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Dynamics of Centromere and Kinetochore Proteins:
Implications for Checkpoint Signaling and Silencing

ate and release an inhibitor that prevents an E3 ubiquitin
ligase, the anaphase-promoting complex or cyclosome
(APC/C), from ubiquitinating substrates (e.g., securin)

Jagesh V. Shah,1 Elliot Botvinick,2,3 Zahid Bonday,1

Frank Furnari,1 Michael Berns,2,3

and Don W. Cleveland1

1Ludwig Institute for Cancer Research whose proteosome-mediated destruction is required for
advance to anaphase [3, 4]. The APC/C’s activity is regu-Department of Cellular and Molecular Medicine and

2 Department of Bioengineering lated by a variety of factors during the cell cycle (for
review, see [5]). During activation of the mitotic check-University of California at San Diego

La Jolla, California 92093 point, Cdc20 is responsible for directing the APC/C to-
ward targets that promote the onset of anaphase. The3 Beckman Laser Institute

Department of Biomedical Engineering mitotic checkpoint is thought to act by preventing the
association of Cdc20 with the APC/C or by preventingUniversity of California at Irvine

Irvine, California 92597 Cdc20 bound to APC/C from productively recognizing
the substrates whose ubiquitination (and subsequent
destruction) is required for anaphase. Thus, each unat-
tached kinetochore is thought to generate a “wait-ana-Summary
phase” signal that acts upon Cdc20 to prevent ana-
phase.Background: The mitotic checkpoint prevents the on-

The current body of evidence indicates that a singleset of anaphase before all chromosomes are attached
unattached kinetochore is sufficient to prevent the onsetto spindle microtubules. The checkpoint is thought to
of anaphase [6, 7] through the production of one oract by the catalytic generation at unattached kineto-
more wait-anaphase signals. Signal generation requireschores of a diffusible “wait signal” that prevents ana-
action of at least three kinetochore bound kinasesphase. Mad2 and Cdc20, two candidate proteins for
(Mps1, Bub1 [Budding uninhibited by benzimidazole 1],components of a diffusible wait signal, have previously
and BubR1), implicating the catalytic production of suchbeen shown to be recruited to and rapidly released from
a wait signal. For example, activation of BubR1 kinaseunattached kinetochores.
activity at kinetochores, via binding to the kinetochore-Results: Fluorescence recovery after photobleaching
associated microtubule binding kinesin CENP-E [8, 9],demonstrated that Mad1, Bub1, and a portion of Mad2,
is essential for a single unattached kinetochore to pro-all essential mitotic-checkpoint components, are stably
duce a checkpoint signal that is sufficiently robust tobound elements of unattached kinetochores (as are
block progression to anaphase. Further evidence con-structural centromere components such as Centromere
sistent with a catalytic cycle was provided by fluores-protein C [CENP-C]). After microtubule attachment,
cence recovery after photobleaching (FRAP) experi-Mad1 and Mad2 are released from kinetochores and
ments in which an essential [10] mitotic-checkpointrelocalize to spindle poles, whereas Bub1 remains at
component, Mad2 (Mitotic arrest-deficient 2), was shownkinetochores.
to rapidly release and rebind at unattached kinetochoresConclusions: A long residence time at kinetochores
with a half recovery time of approximately 25 s [11].identifies Bub1, Mad1, and a portion of Mad2 as part
Because Mad2 can bind Cdc20 directly and inhibitof a catalytic platform that recruits, activates, and re-
APC/C activity, the turnover at unattached kinetochoresleases a diffusible wait signal that is partly composed
has been posited to represent the generation (and re-of the rapidly exchanging portion of Mad2. The release
lease) of a Mad2-containing wait-anaphase signal [4,of Mad1 and Mad2, but not Bub1, from kinetochores
12, 13]. Cdc20 itself has also been shown to turn overupon attachment separates the elements of this “cata-
at kinetochores with an even faster half recovery timelytic platform” and thereby silences generation of the
of approximately 5 s [14], although this turnover is inde-anaphase inhibitor despite continued rapid cycling of
pendent of microtubule attachment.Mad2 at spindle poles.

A missing component of this model, however, is a set
of proteins responsible for the recruitment, production,

Introduction and release of a wait signal, i.e., the factors that facilitate
the proposed catalysis. One important characteristic of

Genomic integrity is maintained by a number of check- components of such a catalytic kinetochore scaffold
points that act during each cell cycle. The prevention would be a long residence time at unattached kineto-
of gross chromosome missegregation and the resulting chores and therefore a long recovery time after photo-
aneuploidy is carried out by the mitotic checkpoint (also bleaching. In addition, this catalytic machinery would
referred to as the spindle assembly checkpoint; for re- be expected to be deactivated by microtubule attach-
view, see [1, 2]). This signaling network precludes the ment or subsequent tension developed thereafter. The
onset of anaphase until each chromosome has success- chicken homologs of Nuf2 and Hec1/Ndc80 have re-
fully attached, through its kinetochore, to spindle micro- cently been shown to be stably bound to unattached
tubules. Unattached kinetochores are thought to gener- kinetochores [15]. However, these proteins most likely

play a role in kinetochore integrity [16, 17] rather than in
the direct production of the wait signal. To date, proteinsCorrespondence: dcleveland@ucsd.edu
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directly implicated in checkpoint signaling (e.g., Mad2 complete nuclear-envelope disassembly, additional Mad1
bound to unattached kinetochores (Figure 1F, red arrows).and Cdc20) have been shown to be transient elements of

the unattached kinetochore, with each rapidly releasing Kinetochore-associated Mad1 diminished as microtu-
bules attached; almost all (36 of 37) cells proceededand rebinding within a few seconds. This has led to a

prediction [17, 18] that other components, particularly to anaphase after all kinetochores had lost detectable
Mad1 (Figure 1F). After microtubule attachment and dur-the Mad2 binding partner Mad1, may be stably associ-

ated after initial kinetochore binding and serve to recruit ing chromosome congression, Mad1 redistributed to
spindle poles (Figures 1F and 1G, large green arrow-Mad2 and Cdc20 to unattached kinetochores and facili-

tate their rapid conversion into a form(s) that inhibits heads) and along kinetochore fibers (Figure 1G, double
yellow arrowheads). Mad1 was detectable at spindleCdc20’s ability to activate APC/C for ubiquitination of

mitotic substrates. We now test a central aspect of this poles throughout anaphase and the onset of cytokinesis
(Figures 1G, large green arrowheads), decreased at themodel for checkpoint signal generation; using FRAP, we

demonstrate that Mad1, Bub1, and Mad2 are, in part, poles by late telophase, and reassembled at the nuclear
envelope in the subsequent interphase (Figure 1H, smallstably associated with unattached kinetochores and

form a combined catalytic/recruiting element of a kinet- blue arrowheads).
ochore scaffold for generation of a wait-anaphase
signal. Mad1 Is a Stable Component of Unattached

Kinetochores, Spindle Poles,
and the Nuclear EnvelopeResults
The dynamics of Mad1 release and rebinding were fol-
lowed by FRAP with cells expressing the YFP-taggedStable Expression of Human Mad1 Fused
Mad1 fusions. Most Mad1 at unattached kinetochoresto Enhanced Yellow Fluorescent Protein
did not exchange with the soluble cytoplasmic pool (per-Recapitulates Endogenous Mad1 Localization
cent of initial fluorescence recoverd (R%) � 24.4% �To visualize and measure the dynamics of Mad1 during
4.9 standard error of the mean [SEM], n � 18) (Figuresthe cell cycle, we generated polyclonal lines of PTK2
2B and 2E), even when the mitotic checkpoint signaling(Potoroo kidney epithelium) cells to stably express en-
was maximal after nocodazole-induced microtubule dis-hanced yellow fluorescent protein (EYFP or YFP) fusions
assembly (R% � 12.5% � 1.9 SEM, n � 29, Figure 2E).with human Mad1 (HsMad1). Qualitative analysis of the
The portion (approximately 10%–20%) that did releasestable lines indicated an approximately 10% variation
and recover did so very rapidly, with a half-recoveryin expression between individual cells, most likely be-
time of approximately 6 s during normal mitosis (t1/2 �cause of selection by FACS. In contrast with aberrant
5.5 s � 1.3 SEM) or approximately 14 s in nocodazole-nuclear morphology described previously after transient
blocked cells (t1/2 � 13.5 s � 2.0 SEM) (Figure 2E).expression of high levels of human Mad1 [20], there

Redistribution of Mad1 to spindle poles late in mitosiswere no overt defects in cell or nuclear morphology,
revealed that, as for Mad1 at unattached kinetochores,and cells proceeded through mitosis like the parental
most (approximately 80%) was stably bound (R% �cells. Quantitative immunoblotting with an antibody
21.9% � 2.7 SEM, n � 39) (Figures 2B and 2F). Theraised against human Mad1 yielded maximal estimates
small cycling pool showed rapid kinetics (t1/2 � 6.6 s �(Figure 1A) of the levels of the HsMad1 fusions to be
1.1 SEM) that were not significantly different from recov-approximately 1.5-fold and 5-fold (for C-terminal and
ery times measured at kinetochores in normal mitosesN-terminal fusions, respectively) that of the endogenous
or in nocodazole-blocked mitotic cells (Figure 2F). AfterMad1 level. However, because the antibody affinity for
nuclear reassembly in early G1 and throughout in-the PTK2 Mad1 (PtMad1) homolog is very likely to be
terphase, Mad1 was stably bound at the nuclear enve-significantly lower than for hsMad1, the actual levels
lope (Figures 2A and 2D). Neither N- nor C-terminal YFPwere almost certainly significantly lower than these esti-
fusions recovered significantly within 15 min after photo-mates, which is consistent with the absence of an effect
bleaching (R% � 20%, t1/2 � 15 min, n � 21 cells, Figureson nuclear morphology or mitosis.
2A and 2D) at the nuclear envelope or within the nucleo-When antibodies against nuclear pore complex pro-
plasm.teins, centromere proteins, and �-tubulin were used, the

Mad1 fusion proteins localized as expected for endoge-
nous Mad1 [20]. Both Mad1 fusions were enriched at Mitosis-Specific Rapid Exchange of Mad2 Bound

to Immobilized Mad1the nuclear envelope in interphase (Figure 1B), at unat-
tached kinetochores in prophase and prometaphase In contrast to the stability of Mad1 binding to kineto-

chores prior to microtubule capture, Mad2 has pre-(Figure 1C), and at spindle poles from prometaphase
until late telophase (Figures 1D and 1E). Live-cell images viously been demonstrated to cycle rapidly at such ki-

netochores [11]. To test if this dynamic release andconfirmed that Mad1 was concentrated in a punctate
pattern at the nuclear envelope (Figure 1F, small cyan rebinding was selective during mitosis, we generated

polyclonal PTK2 lines expressing human Mad2 fused toarrowheads), consistent with a nuclear pore distribution,
and during mitosis revealed a significant soluble pool YFP (hsMad2/YFP). Qualitative analysis of polyclonal

lines indicated that there was an approximately 20%that was difficult to appreciate in fixed-cell preparations.
As cells entered mitosis, Mad1/YFP fusions accumu- variation between individual cells. There were no gross

changes in mitotic progression (n � 51 cells); however,lated at unattached kinetochores, as seen from the dis-
tinct double dot pattern (Figure 1F, red arrows). After stable expression of YFP fusions did result in a slight
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Figure 1. PTK2 Cells Stably Expressing Mad1/YFP

(A) Immunoblots of PTK2 cell lines stably expressing YFP fusions of human Mad1. A dilution series for each cell line was used to estimate
the average level of overexpression in the polyclonal cell lines. Fixed-cell immunofluorescence on Mad1/YFP fusions (�GFP, anti-green
fluorescent protein) with nuclear-pore complexes (NPC) (B), unattached kinetochores (ACA, anti-centromere antibodies) (C), and spindle poles
(�tub, anti-�-tubulin) in metaphase (D) and anaphase (E) is shown. Also shown are still pictures from live-cell microscopy of PTK2 cells stably
expressing HsMad1-YFP (F and H) or YFP-HsMad1 (G) fusion proteins. Specific subcellular structures such as the nuclear envelope (small
cyan arrowheads), unattached kinetochores (red arrow), spindle poles (large green arrowheads), and spindle fibers (yellow double arrowheads)
become sequentially enriched with Mad1 during mitotic progression. All scale bars represent 10 �m. Time measurements are in minutes and
seconds.

increase (approximately 15%) in the length of mitosis ochores, both C- and N-terminal fusions of Mad2 par-
tially recovered at kinetochores during normal mitoses(see Figure S1). Immunoblotting with an antibody to

hsMad2 (Figure 3A) permitted maximal estimates of ap- (Figure 3C; R% � 60.0% � 2.7 SEM; t1/2 � 10.8 s � 1.2
SEM, n � 60) or in nocodazole-treated, mitotic check-proximately 20-fold and 5-fold the level of endogenous

PtMad2 for the C-terminal and N-terminal fusions, re- point-arrested cells (Figure 3F; R% � 53.8% � 3.1 SEM;
t1/2 � 6.4 s � 0.7 SEM, n � 59). Mad2 that accumulatedspectively. Because this antibody almost certainly has

lower affinity for PtMad2, it is highly likely that the actual near spindle poles after microtubule attachment contin-
ued to cycle as rapidly and to a similar recovery percent-levels were much lower than these estimates, consistent

with absence of the kinetochore-independent mitotic age as Mad2 at kinetochores (Figures 3C and 3G; R �
55.9% � 5.0 SEM, t1/2 � 7.7 s � 1.4 SEM, n � 21). Rapidarrest previously seen after transient expression of high

levels of Mad2 via DNA transfection [19] or in Xenopus release and rebinding was selective for mitotic Mad2;
FRAP of Mad2 bound to the nuclear surface in in-extracts [21].

The Mad2/YFP fusions localized as previously re- terphase recovered very slowly (Figures 3B and 3E;
R% � 20%, t1/2 � 15 min, n � 39 cells), consistent withported [11] for endogenous PtMad2 and successively

accumulated at the nuclear envelope, unattached kinet- a stable Mad1-Mad2 complex attached to the nuclear
envelope. (Unlike for Mad1 [Figure 3B], the entire nucleo-ochores, and spindle poles in fixed-cell immunofluores-

cence and live-cell imaging (see Figure S1). Although plasmic fluorescence of Mad2 was rapidly reduced after
local photobleaching (t1/2 � 5 s, n � 39 cells), implicatingMad2’s binding partner Mad1 was immobilized at kinet-
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Figure 2. Mad1 Is Stably Bound in the Nucleus, at Unattached Kinetochores, and at Spindle Poles

(A) Time series showing the absence of fluorescence recovery of the nuclear envelope and nucleoplasm over a 5 min period in a Mad1-YFP
cell. (B) Time series showing the fluorescence recovery of an unattached kinetochore over a 2 min period in a Mad1-YFP cell (rectangle). (C)
Time series showing the fluorescence recovery of a spindle pole late in mitosis over a 2 min period in a Mad1-YFP cell (circle). All scale bars
represent 10 �m. Time measurements are in seconds. (D) Fluorescence recovery curve for Mad1/YFP fusion protein at a bleached nuclear
envelope (open circles) and in the nucleoplasm (open squares) and an unbleached portion of the same nuclear envelope (filled circles) and
nucleoplasm (filled squares). (E) Fluorescence recovery curves for Mad1 YFP-fusion proteins at an unattached kinetochore (open circle) and
a nocodazole-blocked kinetochore (open square). (F) Fluorescence recovery curves for Mad1 YFP-fusion proteins at a metaphase spindle
pole (open diamond).

a fast diffusive redistribution of the bleached nucleo- mitosis may reflect a cell cycle-dependent change in
Mad1-Mad2 affinity. To test this, we generated HeLaplasmic pool of Mad2/YFP [Figure 3B].)

To further test the transient component of Mad2, we cells that stably express YFP fusions of Mad1 or Mad2.
Endogenous Mad1 concentration was determined to beserially photobleached unattached kinetochores (see

Figure 4). The first photobleaching event resulted in ap- approximately 20 nM by quantitative immunoblotting,
with purified recombinant Mad1 used as a standardproximately 50% recovery (R% � 53.3 � 1.8 SEM, n �

10), whereas the second resulted in almost complete (Figure 5A). This is 10 times lower than Mad2 measured
in a similar manner in the same lysates (approximatelyrecovery (R% � 86.8 � 2.6 SEM, n � 10) (see Figure 4D).

The increased efficiency of recovery after the second 200 nM, Figure 5B). The cells stably expressing the YFP-
Mad1 fusion accumulated it to approximately five timesphotobleaching event was also seen with nocodazole-

blocked cells (R1% � 48.9 � 2.0 SEM to R2% � 82.8 � (or about 100 nM) the endogenous level (Figure 5C) (simi-
4.5 SEM n � 11, see Figure 4D). The increase in the lar to results for the PTK2 stable line; data not shown).
subsequent bleaching event demonstrates that the ini- YFP fusions of Mad1 or Mad2 were depleted from
tial pool of recovered Mad2 is indeed transiently associ- cell lysates by immunoprecipitation (Figure 5C, unbound
ated with unattached kinetochores. In addition, the in- lanes) and coprecipitated proteins were detected by
creased recovery (approximately 90%) indicates that immunoblotting. In Mad1/YFP cells, anti-GFP depletions
the system is capable of measuring essentially complete coprecipitated little, if any, of the endogenous HeLa
recovery of photobleached fluorophores. Mad1 (Figure 5C, lane 3), demonstrating that even when

highly expressed, the YFP fusions do not form dimers or
higher oligomers with the endogenous Mad1, in contrastMad1 Is Saturated with Mad2 in Interphase

and Early in Mitosis with what has been proposed for Mad1 in some models
of the mitotic checkpoint [18, 22]. In both randomly cy-The stability of Mad2 binding at the nuclear envelope in

interphase versus its rapid release and rebinding during cling and mitotic cells, Mad1/YFP fusion immunoprecip-
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Figure 3. A Portion of Mitotic Mad2 Is Stably Associated with Unattached Kinetochores and Spindle Poles

(A) Immunoblots of PTK2 cell lines stably expressing YFP fusions of human Mad2. A dilution series for each cell line was used for estimating
the average level of overexpression in the polyclonal cell lines. (B) Time series showing the absence of fluorescence recovery of the nuclear
envelope and fast fluorescence recovery in the nucleoplasm over a 6 min period in a Mad2-YFP cell. (C) Time series showing the partial
fluorescence recovery of an unattached kinetochore over a 2 min period in a YFP-Mad2 cell (square). (D) Time series showing the partial
fluorescence recovery of a spindle pole late in mitosis over a 2 min period in a Mad2-YFP cell (square). All scale bars represent 10 �m. Time
measurements are in seconds. (E) Fluorescence recovery curve for Mad2/YFP fusion protein at a bleached nuclear envelope (open circles)
and in the nucleoplasm (open squares) and an unbleached portion of the same nuclear envelope (filled circles) and nucleoplasm (filled squares).
(F) Fluorescence recovery curves for a Mad2 YFP-fusion protein at an unattached kinetochore (open circle) and a nocodazole-blocked
kinetochore (open square). (G) Fluorescence recovery curves for Mad2 YFP-fusion protein at spindle poles (open diamond).

itates also contained a significant proportion (approxi- CENP-C and Bub1 Are Both Stable Components
of Kinetochoresmately 50%) of the total Mad2 independently of the

position of the YFP (data not shown), whereas Mad2/ To investigate the possible kinetochore stability of other
checkpoint proteins, we expressed YFP fusions of theYFP immunoprecipitation codepleted all endogenous

Mad1 (Figure 5C, lanes 2 and 7). Mad2/YFP fusions constitutive centromeric protein, CENP-C, and the kinet-
ochore kinase Bub1, known to be essential for the mi-also coprecipitated endogenous Mad2 both in randomly

cycling and in mitotic cells (Figure 5C, lanes 3 and 8), totic checkpoint in yeast [23–25] and metazoans [26–29].
For both fusion proteins, expression by transient trans-indicating the presence of complexes with two or more

molecules of Mad2, as previously postulated [12, 19, 22]. fection resulted in kinetochore localization during mito-
sis (Figures 5A and 5B). Throughout mitosis, both pro-The data above demonstrate that Mad1 is saturated

with Mad2 in randomly cycling cells and early in mitosis teins remained bound to kinetochores, although Bub1
decreased in intensity after kinetochore attachment. Un-(nocodazole). However, immunofluorescence and live

imaging have demonstrated that although Mad2 disso- like Mad1 and Mad2, Bub1 and CENP-C did not relocal-
ize to spindle poles after kinetochore capture (Figuresciates from the pole at anaphase, Mad1 stays bound to

spindle poles until late telophase. Thus, most spindle 6A and 6B).
Upon photobleaching, neither CENP-C nor Bub1 re-bound Mad1 does not remain bound to Mad2 after ana-

phase, i.e., after the spindle checkpoint has been satis- covered significantly during normal mitosis (Figures 5C
and 5D, CENP-C: R% � 10%, t1/2 � 15 min, n � 20;fied.
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Figure 4. Transient Pool of Mad2 Recovers Completely

(A) Time series of two serial bleaches of an unattached kinetochore. The first bleach eliminates the stable pool and a transient component,
whereas the second bleach eliminates only the transient pool. (B) Fluorescence recovery curves for the serial bleachings. (C) Average recovery
percentage for first bleach versus subsequent bleaches in normal mitoses and in the presence of nocodazole. All scale bars represent 10
�m. Time measurements are in seconds.

Figure 5. Mad1 Is Saturated with Mad2
throughout the Cell Cycle

(A) A dilution series of recombinant Mad1 pro-
tein and HeLa cell lysate shows intracellular
Mad1 concentration. (B) A dilution series of
recombinant Mad2 protein and HeLa cell ly-
sate shows intracellular Mad2 concentration.
(C) HeLa cell lysates stably expressing YFP-
Mad1 or Mad2-YFP were immunoprecipi-
tated with anti-GFP antibodies or an IgG con-
trol. Immunoblots of input cell lysates (input),
unbound supernatant, and IP bound material
(2.5� loaded) are shown.
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Figure 6. CENP-C and Bub1 Are Stable Components of Kinetochores throughout Early Mitosis

(A) Time series showing the absence of fluorescence recovery of unattached and attached kinetochores over a 6 min period in a YFP-Bub1
cell (rectangle). (B) Time series showing the absence of fluorescence recovery of unattached and attached kinetochores over a 4 min period
in a YFP-CENP-C cell (rectangle). All scale bars represent 10 �m. Time measurements are in seconds. (C) Fluorescence recovery curve for
YFP-Bub1 fusion protein at a kinetochore (closed square). (D) Fluorescence recovery curve for YFP-CENP-C fusion protein at a kinetochore
(closed square).

Bub1: R% � 10%, t1/2 � 15 min, n � 21) or when the kinetochores; Mad1 is stably bound, whereas a propor-
tion of the Mad2 rapidly releases and rebinds. Thus,mitotic checkpoint was maximally signaling after noco-
Mad1 initially recruits Mad2 to these kinetochores, butdazole treatment (Figures 6C and 6D).
Mad2 is rapidly released and a new Mad2 subunit re-
cruited from the large cytoplasmic pool. Previous workDiscussion
after microinjection of fluorescently tagged Mad2 in
early mitosis or in cells transiently expressing GFP-A Role for an Immobile Mad1/Mad2 Complex
tagged Mad2 had reported a full recovery (R% � 100)at the Nuclear Envelope?
after photobleaching of Mad2 at unattached kineto-Mad1 and Mad2 are immobilized together at the nuclear
chores [11]. Here, using stable expression of modestenvelope (Figure 7A), similar to the static binding known
levels of Mad2, we have shown that the recovery offor other envelope components, including nuclear pore
Mad2 is significantly lower (R% � 55%). This discrep-complexes [30]. A role for mitotic checkpoint proteins
ancy is not due to a limited pool of YFP/Mad2 fusions(including Mad1 and Mad2) at the nuclear pore has been
available for recovery in the stably transfected cells be-proposed in yeast [31], specifically in nuclear transport.
cause serial photobleaching of kinetochores results inIn addition, the Bub3 paralog (or analog) Rae1 has been
approximately 90% recovery. Moreover, serial photo-implicated in nuclear transport [32]. Altogether, the data
bleaching demonstrates that the initial kinetochorefirmly suggest an as-yet-unidentified interphase role for
bound pool of Mad2 is comprised of approximatelymitotic checkpoint proteins at nuclear pores. The relo-
equal amounts of rapidly exchangeable Mad2 and an

calization of Mad1 and Mad2 to unattached kineto-
equivalent proportion that does not turnover within the

chores at mitotic onset has also been seen for bona
few minutes between serial photobleaches. This stable

fide nuclear pore complex components [33], indicating pool is seen in our cell lines that have expressed steady
a possible pre-kinetochore complex that may exist at levels of YFP/Mad2 fusions for more than 20 generations
the nuclear envelope in interphase. but was not observed after microinjection of fluores-

cently tagged Mad2 early in mitosis or transient expres-
Stably Bound and Rapidly Cycling sion of what may be very high levels of Mad2 [11]. The
Mad2 at Kinetochores simplest resolution of these contrasting findings is that
We have shown here that Mad1 is saturated with Mad2 the stably bound pool of Mad2 represents the initial
during much of the cell cycle. Despite this, the stable Mad2 that was trafficked in late prophase from the nu-
association of Mad2 at the nuclear envelope abruptly clear envelope to the kinetochore in association with
changes after nuclear envelope disassembly and at- Mad1 and which associated with Mad1 much earlier in

the previous cell cycle. Transiently labeled products,tachment of the Mad1-Mad2 complex to unattached
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Figure 7. A Model for Checkpoint Activation
and Silencing Based on Kinetochore Protein
Dynamics

(A) Stable kinetochore components, CENP-C,
Bub1, Mad1, and a portion of cellular Mad2
act to activate cytoplasmic Mad2 and pro-
duce a “wait-anaphase” signal inhibiting the
activity of the APC/C. (B) Upon microtubule
attachment, Mad1 and Mad2 relocalize to
spindle poles, where a portion of Mad2 re-
mains dynamic but, without the catalytic ma-
chinery (e.g., Bub1 remaining at the kineto-
chore), the Mad2 does not form the “wait
signal” and the APC/C is free to ubiquitinate
anaphase-promoting substrates.

including those injected after mitotic entry or even syn- Mad2 molecules acting at kinetochores as a component
thesized throughout much of the preceding interphase, of the signal production cascade but also demonstrates
would not enter this stable pool until subsequent cell that recruitment of rapidly cycling Mad2 to those kineto-
cycles. chores is through a [Mad1-Mad2]-Mad2 association

rather than simply [Mad1]-Mad2 (Figure 7A). Moreover,
although a Mad2 mutant (R133A) that is apparently de-The Mad1/Mad2 Complex as Part of a Catalytic
fective in oligomerization binds to unattached kineto-Platform for Producing a Mad2-Containing
chores and produces a robust mitotic arrest [19], the“Wait-Anaphase” Signal
absence of homo-oligomerization of this Mad2 mutantCurrent models of wait-signal generation in the mitotic
offers no evidence against a continued interaction ofcheckpoint all hinge on the ability of an unattached ki-
the mutant with immobilized, wild-type Mad2 at kineto-netochore to rapidly produce an at least partially diffus-
chores. Indeed, in light of our evidence, this explanationible inhibitor [13]. Because this is facilitated by unat-
seems likely to us to be how such a Mad2 mutant partici-tached kinetochores to which a series of essential
pates in mitotic arrest.checkpoint components, including three kinases, must

All of this combines to support a proposal that thebe bound, these kinetochores almost certainly catalyze
Mad1-Mad2 complex forms a core, or scaffold, ontoinhibitor generation and release. From a combination of
which additional Mad2 molecules may bind [22]. Thethe stable association of Mad1, a portion of Mad2, Bub1,
basis for such a stably bound Mad1-Mad2 complex mayand CENP-C at unattached kinetochores and the Mad1
lie in a striking Mad2 conformational change upon itsrequirement for Mad2 recruitment to kinetochores [21,
binding to Mad1, as suggested by the use of peptides34], we conclude that Mad1, or more precisely the stable
to mimic interactions of the full-length subunits. ThisMad1/Mad2 complex initially recruited to kinetochores,
has lead to a “safety belt” mechanism in which thismust represent a critical component of the catalytic plat-
conformational change of Mad2 reorients the protein’sform required to prevent anaphase onset.
C terminus to form a loop enclosing its binding regionFang et al. have previously proposed an oligomeriza-
for Mad1 [22, 34]. This leads to the proposal that thetion-based model of Mad2 activation based solely on
immobilized, or scaffolded, Mad1-Mad2 bound at kinet-the products of bacterial expression [12]. The existence
ochores is the complex that acts as a template for theof a stable Mad2 population at unattached kinetochores

not only provides initial in vivo evidence for multiple catalytic conversion and release of soluble Mad2 mole-
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Cambridge, MA) and the full-length human Mad2 cDNA from Gouweicules in a form that inhibits either Cdc20 or a Cdc20-
Fang (Stanford University, Stanford, CA). Full-length human Bub1APC/C complex. The nature of the “activated” Mad2
and CENP-C cDNAs were kindly provided by Frank McKeon (Har-released from kinetochores remains to be identified.
vard Medical School, Boston, MA).

Human Mad1 was fused to YFP through the insertion of a 3	
Silencing Checkpoint Signaling by Dissociation Hind III site by polymerase chain reaction (PCR). Sequencing the
of the Catalytic Mad1/Mad2 Complex after modified Mad1 confirmed the absence of PCR-induced errors. A

BamHI/HindIII Mad1 fragment was ligated into a BglII/HindIII-Microtubule Attachment to Kinetochores
digested EYFP-C1 (BD Biosciences Clontech, Palo Alto, CA) and aSilencing of production of the mitotic checkpoint inhibi-
BglII/HindIII-digested version of EYFP-N1 (BD Biosciences Clon-tor after microtubule capture, for example when CENP-
tech, Palo Alto, CA) that lacked the initial start codon of EYFP. 5	E-mediated binding of spindle microtubules inactivates
KpnI and 3	 BamHI sites were used for fusing human Mad2 to the

the essential BubR1 kinase activity at kinetochores N- and C termini of EYFP in a similar fashion at Mad1. The fusion
[8, 9], forces dissociation of the stably bound Mad1- cDNAs for Mad1 and Mad2 were then excised from each vector
Mad2 complexes from kinetochores and their relocaliza- through an AfeI/MfeI digestion and ligated into the SnaBI/EcoRI

site of the pBABEblast vector, a version of pBABEpuro [38] with ation to spindle poles. They are stably bound there and
blasticidin resistance marker.continue rapid cycling of free Mad2 (the recovery per-

YFP-Bub1 and YFP-CENP-C were generated by excision of thecentage for Mad2 after bleaching at poles was similar to
cDNAs from the provided vectors without any PCR-based modifica-that of unattached kinetochores [approximately 56%]).
tions and inserted into EYFP-C1 and EYFP-C3, respectively (BD

However, without all of the components required for Biosciences Clontech, Palo Alto, CA).
assembly of the catalytic “pocket,” this produces only
soluble Mad2 or a Mad2 form that is quickly deactivated, Cell Culture
rather than an active anaphase inhibitor. Thus, a central PTK2 (Male potoroo Potorous tridactylus kidney epithelial cells) and

all derived cell lines were cultured in minimal essential media supple-aspect of silencing checkpoint signaling is the physical
mented with Earle’s Salts (MEM-Earle’s, Invitrogen, Carlsbad, CA),separation of essential components of the catalytic plat-
10% fetal bovine serum, 0.11 mg/ml sodium pyruvate, 1% nones-form (Figure 7B). This hypothesis also predicts that re-
sential amino acids, 100 U/ml penicillin, and 100 �g/ml streptomycin.lease of the entire catalytic platform (including Mad1 All cell culture reagents were purchased from Invitrogen (Carlsbad,

and Mad2) from kinetochores by disruption of Hec1/ CA) unless otherwise specified. All chemicals were purchased from
Ndc80 [35] and could explain why the resulting constitu- Sigma-Aldrich (St. Louis, MO) unless otherwise specified.
tive checkpoint signaling, presumably via assembly of For live-cell analysis, cells were cultured in glass-bottomed cham-

bers (Warner Instruments, Hamden, CT) and the media were re-the entire signaling complex at cytoplasmic sites, can-
placed with Leibovitz’s (L-15)-based media (supplemented with 5%not be silenced by microtubule attachment at kineto-
fetal bovine serum, 2.5 mM HEPES [pH 7.2], 4.5 mg/ml glucose,chores. This model is also consistent with the finding
0.11 mg/ml sodium pyruvate, nonessential amino acids, 100 U/ml

that the inability to dissociate kinetochore bound Mad1 penicillin, and 100 �g/ml streptomycin) before being viewed.
from the catalytic machinery, as may occur by the dis- 293-GP cells, which harbor gag and pol genes from the Moloney
ruption of dynein [36], maintains an assembled catalytic murine leukemia retroviral genome, HeLa cells, and derived cells
scaffold and therefore prolongs the generation of the were cultured in Dulbecco’s MEM supplemented with 10% fetal

bovine serum, 0.3 mg/ml glutamine, 100 U/ml penicillin, and 100Mad2-dependent wait signal (designated Mad2* in Fig-
�g/ml streptomycin.ure 7A) and metaphase arrest, even in the presence of

attached kinetochores.
Generation and Characterization of Stable Cell Lines
Retroviral plasmids (pBABEblast-YFP fusions) were cotransfected

Conclusions into 293-GP cells along with the VSV-G pseudotyping plasmid for the
To test central aspects of models governing the mitotic production of amphotropic retrovirus [37] (Fugene, Roche Applied
checkpoint, we have visualized and measured the dy- Science, Indianapolis, IN). The resulting retroviral supernatant was

mixed with 8 �g/ml hexadimethrine bromide (Polybrene, Sigma-namics of CENP-C, Bub1, Mad1, and Mad2. At unat-
Aldrich, St. Louis, MO) and incubated with PTK2 or HeLa cells fortached kinetochores, CENP-C, Bub1, Mad1, and a por-
12 hr. Media were replaced, and the cells were split for selection intion of Mad2 remained stably bound, thereby identifying
2 �g/ml blasticidin after 48 hr. After two weeks of selection, cellsessential components of a catalytic scaffold responsible
were subjected to flow cytometry (FACSVantage, BD Biosciences,

for generation of the wait-anaphase signal. Furthermore, San Jose, CA) for selection of the brightest population (top 5%) and
the presence of a stable Mad2 pool both at the nuclear maintained as a polyclonal line.
envelope and the unattached kinetochore is consistent Transient transfection of YFP fusion cDNAs was accomplished

through the use of the Fugene (Roche Applied Science, Indianapolis,with recruitment to a stable Mad1/Mad2 complex of
IN) according to the manufacturer’s recommended protocol.additional soluble Mad2 molecules, now in the context

of a mitotic kinetochore. Such molecules nclude immo-
Analysis of Stable-Line Protein Expressionbilized Bub1 and collectively result in generation of an
and Immunoprecipitationsactivated Mad2 species as a part of the wait-anaphase
To check protein overexpression in stable lines, we trypsinized cells

signal. After attachment, Mad1 and Mad2 are relocalized from an 80% confluent 100 mm dish and washed them twice in PBS
to the spindle pole, whereas Bub1 remains at kineto- before lysing them in a modified RIPA buffer (10 mM Phosphate
chores, providing a mechanism by which to separate buffer [pH 7.2], 150 mM NaCl, 10 mM EDTA, 1% NP-40, 1% TX-100,

and 0.1% SDS) for 10 min on ice. Mitotic arrest was induced by thethe recruiting and catalytic elements of the wait-signal
addition of nocodazole (Sigma-Aldrich, St. Louis, MO) to 330 nM.generator and thus silencing the mitotic checkpoint.
Protein concentrations were carried out on the soluble supernatant
from lysed cells (10,000 � g, 10 min at 4
C) via the BCA methodExperimental Procedures
(Pierce Chemical Co., Rockford, IL). SDS-PAGE analysis was carried
out on cell lysate samples of equal protein content [38]. Immunoblot-cDNAs and Generation of YFP Fusions
ting was carried out according to standard protocols [39]. For immu-The full-length human Mad1 cDNA was kindly provided by Robert

Hagan and Peter Sorger (Massachusetts Institute of Technology, noprecipitations from polyclonal HeLa lines, soluble lysates were
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incubated with 10 �g anti-GFP or rabbit IgG antibodies and IgG- Acknowledgments
antigen complexes collected with Protein A magnetic particles (Dy-
nal Corporation, Lake Success, NY) and washed extensively. Immu- The authors would like to thank Tatiana Kraseiva, Zifu Wang and

the National Institutes of Health Laser Microbeam and Medical Pro-noprecipitations were analyzed by SDS-PAGE and immunoblotting
via standard methods. Polyclonal rabbit anti-Mad1 antibodies were gram (RR 01192) facility at the Beckman Laser Institute for help

with initial FRAP studies and the University of California-San Diegokindly provided by Michael Campbell and Tim Yen (Fox Chase Can-
cer Center, Philadelphia, PA) [20] and Kuan-Teh Jeang (Johns Hop- Cancer Center Flow Cytometry facility for technical assistance. We

also thank an anonymous referee for the very useful suggestion ofkins University, Baltimore, MD) [40]. Monoclonal Mad2 antibodies
were obtained commercially (BD Biosciences, San Diego, CA). repetitive photobleaching as a way of identifying stable and more

rapidly exchangeable fractions of kinetochore bound Mad2. E.B.
thanks the generous support of the Beckman Fellows program. ThisFixed-Cell Indirect Immunofluorescence
work was supported in part by grants from the National InstitutesIndirect immunofluorescence was carried out via cold-methanol
of Health to D.W.C. (GM 29513) and M.B. (RR 14892) and from the(�20
C) fixation according to standard methods. Anti-nuclear pore
Air Force Office of Scientific Research (F49620) to M.B. Additionally,complex antibodies (Mab 1414, Covance Research Products, Berke-
D.W.C. receives salary support from the Ludwig Institute for Cancerley, CA), anti-�-tubulin antibodies (Sigma, St. Louis MO), and anti-
Research.human Mad2 antibodies (BD Biosciences, San Diego, CA) were

commercially obtained. Anti-centromere antibodies obtained from
human autoimmune serum were a kind gift of Kevin Sullivan (Scripps

Received: November 25, 2003Research Institute, La Jolla, CA). DNA was stained with DAPI, and
Revised: March 11, 2004fixed-cell preparations were mounted in Vectashield (Vector Labora-
Accepted: March 16, 2004tories, Burlingame, CA) supplemented with 10 mM MgCl2.
Published: June 8, 2004

Live-Cell Microscopy and FRAP Instrumentation
Live-cell images were taken on a Nikon Eclipse 300 inverted micro- References
scope (Nikon USA, Melville, NY) with a 60� or 100� high-numerical
aperture (NA 1.4) Plan Apochromat objective lens. Cells were kept 1. Amon, A. (1999). The spindle checkpoint. Curr. Opin. Genet.
at 35
C by a stage heater that accommodated glass-bottomed 35 Dev. 9, 69–75.
mm dishes (Warner Instruments Inc., Hamden, CT). Images were 2. Cleveland, D.W., Mao, Y., and Sullivan, K.F. (2003). Centromeres
collected with a Photometrics COOLSNAP HQ camera (Roper Scien- and kinetochores: from epigenetics to mitotic checkpoint sig-
tific, Tuscon, AZ) (gain � 2, 10 MHz) and captured on a computer naling. Cell 112, 407–421.
through the use of the Metamorph software system (Universal Im- 3. Millband, D.N., Campbell, L., and Hardwick, K.G. (2002). The
aging Corp., Downingtown, PA). Time-lapse sequences were cap- awesome power of multiple model systems: interpreting the
tured with exposure times of 300 ms, at 2 � 2 binning and with complex nature of spindle checkpoint signaling. Trends Cell
interframe intervals from 2 to 30 s. Biol. 12, 205–209.

Some fluorescence recovery after photobleaching experiments 4. Hoyt, M.A. (2001). A new view of the spindle checkpoint. J. Cell
were carried out on a Zeiss Axiovert 200TV inverted microscope Biol. 154, 909–911.
(Carl Zeiss International, Thornwood, NY) equipped with a 63� (high 5. Peters, J.M. (2002). The anaphase-promoting complex: proteol-
NA 1.4) Plan Apochromat objective lens. Images were collected with ysis in mitosis and beyond. Mol. Cell 9, 931–943.
a Photometrics Quantix B57 camera (Roper Scientific, Tuscon, AZ). 6. Rieder, C.L., Cole, R.W., Khodjakov, A., and Sluder, G. (1995).
The imaging system was controlled via the Labview software system The checkpoint delaying anaphase in response to chromosome
(National Instruments). Photobleaching was carried out with the 532 monoorientation is mediated by an inhibitory signal produced
nm line of an Nd:YAG (76 MHz, 70 ps pulse width) laser at 20 mW, by unattached kinetochores. J. Cell Biol. 130, 941–948.
measured at the backplane of the objective. The laser was focused 7. Nicklas, R.B., Ward, S.C., and Gorbsky, G.J. (1995). Kinetochore
onto the backplane of the objective through the lower imaging port chemistry is sensitive to tension and may link mitotic forces to
of the microscope. Other FRAP experiments were conducted with a a cell cycle checkpoint. J. Cell Biol. 130, 929–939.
nitrogen dye (514 nm dye cell) laser system (Photonics Instruments, 8. Mao, Y., Abrieu, A., and Cleveland, D.W. (2003). Activating and
Chicago, IL) adapted onto the live-cell apparatus described above. silencing the mitotic checkpoint through CENP-E-dependent
All the constructs behaved similarly under both FRAP systems. activation/inactivation of BubR1. Cell 114, 87–98.

9. Weaver, B.A.A., Bonday, Z.Q., Putkey, F.R., Kops, G.J.P.L., Silk,
A.D., and Cleveland, D.W. (2003). CENP-E is essential for theFluorescence Recovery after Photobleaching Analysis

Analysis of recovery after photobleaching was done with the Meta- mammalian mitotic checkpoint to prevent aneuploidy due to
single chromosome loss. J. Cell Biol. 162, 551–563.morph software package. Kinetochore and spindle pole recoveries

were carried out according to [41] and [11]. In brief, two concentric 10. Dobles, M., Liberal, V., Scott, M.L., Benezra, R., and Sorger,
P.K. (2000). Chromosome missegregation and apoptosis in miceregions, Alarge and Asmall, around the kinetochore or spindle pole were

delineated. Integrated intensities in both regions (Ilarge and Ismall) were lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645.
11. Howell, B.J., Hoffman, D.B., Fang, G., Murray, A.W., and Salmon,measured, and background-subtracted fluorescence was calcu-

lated according to Isignal � Ismall � (Ilarge � Ismall)/(Alarge � Asmall) � Asmall. E.D. (2000). Visualization of Mad2 dynamics at kinetochores,
along spindle fibers, and at spindle poles in living cells. J. CellHalf recovery times (t1/2) were calculated according to t1/2 � ln(2)/k,

where k is the time constant for a single exponential recovery model. Biol. 150, 1233–1250.
12. Fang, G., Yu, H., and Kirschner, M.W. (1998). The checkpointRecovery percentage was taken as the final plateau intensity minus

the postbleach intensity, all divided by the difference between pre- protein MAD2 and the mitotic regulator CDC20 form a ternary
complex with the anaphase-promoting complex to control ana-and postbleach intensities. To ensure that no significant photo-

bleaching of the free YFP fusions pool was taking place, we checked phase initiation. Genes Dev. 12, 1871–1883.
13. Shah, J.V., and Cleveland, D.W. (2000). Waiting for anaphase:the background (integrated intensity between the concentric re-

gions) for each measurement. If significant background photo- Mad2 and the spindle assembly checkpoint. Cell 103, 997–1000.
14. Kallio, M.J., Beardmore, V.A., Weinstein, J., and Gorbsky, G.J.bleaching (�95% original value at the end of the experiment) oc-

curred, that particular recovery measurement was excluded from (2002). Rapid microtubule-independent dynamics of Cdc20 at
kinetochores and centrosomes in mammalian cells. J. Cell Biol.the analysis. All recovery measurements were well fitted by single

exponential recovery kinetics (Kaleidagraph, Synergy Software, 158, 841–847. Published online August 26, 2002. DOI: 10.1083/
jcb.200201135.Reading, PA). Nuclear envelope and nucleoplasm recovery were

measured simultaneoulsy at bleached and nonbleached regions 15. Hori, T., Haraguchi, T., Hiraoka, Y., Kimura, H., and Fukagawa,
T. (2003). Dynamic behavior of Nuf2-Hec1 complex that local-within the same nucleus and then corrected for background bleach-

ing with a cytoplasmic fluorescence measurement. izes to the centrosome and centromere and is essential for



Current Biology
952

mitotic progression in vertebrate cells. J. Cell Sci. 116, 3347– 36. Howell, B.J., McEwen, B.F., Canman, J.C., Hoffman, D.B., Far-
rar, E.M., Rieder, C.L., and Salmon, E.D. (2001). Cytoplasmic3362.

16. McCleland, M.L., Gardner, R.D., Kallio, M.J., Daum, J.R., Gorb- dynein/dynactin drives kinetochore protein transport to the
spindle poles and has a role in mitotic spindle checkpoint inacti-sky, G.J., Burke, D.J., and Stukenberg, P.T. (2003). The highly

conserved Ndc80 complex is required for kinetochore assem- vation. J. Cell Biol. 155, 1159–1172.
37. Morgenstern, J., and Land, H. (1990). Advanced mammalianbly, chromosome congression, and spindle checkpoint activity.

Genes Dev. 17, 101–114. gene transfer: high titre retroviral vectors with multiple drug
selection markers and a complementary helper-free packaging17. Musacchio, A., and Hardwick, K.G. (2002). The spindle check-

point: structural insights into dynamic signalling. Nat. Rev. Mol. cell line. Nucleic Acids Res. 18, 3587–3596.
38. Laemmli, U.K. (1970). Cleavage of structural proteins during theCell Biol. 3, 731–741.

18. Yu, H. (2002). Regulation of APC-Cdc20 by the spindle check- assembly of the head of bacteriophage T4. Nature 227, 680–685.
39. Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoreticpoint. Curr. Opin. Cell Biol. 14, 706–714.

19. Sironi, L., Melixetian, M., Faretta, M., Prosperini, E., Helin, K., transfer of proteins from polyacrylamide gels to nitrocellulose
sheets: procedure and some applications. Proc. Natl. Acad. Sci.and Musacchio, A. (2001). Mad2 binding to Mad1 and Cdc20,

rather than oligomerization, is required for the spindle check- USA 76, 4350–4354.
point. EMBO J. 20, 6371–6382. 40. Kasai, T., Iwanaga, Y., Iha, H., and Jeang, K.T. (2002). Prevalent

20. Campbell, M.S., Chan, G.K., and Yen, T.J. (2001). Mitotic check- loss of mitotic spindle checkpoint in adult T-cell leukemia con-
point proteins HsMAD1 and HsMAD2 are associated with nu- fers resistance to microtubule inhibitors. J. Biol. Chem. 277,
clear pore complexes in interphase. J. Cell Sci. 114, 953–963. 5187–5193.

21. Chen, R.H., Shevchenko, A., Mann, M., and Murray, A.W. (1998). 41. Maddox, P.S., Bloom, K.S., and Salmon, E.D. (2000). The polarity
Spindle checkpoint protein Xmad1 recruits Xmad2 to unat- and dynamics of microtubule assembly in the budding yeast
tached kinetochores. J. Cell Biol. 143, 283–295. Saccharomyces cerevisiae. Nat. Cell Biol. 2, 36–41.

22. Sironi, L., Mapelli, M., Knapp, S., Antoni, A.D., Jeang, K.T., and
Musacchio, A. (2002). Crystal structure of the tetrameric Mad1- Note Added in Proof
Mad2 core complex: implications of a ‘safety belt’ binding
mechanism for the spindle checkpoint. EMBO J. 21, 2496–2506. We call your attention to another paper that also addresses the

23. Meeks-Wagner, D., Wood, J.S., Garvik, B., and Hartwell, L.H. dynamics of spindle checkpoint proteins at kinetochores in this
(1986). Isolation of two genes that affect mitotic chromosome issue (Howell, B.J., Moree, B., Farrar, E.M., Stewart, S., Fang, G.,
transmission in S. cerevisiae. Cell 44, 53–63. and Salmon, E.D. [2004]. Spindle checkpoint protein dynamics at

24. Pangilinan, F., and Spencer, F. (1996). Abnormal kinetochore kinetochores in living cells. Curr. Biol 14, 953–964.
structure activates the spindle assembly checkpoint in budding
yeast. Mol. Biol. Cell 7, 1195–1208.

25. Hoyt, M.A., Totis, L., and Roberts, B.T. (1991). S. cerevisiae
genes required for cell cycle arrest in response to loss of micro-
tubule function. Cell 66, 507–517.

26. Fukagawa, T., Pendon, C., Morris, J., and Brown, W. (1999).
CENP-C is necessary but not sufficient to induce formation of
a functional centromere. EMBO J. 18, 4196–4209.

27. Basu, J., Bousbaa, H., Logarinho, E., Li, Z., Williams, B.C.,
Lopes, C., Sunkel, C.E., and Goldberg, M.L. (1999). Mutations in
the essential spindle checkpoint gene bub1 cause chromosome
missegregation and fail to block apoptosis in Drosophila. J. Cell
Biol. 146, 13–28.

28. Sharp-Baker, H., and Chen, R.H. (2001). Spindle checkpoint
protein Bub1 is required for kinetochore localization of Mad1,
Mad2, Bub3, and CENP-E, independently of its kinase activity.
J. Cell Biol. 153, 1239–1250.

29. Taylor, S.S., and McKeon, F. (1997). Kinetochore localization of
murine Bub1 is required for normal mitotic timing and check-
point response to spindle damage. Cell 89, 727–735.

30. Daigle, N., Beaudouin, J., Hartnell, L., Imreh, G., Hallberg, E.,
Lippincott-Schwartz, J., and Ellenberg, J. (2001). Nuclear pore
complexes form immobile networks and have a very low turn-
over in live mammalian cells. J. Cell Biol. 154, 71–84.

31. Iouk, T., Kerscher, O., Scott, R.J., Basrai, M.A., and Wozniak,
R.W. (2002). The yeast nuclear pore complex functionally inter-
acts with components of the spindle assembly checkpoint. J.
Cell Biol. 159, 807–819.

32. Babu, J.R., Jeganathan, K.B., Baker, D.J., Wu, X., Kang-Decker,
N., and van Deursen, J.M. (2003). Rae1 is an essential mitotic
checkpoint regulator that cooperates with Bub3 to prevent
chromosome missegregation. J. Cell Biol. 160, 341–353.

33. Belgareh, N., Rabut, G., Bai, S.W., van Overbeek, M., Beaudouin,
J., Daigle, N., Zatsepina, O.V., Pasteau, F., Labas, V., Fromont-
Racine, M., et al. (2001). An evolutionarily conserved NPC sub-
complex, which redistributes in part to kinetochores in mamma-
lian cells. J. Cell Biol. 154, 1147–1160.

34. Luo, X., Tang, Z., Rizo, J., and Yu, H. (2002). The Mad2 spindle
checkpoint protein undergoes similar major conformational
changes upon binding to either Mad1 or Cdc20. Mol. Cell 9,
59–71.

35. Martin-Lluesma, S., Stucke, V.M., and Nigg, E.A. (2002). Role
of Hec1 in spindle checkpoint signaling and kinetochore recruit-
ment of Mad1/Mad2. Science 297, 2267–2270.




