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Learning Causal Direction from Transitions with Continuous and Noisy Variables 
 

Kevin W. Soo (kws10@pitt.edu) 
Benjamin M. Rottman (rottman@pitt.edu) 

Department of Psychology, University of Pittsburgh 
3939 O’Hara Street, Pittsburgh, PA 15260 

 
Abstract 

Previous work has found that one way people infer the 
direction of causal relationships involves identifying an 
asymmetry in how causes and effects change over time. In the 
current research we test the generalizability of this reasoning 
strategy in more complex environments involving ordinal and 
continuous variables and with noise.  Participants were still 
able to use the strategy with ordinal and continuous variables. 
However, when noise made it difficult to identify the 
asymmetry participants were no longer able to infer the causal 
direction.  

Keywords: causal reasoning; causal structure; time 

Introduction 
Knowing the direction of causal relations is critical for an 

agent to be able to act effectively in the world. For example, 
knowing that James gossips to Julie but not vice versa 
would allow one to selectively share a secret. Knowing that 
energy prices influence the price of produce (due to 
shipping costs) but not vice versa would allow one to 
predict the prices of energy and produce after an oil 
embargo or after a poor harvest. 

There are four known strategies that lay people use to 
infer causal direction between two variables, X and Y. The 
first strategy is intervention. Imagine that one intervenes and 
sets the value of X to either 1 or 0. If the distribution of Y is 
different when X is set to 1 vs. 0, it implies that X causes Y 
(e.g. Steyvers et al., 2003) 

The remaining three strategies apply to “observational” 
data, when a learner observes the states of X and Y. 
Inferring causal direction from observational data is 
notoriously tricky, and these strategies are usually viewed as 
heuristics. The next strategy is causal sufficiency. In some 
situations learners have a strong belief that when a cause is 
present its effect would also be present. In this case, 
observing [x = 0, y = 1] is consistent with inferring X→Y 
but not X←Y (Mayrhofer & Waldmann, 2011; cf. Deverett 
& Kemp, 2012). Another strategy is to reason using 
temporal “delay” or “order”. If one observes that X 
usually occurs before Y (e.g., X changes from 0 to 1, and 
subsequently Y changes from 0 to 1, or Event X occurs and 
then Event Y occurs) people infer that X→Y instead of 
X←Y (e.g. Lagnado & Sloman, 2006).  

Learning Causal Direction from Transitions 
Rottman & Keil (2012) proposed that people also learn 
causal direction in a fourth way, by reasoning about changes 
or “transitions” in variables over time. For example, 
Rottman & Keil asked participants to observe the moods of 

two friends, Friend X and Friend Y over time, and to try to 
infer whether Friend X’s mood influences Friend Y’s mood, 
or vice versa. The X and Y columns in Table 1 show the 
kind of data presented to participants in their experiments. 
Each person could either be in a positive (1) or negative (0) 
mood. In order to explain this reasoning process, it is easiest 
to first think about how a particular causal structure tends to 
produce certain types of transitions given “shocks” to X or 
Y. A shock is an economic term that means an exogenous 
event that produces a change in an observed variable. 
 
Table 1: Transition-based Learning with Binary Variables. 
“S(X)” means a shock to X. 
 

Time X Y 
 

Tran-
sition 
Type 

Is transition consistent with causal 
structure? 

X→Y X←Y 
1 1 1    
2 0 0 ΔXΔY Yes: S(X) Yes: S(Y) 
3 0 1 ΔY Yes: S(Y) No: S(Y) would 

change X 
4 0 1 No Δ Yes: No S Yes: No S 

 
Assume that X→Y is the true causal structure. When 

something produces a change in X’s mood (a shock to X), 
the change in X’s mood will generally produce a change in 
Y’s mood. Transitions in which both X and Y change are 
labeled as “ΔXΔY”. Now consider what would happen 
given a shock that changes Person Y’s mood. If there is 
reason to believe that the states of X and Y are “temporally 
dependent” or autocorrelated, that people’s moods are fairly 
stable over time, then when there is a change in Y’s mood 
X’s mood would usually remain stable (i.e. in the same state 
as it was before). Transitions in which there is a change in Y 
but no change in X are labeled as “ΔY”. Finally, transitions 
in which both X and Y stay the same are labeled “No Δ” for 
no change. No Δ transitions are common under both X→Y 
and X←Y assuming that X and Y are autocorrelated. 

This logic implies that if X→Y is the true causal 
direction, then ΔXΔY and ΔY transitions would be 
common; however, ΔX transitions would be rare because if 
X’s mood changes then there would typically be a change in 
Y as well (ΔXΔY instead of ΔX). Alternatively, if the true 
causal structure is X←Y, then ΔXΔY and ΔX would be 
common, but ΔY would be rare. Given this logic, one can 
reason backwards to infer the direction of the causal 
relation. For example, in Table 1, there is a ΔXΔY and a ΔY 
transition but no ΔX transitions, implying that X→Y is 
more likely to be the true causal structure than X←Y. The 
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reason is that during the ΔY transition there must have been 
a shock that changed the value of Y, but this shock did not 
carry over to X, implying that Y does not influence X. Both 
adults and children learn causal direction using this 
inference process (Rottman & Keil 2012; Rottman, 
Kominsky & Keil, 2013). 

Transition-based learning with continuous and 
noisy variables 
In the previous example with binary variables it may seem 
possible that people would spontaneously categorize the 
transitions as ΔX, ΔY, ΔXΔY, or No Δ. However, real 
world data (e.g., stock market graphs) contain a number of 
features that may make the categorization and interpretation 
process harder, which could make it much more difficult to 
infer the causal direction. Here we focus on two features, 
variables with multiple levels opposed to binary, and noise. 
 

Table 2: Examples of Transitions in Experiments 1-3. 
 
Time Transition 

Type 
Exp 1:  

No Noise 
Exp 2:  

Noise in 
ΔXΔY 

Exp. 3: 
Noise in all 
transitions 

X Y X Y X Y 
1  6 4 6 4 6.3 4.5 
2 ΔXΔY 4 2 4 3 4.4 3.2 
3 ΔY 4 7 4 7 4.5 7.6 
4 No Δ 4 7 4 7 4.3 7.7 

 
Table 2 displays sample data for three experiments that 

involve progressively more complex environments (noisy 
and multi-level variables). Next we describe how these 
environments may obscure the transition types. 

No Δ First, consider the No Δ transitions from Times 3 to 
4. Experiments 1 and 2 are similar to the binary case in that 
variables stay in exactly the same state as in the previous 
trial. In Experiment 3, there is a bit of noise added so that 
even when there is no shock (No Δ) there will still be slight 
changes in both X and Y (X changes by -0.2 and Y by 
+0.1). However, we still consider this a No Δ transition 
because these variations are small and attributed to ‘noise’ 
in the variables. We will contrast this with ‘shocks’ in the 
other transition types. 
ΔXΔY Next, consider the ΔXΔY transition from Times 1 

to 2 when there is a shock to X that carries over to Y. In the 
binary case, transitions where both variables change in the 
same direction always result in both variables in the same 
state, implying a positive relationship. In Experiment 1, 
during ΔXΔY transitions X and Y change the same amount 
(e.g., -2). But because their starting and finishing states are 
not necessarily the same (e.g., X changes from 6 to 4, Y 
changes from 4 to 2) it may not be as obvious evidence for a 
causal relation or as or easy to detect as the binary change. 

In ΔXΔY transitions in Experiment 2, X and Y do not 
necessarily change the same amount (e.g., from Time 1-2, X 
decreases by 2 and Y decreases by 1). Presumably, this 
would make it even less obvious that there is a causal 
relation between X and Y. Experiment 3 takes this further 

using continuous variables (X changes by -1.9, Y by -1.4). 
If the noise applied to the variables results in ΔX and ΔY 
being sufficiently different in magnitude, that transition may 
not be easily categorized as a ΔXΔY transition.  
ΔY Finally, consider the ΔY transitions (Time 2-3), when 

there is a shock to Y that does not carry over to X. The crux 
of transition-based learning is that people notice an 
asymmetry in the number of ΔX and ΔY transitions, and 
this asymmetry implies the causal direction. In Experiments 
1 and 2, X stays exactly the same as in the previous trial, 
which is similar to the binary case. This should highlight the 
fact that the change in Y does not have any effect on X. 

Experiment 3 adds some noise into X during ΔY 
transitions (from Time 2-3, X increases by 0.1). We still call 
this a ΔY transition even though X changes because the 
change in X due to noise will usually be smaller than the 
change in Y due to a shock. Being able to attribute small 
changes in X as due to noise vs. large changes in Y as due to 
a ‘shock’ is critical for being able to identify ΔY as ΔY as 
opposed to ΔXΔY. However, if the difference between the 
magnitudes of shocks and noise is sufficiently small on a 
particular transition, that transition may not be easily 
categorized as ΔY. 

In sum, Experiments 1-3 test how progressively more 
complex environments make the transitions more difficult to 
categorize and disrupt the ability to infer causal direction. 

Experiment 1 
Experiment 1 tests whether people are able to learn causal 
direction by observing a pair of ordinal variables over time. 
This experiment is similar to the binary case because 1) 
when both variables change, ΔXΔY, they change by the 
same amount (ΔX = ΔY), 2) during ΔY transitions X 
remains the same as the previous trial, and 3) during No Δ 
transitions X and Y stay the same as the previous trial. 
These aspects of Experiment 1 (relative to the following 
experiments) should make it easier for reasoners to  
categorize each transition into the four transition types..  

However, ordinal variables add an additional layer of 
complexity into the categorization and interpretation process 
compared to binary variables (Table 1). For example, during 
ΔXΔY transitions one could focus on how the variables 
change with different magnitudes (e.g., sometimes by +3 or 
by -2). Categorizing all of these transitions as ΔXΔY may 
not be quite so automatic as with binary variables. The same 
argument applies in ΔY transitions. During one ΔY 
transition Y may change by +1, and in another Y may 
change by -6. It is not obvious that people would 
spontaneously interpret both these transitions in the same 
way. During all transitions, even during No Δ transitions, 
one could focus on the absolute magnitude at a given time 
rather than the change in the magnitudes. For example, if X 
is high and Y is low during a No Δ transition, it could imply 
that they are not causally related. In sum, the ordinal 
variables introduce a number of layers of complexity into 
the reasoning process. 
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Our main question of interest is whether people are able 
to learn the causal direction in longitudinal sequences of 
data with ordinal values similar to Table 2 Experiment 1. 
We call this condition “temporally dependent” because X 
and Y often remain in the same state from trial to trial. 
However, in creating the sequences of learning data, since 
there are ΔY transitions but no ΔX transitions, in the long 
run, Y has higher variance than X. Restated, there is a 
confound in that there are two differences between X and Y. 
One difference is that there are ΔY but there are no ΔX 
transitions, and the other is that the variance of Y is often 
greater than the variance of X.  

In order to ensure that the causal direction inference is 
due to the asymmetry in ΔX and ΔY, we also ran a 
“temporally independent” condition using the exact same 
trials as the dependent condition, but with a randomized trial 
order. The randomization destroys the temporal dependence, 
so participants would not be able to infer causal direction 
from transitions. Table 3 shows a sample comparing the 
temporally dependent and independent conditions. 
Randomizing the trials results in a very high number of 
ΔXΔY transitions, thus there is no longer an asymmetry 
between ΔX and ΔY, so it is impossible to infer causal 
direction according to the transitions. However, in both 
conditions Y still has higher variance than X. If the 
difference in variances explains the effect then it would still 
occur in the temporally independent condition. 
 
Table 3: Example of Corresponding Temporally Dependent 
and Independent Conditions in Experiments 1 and 2. 
 
Time Temporally dependent Temporally independent 
 Transition X Y Transition X Y 
1  7 5  5 6 
2 No Δ 7 5 ΔXΔY 7 5 
3 ΔXΔY 5 3 ΔXΔY 5 3 
4 ΔY 5 6 ΔXΔY 7 5 

Methods 
Participants 103 participants were recruited using Amazon 
Mechanical Turk (MTurk) and the experiment was 
conducted online. The experiment lasted between 10-15 
minutes and participants were paid $1.50 for participation. 
We intended to recruit 100 participants, but three 
participants started the study and subsequently returned the 
HIT before completion; we analyzed all the data. 
Stimuli and Design Data was presented to participants in 
the form of graphs depicting the states of two variables on a 
1-9 scale for a period of 25 time points (resulting in 24 
transitions). In the temporally dependent condition there 
were 12 No Δ transitions, 6 ΔXΔY transitions, and 6 ΔY 
transitions, randomly ordered. See Figure 1 for a sample 
graph of the temporally dependent condition. 

We generated 1000 temporally dependent graphs in the 
following way. The initial states for X and Y were each 
sampled from a normal distribution (M = 5.0, SD = 1.5), 
rounded to the closest integer. Every subsequent trial was  

       
Figure 1: Sample stimuli for Experiment 1. Note: actual 
stimuli spanned 25 time points. In this graph, A = X (cause) 
and B = Y (effect). The ΔXΔY and ΔY transitions are 
marked for easy identification above, but were not denoted 
in any special way in the experiment.  
 
determined in the following way. If the transition was 
supposed to be a ΔXΔY transition (a shock to X), then a 
new state for X was sampled from the same rounded normal 
distribution as above. If the sampled value of X happened to 
be the same as its prior state, a new sample was drawn.  The 
new value for Y was determined by the change in X; Y1 = 
X1 - X0 + Y0. For the ΔY transitions (a shock to Y that does 
not carry over to X), the new value for Y was chosen from 
the same rounded normal distribution as above, with the 
same caveat that Y1 could not equal Y0. X stayed exactly the 
same as in the previous trial. 

We wanted to present data on a 1-9 point scale. However, 
the generative process explained above sometimes produced 
data outside the bounds of 1-9. For example, on a ΔXΔY 
transition, if X changed from 4 to 7, and Y started at 7, it 
would change to 10. Because we did not want to test 
reasoning about ceiling effects in this experiment, we 
eliminated data where X or Y exceeded the bounds of 1-9.  

For all 1000 temporally dependent sequences of data we 
created a corresponding temporally independent sequence 
by randomizing the order of the trials. Each participant in 
the temporally dependent condition viewed a block of eight 
graphs chosen randomly from the 1000 sequences. For each 
participant in the temporally dependent condition, another 
participant in the temporally independent condition received 
the 8 corresponding graphs. 

 
Procedure Participants read the following cover story: 

“Please imagine you are a psychologist studying the 
moods of married couples. You are trying to figure out 
how one spouse's mood influences the other. You might 
find that Spouse A's mood may influence Spouse B's 
mood, that Spouse B's mood may influence Spouse A's 
mood, or that neither influences the other. You will 
observe the moods of married couples, each over a period 
of 25 consecutive days. On each day, please consider 
possible events that influenced their moods. For example, 
Spouse A may have had a good day at work, which put 

ΔY ΔXΔY 
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them into a good mood and spread to Spouse B. Or 
Spouse B may have had a bad day at work, but their bad 
mood did not spread to Spouse A. Please remember that 
moods influence one another on the same day. For 
example, if Spouse A is in a bad mood on Monday, and if 
Spouse A's mood affects Spouse B's mood, then Spouse 
B's mood will also be affected on Monday.” 

 
Participants were randomly assigned (between-subjects) 

to view graphs of the temporally dependent or temporally 
independent data. At the start of the scenario, the graph 
showed the data points for Spouse A and Spouse B visible 
for Day 1. Participants clicked a button to gradually reveal 
each subsequent day with a 1 second delay between clicks. 
The delay was to encourage participants to reason about the 
data sequentially, rather than clicking through the graph and 
retrospectively inspecting the data. After the entire graph 
was revealed, participants were prompted to respond on a 
scale of 1 (“Confident that Spouse A’s mood influenced 
Spouse B’s mood”) to 9 (“Confident that Spouse B’s mood 
influenced Spouse A’s mood”). The midpoint 5 was labeled 
“Not sure about the direction of the relationship”.  

Each participant worked with 8 graphs and made 8 
judgments. For each graph, Spouse A and B were randomly 
assigned to the roles of X (which we predict will be 
interpreted as the cause) or Y (which we predict will be 
interpreted as the effect). 

Results 
We recoded the inferences so that 9 meant a participant 
strongly inferred that X→Y and 1 meant that participants 
strongly inferred X←Y; 5 meant that a participant did not 
infer a causal direction. For each participant we took the 
average of his or her eight judgments. The transition-based 
learning hypothesis predicts that participants will in general 
tend to infer X→Y; so their scores should be greater than 5. 
Indeed, participants in the temporally dependent condition 
had scores that were, on average, significantly higher than 5 
(M = 5.83, SE = .20), t(49) = 4.10, p < .001.  

An unequal variances t-test also revealed that participants 
in the temporally dependent condition scored higher than 
the temporally independent condition (M = 4.72, SE = .11), 
t(77.5) = 4.75, p < .001. This ensures that the inferences of 
causal direction were not due to differences in the variance 
of X and Y but rather the transitions in the data. 

Experiment 2 
Experiment 1 was intended to be as similar as possible to 
the previous experiments with binary variables. Experiment 
2 takes the next step in testing the generalizability of 
transition-based learning by adding noise into the 
transitions. In Experiment 2, during ΔXΔY transitions, X 
and Y sometimes changed the same amount and sometimes 
by different amounts.  

Methods 
Participants A new group of 129 participants were 
recruited on MTurk. We intended to recruit 100 participants; 
however, due to a programming error after the main part of 
the study was over, 29 participants returned the HIT even 
though they completed the study. We analyzed all the data. 
The experiment lasted between 10-15 minutes and 
participants were paid $1.50.  
Stimuli and procedure Data was presented to participants 
in the same form as Experiment 1. The transition 
characteristics were the same as in Experiment 1, except in 
the following ways. First, during the ΔXΔY transitions, the 
change in Y would be within +/-1 of the change in X. For 
example, if X changed by +3, Y could change by +2, +3, or 
+4, with equal probability. Thus, during ΔXΔY transitions 
X and Y always changed in the same direction. 
Additionally, during ΔXΔY transitions X was required to 
change by at least 2 points in either direction. We eliminated 
the possibility of X changing by only 1 point, because then 
it would be possible for X to change by +1 and Y to not 
change at all (i.e., the noise in Y could cancel out the change 
in X). As in Experiment 1, 1000 graphs were generated and 
for each graph a temporally independent version was 
created by randomizing the trials. All other stimuli and 
procedural characteristics were similar to Experiment 1.  

Results 
As in Experiment 1, participants in the temporally 
dependent condition continued to infer that X→Y was more 
likely than X←Y (M = 5.74, SE = .185), t(64) = 3.99, p < 
.001. Participants were more likely to infer X→Y in the 
temporally dependent than independent condition (M = 
4.79, SE = .11), t(106.34) = 4.35, p < .001. 

Experiment 3 
The purpose of Experiment 3 was to test whether people 
continue to infer causal direction with even more noise in 
the transitions so that it was not always clear what type of 
transition had occurred. Similar to Experiment 2, during 
ΔXΔY transitions X and Y change to varying degrees. In 
addition, now during No Δ transitions both X and Y change 
slightly from their previous states. Additionally, during ΔY 
transitions (a shock to Y), X changes slightly from its 
previous state. In sum, X and Y are still highly (but not 
perfectly) dependent on their previous states. 

The added noise meant that it was much harder to 
determine what type of transition had occurred (ΔXΔY, ΔY 
or No Δ). Or equivalently, it was much harder to identify if 
any change in a variable was due to a shock that transferred, 
a shock that did not transfer, or noise (with no shock).  

First, consider what would happen with a shock to X, 
S(X). If S(X) is large, then it would also produce a large 
change in Y leading to a clear ΔXΔY transition. However, 
suppose there is a small shock increasing X while the noise 
to Y is negative, cancelling out the increase in Y that would 
have been produced by S(X). In this case it would appear as 
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if a ΔX transition had occurred. Because the asymmetry 
between ΔX vs. ΔY is critical to inferring causal direction, 
such transitions would make it harder to identify X→Y as 
the true direction. 

Next, consider what happens when there are shocks to Y. 
With a large S(Y), Y would change significantly more than 
X (which changes a fairly small amount due to noise) 
leading to a clear ΔY transition. This can be seen in the first 
transition (from Time 1-2) in Figure 2. However, suppose 
that S(Y) produces a small increase in Y and the noise to X 
is positive. This would make it appear that a ΔXΔY 
transition had occurred because X and Y both increase by 
similar magnitudes (see the final transition from Time 11-12 
in Figure 2). If a shock to Y appears as ΔXΔY instead of 
ΔY it would make inferring causal direction harder because 
the asymmetry between ΔX and ΔY is reduced. 

 
Figure 2: Sample stimuli for Experiment 3, in which shocks 
do not need to be at least +/-2. Note: true stimuli spanned 25 
time points. In this graph, A = X and B = Y. ΔXΔY and ΔY 
transitions are marked by the boxes, No Δ transitions are 
unmarked (no markings were present in the experiment). 

 
Finally, consider transitions without any shocks. Without 

any noise these transitions would be interpreted as No Δ 
transitions. However, when there is noise they would not 
necessarily be interpreted as No Δ. If either X or Y changes 
significantly more than the other the transition could be 
interpreted as ΔX or ΔY. If X and Y both happen to change 
a fairly large amount in the same direction, it might appear 
that a ΔXΔY transition has occurred. 

In sum, when trying to determine what kind of transition 
just occurred participants needed to distinguish shocks from 
noise. We propose that larger differences in the magnitudes 
of shocks vs. noise will enable participants to better 
distinguish the transition types that enable inferences of 
causal direction. To test this, we created two conditions. In 
the “big shock” condition, the shocks to X and the shocks to 
Y were at least 2 points in either direction, similar to 
Experiment 2, which ensured that their magnitudes were 
appreciably greater than the variations expected from noise. 
In the “any size shock” condition, there was no minimum 

magnitude for shocks. Sometimes small shocks occurred 
which could be confused with noise, making it more 
difficult to track what kinds of transitions had occurred and 
infer a causal direction. This manipulation sought to 
investigate the boundary conditions of transition-based 
learning by asking three questions: 1) Would people still be 
able to infer causal direction in the “big shock condition”? 
This condition is considerably harder than Experiments 1 
and 2 which involved considerably less noise. 2) Is it harder 
to infer causal direction in the “any size shock” condition 
than the “big shock” condition? 3) Are people still able to 
infer causal direction in the “any size shock” condition? 

Methods 
Participants 100 new participants were recruited on MTurk 
but 3 returned the HIT; we analyzed data for all 103 
participants. Similar to Experiments 1 and 2, participants 
were paid $1.50 for the 10-15 minute experiment. 

Stimuli. Data were presented to participants in graphs 
similar to Experiments 1 and 2, but with several differences 
in how they were generated. Firstly, the states of variables 
were continuous (there was no rounding to the closest 
integer). Secondly, on each transition noise was introduced 
to variables that did not undergo shocks. Noise, the change 
from the prior state, was sampled from a normal distribution 
(M = 0, SD = 0.2). This ‘noise distribution’ generally led to 
smaller changes than those produced by shocks to X and Y. 

For No Δ transitions, the new states X1 and Y1 were each 
equal to their prior states plus noise sampled from the noise 
distribution (i.e. X1 = X0 + noise, Y1 = Y0 + noise) 

For ΔXΔY transitions, a new state was sampled for X (a 
shock to X). In the “big shock” condition, the magnitude of 
the change was always greater than 2 in either direction. In 
practice, the state was sampled from the normal distribution 
(M = 5, SD = 1.5), and resampled if the change was less 
than 2. In the “any size shock” condition, this requirement 
was dropped, so the shock to X could result in a change of 
less than 2. The new state of Y was equal to the change in X 
plus noise sampled from the noise distribution. 

For ΔY transitions, a new state for Y was sampled from 
the (M = 5, SD = 1.5) normal distribution. In the “big 
shock” condition, similar to the ΔXΔY transitions, the new 
state had to differ from the prior state by at least 2. This 
requirement was dropped for the “any size shock” 
condition”. The new state of X would be equal to its prior 
state plus noise from the noise distribution (i.e. X0 + noise). 

Figure 2 shows an example from the “any size shock” 
condition. The first ΔY transition (Time 1-2) shows a shock 
to Y that produces a change of roughly -2. The second ΔY 
transition (Time 11-12) shows a shock to Y that produces a 
change of roughly +1. Because X happens to increase 
slightly at the same time the transition from Time 11-12 
might appear as a ΔXΔY transition. In the “big shock” 
condition, all shocks would appear similar to the former.  

Participants were randomly assigned (between-subjects) 
to either the “big shock” or “any shock” condition and 

ΔY 

ΔXΔY 
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worked with eight graphs. Experiment 3’s procedures were 
otherwise identical to the previous experiments. 

Results 
Participants in the “big shock” condition were still able to 
infer causal direction above chance; the scores were higher 
than 5 on average (M = 5.34, SE = .19), t(50) = 1.77, p < 
.05. However, participants in the in the “any size shock” 
condition did not score significantly higher than 5 (M = 
5.05, SE = .15), t(51) = .363, p > .05. An unequal variances 
t-test comparing the two conditions was not significant, 
t(93.467) = 1.19, p > .05. In sum, with big shocks relative to 
noise participants were still able to infer causal direction; 
however, compared to previous experiments this ability was 
reduced. 

General Discussion 
Previous work has shown that people infer causal direction 
by how two variables, X and Y change over time. In series 
where Y changes but X does not (a ‘shock’ to Y but stable 
X), people tend to infer that Y does not influence X. If there 
are other transitions in which both X and Y change 
simultaneously, people tend to infer that X causes Y. 
However, the previous research only used simple cases with 
binary variables (Rottman & Keil, 2012).  

Across three experiments we systematically made the 
inference more complicated by using ordinal and continuous 
variables and adding noise in how X and Y change. 
Participants were still able to use this transition-based 
learning process for inferring causal direction with ordinal 
variables with no noise (Experiment 1) and with ordinal 
variables with some noise in the ‘shocks’ (Experiment 2). 
Experiment 3 involved noise in both ‘shocks’ and in ‘stable’ 
periods. When the shocks were large and could be 
distinguished from the stable periods people still inferred 
causal direction above chance, but when the shocks were 
small and could be confused with the stable periods people 
were not able to reliably infer the causal direction.  

Implications and Questions for Causal Inference  
This research raises a number of implications and open 

questions for causal inference. Relatively little causal 
learning research has investigated ordinal and continuous 
variables, especially for inferring causal direction. In the 
current research the explanation of how people inferred 
causal direction relied upon categorizing transitions as ΔX, 
ΔY, ΔXΔY, or No Δ, reducing continuous stimuli to 
categorical transition types. It will be important to validate 
the use of these categories, to understand if and how people 
spontaneously categorize transitions in these types, and to 
understand more specifically how noise makes the 
categorization process harder. In addition, it will be 
important to understand how people infer the direction of 
positive vs. negative causal relations; with noise in a 
positive relation X and Y can sometimes change in opposite 
directions. 

Another question is whether the general type of learning 
process in this manuscript can be viewed as a normative or 
rational inference. There is a growing field of machine 
learning and econometrics devoted to identifying causal 
direction from time-series data (e.g., Moneta & Spirtes, 
2006; also see Rottman & Keil, 2012).  

More broadly, this research underscores that people are 
highly sensitive to transitions in how variables change over 
time, not just the states of the variables. This was 
demonstrated by the difference between the temporally 
dependent vs. independent conditions in Experiments 1 and 
2 as well as the explanation for how people learn causal 
direction. Many theories of causal inference focus 
exclusively on the states of variables within individual 
trials, not how the variables change over time, thus ignoring 
an important part of causal learning. 

In conclusion, being able to infer causal direction is a 
critical ability that allows us to effectively navigate and 
manipulate the world. There are a variety of ways that 
people learn causal direction. Manipulation and observing a 
delay between a cause and effect are very strong cues to 
causal direction. But presumably there are a host of other 
more subtle cues that people use in environments in which 
manipulation is not possible and delays are not present. 
Uncovering when various cues to causal direction are used 
and the boundaries of these cues will be vital for a fuller 
understanding of the breadth of human causal inference. 
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