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Systems/Circuits

Unexpected Role of Physiological Estrogen in Acute Stress-
Induced Memory Deficits

AQ:au

AQ:or

Rachael E. Hokenson,1† Annabel K. Short,2† Yuncai Chen,2 Aidan L. Pham,2 Emily T. Adams,1

Jessica L. Bolton,2 Vivek Swarup,3 Christine M. Gall,1,3 and Tallie Z. Baram1,2,4*

1Departments of Anatomy and Neurobiology, 2Pediatrics, 3Neurobiology and Behavio, and 4Neurology, University of California-Irvine, Irvine,
California 92697

Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances,
are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings,
assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound
and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of
hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular
mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent
spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus
(low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice
stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced
spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks inter-
connected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions,
including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional con-
nectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact
of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.

Key words: estrogen; hippocampus; memory; sex differences; stress; synapses

Significance Statement:

Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultane-
ously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-de-
pendent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced
stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions intercon-
nected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment.
Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females,
providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic
stress disorder.

Introduction
Chronic stress (lasting days to weeks) disrupts hippocampus-de-
pendent spatial memory (Sunanda et al., 2000; Kleen et al.,
2006). Conversely, acute stress (lasting minutes to hours) can
enhance memory and promote survival (Sandi et al., 1997; Uysal
et al., 2012; Brivio et al., 2020). Surprisingly, we have previously
discovered that, as opposed to a single acute stress, several short
stressors imposed simultaneously (multiple concurrent acute
stresses [MAS]) impair spatial memory in male rats and mice
enduringly (Chen et al., 2010, 2016; Maras et al., 2014). This is
important because such acute traumatic events, consisting of
combined and simultaneous physical, emotional, and social
stresses, are increasingly recognized to provoke memory-related
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problems, including post-traumatic stress disorder (North et al.,
1994; Tempesta et al., 2012; Lowe and Galea, 2017; Musazzi et
al., 2017; Novotney, 2018).

Stress and memory processes, and their interactions, differ
across sexes. Males and females generally excel in different types
of memory, and sex can influence the cognitive strategies an ani-
mal uses to solve a task (Qiu et al., 2013). Some of these differen-
ces are hormone-independent, whereas others are strongly
influenced by the estrous cycle and associated fluctuations in
the sex steroid hormones estrogen and progesterone. For hip-
pocampus-dependent spatial memory, high estrogen levels,
whether exogenous or naturally occurring, often facilitate
memory (Gresack and Frick, 2006; Tuscher et al., 2019; Luine
and Frankfurt, 2020), potentially by increasing synapse-bearing
dendritic spines (Gould et al., 1990; Woolley et al., 1990; Vierk et
al., 2014). However, high estrogen levels, whether endogenous or
experimentally induced, may also worsen hippocampus-dependent
memory and plasticity (Warren and Juraska, 1997; Snihur et al.,
2008; Barha et al., 2010; Tanaka and Sokabe, 2013; Sabaliauskas et
al., 2015). Notably, estrogen effects on hippocampal memory are
highly sex-specific, with the estrogen requirement generally thought
to be more pronounced in females (Vierk et al., 2012; Frick et al.,
2015; Wang et al., 2018).

Sex differences are prominent in the mechanisms and conse-
quences of stress. Compared with male rodents, females mount a
greater neuroendocrine response to stress (Heck and Handa, 2019;
Zuloaga et al., 2020). This response may be hormone-dependent,
as higher estrogen levels are associated with greater stress responses
(Viau and Meaney, 1991; Lund et al., 2006; Liu et al., 2011).
Furthermore, female rodents can be affected by stresses that may
have the opposite effects in males (Bowman et al., 2001; Luine,
2002; Conrad et al., 2003; Ortiz et al., 2015; Peay et al., 2020).

Memory deficits are a common and understudied component
of stress-related disorders, and susceptibility can differ between
sexes (Christiansen and Hansen, 2015; Olff, 2017). Therefore, it
is imperative that studies probing the biological substrates of
stress-related memory deficits be expanded to include females
and analyzed with respect to sex hormones. We have previously
shown that MAS impairs hippocampus-dependent memory and
dendritic spine integrity in male mice. Here we tested whether
MAS affects hippocampus-dependent memory in female mice
and determined the impact of sex hormone fluctuations across
the estrous cycle on protection or vulnerability to MAS. Spatial
memory, assessed using two independent memory tasks, was
impaired following MAS in female mice with high physiological
levels of estradiol (entering proestrus), and spared in females
stressed during estrus, when estradiol levels are at their nadir.
Dendritic spine density in dorsal CA1, thought to be a proxy for
excitatory synapses, was reduced in high estradiol females follow-
ing MAS. Fos expression, a marker of neuronal activation, was
differentially distributed in high- and low-estrogen stressed
females, delineating functional networks across salient brain
regions that differentiated these groups.

Materials and Methods
All experiments were conducted according to National Institute of
Health guidelines on laboratory animal welfare and approved by the
Institutional Animal Care and Use Committee at the University of
California-Irvine.

Animals
Two- to 4-month-old female virgin C57BL/6J or B6.Cg-Tg(Thy1-YFP)
16Jrs/J transgenic mice, expressing YFP under control of the Thy1

promoter (Thy1-YFP), were received from The Jackson Laboratory or
bred in house. Mice were group-housed 2–5 mice per cage in a quiet,
uncrowded facility on a 12 h light/dark cycle (lights on at 6:30 A.M.)
with ad libitum access to water and food (Envigo Teklad, 2020x, global
soy protein-free extruded). Female mice were housed with same-sex
cage mates in individually ventilated cages with Envigo 7092-7097
Teklad corncob bedding and iso-BLOX nesting material. Temperature
was maintained between 22°C and 24°C. The number of animals used is
detailed in each respective methods subsection. AQ:B

Estrous cycle monitoring
Estrous cycle phases were monitored daily via vaginal cytology. Briefly, a
PBS-moistened small cotton-tipped applicator (Puritan 890-PC DBL)
was inserted into the vagina, and the walls of the vagina were scraped for
cells. These cells were then smeared across a gelatin-coated microscope
slide (Fisherbrand 12-552-3). After drying, slides were stained with
methylene blue using the Shandon Kwik-Diff Kit (Thermo Fisher
Scientific, 9990700), and cell types were identified under a microscope to
classify cycle phases (Caligioni, 2009; Byers et al., 2012). Vaginal smears
were collected within the first four hours of the light cycle, except on the
day of MAS (or control), where they were collected up to an hour before
lights on. Cycles were monitored for at least two complete cycles before
behavioral or histologic assessments. Mice were selected to be in early
proestrus/high estradiol (E2) or estrus/low estradiol (E2) at the time of
MAS. For cases in which the mouse was not killed on the day of MAS,
estrous cycle smears were collected for at least one more day to ensure
accurate cycling. Specifically, mice classified as estrus/low E2 on the day
of MAS were either still in estrus or beginning metestrus by the next day
depending on cycle length. Mice classified as early proestrus/high E2 for
MAS were late proestrus to early estrus the next day. If these cycle classi-
fication conditions were not met, the mouse was excluded from behav-
ioral analysis. Mice that were not cycling were not used or experiments
were postponed until normal cycling was reestablished. We limited our
proestrus groups to early proestrus, when estradiol levels are high and
before the progesterone surge (Becker et al., 2005), although we did not
measure progesterone and cannot exclude its potential effects. To quan-
tify vaginal smear cell type composition, images of the smears were taken
under 4�magnification. Cell types were manually classified by a trained
observer and counted by overlaying a grid over the image through
ImageJ. Cell types were expressed as percentage of smear.

Multiple concurrent acute stresses (MAS)
Mice from both cycle phases were assigned to the MAS group or to the
home-cage control group. The MAS paradigm involves exposing mice to
simultaneous physical, emotional, and social stresses. Briefly, mice were
individually restrained in a ventilated 50 ml plastic tube. Two to six mice
were placed in a cage atop a laboratory shaker in a room bathed with
loud (90 dB) rap music and bright lights for 2 h. This protocol is
described in detail at Bio-protocol (Hokenson et al., 2020) and has been
used in other studies (Maras et al., 2014; Chen et al., 2016; Libovner et
al., 2020). MAS started within the first 2 h of the light cycle. For behav-
ioral assessments, mice underwent MAS for 2 h, were returned to the
homeroom for 1 h, then moved to the behavioral testing suite to accli-
mate for 1 h before tests. For spine and fos experiments, mice underwent
MAS for 2 h and then were immediately anesthetized for perfusions.
Home-cage control (unstressed) mice were taken from their home cage,
immediately injected with a lethal dose of a 1:10 dilution of Euthasol
(488mg/kg pentobarbital sodium and 63mg/kg phenytoin sodium, in-
traperitoneally) in the vivarium, and transported to the laboratory for
perfusion.

Learning and memory tests
Object location memory (OLM) task. The OLM task is hippocam-

pus-dependent (Vogel-Ciernia et al., 2013). OLM was performed as
illustrated in F1Figure 1A (adapted from Vogel-Ciernia and Wood, 2014).
Mice were handled for at least 2 min a day for at least 6 d, first in the
housing room and then in the behavioral suite for the last few days.
After handling, mice were habituated to an empty experimental appara-
tus for 10 min a day for 5–11d. If the mouse was not in a proper cycle
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phase on the sixth day, habituation continued until the mouse was in an
appropriate phase. In the training portion of the OLM task, two identical
objects were presented to the mouse for 10 min. This training session
took place 2 h after the cessation of MAS. Twenty-four hours later, one
object (counterbalanced) was moved and exploration was recorded for
5 min. Object exploration was scored by observers unaware of the exper-
imental groups using BORIS version 6 (Friard and Gamba, 2016).
Investigation was defined as the mouse’s nose being pointed toward the
object within 1 cm distance; time climbing or biting an object was not
included. Object preference was defined as the amount of time exploring
the displaced object divided by time exploring the unmoved object, with
a ratio of 1 indicating no preference. Total exploration time was calcu-
lated and compared across groups. Mice were excluded if they explored
for,10 s total during training, ,5 s total during testing, or,1 s explo-
ration for a single object. No mice had an object bias during training
(ratio,0.5 or.2.0) that would warrant exclusion. Nine to 11 mice were
used per group. Four mice were excluded from analyses for under explo-
ration (one per group), and 2 mice were excluded because of incorrect
cycle determinations (one in each early proestrus group).

Spatial Y-maze task. The spatial Y-maze is a hippocampus-de-
pendent task (Conrad et al., 1996; Sarnyai et al., 2000) that offers the
advantage of a short training-to-testing interval, such that both are
accomplished within the same day. The Y-maze was performed as illus-
trated in Figure 1C (adapted from Mo et al., 2014) in a separate cohort
of mice. Mice were handled for at least 2 min a day for at least 6 d, first
in the housing room and then in the behavioral suite. Distal cues were
arranged around the Y-maze. In the training portion, one arm (coun-
terbalanced) was closed off with a divider. For 10 min, the mouse was
permitted to explore the home arm (the arm into which they were ini-
tially placed) and the familiar or open arm. The mouse was then
returned to their cage for a 1 h intertrial interval. The divider was then

removed; and in the 5 min testing phase, the mouse
was permitted to explore all three arms of the
Y-maze. Whether the mouse’s first entry was into the
novel or familiar arm during the testing phase was
recorded. The number of entries into the novel arm
were compared with entries into the familiar arm as
an assessment of location preference. Total arm
entries were calculated for the training phase (home
and familiar) and the testing phase (home, familiar,
and novel) to compare general exploration between
groups. Furthermore, distance traveled during train-
ing and testing was used to compare general activity
between groups. Video tracking software (Noldus
Ethovision 15) was used to compute distance traveled
and arm entries. Seven to nine mice were used per
group, and no mice were excluded from these
analyses.

Uterus dissection
Uterine indices were determined by standardizing the
uterus wet weight with the animal’s body weight
((uterine weight (g)/body weight (g)) � 100). The
mouse was weighed, and vaginal smears were taken
before death. Animals were killed via rapid decapita-
tion (10:00 AM to 12:00 PM) and the uterus was
removed. All surrounding tissues, including fallopian
tubes, were removed and uterine wet weight measure-
ments were taken. Uteri were harvested without
knowledge of cycle phase, thus resulting in uneven
group sizes (eight uteri were from mice in low E2 and
17 uteri were from mice in high E2). No mice were
excluded from these analyses.

Brain processing and analyses
Analyses of dendritic spines and fos expression were
conducted immediately after MAS or in unstressed
controls. Immediately after being removed from MAS,
mice were anesthetized with a lethal dose of a 1:10
dilution of Euthasol (488mg/kg pentobarbital sodium
and 63mg/kg phenytoin sodium, intraperitoneally)

and perfused intracardially with freshly prepared 4% PFA in 0.1 M so-
dium PB, pH 7.4, 4°C. Brains were cryoprotected and sectioned into
20mm slices.

Imaging and quantification of hippocampal dendritic spines
Using the Thy1-YFP mice, which allow for clear visualization of axon
terminals, neurons were chosen using systematic unbiased sampling
from the dorsal hippocampus (Chen et al., 2001). CA1 pyramidal
neurons were selected for analyses to include equal representation of
long- and short-shaft populations. z-stack images were captured, recon-
structed, and drawn using a Carl Zeiss 510 confocal microscope with
63� objective, ImageJ (version 2), and Adobe Photoshop (version 5).
The second to fourth apical dendritic branches of CA1 pyramidal neu-
rons were collected at 0.2mm focal steps through the entire depth of
each dendrite. Six neurons from six sections per animal, and 4 or 5 ani-
mals per group were evaluated.

The number of spines (spine density) was quantified comparing den-
dritic branches of the same order. Reconstructed spines were identified
and characterized (Chen et al., 2013); mushroom-type and thin spines
were compared (mushroom and thin spines were combined to compute
total spines), and filopodia were excluded. Spine density was expressed
as the number of spines per 10mm of dendrite length. No correction fac-
tors were applied to the spine counts because high-magnification neuro-
nal reconstruction permitted all spines of a given dendritic segment to
be visualized. All analyses were performed without knowledge of treat-
ment group, and 2 mice (1 from each high E2 group) were excluded for
improper cycle categorization.

Figure 1. Spatial memory impairment following MAS is limited to mice entering proestrus. A, For the OLM task,
mice were habituated to the apparatus several days before MAS. At 2 h after MAS, mice were trained and then
memory was tested 24 h later. B, Estrus control, estrus MAS, and early proestrus control mice preferentially explored
the object in a novel location, whereas early proestrus MAS mice explored both objects equivalently (n= 9-11/
group). C, For the spatial Y-maze task, 2 h after MAS, mice were trained in the apparatus with one arm closed.
After 1 h, mice were reintroduced to the maze with the previously closed arm (the novel arm) now open. D,
Most mice of both control groups and most estrus MAS mice entered the novel arm as their first choice,
whereas the first entry being the novel arm for MAS early proestrus mice was below chance. E, Estrus control,
estrus MAS, and early proestrus control mice entered the novel arm more frequently than the familiar arm,
whereas early proestrus MAS mice entered the novel and familiar arms equally (n= 7–9 per group).
pp, 0.05 (post-test). Points represent scores of individual animals. Connected points are matched samples
within an animal. Error bars indicate6 SEM.AQ:N
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Imaging and fos expression analyses
An avidin-biotin complex, DAB reaction was used to visualize Fos protein
in the anterior paraventricular thalamus (PVT), paraventricular nucleus of
the hypothalamus (PVN), dorsal hippocampus (cornu ammonis, dentate
gyrus: CA1, CA2/3, DG), amygdala (central, basolateral, medial: CeA,
BLA, MeA), anterior division of the bed nucleus of the stria terminalis
(BNST), and septum (lateral [LS], medial [MS]) for each mouse. Sections
were washed with PBS with 0.3% Triton X-100, quenched with 0.09%
H2O2, then blocked with 2% normal goat serum and 1% BSA. Sections
were incubated overnight at room temperature in rabbit anti c-Fos primary
antibody (1:10,000, Sigma Millipore, ABE457, lot #3088370), washed, then
incubated for 40min in biotinylated goat anti-rabbit IgG (1:400, Vector
Laboratories, BA-1000). Sections were stained with Vectastain Elite avi-
din-biotin complex peroxidase kit for 3 h, stained for DAB (Vector
DAB peroxidase substrate kit), then mounted and coverslipped with
Permount mounting medium.

Images of sections were taken at 4� magnification (Nikon Eclipse
E400, Nikon DS-Fi3, NIS-Elements F version 4.60.00). One section per
region was analyzed, and borders of the entire region were delineated
with reference to a mouse brain atlas (Sidman and Pierce, 1971; Paxinos
and Franklin, 2001). Anterior-posterior bregma coordinates of each ana-
lyzed region were as follows: LS and MS 1.18 mm, BNST 0.38 mm, PVT
and PVN �0.56 mm, MeA �1.06 mm, CeA and BLA �1.46 mm, and
CA1, CA2/3, and DG �2.5 mm. The BNST regions included constitute
the anterior division, including the anterolateral and anteromedial areas
according to the Allen Mouse Brain Atlas (Lein et al., 2007). A single,
4� magnified image was analyzed for all regions except the dorsal hip-
pocampus, in which two images were combined. Counts represent uni-
lateral regions except for midline regions (PVT and septal) that were
counted as a single structure (bilateral). Fos1 cells were identified in
ImageJ using the analyze particle function (Schneider et al., 2012).
Images were first converted to 16-bit black and white, the background
was subtracted, and the hole fill feature was used. Fos staining was not
dense enough to warrant any corrections for overlapping particles, and
automated counts were highly correlated with manual fos1 cell identifi-
cation. All analyses were performed without knowledge of treatment
group. All available regions were analyzed in each mouse for 6 or 7 mice
per group, and no mice were excluded from these analyses. Raw fos
counts were scaled (mean normalization) across all brain regions and
groups before computing correlation matrices. Correlation matrices
were used to construct comparative network maps.

Estradiol ELISA
Blood serum estradiol concentration was quantified using a Mouse/Rat
Estradiol ELISA kit (Calbiotech, ES180S-100). The Calbiotech kit has a
3pg/ml functional sensitivity, 3.1% intraassay precision, and 9.9% interassay
precision, as provided by the manufacturer (Haisenleder et al., 2011). Blood
was collected from the mouse after rapid decapitation (9:00 AM to 11:00
AM) and clotted at room temperature for ;30 min. Samples were centri-
fuged at 1100 rcf for 15min. The clear supernatant was collected, stored at
�20°C, and the pellet discarded. Samples were thawed and run in duplicates
according to the manufacturer’s instructions. Absorbances were read within
15 min at 450nm with a microplate reader (BioTek Synergy HTX). Data of
three separate ELISAs were analyzed together, but concentrations per sam-
ple were computed using the standard curve generated during each respec-
tive run. Estradiol was quantified in 12 low E2 and 18 high E2 mice,
classified by matched vaginal smear data. One mouse from the high E2
group was excluded for poor cycling, and 1 mouse from the low E2 group
was excluded because of an error on the ELISA plate. Estrogen levels in the
majority of the estrus group samples fell below the 3pg/ml sensitivity of the
kit and were extrapolated. This approach enabled drawing correlations
between cytology and hormone levels across the cycle phases. We also used
the alternative approach, setting values under the limit at zero (undetect-
able). This approach also yielded robust differences in mean estradiol levels
between high E2 and low E2 and vaginal cytology cell types.

Experimental design and statistical analyses
Statistical analyses were performed using GraphPad Prism version 8.4.2
for Windows (GraphPad software) or R, including packages: igraph,

impute, qqraph, DescTools, Hmisc, and corrplot (Csardi and Nepusz,
2006; Epskamp et al., 2012; Wei and Simko, 2017; Harrell et al., 2020;
Hastie et al., 2020; R Core Team, 2020; Signorell et al., 2020). AQ:CTwo- or
three-way ANOVAs were used for behavioral, spine, and fos data when
two or three factors were analyzed (factors identified in the respective
Results sections). Sidak’s multiple comparisons post-tests were run when
a main effect or interaction was found to be statistically significant (a =
0.05) or if a specific comparison was planned (cases identified in
Results). Uterine indices were compared across the two groups with an
unpaired t test. Estradiol levels and vaginal smear cell types were found
to be not normally distributed by Anderson-Darling test for normality.
A nonparametric, Mann–Whitney test was used to compare estradiol
levels between the two groups. Correlations between estradiol and
estrous cell types were computed using nonparametric Spearman Rank-
Order Correlations. Pearson product-moment correlations were also
computed to generate a best fit line. Correlation matrices for regional fos
expression were computed using Spearman Rank-Order Correlations.
To compare fos activity networks between groups, correlation coeffi-
cients were converted to z scores, and the difference in z scores was plot-
ted using the R package qgraph, which represents an increase or
decrease in correlation (color) and intensity of the difference (line thick-
ness). Differences between z scores were computed by calculating the
zobserved (Zobs = (Z1 – Z2)/(H[(1/n1 – 3)1(1/n2 – 3))), and these values
are presented in T1Table 1. Data point exclusions are elaborated on for
each section of Materials and Methods. The results are reported as
mean6 SEM unless noted otherwise.

Results
Spatial memory deficits provoked by multiple acute
simultaneous stresses (MAS) differ across the estrous cycle
In order to test the potential role of the estrous cycle in the effects
of MAS on spatial memory, female mice underwent MAS either
on entering proestrus or during estrus, phases associated with
high and low physiological levels of estradiol, respectively, and
were then tested for spatial memory. In the OLM task (Fig. 1A),
control mice at both cycle phases performed well. Mice experi-
encing MAS during early proestrus had poor spatial memory
whereas those exposed to MAS during estrus were protected. We
found an interaction of cycle phase � MAS on OLM perform-
ance (F(1,35) = 5.78, p=0.02) and no main effects of cycle phase
(F(1,35) = 2.24, p= 0.14) or MAS (F(1,35) = 1.66, p=0.21; Fig. 1B).
Post hoc testing indicated a difference in performance between
MAS and control in the early proestrus group (t(35) = 2.58, p=0.03)
but not the estrus group (t(35) = 0.80, p=0.68). Furthermore, the
early proestrus MAS group had significantly impaired performance
compared with the estrus MAS group (t(35) = 2.87, p=0.01), while
there were no differences in between control mice of both phases
(t(25) = 0.62, p=0.79).

Notably, differences in OLMwere not attributable to differen-
ces in exploration or object bias. During the training session, the
ratio of time spent exploring the object moved during testing
over the object that stayed in place did not differ among groups
(estrus control 1.056 0.04, proestrus control 1.096 0.08, estrus
MAS 1.036 0.05, and proestrus MAS 0.996 0.07), with no
cycle � MAS interaction (F(1,35) = 0.42, p=0.52), main effect of
cycle phase (F(1,35) = 0.004, p= 0.95), or MAS (F(1,35) = 0.79,
p= 0.38). Similarly, total object exploration times during training
(estrus control 21.516 1.27 s, proestrus control 24.406 2.54 s,
estrus MAS 23.666 1.21 s, proestrus MAS 20.656 1.24 s) did
not distinguish the groups, with no cycle � MAS interaction
(F(1,35) = 3.35, p=0.08), main effect of cycle phase (F(1,35) = 0.001,
p=0.97), or MAS (F(1,35) = 0.24, p=0.63). The testing phase was
also not confounded by total object exploration times (estrus con-
trol 12.556 0.62 s, proestrus control 16.326 1.58 s, estrus MAS
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15.106 1.24 s, proestrus MAS 14.716 1.60 s), with no cycle
phase � MAS interaction (F(1,35) = 2.41, p=0.13), main effect of
cycle phase (F(1,35) = 1.60, p=0.21), or MAS (F(1,35) = 0.13,
p=0.72). Therefore, we concluded that MAS selectively impaired
OLM of female mice during early proestrus but not during estrus.

The design of the OLM test involves training the females on
the day of stress (early proestrus or estrus), and testing 24 h later,

when cycle phase and associated estrogen levels might differ.
Therefore, to determine with greater precision the contribution
of specific cycle phases to the effects of MAS on memory, in a
separate cohort of female mice we conducted a second, inde-
pendent test of spatial memory in which both training and test-
ing take place on the same day. During the testing phase of the
spatial Y-maze task (Fig. 1C), 87.5% of control estrus mice and
75% of control early proestrus mice entered the novel arm first
from the home arm of the apparatus. Of the MAS groups,
71.4% of estrus MAS mice versus 33.3% of early proestrus MAS
mice entered the novel arm first (Fig. 1D). Both control groups
and the estrus MAS group, but not the early proestrus MAS
group entered the novel arm significantly more often than the
familiar arm. A three-way ANOVA indicated a significant main
effect of arm (F(1,28) = 33.32, p, 0.0001; Fig. 1E). There were
no interactions of arm � MAS � cycle phase (F(1,28) = 3.20,
p= 0.08), arm � MAS (F(1,28) = 0.52, p= 0.48), MAS � cycle
phase (F(1,28) = 2.74, p= 0.11), or arm � cycle phase (F(1,28) =
0.41, p= 0.53), and no main effects of cycle phase (F(1,28) = 0.31,
p= 0.58) or MAS (F(1,28) = 2.64, p= 0.12). Post hoc testing indi-
cated a significant preference for entries into the novel versus
the familiar arm in both control groups: estrus (t(28) = 2.69,
p= 0.047) and early proestrus (t(28) = 3.84, p= 0.003), as well as
the estrus MAS group (t(28) = 3.51, p= 0.006) but not in the pro-
estrus MAS group (t(28) = 1.40, p= 0.53). Thus, as found for the
OLM, MAS selectively impaired spatial memory in early proes-
trous female mice in the Y-maze, while sparing mice in estrus.

These spatial Y-maze memory impairments were not attrib-
utable to differences in exploration of the apparatus or overall
locomotion during the training or testing sessions of the task.
Total entries into the open and home arms during training
were equivalent: estrus control 70.636 11.54, proestrus con-
trol 79.136 14.44, estrus MAS 87.716 6.86, and proestrus
MAS 93.006 7.03, with no cycle phase � MAS interaction
(F(1,28) = 0.02, p = 0.88), main effect of cycle phase (F(1,28) =
0.43, p = 0.52), or MAS (F(1,28) = 2.16, p = 0.15). Distance
traveled during the training phase was equivalent across all
groups (estrus control 35006 250.0 cm, proestrus control
33956 235.7 cm, estrus MAS 34356 179.8 cm, and proestrus
MAS 38076 177.0 cm), with no cycle phase � MAS interac-
tion (F(1,28) = 1.24, p = 0.28), effect of MAS (F(1,28) = 0.65,
p = 0.43), or of cycle phase (F(1,28) = 0.39, p = 0.54). During
the testing session, there was an effect of MAS on total
entries (into the novel, familiar, and home arms: estrus con-
trol 34.386 4.76, proestrus control 40.256 5.33, estrus MAS
49.716 3.79, and proestrus MAS 43.226 1.77, F(1,28) = 5.05,
p = 0.03), but no cycle phase � MAS interaction (F(1,28) =
2.30, p = 0.14) or effect of cycle phase (F(1,28) = 0.006,
p = 0.94). The effect of MAS was significant in the estrus
group (t(28) = 2.58, p = 0.03) but not in proestrus (t(28) = 0.53,
p = 0.84). However, the total number of entries did not differ
between the estrus MAS and the proestrus MAS groups
(t(28) = 1.12, p = 0.47) and is thus unlikely to explain the dis-
crepancy in memory performance between these two groups.
During the testing session, there were no differences in dis-
tance traveled (estrus control 2014 6 181.8 cm, proestrus
control 22356 269.5 cm, estrus MAS 23586 92.91 cm, and
proestrus MAS 21656 75.48 cm) with no cycle phase �MAS
interaction (F(1,28) = 2.51, p = 0.12), effects of cycle phase
(F(1,28) = 0.12, p = 0.73), or MAS (F(1,28) = 0.29, p = 0.59).
Together, these data dismiss the likelihood that reduced ex-
ploration explains the impaired performance in the Y-maze
of early proestrous mice subjected to MAS.

Table 1. Difference between correlation coefficients (Zobs) across conditions

Region

Control: high
E2 vs low
E2 (Zobs)

High E2:
MAS vs
control (Zobs)

Low E2:
MAS vs
control (Zobs)

MAS: high
E2 vs low E2
(Zobs)

CeA and BNST 0.61 0.20 �0.67 1.50
BLA and BNST 0.98 0.38 0.58 0.92
BLA and CeA 0.46 �0.21 �0.71 0.92
dCA1 and BNST 1.30 �0.12 �0.57 1.44
dCA1 and CeA 0.16 0.57 �0.29 1.02
dCA1 and BLA 1.07 0.35 1.91 �0.21
dCA2/3 and BNST �0.31 1.90 �1.22 2.66
dCA2/3 and CeA �0.21 �0.44 �0.81 0.00
dCA2/3 and BLA �0.01 0.57 �0.30 0.87
dCA2/3 and dCA1 �0.42 1.82 0.82 0.78
dDG and BNST 0.09 2.30 �0.27 2.60
dDG and CeA 0.37 0.20 1.26 �0.48
dDG and BLA �1.04 0.68 �1.35 0.89
dDG and dCA1 �0.23 1.67 0.69 0.90
dDG and dCA2/3 0.61 1.22 �0.13 1.84
PVN and BNST �0.21 0.73 1.10 �0.53
PVN and CeA �0.66 1.34 0.32 0.50
PVN and BLA �1.23 0.98 �0.22 0.00
PVN and dCA1 �0.12 0.34 �2.61 2.43
PVN and dCA2/3 0.74 0.84 0.23 1.27
PVN and dDG �0.35 0.64 �0.20 0.52
PVT and BNST 0.25 �1.82 0.54 �1.98
PVT and CeA �0.73 �0.03 0.34 �1.13
PVT and BLA �2.23 �0.39 �2.14 �0.80
PVT and dCA1 0.98 �0.88 0.80 �0.73
PVT and dCA2/3 �0.08 �0.80 1.00 �1.70
PVT and dDG �0.83 �1.38 �0.45 �1.69
PVT and PVN 0.45 �1.19 �0.85 0.07
LS and BNST �0.02 1.71 �0.47 2.05
LS and CeA 0.87 �0.25 0.36 0.33
LS and BLA 2.89 �0.11 1.34 1.77
LS and dCA1 �1.02 0.84 �1.78 1.52
LS and dCA2/3 0.15 0.71 �1.05 1.79
LS and dDG 0.90 1.38 0.82 1.44
LS and PVN �1.27 1.94 1.48 �0.85
LS and PVT 1.44 �1.59 2.26 �2.39
MS and BNST �0.83 �0.60 �0.49 �0.85
MS and CeA 0.17 0.63 �0.42 1.31
MS and BLA 2.53 �1.93 0.42 0.25
MS and dCA1 �0.58 0.57 �0.75 0.72
MS and dCA2/3 �0.29 0.19 �0.08 0.00
MS and dDG 0.91 �0.10 �0.41 1.07
MS and PVN �0.70 2.47 0.86 0.80
MS and PVT 0.72 0.45 1.23 �0.14
MS and LS �0.32 �0.88 �1.06 �0.07
MeA and BNST �1.05 0.01 �0.78 �0.37
MeA and CeA �1.15 �0.62 0.33 �2.22
MeA and BLA 0.11 0.68 1.40 �0.42
MeA and dCA1 �1.40 �0.73 �1.40 �0.96
MeA and dCA2/3 �0.76 �0.62 �0.88 �0.67
MeA and dDG 0.56 �0.61 2.19 �1.96
MeA and PVN 1.24 �2.10 0.13 �1.15
MeA and PVT 0.91 0.71 1.10 0.72
MeA and LS �1.49 �0.21 �0.82 �1.07
MeA and MS �1.42 �0.08 �2.03 0.35
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Together, the results of the two inde-
pendent measures of spatial memory dem-
onstrated impaired spatial memory in
mice exposed to MAS during early proes-
trus but not during estrus.

Physiologic estradiol levels are high in
early-proestrous mice that have
impaired memory following MAS
The results above, in which mice in a cycle
phase when estrogen levels are high (early
proestrus) had impaired spatial memory
following MAS, were unexpected. Indeed,
we chose to test female mice in these two
cycle phases with the expectation that
higher estrogen levels might protect mem-
ory in female mice from the impact of
MAS, given that estrogen has been shown
to enhance memory processes and the
structure and function of hippocampal
neurons (Vierk et al., 2014; Wang et al.,
2018) and protect against stress-induced
memory impairments (Wei et al., 2014).
Female mice in estrus, however, had no
MAS-induced memory disturbances. To
verify the congruence of our categorization
and estrogen levels, we measured serum
estradiol in independent cohorts of mice
which were carefully classified for cycle
phase based on daily vaginal smears for a
minimum of two cycles. To further estab-
lish the cyclic physiological functions of
estradiol, we harvested uteri and determined
the estrogen-dependent uterine weight and
uterine index.

First, we established consistent and rig-
orous cycle phases by quantifying the cell
type composition in vaginal smears. Estrous phase smears con-
sisted predominantly of cornified cells. Early proestrous phase
smears had a large proportion of nucleated cells with some leu-
kocytes and some cornified cells. There was an interaction of
cycle phase � cell type (F(2,54) = 57.91, p, 0.0001) and an effect
of cell type (F(1.737,46.91) = 34.26, p, 0.0001), but no effect of
cycle (F(1,27) = 0.5237, p= 0.48;F2 Fig. 2A). Post hoc tests indicated
that the numbers of nucleated (t(17.25) = 8.92, p, 0.0001), corni-
fied cells (t(17.75) = 16.98, p, 0.0001), and leukocytes (t(17.28) =
3.69, p= 0.005) differed between estrous and early proestrous
mice. Because stress can alter the duration of the estrous cycle
(Breen et al., 2012),AQ:D we assessed this parameter in MAS mice: we
monitored each female for 3 or 4 cycles before and after MAS in
a preliminary experiment. The average cycle length did not
change from before to after MAS (pre: 5.196 0.07 d, post:
5.236 0.23 d) and did not differ from a control group (pre:
5.006 0.13 d, post: 4.816 0.17 d). Time point � MAS interac-
tion (F(1,27) = 0.53, p=0.47), effect of time point (F(1,27) = 0.27,
p=0.61), and effect of MAS (F(1,27) = 2.87, p=0.10) were not
statistically significant. Therefore, we concluded that MAS did
not alter the length of the estrous cycle.

We then measured serum estradiol in regularly cycling female
mice. Early proestrous mice had higher concentrations of serum
estradiol than those in estrus (U= 35, p=0.002; Fig. 2B). Further,
serum estradiol levels correlated with the vaginal smear cell type
composition across both phases of the estrous cycle: estradiol

levels of an individual mouse were positively correlated with the
percentage of nucleated epithelial cells in vaginal smears from
the same mouse (Spearman: rs = 0.55, p= 0.002, Pearson: R2 =
0.30, p=0.002; Fig. 2D) and negatively correlated with percent-
age of cornified cells (Spearman: rs = �0.37, p= 0.046, Pearson:
R2 = 0.21, p= 0.014; Fig. 2E). Seeking a second, independent bio-
logical marker of estradiol levels, we determined uterine weights,
which have been shown to fluctuate across the estrous cycle and
depend on systemic estrogen levels (Balmain et al., 1956; Galloa
et al., 1986; Lemini et al., 2015). Uterine indices (uterus weight
(g)/body weight (g) � 100) of mice entering proestrus were
greater than those in estrus (t(23) = 7.52, p, 0.0001; Fig. 2C).
Thus, using vaginal cytology matched with serum estradiol or
uterine weights, we categorized female mice in estrus as low es-
tradiol (E2) and mice in early proestrus as high estradiol (E2).

MAS-provoked loss of hippocampal dendritic spines aligns
with spatial memory impairment
In male mice, in which hippocampal estrogen levels are higher
than in proestrous females (Hojo et al., 2004; Kato et al., 2013),
MAS-induced spatial memory deficits strongly correlate with
loss of apical dendritic spines in dorsal hippocampal CA1 fields.
In addition, the spine loss is most prominent for thin spines,
considered to undergo plasticity during memory acquisition
(Bourne and Harris, 2007; Kasai et al., 2010; Maras et al., 2014;
Chen et al., 2016). Spine density is thought to be a proxy for the
density of excitatory synapses. Therefore, we tested the effects of

Figure 2. Early proestrous mice (those with impaired memory following MAS) have higher levels of circulating estradiol.
Estrous cycles were monitored via vaginal cytology and at the time of the experiment mice were divided into groups that
were early proestrus or estrus. A, Vaginal cytology classifications were done according to relative presence of nucleated epi-
thelial, cornified epithelial, or leukocytes in the sample. High E2 mice had a majority nucleated cells, whereas low E2 mice
had smears consisting of almost entirely cornified cells (n= 11-18/group). B, Mice classified as early proestrus according to
their vaginal smears had higher average estradiol in serum samples as measured by an estradiol ELISA compared with estrus
mice (n= 11-18 mice/group). C, High E2 mice had higher average uterine indices (uterus weight/body weight � 100)
(n= 8-17 mice per group). The amount of estradiol within a sample had a significant. D, Positive correlation with the per-
centage of the smear that consisted of nucleated epithelial cells. E, Negative correlation with cornified cells. From this point
on, early proestrus mice were classified as high E2 and estrus mice were classified as low E2. #p, 0.05, main effect. Points
represent scores of individual animals Error bars indicate6 SEM.
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MAS on apical dendritic spine densities in low E2 and high E2
female mice.

First, we examined whether estrous cycle phases themselves
influenced dendritic spine density in female mice. In rats, hippo-
campal dendritic spine density has been found to fluctuate across
the estrous cycle peaking during proestrus (Gould et al., 1990;
Woolley et al., 1990). Therefore, we compared spine densities
with regards to estrous cycle phase in nonstressed female mice
using planned comparison post-tests for the ANOVAs of each
spine subtype. Mean densities of total or mushroom spines did
not differ between low E2 and high E2 control mice (total: t(12) =
1.882, p=0.16; mushroom: t(12) = 0.16, p=0.98). However, den-
sities of thin spines were significantly higher in high E2 versus
low E2 mice (t(12) = 3.88, p= 0.004;F3 Fig. 3A). We then determined
the effects of MAS on the same dendritic spine subtypes in low
high E2 female mice.AQ:E

MAS reduced spine densities in apical dendrites from dorsal
CA1 of high E2 mice. Whereas cycle phase � MAS interaction
(F(1,12) = 4.41, p= 0.058) and main effects of cycle phase (F(1,12) =
0.32, p= 0.58) and of MAS (F(1,12) = 2.43, p= 0.15; Fig. 3D) were
not significantly different for total spine counts, thin spines were
significantly affected. For thin spines, a significant cycle phase �
MAS interaction was identified (F(1,12) = 11.65, p=0.005) as well
as a main effect of MAS (F(1,12) = 12.99, p= 0.004), but not for
cycle phase (F(1,12) = 4.32, p= 0.06). The difference in thin spine
densities between the control and MAS groups was confined to
the high E2 mice (t(12) = 4.44, p= 0.002; Fig. 3B,C), and not
observed in low E2 mice (t(12) = 0.16, p. 0.99; Fig. 3E). MAS
reduced thin spines in high E2 mice compared with control

density; however, thin spine density did not
differ between low E2 MAS and high E2 MAS
mice (t(12) = 0.94, p=0.94). Mushroom spines
were unaffected (cycle � MAS interaction:
F(1,12) = 0.48, p=0.50; cycle: F(1,12) = 0.22,
p=0.65; or MAS: F(1,12) = 0.006, p= 0.94; Fig.
3F). Thus, in accord with the findings in male
mice, in which hippocampal estradiol is high
and MAS impairs memory, thin dendritic
spines were reduced after MAS only in high
E2 female mice in which memory was com-
promised by MAS.

Differential hippocampal activation
during MAS does not explain estrous cycle-
dependent memory impairment
The estrous cycle has been shown to influence
responses to stress in female rodents (Heck
and Handa, 2019). As both spatial memory
deficits and thin spine loss provoked by MAS
involved the dorsal hippocampus, we tested
whether MAS led to augmented activation of
hippocampal neurons in high E2 compared
with low E2 female mice.

Neuronal activation immediately follow-
ing MAS was assessed using levels of the ac-
tivity-regulated gene product fos as in index
of neuronal activity. The effects of MAS and
estrous cycle phases on fos expression were
examined across subregions of the dorsal
hippocampus. In CA1, a field critical for spa-
tial memory and the site of spine loss follow-
ing MAS in high E2 female mice, there were
no effects of MAS, cycle, or any interactions
(cycle � MAS interaction: F(1,20) = 0.006,

p= 0.94; cycle: F(1,20) = 2.45, p= 0.13; MAS: F(1,20) = 0.16,
p= 0.69; F4Fig. 4A). Similarly, the number of fos1 cells in com-
bined CA2 and CA3 did not differ in regards to cycle phase or
MAS (cycle � MAS interaction: F(1,20) = 0.10, p= 0.75; cycle:
F(1,20) = 3.51, p= 0.08; MAS: F(1,20) = 2.88, p= 0.11; Fig. 4B).
Finally, in the DG, there were more fos1 cells in low E2 mice
than high E2 mice at baseline, with an effect of cycle (F(1,20) =
11.88, p= 0.003), but no cycle �MAS interaction (F(1,20) = 1.67,
p= 0.21) and no effect of MAS (F(1,20) = 1.87, p= 0.19; Fig. 4C).
Fos cell counts differed in the DG between low high E2 mice in
control (t(20) = 3.50, p= 0.005) but not MAS (t(20) = 1.46,
p= 0.29) mice.

To determine whether the MAS protocol used here indeed
led to significant neuronal activation measurable by fos expres-
sion levels, we quantified MAS-induced fos1 cells in the hypo-
thalamic PVN, an established stress-responsive brain region. The
number of fos1 cells in PVN of MAS experiencing mice was sig-
nificantly higher than that in control mice (Fig. 4D). The number
of fos1 cells in the PVN demonstrated main effects of cycle
(F(1,22) = 6.21, p=0.02) and of MAS (F(1,22) = 41.26, p, 0.0001;
Fig. 4E), without cycle � MAS interaction (F(1,22) = 1.18,
p= 0.29). Specifically, the number of fos1 cells was higher in
MAS versus control mice in both cycle phases (low E2: t(22) =
3.77, p=0.002; high E2: t(22) = 5.31, p, 0.0001). Additionally,
the number of fos1 cells following MAS was higher in high E2
compared with low E2 mice (t(22) = 2.44, p= 0.046). This cycle
difference was not observed in unstressed controls (t(22) = 1.03,
p= 0.53). Thus, these data demonstrated that MAS leads to

Figure 3. Dendritic spine loss in CA1 of the dorsal hippocampus is induced by MAS in high E2 but not low E2 female
mice. Dendritic spines were visualized in mice expressing YFP in pyramidal cells under the control of the Thy1 promoter.
A, Under control conditions, mice with higher levels of estrogen had more thin spines but no difference in mushroom or
total (thin1 mushroom) spines. B, High E2 control mice had thin (thin arrows) and mushroom spines (thick arrows) in
the stratum radiatum of CA1. C, After MAS, high E2 mice selectively lost thin spines. Framed areas are enlarged in B-2
and C-2. Scale bars: B-1, C-1, 10 mm; B-2, C-2, 2mm. D, Following 2 h MAS, there was no significant difference in total
number of spines between control or MAS mice in either cycle phase. E, Thin spines were greater in high E2 control
mice than low E2 control mice, but these spines were selectively reduced following MAS in the high E2 phase. F,
Mushroom spines remained intact following MAS in either cycle phase (n= 3-5 mice/group). pp, 0.05 (post-test).
Points represent scores of individual animals. Error bars indicate6 SEM.
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neuronal activation within salient brain regions; and, for the
PVN but not for the hippocampus, high E2 mice have enhanced
MAS-driven neuronal activation.

Importantly, these analyses demonstrated that, although hip-
pocampal memory impairment and dendritic spine loss were
observed preferentially in high E2 mice experiencing MAS, these
effects were not a result of differential hippocampal activation
patterns.

Estrous cycle phase influences neuronal activation in salient
brain regions, and modulates stress-induced activation
Stress-induced dendritic spine loss requires glutamate receptor-
mediated neuronal activation (Andres et al., 2013). Given that
hippocampal activation did not explain the behavioral memory
impairments and dendritic spine loss observed, we examined
activation in salient brain regions, defined as those afferent to, or
interconnected with, the hippocampus that might be differen-
tially affected by MAS or estrous cycle phase and thus drive func-
tional hippocampal impairment. We chose a priori brain regions
involved in stress and memory which are interconnected with
the hippocampus and determined fos expression in several
regions from the same mouse. We identified a significant brain
region � MAS � cycle interaction (F(10 206) = 3.071, p= 0.001) in
a three-way ANOVA, and therefore analyzed each region
independently.

The amygdala is a key node of emotional processing and is
highly susceptible to stress (Zhang et al., 2018). fos1 cells were
quantified in select nuclei of the amygdala and the extended
amygdala in control and MAS-experiencing mice at both high

and low E2 cycle phases. The CeA plays a key role in stress
responses. Analyzing the number of fos1 cells in this nucleus, we
identified a significant cycle � MAS interaction (F(1,20) = 4.48,
p= 0.047), but no effect of cycle (F(1,20) = 0.81, p=0.38) or MAS
(F(1,20) = 0.01, p=0.91). Despite the significant interaction of
MAS and cycle, fos cell number did not differ in the CeA
between control and MAS in either cycle phase (high E2: t(20) =
1.52, p=0.27; low E2: t(20) = 1.48, p=0.29). The number of fos1

cells for the CeA were as follows: low E2 control 26.716 5.38,
high E2 control 20.806 5.85, low E2 MAS 17.006 2.77, and
high E2 MAS 31.676 4.71. We then analyzed fos expression as a
function of cycle phase and MAS in the BLA, which projects
robustly to both ventral and dorsal hippocampus (Pikkarainen et
al., 1999; Petrovich et al., 2001; Beyeler et al., 2018). In the BLA,
there was a significant cycle phase � MAS interaction (F(1,20) =
8.34, p= 0.009), a main effect of MAS (F(1,20) = 18.78, p= 0.0003),
but no effect of cycle (F(1,20) = 0.42, p=0.52; F5Fig. 5A), on the
number of fos1 cells. The numbers of fos1 cells were significantly
increased by MAS in the BLA of high E2 female mice (t(20) =
4.90, p=0.0002), but not in low E2 mice (t(20) = 1.07, p=0.51).
Notably, the number of fos1 cells was higher in control low E2
than high E2 mice (t(20) = 2.48, p=0.04). fos1 cell number in the
BLA was not different between high E2 MAS and low E2 MAS
mice (t(20) = 1.60, p=0.24).

In the MeA, there was a significant main effect of MAS
(F(1,20) = 6.65, p=0.02) but no cycle � MAS interaction (F(1,20) =
1.00, p= 0.33), or effect of cycle (F(1,20) = 0.007, p=0.94; Fig. 5B).
Fos cells were significantly increased by MAS in the MeA of high
E2 mice (t(20) = 2.43, p=0.049) but not in low E2 mice (t(20) =

Figure 4. MAS-induced memory impairments are not explained by differential activation of the dorsal hippocampus. Activation of the dorsal hippocampus and hypothalamic paraventricular
nucleus was assessed by quantifying fos1 cells in control or MAS mice in either cycle phase. A, fos1 cells did not differ with cycle phase or MAS in the CA1 region. B, Numbers of fos1 cells
also did not differ with cycle phase or MAS in the CA2 and CA3 regions. C, In the DG, there was an effect of cycle on fos1 cells, with cell number distinguishing low E2 and high E2 in control
but not MAS mice. D, E, fos1 cells in the hypothalamic PVN were more abundant following MAS in both groups, with a greater increase in activation in the high E2 group (n= 5-7 mice per
group). Scale bar, 100 mm. pp, 0.05 (post-test). Points represent scores of individual animals. Error bars indicate6 SEM.
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1.17, p= 0.45). The anterior division of the BNST, a component
of the extended amygdala, may play a role in inhibiting the neu-
roendocrine stress response by inhibiting the PVN (Radley et al.,
2009; Radley and Sawchenko, 2011). In the anterior BNST, there
was an effect of MAS (F(1,22) = 4.95, p= 0.04) but no cycle �
MAS interaction (F(1,22) = 2.14, p= 0.16), or effect of cycle
(F(1,22) = 0.03, p=0.87; Fig. 5C). MAS increased fos cell number
in the low E2 group (t(22) = 2.61, p= 0.03) but not the high E2
group (t(22) = 0.54, p=0.84).

Septal nuclei, especially the medial septum (MS), are
involved in the generation of the theta rhythm of the hippo-
campus, which supports memory processing (Courtin et al.,
2014). The MS has bidirectional connectivity with the hippo-
campus, whereas the lateral septum (LS) only receives unidi-
rectional afferents from the hippocampus, but the two septal
subregions are interconnected (Tsanov, 2018; Agostinelli et al.,
2019). The number of Fos cells in the MS was influenced by
MAS (F(1,21) = 4.82, p= 0.04), without cycle � MAS interaction
(F(1,21) = 1.41, p= 0.25) or effect of cycle (F(1,21) = 1.37, p= 0.26;
Fig. 5D). Despite an effect of MAS on fos in the MS, there were
no significant differences following MAS in mice from either
cycle phase (high E2: t(21) = 0.73, p= 0.72; low E2: t(21) = 2.35,
p= 0.057). For fos cells in the LS, there was an effect of cycle
(F(1,21) = 4.37, p= 0.049) and of MAS (F(1,21) = 9.18, p= 0.006)

but no cycle � MAS interaction (F(1,21) = 2.11, p= 0.16; Fig.
5E). The increase in fos1 cells following MAS was significant in
the high E2 group (t(21) = 3.23, p= 0.008) but not the low E2
group (t(21) = 1.10, p= 0.49). The number of fos1 cells was
higher in high E2 MAS mice than in low E2 MAS mice (t(21) =
2.46, p= 0.04). Notably, there was no difference between con-
trols at either cycle phase (t(21) = 0.46, p= 0.88).

Arousing conditions including stress can activate the PVT,
which is interconnected with the hippocampus (Kirouac, 2015).
The number of fos1 cells in the PVT was significantly affected by
MAS (F(1,22) = 23.05, p , 0.0001) with no cycle � MAS interac-
tion (F(1,22) = 23.50, p , 0.0001), and no effect of cycle (F(1,22) =
3.06, p= 0.09; Fig. 5F). The MAS-induced increase in fos was sig-
nificant in the high E2 group (t(22) = 6.82, p, 0.0001) but not
the low E2 group (t(22) = 0.03, p= 0.999). There were more fos1

cells in high E2 MAS than low E2 MAS mice (t(22) = 4.49,
p= 0.0004), but there was no difference between the control
groups of either phase (t(22) = 2.28, p= 0.06).

In summary, regions comprising nodes of the hippocampal
network and those involved in stress processing responded to
MAS in a region-specific and estrous cycle-dependent manner
(data summarized graphically in Fig. 5G). Because the combina-
torial activity of these regions and their projections to the hippo-
campus might predict or contribute to MAS-related loss of

Figure 5. Neuronal activation across the brain varies with cycle phase and in response to MAS. fos1 cells were quantified in the BLA, MeA, BNST, MS, LS, and the PVT. A, Whereas there
were fewer fos1 cells in BLA at baseline in the high E2 group, MAS resulted in a significant increase in fos1 cells in this group only. B, In the MeA, MAS increased the number of fos1 cells sig-
nificantly in high E2 mice but not in low E2 mice. C, In the BNST, MAS increased fos1 cell numbers in the low E2 group only. D, In the MS, there was a main effect of MAS that did not differ
between mice at different cycle phases. E, In the LS, there was an increase in fos1 cells following MAS in the high E2 group, but not the low E2 group. F, In the PVT, the number of fos1 cells
was augmented by MAS in the high E2 group only. G, Graphic summary of differences in fos counts across brain regions (n= 5-7 mice per group). pp, 0.05 (post-test). Points represent scores
of individual animals. Error bars indicate6 SEM.
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dendritic spines and spatial memory, we examined the functional
connectivity of these regions, and determined functional network
changes across cycle phases and as a result of MAS.

Differential effects of cycle phase and MAS on functional
networks among brain regions involved in stress and
memory
Complex behaviors, including learning and memory, result from
functional brain networks (Pattwell et al., 2016). Therefore, using
fos expression as a marker of neuronal activity, we examined the
presence of functional connections among the brain regions
identified above. We used Spearman correlation matrices of fos1

cell numbers across all measured regions to identify coactivation
between two given regions. Spearman correlation coefficients
close to 1 indicated a positive relationship of activation between
the two regions whereas values near �1 identified negative (anti-
correlated) relations (Maras et al., 2014; Wiersielis et al., 2016;
Salvatore et al., 2018; Ruiz et al., 2020). Correlation matrices
were computed for each condition (high E2 control, high E2
MAS, low E2 control, and low E2 MAS;F6 Fig. 6A–D). These corre-
lation matrices provided evidence of coactivated regions
associated with each individual condition. Importantly,
they provided a method to compare the direction and
strength of interregional coactivation as a function of MAS
and estrous cycle phase. For example, correlations with the
PVN (Fig. 6, yellow rectangle) are negative in high E2 con-
trol but shift to positive with MAS, whereas such a change
is not evident among low E2 conditions.

We next examined the influence of cycle phase/estrogen levels
and MAS on these putative functional networks. To compare
two networks, correlation coefficients were converted to z scores
(Fisher’s r to z transformation), and the difference between these
scores were calculated. A positive difference between the two z
scores (indicating that the first group had a stronger functional
relationship between the two regions than the second), is
denoted in blue. A negative difference (the first group had a
weaker relation), is denoted in red. In the absence of a difference,
no connection is displayed. All differences in correlation coeffi-
cients (Zobs) are detailed in Table 1, and notable differences are
elaborated on below.

Comparing control mice at high E2 versus low E2 cycle
phases (F7 Fig. 7A), we identified the BLA as a strongly connected
hub in high E2 mice. Specifically, correlated expression of fos1

cells between the BLA and MS (Zobs = 2.53) as well as between
the BLA and LS (Zobs = 2.89) was greater in high E2 versus low
E2 controls (indicated in blue). In contrast, correlations of the
BLA and the PVT, a region involved in processing the experience
of a prior stress (Bhatnagar and Dallman, 1998; Bhatnagar et al.,
2003; Hsu et al., 2014) was reduced (Zobs = �2.23, indicated in
red).

Looking at the consequences of MAS on neuronal coactiva-
tion in high E2 mice (Fig. 7B) there was an increase in correlated
fos expression between the BNST and the DG (Zobs = 2.30), indi-
cating altered coactivation of components of the extended amyg-
dala and the hippocampal network. Coactivation was also
increased between the MS and PVN (Zobs = 2.47) and decreased
between the MeA and PVN (Zobs = �2.10) following MAS.
Compared with the correlation of BLA and MS in high E2 con-
trols compared with low E2 control mice (Fig. 7A), correlation
between these two regions was reduced in high E2 MAS mice
(Zobs = �1.93). In contrast, the effects of MAS on patterns of
coactivation in low E2 mice, which did not lose spatial memory
following MAS, were distinct (Fig. 7C). Following MAS, there

was an attenuation of coactivation between PVN and CA1
(Zobs = �2.61), PVT and BLA (Zobs = �2.14), and MeA and MS
(Zobs = �2.03). Coactivation of LS and PVT (Zobs = 2.26) and
MeA and DG (Zobs = 2.19) was amplified after MAS. Notably,
there was no alteration in correlation between BLA and MS
(Zobs = 0.42) following MAS in the low E2 mice.

These differential effects of MAS on high E2 versus low E2
mice culminated in disparate network connectivity patterns
observed when comparing high and low E2 mice after MAS (Fig.
7D): The high E2 mice (with impaired spatial memory following
MAS) had amplified coactivation between CA2/3 and BNST
(Zobs = 2.66), DG and BNST (Zobs = 2.60), PVN and CA1 (Zobs =
2.43), and LS and BNST (Zobs = 2.05). Amplified coactivation
between BNST and DG, the first node in the hippocampal trisy-
naptic pathway, and BNST and CA2/3, might indicate tight
relation of salience/fear networks and the hippocampus, poten-
tially intruding on and disrupting normal memory processes.
Furthermore, there was attenuated coactivation between PVT
and BNST (Zobs = �1.98), LS and PVT (Zobs = �2.39), MeA
and CeA (Zobs = �2.22), and MeA and DG (Zobs = �1.96).

Discussion
The principal findings of these experiments are as follows:
(1) MAS impair spatial memory in female mice, as previously
found for males, and this impairment depends on the phase of
the estrous cycle. (2) Spatial memory is impaired by MAS in pro-
estrous females, when physiological estradiol levels are high,
but not during estrus, when estradiol levels are low. (3) Loss of
hippocampus-dependent memory is accompanied by loss of
dendritic spines, a proxy for excitatory synapses, in hippocam-
pal CA1 of high-estrogen females only. (4) Activation of brain
regions interconnected with the hippocampus, at basal condi-
tions and following MAS, is modulated in a cycle-phase-de-
pendent manner, suggesting a role for augmented network
connectivity in the MAS-provoked memory disruption of high
E2 females.

The present findings that higher levels of systemic estradiol in
a female mouse predict stress-induced memory impairment
were unexpected (Fig. 1). Estradiol is thought to be neuroprotec-
tive following stress or other neurologic disorders (Azcoitia et al.,
2019). For example, repeated restraint stress impaired temporal
order recognition memory in male rats, whereas female rats were
protected. These differences were estrogen-dependent because
blocking estrogen production or receptors during stress rendered
females vulnerable and activating estrogen receptors in males
protected their memory (Wei et al., 2014; Luine, 2016). In vitro,
corticosterone may rapidly suppress NMDA-derived excitatory
postsynaptic potentials in male hippocampal slices, but this sup-
pression is abolished by estradiol (Ooishi et al., 2012). Notably,
deleterious effects of higher estrogen levels during stress have
been reported: high estrogen levels accelerated the acquisition of
a conditioned response, but also provoked a more severe impair-
ment following tail shock (Shors et al., 1998). Ovariectomy
resulted in greater fear conditioning freezing behavior in females,
and estradiol treatment reduced both contextual fear condition-
ing and hippocampal LTP (Gupta et al., 2001). Female rats in
proestrus were more sensitive to an acute stress that impaired
PFC-mediated spatial delayed alternation task compared with
those in estrus (Shansky et al., 2006). Estradiol replacement in
ovariectomized mice, although it increased contextual fear mem-
ory formation, reduced contextual fear extinction (McDermott
et al., 2015). Together, these studies and others (Shansky et al.,

J_ID: JNEURO Date: 3-December-20 4/Color Figure(s): "F1-F7" ART: JN-RM-2146-20 Page: 10 Total Pages: 16 Comments:

ID: upalkars Time: 23:53 I Path: //mbnas01.cadmus.com/home$/upalkars$/SN-JNSJ200720

10 • J. Neurosci., 0, 2020 • 41(4):000 Hokenson et al. · Estrogen in Stress-Induced Memory Deficits



2004, 2009) indicate that estrogen is not universally protective,
and the interaction of stress and estrogen on memory is complex.
Hormone levels, whether these were endogenous or exogenous,
delivery regimen, period of deprivation, stressor type, memory
task, time of day, and the underlying brain regions and networks
are all crucial in interpreting the interactions between estrogen,
stress, and memory (Holmes et al., 2002; McLaughlin et al., 2008;
Barha et al., 2010; Babb et al., 2014; Korol and Pisani, 2015;
Graham and Scott, 2018; Duong et al., 2020).

Here we examined the role of endogenous, physiological es-
tradiol and the fluctuations of its levels throughout the estrous
cycle in the effects of stress on memory. We first established the
congruence of vaginal smears and estradiol levels (Fig. 2). Stress
can alter cycle-dependent hormone fluctuations and estrous
cycle duration (Galea et al., 1997; Shors et al., 1999; Liu et al.,
2011; Wagenmaker and Moenter, 2017; Blume et al., 2019), but
we excluded effects of the stressor used here on the duration of
the estrous cycle. We focused on multiple acute concurrent
stresses, such as those involved in mass shootings, assault, or nat-
ural disasters, events increasingly associated with the develop-
ment of memory disorders. We have previously established that

MAS-induced memory disruption and the associated spine col-
lapse and synapse loss in males are attributed to the convergent
activation of corticotropin releasing hormone receptor 1 and glu-
cocorticoid receptor on dendritic spines (Chen et al., 2008,
2016). Downstream mechanisms of activation of both receptors
converge on the RhoA-pCofilin signaling pathway (Chen et al.,
2008). A role for estrogen in the effects of MAS on memory in
males has not previously been suspected, although male hippo-
campal levels of estrogen are higher than those of proestrous
females (Kato et al., 2013). The hormone is involved in memory
processes and interacts with dendritic spines via the same RhoA-
Cofilin pathway (Kramár et al., 2009a, 2009b, 2013; Chen et al.,
2013). In the current study, MAS-induced memory impairment
required high physiological estrogen levels in females (Fig. 1).
This raises the possibility that, during cycle phases with high es-
tradiol, activation of the classical stress-responsive receptors,
glucocorticoid receptor and corticotropin releasing hormone
receptor 1, is accompanied by synergistic engagement of estro-
gen receptors (ERa, ERb , GPER, or a combination, within
the hippocampus) (Mehra et al., 2005), to destabilize spines (Fig.
3), potentially via a converging signaling pathway. Additionally,

Figure 6. Correlated neuronal activity is influenced by estrous cycle phases and MAS. Patterns of neuronal activity were inferred by computing the Spearman correlations of scaled counts of
fos1 cells among all brain regions. Within conditions, correlation matrices were computed for the following: A, High E2 control. B, High E2 MAS mice. C, Low E2 control. D, Low E2 MAS. As an
example of MAS-induced changes of correlated activity, yellow rectangle represents correlations with the PVN. Many PVN correlations are negative in high E2 control but shift to positive with
MAS, whereas such a change is not evident among low E2 conditions.
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high estrogen levels augment the stress
response (Lo et al., 2000; Borrow and
Handa, 2017; Heck and Handa, 2019).
This amplified neuroendocrine stress re-
sponse may contribute to the disruption of
memory processes. Finally, while we selec-
ted mice in early proestrus when progester-
one levels are low, a role of progesterone
cannot be excluded. Progesterone has
been demonstrated to counteract memory-
promoting actions of estrogen (Chesler and
Juraska, 2000; Harburger et al., 2007) as well
as to modulate how stress impacts memory
(Graham and Daher, 2016; Cohen et al.,
2020). These hypotheses should be topics of
future studies.

A need for afferent excitatory activation
of the hippocampus for MAS-induced
memory and dendritic spine loss is appa-
rent from studies showing that corticotro-
pin releasing hormone-induced spine loss
requires glutamatergic receptor-mediated
neuronal activation (Andres et al., 2013).
Indeed, afferent regions identified here
were differentially activated by MAS and
cycle. MAS drove an increase in fos expres-
sion in the hypothalamic paraventricular
nucleus in both cycle phases, but this acti-
vation was stronger in the high E2 mice
(Fig. 4), perhaps suggesting augmented
neuroendocrine stress response. The num-
ber of MAS-induced fos1 cells in the baso-
lateral and medial amygdala, regions with
monosynaptic connections to hippocam-
pus (Pikkarainen et al., 1999; Petrovich et
al., 2001; Beyeler et al., 2018), as well as the
LS and the paraventricular nucleus of the
thalamus, was selectivity increased in
high estrogen females (Fig. 5). The BLA
has been implicated in driving stress-
induced hippocampal memory impair-
ment (Rei et al., 2015) and the LS demonstrates a positive rela-
tionship with the intensity of a stressor (Úbeda-Contreras et
al., 2018), suggesting that their projections to the hippocam-
pus may contribute to loss of dendritic spines and memory
function. These salient, hippocampus-projecting regions dis-
cussed above may work in concert to increase excitatory input
to the hippocampus and promote spine diminution.

In males, MAS altered the cross-correlated activation between
brain regions projecting to the hippocampus and between hippo-
campal subregions (Maras et al., 2014). Specifically, MAS, in con-
trast to a simple acute stress, reduced cross-correlation between
the hippocampal formation and the septum and thalamus,
regions involved in sensory processing, and enhanced coactiva-
tion of the hippocampus to the amygdala and extended amyg-
dala, regions of the salience network. Using the same approach
employed successfully by other groups (Wiersielis et al., 2016;
Salvatore et al., 2018; Ruiz et al., 2020), we identified key differ-
ences between functional networks of high E2 and low E2 female
mice both at baseline and in response to MAS. As previously
established in males, augmented cross corelated activation of
extended amygdala and the hippocampus was identified in high
E2 MAS females (Fig. 6D). Before stress, high E2 mice had

greater correlation of fos expression between the BLA and MS
compared with low E2 controls (Fig. 7A). The BLA and MS are
thought to drive excitation in the hippocampus in a coordi-
nated manner (Spanis et al., 1999; Bergado et al., 2007), which
might support hippocampal memory. We found that, in high
E2 females after MAS, correlated activity between the BLA and
MS was diminished (Fig. 7B), potentially reflecting disruption
of network function supporting memory. As mentioned, hippo-
campal estradiol levels are generally higher in both males and
proestrous females, consistent with the notion that estradiol
may influence functional network activity, acting at the circuit
levels in addition to actions at receptors on individual dendritic
spines.

In conclusion, the current studies describe an important cor-
relation of high physiological levels of estradiol to stress-
induced memory impairments. This potentially deleterious role
of estradiol is novel and underscores the need for careful and
nuanced studies of the role of sex and sex steroids on the effects
of distinct stresses in distinct contexts (Simmons et al., 2020).
Such studies and an improved understanding of the underlying
mechanism are a prerequisite for elucidating the biology under-
lying sex differences in post-traumatic stress disorder and other
stress and memory-related disorders.

Figure 7. Comparing correlated neuronal activity among groups uncovers connectivity patterns that may con-
tribute to MAS-induced memory impairments. To compare the differently active networks between conditions,
Spearman correlations (see Fig. 6) were transformed to z scores that were compared between pairs of groups.
Differential connectivity networks were constructed that indicated relationships that were increased (blue) or
decreased (red) in Group 1 (first group listed) compared with Group 2 (second group listed). Line thickness indi-
cates the intensity of this difference. Comparative functional networks were constructed for the following: A,
Control: high E2 compared with low E2. B, High E2: MAS compared with control. C, Low E2: MAS compared with
control. D, MAS: high E2 compared with low E2 mice.
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