define the infinitesimal
expansion factor of the flow ¢(t) on the fiber F at the point s () as:

€+ (M, t) := €(Dyp, 5+(M))

Definition 5.67. The geodesic flow ¢, is said to be uniformly exponentially expanding on the
bundles E* with respect to the sections sy if there exist constants a,c > 0 such that

€4 (1, £t) = ae”
forallﬁaefandt}().

Our next goal is to give an alternative interpretation for the uniform expansion in this
definition. First of all, since the metrics on the fibers are I'-invariant, it suffices to verify
uniform exponential expansion only for normalized elements of . For a normalized element
el and t € R consider the composition

wglo¢m¢:F£—+Fifm{
Note that m(m; ') = m; 'm; = 1, i.e. both / and m; 1, are normalized. Since the group I’
acts isometrically on the fibers of the bundles E*, the metric distortion of the above composi-
tions is exactly the same as the distortion of ®;, ;. Furthermore, since, as we noted above, the
metrics on F and F:—;,lmt are uniformly bilipschitz to each other (via the “identity” map), the
rate of expansion for tthe above composition (up to a uniform multiplicative error) is the same
as the expansion rate for the map

p(m;') : F* — F*.
(Here we are using fixed background Riemannian metrics on F*.) Thus, we get the estimate

Csle(p(my '), B(maw)) < ex(mm,t) < Cse(p(my '), B (maiw))

for some uniform constant C3 > 1. By taking into account the equation (5.63)), we obtain the
following equivalent reformulation of Definition .67k

Lemma 5.68. The geodesic flow is uniformly exponentially expanding with respect to the sec-
tions s+ if and only if for every normalized uniform quasigeodesic q : Z. — T, which is asymp-
totic to points & = q(+0) € d,T', the elements p(q(£+n))~" act on Ty, ¢, \F* with uniform
exponential expansion rate, i.e.

e(pla(£n)) ", B (€s)) = A"

for all m e ' and n > 0 with some fixed constants A, C' > 0.
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Proof. There exists a normalized flow line 7m uniformly close to ¢, i.e. ¢(n) is uniformly close to
my, with n — ¢, being a uniform orientation-preserving quasiisometry Z — Z. Then m4io, = &4,
and e(p(q(£n)) 7", B+ (€4)) equals e(p(my,! ), B+ (mis)) up to a uniform multiplicative error, and
hence also €4 (m, t4,). . O

Since every uniform quasigeodesic ray in I' extends to a uniform quasigeodesic line, and in
view of Morse lemma for hyperbolic groups, in the above definition it suffices to consider only
normalized discrete geodesic rays r : N — I'.

We can now give the original and an alternative definition of Anosov representations.

Definition 5.69. A pair of continuous maps 3+ : d,I' — FT is said to be antipodal if it satisfies
the following conditions (called compatibility in [GW]):

(i) For every pair of distinct ideal points (, (" € 0, the simplices 5, (¢), 5-(¢’) in the Tits
boundary of X are antipodal, equivalently, the corresponding parabolic subgroups of G are
opposite. (In [GW] this property is called transversality.)

(ii) For every C € 0, I, the simplices 5, (¢), 5—(¢) belong to the same spherical Weyl chamber,
i.e. the intersection of the corresponding parabolic subgroups of GG contains a minimal parabolic
subgroup.

Note that, as a consequence, the maps [+ are embeddings, because antipodal simplices
cannot be faces of the same chamber.

Definition 5.70 (J[GW]). A representation p : I' — G is said to be (P4, _,, P . ,)-Anosov
if there exists an antipodal pair of continuous p-equivariant maps B+ : 0, — F* such that
the geodesic flow on the associated bundles E* satisfies the uniform expansion property with
respect to the sections sy associated to the maps f4.

The pair of maps (8, 5_) in this definition is called compatible with the Anosov representa-
tion p. Note that a (P, ., P_, )-Anosov representation admits a unique compatible pair of
maps. Indeed, the fixed points of infinite order elements v € I" are dense in d,,I". The maps [+
send the attractive and repulsive fixed points of v to fixed points of p(y) with contracting and
expanding differentials, and these fixed points are unique. In particular, if P,

to P_,  (equivalently, tTioq = Tmoa) then S = (.

, 18 conjugate

We note that Guichard and Wienhard in [GW] use in their definition the uniform contraction
property of the reverse flow ¢_; instead of the expansion property used above, but the two are
clearly equivalent. Note also that in the definition, it suffices to verify the uniform exponential
expansion property only for the bundle E,. We thus obtain, as a corollary of Lemma [5.6G8] the
following alternative definition of Anosov representations:

Proposition 5.71 (Alternative definition of Anosov representations). A representation
p:I'—Gis(Py,, ., P ., )-Anosov if and only if there exists a pair of antipodal continuous p-
equivariant maps P+ : 0l — F* such that for every normalized discrete geodesic ray r: N —
I asymptotic to £ € 0L, the elements p(r(n))~' act on Tp, F4 with uniform exponential
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expansion rate, i.e.
e(p(r(n))™", B (€)) = Ae™ (5.72)

for n = 0 with constants A, C' > 0 which are independent of r.

We now restrict to the case that the parabolic subgroups P, . . are conjugate to each other,
i.e. the simplices tTyod = Tmoa- The (Pir, ., P, . )-Anosov representations will in this case be
called simply P,

mod

-Anosov, where P,

mod

= Py, ., orsimply 7,,,s-Anosov. Note that the study
of general (P, ., P_. )-Anosov representations quickly reduces to the case of P-Anosov
representations by intersecting parabolic subgroups, cf. [GW) Lemma 3.18]. Now,

F*=F=G/P,, , =Flag. .

od

and
By =f: 0,0 > F

is a single continuous embedding. The compatibility condition reduces to the antipodality
condition: For any two distinct ideal points £, &’ € 0,1 the simplices 5(£) and B(£’) are antipodal
to each other. In other words, ( is a boundary embedding in the sense of Definition

We thus arrive to our definition, compare Definition [5.50

Definition 5.73 (Anosov representation). Let 7,,,q be an -invariant face of 7,,,4. We call
a representation p : I' = G P, = -Anosov or T,,,4-Anosov if it is 7,,,,¢-boundary embedded with
boundary embedding 3 : d,,I' = F = Flag, , such that for every normalized discrete geodesic
ray v : N — I' asymptotic to ¢ € d,I', the elements p(r(n))~ act on Ts)F with uniform
exponential expansion rate, i.e.

e(p(r(n)) ™, B(C)) = Ae™"

for n > 0 with constants A, C' > 0 independent of 7.
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