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LOGIC AND TOPOLOGY OF STRUCTURAL ANALYSIS
by
Frank Baron*
May 15, 1962
Synopsis
The paper deals with invariant forms of statements, guantities, and relation-
ships in analysis. Group theory, set-points, and geometrical transiormations are
used to describe all paramcters, functions, and configurations of a structure and
its parts.
A generalized structure in a 3-dimensional space is transformed to a single
set-member between two set-points in an N-dimensional space.
Introduction
The objectives of this paper are twofold. One objective is to state in
symbolic form the inveriant relstionships that are applicable to any structure,
or part of & structure, irrespective of the configuration of the structure. This
objective is limited to the cases for which the requirements of statics and fooke 's
Lew hold, and for which the effects of the displacements on the forces and moments
in the structure are considered negligible. The second objective is to indicate
a way by means of which the configuration of a structure, end all parameters and
functions of & given structure can be described. The way is by means of index
notation and by sets of coordinates as employed 1n the study of N-dimensional spaces.

(1) (2)

The first objective has been reported on by S. O. Asplund, J. Ho Argyris,

A. 8. Hall,(S) end R. G. WOodhead<3) in terms of direct matrix notation, and by
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2
G. Kron,(k) B. Langefors,(s) and S. Shore(6) in terms of index or tensor notation.
The same objective 1s pursued herein but with a different emphasis. The emphasis
is on the invariant forms that appear in symbolic statements of structural analysis.
For example, invariants appear in the symbolic statements of (a) statics, (b) con-
timiity of geometry, and (c) Hooke's Law for any structure, or sub-group of the
structure. Inveriants also‘appear in the objects that arc described, the operations
on the objects, and in the resuliing algebiraic relationshlps between the objects.
In this sense, the emphasis herein is the same as that given in the general dis-
cipline called mathematical or symbolic logic.‘T) The latter logic is a study of

form. In the present application of this logic, the concepts of tensor(8’9) and

matrix calculus(lo)

are employad. The use of tensors in this application, as in
others, rests on the fact that a tensor equation is true in all coordinate systems,
if true in one. This follows because tensors are invarient quantities by definition.
Matrices are used to facilitate the routine work of calculations, and because

the objects that are to be rcpresented eventually must be described in sets of
components.

The second objectlve is part of the discipline called algebraic topology.(ll’lz)
Algebraic topology deals with continulty and with those properties of geometrical
configurations which remein invariant when these configurations are subjected to
one-to-one bicontinuous transformetions, or homeomornhisms. In brief, two geo-
metrical figures are topologically equivalent, or homeomorphic, if each can be
transformed into the other by a continuous deformation; for esample, like putiy.

This topic was illustrated for electrical applications by S. Seshu and M. B. Reed(l3)

(14)

and for structural applications by N. C. Lind. The illustrations were in

terms of a geometrical interpretation called linear graphs.
In this paper, an algebraic approach to structural topology is stressed, in

which the theory of sets(lS) is used to describe the coordinates of two-dimensional
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and three-dimensional configurations. Subsequent relationships are obtained for
structural frameworks having topological equivalences. The relationships, being
in algebraic form, are suited for programming of calculations to be made by means
of electronic computers.

Indicial Notation

An indical notation is developed for use in the anaelysis of a generalized
structure in space. The notation, with some modifications, is the same as that
often employed in the study of tensors.(&’g) In this notation, indexes or suffixes
of terms are used to identify (1) the components of terms, (2) the positions of
terms (by means of sets of coordinates), and (3) arithmetical operations or trans-
formations. Before we proceed to the analysis of structures, let us define two
notational conventions that will become of real importance as labor-saving devices,
and to keep the bulk of the formulae in a recognizable form.

Range Convention. When a small suffix (superscript or subscript) occurs

just once in a term, it is understood to take all values 1l to N unless the con-

trary is specified.

Summetion Convention. When a small suffix is repeated in a term (one suffix

in the superscript and the other in the subscript of the term), summation with

respect to that suffix is understood, the range of summetion being 1 to N. Thus,

N
-the expression I R p(j) merely is written as Rj p(J)
1=1 i

The summation convention is suspended for suffixes that appear in parantheses.
These suffixes are for reference in defining neighboring points that surround a

glven point.

The economy of the two conventions is demonstrated by the following equation:

B, + R§ p(g‘). 0 (j=l,3; i=1,2,-4) (1)

The convemtion informs us that there are three equations, with & sum performed

over 1 ranging from 1 to It in each equation.
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An index which is repeated in the same term is called 2 dummy index; an
index which is not repeated in the same term is c@8lled a free index. Thus, J in
Eq. 1 is a free index, and i is a dummy index. The following rules can be laid
down for the menipulation of indices in an equation.

(l) The free index in every term of the equation must be the same, but the
letter can be changed. Whatever values is given to a free index in one term, it
mist be glven the same value in all terms, and therefore must be represented by
the same letter throughout the equation.

(2) The dummy index however can be changed separately in each term, provided
the same change is made within the term.

(3) The bala.ncg of free end dummy indices must be maintained on the two sides
of the equation.

More freedoms then the preceding are reserved for the manipulation of indices
within pesrantheses. This is because the latter indices are removed from the
summation convention and are for identification purposes of terms. A balance of
these indices is not required in an equation.

For actusl calculations, the tensors in the subsequent equations are arranged
for matrix multiplication; that is, row by colum. This means that the multiplica-
tion of two or more tensors in a term is made in pairs along the dummy index of
each adjacent pair of temsors. The dummy index of each adjacent pair heads the
colums of the leading tensor and the rows of the following tensor.

The components of a tensor can quickly be determined by its valence (or order).
The valence of a tensor is indicated by the suffixes of the tensor. For exsmple,

a tensor of valence one has one suffix, and & tensor of valence two has two suffixes.
Tn metrix form, a tensor of valence one is represented by & columm or row vector,
and a tensor of valence two by a rectangular array of components.

Indicial notation for coordinates. In the succeeding sections, several sets

of coordinatesare used. These sets are described by means of suffices. For this



purpose, the Latin alphsbet is divided into groups such as (1, 2, -1, -I),
(1, 2, 3, -J), (1, 2, +4, m, n, M), (1, 2, -, 8, t, °S), and (1, 2, -u, v,
W, .V). BEach of these groups is assigned to a specific set of coordinates.
Greek suffices also are used; for example, @, B, and ¥ . The latter suffixes
are associated with the preceding groups. Specifically, & 1s associated with
(1, 2, «4, m, n, -M), B with {1, 2, -r, s, ¢, -S), and y with (1, 2, -u, v,
w, V).
Fundamental Relationships and Notation

A summary is given of certain fundeamental relationships which occur in
structural snalysis. The relationships are for forces, displacements, and
deformetions of a structural element that lies at & point, and a member that
lies between two joints. Later, it is shown that the relationships can be
written in the same form for a group of members that meet at a joint, and a group
of members that are connected to many jolnts.

Resultants. In Pig. 1, a force and moment are shown to act at point j.
These are designated by F, and M,, respectively. The resultant at i of F, and

J J J
M. consists of a force and moment (designated Dby Fi and M, , respectively).

J i

Three orthogonal axes (x, v, and z) are shown in the Figure. A right hand rule
is used for these and succeeding orthogonal axes. The x, y, z axes are used Tfor
defining the components of terms, such as F and M, along these axes.

Particular attention is called to the suffices, i and j. At this stage,
these suffices merely serve as labels to ldentify points in space. They agree
however with the conventions that are described in the preceding section. Note
that a set of coordinates for i and j is not yet defined. The latter set need
not be the same as that employed for defining the components of terms such as F
and M. At a later stage, the suffixes such as 1 and J will serve as variables

(for example, 1 = 1, 2, .. T and J= 1, 2, .. J) to identify coordinates of points




in an N-dimensiomsl space. In each of these steges, it is important to note the

position of a suffix in a term; that is, as & superscript or subscript of a term.
It also is important to note the order in which a suffix appears in the superscript

or subscript of a term.

The x, y, z components of F, and M, are written in matrix form as follows:

3 Rl
Fj = FX 3 Mj = Mx (2)
F M
h ¥
—de J B Mz_ J

The Fj and M, terms are assemwbled into a single matrix,

3
P, = [ﬁ]a (3)

P henceforth is called a load.

In Eq. 2, the indices within the brackets are for the x, y, 2z components of P.
If desired, they can be written for the contraveriant or the covariant components
of P in a fundemental oblique coordinate frame (see Ref. la). Our interest
however is principally with the indices outside of the brackets. For this reason
and for simplicity herein, only the rectangular x, y, z components of terms such
as P will be written.

The metric distance measured from i to j is designated by r(i). It is written

in matrix form as

r(i)s . (3) (%)
r
y
_rz_ i

in which the positive components of r are from i to j. Consequently,

L3) . (1) (5)
i 3



Note that the upper suffixes of r(i) and r( j)a.re written in parsntheses and are
removed from the summation convention.

A 3 x 3 anti-symmetric matrix [ro] 3’ is defined in which the elements of
(3)

ry’ are arrenged as follows:
[I‘o] J = 0 -l r J (6)
i z N
r 0 -r
Z X
e o r 0
.Y X 11

in which I and O are 3 x 3 unitary and null matrices, respectively.

The resultant at point 1 of Pj then is given by

J p
P, = Ry P, (8)

that is, P, is transformed to P, by means of Rj.

J i i

Now consider a set of forces and moments which act at points 1 through j as

shown in Fig. 2. The resultant at i of the set {j =1, 2, .. J} is given by

J
P, = By P (3=21, 2, .. J) (9)

in which the summation over the dummy index is from 1 to J. Thus, by means of the
range and sumuation conventions, & single equation (Eq. 9) suffices to transform

a set of Pj's to a set Pi‘ Tn matrix form, the terms of Eq. 9 are given by

. Cnd 1.2 J
Py [;ﬁ{] ; By = [R R} Ri] (10)
i

p. = | B | (11)

and




The calculation of P at point i cen be transferred to a new set of axes at

point k by means of the transformation

P, = Ri B, (12)
Egqs. 9 and 12 yleld ,
RS = Ry B (13)

Displacement of Sections: In Fig. 3, a rigid member extends from i to J.

The transverse section st i is subjected to a translation A(g) , and to a rotation
a(i) The subscript of each of these terms indicates the location of the trans-
verse section to which the term is referred, and the superscript the far end of

the member. The translation and rotation at i are assembled into a single term,

L. 2@ (1)
S I
in which
A3 . "AX." (3) ;o0 ‘ex" (3) (15)
JaN e
¥y J
h_Az_J i _gz_‘ i

Henceforth, p of a section ig called the displacement of the section.
For small displacements, the contribution of p (g) to the displacement at j

is given by

(1) _ g )
P 3 = RJ P3 (.16)
in which
'ﬁ"'; -l |1 (17)
0 I
J
Note that ﬁg‘ is the same as the transpose of R‘g_; that is,

ﬁ.‘]. = Ri* (18)
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(See Eq. 7 for R’i). The asterisk in BEq. 18 denotes transposition. Note also that
the inverses of the R and R terms can be denoted merely by inverting the suffixes

of these terms; that is,

-1
R 3
[RJ] =R [RJ ] = By (19)

in which the exponent -1 denotes inversion.

Displacements of join‘hs: Only one suffix is required to designate the dis-

placement of a joint, whereas, two are required to designate the displacement of

a transverse section of a member. Thls is because a Jjoint lies at a point, whereas,
a member lies between two points. Thus, the displacement of a joint at j is
designated by p 5

Deformetions: The influence of a discontinulty in displacement, or a

concentrated deformation, on the resulting displacement of two rigid members is

shown in Fig. 4. The discontinuity occurs at ¢ and is designated by

in which

p (g) -® P(j) (21)
and
Consequently, we obtain _

op o= ® p0) - ) (23)

which when premultiplied by '1?713 yields
i) =i (3 =Cc
P (,j)- RJ P i) +RJ 5P c (2k)

By a simple manipulation of indices, Eq. 24 can be rewritten as

USRS Y (25)
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The latter equation is for a rigld member that lies between i and k, with a
discontinuity at j.

For a deformable member that lies between i and j, Eq. 24 becomes

P<3’;> - & P(i) +F ap (26)

in which the summation over c is from 1 to j, and d p o is given by

dpcn da (27)

ae
c

BEq. 26 henceforth is called the fundasmental equation of continuity for a deformable

member .
Statical Relationships. In Fig. 5, an external load is shown to act at

point ¢ of & member that lies between points 1 and j. The internal force and
(J)

moment acting on a section of the member, say section i » axre designated by

f(i) - -fx- (3) ; m(i) - me— (J)  (28)
Ty Ty
_fzd . -mZ—J .

These terms are gathered into a single term,
e | o | O (29)
il
in which the subscript of a term designates the location of the section to which
the term is referred, and the superscript the opposite end of the member. The
positive direction of each component of force and moment is along 1ts respective
axis. From now on, p is called an intermal force.

Statics of an infinitesimally small element at c yields

P m p(g) +p(i-) (30)

c c



in which
p(g) = —Ri p(g) (31)

and

p(i) - -—Ri p(g) (32)

For member 1cj, statics ylelds

P, + R p(g) +8 ) a0 (33)

By a simple manipulation of indexes, Eq. 33 1s rewritten in another form;

namely,

1 (3)
PJ + RJ py’ = 0 (1 = 1,2, -I) (34)

The latter form of equation henceforth is called the fundamental statement of
statics. The statement is for a group of members that meet at J.

For other purposes, Eg. 33 is rewritten in another form; namely,

1 _(3) k (3)
PJ+Rin +RJ py’ =0 (35)

Relationships Based on Hooke's Law. A summary is given of these relationships

for (a) a differential element, and (b) a finite element, when each element is
loaded only at its ends. The summary is obtained from Ref. 16 with a modification
in notatlion and an extension to include the effects of shear and axial deformetions.

(a) Differential Element. Consider en element that lies at point c(see

Fig. 6). The element is ds in length, is oblique to the x, y, and z axes, and
is subjected to a force and moment of
i i

m
c

at each end. The principal axes of the cross-sections are orthogonal and are
designated by 1, 2, and 3. The unit base vectors along these axes are designated
by [q]_] o [qz:l o’ I’q3 ] o respectively, and sre assembled in matrix

form as follows:



e n c

qz-[iqlqaq{]cw Ay Yoy Yoy (37)
Yy Yoy By
T A, q'3z

C
in which the 9 J‘th element is the direction cosine of the 1'th base vector of
the 123 system with respect to the J'th axis of the xyz system. Note that the
base vectors satisfy the condition of an orthonormal set.
The scalar components of p(i) along the new set of axes are related to the

Y
components of p'(i" along the original set by the orthogonal transformation,

(1) — * (1) ’
P {1,. 2, 3} =% P {x, ¥, z} (38)
in which
- ¢ - c * ¢
Q.= a0 ; ai = |g O (39)
0 q 0 q*
c c

The magnitudes of the deformastions with respect to the 1, 2, and 3 axes are gilven

by the vector scalar product,

tres ngl - o (e g ) (50)
in which de
(e¢)ec
ak (g) I A | (41)
0 da,
¢
o — r’ _
dy (g)c = d"jl_l 0 0 (e)e - ds _E% o (c)e (12)
‘ B3
9 0 0 d333 o o 3
and _ _ ) ﬁ
e R N T
o da, O | 0 E'J'i; o
1
pres. ] -~ _J c
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In tensor form, the deformation at c caused by p(i) is given by

ap, =agdp, (k)
or by
ap = axl®le pi) (45)
in vhich
dk(z)c - la o (ede _ 5 c dzﬂz)c E{g)c* (46)

Eq. 45 is Hooke's Law for an element ds in length.

(b) Relationships for a Finite Element. Comsider a member that is curved

in space, lies between points 1 and j, and veries in cross-section along its
léngth (see Fig. 7). In Fig. T(a), the member is unloaded except at its ends.
In Fig. 7(b), the same member is shown with displacements at both ends and with
deformations along its length. It is impoﬁant to note that a rotation, say
e(g )

, is the rotation of the transverse section at point i of wmember {i} , and

not the slope of the displacement curve at point i. This can be noted by con-
sidering two elements, each ds in length, which meet at a point c¢. A difference
in the shear of the two elements results in a discontinuity in slope at c¢c. The
difference in the shear however does not yield a discontinuity in the rotations
of the transverse sections. For these reasons, we refer to the rotations of the
transverse sections (or ,joints) and not tethe slopes of the displacement curve.
The reference permits us to have a theory of continuity which includes discon-
tinuities in slope caused by shear.

Geometry of the member yields

(3) _ (1)
py +R; ap .=K] p, (47)

in which the summation over c¢ is from i to J. Statics of the member yields



(1) 1 (3)
p', = R Py (43)
With Hooke's Law and statics, Eq. 47 can be rewritten as
zc o (Lleger (3)_ (3)_gd (1)
R, ak "R Pigﬁi“'Rin (49)
in which ¢ varies from 1 to j. DNow let

k(g)i -RS d.k(i‘)c R i* (50)

and obtain

S, (1 _(3) g (1)

py=kyT R PRY Py
By a simple change of indices, Eq. 51 1s rewritten to yield the displacements
at end }; namely,

i i)j (4 =1
Egs. 51 and 52 are the fundasmental forms of Hooke's Law for s finite

element which extends between two ends, and 1s unloaded except at the ends.
The two equations can be rewritten in other forms. For example; they can be

rewritten as follows:

pU) L @)1 ,() g9 ) (53)
and :

respectively. Each form of Hooke's Law (Egs. 51 through 54) is useful, depend-
ing on the boundary condlitions that are specified at ends i and J.

In the preceding equations, k(g)i is the flexibility metrix for end i of
nember ‘{(i)} , and k(g')j is the flexibility metrix for end j. It can be shown
that each of these terms 1s symmetric; that is,

K k(g)i* ; k(13;1 . k(;)a* (55)

and that k(j)'j 1s related to k(g_)i by means of the transformation,

1k
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(13 gt (31 gix
kj R ; k{7 R p (56)
It can @&lso be shown that k(i)‘j and k(g')i are related to k(g)i as follows:
(1) =1 (3N (3)3%

A physical interpretation is given of the warious k-terms and their Indices.
Each k-term designates an array of influence coefficients for the displacements
at an end caused by a set of unit forces and moments at the same or opposite
end of the member. The indices designate the member, the positions of the
displacements, and the position of the unit forces and moments. For example,
k(g)'j designates the displacements at end i of member {(g)} , caused by a
set of unit forces and moments abt end J.

The relationship between the forces and displacements at the ends of the
member can be stated in terms of stiffness metrices. The stiffness matrix at end

i of member {(i)} is related to the flexibility metrix as follows:

(@) I:k(a)i] L (56)
Now, premultiply Eq. 51 by K(i)i a.n: obtain
p(g) ﬂm(i)i P(i) ) K(g)i R 3 P(;) (59)
 Further, because |
K'(i)'j - K(g)i fR-(i) (60)
we obtain
p(ﬁ) ,Kb(i)i P(i) . K(g)a P(f{) (61)

By a simple change of indices, Eq. 61 is rewritten to yield the forces and

moments &t end J; namely,

(3) , (123 5(1) (62)

U LS

P

Eqs. 61 and 62 now are grouped into a single equation as follows:



™ ()T B . e R
(1) (1)1 ()3 (1)
Pl S ST %

The letter equation is Hooke's Law, or the generalized rotation-deflection
equation for a general member in space.

In Eq. 63, K(g)i is the stiffness matrix for end i of member {Fi)} 5
and K(i)j is the stiffness mafrix for end j. It can be shown that each of

J
these terms is symmetric; that is,

Kéj)i - K(i)i* Kéi)a - Kﬁi)J* (6h)

2

Also, K(l)'j is related to Kﬁj)l by means of the transformetion,

J
(13 _ g g3 pix
Kj Rj K, Rj (65)
and K(i)J and Kﬁi)i are relsbted to Kéj)i as follows:
(3)3 (31 =3 (1)1
K; = - K R, = KJ (66)

In the same way as for the k-terms, & physical interpretation can be glven
to the various K-terms and their indices. Bach K-term designates a set of forces
at an end of a member when the same or opposite end is subjected to a set of
unit displacements. In brief, Kij)i and Kéi)j represent stiffness factors, and
Kéi)i and. KéJ)J represent products of stiffness factors and carry-over factors
as defined in moment distribution. (See Ref. 16 for a more complete interpreta-

tion of the various K-terms.

16
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Generalized Structure In Space

Now consider the generalized structure in space. The structure is repre-
sented in Fig. 8 end consists of deformable members which are attached to rigid
joints. The merits of conceiving such joints for algebralc purposes are dis-
cussed by H. M. Westergaard in Ref. 17. The actual connections of a structure
are considered to be a part of the deformable members. The external loads
and reactions are assumed to act on joints only.

In Fig. 9, a sub-group of members is shown in which the members meet at
a joint j. The far ends of the members are at points 1 and are identified
bﬁr the set of coordinates x,, (1=1, 2 - I). To insure that no ambiguity
exists concerning the indicial notations and the representation of the components
of tensors in matrix form, all steps in the succeeding equations are shown for
this sub-group.

Statics for the sub-group yields

P, + Ry p§j?no (3=35141,2 1)  (67)

. which when summed over i becomes

P, + R- p](_‘j)+-+RI p§j)=0 (68)



and, in metrix form becomes

P, + [Rl . RI] B, (@) .o (69)

Hooke's Law for each member that meets at joint j is given by Eq. 61. Because
p(i) = p 3 for all members that meet at joint j, the suffix in the parantheses

of p(i) is dropped and Eq. 6L is rewritten as follows:

J
p) L W ) Digd (1=1,2 - 1) (70)
In matrix form, the terms of Eg. TO are given by
s ’ l - l pa— 3
p(g) -l 2, 3) KiJ) £, (3) _ K§_'j) R, JPJ (71)
P P py <) 5
A I |

Substituting Eq. 7O into Eq. 67 and employing the relationships that are given

by
. Vs I .
K(g)’i - -8} K(g)l ; apd 5 KN R:; K(g)l Ré* (L=1,2 - I) (72)
iml J '
yields
PJ KJ P i + KJ Pj (i=1, 2 1) (73)
Note that the term Rg' K(g 2 Rﬁ* in Eq. 72 when summed over i becomes the

sum of the stiffness matrices at end J of all the members which meet at joint Jj.

This sum is designated in Eq. 73 by the change of the suffix in the parantheses
I

of the term Z K(i)'j ; that is, by
jml 9
(M3 . 5 L) |
K = £ K (%)
J i=l J :

Henceforth, & capital suffix in the parantheses of a term designates a sum of

the term that is denoted by the principal letter and the other suffixes.
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Eq. 73 is the fundamental equation of elasticity for a sub-group j connected
to a neighborhcod 1. One such eguation cam be written for each joint j, includ-
(6)

ing the Jjoints at the reactions. When the conditions at the reactions are specified

and statics & the external loads 1s considered, the following equation can be

wriltten: ( )
AL - ..
P, = Ky Pr (n=1, 2, -.0) (75)
which yields
Pn = [Kgn)n] - Pﬂ (n =1, & "J) (76)

In Eg. 75, the prime unknowns are displacements. If desired, equations
can be formed in which the unlknowns are the intermal forces, or a mixture of
internal forces and displacements. The latter equations can be formed by means
of the fundamental relationships that are given in the preceding section.

Special Cases of Sub-Group. Several cases of the sub-group shown in Fig. 9

are congsidered. The cases serve as bases Br determining constants for use in
distribution procedures, iteration methods, and partitioning of matrices.

Eg. T3 1s recalled for ready reference:

i;‘i) . KgJ)a 24 (1 =1, 2 - 1I) (73)

Case 1. (see Fig. 9). TFor this case, the ends at 1 are considered fixed

IR ENE!
Pj KJ p

and P, is an unbalanced load at the Jjoint. Consequently, p:g'j) is null and

J
Eq. 73. ylelds
py = [KgJ)J:] e, (77)
in which KgJ)j is the stiffness matrix for the entire joint j. From Hooke's

Law (see Egs. 61 and 62), the forces at end j of each sub-member are given by
p) w13 (N 2 p (1aa, 2 - 1) (18)
J J 3 -4
and &t end 1 by

Pij) - K:(Lg‘)j [Kg.:r),j] -1 P (1=1,2 -1 (1)
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Eq. 78 is interpreted to read as follows: An unbalanced load Pj is digtributed
to ends J of the sub-members that meet at J in proportion to the relative stiffnesses
of the sub-members. Further, the load at j is carried over (or transferred) to
ends 1 as given by Eq. T9. As in moment distribution, forces carried-over from
ends i to joint J are summed up at J to give new unbalanced loads &t j. The
latter loads follow from statics (see Eq. 67).

Case 1, together with the concepts of line and block operators (er sub-sets
of a set), have served as a basls for programming the electronic calculations of

8 generalized distribution procedure for the general structure in space.

Case 2a (see Fig. 10a). For this case, a sub-group lies along a curve ijk;

with a loed at j. By a simple change of a dummy index in Eg. 73, we obtaln

(i) ()3 (%)
Pg = Kj p; + Kj Pyt K'j [ (80)

The latter equation can be interpreted as a central difference egquation for
sub-group ijk. It can be modified to include & lpranch-member that extends
from j to §°'.

Case 2b (see Fig. 10b). For this case, a set of sub-members lie along a

line defined by the set of points

xy = (xl, Xps oe Xys Xyp Ky oo XJ) (81)
~in which
Ve (l, 1, J, k, » J) (82)
1ej -1
and
ks j+1 (8k)

By a simple chemge of the indexes in Eq. 73 and application of the range con-

vention, Eq. 73 can be rewritten as

py = K" py (85)
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in which -
Py=l Bl Py=| £ (86)
5 &
Pb_ el
and (Vv is the symmetric band matrix
K\(‘[‘m’z Ig(Li)lK_f_g)a . . e e o e (87)
.. e s(i)ie(J)J'(kak L] « e
R R Sl

® @ ° e
7

T EIa)S
L e

-

See Ref. 18 for obtaining the inverse of a band matrix.

It can be shown that the inverse of Kﬁw)w is related to the flexibility
matrix at end 1 of the member that lies between 1 and J. Note that the flexibility
matrix has already been obteined for a finite element that>lies between two
points and is unloaded except at its ends (see Eg. 50).

Cases 1, 2a, and 2b are reexamined. In Case 1, the members meet at a Jjoint
and are arrenged in parallel (parallel being used as for electrical circuits).

For this kind of group, the stiffness matrix is the sum of the stiffness matrices

. for all members that meet at the joint. Before the sum is performed, the stiffness
matrix for each member is transformed to the end that lles at the joint. (See

Eq. 65 for the transformation of a stiffness matrix).

In Cases 2a and 2b, the members (or segments) lie along a curve and are
arranged in series (series being used as for electrical circuits). For this
kind of group, the flexibility metrix for an end of the group is the sum of the
flexibilities of all segments. Before this sum is performed, the flexibility of
each segment is transformed to the end that is considered. (See Egq. 56 for the

transformation of a flexibility matrix).
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Cases 1, 2a, and 2b can serve as a basis for the development of a
computationalvtechniqne in which the concepts of stiffness paths and flexibility
paths are employed. A description of this technique is beyond the scope of this
paper. The technique is similar to that described by C. E. PEarson(l9) and
that employed in the analysis of electrical circults.

Sets of Coordinates

In the preceding sections, no restrictions are placed on the selection of
the coordinates to be used in identifying points on a structure; for example,
points j and i. Various systems of coordinates can be used. A few that are

particularly useful in structural applications are illustrated.

Coordinate Set A. In this set (see Fig. 11), the Joints J of a structure

are identified by the set of values,

Xy = {Xi’ Xy Xgr xJ} N (88)
in which V¥ takes all values from 1 to dJ (g being the number of Jjolnts of the
structure). The element -{Xj} of set x, denotes e particular joint J.

The far ends 1 of the members that meet at a joint J are identified by

the sub-set
x%j) = xl, xa, » xi, . ij} () (89)
J

in which ¢ tekes all values from 1 to I (I being the number of members that
intersect at Joint j). The element -gx%j)}' of set x¢(j) denotes a particular
i
end .
{(J)}
This system of coordinates already has been illustrated in.the preceding

section.

Coordinate Set B. Consider the sets of coordinates that are represented in

Figs. 12(a) and 12 (b). In each case, the set is composed of two sub-sets of
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curves; sub-set
Xy = {xl, C Xy, Xy X, o M} (90)

and sub-set
XB = {xl’ o xr: XSJ Ko ° S} (91)
in which @ is associated with m, and P with s. Note that the suffixes £, n
and r, s are dependent variables; that is, their values are given by
4=m-1; n=m+1 (92)

and
r=8-1; t =85 +1 (93)

In Fig. 12, the intersections of the curves lie on a surface in Euclidean space.
All points on this surface are represented by the set Xoﬁ of which Xy and

X

g

are sub-sets, ‘ or curves.

Iet us assume that the curves Xy and. XB coincide with the axes of the members
of & given structure and are the same as the coordinates of a space, VQ. In
this way, the position of each joint (or a.pplicatioh of load) can be specified.

(When necessary, non-existent members can be introduced to define positions of

joints. The non-existent members are purely imaginary and offer no resistance

o %)

define the coordinates of a joint, say the joint labeled J in Fig. 1l2. By

to loads.) Thus, a set of values,

means of index notation, the load at j is designated by

P
ms

and the displacement at j by
Pms
in which the subscripts indicate that the Jjoint lies at the intersection of

members (or coordinates) Xn and X In the same way, the load at the joint labeled
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a (seé Fig. 12) is designated by Py

Note that the valence (or order) of P . is ome. The two suffixes ms simply
identify suffix J in the term PJ for the coordinate system that is used. The same
note is made concerning any subsequent substitution of coordinates for J and i.
This follows because & change in coordinates does not change a tensor quantity.

In Fig. 12, Ja is a sub-member of X0 and Jb 1s & sub-member of X . Several
different index notations can be used to designate terms referred to a specific

end-section of a given sub-member. For example, the term p at end J of sub-member

ja can be designated by

2

and P at end j of sub-member jb by
(2s)
Pns

In this exsmple, the subscripts of a term designate the end-section to which the
term is referred, and the superscripts the opposite end of the sub-member.

In the same way, the stiffness metrix for end j of sub-member js is designated

by
(1ot )t
Kms

The distance vector measured from j to.a is denoted by

(o)

b
and the transformation matrix R that is associated with [rﬂ ms is denoted by

R

ms
Note that in each case one of the upper suffixes of & four index term is
identical in value and position to a lower suffix. The suffix that is common in
a term indicates the coordinate of the sub-member, end the member of which the
sub-member is a part. If desired, the suffix that is common in & term can be

eliminated from the upper {or lower) suffixes, provided that the remaining
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suffixes, are retained in value and position. The latter notation is not followed
herein. . Instead, all suffices of a term are retained.

For another exemple of a possible index notation, the term p at ends j of

a sub-group as shown in Fig. 13 can be designated by

Pxfli) (1=1,2 -1I)
and p at ends J by
PIEI;) (i =1, 2, - I)

In this example, two sets of coordinates are used; namely, sets A and B, of

which A is a .sab-set of B. Set B is used to define the positions of ends Jj

(see the subscripts), and set A is used to define the opposite ends of the members
that meet at j (see the superscripts). Note that the elements of set A are the
same as those of a rotating vector which sweeps, with its origin at j, through
points i. The latter example of combining coordinate sets is useful in describ-
ing the configurations of structures composed of ribs, lattices, or rosettes,

See Refs 20, 2L and 22 for numerous illustrations of such configurations. It

can be shown that many of these configurations are homeomorphic.

Coordinate Set C. Now consider the set tha&t is represented in Fig. 1.

The set is composed of three sub-sets of surfaces; namely;

xéﬁ?’)g {"1: . vz’ - M} (87) (o)

(7&)

XB = {X—l) ° 'xr: xS’ X’b’ ° S} (705) (95)
and

X(sﬁ). {xl’ C Xy K Ky V}(OB) (96)

in vhich ¢ is associated with m, £ with s, and ¥ with v. Note that the
suffizes 4, n; r, t; and u, w are dependent variables; that 1s, their values are
glven by

fam-1;n=m+1 (97)

r=8-1; tes + 1 (98)
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and
Us Vel vev+l (99)

Also, note that the intersection of any two surfaces (one element from each sub-
set) is a curve. The intersection of any tlr;ree surfaces (one element from each
sub-set) is a point.

Let us assume that the various curves colncide with the axes of the members
of a given structure, and that the polnts coincide with the jJjoints of the
structure. In this way, the position of each joint can be specified. Thus,

a set of values
{xm’ Xg xv}

define the coordinate of a joint, say the joint labeled j in Fig. 1.

In the seme way as in the preceding section, the load at ] is designated
sy’ (2) the displacement at end j of the sub-member labeled ja is designated

(mtv) , and (3) the force at end j of the sub-member labeled jb is designated
by plg?:w). (See Fig. 14).

Again, another index notation can be used to designate terms referred to a

specific end-gection of a given sub-member. For example, the terms p referred to

ends j of the sub-group shown in Fig. 14 can be designated by

Plg;z. (i =1, 2, o I)
and p at ends J by
(1)
Posv (1=1,2 - 1)

In this example, coordinate sets A and C are used to define the configuration
of a structure, and all parameters and variables of the structure. Again, A
is a sub-set of C.
Examples ’oi’ Groups and Set-Polnts
Several ways that terms can be grouped to describe the behavior of a structure

are given. They are illustrated by exsmples that do not represent camplete
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solutions to problems, but rather ways of grouping the various terms of a structure
into sub-groups. The sub-groupsare similar to partitions employed in tear methods(g?’)
of matrix analysis, and to line and block opera.tors(az) employed in relaxation
procedures.

The examples also illustrate the use of set-points to describe the configura-

tions of structures.

For these purposes, Egs. 73 and 80 are recalled.

P,j - Kgi)i PiJ) + KgJ)J Pj (73)
P, - Kgi)i P§J) + KgJ)J PJ+K§k)k P}({J) (80)

Exemple 1. Consider a structure which has e configuration that is of the same
homeomorphic class as shown in Fig. 12. The configuration can be described by
coordinate set B and sub-set A, that 1s, set B is used to identify a joint J,
and sub-set A is used to identify joints 1 that are connected to j. We now
inspect various sub-groups of the structure.

Sub-group le (see Fig. 15a): For this sub-group, Eq. 73 becomes

(1)1 _(mws) , (MS)ms
Poe ™ %ne' P10 * Ky Pms (200)
in which the summetion over i ils for vaelues of
i = mt, 48, mr, ns (101)

Eqg. 100 can be interpreted as a mapping operation in which the sub-group shown
in Fig. 152 is mapped intc a VN space (see Fig. 16a). The sub-group in the VN
space consists of a single set-member that lies between two set-points; namely,
set-points J and 1. The set-points are given by
3= {ms} (102)
im= {mt, bs, mr, ns} (103)

For the special case that p(i) = O; that 18, ends 1 are fixed, we obtain



Fos ™ K(ﬁ)ms Pus (104)
vhich yields
-1
b = [Kﬁ@m1 P (205)

For another special case; namely, that for which ends i = mt and 1 = mr
are fixed, we obtain

P = K(&B )35

(1S Jms
ms ms P.ﬁs * Kms

Pos * K($ Jns Pog (106)

which ig of the same form as Eg. 80. Eg. 106 can also be interpreted as a

mapping operation 1n which the special sub-group is mapped into a VN space

N
along a curve s equals a constant. The curve goes through three points; £s,

(see Fig. 16b). The sub-group in the V. space comsists of two members which lie

ms, and ns.

Sub-group 1b (see Pig. 15b). This sub-group consists of M joints that lie

along a defining line s equals a constant. For this group, Eq. 73 becomes

Fos = ch:i)m P(gi) * K(:)% Pas (107)
in which
s = a constant (108)
res-1l; tas+l ' (109)
i=randt (110)
and
o= {1, 2, --meM} (111)

The Greek letter ¢ is introduced for ease in distinguishing terms that are

assoclated with individusl Jjoints on the structure from those that are associated

with all joints O = {1, 2, +om - m} that lie along lines r, s, and t equal

constants.

By means of the range convention, Pas and Pog 2T€ written lun matrix form as

follows:

28
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way, Péx:s) in Eq. 114 is associated with point mr of member {(2‘:‘)} ; whereas,
p(i) is assoclated with all points O = {1, 2, «m, - M} which lie along the
line r equals a constant, (r = s - 1).

Agmin, the concept of & mapping operation or a geometrical transformation
-is used. Eg. 107 is a statement of Hooke's ILaw for a single set-member that
lies between two set-points in a VN space (see Fig. l6c). The two points are
Os and OGi.

Eq. 107 when written in the form of Eq. 80 becomes

e TRy S

The given sub-group now is mapped into two seb-members which lie along a curve in

(117)

a VN space (see Fig. 16d). The curve goes through three points; Or, Os, and O%.

Now consider s special case of sub-group lb. For this case, péﬁg ) and

p(gi) are null; that is, the ends that lle along the defining lines Or and C&

equal constants are fixed. Bg. 117 then becomes

which yields
-1
Pag = [Ké:”)o;l Po (119)

The forces and moments at all ends of the members can now be obtained by means
of Egs. 61 and 62.

The special case can be interpreted to yleld line-sets (or line opersators)
of stiffness Pactors and products of stiffness factors and carry-over factors for
use in relaxation procedures. The relaxetions then are performed for entire
sets of joints that lie along & line, or for sub-sets of joints that lie along
segments of a line.

Sub-group lc (see Fig. 12a) This sub-group consists of M x S joints that

lie along & surface, as on a shell (7 equals & constant). For this group, we

recall Eq. 117 for ready reference;
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2 @ K&c&')w P((xis) (as)as Pog * Késoct)atp ((xbos) (117)

The latter -equation is valid for all Joints O = {l, 2, - m, - Bd} which

lie along a curve s equals a constant. One such equation can be written for each

setb-point & that lies along a curve
{1, 2, + 8, o S} (120)

Conceptually, this is the same as mapping all members and joints of the structure
that is in a Fuclidean space onto a plane of a VN space. The submembers in the V
space lie along a curve thet is defined by the set of points, £ ={}, 2, « 8, <8 }

When all such equetions are gathered into a single equation, we obtain

(oB)og
Fop = %og " Pop (121)
in which
e = - e )
Fe=| fau| i Pog=|Pa (122
Po Poe
P
|8 | Pos |
and . _
AaB)og (ca)or (om)o2 L
K" = a Ifou. ) . . : : o 4€123)
(Gr)m' (06)0&3 " (ot)ot
) ) Kos Kos . .
: . : : x(%8-1)a 8-1) ,(as)as
@]

The latter eperatioﬁ is concéived as.the inteésection of'a curve with a éufface
in a VN space; the intersection being & set-point, af. Thus, all joints and
members of the structure are "contracted" into a single set-point in an
N-dimensional space (see Fig. 16e). Eq. 121 is a statement of proportionality
(Hooke's law) for the entire structure., It is of the same form as Eq. 45 for

a differential element that lies at a single point in a 3-dimensional space.



32
ILet us reexsmine Kgﬁ)oﬁ in Bg. 123. The latter term is a symmetric band
matrix and is associsted with all joints that lie along the surface defined by
the coordinate set 08. Note that the K-terms in the brackets of Eq. 123 are
associated with all joints that lie along a curve B equals & constant. Further,

inspect the s'th row of K\B2% and note that the terms, Kég“')“" and KL

K(os)ozs

oS is of the same

are of the same kind as those given by Eg. 115. Also,
kind as that given by Eq. 116. .. ‘i

In this example, no distinctions are made between the joints that lie at
the intersections of members a.ﬁd those that lie at the supports. If desired, the
joints that lie at the supports can be represented by the single set-point
¢ = {1, 2, -1 - I} and all other Jjoints of the structure by another set-point
OB. The members of the structure then are "mapped" onto a single set-mewher
that lies between points O and ¢ of a VN space. The resulting expression for
Hooke's Law is of the form given by Egq. 73.

For use in a relaxation procedure, this example can be interpreted to yield
surface-sets (or block-operators) of stiffness factors, and products of stiffness
factors and carry-over factors, for segmental areas of the entire "surface”.

In this procedure, the entire surface of the structure is segmented into sub-
surfaces which inmtersect along curves. ‘The curves of intersection are selected
members of the structure. Fixed-edge forces then are obtained for each seg-
mental area; also, blocks of stiffneses factors and products of stiffness factors
and carry-over factors. A sequence of relaxation then is performed for the
unbalanced sets of forces along the curves of intersection. In this way,
difficulties that at times arise with the sensitivity of computations or slowmess
of convergence can be minimized. It should be mentioned that the concepts of

set-points and mapping operations are helpful in defining this sequence of com-

putations.



Example 2. Consider a structure which has a configuration that is of the
same homeomorphic class as shown in Fig. 17 (the structure is 3-dimensional). The

configuration can be described by coordinate set C and sub-set A, that is; set ©
is used to identify a Jjoint j, and sub-set A is used to identify Jjoints i that are
connected to J.

This example can be inspected by means of sub-groups in the same way as
Example 1. A summery only is given of the resulting expressions for this
example .,

Sub-groups 2a,8b, and 2c of thils example (see Fig. 18) are of the same kind
as those of the preceding example, except that more terms now appear in the

resulting expressions. For example, Eq. 73 for sub-group 2a now becomes

Posv = Kxg;x)ri P j(.mSV) + KéSMEV)msv Prsv (124)
in which the summation over i is for va,lues- of
i = {;st, nsv, mrv, mtv, msu, msw} (125)
Als®e, Eg. T3 for sub-group 2b now becomes |
E Fosv = K(g‘g'\)rm P C(k:iQSV) * K(gasof;v)asv Posy (126)
in which
s =aconstant; r =58 - 1; t = s + 1 (127)
vesaconsgent; u=v - 1; w=a v+ 1 (128)
i= {rv, tv, su, 'sw} (129)
and
G = {1, 2, - m, ~M} (130)
For sub-group 2c, we obtain
Popy - Kégi)aﬁi ‘Pé;’?") . K(()gsv)aﬁv Pogr (131)



in which H
vaagconstant; us ve-l, ws v+ 1
O = {l, 2, -m-M}
1=u, w

and

B = {l) 2, LA -] e S}
Finally, for the sub-group that consists of all jolnts of the

structure (see Fig. 17), we obtain

Fopy = (ng)@ Papy
in which
a={1, 2 -m, . u}
B=112 -5 .8}
and

7=-{l, 2, « v, -V}

By meens of the range and sumation comventions, the term 0By

K( oBy )Oﬁ7 becomes

wa’r)dP: ;(d{B$)ot{:)l K(a(n)mpz ’ ‘ ‘ ‘
oy ) o3
' ) @Pupu EAVAPY  (ABWpW
Kapv R Kn((év )

oY

Again, the same concepts of set-points, mapping operations, and block

BN Py

(132)
(133)
(134)

(135)

(136)

(137)
(138)

(139)

operators can be employed. It merely is mentioned that for each sub=-group 2a,

@b, and 2c the members and joints of the structure are mapped into a single

set-member that lies between two set-polnts in an N-dimensional space.

the group that consists of all members and joints, the structure is mapped

(or comtracted) into a single set-point.

3k

(140)
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If desired, the form of Eq. 80 can be used to group the various relationships
of the structure. In this case, each successive grouping of members and joints
can be interpreted as a mapping operation in which the members and Joints of the
sub-group are mapped into two set-members that lie along a curve. The curve for
each sub-group goes through three set-points.

The preceding exemples are for particular configurations of structures.
Other'configurations, such as those that have more then four or six members
meeting at a joint, can be considered.

Concluding Remarks

For practical purposes, the abstract concepts of set-points and gedmetrical

tfansformaxions are useful in structural analysis.

It has been shown that the symbolic statements of

(a) statics; EB - R§ pij) = 0 (34)
(b) continuity of geometry; Pj = B p§3)+ §§ Qpc (26)
and (c), Hooke's Law; Pﬁ = Kgi)j pgi) + Kﬁi)i p(g) (73)

for a single member which lies between two points, are of the same forms,
respectively, as those for (1) an entire set of members which are connected

to Nenumber of joints in a 3-dimensional space, and (2) a single set-member which
lies between two set-points in an N-dimensionsal space. TFurther, the statement of

broportionality
a, = ax(® p (45)

c
between forces and deformations of a differentisl element which lies at a single

point in a 3-dimensional space is of the ssme form as

py e K g, (1)

for an entire structure vhich lles at & single set-point in an N-dimensional

space. Thus, 1t is clearer conceptually to consider the fundamental relationships
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