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ABSTRACT OF THE DISSERTATION

Measuring Ideology, Dimensionality and Polarization in Politics

by

Yunkyu Sohn

Doctor of Philosophy in Political Science

University of California, San Diego, 2017

Professor James Fowler, Chair

This dissertation introduces a set of new statistical methods for measuring founda-

tional constructs in political science: ideology, dimensionality and polarization. Using the

proposed methods, I offer novel findings on multidimensional ideological characteristics of

American Congress. The final chapter provides the first complete description of ideological

coalitions in Korean National Assembly from its birth to the present by introducing a new

structural model of ideal point estimation for non-voting datasets.
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Chapter 1

Identification and Estimation for

Multidimensional Item Response

Theory: An Analysis of Roll Call Votes

in the United States Congress

Statistical estimation of legislators’ ideological preferences is at the core of empirical

political science. A long standing question in American legislative history is whether

or not single dimensional preferences can explain legislators’ voting behavior. Existing

multidimensional item response theory models—originally developed in the educational

testing literature and commonly used for the estimation of preferences—suffer from the

lack of identifiability due to rotational and scale invariance. We propose a new identification

strategy that constrains ability and item discrimination parameters to form orthonormal

matrices. For estimation, we develop a Gibbs sampling algorithm using Matrix von Mises-

Fisher distribution. The resulting estimates exhibit complete orthogonality among dimension-

specific estimates and align on maximum variance (i.e. principal) directions. Our analysis of

1
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the historical roll call voting records shows that the number of ideological dimensions in the

House of Representatives is greater than previously believed throughout the 20th century.

1.1 Introduction

Statistical estimation of legislators’ ideological preferences is at the core of empirical

political science. Item response theory (IRT) is the canonical statistical model used for

ideal point estimation. Originally developed for identifying test takers’ ability and exam

questions’ difficulty from educational testing datasets (Bock & Lieberman 1970, Fox 2010),

IRT and its variants have been used in all fields of political science, ranging from American

politics, comparative politics to international relations (see Clinton (2012) for review of

the applications). Following the pioneering models of ideal point estimation using maxi-

mum likelihood (Poole & Rosenthal 1991) and Bayesian approach (Jackman 2001, Clin-

ton, Jackman & Rivers 2004), a variety of methods have been developed, including dy-

namic ideal point estimation (Poole & Rosenthal 2000, Martin & Quinn 2002), common

scale ideal estimation of various political actors (Bailey 2007, Shor & McCarty 2011, Lo,

Proksch & Gschwend 2014), text-based approaches (Slapin & Proksch 2008, Lowe, Benoit,

Mikhaylov & Laver 2011, Clark & Lauderdale 2010), citizen-candidate estimation method

using donation datasets (Bonica 2014) and variational approximation methods (Imai, Lo &

Olmsted 2016).

A long standing question in American legislative history is whether or not single

dimensional preferences can explain legislators’ voting behavior in Congress. Despite the

prevalent use of IRT in ideal point estimation, existing methods have largely focused on

unidimensional ideal point estimation, leaving idealogical conflicts beyond the party-line

dimension unexplained (Sin 2014, Bateman & Lapinski 2016). Informal tools that are not

directly linked to the generative parameters of voting have been used to select the number

of dimensions. For example, in-sample measures of fit, which always increases with the
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number of dimensions, and subjective visual inspection on eigenvalue change of covariance

matrices (Poole & Rosenthal 2000, McCarty, Poole & Rosenthal 2016) are used to justify

low dimensionality. In fact, multidimensional ideal point estimation is necessary in the

major cases of parliamentary voting analysis. When analyzing multi-coalitions literatures,

for instance, Hix, Noury & Roland (2006) find that two dimensional ideological space of

the European parliament only accounts for about 60% in the prediction of cut lines which

divide supporters and objectors. By looking at bill subsets, Crespin & Rohde (2010) find

that the number of ideological dimensions required for describing the patterns of voting on

appropriation bills in the United States (U.S.) House may exceed three.

A fundamental statistical problem that comes with the use of IRT for multidimen-

sional ideal point estimation is the lack of identification in existing approaches. Namely, mul-

tidimensional IRT (MIRT) and other probabilistic latent linear models in general (Tipping &

Bishop 1999, Minka 2000, Murphy 2012) suffer from arbitrary scaling, rotation and additive

aliasing of estimates (Jackman 2001, Rivers 2003, Bafumi, Gelman, Park & Kaplan 2005).

Existing approaches of identification have imposed either an insufficient number of con-

straints or a constraint that requires researchers’ discretion to select values for restriction.

Although orthonormal constraints have been believed to be the most intuitive solution for

identification (Tipping & Bishop 1999, Murphy 2012), implementing this idea into an actual

estimation algorithm without the use of an ex-post processing has been difficult. Particularly

for developing a Bayesian method, it has been difficult due to the lack of matrix distributions

whose support satisfy the orthonormal property.

In order to resolve the identification problem, we introduce a new identification

strategy that constrains both individual and item discrimination parameter matrices to form

orthonormal matrices, satisfying the exact condition for identification. This strategy gives

rise to dimension-specific estimates that are located along maximum variance directions with

zero redundancy. Also, it does not require researchers’ discretion for choosing identification
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constraints. This is in a stark contrast with other existing approaches based on auxiliary

standardization of dimension-specific estimates with an insufficient number of constraints

for identification (Jackman 2009), triangular constraint with an arbitrary determination

of the first dimensional values (Lopes & West 2004) and fixing K + 1 legislators for K

dimensional MIRT model (Clinton, Jackman & Rivers 2004, Rivers 2003), which is subject

to an undesired rotation and scaling of estimates.

After introducing the identification strategy, we propose a hierarchical Gibbs sam-

pling algorithm using Matrix von Mises-Fisher distribution (MvMF), which is a uniform

matrix distribution defined over orthonormal matrix set of an arbitrary size (Chikuse 2012,

Hoff 2009, Hoff 2007). The proposed method automatically incorporates the identification

constraints into estimation. Hence ex post processing for identification or normalization is

not necessary. Due to orthonormality, each pair of dimension-specific estimates are uncorre-

lated with each other (i.e. minimum redundancy property), and all of them hold a common

scale (i.e. unit scale property). The resulting estimates achieve the minimum redundancy

property among dimension-specific estimates due to orthogonality. This property also yields

each dimensional estimates of the item parameter matrix to lie on the maximum variance (i.e.

principal) directions, different from existing methods that produce arbitrary estimates lying

on the K dimensional principal subspace. Simulation results demonstrate superior recovery

performance of true parameters and dimension-specific weights of the proposed method

compared to IDEAL (Albert 1992, Clinton, Jackman & Rivers 2004) and W-NOMINATE

(Poole & Rosenthal 1991, Poole 2005).

We apply the proposed method to study multidimensional cleavage structure of the

U.S. House of Representatives roll call voting dataset, which is one of the most widely

studied datasets in American politics research. Due to the aforementioned problems of

the existing IRT methods, full recovery of the historical cleavage structures has been

difficult. The proposed methods provide multidimensional estimates of ideal points in the
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U.S. House and quantitative evidence on the existence of intra-party factions in Republican

and Democratic parties during the 20th century. In contrast to previous beliefs on the single

dimensional dominance in the U.S. House, with an exception of the souther realignment

period (Poole & Rosenthal 2000, McCarty, Poole & Rosenthal 2016), the proposed method

identifies 3 dimensions that are associated with historical events, with substantial level of

importance in explaining the patterns of voting in the roll call dataset.

1.2 Application: The United States House Roll Call

The U.S. House of representatives roll call dataset is an ideal dataset to understand

legislators’ behavior on the primary process of the U.S. Congress. Since Lowell (1902), this

dataset has been a central workhorse for leveraging information for the impact of electoral

and institutional factors on policy making (Bartels 1991, Cox & McCubbins 2005, Krehbiel

2010).

The most ubiquitous statistical measure used in the majority of studies utilizing the

roll call dataset is ideal points, which are projected scores of legislators’ voting patterns on

a low dimensional ideological space. A typical voting matrix, consisting of hundreds of

legislators and thousands of roll calls, is usually compressed into ideal points and bill-related

parameters of 1 or 2 dimensions. This approximation draws on the psychological argument

of Philip Converse, who states that human belief systems are configured by ideas and

attitudes that are bound together by constraints and interdependence (Converse 1962). Since

such constraints and interdependence diminish the set of feasible outcomes, the number of

parameters necessary for describing voting behavior may be dramatically reduced compared

to the size of the original dataset.

An imminent question for estimating the lower dimensional ideal points from the

roll call dataset is the number of dimensions required to summarize the voting patterns. This

is not merely a statistical question. In fact, dimensionality is a key to answering a well-



6

known debate on the patterns of voting in the Congress. Notably, dimensionality is highly

correlated with the role of parties and factions on influencing individual vote choices (Cox &

McCubbins 2005, Krehbiel 2010, McCarty 2001). In a two-party legislature, as in the U.S.

Congress, when political parties play a significant role in maintaining cohesive voting blocs,

cut points of the votes would be located around a single point, dividing each set of legislators

on the left and the right by their party affiliation. In contrast, when there are a set of bills that

are unexplained by party-line votes, researchers would need another dimension to represent

the patterns of voting that cannot be fully summarized by the party-line dimension.

In this regard, dimensionality can be used to investigate the varying strength of the

parties and the existence of extra-party voting coalitions over the history of the Congress.

An interesting case is the rise and fall of intra-party factions within the Democratic and

Republican parties over the 20th century. The existence of ideologically distinct factions

with particular policy goals has been constantly suggested in the historical studies of the U.S.

Congress (Bateman & Lapinski 2016, Sundquist 1983, Sin 2014). However, quantitative

evidence on the existence of such factions, whose preference cuts across the primary party-

line dimension, has been sparse with the exception of the civil rights era during the mid-20th

century (McCarty, Poole & Rosenthal 2016, Poole & Rosenthal 2000).

The existing belief on the robustness of single or, at most, two dimensional space

to describe the patterns of voting originates from the use of informal approaches for di-

mensionality selection (Poole & Rosenthal 2000, Poole 2005). For instance, the widely

used in-sample measure of fit, average proportional reduction of error, always increases

with the number of dimensions, and does not incorporate out-of-sample penalty adjustment

to prevent over-fitting. Another popular method for dimensionality selection, detecting

the elbow of the eigenvalue trend of legislators’ voting profile covariance matrix, does not

incorporate parameters in generative model-based approaches. Both approaches rely heavily

on visual inspection or subjective judgment of the changes in the values over the number of
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dimensions, making a principled dimensionality selection incapable.

In this article, we introduce a fully identified model of MIRT that can be used to

estimate multidimensional ideal points of the members in the U.S. House. Compared to its

Bayesian ancestor IDEAL (Albert 1992, Clinton, Jackman & Rivers 2004), the proposed

method produces reliable samples with superior recovery rate. Also the proposed method

offers an interpretable weight parameter as opposed to its deterministic counterpart W-

NOMINATE (Poole & Rosenthal 1991, Poole, Lewis, Lo & Carroll 2008) whose weight

estimate does not convey useful information. In particular, we focus on the analysis of the

House roll call dataset ranging from the 46th to 113th sessions. The number of legislators,

by including all individuals who ever participated in each session, spanned from 301 to 458

with the median value of 441, and the number of roll calls spanned from 72 to 1,865 with

the median value of 309 (Poole 2016). While the Congress has been largely characterized as

a two party legislature during this period, the proposed method identifies the second and

the third dimensions that are associated with intra-party factions throughout the majority of

period analyzed.

1.3 Multidimensional Item Response Theory Model

The goal of the original IRT model is to infer latent item discrimination parameter

vector β̃ββ j ≡w ·βββ j ∈RK , latent item difficulty parameter vector ααα j ∈RK and latent individual

ability vector xxxi ∈ RK ∀i, j in an educational testing context (Bock & Lieberman 1970,

Reckase 2009, Fox 2010, De Ayala 2013). Here, dimension importance vector w ∈ RK ,

whose element is arranged in a decreasing order (i.e. w1 > w2 > · · ·> wK), is used to define

β̃ββ j for the consistency of the expression with the newly proposed formulation. Suppose a

binary response variable Yi j ∈ {0,1} for individual i ∈ {1, . . . ,N} and item j ∈ {1, . . . ,M}.

The following model is the most well-known representation of multidimensional IRT, called
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2 parameter normal ogive model:

Pr(Yi j = 1|θi,αi,β j,γ j) = Φ

(
∑
k

wkβ jkxik−α j

)
= Φ

(
∑
k

β̃ jkxik−α j

)
, (1.1)

where Yi j = 1 if i gave a correct answer to item j, Yi j = 0 when incorrect, and Φ(·) is the

cumulative standard normal distribution function (Albert 1992). The model aims to obtain

high α j for difficult items, high xi for individuals with superior performance, and high β̃ββ j

for items with the correct answer rate approaching 50%, the highest level of variability.

In fact, Eq. 1.1 directly corresponds to the utility calculation in voting (Clinton, Jack-

man & Rivers 2004). Assume that each legislator achieves a maximum level of satisfaction

when the spatial characteristic of an item (i.e. roll call) equals her ideal point, and her utility

decreases with their distance. By assuming a quadratic loss (i.e. utility) function, for a

legislator i ∈ {1, . . . ,N}, who makes a choice between legislative items b j ∈ R1×K (i.e. bill)

and s j ∈ R1×K (i.e. status quo) for roll call j ∈ {1, . . . ,M} with i’s most preferred position

xi ∈ R1×K , the chance that i will choose b j is determined by the following reasoning.

Pr(i chooses b j) = Pr
(
Ui(b j)>Ui(s j)

)
= Pr

(
−‖xi−b j‖2

w +‖xi− s j‖2
w > εi j

)
= Φ

(
∑
k

wkβ jkxik−α j

)
, (1.2)

where βββ j ≡ 2(b j − s j), α j ≡ {w ◦ (b j + s j)} · (b j − s j) (◦: entrywise product; ·: inner

product), a squared weighted Frobenius norm of a vector z with a weight parameter vector w,

‖z‖2
w ≡ ∑k wkz2

k (i.e. squared Mahalanobis distance of z with the diagonal precision matrix

diag(w)). We use a cumulative normal function for Φ(·) (i.e. 2 parameter normal ogive

model)(Albert 1992, Clinton, Jackman & Rivers 2004), corresponding to the shape of the

disturbance term (here, εi j ∼N (0,1/φ)).

One can rearrange Eq. 1.2 in matrix notations for the observed binary response
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matrix Y and the unobserved probability measure matrix Y∗:

Y∗ = Pr(XWB>−A > E)

= Φ(XWB>−A). (1.3)

We define the augmented variable matrix Z≡Φ−1(Y∗), N×K matrix X≡


x1

...

xN

, M×K

matrix B≡


βββ1

...

βββM

, K×K diagonal matrix W≡ diag(w), N×M matrix A≡ 1N×1ααα, where

ααα≡ (α1, · · · ,αN) and E is an N×M independent and identically distributed Gaussian error

matrix with variance 1/φ.1

With suitable constraints on the scales of the item discrimination parameter (B)

and the ability parameter (X) and the correlation among their dimension-specific estimates,

the dimension weight estimate w (W) becomes an informative indicator that can be used

to understand the importance of each dimension for explaining the overall structure of a

roll call dataset. When X and B do not have a constant scale and their dimension-specific

estimates are correlated, it becomes infeasible to make claims on the explanatory power of

each dimension.

As we will see shortly, the proposed method imposes orthonormality constraints on

X and B to obtain the interpretability of the weight parameter. In contrast, the canonical

Bayesian MIRT model (Albert 1992, Jackman 2001, Clinton, Jackman & Rivers 2004),

IDEAL, does not have an explicit weight parameter in its formulation. Since IDEAL

lacks orthogonal restriction across dimension-specific estimates, ex-post interpretation of

dimension-specific estimates is also not feasible. While W-NOMINATE contains the weight

1For convenience, we respectively denote Xk (i.e. X[,k]) and Bk (i.e. B[,k]) as kth-dimension-specific
estimates (i.e. column vectors) of X and B.
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parameter in its normal-normal formulation (Poole & Rosenthal 1991, Poole 2005), it

becomes difficult to interpret the meaning of the dimension weight parameter due to its

non-orthonormal formulation and non-standard rescaling process of the resulting estimates.

In the latter section, we support this claim through synthetic examples.

1.4 Identification

A statistical model f (y|θθθ) is identified when there is one-to-one correspondence

between the set of parameters θθθ and the probability distributions of observed data y

(Koopmans 1949). In other words, for an identified model, f (y|θθθ) = f (y|θθθ′) ∀y if and

only if θθθ = θθθ′. It has been well-known that the naive latent linear model including item

response theory model, without appropriate constraints, is not identifiable (Tipping &

Bishop 1999, Rivers 2003, Bafumi et al. 2005, Murphy 2012).

Previous literature provides specific invariance conditions for the likelihood function,

or XWB>−A, that lead to arbitrary transformation of estimates (Jackman 2001, Bafumi

et al. 2005). Namely, three types of transformations exist: rotation, addition and scaling.

1. Rotation Suppose an arbitrary orthonormal rotation matrix R of size K×K. Then

XWB> = (XR)W(BR)> since RR> = I by definition. Hence the one-to-one corre-

spondence condition is not satisfied.

2. Addition Suppose an addition of the matrix of ones 1N×K to X, then XWB>−A =

(X+1N×K)WB>− (A+1N×KWB>). The form of 2 parameter MIRT is preserved

and the resulting value is the same, but some parameters exhibit different values.

3. Scaling Without a scale constraint, such as unit norm, XWB>−A=(cX)W(B/c)>−

A, dividing a parameter with an arbitrary constant c can result the same output with

the multiplication of the other parameter in the factorized term.
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A series of studies provide important results regarding local identification of latent

linear models (Rothenberg 1971, Magnus & Neudecker 1988), where local identification

indicates the identification of true parameters up to the sign reversal. On the basis of these

results, Corrollary 2 of Rivers (2003) demonstrates a necessary condition ensuring the

identification for the parameters of a MIRT model. The Corrollary states that there must be

R≥ K(K +1) number of constraints in order to determine unknown parameters in a set of

simultaneous equations resulting from an IRT formulation.2

In ideal point estimation, the most well-known treatment satisfying this criterion is

to fix the ideological locations of K +1 legislators in K-dimensional space, the so-called

Kennedy-Helms restriction (Rivers 2003, Clinton, Jackman & Rivers 2004). While it is

intuitive to apply this condition in unidimensional space, so as to fix the locations of a

liberal legislator and a conservative legislator, however, it is not difficult to recognize the

weakness of this treatment in (K > 1)-dimensional space. If we ignore the sign flip of

ideal points, corresponding to the condition for local identification, there are K+1PK+1/2

combinations among the possible orderings of the K + 1 legislators for each dimension,

where K+1PK+1 = (K + 1)! is K + 1 permutation of K + 1. Fixing the locations of these

legislators ex ante is to arbitrarily choose a specific ordering among the potential K+1PK+1/2

orderings for each dimension (e.g. 123 = 1,728 combinations in total when K = 3) without

knowing the substantive meaning of each dimension. As a result, it is not feasible to apply

this approach in most cases in which one does not have strong auxiliary evidence to do so.

In contrast, our approach satisfies the identification condition without imposing

such arbitrary constraint. We impose orthonormality restrictions to both X and B. Due to

the introduction of the weight parameter W, we define B̃≡ BW to have the conventional

bilinear formulation (i.e Y∗ = Φ(XB̃>−A) for Eq. 1.3), ignoring the normality condition

for B. The zero mean condition for each dimensional estimate of B is obtained due to
2While the original corollary discusses a special case in which the constraints are given to legislator ideal

point matrix X, in the appendix, we show that the same result holds when the condition includes constraints on
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the intercept regression (column centering) formulation of the Gibbs sampling algorithm

introduced below. In fact, this condition leads to item centering, a well-known constraint in

IRT literature (De Ayala 2013).

1. Number of constraints for individual parameters X for k, l ∈ {1, . . . ,K}

• Unit Euclidean norm condition (∑i X2
ik = 1): K

• Orthogonality condition (∑i,k 6=l XikXil = 0): K(K−1)/2

2. Number of constraints for bill parameters B (B̃) for k, l ∈ {1, . . . ,K}

• Orthogonality condition (∑i,k 6=l B jkB jl = 0): K(K−1)/2

• Zero mean condition (∑ j B jk = 0): K

Theorem 1 Constraining X and B to form orthonormal matrices and centering B locally

identifies the multidimensional item response theory model.

Proof is provided in the appendix. By summing up the four constraints, we obtain the

number of constraints R = K(K +1). The normality conditions for both parameters identify

the scales of these parameters. The orthogonality condition resolves the rotational ambiguity

of the estimates. Finally, the zero mean condition, or the item centering condition, resolves

the additive aliasing.

In addition to the identification benefit, the orthonormal constraints enable an intu-

itive interpretation of the weight vector w as dimension weights. The squared element-wise

Frobenius norm of the mean matrix ‖XWB>‖2 = trace((XWB>)>XWB>) = ∑k w2
k and

the amount of variance explained by each dimension are fully represented by w. This is in a

direct accordance with the weight parameters in principal component analysis which yields

a diagonal covariance structure among dimension-specific estimates.

both X and B.
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1.5 Bayesian Estimation

1.5.1 Sampling Orthonormal Matrix from Matrix von Mises-Fisher

Distribution

An immediate difficulty, which arises from the application of the proposed identi-

fication strategy to parametric estimation models, is the necessity to sample orthonormal

matrices for X and B. This distribution is not derivable from standard distributions such as

the multivariate normal. Each dimension-specific set of estimates must have a unit Euclidean

norm and the inner product for every pair of dimension-specific estimates needs to be zero.

Matrix von Mises-Fisher Distribution (MvMF) is a matrix distribution which satisfies

the orthonormal constraint (Chikuse 2012, Hoff 2007, Hoff 2009). Samples of MvMF lie

on Stiefel manifold, where the set VK(RN×1) consists of N×K matrices with column-wise

orthonormality. Each (unit) column vector, which satisfies the unit Euclidean norm condition,

is sampled from von Mises Fisher Distribution (vMF) whose P-hypersphere version (i.e.

RP×1) is defined as

vMF(µµµ)≡ cP(‖µµµ‖)exp{x>µµµ}


cP(‖µµµ‖) = (2π)P/2 ‖µµµ‖P/2−1

IP/2−1(‖µµµ‖)
| ‖µµµ‖> 0

cP(0) =
Γ(P/2)
2πP/2 | ‖µµµ‖= 0,

(1.4)

where cP(‖µµµ‖) is a normalization constant corresponding to the mean direction µµµ ∈ RP×1

of the resulting vector sample and ‖µµµ‖ equals the concentration parameter which is similar

to the precision parameter in other distributions. MvMF is an orthogonal matrix extension

of vMF. After simulating a column vector sample using vMF, one can apply orthogonal

operators to obtain vectors for the rest of the columns by projecting a sample over the null

space of the reference vector. For a more general class of MvMF, see Hoff (2009).
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1.5.2 Gibbs Sampling

By incorporating the augmented variable Z defined in Eq. 1.3, the conditional

distribution of N×M voting record matrix Y can be expressed as

p(Y|X,W,B,A,φ) =
∫

Y= f (Z)
p(Z|X,W,B,A,φ)dZ. (1.5)

Owing to the normality of the independent and identically distributed error matrix E, the

probability of Z conditioned on observed and unobserved parameters is

p(Z|X,W,B,A,φ) =

(
φ

2π

)NM/2

exp
(
−φ

2
‖Z−XWB>−A‖2

)
(1.6)

=

(
φ

2π

)NM/2

exp
(
−φ

2
‖E−k−wkX[,k]B>[,k]‖

2
)

=

(
φ

2π

)NM/2

exp
(
−φ

2
‖E−k‖2 +φwkXT

[,k]E−kB[,k]−
φ

2
w2

k

)

with the sampling distributions given by X ∼ U(VK(RN×1)) (i.e. uniform distribution

defined over VK(RN×1)), w∼N (µ,1/ψ) and B∼U(VK(RM×1)). The rank truncated error

matrix E−k ≡ Z−X[,−k]W[−k,−k]B>[,−k]−A, where X[,−k] is N ×K− 1 stack of column

vectors of X with k-th column omitted.

Using conjugate distributions (the uniform vector distribution vMF(0): X̃k and B̃k;

Gamma distribution Γ(ν0/2,ν0σ2
0/2): precision (i.e. φ) of E; N (µ0,v2

0): mean (i.e. µ) of

w; Γ(η0/2,η0τ2
0/2): precision (i.e. ψ) of w), Gibbs sampling chain for the recovery of X,

W, B and the hyperparameters φ, µ and ψ is as follows. See appendix for details of prior

selection.

1. Sample Z from truncated normal distributions
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•

Zi j∼ p(Zi j|Yi j,X,W,B,A,φ)=


N (XWBi j−Ai j,1/φ)1(Zi j < 0) | Yi j = 0

N (XWBi j−Ai j,1/φ)1(Zi j ≥ 0) | Yi j = 1

N (XWBi j−Ai j,1/φ) | Yi j = NA

2. Sample latent variables: For k ∈ {1, . . . ,K}

• (X[,k] | Z,X[,−k],W,B,φ)≡ NX
{−k}X̃k, where X̃k ∼ vMF(φwkNX>

−k E−kB[,k])

• (B[,k] | Z,X[,−k],W,B,φ)≡ NB
{−k}B̃k, where B̃k ∼ vMF(φwkX>[,k]E−kNB

−k)

• (wk | Z,X,D[−k,−k],B,φ,µ,ψ)∼N [(φXT
[,k]E−kB[,k]+µψ)/(φ+ψ),1/(φ+ψ)]

• wk←−wk and X[,k]←−X[,k] | wk < 0

• (ααα|Z,X,W,B) = ∑i(Z−XWB>)[i,]/N

3. Sample hierarchical parameters

• (φ | Z,X,W,B)∼ Γ[(ν0 +MN)/2,(ν0σ2
0 +‖Z−XWB>−A‖2)/2]

• (µ |W,ψ)∼N (ψ∑k wk +µ0/v2
0)/(ψK +1/v2

0),1/(ψK +1/v2
0)

• (ψ |W,µ)∼ Γ[(η0 +K)/2,(η0τ2
0 +∑k(wk−µ)2)/2]

NX
{−k} is N×N−(K−1) stack of basis vectors for the null space of the column stack

X[,−k]. NB
{−k} is M×M− (K− 1) stack of basis vectors for the null space of the column

stack B[,−k]. 1(·) is an indicator function. Since each estimate is projected over a null space,

the operation NX
{−k}X̃k produces a column vector, which is orthogonal to X[,−k] and has a

unit norm. See appendix for the details of the estimation algorithm.
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1.5.3 Properties of Estimates

We can investigate the properties of the proposed method with help of analytic

properties of probabilistic PCA (PPCA), which has a similar formulation to MIRT (Minka

2000, Tipping & Bishop 1999). As shown in the appendix, we obtain the following results

for the mean estimates of the item parameter matrix B̃ that its columns lie on maximum

variance (principal) directions of the covariance matrix S ≡ Cov(zi,z j)∀i, j ∈ {1, . . . ,N}.

Such property is obtained by the orthogonality constraint given by the identification strategy.

This (Lemma 2) is different from the rotational coordinates obtained by algorithms without

orthogonal constraints, resulting in estimates that only span the maximum variance subspace

(Lemma 1).

Proposition 1 MIRT without orthogonal constraints produces item parameter matrix B (B̃)

whose posterior mode spans the principal subspace of the augmented variable covariance

matrix S≡ Cov(zi,z j)∀i, j ∈ {1, . . . ,N}.

Proposition 2 The proposed method produces item parameter matrix B (B̃) whose posterior

mode lies on the principal directions of the augmented variable covariance matrix S ≡

Cov(zi,z j) ∀i, j ∈ {1, . . . ,N}.

Proofs are given in the appendix.

1.6 Simulation Evidence

Here, we present a series of simulation analysis to show the performance of the pro-

posed method compared with two existing methods of MIRT, IDEAL and W-NOMINATE.

After showing the proposed method’s recovery performance on 3 dimensional datasets,

we compare its mixing performance with IDEAL. It turns out that IDEAL outputs highly
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Figure 1.1: Synthetic examples. (a)(b) Matrix plot for mean estimates of X and B for
a synthetic voting dataset with parameters: N = 200, M = 1,000, w = (0.5,0.3,0.2)
and φ = 106. Planted X and B are sampled from centered orthonormal matrices (i.e.
∀k ∈ {1, . . . ,K}, ∑i Xik = 0 and ∑i Bik = 0). (c) Seven independent examples with different
true weight combination (+) and mean estimates of inferred weights (•). Only first two
largest dimensional weights are depicted since all dimensional weights sum up to one.
Each w is treated as a vector of linear fractions, so that w← w/∑k wk. Each axis of the
ternary plot indicates each dimension weight for K = 3. All estimates are obtained from
100,000 Markov Chain Monte Carlo (MCMC) iterations with 10,000 burn-in trials by
thinning out 1 over 100 outputs.

unreliable estimates when the number of data generating dimensions is three. Finally, the

proposed method is compared with W-NOMINATE for the recovery of dimension weight

parameter including the cases when the number of dimensions is misspecified.

1.6.1 Performance

We show the validity of the proposed approach through synthetic roll call voting

datasets generated using the formulation given in Eq. 1.2. The series of examples depicted

in Figure 1.1 demonstrate that the proposed method successfully recovers the true parameter

tuple. Seven synthetic roll call datasets are generated. True parameters for 200×3 matrix X

and 1,000×3 matrix B are sampled from uniform Stiefiel manifolds of given sizes, and w

values are set to shown values in Figure 1.1(c).

For all seven examples explored, the proposed methods successfully recovered the

true parameter values. Pearson correlation coefficients between estimated mean X and B and
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their true values exceed 0.8. For high weight dimensions larger than 0.5, all corresponding

coefficients exceed 0.95. As shown in Figure 1.1(c), the proposed algorithm not only

reproduces the individual and bill parameters, but also recovered the true weight parameter

w even when one of the true dimensional weights was as small as 10% of the sum of the

total weights.

1.6.2 Comparison to IDEAL

Albert (1992)’s normal ogive IRT sampler and its application to ideal point estima-

tion, IDEAL (Clinton, Jackman & Rivers 2004), is the closest Gibbs sampler of the proposed

method. While it has been used as a canonical model of Bayesian IRT, there are notable

differences between IDEAL and the proposed method in addition to the standard bi-factor

MIRT formulation of IDEAL.

First and most importantly, in IDEAL, both ability parameter and item parameter

vectors are sampled over i∈ {1, . . . ,N} and j ∈ {1, . . . ,M} respectively. In fact, this property

yields an ineffective organization of its Gibbs sampler by allowing a large number of single

site updates. In contrast, the proposed method samples over dimension k ∈ {1, . . . ,K}. This

setup, which enables orthogonalization among dimension-wise estimates, can be regarded

as an effective blocking strategy for Gibbs sampling to reduce the number of single site

updates. This difference creates a clear distinction between these two algorithms in terms

of computational complexity. Whereas IDEAL requires the computation of N +M loops

in total for creating a single sample, the proposed method requires the computation of 2K

loops, where K << N,M.

Moreover, this slow sequential updating of IDEAL, in conjunction with the lack of

identification constraint, undermines the performance of the algorithm when K > 2. The

top panels of Figure 1.2 compare the planted 3 dimensional ideal points and the mean

estimates obtained from 10,000 runs of sampling and 1,000 burn-in trials, using the ideal
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Figure 1.2: Convergence diagnostics. Pearson correlation of the sample draws with true
values and convergence diagnostics of IDEAL and the proposed method. Same parameters
are used as in Figure 1.1 for simulation. Estimates are obtained from 100,000 runs of
sampling and 1,000 burn-in trials, and the graphs depict every hundredth samples. Top
panel shows the correlation coefficients between each dimensional estimate of X and
its corresponding ground truth values. Bottom panel shows the Gelman-Rubin’s PSRF
computed using 10 independent chains. Starting values for both methods were sampled
from the standard multivariate normal distribution. Each plot contains N = 100 individual
parameters for each output type.
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function in pscl R package (Zeileis, Kleiber & Jackman 2008). We also present the outputs

of the proposed method over the same number of iterations. Convergence diagnostics are

measured through the Gelman-Rubin’s potential scale reduction factors (PSRF) (Brooks

& Gelman 1998), which approach 1 upon convergence. Despite the relatively short length

of sampling chains, both IDEAL and MvMF converge. However, the resulting outcomes

of IDEAL are highly inferior compared to the estimates of the proposed method. Pearson

correlation of the estimates of IDEAL exhibit inconsistent values over the iterations, ranging

from 0.3 to 1. The results become erroneous as the true dimension importance decreases

from the first dimension to the third dimension. In sum, the converged estimates of IDEAL

do not recover true ideal points when the number of dimensions is 3.

Finally, as it is trivial due to the lack of orthogonality constraints in IDEAL, the

variance-covariances of multivariate normal densities associated with ability parameter

and item parameter matrices are not diagonal. To be specific, for the sampling of a K

dimensional vector for the ideal point of legislator i, the variance-covariance matrix equals

X>X+D−1 where D is the prior distribution’s covariance matrix which is diagonal. Also

when sampling a K dimensional vector for item parameter vector of bill j, the variance-

covariance matrix equals B̃>B̃+V−1 where V is the diagonal covariance of B’s prior

distribution (Jackman 2009). As shown, since both X>X and B̃>B̃ are not diagonal due

to the lack of orthogonality in X and B̃, IDEAL and Albert (1992)’s sampler produce

dimension-wise correlated samples.

1.6.3 Comparison to W-NOMINATE

Here, we compare the performance of the proposed method with W-NOMINATE,

the most widely used multidimensional ideal point estimation method for roll call datasets.

In contrast to IDEAL, which does not have an explicit weight paramete, W-NOMINATE

contains a dimension-specific weight parameter (ω2
k |k ∈ {1, . . . ,K}). Since W-NOMINATE
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incorporates a different voting model from Eq. 1.2, we first show the equivalence between

the Normal-Normal formulation of W-NOMINATE and the Quadratic-Normal formulation

in Eq. 1.2. In fact, the Quadratic-Normal formulation is the first-order approximation of the

Normal-Normal formulation of W-NOMINATE (Armstrong, Bakker, Carroll, Hare, Poole &

Rosenthal 2014).

Pr(i chooses b j) = Φ
(
Ui(b j)−Ui(s j)

)
= Φ

[
γexp

{
−1

2 ∑
k

ω
2
k(xik−b jk)

2

}
− γexp

{
−1

2 ∑
k

ω
2
k(xik− s jk)

2

}]

= Φ

[
γ

∞

∑
i=0

{
−1

2 ∑k ω2
k(xik−b jk)

2}i

i!
− γ

∞

∑
i=0

{
−1

2 ∑k ω2
k(xik− s jk)

2}i

i!

]

≈ Φ

[
−γ

1
2 ∑

k
ω

2
k(xik−b jk)

2 + γ
1
2 ∑

k
ω

2
k(xik− s jk)

2

]
(1.7)

Accordingly, the weight parameter vector w in Eq. 1.2 corresponds to (ω2
k |k ∈ {1, . . . ,K})

in W-NOMINATE.

In case when X and B have orthonormal constraints, we may have a direct compari-

son of the two vectors. Yet, when such adjustment is not made, it is infeasible. NOMINATE

family assigns the unit-hypersphere constraint so that all values of X and B are adjusted

to lie on [−1,1]. This fixed min/max condition implies that the covariance matrices for X

and B do not satisfy the unit-covariance (i.e. identity covariance) condition. As a result, the

weight parameter in W-NOMINATE varies arbitrarily depending on the combination of the

values in X and B estimates, and does not convey relevant information for the dimension

weights assumed in the generative model (Eq. 1.7).

Figure 1.3 compares the estimates of the proposed method and W-NOMINATE

to investigate what happens when the number of dimensions preset for modeling (K′) is

different from the true number of dimensions (K). Using the same voting matrix for both
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Figure 1.3: Comparison with W-NOMINATE. A synthetic example with model dimen-
sionality (K′) varying while the true number of dimensions K = 3. (Left) X outputs
obtained using W-NOMINATE and the proposed method. (Right) w outputs obtained
using W-NOMINATE and the proposed method. Planted parameters: N = 200, M = 1,000,
w = (0.5,0.3,0.2) and φ = 106. The weight output of W-NOMINATE is obtained using
nomObject$weights function of W-NOMINATE R package, and then squared and normal-
ized to have the sum of 1. For the proposed method, each w is treated as a vector of linear
fraction, so that w← w/∑k wk. All estimates are obtained from 100,000 MCMC iterations
with 10,000 burn-in trials and thinning out 1 over 100 outputs.

methods, we first applied wnominate function in wnominate R package with varying K′. In

contrast to the mean estimates of the proposed method where the planted weight parameter is

precisely recovered regardless of the model rank (K′) specification, the nomObject$weights
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output of wnominate R package (Poole et al. 2008) does not recover interval information of

the weight estimates, making it infeasible to know the relative importance of each dimension

in an intuitive scale. In particular, when the number of dimensions preset (K′) varies, it does

not preserve the ratio of the weight estimates. For example, the first and second dimensional

weight ratio is close to 1:1 when K′ = 3, whereas this ratio significantly varies when K′ = 2.

Moreover, the excess dimension for K′ = 4 gets a significant amount of weight (0.14), which

is comparable to other weight estimates.

In contrast, the proposed method successfully recovers the true parameters, exhibit-

ing a very convenient property for interpreting the weight estimates even in the case of model

misspecification. The proposed method discovers the ratio (e.g. w = (0.625,0.375) for

K′ = 2) of the true dimension weights (w = (0.5,0.3,0.2)) when K′ ≤K = 3, and accurately

gives the 4th dimension weight close to zero when K′ = 4. In other words, the proposed

method successfully retrieves the hidden dimensionality of the voting matrix for given K′,

best explaining the covariance structure when the model dimensionality (K′) is lower than

or equal to the true dimensionality. When K′ > K, it assigns a negligible weight to the

excess dimension. In contrast, the difficult-to-interpret weight parameter in W-NOMINATE

produces arbitrary values, although it recovers the latent legislator ideology matrix X similar

to the proposed method.

1.7 Application: The United States House of Representa-

tives Roll Call Voting Records

We applied the proposed method to the roll call voting records of the U.S. House

from the late 19 century to present (i.e. 46th-113th sessions). This period has been

considered as the two party regime. We applied the proposed method by setting the number

of dimensions as 3. Since session-specific measures are obtained, we matched contiguous
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session dimensions by pairing the ones with the largest amount of correlation in incumbent

ideology. Figure 1.4 illustrates the varying dimensionality in the House roll call voting

records, which are identified using the proposed method. What is notable at first glance

is the apparent multidimensionality of the ideological space across the entire period of

the sessions analyzed. We observe that even the least significant dimension at minimum

accounts for the 10% of the utility assumed in Eq. 1.2. This is in contrast with the previous

studies, which state that the Congress has been constantly unidimensional with the exception

of the second dimensional importance during the mid-20th century sessions (McCarty, Poole

& Rosenthal 2016, Poole & Rosenthal 2000).
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Figure 1.4: Dimensionality of U.S. House. Mean estimates of w obtained via 100,000
MCMC iterations with 10,000 burn-in trials and by thinning out 1 over 100 outputs.
Each number on the x-axis indicates the starting year of the corresponding Congressional
session. y-axis indicates the cumulative weight value. House dimensions between sessions
are matched based on the correlation between incumbent dimension-specific ideology in
contiguous sessions.

The first dimension, which exhibits its weight value above 50% during the majority

of the analyzed period, largely corresponds to the dimension of conflict between Democrats

and Republicans. When the mean party distance on each dimension is calculated, we see that

the two party distance is mainly explained by the changes in the first dimensional estimates

(Figure 1.5). The decline of the first-dimensional importance during the early 20th century

coincides with the ending period of the strong leadership in the House and the beginning of

the progressive era (late 1910s). After the end of the civil rights era around the early 1970s,
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Figure 1.5: Mean Distance on each dimension. Party mean distance between Democrats
and Republicans on each dimension, and mean distance between southern and northern
Democrats. Southern Democrats are labeled by their membership in the Confederate States.
Values are not adjusted by dimension weights. House dimensions between two adjacent
sessions are matched based on the correlation between incumbent dimension-specific
ideology. Unlike other methods, the unit norm condition sets dimension-wise estimates to
have a common scale.

the weight value of the first dimension starts to increase.

The second dimensional estimates are largely correlated with the cleavage structure

on civil right issues. The large amount of polarization between mean Democratic ideology

and Republican ideology is broadly observed throughout the southern realignment period

(from 1933 to 1971 (Sin 2014)) in which southern and northern democrats began to form

ideologically distinct coalitions, eventually experiencing party switching and seat changes

(Figure 1.5). Along with the distance between the factions within the Democratic party, the

second dimensional importance has been magnified, hitting the maximum value of 38% in

the 1960s. Due to the conflict over the civil rights issues, the second dimension has also

been a primary battle ground between Democrats and Republicans during the late 1960s

through the early 1970s.
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An interesting period on which we need to focus for identifying the characteristic of

the third dimension is the first three decades of the 20th century, specifically from 1897 to

1933. During this period, the central issue of conflict within each party was the government’s

role on industrialization (Shepsle 1978, Sin 2014). While conservative factions within each

party asserted that interventions should be minimal, progressive Republicans and reform

agrarian Democrats asserted progressive monetary and welfare policies of the Government

for regulating the economy. Such conflict eventually led to the divide of the Republican

party, and resulted in a short-lived party called the Progressive party. In Figure 1.6, the

Progressive party, which mainly consists of defected legislators of the Republican party,

locate its members at the edge of the third dimension. This is the only dimension that locates

the median ideology of the progressive party members at the most extreme (progressive)

side of the ideological axis.
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Figure 1.6: Progressivism era. Ideological spectrum of the short-lived Progressive Party in
the 63rd session (1913-1915). Ideal points of Democrats are colored in filled blue and ideal
points of Republicans are colored in blank red. Progressive party members are located in
green cross-shaped markers.

One important perspective we can use to analyze the patterns of estimates in the mul-

tidimensional space is to see the relationship between different sets of items and legislators.

For example, how much a specific bill or subsets of bills divide over the partisan cleavage

structure?

We provide further analysis using relational representation of item and legislator
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locations using a technique which we name item2vec. Figure 1.7 shows a schematic

illustration of the idea. Analogous to word2vec in text analysis literature (Mikolov, Chen,

Corrado & Dean 2013), the goal of item2vec is to find mean directions of items and

legislators, as computed using the vector differences between a set of pairs among items

and legislators, and their level of agreement. For a single pair locations, consisting of two

locations xi and x j, the vector difference~a between these two locations are simply defined

as~a = xi−x j.3 In fact, the item discrimination parameter β j for bill j is equivalent to the

vector difference between the bill and status quo locations for item j.

Figure 1.7: item2vec. [Left] Identification of partisan directions using all pairwise vectors
between inter-party members of a Congressional session. [Middle] Identification of bill-
specific directions by measuring the direction between a bill and its corresponding status
quo (SQ) location. [Right] Among the entire set of bills and status quos in a session,
we can identify issue-specific mean direction by subsetting and averaging the vectors of
bill-stuatus quo pairs belonging to an issue category.

We can use vector differences to quantify how much votings over a single bill or

a subset of bills are aligned with a particular direction of conflict (e.g. partisan cleavage).

Formally, to measure the alignment between a bill direction ~w with a set of directions (or

vector differences) A, we compute the following quantity.

p(~w,A) = mean~a∈A|cos(~w,~a)|. (1.8)

3~a, xi and x j are all vectors in the same ideological space. However, to make a distinction between vector
differences and the estimates coming from the MIRT model, we use different notations to denote these objects.
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p(~w,A) represents the mean level of alignment between ~w and a set of vectors in A. cos(~w,~a)

is the inner product or cosine similarity between the two vectors. If these vectors are well

aligned, the mean direction p(~w,A) becomes 1 whereas it becomes 0 if they are orthogonal.

Accordingly, it is a naturally normalized measure. For instance, the set of vector differences

can be the set of pairwise vector differences of all pairs of legislators belonging to two

different parties or the set of bill-status quo vector differences for all items belonging to a

specific issue category. As illustrated in the left panel of Figure 1.7, if we measure p(~w,A)

for an item vector difference ~w and the partisan pairwise vector difference set A, p(~w,A)

will inform us how much the votes over the corresponding bill is divided over the party line.
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Figure 1.8: Issue dynamics. Mean vector alignment between bill issue subsets classified
using Clausen issue category and partisan directions of each session. light blue dots indicate
mean alignment scores, computed using item2vec, and red lines and green dashed lines
indicate the trends smoothened using LOESS and the corresponding confidence intervals.

We apply item2vec for subsets of bills over the history of Congress analyzed.

Figure 1.8 shows the results. For high mean similarity points, the corresponding issue

related bills were mostly voted by the members’ party line, indicating the issue was partisan

issue in those periods. For low mean similarity points, the corresponding issue was likely to
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be a valence issue so that inter-party voting coalition formation was frequent. For the period

analyzed, we can verify that social welfare has been constantly progressed as a partisan

issue. In contrast, Foreign and defense related bills do not show such pattern that the trend

exhibits constant decrease over the first half of the 20th century and started to increases

after the end of the second world war. This corresponds to the common belief on American

legislative history that defense related issues reached a high level of consensus between the

party members during the world war eras and began to follow the party line cleavage over

the second half of the 20th century including the Vietnamese war period. On the other hand,

civil liberty related bills follow the party realignment trend in American history so that their

issue exhibits a high level party polarization over the civil rights era and shows a higher

level of polarization in the course of party realignment due to the absorption of the issue

into their party platforms.
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Figure 1.9: item2vec during progressive era. Mean vector alignment between the 3rd
dimensional direction (i.e. (0,0,1)) and the pair-wise directions of bill-status quo pairs for
social welfare related bills in each session over the progressive era. All dots and lines are
drawn same as the previous figure.

Figure 1.9 appends the results shown in Figure 1.6. Each dot indicates the level

of alignment between the third dimensional direction (i.e. (0,0,1)), exactly aligned with

the third axis, and the set of item vector differences for social welfare related bills over

the progressive era. The pattern follows the rise and fall of the alternative faction within
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Republican party and reaches its maximum around the period when the Progressive party

existed. The result demonstrates that the third dimensional cleavage was mainly due to the

divide over welfare related issues as claimed in Figure 1.6 using the result of a session in

which the Progressive party existed.

1.8 Conclusion

The proposed method is a Bayesian 2 parameter normal ogive MIRT model that

constrains the multidimensional item discrimination and ability parameters to form orthonor-

mal matrices. This treatment resolves the prevalent identification problem in 2 parameter

IRT models. Also it produces normalized estimates along maximum variance directions

as opposed to conventional methods that are subject to arbitrary rotation and scaling of

their estimates. While it is generally applicable to all practices of IRT including ability and

item difficulty parameter inference for educational testing datasets, we applied the proposed

method to voting datasets. The proposed method provides fully Bayesian estimates of

the multidimensional legislator ideal points, the bill parameters and the often overlooked

dimension-weight parameter. Through simulation, we showed that the proposed method

successfully recovers the true data generating parameters of the synthetic roll call matri-

ces. When compared to its Bayesian ancestor IDEAL (Albert 1992, Clinton, Jackman &

Rivers 2004), the proposed method almost perfectly recovered the true 3 dimensional param-

eters, whereas IDEAL was unable to recover true estimates, exhibiting declining accuracy

as the dimension importance decreases. Furthermore, the proposed method produces an

interpretable weight parameter, corresponding the actual dimension importance assumed in

the structural model of voting. In contrast, W-NOMINATE’s weight parameter contained

arbitrary values that are uncorrelated with true values.

Empirical analysis of the U.S. House demonstrates the existence of 3 dimensional

ideological space in the roll call votes throughout the 20th century. While the principal
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dimension conveys cleavage structure, which largely corresponds to the inter-party conflicts

among Democrats and Republicans, the second and the third dimensions illuminate distinct

voting blocs within each party. By analyzing the patterns of clustering on these dimensions,

we show evidence on the existence of intra-party factions over the major period of sessions

analyzed. This finding is expected to encourage the use of multidimensional ideal point

estimation methods and associated quantitative approaches in the study of American political

development that has been largely carried out by utilizing qualitative research methodology.

The proposed method is expected to serve as a baseline model for future IRT

developments. Namely, we can think of three extensions of the method. First, the proposed

method can incorporate a linkage function to enable the common scale identification of

multiple datasets originating from different sources through the use of orthogonal Procrustes

solutions (Gower & Dijksterhuis 2004). In ideal point estimation context, this can be used to

map the ideal points of political actors associated with the Senate, the House, the President

and the public in the same space. Second, the method can incorporate a polychotomous

link function to accommodate ordered outcomes by using a Gibbs sampler for ordered

Probit regression (Rossi, Allenby & McCulloch 2005). Moreover, the MvMF sampler can

be applied for the estimation of ideal points from non-voting datasets, such as networks

(Barberá 2015) and texts (Lowe et al. 2011), not limited to the 2 parameter MIRT model.

Finally, the proposed method can have another layer of hierarchy to incorporate covariates

for modeling ideal points. The most well-known application of this idea is to create a

dynamic model in which one of the covariates is the session number (Poole 2005).

1.9 Appendix

Theorem 1 Constraining X and B to form orthonormal matrices and centering B locally

identifies the multidimensional item response theory model.
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1.9.1 Proof

I show the validity of the propose identification strategy following the original

notation of Magnus & Neudecker (1988) and Rothenberg (1971). To be specific, we show

that the proposed identification strategy produces locally identified estimates regardless of

prior specification. By locally identified, we denote that the estimates are identified up to sign

reversal (Clinton, Jackman & Rivers 2004, Rivers 2003) and, by identification regardless

of prior specification, we denote that the identification is not limited to the Bayesian sense

of identification (San Martın & González 2010, Gelman, Carlin, Stern & Rubin 2014),

which has various versions and is in a controversy, but satisfies more conservative and

universal criteria of identification in non-Bayesian framework (Rothenberg 1971, Magnus &

Neudecker 1988, Rivers 2003). As a result, the identification results even hold under the use

of improper, non-informative or flat priors.

In the following, the parameter points θθθ0 ∈ θθθ and the parameter point set θθθ ≡(
X, B̃,A

)
, where B is redefined as B̃≡WB. We now have a standard bilinear formulation

of Eq. 1.3 with Y∗ = Φ(XB̃>−A).

I start from the main result of Rothenberg (1971) that a statistical model is identified

if the stacked Jacobian matrix of the parameter points (J(θθθ0)) and the constraint matrix

(dh(θθθ0)/dθθθ) have the full rank (NK +M +MK) with the constraint condition h(θθθ0) = 0.

The stacked matrix is defined as

J (θθθ0) =

J(θθθ0)

dh(θθθ0)
dθθθ

 (1.9)

=



JX
X JB̃

X JA
X

JX
B̃

JB̃
B̃

JA
B̃

JX
A JB̃

A JA
A

dh(θθθ0)
>

dX>
dh(θθθ0)

>

dB̃>
dh(θθθ0)

>

dA>


, (1.10)
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where JΨ
Γ

is the component of the Jacobian matrix J(θθθ0) with Γ portion of θθθ0 partially

differentiated by Ψ⊂ θθθ. It is known that the bilinear formulation of the 2 parameter IRT

model gives rank NK +M+MK−K(K +1) to J(θθθ0) (Rivers 2003), and we need at least

K(K +1) for the rank of the rows of J (θθθ0) corresponding to dh(θθθ0)
dθθθ

.

The orthonormality restrictions for X and B can be written as

h(θθθ0) =


X>1N×1

vec(X>X−NIK)

ṽec(B̃>B̃)

 , (1.11)

where the off-diagonal vector operator ṽec converts a K ×K symmetric matrix into a

K(K−1)-dimensional vector consisting of off-diagonal elements of the input matrix. The

first component indicates the column centering or zero intercept condition for XB̃>, leading

to zero mean constraint for each column of X (Jolliffe 2002). This column-centering

constraint for X is naturally achieved due to the intercept matrix A. The second component

of h(θθθ0) denotes the orthonormality condition for X, and the last component indicates the

orthogonality condition for B̃.

Calculating the Jacobian of this vector of restrictions, we obtain

dh(θθθ0)

dθθθ

>
=

IK2+K 0

0 OK




IK 0 0

0 IK2 +KKK 0

0 0 IK2 +KKK





1

X

B̃


>

⊗ IK

 ,(1.12)

where a K2×K2 commutation matrix KKK is a commutation matrix satisfying KKKvec(A)=

vec(A>) for a K×K matrix A, and the K(K−1)×K2 diagonal matrix OK is the off-diagonal

matrix operator which contracts a K2×1 input vector (i.e. the vectorized input matrix) into a

K(K−1)×1 output vector whose elements are the off-diagonal elements of the (vectorized)

input matrix. Finally, the rank condition matrix (Magnus & Neudecker 1988, Rivers 2003)
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becomes

dh(θθθ0)

dθθθ

>




1

X

B̃

⊗ IK

 =

IK2+K 0

0 OK




IK 0 0

0 IK2 +KKK 0

0 0 IK2 +KKK

 ,(1.13)

and, due to the rank of the commutation matrix (Magnus & Neudecker 1988), the rank of

this matrix is

rank

IK2+K 0

0 OK




IK 0 0

0 IK2 +KKK 0

0 0 IK2 +KKK

 (1.14)

= K +K(K +1)/2+K(K +1)/2−K = K(K +1).

Proposition 1 MIRT without orthogonal constraints produces item parameter matrix B (B̃)

whose posterior mode spans the principal subspace of the augmented variable covariance

matrix S≡ Cov(zi,z j)∀i, j ∈ {1, . . . ,N}.

1.9.2 Proof

For notational convenience, let us first define the augmented variable column vectors

zi ≡ Z>[i,] ∈ RM ∀i ∈ {1, . . . ,N} and xi ≡ X[i,] ∈ RK ∀i ∈ {1, . . . ,N}.4 For each individual,

the augmented response vector can be written as,

zi = B̃x>i +ααα+εεε, (1.15)

where the item parameter matrix B̃ ∈ RM×K , offset column vector ααα = −∑i zi/N ∈ RM

and Gaussian disturbance vector εεε∼N (0,σ2I) with M×M isotropic diagonal covariance

4The following proof is analogous to main results of PPCA (Tipping & Bishop 1999) and Bayesian PCA
(Minka 2000).
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matrix σ2I. Eq. 1.15 can be rewritten in the following multivariate normal distribution:

Pr(zi|xi)∼N (B̃x>i +ααα,σ2I). (1.16)

We can calculate the marginal distribution of zi given the uniformly distributed Pr(xi) =

exp(−x>i xi) (Hoff 2007), and it is written as:

Pr(zi) =
∫

Pr(zi|xi)Pr(xi)dxi (1.17)

= N (ααα,C),

where the covariance matrix C≡ B̃B̃>+σ2I.

The log likelihood of parameters for all N individuals can be written as:

L =−N
2
{

Mln(2π)+ ln|C|+ tr[C−1S]}, (1.18)

where the augmented variable covariance matrix S≡ 1
N ∑

N
i=1(zi−ααα)(zi−ααα)>. By following

the procedures of matrix differentiation (Magnus & Neudecker 1988), the stationary points

of this function satisfies

∂L
∂B̃

= N(C−1SC−1B̃−C−1B̃) = 0. (1.19)

This equation reduces to SC−1B̃ = B̃. Let us ignore trivial solutions B̃ = 0 and C = S, and

reparameterize the remaining solution as B̃ = ULVT via singular value decomposition where

U is the orthonormal matrix of left eigenvectors, L is the diagonal matrix of eigenvalues

and V is the orthonormal matrix of right eigenvectors. By plugging in this expression to

SC−1B̃ = B̃, we obtain SUL = U(σ2I+L2)L. For K-dimensional model, this expression is



36

reduced to

B̃ = UK(LK−σ
2I)1/2R, (1.20)

where R is an arbitrary K×K orthonormal matrix for rotation.

Under the uniform prior used in the proposed algorithm, because (LK −σ2I)1/2

and R are K ×K matrices of full rank, we can confirm that the mean estimates of B̃,

span(B̃)= span(UK) where span(UK) is K-dimensional principal subspace of the covariance

matrix S.

Proposition 2 The proposed method produces item parameter matrix B (B̃) whose posterior

mode lies on the principal directions of the augmented variable covariance matrix S ≡

Cov(zi,z j) ∀i, j ∈ {1, . . . ,N}.

1.9.3 Proof

By using Proposition 1, We can further make a progress for the property of the

proposed method. From Eq. 1.20, we can easily obtain the fact that the first dimensional

mean estimate stretches along the principal axis of S since the orthonormal rotation matrix

for K = 1 is uniquely determined as the constant R = 1. Since the estimation process of

the proposed method samples dimension-specific estimates sequentially, we can assure

that the first dimensional estimate spans the first principal subspace of S. Because the first

dimensional direction is determined, the remaining K−1 directions are uniquely determined

due to the orthogonality restriction, so that R = IK×K .

1.9.4 Prior Specification

For Bayesian estimation of the parameters, (X,B,w), we need to specify their pri-

ors and priors for sampling their hyperparmeters, (µ,ψ,φ). Orthonormal matrices X and
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B have uniform priors on the Stiefel manifolds of size VK(RN×1) and VK(RM×1) respec-

tively. Due to Eq. 1.6, we aware that the conditional distribution of k-th column of X or

B given the rest of the columns follows a vMF distribution, with µµµ = φwkNX>
−k E−kB[,k] or

µµµ = φwkX>[,k]E−kNB
−k, multiplied by a basis for the null space of a matrix stacked by the

rest of the columns. Since uniform vMF distribution (i.e. vMF(0)) is conjugate to any

vMF distribution of given length, we can incorporate vMF(0) as conjugate prior of each

column. The weight parameter, w ∼ N (µ,1/ψ), is sampled with a prior N (µ0,v2
0) for

µ and a prior Γ(η0/2,η0τ2
0/2) for precision parameter ψ. Finally, a prior for precision

φ is given as Γ(ν0/2,ν0σ2
0/2). For the six hyperparameters, we adopt the constant val-

ues given by Hoff (2007) for probabilistic singular value decomposition, so that η0 = 2,

ν0 = 2, and other values are computed using empirical Bayesian estimates, computed

from the observed dataset itself. To be specific, using the initial values of (X,B,w), we

first compute dimension-specific components of (µ0) as the mean value for the cumu-

lative sum of the elements of w divided by its rank, so that µ0 = 1
N+1 ∑

N
k=0 ∑

k
j=1 w j/k.

Similarly, σ2
0 =

1
N+1 ∑

N
k=0 ‖Y−X[,1:k]W[1:k,1:k]B>[,1:k]‖

2/NM, v2
0 =

1
N+1 ∑

N
k=0(∑

k
j=1 w j/k−

1
N+1 ∑

N
k′=0 ∑

k′
j′=1 w j′/k′)2 and τ2

0 =
1

N+1 ∑
N
k=0(∑

k
j=1 w j− 1

N+1 ∑
N
j=0 w j)

2/k. To keep the no-

tation simple, for the null rank case, in which the subscript k equals 0, the corresponding

value is treated as 0 (e.g. ∑
0
j=1 w j = 0), or, if divided by its subscript, 1 (e.g. ∑

0
j=1 w j/0 = 1).

When M < N, N in the hyperparameter equations can be replaced by M.

1.9.5 Computational Implementation

The proposed Gibbs sampling algorithm is implemented in MATLAB. For fast

computation, we utilize Wood (1994)’s algorithm for sampling vMF distribution and Botev

(2016)’s algorithm for sampling multivariate truncated normal distribution. Starting values

for (X,B,w) are set as the principal component outcomes of the double centered matrix of

YY> and A is set as residual values. Setting random draws as starting values does not affect
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the performance of the algorithm.
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Figure 1.10: Mixing patterns. Convergence plots of estimates for a synthetic example with
planted parameters: N = 200, M = 1,000, w = (0.7,0.2,0.1) and φ = 106. The first three
subplots indicate the dimension-specific outcomes of X over Gibbs sampling iterations,
and the right most subplot indicates the dynamics of w over iterations.

Because the scale of utility is irrelevant (Train 2009), the precision (i.e. φ) of E

affects the resulting estimates of w and A only up to constant multiplication. For an output

φ̂, Â’s corresponding ŵ = (φ̂/φ)w and Â = (φ̂/φ)A. While setting φ as an arbitrary constant

value does not affect the estimation results in theory, we find that incorporating φ estimation

stage dramatically reduces the computational cost required for the convergence of other

parameters.

Figure 1.10 shows the converging trends of the parameters over iterations. As

illustrated, all estimates exhibit stable resonance around mean values. For all examples

analyzed in the study, sampling outputs did not reject the null hypothesis in Geweke’s test

(Geweke 1991).

Chapter 1 is currently in preparation for submission for publication of the material.

Sohn, Yunkyu. The dissertation author was the sole researcher and author of this material.



Chapter 2

Automatic Dimensionality Selection

Method for Latent Variable Models:

Application to Voting Datasets

Despite the prevalent use of latent variable models (e.g. factor models, principal

component analysis, item response theory models) in political science and other fields of

social sciences, there has been lack of approaches for identifying the number of dimensions

underlying the generating process of data matrices. Here, I propose a changepoint detection

method for the automatic discovery of noise-free spectral bands in the eigenspectra of co-

variance matrices. I first prove the benefit of using eigenvalue ratio statistic over eigenvalues,

and propose an automatic discovery algorithm. The proposed method corrects flaws in

the well-known automatic discovery method based on profile likelihood comparison, and

replaces the conventional elbow-detection visual inspection scheme. I demonstrate the

performance of the method using historical roll call votes of American Congress.

39
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2.1 Problem Statement

Latent variable models (e.g. factor models, principal component analysis, item

response theory models) have been a canonical approach for measurement in political

science. Latent variable models have been used in many fields of political science, to name

a few, including legislative (Poole 2005), electoral (Jackman & Vavreck 2010), institutional

(Treier & Jackman 2008) and human rights studies (Fariss 2014). The outputs of these

methods, lower dimensional latent variables, recover key aggregate information underlying

the data generating process of high dimensional datasets.

An essential decision a researcher needs to make when using latent variable models

is to determine the number of dimensions of the recovered latent traits, often expecting

to identify the number of dimensions underlying the generative process of data matrices.

However, there has been lack of methods for dimensionality selection. In fact, this problem

prevails when using latent variable models across all disciplines of data science, not limited

to political and social science research (Murphy 2012). Among many applications of latent

variable models, I focus on identifying the number of dimensions for ideal point estimation

of voting datasets over roll calls in parliaments.

Here, I propose a changepoint detection method for the automatic discovery of

noise-free spectral bands in the eigenspectra of covariance matrices. I first prove the benefit

of using eigenvalue ratio statistic over eigenvalues, and propose an automatic discovery

algorithm. The proposed method corrects flaws in the well-known automatic discovery

method based on profile likelihood comparison (Zhu & Ghodsi 2006), and replaces the

conventional elbow-detection visual inspection scheme (Poole 2005). I demonstrate the

performance of the method using historical roll call votes of American Congress. The

proposed method is expected to provide a fast-check for guessing the true dimensionality of

latent variables in a high dimensional dataset during pre-analysis stages.
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2.2 Theoretical Framework

Before introducing the statistical method, I present the theoretical framework ex-

plicating why the eigenvalue ratio statistic produces desirable results for dimensionality

selection. While the following discussion uses the vote correlation matrix example, the

majority of results can be applied to any type of latent linear variable models in general.

The following reasoning heavily relies on the results on the spectral properties of modular

matrices by Bai & Silverstein (2010), Nadakuditi & Newman (2012) and Peixoto (2013).

Let us define the vote correlation matrix on bill t, Ṽt and V ≡ ∑t Ṽt . Each vote

correlation matrix Ṽt is defined as:

Ṽi jt = Ṽjit =


1, if i and j vote same on t

0, otherwise.

In the standard item response theory formulation, the probability of legislators i and j

vote same on bill t is given as Pr(Vi jt = 1) = Φ(∑k wkβitxit −αt)Φ(∑k wkβ jtx jt −αt) +

(1−Φ(∑k wkβitxit −αt))(1−Φ(∑k wkβ jtx jt −αt)) where Φ(·) is the standard cumulative

normal density function evaluated ·. All other parameters are as defined in Chapter 1.

Instead of the double-centered agreement matrix which is used for dimensionality se-

lection in voting profiles (Poole 2005), I study a standard linear operator matrix for quadratic

cost representation called normalized graph Laplacian. Normalized graph Laplacian is a

mathematically well-motivated structure of the operator which is proven to give the best K

dimensional approximation of a data matrix among other representations of data covariance

matrices (Chung 1997, Ng, Jordan & Weiss 2002, Rohe, Chatterjee & Yu 2011). Unlike the

double-centered agreement matrix, normalized graph Laplacian has a symmetric bulk noise

spectrum (i.e. Wigner semicircle distribution) that is tractable, different from the skewed

noisy spectrum (i.e. Marcenko-Pastur Quarter semicircle distribution) of the double-centered
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agreement matrix (Rao & Edelman 2008).

The normalized graph Laplacian for the aggregate vote correlation matrix V is

defined as

L= I−D−1/2VD−1/2 (2.1)

where D = Diag∑iVi j(Von Luxburg 2007). It is known that the eigenvalues and eigenvectors

of this matrix correspond to the cost function and solutions minimizing the normalized graph

cut (Von Luxburg 2007) which is used to partition the input correlation matrix or adjacency

matrix V to modular entities.

Recently, theoretical progress has been made on the eigenvalue spectra of general

classes of random matrices including normalized graph Laplacian (L) (Bai & Silverstein

2010, Nadakuditi & Newman 2013, Peixoto 2013). A normalized graph Laplacian generated

from the vote correlation matrix V can be decomposed into two parts, each consisting of the

fluctuation term (X ) due to stochasticity in the data generating process and the mean term

(〈M〉) representing the data generating parameters.

L= I−D−1/2VD−1/2 = I− ( X︸︷︷︸
fluctuation

+ 〈M〉︸︷︷︸
mean

) (2.2)

In the case of vote similarity matrix, each element of L is the normalized version of

Pr(Vi jt = 1). Since I shifts all eigenvalues by +1, the eigenvalue spectrum of L is same as

D−1/2VD−1/2 with -1 multiplied and +1 added.

This general representation can be understood more intuitively if we assume a

truncated data generating matrix MB of size B×B. That is, now we assume that there are B

unique voting probability profiles and each of N total legislators are assigned to the one of

the B voting probability profiles. Note that, due to the stochasticity in the data generating

process, two legislators having identical voting probability profiles can exhibit distinct

realized voting profiles. Following this representation, b (bi ∈ {1, . . . ,B}) is a block (e.g.
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voting coalition) affiliation vector of size n, and the off-diagonal mean matrix 〈Mi j〉= [MB]rs

with affiliation indexes for i and j respectively (r = bi s = b j).

Due to Peixoto (2013), we get exact expressions for each element of the mean

matrix and its corresponding variance for large n. That is, [MB]rs = ers/
√

nrernses and

σ2
rs ' ers/eres where ers is the expected number of 1s the on r-s similarity compartment of

MB and er is the total expected number of 1s (i.e. agreements) for legislators belonging to

group r.

On the basis of this result, we can calculate the eigenspectrum of L (or D−1/2VD−1/2)

given 〈M〉 and b. Such progress can be made by decomposing the determinant of D−1/2VD−1/2

as:

det[zI− (X + 〈M〉)] = det[zI−X ]︸ ︷︷ ︸
random

det[I− (zI−X )−1〈M〉]︸ ︷︷ ︸
DGP

. (2.3)

This decomposition strikingly simplifies the spectrum of D−1/2VD−1/2 as the superposition

of the random eigenvalues and data generating process (DGP) eingevalues.

Figure 2.1 illustrates this intuition. The goal of spectral decomposition methods in

general is to separate the bulk noise spectrum coming from the random noise part (i.e. the

first term of the right hand side) and relevant eigenvalues coming from the DGP part (i.e.

the second term of the right hand side). In the figure, the relevant eigenvalues correspond to

the eigenvalues of the DGP relevant matrix 〈M〉 and the random eigenvalues correspond to

the rest of eigenvalues in V, coming from X . Among the two operators, normalized graph

Laplacian L(·) exhibits superior performance as opposed to unnormalized graph Laplacian

L(·). That is, whereas the majority of the relevant eigenvalues in L(V) are absorbed into

the eigenvalues of the bulk noise part, all random eigenvalues in L(V) are concentrated

around the trivial eigenvalue 1. To recap, our goal is to count the number of eigenvalues that

attribute to DGP of the vote correlation matrix using a good operator such as the normalized

graph Laplacian.

Further analytic approximation can be made using complex analysis. After applying
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Figure 2.1: Random matrix theory intuition. Schematic illustration of the idea using
three voting coalition example consisting of 600 voters. Vote similarity planted diagram
(
〈
M
〉
) and realized vote correlation matrix (V) where dark dots indicate the existence of

positive correlation and light dots indicate the absence of such correlation. L(·) is the
normalized graph Laplacian operator whereas L(·) is the unnormalized graph Lapalcian
operator. Each eigenspectra subplots indicate the distribution and density of eigenvalues.
For the eigenspectra of the realized vote correlation matrix (V), in order to obtain the
density values, I simulated 100 realizations of the vote correlation matrix with same data
generating process, and averaged their occurrence.

the Stielties transform to X , the spectrum of the noisy matrix equals

ρ(z) =− 1
Nπ

ImTr〈(zI−X )−1〉=− 1
Nπ

∑
r

nrImtr(z) =−
1

Nπ
∑
r

nrIm
1

z−∑s σ2
rsnsts(z)

(2.4)
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with tr(z)≡ 〈[(zI−X )−1]ii〉= 1
z−∑s σ2

rsnsts(z)
for i ∈ r (Bai & Silverstein 2010, Nadakuditi &

Newman 2012, Peixoto 2013).

Here I show the relationship between the solutions (z∗) of det[I−(zI−X )−1〈M〉] =

0 and the eigenvalues of MBN where N is the diagonal group size matrix of size B so that

∀r ∈ {1, . . . ,B}, Nrr = nr. Let us first show that the solutions of det[I− (zI−X )−1〈M〉] = 0

approximate to eigenvalues of the B×B matrix T(z)MBN, since

det[I−〈(zI−X )−1〉〈M〉] = det[I−T(z)〈M〉] = det[IB−T(z)MBN] = 0, (2.5)

where T(z) is a B×B diagonal matrix containing the values of tr(z) and the second equality

comes from the fact that Gaussian elimination of T(z)〈M〉 for duplicate rows. We can now

apply the approximation tr(z) ' 1/z for detached eigenvalues from the bulk eigenvalues

coming from the noisy matrix X (Nadakuditi & Newman 2012, Peixoto 2013), which leads

to

T(z)−1IB−MBN' zIB−MBN. (2.6)

Finally, we obtain

z|det[〈(zI−X )−1〉〈M〉] = 0' z|det[zIB−MBN] = 0 (2.7)

2.3 Proposed Method

To recap, the goal is to devise a method which separates the eigenvalues coming

from the disturbance term of the stochastic realization and the relevant eigenvalues due

to the coalitional structure underlying DGP. As illustrated in Figure 2.1, the normalized

graph Laplacian is a very nice operator that can be used to discriminate noisy eigenvalues

and relevant eigenvalues. Using the theoretical framework introduced so far, I introduce an

automatic discovery algorithm which counts the number of the relevant eigenvalues.
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2.3.1 Eigenvalue Ratio Statistic

In practice, because we do not know the data generating matrices MB and N when

observing a realized voting matrix, it is infeasible to directly utilize the analytic results

introduced above for developing empirical statistical methods. A breakthrough can be

made by focusing on the interval characteristics and separability of the eigenvalues of L(V)

consisting of eigenvalues originating from the noisy matrix X and the data generating

matrices MB and N.

To be short, we can use the fact that eigenvalue bulk of X , ρ(z), is bounded by

a confined range of which edges are solutions (z∗) for ρ(z) = 0 and det[IB− J(z)] = 0

where the Jacobian Jrs(z) = ∂tr/∂ts (Nadakuditi & Newman 2012, Peixoto 2013). Since the

solutions of this set of equations, z ∈ {zL,zR}, where zL is the left boundary solution and zR

is the right boundary solution, equal the edges of ρ(z), and we do know that zR− zL is finite,

for large N (and assuming the matrix V is full rank, thus |{z|z ∈ ρ(z)}|= N− rank(MB)):

1. eigenvalue interval statistic: ∆z≈ zR−zL
N−B |z ∈ ρ(z)→ 0

2. eigenvalue ratio statistic: zi+1/zi|z ∈ ρ(z)→ 1.

Now if we focus on eigenvalues of L, or equivalently D−1/2VD−1/2, in the range

of z /∈ ρ(z), we can easily see that ∆z 6= 0 and zi+1/zi 6= 1. Thus, by using this fact, we

can expect that the regime change of the both statistics occurs on the boundary of z ∈ ρ(z)

and z /∈ ρ(z). For the very special case of homogeneous block structure with exactly same

diagonal elements for all groups of MB and off-diagonal elements for all groups of MB and

homogeneous group size, ρ(z) =
√

4N ∑s σ2
rs/B− (z−1)2/(2πN ∑s σ2

rs/B), corresponding

to an exact semi-circle distribution (Peixoto 2013). Hence we do know the exact finite

bounds of the continuous bulk spectrum and that both statistics exhibit discrete transitions

in their values around the boundary of the bulk and DGP eigenvalues. As we will see later, I

find that the ratio statistic gives superb results than the well-known automatic method (Zhu
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& Ghodsi 2006) based on the interval statistic for finite sized voting matrices.

2.3.2 Changepoint Detection for Dimensionality Selection

On the basis of the properties of the eigenvalue interval and ratio statistics, we can

think of ways to detect the boundary where z changes from z∈ ρ(z) to z /∈ ρ(z). By using this

idea, we can count the number of eigenvalues belonging to z /∈ ρ(z), thus the dimensionality

of the utility embedded in the data generating multidimensional utility function (introduced

in Chapter 1).

Since now we do know that the ratio statistic for zi+1/zi|z ∈ ρ(z) converges to 1,

unlike standard changepoint detection algorithm (Chib 1998), which is agnostic about the

mean and variance parameters of one of the regimes, we can fix the ratio statistic for the

bulk regime have mean 1 with a very small variance. Also the number of regimes equals 2,

since we do know that the eigenvalues for L exist in the range of [0,1+ ε] due to the trivial

characteristic of voting matrices (i.e. higher intra-coalition voting similarity propensity

than inter-coalition voting similarity), where 1+ ε is the right edge of the bulk eigenvalue

spectrum. Accordingly, all relevant eigenvalues lie in the range of (0,1− ε).

In order to compare the performance of the new formalism based on eigenvalue ratio

statistic with well-known automatic detection method based on eigenvalue interval (Zhu &

Ghodsi 2006), I use profile likelihood based changepoint detection algorithm (Murphy &

Van der Vaart 2000, Murphy 2012). Different from the proper likelihood approach, profile

likelihood utilizes pooled variance so that the nuisance parameter variance is fixed.

Following the procedure introduced in Zhu & Ghodsi (2006), the goal of inference is

to partition the eigenvalues or eigenvalue statistics into two groups (Λ1 and Λ2). According

to the discussion so far, these two groups respectively correspond to the relevant eigenvalue

set and the random eigenvalue set. Due to the incorporation of profile likelihood, the variance

parameter is fixed for both of the sets as σ2. The Gaussian mixture log likelihood function
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is defined as

l(q) = ∑
i∈Λ1

logφ

(
di−µ1

σ

)
+ ∑

i∈Λ2

logφ

(
di−µ2

σ

)
, (2.8)

where q is the number of consecutive eigenvalue statistics {di|1≤ i≤ N} (e.g. eigenvalues,

eigenvalues ratio statistics) belonging to Λ1 and φ(·) is the standard Gaussian density at

·. The goal of this procedure is to find q which maximizes l(q) with µ̂1 =
∑i∈Λ1 di

q and

µ̂2 =
∑i∈Λ2 di

N−q . The pooled variance is estimated as

σ̂
2 =

(q−1)s2
1 +(N−q−1)s2

2
N−2

, (2.9)

where s2
1 and s2

2 correspond to the sample variance of the partitions respectively. This method

is designed to detect a boundary which gives the best fit of the bimodal Gaussian mixture

distribution.

For eigenvalue ratio statistic version, I set the mean value of the second set as µ2 = 1

since we do know the converging limit. In addition, since the variance of ratio statistics

belonging to the second set should be very small relative to the pooled variance or the

variance of the first set ratio statistics, I set the variance parameter of the second set to be

fixed as σ̂2/100. Accordingly, the mixture log likelihood for the ratio statistic changepoint

equals

l(q) = ∑
i∈Λ1

logφ

(
di−µ1

σ

)
+ ∑

i∈Λ2

logφ

(
di−1
σ/10

)
. (2.10)

Since we are using eigenvalue ratio statistic instead of eigenvalues, the size of the input

truncates by 1, so that {di|1≤ i≤ N−1}.

2.4 Simulation Evidence

Figure 2.2 compares the performance of the proposed eigenvalue ratio statistic ap-

proach with the naive eigenvalue changepoint detection method of Zhu & Ghodsi (2006).
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The figure shows two simulation cases with a low noise variance (top) and a high noise

variance (bottom) for the quadratic voting model introduced in Chapter 1. The true dimen-

sionality used to generate the vote matrix was 3. While both cases do have eigenvectors

recovering the true planted ideal points, the coresponding eigenvalues are difficult to be

discriminated from the noise eigenvalue bulk in the difficult voting case. This problem

affects the result of the naive eigenvalue changepoint detection algorithm of Zhu & Ghodsi

(2006). Yet, when using the eigenvalue ratio statistic, we can see visually the clear distinction

between the noise bulk and the DGP eigenvalue ratio values. Accordingly, the proposed

automatic detection approach provides correct results.
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Figure 2.2: Simulation examples. [Top] Easy (less noisy) voting case with small voting
error relative to the amount of utility difference. [Bottom] Difficult (noisy) voting case
with large voting error relative to the amount of utility difference. The variance of the noisy
case was 4 times of the variance of the less noisy case. Two simulation examples have same
parameter setup, with 200 legislators and 2,000 bills with 3 dimensional underlying space
and dimension importance: 0.5:0.3:0:2, except for the noise amount. The naive eigenvalue
changepoint detection approach (’Changepoint on screeplot’) proposed by Zhu & Godshi
(2006) cannot detect the true dimensionality 3 whereas the proposed eigenvalue ratio
changepoint detection method (’Changepoint on eigenvalue ratio’) detects the correct value
3. All eigenvectors show significant levels of correlation with the truth (’Ideal points’).

Figure 2.3 demonstrates results over a wide range of disturbance level. As shown
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Figure 2.3: Changepoints with varying disturbance. Changepoint detection results for the
same DGP parameters as in Figure 2.2 except noise variance. X-axis denotes the Gaussian
noise standard deviation level. Each value should read with 10−3 multiplied. See Chapter
1 for details of the DGP model. ’Eigenvalue’ denotes results obtained using the naive
eigenvalue profile likelihood comparison method whereas ’Eigenvalue ratio’ indicates the
results obtained using eigenvalue ratio inputs. Eigenvalue ratio method recovers the true
dimensionality (i.e. 3) for the majority of disturbance levels.

over the varying level of variance, the true dimensionality 3 is obtained for the range

of disturbance levels when using eigenvalue ratio whereas the naive original approach

(’Eigenvalue’) of Zhu & Ghodsi (2006) never gets the true value when the standard deviation

approaches 4×103. Unlike the original algorithm, which gives extremely high value in the

majority of disturbance levels analyzed, the proposed ratio based algorithm gives correct

values for the most of the disturbance levels below 5× 103, and it gradually increases

afterwards. The latter is in contrast with the result of the original algorithm which outputs

unreasonably high values around these levels.
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2.5 Application to United States House of Representatives

Roll Call Voting Records

I apply the proposed method to the roll call voting records of the United States House

ranging from the late 19 century to the present. I apply the changepoint detection algorithm

on the eigenvalue ratio statistics of normalized graph Laplacians of the vote correlation

matrices, and find that the number of detected dimensions has been greater than 2 during a

significant number of sessions (Figure 2.4).
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Figure 2.4: U.S. Houe Dimensionality. Number of dimensions estimated using the pro-
posed changepoint detection algorithm applied to eigenvalue ratio statistics of normalized
graph Laplacians of roll call voting correlation matrices from the 46th to the 113th session
of United State House of representatives. Y-axis represents the estimated number of di-
mensions computed using the eigenvalue ratio statistic changepoint detection method and
X-axis shows the starting year of each session.

Readers should note that one drawback of the current version of the proposed

approach is that it does not allow us to differentiate between the cases where there is a single

estimated dimension and two estimated dimensions. That is, due to the construction of the

likelihood function that a single data point set is not allowed to have variance, the minimum

possible value of the maximum likelihood solution for l(q) is 2. Ongoing research aims to

resolve this problem by incorporating Bayesian model selection procedure for comparing

the 2-regime changepoint model marginal likelihood with null-changepoint (i.e. single

regime) model marginal likelihood using the methods detailed in the chapter 7 of Gelman

et al. (2014).
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In addition, the users of the proposed method should also note that this approach

provides a fast check of the underlying dimensionality since it is a truncated deterministic

version of the probabilistic statistical model. Hence while this method can be used as a

suggestive guideline for knowing the approximate true dimensionality of the underlying

model, rigorous statistical judgment should be given carefully using DGP-based models such

as the one introduced in Chapter 1. Thus it is recommended to set the input dimensionality

values of the statistical model in a range including the inferred dimensionality obtained

using the proposed method.

2.6 Conclusion

The changepoint detection algorithm for dimensionality selection replaces the con-

ventional visual elbow detection approach for eigenvalues of the voting agreement matrix,

which is vulnerable to subjective judgment. The new approach makes the selection process

automatic, not relying on researchers’ discretion on selecting the number of dimensions.

Empirical analysis suggests evidence on high dimensionality of the US House roll call

voting dataset over the late 19th century to the present. The proposed method is expected

to serve in the pre-analysis stage when researchers do not have any idea about the true

dimensionality of the latent variables in a high dimensional dataset. The resulting estimate

can be used as a reference point for input dimensionality when conducting the analysis with

a rigorous parametric model reflecting realistic DGP.

Chapter 2 is currently in preparation for submission for publication of the material.

Sohn, Yunkyu. The dissertation author was the sole researcher and author of this material.



Chapter 3

A Unified Framework for Analyzing

Aggregate and Issue-specific Preference

from Non-voting Datasets: Coalitional

Item Response Theory Model

Position-taking motivated individuals, who are uncertain about the ideological lean-

ing of other individuals, will form coalitions based on the expectation for ideological

characteristics of potential coalitions. I use this fact to build an ideological signaling model

of coalition formation in which individuals (e.g. legislators, interest groups) pursue stable

biding coalitions best serving their ideological interest. The binding coalitions, core, lead

to an exact derivation of a specific ideal point inference method. I present three types of

solutions for the obtained statistical model to recover spatial preference of actors from

empirical coalition datasets: 1) exact solution 2) fully Bayesian solution, and 3) variational

Bayesian solution. All solutions offer multi-dimensional estimates. The fully Bayesian

solution provides probabilistic estimates, and the variational Bayesian solution specifies a

53
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truncation threshold for selecting the number of dimensions. I apply the method to newly

collected bill proposal coalition data covering the entire history of Korean National Assem-

bly, from which individual ideology extraction is otherwise impossible due to the absence of

recorded voting institution until the very recent sessions. Compared to NOMINATE on roll

call voting data, the proposed method controls for government opposition and seniority bias.

As the first to uncover the historical legislative landscape of Korea, the result provides a rare

depiction of the evolutionary path of a parliament under dynamic political environments (i.e.

trusteed, authoritarian and democratic; parliamentary and presidential) from its birth to the

present. Finally, I extend the basic ideal point estimation framework to accommodate issue

inference of bills using bill text information, and provide a framework for understanding the

issue trend and issue-specific ideology from non-voting datasets. All data used for analyz-

ing Korean National Assembly will be available as Korean Legislation and Election

Database. All ideology and issue estimation algorithms will be available as Coalitional

Item Response Theory programming package.

3.1 Introduction

3.1.1 Theoretical Motivation

Coalition formation is an defining element of political practice (Riker 1962). Individ-

uals assemble groups and assert coordinated actions due to the economy of scale. This creates

the needs for collective action and produce collective goods. Even self-interested decisions

often lead to such outcomes (Axelrod 1981, Nowak 2006, Ostrom 1990, Putnam, Leonardi &

Nanetti 1994). Then, why not always observe grand coalitions with everyone involved? An

opposing effect of coalition formation is largely due to preference diversity among the group

members (Axelrod 1967, Laver & Shepsle 1996, Laver & Schofield 1998, Demange 2005).

Conflict of interest hampers a full exploitation of coordination and motivates the breaking
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of society into small self-sufficient groups. The following examples show how this takes

place in reality.
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Figure 3.1: The Trade-off of Increasing Return and Preference Heterogeneity. Increasing
return by group size yields benefit whereas preference diversity incurred by getting along
with too many individuals causes conflict of interest. As a result there can be an optimal
coalition where the trade-off between the two conflicting effects yields maximum payoff.

Case 1 Party Coalition Riker (1962) originally formulated the incentive for forming coali-

tional government in parliamentary democracies being proportional to the number of seats

each party can get in the cabinet. This reasoning directs to minimum winning coalition

idea in which its members maintain majority status with the minimum possible number of

legislators. However one crucial reason this does not happen in reality is due to ideological

heterogeneity among parties (Strøm & Nyblade 2007). That is, at the cost of disorganizing

winning coalitions, a leading party would abandon other parties as coalition partners due to

potential conflict of interest in policy making and misrepresentation of their ideology toward

the public.

Case 2 Big-City Bills in American State Legislatures Gamm & Kousser (2013) find that

the proportion of bills that pass state legislatures decreases with city size. One of the critical

barriers for the success of big-city bills was large legislative delegation. They find when

there are multiple legislators to represent a single city, internal divide among the legislators

prevents producing a coherent and focused voice, thereby increasing the chance of failure.

Case 3 Inter-Firm Tariff Competition Product differentiation is a key to determining the

size of lobbying coalitions in tariff determination in United States. Kim (2017) finds if
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an industry has a higher level of product differentiation (e.g. electronic products), it is

more likely to split the size of coalitions for reducing tariff rates. In other words, if an

industry experiences conflict of interest in tariff determination due to product differentiation,

it becomes rare to observe large lobbying coalitions.

Figure 3.2: Utility of coalition formation. The utility v(C) of forming a narrow coalition vs
a broad coalition (C) under the position taking framework. Grey lines indicate coalitional
partnership. Color gradation indicates ideological diversity in which dark blue corresponds
to very liberal and dark red indicates very conservative. For position-taking motivated
individuals, forming coalitions with like-minded individuals will provide a high level of
utility (left) whereas forming coalitions with different-minded individauls will provide a
low level of utility (right).

In recognition of the strategic nature of coalition formation, we can expect that

realized coalitions convey important information on the latent preference of individuals

(Figure 3.2). To best serve the narrow and specific incentive of individuals, self-interested

decision makers will form groups, at the same time satisfying the size of group required for

producing collective goods. For example, voting coalitions in parliaments can be formed for

passing a bill but its members would not have an excessive level of ideological conflict with

each other.

3.1.2 Statistical Method

In line with this understanding, political science community has developed a field of

measurement theory which aims to discover latent ideological preference of decision makers

from voting coalition datasets (Brady 1989, Clinton, Jackman & Rivers 2004, Poole 2005).

These models build upon spatial models of choice in which decision makers with similar

preference choose similar items. In particular, the most successful application of this idea
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was to apply the method on parliamentary voting records where individuals face binary

agenda comparison decisions with a utility assessment scheme. This low-dimensional

projection approach has shaped a canonical framework for conducting empirical political

science research, and has been successfully applied to voting records of multiple institutional

bodies (Poole & Rosenthal 2000, Martin & Quinn 2002, Dewan & Spirling 2011).

However, in practice, voting is a comparatively rare and restricted opportunity for

legislators to appeal their ideology to extra-legislative audience, especially among minority

party members. Other means, such as bill proposal (Fowler 2006, Desposato, Kearney &

Crisp 2011, Alemán, Calvo, Jones & Kaplan 2009), formal and informal opinion expression

(Gentzkow & Shapiro 2010, Kim, Londregan & Ratkovic 2015), and physical violence

(Kim 2011), are effective practices for position-taking that are less affected by known biases

in voting (e.g. party effect and strategic opposition).

Coalition formation is a general and pervasive theoretical concept which puts these

different types of behavior together. However, a well-motivated ideal point estimation

method, especially from rigorous coalitional game theoretic foundation, has been missing.

Although several non-parametric methods can be used to serve the same purpose, behavioral

rationale underlying the use of these methods has been weak.

In this paper, I use the aforementioned strategic nature of coalition formation,

which motivates to form coalitions with minimum ideological conflict and sufficiently

large coalition size, to propose an ideological signaling model of coalition formation. The

coalitional stable solution of this model, core, leads to an exact derivation of a specific

factor-analytic type model for ideal point estimation.

I present three types of solutions for the obtained statistical model to recover spatial

preference of actors from empirical coalition datasets: 1) exact solution, 2) fully Bayesian

solution and 3) variational Bayesian solution. All solutions offer multi-dimensional estimates.

The fully Bayesian solution provides probabilistic estimates. The variational Bayesian
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solution specifies a truncation threshold for selecting the number of dimensions.

The method is applied to newly collected bill proposal coalition data covering the

entire history of Korean National Assembly, from which individual ideology extraction

is otherwise impossible due to the absence of recorded voting institution until the very

recent sessions. Compared to NOMINATE on roll call data, the proposed method controls

for government opposition and seniority biases. As the first to uncover the historical

legislative landscape of Korea, the result provides a rare depiction of the evolutionary

path of a parliament under dynamic political environments (i.e. trusteed, authoritarian and

democratic; parliamentary and presidential) from its birth to the present.

I extend the basic estimation framework to infer issue-specific ideology through

bill-issue matching. The proposed estimation method is flexible enough to apply it to

issue-specific subsets. Through case analysis, I also show that the proposed method can be

used to promote our understanding of legislative and party politics under various political

conditions. Finally, I discuss the possibility of using the proposed framework to analyze

ideological characteristics of political actors from various types of non-voting datasets.

3.2 An Informational Rationale for Coalition Formation

3.2.1 The Game

I consider a game Gb for a pair (N,v) and event b ∈ B (e.g. proposing bill b

among the set of all bills B), where the set of agents is N = {1, . . . ,n} and v : 2n→ R is a

characteristic function, denoting the collective payoff of forming a coalition. This function

assigns a real number (value) v(C) to a coalition C ⊆ N. I assume that one can summarize

all information given prior to the coalition formation for event b as sb. The shape of utility

curve is characterized by a threshold value n. For instance, in the case of bill proposal

coalition formation, sb can be sponsor ideology, and n can be a minimum size barrier for
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each legislative proposal. We can conceive sb as taking the role of formateur party in party

coalition formation example, who has an agenda power for shaping the coalition and cannot

be excluded in the event b. This formulation yields a conditional representation of the

characteristic function as v(C|sb,n).

As I will detail in the following, the structure of utility is better modeled as non-

transferable with only a single possible fair division option for v(C|sb,n) into uC, where

each element in uC is utility share of i ∈ C. Hence individual utility vector becomes

uC = 〈u1, . . . ,u|C|〉 and the collective payoff becomes v(C|sb,n) = uC ≡ ∑i∈C ui.

3.2.2 Characteristic Function

Now, I detail the structure of the characteristic function v for realized coalitions

among the individuals N. Suppose a position-taking-motivated decision maker (e.g. legisla-

tor) i who seeks to collaborate with |C|−1 other individuals. By position-taking motivated

individual, I denote an individual who cares more about signaling one’s ideology toward

his audience (e.g. via bill proposal to one’s district electorates) rather than actual pol-

icy implementation (e.g. as a consequence of bill passage in the legislation application)

(Mayhew 1974).

Let i’s median audience preference (e.g. district preference) xi. i’s payoff becomes

a function of i’s ideology captured by the electorates x̂i and the actual audience median

xi. Constituents’ perception of i’s ideology involves Gaussian uncertainty component and

the voters infer i’s ideology by integrating a prior distribution N (xi,σ
2
0) and ideological

signals of i’s collaborators. In other words, I assume i’s constituents have an ambiguous

idea about i’s ideology which spreads around their district median with standard deviation

σ0. i’s audiences infer i’s ideology using the prior information as well as the ideological

characteristics of the members of the coalition i is participating. Note that these other

members ideological locations are simultaneously estimated using the same procedure
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Figure 3.3: Informational contents of coalition formation. Constituents’ perception of
their district incumbent i’s ideology. Given district median ideology as prior, constituents
gather i’s collaborators’ expected ideological characteristics to infer i’s ideology. Top
and bottom panels denote two cases in which collaborator ideological preferences differ
substantially. There always exists the risk of being misrepresented by forming coalitions.
All lines indicate probabilistic density functions.

by the electorates. In other words, the electorates do not have fixed knowledge on their

locations.

Figure 3.3 illustrates two distinct examples of ideological signaling as the results

of legislative coalitions. The perceived ideology of legislator i in the top and the bottom

panels differ substantially. In the top, i forms a coalition with like-minded individuals,

and the consequential ideological signal is relatively close to i’s district median. On the

contrary, in the bottom, i collaborates with a number of legislators with relatively diverse and

heterogeneous ideological characteristics. The realized signal of this coalition is diffusive

whose mean largely deviates from i’s district preference.

We can formulate the above conception exactly using the following likelihood

function. The realized, maximum a posteriori estimate of i’s ideology (i.e. i’s ideology

inferred by the voters) is equivalent to

x̂i = argmax
x

 1√
2πσ2

0

e
− 1

2σ2
0
(xi−x)2

∏
j∈C\i

1√
2πσ2

e−
1

2σ2 (x j−x)2

 , (3.1)
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where σ0 and σ respectively denote standard deviations for i and i’s collaborators’ prior

ideological signals. Calculating x̂i by solving equation 3.1, we obtain

x̂i = σ̂2
i

(
xi

σ2
0
+
|C\i|XC\i

σ2

)
, (3.2)

where C\i indicates the coalition set C with the member i removed and the maximum a

posteriori estimate of perceived ideological variance of i is equivalent to

σ̂2
i = 1/

(
1

σ2
0
+
|C\i|
σ2

)
. (3.3)

Assuming (risk-averse) quadratic utility, i’s utility becomes a function of district ideology

xi and ideology of i perceived by its constituents x̂i: Ui =−(xi− x̂i)
2. The expected utility

becomes

eui = E(ui|{x j| j ∈C},sb,n)

= − (xi− x̂i)
2︸ ︷︷ ︸

difference with district median

−

perceptual variance︷︸︸︷
σ̂2

i

= −

xi−
1

1
σ2

0
+ |C\i|

σ2

(
xi

σ2
0
+
|C\i|xC

σ2

)
2

− 1
|C|

(3.4)

following Marschak & Radner (1972) and Enelow & Hinich (1981) which provide expected

utility calculation for uncertain payoff realization. The utility is realized if and only if the

coalition size meets a threshold |C| ≥ n and sb ∈C. Assuming unit variance for both σ2 = 1

and σ2
0 = 1, we can trim equation 3.4 as

eui = −
(

xi−
xi + |C\i|xCi

|C\i|+1

)2

− 1
|C\i|+1

= −(xi− xC)
2−1/|C|. (3.5)
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I additionally incorporate an incentive component of legislators to avoid increasing

the number of cosponsors above a threshold number (n), the size of coalition which satisfies

the minimum requirement for producing collective goods (e.g. size barrier for legislative

proposal). This makes the utility of cosponsorship inversely proportional to the number

of cosponsors with a discounting factor γ < 1. By incorporating this factor, the aggregate

utility for coalition C becomes

v(C|sb,n) ≡ ∑
k∈C

euk

|C|γ

= −(VarC +1)|C|1−γ. (3.6)

with

VarC ≡
∑k∈C(xk− xC)

2

|C|

where |C| is the size of coalition C. In words, legislative activity yields credit-claiming

benefit and the magnitude of the benefit decreases if many others also participate the activity

(Arnold 1992, Grimmer, Messing & Westwood 2012, Hix & Jun 2009). In economic

terminology, γ corresponds to the degree of rivalry of the good, where γ = 1 is the case of

non-subtractable club good and γ < 1 is the case of subtractable private good. As mentioned

in the introduction, this assumption directly corresponds to the logic behind minimum

winning coalition in which increasing the size of coalition reduces the number of office seats

for each participant party.

Figure 3.4 illustrates the varying incentive of forming coalitions by their size and

intra-coalition ideological heterogeneity. As the above reasoning directs, maximum collec-

tive utility is obtained when the coalition size hits the threshold size n and intra-coalition

preference variance becomes minimum. We arrive at the following propositions.

Proposition 3 Affinity Principle For a fixed coalition size, the variance of intra-coalition

preference is negatively correlated with the collective payoff: ∂v(C|sb,n)
∂VarC

=−|C|1−γ < 0.
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Figure 3.4: Collective payoff and coalition formation. Exemplary graphs showing the
behavior of collective payoff (characteristic function) over key parameters for γ = 0.5.
(Left) An example characteristic function with the size threshold 10 when intra-coalition
variance is fixed. (Right) The graph displays a slice of the 3-dimensional graph on the
Middle panel for γ= 0.5. As shown in the colormap, dark red indicates high values whereas
dark blue indicates low values.

Proposition 4 Exclusiveness Principle For a fixed variance of intra-coalition preference,

the collective payoff is negatively correlated with the size of coalition: ∂v(C|sb,n)
∂|C| = (γ−

1)(VarC +1)|C|−γ < 0 since γ < 1.

3.2.3 Identification of Stable Binding Agreement

Here I propose a solution concept, core, of the game. To be specific, the realized

coalition structure needs to be stable. That is, any member of coalition C (i.e. i ∈ C)

should not have an incentive to deviate from C ∈ CS, where CS is the set of coalitional

membership among N (e.g. When a single coalition C with |C| ≥ n is realized, CS consists

of C and singleton coalitions of n−|C| individuals with size 1. In CS, C is the only relevant

coalition which reached the size barrier.), and CS is weakly preferred to other possible

coalition structures for j ∈ N\C (i.e. C should not be joined by individuals outside C). The

corresponding solution concept, core C (G), is the set of all outcomes (CS,u) satisfying

u(C)≥ v(C) for every subset of C ⊆ N.

Definition 3.2.1 C (Gb) is core of Gb = (N,v) if and only if the outcome (CSb,u) satisfies

u(C)≥ v(C) for every combination C ⊆ N, where CSb is the set of realized coalitions in Gb
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where Cb ≡ {Cb|v(Cb)> 0, Cb ∈CSb}.

In words, the core solution is an agreement which prevents self-interested individuals

to deviate from a specific coalition structure. This solution corresponds to a state in which

there are a characteristic function maximizing the collective utility of a realized coalition (C

with |C| ≥ n) and singleton individuals. Because every coalition and singleton individuals

in CS weakly prefer CS to other possible coalition structures. With permission authority,

members of C, in particular the formateur individual sb, can screen out others if it hampers

the collective payoff of the members in C.

3.3 Statistical Estimation Strategies for Latent Preference

Recovery

In this section, I propose three approaches for statistical estimation of latent spatial

preference from observed datasets under the proposed game-theoretic framework.

3.3.1 Exact Calculation of Optimal Positions

This subsection provides an exact optimization scheme which is directly derivable

from the model proposed in the preceding section.

While a variety of factor analytic methods (e.g. singular value decomposition,

principal component analysis, latent factor regression) do exist in political science to scale

individual preference from covariance matrices, existing methods specify input matrix

without concerning individual level strategic decisions. For example, Poole (2005) provides

a factor decomposition method for agreement score distance matrix of roll call voting.

Bonica (2014) uses similar specification to Poole (2005) for extracting ideology from

political donation dataset but produce two types of symmetric product matrices each for
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candidates and donors. Bond & Messing (2015) incorporate same approach to Bonica (2014)

to infer ideal points of Facebook users and celebrity accounts.1

Although a large number of studies adopt the factor decomposition scheme for the

recovery of latent positional preference, the exact connection between utility based reasoning

and the cost minimization approach embedded in factor analytic models has been missing.

To the best of my knowledge, there has been no work which established an individual level

strategic foundation to produce factor decomposition matrices.

Here I show that a specific form of decomposition scheme is derivable from the

stable binding agreement (Definition 3.2.1) of the preceding model.

The goal is to infer r-dimensional estimates n× r orthogonal ideal point matrix X

from a set of observed coalitions structures {Cb | b ∈ B}. For the entire bills B, we can

calculate the aggregate collective utility (characteristic function value) as

∑
b

v(Cb) = ∑
b

uCb
=−∑

b
{ ∑

k>l∈Cb

(xk− xl)
2 + |Cb|}|Cb|−γ. (3.7)

With the belief that the individuals N would have realized coalitions in a way to

maximize ∑b v(Cb), we now have a quadratic cost minimization problem for pairwise

distance between the individual locations. Because a trivial solution to maximize ∑b v(Cb) is

assigning all individuals an identical location, we need to impose an identification constraint

XT X = I.

After neglecting the constant term, now the task is to maximize

−∑
b

∑
k>l∈Cb

(xk− xl)
2|Cb|−γ (3.8)

with the identification constraint XT X = I. For notational convenience, let us define an
1Have not been debated intensively in political methodology community, however, specification of the input

matrix for data scaling and clustering is itself a huge discipline in statistics and mathematics (Von Luxburg
2007). There exist a number of specifications for capturing covariance relationships among variables. The key
procedure for these specifications is to eliminate a single rank from the full rank symmetric matrix representing
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affinity matrix A with each element being Ai j ≡ ∑b1(i, j ∈Cb)|Cb|−γ where 1(i, j ∈Cb)

is an indicator function which becomes 1 if and only if individuals i and j both belong

to coalition Cb. We also need to define a diagonal matrix of the affinity matrix whose

diagonal elements correspond to row sum or column sum of the symmetric matrix A: V

where Vii ≡ ∑ j Ai j.

Now we can rewrite ∑b v(Cb) in a matrix product format as −∑k X[,k]
T (V−A)X[,k]

with the constant term removed. We can adopt Lagrangian multiplier for maximizing the

function with the equality (identification) constraint. The equation simultaneously satisfying

the two requirements is

∂{XT (V−A)X−λ(XT X− I)}
∂X[,k]

= 0. (3.9)

The value of Lagrangian multiplier λk can be easily obtained by solving the equation

and it equals λk = XT
[,k](V−A)X[,k]. This result lets us to write down λk for each dimension

as its corresponding eigenvalue of the positive semi-definite matrix V−A. Since the initial

goal was to minimize the quadratic cost function defined in equation 3.7, the order of

eigenvalue λk becomes inversely proportional to its size. Hence for r dimensional estimates,

the eigenvectors for X are the eigenvectors of V−A with the r smallest non-zero eigenvalues.

A potential problem with the proposed estimation scheme is that the algorithm

puts more importance to members who had more activities.2 Since the aggregate utility

function does not have a normalizing factor, we need to incorporate a principled approach

for normalizing the extent each member’s utility is reflected in the aggregate collective

utility function ∑b v(Cb).

Here I propose a particular specification for normalization which corrects ∑b v(Cb)

affinity (e.g. agreement score) among individuals. The eigenvector corresponding to the eliminated rank
information is heavily related to the row sum or column sum of matrices. Specifying the matrix type for factor
decomposition is particularly important in graph clustering. A variety of rank elimination schemes have been
introduced including modularity, random walk and leading eigen-component removal (Fortunato 2010).

2This problem parallels with the non-response bias in item response theory models, which takes place when
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as

∑̃
b

v(Cb)≡∑
i,b

v(Cb)i/∑
b′

v(Cb′)i. (3.10)

By taking the same procedure of maximizing the unnormalized ∑b v(Cb) to ∑̃b v(Cb), now

the task of finding n× r orthogonal ideal point matrix X equals finding the r smallest

non-zero eigenvalues of L = V−0.5(V−A)V−0.5.

Figure 3.5 compares the performance of the unnormalized and normalized ap-

proaches for ideal point recovery using a simulation example. In order to generate a

synthetic affinity matrix of a multiparty legislature with realistic seat size distribution, I used

heterogeneously clustered symmetric weighted graph generation algorithm proposed by

Lancichinetti, Fortunato & Radicchi (2008). In order to make unequal seat size distribution

for the parties, seat size was sampled from a power law distribution with exponent -1.5.

There was partisan preference with 60% of affinity value assigned to intra-party weights

(∑ j Ai j1(pi = p j)/∑ j Ai j ≈ 0.6). The total number of seats in the synthetic legislature was

n = 500. As shown in the left panel, the number of parties was 11.

We can verify the benefit of normalization by observing the segregation of inter-

party members on the 2-dimensional space. Because members of each party have strong

partisan preference and inter-party members exchange fairly low level of affinity weights, a

proper estimation should result clustering of the individuals by party label. However, the

unnormalized estimates in the middle panel show inferior results in which the majority of

parties are mixed in the space with each other. In the right panel, by contrast, parties are

well segregated in the plane, reflecting partisan preference embedded in the data generating

processes.

This subsection demonstrated that the coalitional game theoretic formulation leads

to an exact derivation of specific factor analytic model for ideology inference. While the

there exist systemic patterns of abstention in the observed datasets (Rosas, Shomer & Haptonstahl 2015). The
same approach can be applied to re-weight the likelihood function of standard item response theory models,
but I do not detail here.
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Figure 3.5: Synthetic coalitions and ideal point estimates. Synthetic example showing
the impact of normalization on ideology recovery. A difficult, yet frequently observed,
case of A with unequal party seat size distribution (〈#(Pk)〉) and heterogeneous affinity
rates (colored in the left panel as pairwise weight): n = 500, #(Pk)∼ c#−1.5, Ai j ∼ cw−1.5,
∑ j Ai j1(pi = p j)/∑ j Ai j ≈ 0.6. Each color in the middle (unnormalized) and right (nor-
malized) panels corresponds to party label. Party identity corresponds to dense blocks in
the affinity matrix A at the left panel.

method results point estimates with maximum aggregate collective payoff, one can employ

non-parametric bootstrap method to obtain uncertainty estimates of the model as introduced

in Jacoby & Armstrong (2014).

3.3.2 Probabilistic Inference via Fully Bayesian Implementation

The exact calculation method introduced in the preceding section neglects a distur-

bance term as opposed to the two other statistical solutions I will introduce shortly. Empirical

data generating process would not follow the perfect quadratic utility reasoning. There can

be numerous sources of disturbance. In legislative coalition building, we can think about

many situations in which the realized behavior of politicians do not represent their sincere

preference, such as log-rolling and abrupt events that prevent them from choosing otherwise

preferred options.

To account for inherent uncertainty in the data generating process, I introduce

Bayesian extension of the analytic method by incorporating model-based matrix factor anal-

ysis approach with fixed-rank condition (Hoff 2007, Lopes & West 2004). This probabilistic
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inference scheme contains a remedy for the uncertainty concern by providing probabilistic

density functions instead of point estimates.

Because it is sufficiently dense, I decompose the normalized Laplacian matrix L =

XDXT +E using continuous matrix distributions. Following Hoff (2007), the probability of

matrix formation for L is given as

p(L|X,D,φ) =

(
φ

2π

)n2/2

exp
(
−1

2
||E− j||2 +φd jXT

[, j]E− jX[, j]−
1
2

φd2
j

)
(3.11)

with priors given by X∼U(νr,n), D∼N (µ,1/ψ) and E∼N (0,1/φ) where U is a multi-

dimensional uniform distribution and N is a multidimensional Gaussian distribution. As

proposed by ?, I incorporate matrix von Mises-Fisher density to estimate the orthonormal

matrix X.

Gibbs sampling chain for the recovery of orthonormal matrix X using von Mises-

Fisher distribution, which results normalized (i.e. unit norm) vectors, is as follows. Except

when sampling orthonormal matrices, I use standard distributions in Bayesian statistics for

sampling other parameters. Notations and parameters are analogous to the model proposed

in Chapter 1. See Chapter 1 for the details.

(X[, j] | L,X[,− j],D,φ) ≡ N x
{− j}x j,x j ∼ vMF(φd jN xT

− j E− jX[, j])

(d j | L,X,D[− j,− j],φ,µ,ψ) ∼ N [(XT
[, j]E− jX[, j]φ+µψ)/(φ+ψ),1/(φ+ψ)]

(φ | L,X,D) ∼ Γ[(ν0 +n2)/2,(ν0σ
2
0 + ||L−XDXT ||2)/2]

(µ | D,ψ) ∼ N (ψ∑d j +µ0/v2
0)/(ψr+1/v2

0),1/(ψr+1/v2
0)

(µ | D,ψ) ∼ N (ψ∑d j +µ0/v2
0)/(ψr+1/v2

0),1/(ψr+1/v2
0)

(ψ | D,µ) ∼ Γ[(η0 + r)/2,(η0τ
2
0 +∑(d j−µ)2)/2]

What is very different from existing approaches for ideal point estimation in political science
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is that the proposed sampling scheme aims to directly sample X, satisfying the perfect or-

thonormal condition (Chikuse 2012). This property automatically identifies the model. This

is a critical difference of the present approach to conventional techniques for 2 parameter

item response theory models which obtain approximately orthogonal multi-dimensional

estimates through sequential sampling of each single dimensional estimate without any

correlational restriction to other dimensional estimates (Jackman 2001, Poole 2005). Conven-

tional approach can only obtain approximately orthogonal estimates (Hyvärinen, Karhunen

& Oja 2004).

To the contrary, the present approach samples the multidimensional estimates X from

a set of orthonormal matrices to satisfy the dimension-specific normalization condition, and,

through the use of null operators, the algorithm ensures orthogonality between dimension-

wise estimates. As a result, it always samples X satisfying the orthonormal condition.

3.3.3 Variational Approximation for Dimensionality Selection

In this section, I introduce a dimensionality selection method for rank approximation

using a variational approximation scheme (Bishop 2006).

An unresolved issue in statistical methods for ideal point recovery is developing

criteria for model selection. In particular, dimensionality selection for determining the

number of aggregate dimensions is associated with important questions in political polariza-

tion (Poole & Rosenthal 1984), collective choice theory (Shepsle 1979) and comparative

legislative behavior (Lijphart 2012). While several heuristics for rank determination exist, a

principled approach has not been provided so far.3

Here I introduce an approach for rank determination of choice datasets. The approach

I am introducing uses the strong regularization effect found in variational approximation

methods. It has been known that this regularization effect can be used to dissociate Guassian

3Recently, Kim, Londregan & Ratkovic (2015) proposed a related method aimed at truncation of dimensions
for ideal point estimation but did not explicitly incorporate the variational approximation scheme.
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noise component from observed matrices.

Empirical Variational Bayesian Matrix Factorization (Nakajima, Sugiyama & Babacan

2011, Nakajima, Tomioka, Sugiyama & Babacan 2012) dissociates Gaussian noise com-

ponent from shrinkage factors and infers the planted number of dimensions. The matrix

factorization model starts by defining a posterior probability given by

p(X,D|L) = p(L|X,D)p(X)p(D)

p(L)
(3.12)

where p(L) = 〈p(L|X,D)〉p(X)p(D) is the expected value of p(L|X,D) over p(X)p(D).

The key difference of variational approximation to standard fully Bayesian procedure

is the free energy (Kullback-Leibler divergence) minimization approach it adopts for the

approximation of the full posterior distribution and the independence assumption among

parameters. In the current problem, the goal is to minimize the following formula (i.e. free

energy) driven from equation 3.12.

F(r) =

〈
log

p(L|X,D)p(X)p(D)

p(L)

〉
r(X,D)

=

〈
log

p(L|X,D)

p(L)

〉
r(X,D)

− log p(L) (3.13)

where r(X,D) is the trial distribution given throughout the optimization routine. Due to the

independence assumption, I factorize r(X,D) as r(X)r(D).

Matrix factorization model is one of the few variational approximation problems

in which exact analytic calculation of the lower bound is possible (Nakajima, Sugiyama

& Babacan 2011, Nakajima et al. 2012). The shrinkage solution has identical X(L) with

the exact solution but with a truncation threshold 1− γEV B. I let {γk} the eigenvalues of

V−0.5AV−0.5 = I−L = I−V−0.5(V−A)V−0.5 whose spectral property is identical to L but

with γk = 1−λk. Now minimum factor loading discovery problem converts to maximum

4One can esitimate the variance with an additional step minimizing the free energy which satisfies
σ̂2 = argminσ2(minr,CX,CDF(r(X,D);CX,CD,σ

2|L)) where CX and CD respectively denote prior diagonal
covariance matrices of X and D.
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factor loading discovery problem.

With σ̂2 being estimated variance4 and κ∗ being a constant satisfying the relationship
log(
√

ακ+1)√
ακ

+ log(κ/
√

α+1)
κ/
√

α
= 1, we can write the truncation criteria as follows.

γ̌
EV B
k =


γ̌EV B

k if γEV B
k ≥ γEV B

0 if γEV B
k < γEV B

(3.14)

γ
EV B = σ̂

√
2n+n(κ∗+1/κ∗) (3.15)

γ̌
EV B
k =

γk

2

(
1− 2nσ̂2

γ2
k

+

√(
1− 2nσ̂2

γ2
k

)2
− 4n2σ̂4

γ4
k

)
(3.16)

The key idea for this rank determination approach is to use the inferred variance

parameter along each dimension to screen out dimensions with low variance levels through

model-based regularization. This approach is extremely convenient to employ compared to

its simulation-based fully Bayesian counterpart, introduced above, which takes a long time

for convergence for sampling the number of dimensions using Markov Chain Monte Carlo.

3.4 Strategic Coalition Formation in Bill Proposal Stage:

Application to Historical Korean National Assembly

Dataset

Korean National Assembly (KNA) is an attracting case to study the evolutionary

path of a parliament due to its broad spectrum of democratic development over the history.

Starting as a state with no democratic tradition at its liberation from Imperial Japan in 1945,

as of 2012, South Korea’s democracy index is ranked 20th in the globe, which is the highest
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ranking in Asia and higher than that of the United States (Economist Intelligence Unit

Democracy Index 2012). South Korea has experienced grand alterations such as a civil

war, military dictatorship, and resurgence of democratization, thereby providing a unique

opportunity for understanding ideological divergence and issue saliency dynamics associated

with democratic transitions and historical events. Using newly combined dataset covering

the entire legislative records of KNA and parliamentary elections, I provide quantitative

analysis of both aggregate and issue-specific ideological patterns of the assemblies ranging

from 1948 to 2013.

3.4.1 Data Acquisition

The dataset is obtained from National Assembly Legislative Information System

(NALIS)5 and National Election Commission (NEC)6 web pages.7 Each legislator’s name

and party affiliation from NALIS are matched with information from NEC which include

election results and candidate biographical information. Party affiliation of each individual

is coded on the basis of one’s affiliation in the beginning of each chamber. Bill-specific

activity records are parsed from each pdf document containing information on every single

bill proposed. Unique ID was assigned to each individual legislator although one served in

multiple chambers with different party affiliations.

Bill cosponsorship records of legislators and bill titles in Korean language are the

primary datasets used in the present study. For estimating latent ideological preference of

individual legislators, I use cosponsorship data as their choice records.

Majority of ideal point estimation techniques are developed to analyze roll call votes

in US Congresses (Poole 2005). A few previous research which aimed to uncover latent

ideological preference of actors in recent chambers of KNA also utilized one of the most

5http://likms.assembly.go.kr/bill
6http://www.nec.go.kr
7I thank the members of team Popong, in particular, Eunjeong Park and Cheol Kang for their help in

acquisition and prepossessing of the dataset.
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popular methods, NOMINATE, to analyze the 16th and the 17th chambers (Hix & Jun 2009).

However, there are clear reasons why one needs to use cosponsorship data for the analysis

of KNA over a longer time span.

First and an obvious reason is that recorded voting started from the 16th session

(year 2000) in KNA. Before this period, the majority of floor votes were not recorded. Due to

its non-existence one cannot utilize roll call voting data for ideological scaling of members

in KNA prior to year 2000.

Second, KNA exhibits extremely strong party line vote ever since when the roll call

vote was institutionalized. For instance, the members of 17th and 18th chambers casted

more than 90% votes as party line votes (Moon 2011). In contrast, the exclusiveness of

cosponsorship coalitions yields higher granularity in individual choices.

Third, abstention in roll call voting is strongly correlated with a legislator’s seniority.

Due to the fact that senior legislators avoid vote safe bills (Moon 2011), utilizing roll call

vote as a major source of ideological estimation can incur systemic bias.

Fourth, bill cosponsorship is highly visible to Korean citizens. In the world wide web,

One can browse more than 20,000 news articles and tweets mentioning "cosponsorship" in

Korean. This fact supports the validity of applying the assumption of the proposed coalition

signaling model to understand the generating process of KNA cosponsorship dataset. Given

the fact that these articles and tweets usually contain the list of cosponsors for each bill,

ideological leaning of individual legislators is likely to be perceived by the citizens on the

basis of whom they collaborate with.

To summarize, these factors together lead researchers to use cosponsorship records

as a primary legislative choice dataset for ideological estimation of individual legislators. In

contrast to roll call voting data, every single bill proposed since the first chamber of KNA is

listed in NALIS including the information on who sponsored and cosponsored the bills.

In total, I analyze 82,452 bill proposal records of 2,334 individual legislators from
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the 2nd to the 19th session. Contrary to US Congresses, bills can be also proposed by

collective bodies in the Government (i.e. ministers) and the assembly (i.e. committee chairs).

I exclude bills introduced by collective bodies, since these bills do not have any cosponsor

and it is not applicable to use this information for ideological scaling of legislators.

KNA has a unique setting in bill proposal stage. From the 2nd session, only with a

small number of exceptions for particular types of bills, every bill proposed by individual

legislators must have 9 collaborators or 19 collaborators at minimum.

As opposed to cosponsorship institution of US Congresses, in which legislators

can freely sign for a bill if they want to, bill cosponsorship is closed in KNA. A legislator

can be a cosponsor of a bill only when she is included in the bill draft when it is initially

submitted. This provides permission authority to sponsors for screening out cosponsors

whose preference deviates significantly from sponsor ideology.

3.4.2 Individual Preference Locations in Aggregate Policy Space

Figure 3.6 illustrates legislator ideal points inferred for each session of KNA. By

looking at the overall patterns of ideological landscape, one can trace the evolution of

party system over the past half century in terms of within-party ideological coherence and

inter-party ideological differentiation. Party dominance in making bill proposals increased

starting around 1960. The segregation of parties in the ideological space is apparent in the

latter chambers.

The last panel of Figure 3.6 provides quantitative measurement of the party polar-

ization trend. Except the 2nd, 3rd and 5th sessions, a high level of party polarization is

observed in all chambers.

The party polarization trend has important implications with respect to the change in

party strength through democratic transitions. We can find several interesting observations

in relation to the political turmoils in Korean history. The spring of Seoul, denoting the
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Figure 3.6: Ideological distributions of legislators from the 2nd to the 19th KNA. For each
session, a unique color is given to each party. Same color across sessions does not represent
same party label. Members without party affiliation are excluded from the figure. In the
last panel, I plot the level of party polarization in bill coalition formation. The procedure
for computing the specific nonparametric segregation index for polarization is explained in
the appendix. The blue line indicates mean value of party polarization for each session
obtained over 10 simulations. A higher value indicates that the pattern of segregation in
cosponsorship coalition formation is well explained by the members’ party affiliations. In
other words, high value indicates high level of party polarization. Shade in a given period
indicates Polity4 democracy index (Marshall & Cole 2014) of the corresponding period.
Dark shades indicate low democracy score whereas bright shades indicate high democracy
score.

short period of democratization after Park Jung-hee’s assassination in 1979, yielded constant

increase in the party polarization index until the end of authoritarian governance by military

leaders (i.e. Jun Doo-hwan and Noh Tae-woo). The 14th chamber, which started in 1992
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followed by the election of the first non-militant president Kim Young-sam in 1993 ever

since 1962, exhibits the lowest level of party polarization, indicating that the democratization

(i.e. direct presidential election) incurred turmoil in the existing party disciplines. Further

investigation, such as counting the number of party switchers or the proportion of incumbents,

would be necessary to better understand the trend.

3.4.3 Comparison of the Recovered Ideology to W-NOMINATE Scores

To compare the W-NOMINATE scores and the proposed estimates, I highlight the

case of the 17th session, which had the most broad ideological spectrum in the history of

KNA with the largest number of assembly members from the labor party. In the beginning

of the chamber, 10 members were affiliated with Democratic Labor Party (DLP) largely

due to the change in the electoral system (i.e. the introduction of party-list proportional

representation elections).
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Figure 3.7: Comparison with W-NOMINATE. In W-NOMINATE, government-versus-
opposition dominates the principal axis: DLP (labor) is located on the right of UP (median,
majority, presidential) and GNP (conservative). Such opposition is marginalized into
the 2nd dimension of the bill proposal space, and the parties are well aligned in the 1st
dimension (DLP-UP-GNP), as observed in NOMINATE on other sessions without UP
majority.

When applying W-NOMINATE to the 17th roll call voting data, we observe a strong

government-opposition tendency of the two minority parties, Grand National Party (GNP)

and DLP, toward the majority Presidential party Uri Party (UP) (Figure 3.7). Believed to be
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the most conservative party in the 17th chamber, GNP holds an indistinguishable location to

the leftist, DLP. This left-right ideological characteristic is partially observed on the second

dimension. UP members hold the moderate position, while there exists a high level of

overlap between UP and GNP members.

Such opposition along the principal axis of the W-NOMINATE space is marginalized

into the 2nd dimension of the bill proposal space constructed using the proposed method.

The three parties are well aligned in the principal dimension (DLP-UP-GNP) (i.e. labor-

median-conservative), as observed in NOMINATE on other sessions without UP majority.

Fully Bayesian implementation also gives similar estimates to the exact results.
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Figure 3.8: Dimensionality of KNA. Number of dimensions inferred through dimensional-
ity truncation using variational approximation. Dotted lines indicate factor loading obtained
using the exact framework whereas the solid lines indicate truncated loading obtained
using Variational Bayesian Matrix Factorization (VBMF).

3.4.4 Dimensionality Selection via Variational Bayes

I apply the empirical variational approximation approach introduced in the previous

section to determine the number of aggregate policy dimensions embedded in legislative bill

proposal decisions.

Figure 3.8 compares the distributions of factor loading for each dimension obtained
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with exact calculation and truncated factor loading obtained from variational approximation.

As shown, except the extremely short-lived 10th session, all sessions exhibit stable number

of truncated dimensions ranging from 2 to 3.

3.4.5 Identifying Substantive Issue Coverage Trend Through Bill-Issue

Matching

A significant piece of information missing in the aggregate bill proposal data analysis

is that we do not know substantive issues underlying the revealed ideological preference

of legislators. One way to understand what constitutes their ideological characteristics is

to study the issue contents of the bills proposed. Because it is very difficult to find labels

that classify the bills into issue categories, we need to employ inference techniques to know

issue contents of bills.

While more rigorous analysis can be conducted using the entire set of words used

in bill documents and committee referral information, as a first start, I use bill titles to

identify issue contents of the bill proposals. Because bill titles are short text, due to the

sparsity in word-to-word associations, it is very difficult to infer topics using uni-gram

level topic modeling techniques. In order to overcome this difficulty, I utilize phrase-level

mining approach (Wang, Danilevsky, Desai, Zhang, Nguyen, Taula & Han 2013) which

extracts multi-gram level semantic associations from word usage in bill titles. Details of the

algorithm are introduced in the appendix.

Table 3.1 shows top phrases inferred from the phrase level topic modeling approach.

Despite some misclassification errors present in the results, high ranking phrases in each

topic cluster seem to represent common issue. For example, the first topic is mainly on

regional development, and tax and investment issues on cities and rural areas. The 4th

topic is on educational issue. The 2nd, 5th, 6th and 10th topics cover budget related

laws, enterprise regulation laws, business and account related laws, and earnings and tax-
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Table 3.1: Phrase ranking by topic. Top ranking phrases of the 12 topics revealed using
the topic hierarchy model from the pooled bill title dataset. I, D and F denote increasing,
decreasing and fluctuating trends respectively, that are classified using the time series
clustering method proposed by Caliński & Harabasz (1974).

evasion laws respectively. The 9th topic is health and food related laws. The 11th topic

includes inspection related laws. The 12th topic involves the majority of phrases related

to information technology and communications industry. The 7th and 8th topics are about

opening hearings for candidate appointment and fact confirmation. The 3rd and 11th topics

have relatively mixed issue-representing phrases.

The issue-relevant probability assigned to each bill allows one to trace the evolu-

tionary path of issue coverage over the chambers. To classify the overall trends of the

topic coverage, I apply distance-based time series clustering method, which classifies a

set of one-dimensional time series data into discrete groups by looking at their patterns of

progression over time (Peng & Müller 2008). The classification result is shown in Table

1. The clustering metric proposed by Caliński & Harabasz (1974) is maximized when the

number of clusters equals 6. 2 out of the 6 clusters have clear increasing and decreasing

patterns respectively, each having 6 and 2 topics. The remaining clusters consist of single

topic member with fluctuating trends.

Issues with increasing trends are associated with regional development, enterprise,
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Figure 3.9: Topic coverage over time. Trends are plotted using robust locally weighted
scatterplot smoothing (RLOESS). Intervals denote ±2σ regions. Shade in a given period
indicates Polity4 democracy index of the corresponding period. Dark shades indicate low
democracy scores whereas bright shades indicate high democracy scores.

education, information and communication technology, and health and food (Figure 3.9).

The increasing trends found for all these issues look plausible given the increasing demand

for making laws relevant to the issues. For example, over the course of the rapid industrial-

ization, the extreme concentration of capital, population, and infrastructures on metropolitan

areas has become the major social issue in South Korea. The increasing trend of Topic

1 demonstrates that the government and the assembly have invested increasing efforts on

balanced development of regions. Another case is the constant increase of information and

technology-related issue (Topic 12). The coverage size of this issue starts a sharp increase

around 1980, which coincides with the supply of televisions and telephones in South Korea.

On the contrary, one of the two decreasing issues is related to budget. This ob-

servation can be understood as an artifact of the constant increase in the number of bills

proposed. Since the number of legislations discussing budget-related issues may remain

constant across the sessions, whereas bills related to other issues exhibit steady increase
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in their total volume, the proportion of legislation discussing budget-related issue would

decrease.
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Figure 3.10: Issue-specific ideology inferred from the 17th session bill proposal dataset.
Green: Uri Party (median,presidential,majority). Yellow: Grand National Party (conserva-
tive). Light Green: Democratic Labor Party (labor).

3.4.6 Issue-specific Ideology Estimation

Similar in spirit to Lauderdale & Clark (2014) who extracted issue-specific ideology

of supreme court justices by sequentially extracting issues from opinion texts and issue-

specific ideology from subsets of voting matrices, one can infer issue specific ideology of

each session of KNA using the topics in Table 3.1. The proposed ideal point estimation

scheme is flexible enough to accommodate the estimation of issue-specific ideology. As
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an example, I conduct ideal point estimation of issue-specific ideology of the 17th session.

Details of the process for issue-specific ideology extraction is given in the appendix.

Figure 3.10 shows issue-specific ideology inferred from the proposed approach. We

can see a high level of issue-correlation between the issue-specific estimates. Party centered

behavior of legislators are fairly well preserved across the issues. There are several notable

patterns. As shown in the previous subsection, DLP was the most liberal party in the 17th

session in their aggregate ideological scores. While such pattern is well preserved in issues

including regional-development, education and IT-communications bills, we can see a strong

idiosyncratic pattern of legislative activity in health-food related ideology estimates. That is,

the presidential party UP and the conservative minority party GNP form a strong coalition

in the first dimension while DLP is isolated in the right side of the spectrum. In the 17th

session, one of the most debatable political issue over the country was establishing a Free

Trade Agreement (FTA) with US. Among many products that would be affected by the

agreement, food was the most critical product category in the debate. DLP formed a strong

coalition with agricultural interest groups and their major agenda during the session was

anti-FTA and agricultural protection. This unique issue-specific ideological preference,

while hidden in the aggregate estimates, is well reflected in the issue-specific ideology

scores.

3.4.7 Empirical Case Study: Strategic Positioning of a Satellite Party

Under Authoritarian Regime

While there are potentially many relevant research questions to answer using the

present dataset, I probe an exemplary question in relation to the strategic behavior of

authoritarian governments.

One of the puzzles in authoritarian governance is that it is very common for them

to hold elections and maintain party systems despite the fact that these decisions can be
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risky (Boix & Svolik 2013, Svolik 2009). Strategic power sharing behavior of authoritarian

governments has been known to increase their legitimacy by pretending to allow ordinary

political activities.

A related empirical regularity found in many historical examples is the existence

of satellite parties (i.e. bloc parties). Satellite parties are government-built parties that are

different from the ruling parties. Although the communist party is known to be the only

active party in China, China is formally a multi-party state with a number of minority parties.

Approved by the communist party, there are about 10 official minority parties.

Satellite parties have existed in other authoritarian regimes including Soviet Union,

East Germany and North Korea. Despite such frequent existence, the legislative behavior of

satellite party members is not well known.

Here I conduct a simple analysis of a satellite party in KNA to understand how

different their ideological characteristics were to the ruling party members. This is an

interesting question to ask because satellite parties have opposing incentives for being

cohesive to the government party and distant to the government party. On the one hand,

satellite party members would have similar ideological interest to the ruling party because

they are supported by the ruling party. On the other hand, their revealed preference needs

to make the audience believe that they are independent to the ruling party. As a result,

such strategic position-taking will reduce the level of ideological overlap of the satellite

party with the ruling party and make the satellite party to compete with other parties for

voters with anti-government sentiments. With the ideological estimates inferred through the

analysis, we can answer which incentive dominated the other.

There have been more than five satellite parties over the history of KNA. Among

8Perhaps, the most well-known satellite party would be Yushin Party (YP) which was formed after the
revision of constitution by dictator Park Jung-hee. In 1972, the government revised the constitution to allow
the president to dominate parliament, judiciary and government administration. One notable action was the
president’s authority to appoint 1/3 of the seats in the legislature. Each cohort was appointed three times in
1973, 1976 and 1979 respectively. However it was a semi-party organization which took a peculiar status in
the institution. As a result, it was not recorded as a party in NALIS.
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those, I focus on one of the most well-known parties.8 The satellite party, Democratic Korea

Party (DKP), was made in 1981 by the order of dictator Jun Doo-hwan. It has been known

that National Intelligence Service of Korea financially supported the party and the ruling

party, Democratic Justice Party (DJP), appointed the leader of DKP. In the 11th session,

DKP earned 81 seats becoming the largest minority party and 35 seats in the 12th session.
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Figure 3.11: Satellite party ideal points. Ideological characteristics of the majority (gov-
ernment) party (DJP) and the satellite party (DKP). Other minority parties are colored in
black.

Here I show the relationship between DKP-DJP pair in terms of their affinity in

legislative activities. As shown in Figure 3.11, the two parties conducted almost unrelated

legislative actions to each other in the 11th session. In the principal axis, DKP and DJP are

the parties with the highest level of ideological difference without any overlap in member

ideology. We can observe similar patterns in the 12 session. The ruling party and the satellite

party still maintain a substantial level of ideological distance to each other.

This result supports the hypothesis that the satellite party took an almost pure

perfunctory role in the legislature to promote the legitimacy of the authoritarian government,

thereby having a position-taking incentive for ideological independence to DJP. This result is

appealing particularly due to the fact that 11th and 12th sessions held multi-member district

elections. With the danger of having sincerely opposing parties in the legislature, the ruling

party and the government had an incentive to present a satellite party whose ideological
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characteristic was different to the ruling party. In this way, the satellite party could compete

with other minority parties in the similar ideological niche.

3.5 Concluding Remarks:

Toward a Framework for Systemic Analysis of Coali-

tion Datasets

In this paper, I develop an informational rationale for coalition formation among

position-taking motivated individuals and derive statistical approaches for ideal point esti-

mation from observed coalition structures.

The method is applied to newly collected bill proposal coalition dataset of Korean

National Assembly. Through the analysis of the empirical dataset, I have shown that the

proposed approach can offer an effective tool for extracting latent preference of political

actors, especially when voting decision data are unavailable due to institutional conditions.

The proposed methodological framework is flexible enough to extract ideological scores

from a weighted subset of the original dataset. I incorporate text topic modeling approach to

bill contents to match bills with substantive issues and derive issue-specific ideology scores.

The empirical data analysis results alone may answer important questions about

legislative behavior in various political environments. Researchers may find relevant cases

of natural experiments incurred by changes in election types, presidential/parliamentary

systems or regime types. Other than institutional changes, there are notable patterns related

to the emergence of regional parties and rapid industrialization. The updated dataset will

include additional information including party lineage and bill committee referral.

I have to admit that the proposed approach provides only a basic setup for understand-

ing coalition formation with ideological interest. A more sophisticated model can serve as a

framework for developing the statistical models. For example, the present framework lacks
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ideological learning component as opposed to theoretical models of coalition formation

which consider belief updates about other player types by observing repeated coalition

formation (Chalkiadakis 2007). While this setting could increase the model complexity

substantially, a future development could consider incorporating it for more realistic model

building.

Finally, I would like highlight that the basic framework and the issue-specific

inference framework can be used to analyze a parliamentary system or a non-legislative

dataset without a recorded voting institution. Not to mention parliaments in the past, even

many contemporary parliaments, especially those of authoritarian regimes, do not have

voting institutions or the voting results do not convey meaningful information as the voting

institution takes only a perfunctory role. In this case, researchers need to identify datasets

which contain meaningful information on ideological heterogeneity among the individuals.

Also, the framework can be extended to model latent preference of individuals from non-

legislative datasets. For instance, the framework can be applied to analyze the ideological

leaning of interest groups and citizens whose usual political activities do not involve voting.

I hope the present framework can be a starting point for helping the researchers to formulate

their datasets for further analytic inquiry.
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3.6 Appendix

3.6.1 Raw Data of KNA Bill Proposal Dataset

Figure 3.12 shows a typical bill proposal document archived in NALIS. By parsing

the original pdf file, one can extract relevant information of each bill including bill title,

proposal date, list of cosponsors, bill contents, proposal status and etc.
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Figure 3.12: An exemplary bill document.

3.7 Calculation of Party Polarization Index

One can compute the level of party polarization for each session by comparing actual

party label vector (P) of the legislators and coalition label vector (C) inferred from the bill

proposal coalition dataset. Inferred coalition label is a group partition vector that is believed
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to result the highest level of matrix segregation. I utilize non-parametric clustering approach

for simultaneous estimation of coalition label and the segregation level corresponding to the

inferred coalition label.

There are a plenty of matrix segregation methods available. I adopt a stochastic

optimization algorithm for graph clustering (i.e. matrix segregation) using Metropolis-

Hasting algorithm (Guimera & Amaral 2005). The algorithm tries to find a partition vector

which maximizes an objective function

Q =
1

2m ∑
i j

(
Ai j−

kik j

2m

)
δ(Ci,C j),

where A is an affinity matrix, k is a vector corresponding to the array of column sum of A,

2m is the total sum of elements in A, and δ(Ci,C j) is a Kronecker delta which becomes 1 if

and only if nodes i and j belong to the same coalition.

The algorithm maximizes Q following a simulated annealing path with small back-

ward transition probability for inferior solutions in order to escape from local maxima. To be

specific it jumps to a new state (i.e. flipping the coalition membership of an individual) with

probability 1 if the value of Q of the new membership (partition) vector is greater or equal

to the value of Q for the previous membership vector. If the new partition vector results

smaller value of Q than the previous one, then it moves to the new state with probability

exp−Qnew−Qold

T with T representing the temperature of the optimization system which de-

creases as the optimization routine repeats. As a result, the algorithm searches heterogeneous

partition space and gradually converges to search a narrow region corresponding to the

global maximum.

Because the quality functional landscape of matrix partitions is known to be ex-

tremely rugged (Fortunato 2010), I generate multiple coalition partition vectors to quantify

the level of segregation in the cosponsorship records of each session.

Using the inferred partition vector (C), I compute the level of party polarization by
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measuring the similarity between the partition vector (C) and the actual party affiliation

vector (P). In this way, one can quantify to what extent the level of polarization in the dataset

is explained by party label. In particular, the metric I employ, variation of information,

is an index which always scales between 0 and 1. It hits its minimum value 0 when the

two partitions are identical and hits 1 when the two partitions are different at maximum.

Since it is more convenient to have higher value when party polarization level is high, I use

1−V I(P,C) to represent the level of party polarization. Variation of information is defined

as

V I(P,C) =
H(P)+H(C)−2MI(P,C)

log |P|

where variation of information V I(P,C) indicates variation of information between partition

vectors P and C (Meila 2003). H(P) is the entropy of party label vector and MI(P,C) is

the mutual information between the pair of partitions P and C. Variation of information

decreases as the similarity between two partitions grows. When two partitions are equal, the

value becomes 0. The maximum possible value of V I is adjusted to 1 by dividing it with

log |P|.

3.7.1 Phrase Mining Approach for Automated Bill-Issue Matching

I adopt a text modeling framework for bill-issue (i.e. document-topic) matching

specialized for short content-representative documents (i.e. titles).

An extant number of algorithms have been proposed to infer semantic characteristics

of unstructured text data (Grimmer & Stewart 2013, Salton & Buckley 1988). Yet, the

majority of models exhibit poor performance for short documents. This problem is due

to single term (i.e. uni-gram) level modeling framework incorporated in the most of the

models. Contrary to this approach, the topical hierarchy framework enables phrase (i.e. a

phrase consists of multiple terms) level modeling. This treatment enables topic extraction of

short content-representative documents. The first successful application of this algorithm
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was sub-field classification of the titles of computer science articles (Wang et al. 2013).

In order to extract issue-relevant information, each bill title is parsed into multiple

terms using HAM Korean natural language processor implemented in C++ (Kang 1996).

The obtained M by W matrix, B contains information on which words are used in each bill

title: Bi j = 1 if jth term appears in ith bill title.

On the basis of the bag of words conception which states that terms belonging to

similar topics have a high frequency of co-occurrence, the algorithm starts from building a

term co-occurrence matrix G which is defined as a product between BT and B. Thus G is a

W by W matrix where Gi j denotes the number of times term i and j co-occur in same bill

titles. Notable distinction of this approach to other single term level modeling scheme is

that the topic hierarchy model uses the projection matrix G, which represents word-to-word

relationship, instead of the word-to-document matrix B. As a result, the topic hierarchy

approach incorporates bi-term level association as a basic unit of information in the dataset.

The core idea of topic hierarchy extraction approach is to decompose the original

matrix G into a set of sub-matrices, {G1, . . . ,GK}. For example, G1 embodies the list of

term associations that are expected to represent the 1st topic. The algorithmic procedure

is to discover a dot product representation of Gz, so that the random variable Gi jz ∼

Poisson(ρzθz
i θ

z
j) and ∑

W
i=1 θ

z
i = 1. By imposing non-negativity constraint on ρz and θz

vectors, the estimation procedure for obtaining Ĝz follows a standard Non-negative Matrix

Factorization (NMF) algorithm of which a general estimation scheme is proposed by Lee &

Seung (1999).

The specific Expectation-Maximization procedure proceeds as follow. Due to the

expectation property of the Poisson distribution, the expected value of Gz
i j, E(Gz

i j) = ρzθ
z
i θ

z
j,

and we get a simple relationship, E(∑z Gz
i j) = ρz ∑i θ

z
i ∑ j θ

z
j = ρz. The original term co-

occurence matrix G, which is the only directly observable data in the estimation procedure,

can be represented as Gi j = ∑z Gz
i j ∼ Poisson(∑z ρzθ

z
i θ

z
j).
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For a given set of parameters θ and ρ, the likelihood of observing G is

p(G|θ,ρ) = ∏
i, j

p(Gi j|θi,θ j,ρ) = ∏
i, j

(∑z ρzθ
z
i θ

z
j)

G
i j exp(−∑z ρzθ

z
i θ

z
j)

Gi j!
.

In order to maximize p(G|θ,ρ), E-step and M-step of the EM algorithm retrieve

maximum likelihood estimates of Poisson distribution by employing

E-step: Ĝi jz =
ρzθ

z
i θ

z
j

∑t ρtθ
t
iθ

t
j

M-step: ρz = ∑
i j

Ĝi jz , θ
z
i =

∑ j Ĝi jz

ρz
.

Through iterative updating of Ĝi jz , ρz and θ
z
i we obtain a K by 1 vector for each

phrase, which represents the corresponding phrase’s probability of association to each

topic. For a single term phrase i, θ
z
i is the probability i belonging to topic z and ρz is a

normalizing constant representing the density of bi-term associations in topic z. For the

case of a phrase in arbitrary length, P = {wx1, ,wxn}, the probability that it belongs to topic z

equals
ρz ∏

n
i=1 θz

xi
∑t ρt ∏

n
i=1 θt

xi
. And the expected number of topical frequency for P becomes the product

of phrase frequency and this value:

fz(P) = fpar(z)(P)
ρz ∏

n
i=1 θz

xi

∑t ρt ∏
n
i=1 θt

xi

where fpar(z)(P) is the number of times P appears in the entire set of documents. For a

given topic, to extract its representative phrases, I use this topical frequency measure so

that a phrase exhibiting a large topical frequency value in topic z is more likely to be a

representative phrase of topic z. For details of the ranking procedure see Wang et al. (2013).

To select the optimal number of topics, I choose one with the lowest Bayesian

Information Criterion (BIC) value after running the algorithm with different number of
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topic clusters (Gelman et al. 2014). BIC is defined as −2LL+M log(W ) where LL is the

maximum value of the likelihood function p(G|θ,ρ) and M and W respectively denote the

number of bill titles and the number of words.

By employing the topic hierarchy framework introduced above, I compute topic-

association probability of terms and phrases which appear in bill titles. For 82,452 bill titles

and 6,871 terms analyzed, the minimum BIC is obtained when the number of clusters is 12

(Figure 3.13). Table 1 shows the highest ranking phrases belonging to each topic. Terms

without issue-relevant information (e.g. amendment, special-act) are removed. For presen-

tational purpose, Korean words are translated into English after finishing all algorithmic

procedures.
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Figure 3.13: The number of topic clusters versus BIC. Minimum value is obtained when
the number of the clusters is 12.

3.7.2 Issue-specific Ideology Inference

For the recovery of issue-specific ideology, I adopt the canonical idea of generalized

Singular Vale Decomposition (SVD) (Jolliffe 2002). Generalized SVD extends SVD by

decomposing a subset of the original matrix through reweighting the original matrix. In

the present case, I reweight the affinity matrix A using the information obtained in the
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topic modeling stage to retrieve issue-specific ideology estimates. For a given issue s, we

have an m by 1 vector ps whose element denotes the probability that to what extent the

corresponding bill is about issue s. By applying the proposed ideal point method on the

reweighted (issue-specific) affinity matrix As where As
i j ≡ ∑b ps

b1(i, j ∈Cb)|Cb|−γ, I obtain

issue-specific ideology Xs of the legislators.

Chapter 3 is currently in preparation for submission for publication of the material.

Sohn, Yunkyu. The dissertation author was the sole researcher and author of this material.
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