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ARTICLE

Increasing occurrence of cold and warm extremes
during the recent global warming slowdown
Nathaniel C. Johnson 1,2,3,4, Shang-Ping Xie3, Yu Kosaka 3,5 & Xichen Li 3,6

The recent levelling of global mean temperatures after the late 1990s, the so-called global

warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean

surface temperature variability, observed temperature biases, and climate communication,

but many questions remain about how these findings relate to variations in more societally

relevant temperature extremes. Here we show that both summertime warm and wintertime

cold extreme occurrences increased over land during the so-called hiatus period, and that

these increases occurred for distinct reasons. The increase in cold extremes is associated

with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern,

whereas the increase in warm extremes is tied to a pattern of sea surface temperatures

resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale

factors responsible for the most societally relevant temperature variations over continents

are distinct from those of global mean surface temperature.
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S ince the start of the 21st century, there has been consider-
able scientific and media focus on numerous costly episodes
of extreme temperatures, including extreme summer heat-

waves in Europe in 2003, Russia and Japan in 2010, and North
America in 20111. These extreme heatwaves occurred during a
period when annual global mean surface temperature (GMST)
remained nearly steady, a period referred to as a hiatus or global
warming-slowdown. Although the “hiatus” terminology has been
debated2,3, and sources of negative biases in some global tem-
perature records have been identified4,5, the decadal-timescale
apparent levelling of the global mean temperature remains a
robust feature with known physical mechanisms. Most notably,
hiatus periods like the most recent occurrence, have been con-
nected with equatorial Pacific cooling and increases in deep-
ocean heat uptake6–9. These mechanisms, however, fail to provide
a sufficient explanation for the continued rise of extreme hot
temperature occurrence over land, especially measures of the
most extreme occurrence, over the past 15–20 years10.

During this same period, frequent occurrences of severe winter
cold, including the cold and snowy winters of 2009/10, 2010/11,
and 2013/14 over portions of Eurasia and North America11,12,
have generated a contradictory perception of increasing cold
extremes. This perception of contrasting variations in extreme
summer warmth and winter cold suggests a recent increase in
winter-to-summer temperature contrasts over NH continents.
Such an increase in temperature variability would contrast the
observed and projected decrease in subseasonal13 and year-to-
year14 temperature variance under increasing greenhouse gases in
conjunction with the reduced pole-to-equator

The apparent contrast in behavior between GMST and con-
tinental extreme temperature occurrence during the hiatus period
suggests that the leading mechanisms responsible for their var-
iations may be distinct. Such distinctions imply that some
mechanisms may preferentially warm or cool the NH land rela-
tive to the oceans or Southern Hemisphere, or that different
mechanisms modulate the seasonal evolution of global tempera-
ture. Previous studies have highlighted notable regional and
seasonal variations in temperature trends during the hiatus
period7,9,15, but it remains uncertain if the dominant mechanisms
for decadal-timescale annual GMST variability, namely those
related to equatorial Pacific surface temperature variability, also
hold for regional and seasonal extreme temperature occurrence.
The NH continents represent a relatively small fraction of the
global surface area but account for a large fraction of the societal
impacts of extreme temperature occurrence, and so we must place
particular focus on differentiating these sources of regionally and
seasonally varying extreme temperature occurrence from those of
annual GMST.

In this study, we examine the observed changes in extreme
temperature occurrence over the NH continents during the recent
global warming slowdown period. Consistent with the perception
noted above, this analysis indeed reveals that both summertime
warm and wintertime cold extreme temperature occurrences
increased from 2002 to 2014. Additional analyses of observational
data and climate model simulations indicate that the drivers of
these hemispheric extreme temperature changes relate to natu-
rally occurring, large-scale climate patterns in the atmosphere and
oceans, and that these patterns are distinct from those that are
believed to be a primary driver of the global warming slowdown.

Results
Modeling observed changes in extreme temperature occur-
rence. We first examine the observed changes in continental
extreme temperature occurrence over the past several decades.
Figure 1a provides the NH land areal mean counts of wintertime

cold and summertime warm extreme temperature occurrence,
defined as the number of days per season with maximum tem-
perature anomalies below the 10th percentile (TX10d) and above
the 90th percentile (TX90d), respectively, per season (Methods)
from 1979–2014. Consistent with ref. 10, the frequency of sum-
mertime warm extremes over NH land has exhibited a nearly
monotonic increase without any evidence of a pause. The fre-
quency of NH land cold extremes, in contrast, exhibited a rapid
decline until nearly 2000 before levelling and subsequently
increasing through 2014. The average number of both warm and
cold extremes increased during the hiatus period, which we define
as 2002–2014, at a rate of 2.1 and 1.5 days per decade, respec-
tively, and this general behavior is not sensitive to the definition
of hiatus period (Methods). Recent trends in the Southern
Hemisphere continents are similar (Supplementary Fig. 1), but we
restrict our focus to NH land areas where most of the reliable
observations reside.

In contrast to the expected response to anthropogenic forcing16,
the trends in cold and warm extremes during the hiatus period
display substantial spatial heterogeneity (Fig. 1b,c). Cold extremes
generally have increased most over midlatitude continental regions,
whereas the warm extremes have increased preferentially over
northern Canada, southern North America, and a large fraction of
Eurasia. What factors are responsible for these surprising spatial
and temporal contrasts (pattern correlation between Figs. 1b and 1c
is −0.19) in the changes of wintertime cold and summertime warm
extremes? For GMST, multiple linear regression (MLR) has proven
to be a useful starting point for diagnosing sources of variability. In
particular, a linear regression model with four predictors, anthro-
pogenic forcing/linear time trend, the El Niño-Southern Oscillation
(ENSO), total solar irradiance (TSI), and volcanic aerosols, is
capable of explaining ~70–80% of the global mean temperature
variance17,18. Given the utility of MLR for diagnosing global mean
temperature variability, we construct similar models for NH land
wintertime cold and summertime warm extremes for the
1951–2014 period. This analysis is based on the combination of
reanalysis and observational data to cover the full period (see
Supplementary Note 1 and Supplementary Fig. 2). We first use the
same four predictors as in ref. 18 (although TSI is discarded because
it did not pass the significance screening; see Methods), but the
resulting regressions fail to capture a substantial fraction of the
interannual and interdecadal variability (Supplementary Fig. 3). In
order to determine the important missing predictors and to
improve the regression model, we augment our MLR models
through a method called partial least squares regression (PLSR)19,20.
PLSR determines linear combinations of predictor variables that can
improve the regression relationship (Methods). We choose gridded
fields of mid-tropospheric (500 hPa) geopotential height (z500) and
NH sea surface temperatures (SSTs) as the potential missing
predictors to capture the effects of internal atmospheric variability
or coupled ocean–atmosphere interactions, which we hypothesize
are key missing pieces of our original MLR analysis.

Through this application of PLSR we indeed determine that
much of the unexplained variance of land temperature extremes
can be captured with an additional z500 predictor, described as
the z500 extremes pattern, for wintertime TX10d and an
additional SST predictor, described as the SST extremes pattern,
for summertime TX90d (Methods). After adding the influence
of the z500 and SST extremes patterns, the correlation between
the regressed and actual time series improves to 0.89 for TX10d
(Fig. 2a) and 0.95 for TX90d (Fig. 2b). Most notably, both
regressions capture the increasing wintertime cold and
summertime warm extremes during the hiatus. The z500 and
SST extremes patterns also emerge as leading patterns in data
that exclude the 2002–2014 hiatus period (Supplementary
Fig. 4).
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Contributions to extreme temperature variability. The time
series of individual predictor contributions provides insight into
the recent behavior of the temperature extremes. The bottom
panels of Fig. 2 are calculated by multiplying the individual
predictors (with their time mean removed) by their correspond-
ing regression coefficients at each time step. Major volcanic
eruptions resulted in sharp increases in wintertime cold extremes
(Fig. 2c) and even sharper decreases in warm extremes (Fig. 2d).
Major ENSO episodes, like the extreme El Niño of 1997–98, also
were responsible for opposing changes in winter cold and sum-
mer warm extremes. During the hiatus period, however, neither
volcanic aerosols nor ENSO provided a strong enough influence
to offset the overall downward trend of cold extremes or to
accelerate the upward trend of warm extremes substantially. This

finding contrasts the dominant role of tropical Pacific SSTs on the
global mean warming slowdown6–8. Instead, the component time
series indicate that the z500 and SST extremes patterns bear most
of the responsibility for the anomalous behavior of cold and
warm extreme occurrences, respectively, relative to the long-term
trend (Fig. 2c, d).

The analysis of the spatial temperature extreme occurrence
patterns associated with each predictor further support the
dominant roles of the z500 and SST extremes patterns during the
hiatus period (see Supplementary Note 2 and Supplementary
Figs. 5, 6, and 8). For cold extremes, the z500 extremes pattern
(Fig. 3a) features positive mid-tropospheric height anomalies over
the high latitudes and negative height anomalies over the
midlatitudes, especially over the North Atlantic and Eurasia.
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Fig. 1 Linear trends of wintertime cold and summertime warm extremes during the recent global warming hiatus. a Wintertime (December–March, DJFM)
cold (blue) and summertime (June–September, JJAS) warm (red) extreme temperature occurrences (d season−1) over Northern Hemisphere land from
1979–2014. Temperature extremes are defined by the 10th and 90th percentiles of the local ERA-Interim temperature anomaly distributions (see
Methods). Dashed lines indicate the least squares linear trend during the hiatus period of 2002–2014. b, c Linear trends of wintertime cold extreme
temperature occurrence (b) and summertime warm extreme temperature occurrence (d [10 yr]−1) (c) during 2002–2014 at each Northern Hemisphere
land grid point
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The z500 extremes pattern projects onto the negative phase of the
North Atlantic Oscillation (NAO) /Arctic Oscillation (AO).
Despite the strong relationship with both the NAO (r=−0.65)
and AO (r=−0.68), the z500 extremes pattern index is much
more strongly related to wintertime TX10d than either index (see
Supplementary Note 3), indicating that neither the canonical
NAO nor AO can explain the recent increase in cold extreme
occurrences as well as the z500 extremes pattern. In addition, the
z500 extremes pattern appears to be related to the “warm
Arctic–cold continents” (WACC) pattern11, a pattern tied to
recent midlatitude extreme weather and wintertime cold
temperatures21–23. In support of this contention, the z500
extremes pattern is much more strongly correlated with the
linearly detrended December–March NH land mean surface
temperature (r=−0.54) than either the NAO (r= 0.19) or AO
index (r= 0.26) (see Supplementary Note 3). The partial
regressions of cold extreme occurrences on the z500 extremes
index (Fig. 3e) coincide well with the mid-tropospheric height
pattern (Fig. 3a) and bear notable similarities to the linear trend
of cold extreme occurrences during the hiatus period (Fig. 1b,
Supplementary Fig. 8) and the winter mean temperature trends
since 199021.

In boreal summer, the SST pattern most closely associated with
the recent rapid increase of summertime warm extreme
occurrences is associated with a SST pattern with anomalous
warmth focused in the North Atlantic (Fig. 3b). The Atlantic
portion closely resembles the positive phase of the Atlantic
Multidecadal Oscillation24 (AMO), but significant SST anomalies
also occur in the North Pacific. The North Pacific pattern bears a

strong resemblance to the Pacific Extreme Pattern25, a recently
identified pattern that was found to provide skillful predictions of
hot weather in the eastern U.S. up to 50 days in advance. The SST
extremes pattern has exhibited pronounced multidecadal varia-
bility consistent with the AMO, with a predominantly positive
phase since the mid-1990s (Fig. 3d). Despite a strong relationship
with AMO index26 (r= 0.66), the SST extremes index explains
much more of the residual summertime TX90d variance (75%
versus 35%) and is correlated more strongly with the linearly
detrended June–August mean land NH temperature (r= 0.68
versus 0.20; see Supplementary Note 3). These calculations reveal
that the elements of the SST extremes pattern that are distinct
from the AMO are important for hemispheric warm extreme
occurrences. The partial regression pattern of warm extreme
occurrences on the SST extremes index features pronounced
increases in warm extremes of more than three occurrences
per season over the southern U.S., Eastern Europe, and south-
eastern Asia, which bears some similarity to trend pattern of
warm extreme occurrences during the hiatus period (Fig. 1c,
Supplementary Fig. 8).

The prominence of the Atlantic rather than Pacific SST
anomalies is surprising, particularly in light of the importance of
Pacific SST variability during hiatus periods6,7. Previous work,
however, supports that the warm phase of the AMO is associated
with positive temperature anomalies in parts of North America
and Eurasia during boreal summer27,28. In fact, recent climate
model studies indicate that the Pacific SST patterns associated
with the AMO and the recent (~35-yr) trend may be forced in
large part by the Atlantic SSTs through coupled ocean-
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Fig. 2 Linear regressions of wintertime cold and summertime warm extremes. Time series of wintertime cold (a) and summertime warm (b) extreme
temperature occurrences (d season−1) over Northern Hemisphere land from 1951–2014 in observations (dark blue and red) and for linear regression
models with four predictors (light blue and orange). Shading indicates the 95% confidence interval for the regression. c, d Contribution of each individual
predictor for the frequency of cold extreme (c) and warm extremes (d), calculated by multiplying the predictors by their corresponding regression
coefficients. Red lines indicate linear trend lines for the hiatus period (2002–2014). Major volcanic eruptions are labeled in the AOD contribution plots. The
top regressions in (c) and (d) indicate the influence of the z500 and SST extremes patterns, respectively
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atmosphere feedbacks via modulation of the Walker circula-
tion28–30. These recent studies suggest that Atlantic Ocean
variability may have a stronger impact on global climate than
previously recognized.

Attributing changes in the extremes patterns. Was the recent
emergence of the z500 and SST extremes patterns a manifestation
of internal climate variability? As an initial step in addressing this
question, we examine the statistical significance of the changes of
the observed TX10d and TX90d trends through an analysis of
their confidence intervals. We also compare these results with an
analysis of a 500-yr simulation of a coupled climate model with
high atmospheric resolution, the Geophysical Fluid Dynamics
Laboratory (GFDL) Forecast-oriented Low Ocean Resolution
(FLOR) model31, for which radiative forcings are held constant at
1990 values.

First, we examine the variations of the observed TX10d and
TX90d linear trends with variable starting years (Fig. 4a). For
DJFM TX10d the linear trends do not deviate significantly from
the long-term linear trend until the late 1990s; TX10d trends
beginning from 1998 to 2004 are significantly larger, as
determined by the 95% confidence intervals, than the long-term
negative trend of −4.8 d (50 yr)−1 but not significantly different
from zero. The results from the 500-yr climate model simulation
support the unusual nature of these recent trends: only 2.9% of
the 13-yr TX10d trends from the climate model are larger than
the observed 2002–2014 trend with the long-term linear trend
removed (dashed blue line of Fig. 4b). This finding is consistent
with recent studies suggesting that it would require a particularly
extreme realization of internal variability, as determined from
state-of-the-art climate models, to explain the recent increase in
the occurrence of the WACC pattern and the decreasing
wintertime temperatures over Eurasia23,32–34.
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Another possibility, however, is that such a realization of
internal variability is not as extreme as climate models suggest,
and that these models underestimate the natural, multidecadal
variability of NH wintertime cold extreme occurrences. A recent
study35 indicates that many state-of-the-art climate models
underestimate multidecadal NAO variability. Given the strong
relationship between the NAO and z500 extremes pattern, it is
conceivable that climate models also underestimate the internal
variability of NH cold extreme occurrences. Indeed, we find that
the distribution of 13-yr DJFM TX10d trends in observations is
wider and significantly different from that of the 500-yr FLOR
simulation (Supplementary Note 5 and Supplementary Fig. 12).
Consistent with this finding and with ref. 35, the FLOR simulation
also underestimates the variance of 500 hPa height over the action
centers of the z500 extremes pattern (Fig. 5). In the seasonal mean
data, the FLOR simulation exhibits more variability in the
northeastern Pacific and southern North America (Fig. 5e), a
finding that likely relates to the excessive ENSO variability in
FLOR31, given the connection between those regions and strong
ENSO episodes (e.g., ref. 36). Most notably on both timescales,
especially in the 13-yr running mean data, the FLOR simulation
underestimates the mid-tropospheric height variance over the

North Atlantic and Eurasia (Fig. 5f), two locations that
correspond well with action centers in the z500 extremes pattern
(Fig. 3a). This analysis indicates that climate models, including
high-resolution models like FLOR, may underestimate natural,
multidecadal variability of cold extreme occurrences owing to the
underestimation of NAO-like variability over the North Atlantic
and Eurasia.

An alternative and highly debated hypothesis is that the recent
increase of WACC pattern and continental extreme cold
occurrences may be caused, at least in part, by increasing
greenhouse gases and the resulting Arctic amplification and
decrease in sea ice loss11,21,37–40. Our findings confirm a
statistical link between the z500 extremes pattern and Arctic
sea ice, as the z500 extremes pattern index has statistically
significant negative partial correlations (r <−0.4) with the
preceding November Barents-Kara Sea ice anomalies (Fig. 6).
However, confidence in the physical connection between Arctic
sea ice loss, the WACC pattern, and continental cold extremes is
limited by the inability of many climate models to simulate a
robust circulation and cooling response to Arctic sea ice
loss23,32,34. The results presented here cannot refute either
hypothesis, and so the connection between Arctic amplification
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and wintertime cold extremes likely will remain an active area of
study (see additional discussion in Supplementary Note 4).

Another hypothesis suggests that the predominance of the
negative phase of the NAO, which resulted in frequent cold air
outbreaks over Eurasia during the hiatus period, may have been
forced, at least in part, by the pattern of tropical Pacific SSTs9.
This hypothesis, however, contrasts the finding that the negative
phase of the NAO typically is connected with the warm phase of
ENSO41, as opposed to the La Niña-like SST pattern during the
hiatus period. Indeed, the partial regression of wintertime SST
anomalies on the z500 extremes index reveals a weak El Niño-like
pattern (Supplementary Fig. 9) that contrasts the tropical Pacific
SST anomaly pattern during the hiatus, suggesting that the
predominance of the z500 extremes during the hiatus was not the
result of tropical SST forcing.

In contrast with the DJFM TX10d linear trends, the JJAS
TX90d trends increase gradually as the starting year increases
from 1951 until ~1980 (Fig. 4a). This finding indicates a
significant acceleration of the positive trend in warm extreme
occurrences from the mid to late 20th century, as determined by
the failure of the 95% confidence intervals of the linear trends
with start years after ~1965 to contain the 1951–2014 linear
trend. Therefore, the SST extremes pattern may, in part, capture
this nonlinearity in the TX90d trend. This result is consistent with
evidence that North Atlantic cooling induced by anthropogenic
aerosols projects onto observed Atlantic multidecadal
variability42,43. However, a large fraction of Atlantic multidecadal
variability likely is internally generated, potentially resulting in an
apparent acceleration of sea surface warming in the late 20th and
early 21st centuries44. Consistently, after the effect of ENSO has
been linearly removed, the SST extremes pattern emerges in the
500-yr FLOR simulation as a leading contributor to variability in
summertime warm temperature extreme occurrence (Supple-
mentary Note 5 and Supplementary Fig. 11). These findings
support the existence of the SST extremes pattern as a robust,
naturally occurring pattern that can induce apparent accelera-
tions of the warm extreme occurrence trend, as occurred in the
2002–2014 hiatus period. The TX90d linear trends beginning
from the mid-1990s are not significantly different from the long-

term trend (Fig. 4a), indicating that the more rapid increase in
warm extremes during the hiatus period associated with the SST
extremes pattern is well within the range of internal climate
variability. Additional support is found in Fig. 4c: 25.6% of the
13-yr TX90d trends from the FLOR simulation are larger than the
observed 2002–2014 trend with the long-term linear trend
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removed (dashed red line), which means that internally driven,
apparent accelerations of warm extreme occurrences like what
occurred from 2002–2014 are relatively common in the climate
model.

Although the analysis presented above confirms a strong
statistical link between hemispheric warm extreme occurrences
and an AMO-like SST extremes pattern, the analysis does not
confirm Atlantic SST anomalies as a dominant cause of the
modulation of hemispheric increases in summertime warm
extreme occurrences. To solidify a causal connection, we perform
simulations with a fully coupled earth system model. Specifically,
we simulate the global temperature response to individual ocean
basin SST trends with the Community Earth System Model
(CESM1, see Methods). In these experiments, the SSTs are nudged
to the observed 1979–2012 SST trend pattern, a pattern that
resembles both the SST extremes pattern and the May–June
2002–2014 SST anomaly pattern (see Methods), in individual
ocean basins (Indian, Pacific, and Atlantic Oceans). Outside the
nudging regions, SSTs freely evolve, as in the experiments of ref. 30.
The Atlantic SST nudging experiment results in 63% and 84%
more NH land warming than either the Pacific or Indian Ocean
SST nudging experiments, respectively (Fig. 7), supporting the
dominant role of Atlantic SSTs. Moreover, the pattern of both
land and ocean warming outside of the Atlantic basin, including
the North Pacific Ocean, bears a strong resemblance to the
observed warming pattern (Fig. 7a), which supports the
aforementioned studies indicating the importance of the Atlantic
Ocean in remote SST trends28–30. The stronger warming in the

reanalysis data likely reflects the omission of the direct effects on
increasing greenhouse gas concentrations in the SST nudging
experiments, which are important for continental warming45,46.

Discussion
In summary, global-scale temperature variations were quite
unusual from 2002–2014, with relatively little change in global
mean temperatures but with contrasting trends in winter and
summer extreme temperature occurrence over NH continents.
These findings are consistent with the asymmetry in recent sea-
sonal temperature trends noted previously15, as the arguments
presented here apply to seasonal mean temperature in addition to
extreme temperature occurrence because of the close correspon-
dence between the two47,48. The recent changes in cold and warm
extreme occurrences closely track the NH seasonal mean land
temperature (r=−0.86 for DJFM TX10d and r= 0.96 for JJAS
TX90d; see Supplementary Fig. 7 and the discussion in Supple-
mentary Note 2). The analysis introduced in this study extends
beyond the previous work by highlighting the large-scale climate
patterns responsible for such asymmetries and other variations in
continental extreme temperature occurrence, which are distinct
from those that dominate the variability of annual GMST.

This analysis also underscores the limited usefulness of annual
GMST as a measure of the state of the climate owing to the effects
of averaging across spatial and time scales. Regional-scale con-
sequences over the NH will not necessarily track annual GMST
because NH variability is dominated by different climate modes
than those of GMST in different seasons. The results presented
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here suggest that for periods when the WACC-like z500 and
AMO-like SST extremes patterns remain in a predominantly
positive phase, as occurred from 2002–2014, then both winter-
time cold and summertime warm extreme occurrences may
increase relative to the long-term trends. Whereas GMST is
strongly regulated by tropical Pacific SSTs6–8, variations in the
linearly detrended NH land mean surface temperature are
strongly related to the z500 extremes pattern in DJFM (r= –0.54)
and to the SST extremes pattern in JJAS (r= 0.68).

In this study, we have used a lenient definition of extremes by
focusing on occurrences below the 10th and above the 90th
percentiles of the temperature anomaly distributions. This choice
allows us to analyze relatively large samples of extreme tem-
perature occurrences, thereby yielding robust statistics. A lim-
itation of this approach, however, is that we do not address
changes in the most ‘extreme’ hot extremes, which have risen
more dramatically than less extreme heat events during the hiatus
period10. Indeed, we find that the most severe summertime NH
hot extremes have risen faster than more moderate hot extremes
during the hiatus period, although more severe cold extreme
occurrences have not experienced a similar amplification (Sup-
plementary Note 6 and Supplementary Fig. 13). We suspect that
the dramatic rise of the most extreme heat waves involves local-
scale interactions such as land–atmosphere feedbacks, which play
an important role in the projected increase of hot extremes49,50,
and possibly land use and land cover changes51 in addition to
favorable large-scale atmospheric and oceanic conditions. More
work is needed to understand how increasing greenhouse gases,
large-scale modes of climate variability, and local-scale feedbacks
will interact to alter the characteristics of temperature extremes in
a warming world.

Methods
Temperature extreme counts. For the analysis focusing on the satellite era
(1979–2014), we use six-hourly ERA-Interim reanalysis52 and follow the procedure
described by the Expert Team on Climate Change Detection and Indices
(ETCCDI) (http://www.clivar.org/organization/etccdi) to calculate the number of
cold and warm extreme days in December–March (DJFM) and June–August
(JJAS), respectively. Specifically, we identify the daily maximum temperature
(Tmax) at each land grid point from 1979–2014 and then remove the
1981–2010 seasonal cycle to define daily Tmax anomalies. A cold extreme on day d
is identified if the Tmax anomaly falls below the 10th percentile of the Tmax anomaly
distribution defined by all 5-day intervals from 1981–2010 centered on the calendar
day. Similarly, a warm extreme is identified if the Tmax anomaly lies above the 90th
percentile of the Tmax anomaly distribution. To avoid possible inhomogeneities
across the in-base and out-of-base periods, we follow the bootstrap procedure
described in ref. 53. We then count the number of cold extreme occurrences
(TX10d) in each DJFM (February 29 is excluded) and the number of warm extreme
occurrences (TX90d) in each JJAS.

For the multiple linear regression (MLR) analysis described below, we also use
the TX10d and TX90d data from the HadEX2 dataset54 for the period of
1951–2010. The HadEX2 dataset is derived from high-quality in situ observations
from meteorological stations around the world, interpolated to a 2.5° x 3.75°
latitude–longitude grid. In addition to a basis in quality-controlled observations,
the HadEX2 data have the advantage of a longer record than the ERA-Interim data,
allowing more robust statistical analyses. Disadvantages include incomplete spatial
coverage and a termination in 2010, which excludes the later years of the hiatus
period. To cover the full hiatus period of interest, we extend the HadEX2 data to
2014 through the following linear regression relationship:

TH2 ¼ β1TEI þ β0 ð1Þ

where TH2 is the HadEX2 extreme temperature measure, either a grid point value
or the area mean, depending on the application, and TEI is the corresponding ERA-
Interim value. The regression model is trained for the 1979–2010 period of overlap,
and the extrapolation occurs for 2011–2014. The ERA-Interim data are linearly
interpolated to the HadEX2 grid, and for the area mean calculations, only grid
points for which HadEX2 has at least 90% temporal coverage are considered (see
Fig. 3e, f for an indication of spatial coverage). For the period of overlap, the
correlation between the Northern Hemisphere areal mean HadEX2 and ERA-
Interim temperature extremes is 0.98 for DJFM TX10d and 0.99 for JJAS TX90d,
which lends credibility to the regression procedure and the reliability of both
datasets. The grid point correlations, shown in Supplementary Fig. 2, are generally

higher than 0.8. The intercept term β0 corrects for the offset in base periods
(1981–2010 for ERA-Interim and 1961–1990 for HadEX2).

Choice of hiatus period. We define the hiatus period as 2002–2014 following ref. 7

but extending the end year from 2012 to 2014 to include more data before the
extreme El Niño of 2015/16. The general conclusions, however, are not sensitive to
the choice of hiatus period. For example, if we define the hiatus period as
1998–2012, as in several other studies (e.g., ref. 9), the linear trends in DJFM
TX10d, JJAS TX90d, z500 extremes index, and SST extremes index maintain the
same sign as in the 2002–2014 period.

Multiple linear regression. We build multiple linear regression (MLR) models of
the form

Tcomb ¼ βyy þ βEE þ βAAþ β0 þ ε ð2Þ

where Tcomb is the NH land mean extreme count from the combined HadEX2 and
ERA-Interim data, covering the period from 1951–2014, y is the year, E is the
ENSO index, A is the volcanic aerosol optical depth (AOD), βi is the regression
coefficient for predictor i (β0 is the intercept term), and ε is the residual. We also
consider total solar irradiance (TSI) as a potential predictor, but TSI did not pass
the significance screening described below. For the choice of ENSO index, we
considered both the Niño 3.4 SST index and the Multivariate ENSO Index (MEI)55.
The correlation between Tcomb and E generally is higher for MEI, particularly for
cold extremes, so we retained the MEI as the ENSO predictor. We use AOD data
from ref. 56. The AOD and MEI data are of monthly and bi-monthly temporal
resolution, respectively. The TSI data that we tested were from refs. 57,]58, where
the data were extended over the full period following a regression approach as in
Eq. (1), and correlations are well over 0.9 during the period of overlap.

Given the apparent nonlinearity in the TX90d trends during the period of
interest (Figs. 2 and 4), one may consider using anthropogenic forcing instead of
time as a predictor. We choose to use time as a predictor for two main reasons.
First, a measure of anthropogenic forcing requires an estimate of anthropogenic
aerosol forcing, which has substantial uncertainty over the period of interest.
Second, the regression models as currently constructed perform exceptionally well
(Fig. 2), which indicates that the z500 and especially SST extremes patterns,
described below, can capture any nonlinearity in the TX10d and TX90d trends.
Additional synthesis allows us to further diagnose how both internal variability and
radiative forcing may contribute to their variations and therefore to the
nonlinearity in the TX10d and TX90d trends. Consequently, the current analysis
allows us to highlight how both radiative forcing and internal variability may have
similar spatial fingerprints with respect to dominant predictors of Northern
Hemisphere temperature extremes.

Following previous conventions17,18, we determine the predictor lags by the
maximum correlation between the predictor and predictand (except for the trend
term). The lags for DJFM TX10d are −7 months (June) for both the MEI and AOD
(note that the negative sign indicates that the predictor leads the predictand). The
lags for JJAS TX90d are −11 months (August) for the MEI and −10 months
(September) for the AOD. These lags, particularly for the MEI, are longer than
those that maximize the relationship with global mean temperature17,18. A possible
explanation is that stronger ENSO events, which tend to peak in boreal autumn but
also reach a mature stage earlier in the boreal summer than the weaker events, may
have a disproportionately strong influence on temperature extremes. Also, the peak
correlations for AOD are not particularly pronounced. As a result, we tested several
versions of the MLR model, varying the lags of the predictors and substituting the
Niño 3.4 SST index for the MEI, and all results were similar for each model. We
calculated the correlations between each pair of predictor variables, and all
correlations were at or below 0.40 for DJFM TX10d (strongest correlation of 0.40
between MEI and time) and 0.20 for JJAS TX90d (strongest correlation of 0.19
between MEI and volcanic AOD). Therefore, the predictor variables are not nearly
collinear. The final models are chosen to ensure that all predictors are significant at
the 10% level, where the significance of each predictor is assessed with a partial F-
test. All predictors except for MEI in the TX90d regressions (p= 0.056) have p-
values well below 0.05. We also visually inspected normal probability plots to
ensure that the residuals are approximately Gaussian. The 95% confidence interval
of the fitted value for time t is given by

T̂y;CI ¼ T̂y ± t0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂2x′yðX′XÞ�1xy

q

ð3Þ

where T̂y is the regressed value of T in year y, σ̂2is the mean square error, X is the
design matrix, xy is the predictor values in year y in column vector form, and all
other notation is standard. These linear regressions are illustrated in
Supplementary Fig. 3.

Partial least squares regression. In order to improve the regression models given
by Eq. (2), we seek additional predictors through the method of partial least squares
regression (PLSR)19,20. We consider NH 500 hPa geopotential height (z500) from
NCEP/NCAR reanalysis59 and ERSSTv3b60 SST from 20°S to 60°N from lags of
−12 to 0 months as potential predictors of DJFM TX10d and JJAS TX90d. We first
calculate three-month (four-month for lag 0 exceptionally) seasonal mean
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standardized anomalies of z500 and SST by subtracting the seasonal cycle and
dividing each anomaly by the grid point standard deviation. Then we follow the
general procedure for PLSR that is discussed in ref. 20: (1) linearly remove the three
predictors in Eq. (2) from both the areal mean temperature extreme counts and the
gridded z500 and SST anomalies to determine residual predictand (TX10d or
TX90d) and predictor fields; (2) calculate the correlation map between the residual
predictand and gridded predictors to determine the PLS predictor pattern; (3)
project the residual gridded predictors onto the PLS predictor pattern to determine
a PLS predictor time series; and (4) incorporate the PLS predictor time series into
regression Eq. (2) as the fourth predictor. It is possible to repeat these four steps to
remove the preceding PLS predictors and add additional PLS predictors, but we
choose to consider only one potential PLS predictor for the sake of keeping our
model as simple and interpretable as possible and because this methodology is
prone to overfitting when multiple PLS components are retained. Essentially, this
methodology seeks linear combinations of z500 or SST that can be used to generate
a predictor time series that explains the maximum amount of variance in TX10d or
TX90d unaccounted by the original three predictors.

After performing the iterative procedure for both SST and z500 and for all lags,
we find that the lag 0 (DJFM) z500 PLS predictor for TX10d and lag -1 (MJJ) SST
predictor for TX90d emerge as the additional predictors that are capable of
explaining most of the missing hemispheric mean temperature extreme variance.
The z500 predictor explains 27.0% of the TX10d variance and the SST predictor
explains 31.4% of the TX90d variance. The z500 and SST index time series are
defined as the standardized projection time series determined in step 3 above
(Fig. 3c, d). The z500 and SST predictor patterns, which we call the z500 and SST
extremes patterns, are determined by the partial regressions (i.e., ENSO, AOD, and
time trend are first linearly removed) of z500 and SST anomalies on the
corresponding index time series (Fig. 3a, b).

To evaluate the robustness of the z500 and SST extremes analysis, we repeated
the calculations described above but after partitioning the data into a 1951–2001
training set and a 2002–2014 validation set. The purpose of this analysis is to
determine if the z500 and SST extremes patterns emerge in data that exclude the
hiatus period and if their predicted relationships with extreme temperature
occurrence during the hiatus period are consistent with the relationships revealed
in Figs. 2 and 3. For these calculations, we removed the influence of the time trend,
ENSO, and volcanic AOD from the 2002–2014 DJFM TX10d, JJAS TX90d, the
gridded SST, and the gridded z500 fields, just as in the original analysis, but in this
analysis all regression coefficients were determined from the 1951–2001 training
period. We then performed PLSR analysis to determine the z500 extremes pattern,
SST extremes pattern, and regression coefficients of the residual TX10d and TX90d
onto the corresponding extremes pattern index with the 1951–2001 data. Finally,
we predicted the z500 and SST extremes pattern contributions to TX10d and
TX90d, respectively, during the 2002–2014 period. We then compared these out-
of-sample calculations with the in-sample calculations reported in Figs. 2 and 3.

Overall, we find that the z500 and SST extremes patterns are robust, confirming
that the patterns and their relationships with extreme temperature occurrence were
not unique to the hiatus period. The z500 and SST extremes patterns determined
from the 1951–2001 training set, shown in Supplementary Fig. 4, are very similar to
the patterns shown in Fig. 3. In addition, Supplementary Fig. 4 illustrates the out-
of-sample predictions of the z500 and SST extremes pattern contributions to DJFM
TX10d and JJAS TX90d, respectively, in comparison with the in-sample partial
regressions reported in Fig. 2. Differences between the in-sample partial regressions
and out-of-sample predictions may relate to the following: (1) differences in the
ENSO, time trend, and AOD regression coefficients that affect the adjustment of
the TX10d and TX90d time series prior to the PLSR analysis; (2) differences in the
z500 and SST extremes patterns between the two different datasets, and (3)
differences in the z500 and SST extremes pattern regression coefficients, holding
the z500 and SST patterns identical for the two datasets. Overall, we see some
differences between the in-sample and out-of-sample time series, but the hiatus
period trends and much of the interannual variability are in good agreement.

The actual and regressed TX10d and TX90d time series with all four predictors
are shown in the top of Fig. 2. The 95% confidence interval is again calculated with
Eq. (3). We note that this confidence interval does not account for the uncertainty
in the PLS predictor patterns themselves, and so the uncertainty likely is
underestimated somewhat; however, all conclusions are unlikely to be affected. The
time series of individual predictor contributions (bottom of Fig. 2) are calculated by
subtracting the time mean of each predictor and multiplying the residual by the
corresponding regression coefficients at each time step. Therefore, the sums of the
individual contributions in the bottom of Fig. 2 are equal to the full regressions in
the top of Fig. 2 with their time means removed. In the partial regression maps
(Fig. 3), statistical significance of the regression coefficients is assessed with a two-
sided t-test, and degrees of freedom are corrected for autoregression in the
residuals following ref. 61.

Confidence intervals of the linear trends. For the calculations illustrated in
Fig. 4a, we use ordinary least squares regression to calculate the DJFM TX10d and
JJAS TX90d linear trends for starting years varying from 1952 to 2008 and ending
in 2014. We also calculated the trends with the Theil-Sen method, but the results
were very similar to those of simple linear regression. To calculate the 95% con-
fidence intervals, we sought an appropriate model for the noise about the linear fit

to the data by examining the sample autocorrelation of the residuals. For TX10d,
the autocorrelation of the residuals is quite small (lag-1 autocorrelation=−0.03),
and so we use the standard white noise model to calculate the confidence intervals.
For TX90d, the sample autocorrelation is much larger and more persistent than we
would expect from a first-order autoregressive (red noise) process. This behavior is
quite similar to that of GMST18. Consequently, we follow the procedure of ref. 18

and model the TX90d residuals with an autoregressive moving average (ARMA
(1,1,)) model. For these calculations, the standard error of the estimated trend is
inflated relative to that of the white noise estimate to account for the reduced
degrees of freedom. Specifically,

σc ¼ σw
ffiffiffi

ν
p ð4Þ

where σc is the corrected standard error, σw is the white noise estimate of the
standard error, and ν is the inflation factor. For the ARMA(1,1) model

ν ¼ 1þ 2ρ1
1� φ

ð5Þ

where ρ1 is the lag-1 autocorrelation coefficient, and φ is the autocorrelation decay
rate, estimated by

φ ¼ ρ2
ρ1

ð6Þ

FLOR simulation. To place the recent temperature extremes trends in a broader
context, we compare the observed 2002–2014 TX10d and TX90d trends to those of
a long control simulation of a coupled climate model. We use a 500-yr simulation
of the GFDL-FLOR model31,62, for which radiative forcings are held constant at
1990 values. The FLOR model features high horizontal resolution in its atmosphere
and land components (~50 km) but retains the lower resolution (~100 km) of the
GFDL Coupled Model version 2.1 in its ocean and sea ice components. FLOR has
demonstrated success in various applications of seasonal climate forecast31,63–65

and climate change66 studies.
For the 500-yr simulation, we calculate the DJFM TX10d and JJAS TX90d from

daily data in the same way as for the observational data, but here the percentiles are
calculated with respect to the full 500-yr period. Despite that radiative forcings are
held constant, the model undergoes a gradual warming drift, and so the extreme
temperature occurrences are linearly detrended prior to the analysis. The TX10d
and TX90d time series exhibit substantial decadal to multidecadal variability
despite no variation in the radiative forcing (Supplementary Figs. 10a and 11a),
although the decadal TX10d variability is underrepresented in the FLOR
simulation (see the main text and Supplementary Note 5 for more discussion). For
comparison with the observed TX10d and TX90d trends during the hiatus period,
we generate histograms of all 13-yr trends in the simulation (Figs. 4b, c).

Relationship with Arctic sea ice. In order to examine the possible relationship
between the z500 extremes pattern and Arctic sea ice anomalies in the preceding
autumn, we calculate partial correlations between the z500 extremes index and
Arctic sea ice concentration (SIC) anomalies in the preceding November. We use
monthly SIC data obtained from the National Snow and Ice Data Center (NSIDC)
derived from brightness temperature measured by satellite using the NASA Team
algorithm67. We calculate monthly anomalies by subtracting the
1981–2010 seasonal cycle. Prior to calculating the correlations, we linearly regress
out ENSO, volcanic AOD, and the time trend from the SIC anomalies, just as in the
z500 anomalies prior to calculating the z500 extremes pattern except that the SIC
anomalies only cover the period from 1979–2013.

Figure 6 illustrates the partial correlations between the wintertime
(December–March) z500 extremes index and the preceding November SIC
anomalies. For the statistical significance calculations, the degrees of freedom were
adjusted following the lag-1 autocorrelation adjustment described in ref. 61. Similar
correlation patterns are obtained if we consider the preceding autumn
(September–November) or summer (June–August) SIC anomaly fields (not
shown), although the area with statistically significant correlations decreases with
lag. Because the time trend is one of the predictors that is removed prior to the
calculations, these relationships are not related to the long-term downward linear
trend of Arctic sea ice.

Correlations with seasonal mean NH land temperature. The seasonal mean
linearly detrended Northern Hemisphere land surface temperature (NHLST) data
used in the reported correlations with the z500 and SST extremes indices are based
on land surface temperature for the period 1951–2014 from the Berkeley Earth
Surface Temperature project68, which are monthly land surface temperature data
on a 1° latitude–longitude grid. After linearly removing the influence of ENSO,
volcanic AOD, and linear time trend, the partial correlation between the SST
extremes index and the JJAS NHLST rises to 0.84, and the partial correlation
between the z500 extremes index and the DJFM NHLST falls to −0.71.
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CESM experiments. The National Center for Atmospheric Research (NCAR)
coupled climate model, the Community Earth System Model (CESM1.06)69 was
used to investigate the role of observed basin-scale SST trends on the amplitude
and pattern of summertime daily maximum temperature trends over the
1979–2012 period. We note that the annual mean 1979–2012 SST trend bears a
close resemblance to both the SST extremes pattern (pattern correlation= 0.55)
and the 2002–2014 May–June SST anomaly pattern (pattern correlation= 0.74).
This analysis focuses on the influences of ocean temperature trends in three basins:
Atlantic, Indian, and Pacific basins. The boundaries of each basin are depicted in
Fig. 7, with a 10° buffer equatorward of the northern and southern boundaries over
which the SST restoring, described below, ramps up from zero. The atmospheric
component of this model is the Community Atmospheric Model version 4
(CAM470) with F19 horizontal resolution (~2°). The oceanic component is the
Parallel Ocean Program version 2 (POP2), with ~1° horizontal resolution. The
basic experimental framework of this analysis is similar to that of ref. 30. We
restored basin-scale ocean mixed-layer temperature in the coupled model as fol-
lows:

F ¼ cDðTν � TmÞ=τ ð7Þ

where c is the heat content of sea water, D is the mixed layer depth, Tν is the
restoring target temperature, Tm is the model temperature at each time step, and τ
is the restoring time scale, which was set as 10 days in this study. In these perturbed
simulations, we added external heating F to the model to restore basin-scale ocean
mixed-layer temperature. The restoring target temperatures define control and
perturbed simulations. The climate response to the basin temperature trends was
calculated by the difference between a control run and the perturbed run that is
restored to the observed ocean trend. In the control run, the mixed-layer tem-
perature was restored to the model climatology. In the perturbed run, the observed
temperature trend for 1979–2012 for the particular basin was added to the mixed-
layer temperature restored in the control run. The observed trend is derived from
the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST)71. We
conducted 12-member ensemble simulations with different initial conditions in the
control and perturbed runs. The model was integrated for 15 years and the last 10
years were used for analyses.

Code availability. The data in this study are analyzed with widely available tools in
Matlab. Contact N.C.J. for specific code requests.

Data availability. The observational data that support the findings are publicly
available. ERA-Interim data are available at http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype= sfc/. HadEX2 and HadISST data are available at the
Met Office Hadley Centre website (https://www.metoffice.gov.uk/hadobs/). NCEP-
NCAR reanalysis, ERSST, and MEI data can be found at the NOAA/OAR/ESRL
PSD website (http://www.esrl.noaa.gov/psd). Berkeley surface air temperature data
are available at the Berkeley Earth website (http://berkeleyearth.org/). The AOD,
TSI, and AMO time series are available at the KNMI Climate Explorer website
(https://climexp.knmi.nl/). The NAO and AO index time series are found at the
NOAA Climate Prediction Center website (http://www.cpc.ncep.noaa.gov/
products/precip/CWlink/daily_ao_index/teleconnections.shtml).

Model availability. Contact N.C.J. for FLOR simulation data requests. Contact N.
C.J. or X.L. for CESM simulation data requests.
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