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Jonah Z. Vilseck†, Noor Sohail†, Ryan L. Hayes†, Charles L. Brooks III*,†,‡

†Department of Chemistry, University of Michigan, Ann Arbor, MI 48109.

‡Biophysics Program, University of Michigan, Ann Arbor, MI 48109.

Abstract

Alchemical free energy calculations have made a dramatic impact upon the field of structure-based 

drug design by allowing functional group modifications to be explored computationally prior to 

experimental synthesis and assay evaluation, thereby informing and directing synthetic strategies. 

In furthering the advancement of this area, a series of 21 β-secretase 1 (BACE1) inhibitors 

developed by Janssen Pharmaceuticals was examined to evaluate the ability to explore large 

substituent perturbations, some of which contain scaffold modifications, with multisite λ-

dynamics (MSλD), an innovative alchemical free energy framework. Our findings indicate that 

MSλD is able to efficiently explore all structurally diverse ligand end-states simultaneously within 

a single MD simulation with a high degree of precision and with reduced computational costs 

compared to the widely used approach TI/MBAR. Furthermore, computational predictions were 

shown to be accurate to within 0.5–0.8 kcal/mol when CM1A partial atomic charges were 

combined with CHARMM or OPLS-AA-based force fields, demonstrating that MSλD is force 

field independent and a viable alternative to FEP or TI approaches for drug design.
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Rigorous physics-based alchemical free energy calculations are powerful techniques to 

calculate free energy differences for a variety of biological processes, including solvation, 

association, protonation, and conformational equilibria.1,2 As a result, these methods have 

dramatically impacted the field of structure-based drug design (SBDD). For example, the 

ability to calculate binding affinity changes associated with functional group modifications 

can focus experimental design efforts by highlighting the most promising chemical spaces to 

explore when optimizing the binding affinity or inhibitory activity of a lead compound.3–5 

Moreover, current approaches suggest that computed free energies of binding (ΔΔGbind) are 

generally accurate to within 0.5–1.5 kcal/mol of experimental inhibitory activities, which is 

in many instances sufficient to facilitate the refinement process in silico.3–12

A majority of studies that have employed alchemical free energy methods for SBDD and 

lead optimization have used traditional methods, such as free energy perturbation theory 

(FEP) or thermodynamic integration (TI).3–12 However, the scope of FEP or TI methods is 

limited by two main factors. First, these approaches require a full alchemical transformation 

to be broken up into many steps, usually 10–20 along the alchemical coupling parameter λ, 

to ensure sufficient phase space overlap between adjacent steps and to obtain statistically 

precise free energy results.13 This makes these conventional methods expensive, although 

Vilseck et al. Page 2

J Phys Chem Lett. Author manuscript; available in PMC 2020 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculations may be accelerated using enhanced sampling approaches or sped-up by 

exploiting graphic processing units (GPUs).14,15 Second, these methods are inherently 

limited to the determination of free energy differences between two ligand end-states. Thus, 

the cost of scanning through a large set of ligand perturbations grows linearly with the 

number of perturbations. Methods that reduce the costs associated with a single perturbation 

or improve scaling to multiple perturbations can improve the efficiency of free energy 

calculations.

λ-dynamics is an innovative solution that achieves both of these goals.16,17 Rather than 

using a set of discrete states, λ-dynamics allows the alchemical coupling parameter to 

fluctuate continuously between ligand end-states in conjunction with the coordinates of a 

system using an extended Lagrangian approach. From a single molecular dynamics (MD) 

simulation, free energy differences can be calculated as the ratio of the amount of time one 

ligand is sampled compared to a reference ligand (eq 1).16,17 Furthermore, additional λ 
parameters can be introduced to explore multiple functional groups of interest 

simultaneously.17 Multisite λ-dynamics (MSλD) further extends this ability to examine 

multiple perturbations to different sites around a common ligand core, leading to a 

combinatorial space of chemical endpoints.18 Thus, λ-dynamics can improve upon the 

scalability limitations encountered with FEP or TI methods. Recent work has shown that 

tens to hundreds of relative free energies can be computed simultaneously within a single 
MSλD simulation.19,20

ΔΔGi j = − kBTlnPj
Pi

(1)

In lead optimization, both small and large functional group modifications to a lead 

compound may be important to investigate. This work evaluates MSλD’s precision, 

efficiency, and accuracy when applied to larger and more challenging substituent 

modifications. An inhibitor series developed by Janssen Pharmaceutical (JP) to target β-

secretase 1 (BACE1) was chosen for investigation (Figure 1A),11 and MSλD is found to be 

aptly suited for pharmaceutics design involving these modifications.

Two decades ago, BACE1 was shown to cleave amyloid precursor proteins and contribute to 

an increase in the amount of cellular beta-amyloid peptides,21 a major component of 

amyloid plaques observed in Alzheimer’s disease (AD) brains.22 As a result, BACE1 has 

been a prominent AD target for both academic and industrial researchers.23,24 As an aspartic 

acid protease, most inhibitors designed to target BACE1 feature amidine or guanidine-like 

cationic moieties that bind to the catalytic Asp32 and Asp228 residues in the enzyme’s 

active site (Figure 1B) as well as fill adjacent P2’, P1, and P3 pockets.25 The JP ligands 

follow this trend and explore substituent modifications at two sites (Figure 1A). Specifically, 

acylguanidinium heterocyclic rings of different sizes, 5-, 6-, and 7-membered rings, are 

investigated at one site on the ligand core, R1, and three different heteroaromatic rings 

featuring long and flexible groups are investigated at a second site, R2.11 The 

acylguanidinium heterocyclic rings bind to the catalytic Asp32 and Asp228 residues and fill 

the P1 pocket, while the R2 substituents extend below the 10s loop of BACE1 to fill the P3 
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pocket (Figure 1B). Advantageously, experimental activity measurements were reported for 

all 21 R1×R2 combinatorial states of the JP inhibitor, and surrogate ΔGexpt can be estimated 

from the IC50s using equation 2.11

ΔGexpt ≈ − RTln IC50 (2)

The JP substituents vary in size, flexibility, and polarity, which add to the difficulty of 

sampling between them in a combinatorial fashion with MSλD. Scaffold modifications, 

exemplified by changing the R1 acylguanidine ring size, have traditionally been very 

difficult to explore with alchemical free energy methodologies. Only recently has the “Core 

Hopping FEP+” algorithm offered an attractive solution to efficiently explore ring size 

modifications via a “soft bond” stretch potential without considering the entire ring as a 

separate substituent.26 In the original JP publication, Tresadern and co-workers evaluated 

both approaches and found improved stability, reproducibility, and accuracy with the “Core 

Hopping FEP+” algorithm.11 However, the “soft bond” stretch potential used in the “Core 

Hopping FEP+” algorithm is not obviously necessary with MSλD, so we employed the later 

approach of considering the entire ring as a separate substituent and investigate MSλD’s 

potential to explore such difficult modifications.

To evaluate the reproducibility of MSλD computed binding free energies, ΔGbind, additional 

free energy calculations were performed using a community accepted standard, TI 

calculations coupled with the multistate Bennett acceptance ratio free energy estimator (TI/

MBAR).27,28 The details for both approaches are discussed in the Supporting Information 

(SI). In brief, simulations were performed on GPUs using the CHARMM molecular 

software package29,30 with CHARMM based force fields: CHARMM36 and CGenFF for 

protein and ligand components, respectively.31–35 MSλD explored all R1 and R2 

substituents collectively within a single simulation using adaptive landscape flattening 

(ALF) and biasing potential replica exchange (BP-REX) to enhance end-state sampling.36,37 

Five independent trials were carried out for the bound and unbound sides of the 

thermodynamic cycle (Figure S1) for a total of 1.84 μs of sampling. In contrast, the TI/

MBAR calculations explored perturbations one at a time, in a pairwise manner. In keeping 

with recommended protocols,38 redundant calculations were performed within closed 

perturbation cycles (Figure S2) to eliminate the hysteresis around each cycle and reduce 

error propagation along chains of subsequent perturbations.39 Each calculation was 

performed in triplicate and consisted of 11 λ-states, with 5 ns of sampling per state. A total 

of 21 R1 and 24 R2 perturbations were performed in bound and unbound states for 14.85 μs 

of sampling. Computed ΔΔGcomp were then converted to absolute values using equation 

3.7,11

ΔGcomp = ΔΔGcomp − ΣΔΔGcomp
n − ΣΔGexpt

n (3)

When comparing methods and assessing precision, agreement to within statistical noise is 

desirable. Standard deviations for computed protein-ligand ΔGbind are typically 0.3–0.5 kcal/

mol.7 As shown in Figure 2, excellent agreement is observed between MSλD and TI/MBAR 
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results. The standard error estimates of the mean are less than 0.5 for all MSλD and many 

TI/MBAR data points, although some TI/MBAR uncertainties are as large as 0.86 kcal/mol 

(Table S1). A mean unsigned error of 0.37 kcal/mol and a Pearson correlation of 0.99 thus 

suggest that the MSλD results are precise and reproducible compared to TI/MBAR. A 

Welch’s t-test with a 99% confidence level confirms that all data points originate from the 

same distribution (Table S2). From this analysis, a comparison of efficiency can also be 

made. Timing benchmarks suggest no apparent overhead difference for running MD with 

MSλD vs TI in CHARMM; thus, simulation time lengths can be used directly for an 

efficiency comparison. With 1.84 μs of sampling, MSλD required 8 times fewer resources 

than TI/MBAR to compute all 21 ΔΔGbind. However, differences in the uncertainties 

between methods should also be accounted for, e.g. some TI/MBAR uncertainties are nearly 

twice as large as MSλD uncertainties (Table S1). Reducing the amount of MSλD sampling 

to 10 and 15 ns for unbound and bound states of the ligand, respectively, retains consistent 

sampling of all 21 ligands, but increases the MSλD uncertainties by 25%. The MUE 

between TI/MBAR and MSλD is still small, 0.42 kcal/mol, but MSλD is now 20 times 

more efficient. Thus, even when more difficult transformations are performed, including 

large substituent perturbations and scaffold modifications, MSλD yields precise, 

reproducible free energy predictions and is ~8–20 times more efficient than traditional free 

energy approaches.

Accuracy is also an important consideration and computed binding affinities must correlate 

with experimental activity measurements to be useful. For alchemical free energy methods, 

it is well understood that accuracy is dictated by the quality of sampling, i.e. the proficiency 

of the method, and the correctness of the force field for a given biochemical system.40 The 

best agreement with experiment that has been observed using current molecular mechanics 

force fields is typically within 0.5–1.0 kcal/mol.3–12,18–20,26,37,39 The above analysis 

demonstrates that free energy results from MSλD are precise compared to TI/MBAR; thus, 

sampling with MSλD is expected to be well converged in this work. Any measure of 

accuracy in the following discussion thus reflects the quality of the force field employed 

with MSλD. Fortunately, MSλD is force field independent, meaning it can be used with any 

force field, and force field adjustment can be performed to improve accuracy for a given 

system, if necessary.

Using CHARMM-based force fields, initial agreement with experiment was unsatisfactory 

for this system, with a MUE of 1.83 kcal/mol (Figure S3 and Table S1). Experimentally, the 

most favorable inhibitors feature the 6-membered R1 substituent and the least favorable 

inhibitors have the 5-membered R1 substituent. The 7-membered ring is ~1.9 kcal/mol less 

favorable than the 6-membered ring, but ~1.3 kcal/mol more favorable than the 5-membered 

ring.11 Using CGenFF ligand parameters, however, the 6-membered and 7-membered rings 

were predicted to bind equally well, differing by only ~0.2 kcal/mol. The 5-membered ring 

was less favorable than the 6-membered ring by ~6.0 kcal/mol, much larger than the 

experimental difference of ~3.2 kcal/mol (Table S1). We note that high penalty scores of 

greater than 100 provided by the CGenFF program suggested some parameter 

inconsistencies may be present. The original authors of the JP ligands saw relatively good 

agreement when they employed Schrödinger’s OPLSv3 force field with CM1A-BCC partial 

atomic charges, achieving a MUE of ~1.2 kcal/mol.11,41 To test if an error in the CGenFF 
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ligand parameterization was the source of our lower accuracy, new ligand parameters were 

obtained from the publicly available LigParGen server.42 This provides OPLS-AA force 

field parameters coupled with CM1A partial atomic charges for small molecules.43,44 Two 

tests were performed. First, the CM1A charges were substituted for the original CGenFF 

charges, while all other CHARMM-based force field parameters remained unchanged. 

Second, all protein and ligand parameters were changed to the OPLS-AA/M and OPLS-AA/

CM1A force fields, respectively.43–45 For each test case, new MSλD calculations were 

performed and the free energy results were compared to experiment.

When CM1A charges were used in conjunction with CHARMM36 and CGenFF force field 

parameters (CGenFF/CM1A), the agreement with experiment was excellent (Figure 3, Table 

S2). The observed MUE was 0.47 kcal/mol and the Pearson R was 0.92. In addition, correct 

ranking is now observed between R1 substituents: 6-membered < 7-membered < 5-

membered rings, matching experimental trends.11 As shown in Figure S4, excellent 

agreement and correct ranking is also observed when OPLS-AA-based force fields were 

used with MSλD (see also Table S2). Importantly, this represents an important 

demonstration that MSλD is force field independent. The excellent agreement using 

CGenFF/CM1A parameters suggests that the partial charges in our original CGenFF ligand 

parameters were problematic. An in-depth analysis provided in the SI identified charge 

mismatching on the 5-membered ring to be the key culprit. This caused inhibitors featuring 

the 5-membered R1 ring to be over-solvated, introducing a large energetic penalty for 

pulling these ligands out of solution to bind to BACE1. Hence, large ΔΔGbind errors were 

observed in the initial MSλD calculations. In contrast, hydration free energies were 

comparable for all JP ligands with CM1A charges and excellent ΔΔGbind were computed. 

With correct force field representation, MSλD can provide very accurate free energy 

predictions.

To combinatorially sample challenging substituent modifications with MSλD, and obtain 

accurate and precise ΔGbind, enhanced sampling with BP-REX was beneficial. Equivalent 

simulations without BP-REX were performed, but not all 21 ligand end-states were 

consistently sampled over the course of a single MSλD calculation. Free energy 

convergence with MSλD is dependent upon visiting and transitioning between end-states 

many times.17–20,36,37 In Figure 4 we illustrate the protein-ligand transition probabilities that 

were observed with and without BPREX, averaged over 5 independent trials of 40 ns each. 

Without BP-REX (Figure 4B), 90% of all transitions occurred via an independent R1 or R2 

change, e.g. 5E→{5A, 5B, 5C, 5D, 5F, 5G} or 5E→{6E, 7E}. However, with BP-REX, 

multiple dual site transitions were observed, e.g. 5E→{6G, 7C, 7G, …}, with probabilities 

greater than 5% per transition (Figure 4A), and dual site transitions now account for ~50% 

of all transitions. A similar trend is observed for unbound ligand simulations in water 

(Figure S5). This suggests that enhanced sampling algorithms are helpful for exploring these 

large substituent perturbations with MSλD and accelerating ΔGbind convergence over 

shorter timescales. For example, our MSλD vs. TI/MBAR MUE was only 0.42 kcal/mol 

when MSλD simulations were shortened to 15 ns or less.

Lastly, there was substantial conformational flexibility observed for the flap and 10s loops of 

BACE1. Tresadern and co-workers found that inconsistent sampling of these motions 
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introduced large variance between FEP+ ΔΔGbind results and experiment. In their work, 

consistent sampling of these movements generally required 20 ns or longer per λ-window to 

reduce these artifacts.11 Fortuitously, MSλD naturally uses longer timescales to sample all 

combinatorial ligand states within a single MD simulation. In this work, insufficient 

sampling of the loop motions is again observed for our 5 ns long TI calculations (Figure 

S6A), likely contributing to the larger TI/MBAR uncertainties (Table S1). MSλD, however, 

shows consistent sampling of open and closed loop conformations over the course of each 

simulation (Figure S6B) facilitating precise and accurate ΔGbind predictions to be computed.

In conclusion, this work has investigated the applicability of MSλD to the exploration of 

large and challenging substituent modifications within the context of a pharmaceutical 

design problem addressing β-secretase 1 (BACE1), a prominent Alzheimer’s disease target. 

At two sites off a common ligand core, whole aromatic rings featuring long, flexible 

moieties at their para-position and scaffold modifications associated with a change in ring 

size were sampled in a combinatorial fashion with MSλD. All 3×7 perturbations were 

considered simultaneously within a single simulation. Accurate and reproducible modeling 

of terminal scaffold modifications did not require a “soft-bond” potential with MSλD.26 

Computed free energies of binding were demonstrated to be as accurate as a community 

accepted standard, TI/MBAR, to within 0.4 kcal/mol, yet MSλD was an order of magnitude 

more efficient. Though initial CGenFF force field parameters were unreliable for the 5-

membered acylguanidinium heterocyclic ring, when MSλD calculations were performed 

with CM1A charges, the ΔΔGbind results were accurate to within 0.5 kcal/mol of 

experimental IC50s. Furthermore, performance of MSλD calculations with OPLS-AA based 

force fields is demonstrative proof that MSλD is force field independent, though polarizable 

force fields remain to be tested. Furthermore, this work demonstrates that MSλD is a viable 

alternative to FEP or TI methods for use in SBDD and lead optimization. MSλD can explore 

very large chemical spaces in a combinatorial manner, enabling the rapid identification of 

new inhibitor designs, and can illustrate structural insights into ligand bindings that can 

guide synergistic experimental discoveries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) The JP N-(4-fluorophenyl)-acetamide core with R1 and R2 substituents. (B) The 

BACE1 binding pocket: BACE1 is represented in grey, with flexible “flap” and “10s” loops 

colored green and purple, respectively. The catalytic aspartic acids are shown in orange, and 

the 5C ligand is shown in yellow. The surface of the binding pocket is colored pink.
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Figure 2. 
Correlation between MSλD and TI/MBAR computed ΔGbind with CHARMM36 and 

CGenFF force fields. R1 substituents are colored according to the ring size: orange (5-

membered), red (6-membered), and blue (7-membered). The solid black line represents y=x, 

and grey dashed lines represent y = x ± 1.
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Figure 3. 
Correlation between MSλD computed and experimental free energies of binding (kcal/mol) 

for the JP ligands. These results were obtained with CHARMM36 and CGenFF/CM1A force 

field parameters. R1 substituents are colored according to the ring size: orange (5-

membered), red (6-membered), and blue (7-membered). The solid black line represents y=x, 

and grey dashed lines represent y = x ± 1.
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Figure 4. 
Transition probability pathways for alchemically perturbing between ligand end-states with 

MSλD in the protein-ligand complex. (A) Significantly more transitions are observed when 

the BP-REX algorithm is employed. (B) Few transitions are observed without replica 

exchange. Arrow thickness and color correlate to high (blue, thick) to low (pink, thin) 

transition probabilities.
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