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Thermodynamics of Concentrated Electrolyle Solutions

Yunda Liu and John M. Prausnitz

Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and _
Chemical Engineering Department
University of California
Berkeley, California 94720

ABSTRACT

A new equation is derived for the activity coefficient of an
electrolyte in a liquid solvent (such as water) as a function of elec-
trolyte concentration. This equation contains contributions from
long-range electrostatic forces and from short-range attractive
forces; it holds from high dilution to the solubility limit. The new
equation is based upon extended Debye-Elickel theory for long-
range eflects and upon the local-composition concept for short-
range eflects. For a single-electrolyte solution, the new eguation
contains only one ‘adjustable energy parameter and three other
parameters that are ion-specific, not electrolyte-specific. There-
fore, extension to multicomponent electrolyte solutions follows
without additional assumptions. lon-specific parameters are
‘reported for H*, K*, Li*, Br~ and Cl~ ions. Calculated and experi-
mental activity coefficients are in excellent agreement for agqueous
solutions of HBr, HCl, KBr, KCl,.LiBr and LiCl

This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the
U.S. Department of Energy under Contract No. DE-AC03-76SF00098.



1. INTRODUCTION

Research leading to an improved absorption heat pump requires a suitable
working fluid, which often is a multicomponent, concentrated electrolyte sys-
tem(1). Recent advances in process-sirnulation technology can now provide
computer-aided heal-pump simulation and optimization. But simulation
requires suitable models for representing thermodynamic and transport pro-

perties of working fluids. For maximum applicability, these models should

- 1.  predict the properties of mixed-electrolyte systems using only experimen-

tal information for single-electrolyte systems.

2. cover the entire concentration range, i.e., infinite dilution to the solubility
limits.

3. cover the temperature range 25 ~ 180°C.

4. require only reasonable afn.ounts of computer time.

In the last few decades, much progress has been achieved in representing
the thermodynamic properties of electrolyte systems for engineering applica-

tion. Pitzer(2), Maurer{3) and Renon(4,5) give useful reviews.

There are two fundamentally different methods for calculating vapor-liguid
equilibria and related thermodynamic properties(6,7). One is based on activity
coefficients for the liquid p_hase and fugacity coefficients for the vapor phase,
and the other is based on fugacity coeflicients for both phases obtained from an
equation of state. In spite of significant advantages provided by an equation of
state, for electrolyte systems, activity-coeflicient models have attracted more
attention because it is difficult to establish an equation of state for such sys-
tems(7). |

In developing activity-coefficient models for electrolyte systems, the most
popular and successful practice is to combine the eiectrost_.atic theory of

Debye-Huckel with modifications of well-known methods for non-electrolyte
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systems(3). We also follow this practice here but with .some important
modifications beyond those used by others.

In 1973, Pitzer(B,9) proposed a successful model based on combination of
an extended Debye-Hlicke! form (which accounts for long-range forces) with a
virial expansion (which accounts for short-range forces). Later, Cruz and
Renon(10), Chen et al.(11) and Christensen et al.{12) replaced the virial expan-

sion' with various flexible local-composition models.

In the Cruz-and-Renon model, the excess Gibbs energy is assumed to be the
sum of a local-composition term{(NRTl-equation), a Debye-Htickel term and a
Born contribution arising from the composition dependence of dielectric con-
stant of the mixture.

In the Chen model, the excess Gibbs energy is the sum of a NRTL-term and
.a term of the Debye-Hlickel form. In Chen's ‘model, two:assuvrnptions are made:
"local electroneutrality” and "like-ion repulsion’'.

Although both the Cruz-Renon model and - the Chen model use the NRTL
-equation to account for short-range forces, there is an important difference
between them. Cruz and Renon suggest that ionic species are completely sol-
vated by solvent molecules. Chen et al. note that Cruz and Renon’s suggestion
becomes unrealistic when applied to high concentrations, since the number of
solvent molecules is insuflicient to solvate ions completely. In the Chen model,
all ions are, effectively, completely surrounded by solvent molecules in the very
~dilute range but they are only partially surrounded by solvent molecules i_n the

high concentration range. In this work, we adopt the viewpoint-of Chen.

Christensen’s model is similar to those of Cruz-Renon and Chen. However,

Christensen use a UNIQUAC equation instead of a NRTL equation for short-range

forces.
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Of these models, only that by Chen is claimed to be applicable to the entire
concentration range(13). But, when compared with experiment, Chen's model is
not successful for a common working fluid, aqueous LiBr, whose activity
coefficient rises to 486 at 20 molality, (If converted to a mole fraction basis, the
activity coefficient rises to B38).

In this work we develop a new activity-coefficient model similar to that of
Chen ‘but based on a more reasonable combination of Debye-Hlickel theory and
the local-composition concept. Promising applicability of the new model is
shown by application to the activity coefficients of some concentrated electro-
lyte systems. We expect that this model may be useful also for correlating
excess enthalpies, heat capacities, solubilities and viscosities of electrolyte sys-
tems; All of these properties are important for absorption-heat-pump simula-

tions.

2. INTERMOLECULAR FORCES
Thermodynarnic properties of a mixture depend on intermolecular and

interionic forces amongst all species of the mixture(6,11). Electrolyte systems

contain both uncharged molecular species and charged ionic species; pertinent

intermolecular forces are

1. electrostatic forces between ions.

2. electrostatic forces between permanent dipoles, quadrupoles and higher
multipoles.

3. induction forces between & permanent dipole {or multipole) and an induced
dipole.

4. nonelectrostatic forces of attraction (dispersion forces) and repulsion
among molecules and ions.

5. specific (cherr;ical) forces leading to association and complex formation,
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i.e., to the formation of "chemical” bonds such'as hydrogen bonds.

"Electrostatic forces between ions are inversely proportional to the square
of the separation distance. All other forces depend on higher powers of the
reciprocal distance. Therefore, the forces between ions have a much greater
interaction range than all others. The thermodynamic properties of electrolyte
systems can be considered as the surn of two parts, one related to long-range
forces between ions and the other to short-range forces between all species. 1t
is the long-range nature of the electrostatic forces between ions that has no
counterpart in nonelectrolyte systems and that is primarily responsible for the

difficulty in constructing a model for concentrated electrolyte systems.

While many authors have considered the thermodynamic properties of
electrolyte solutions to be the sum of two contributions, one long-range and the
other short-range, most of these authors have considered these contributions
independently, ignoring how one contribution aflects the other. In this work, we
_give attention to the eflects of short-range forces on the long-range contribu-

tion, and vice versa.

3. THERMODYNAMIC BACKGROUND
We seek an expression for the excess Gibbs energy, G. For simplicity, we
consider here aqueous single-electrolyte systems. Multi-solvent and multi-

electrolyte systems can be handled in the same way.

Throughout this paper, the concentration scale. is the true mole fraction

defined as

n
«Tb:;i" (3-1)

where z;, is the true mole fraction of species k; n; is the number of moles of

species i per unit volume; n; is the total mole number of all species per unit

volume, i.e., the true mole density of the electrolyte solution:
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'LT:@"-;'.

Here 2 surns all ionic and molecular species.
{

Equation (3;1) is based on the assumption that all electrolytes are com-
pletely dissociated.
Consider a molecule CA which dissociates into cation C and anion A:
CA = C**+A~
More generally, the molecule has the formula Co Au, Where w; and w, are
stoichiometric coefficients. The dissociation equation now is rewritten

CoAu,m= wcC o +wgA™

where v, and v, are the algebraic valences of cations and anions, respectively.
In this case

V=, and yy=-o,

Dissociation is described by the equation of-equilibrium
Hog =We e T Wg Mg (3-2)
We relate the chemical potential of an ion to its true mole fraction through

activity coeflicient ¥

M =u2+RTIny z, - (3-3a)
Mg S+ RTIny, z, (3-3b)

where 9, and 7y, are the individual ionic activity coefficients of cations and
anions, respectively; Superscript o denotes the standard state which, for a

given system, depends only on temperature;

"To obtain-an expression for ., we write

’_“gc Se #'g - Qa#g (3"4-')
and we define
1
+
Yera=lrleyts) 0 (3-5)

and



‘ o, +
&g
:E*'cc":' P:’.‘xfc] ¢ (3"6)
¥We then obtain
Meg =pile + (Qc g )RTln?'t zeT 3 ca (3"70)

For a real, agueous, single-electrolyte system, the Gibbs energy, G(rpa). is
given by

Creat Yo Ty by ¥ g + g g

SNy by Mg bica (3-8)
-where ng, is the number of moles of.electrolyte ca in the liquid phase.

The chemical potential of water is related to its true mole fraction through

its activity coefficient by

foy EUSL+ RTIN Y, 2., (3-3c)

For an ideal, agueous, single-electrolyte system, the Gibbs energy, G (ideal)

is given by
Cligaar) =Ty A, +7ec UE +7g uf ,
L TAEE S T\ 8 (3:9)
“‘where
f =,,0 -
@t =pl + RNinz,, (3-10a)
=yl + Rinz, (3-10b)
pi=pud+ RNnzx, (3-10c)
and
b =p2a+ (e +06 )RTINZ,, o (3-7b)

Comparing FEquation (3-9)-with "Equation (3-8), we 'see that G(gem) is
equivalent to G(.q) when all activity coefficients in Equation (3-B) become unity.
For water, we choose the pure liquid as the reference state.where yu,,.= uS,.

It follows from Eq. (3-3c) that

Y » 1 &8s 2, » 1. - (3-11a)

However, for the reference state of an electrolyte, the pure solufe is not a
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practical choice since it is frequently a solid or liguid with properties very
different from those of agueous solutions. We here follow common conven-
tion(21,8) where the reference state for the cation is a hypothetical ideal dilute
solution of unit concentration (z, = 1); we follow a similar convention for the
anion. This convention normalizes activity coeflicients ¥,.,7, 8nd 7, such that

they all approach unity as the mole fraction of electrolyte goes to zero:

el 7,+1and 9, »1 as z.-0; 2,0 and z, ., 0. (3-11b)
As shown by Equations (3-11a) and (3-11b), the activity coefficients of

water and solute are not normalized in the same way. Equations (3-11a) and
(3-11b) give the unsymmetric convention. We here use an asterisk * to denote
the normalization given in Equation (3-11b). With this notation, Equation (3-

11b) becomes

Ye+1l; ye-+1 and ¥ o+1 us z.-+0; 2,40 and z, ., 0. (3-11c)
The unsymmetric excess Gibbs energy, G¥’, is defined by
GE'=G (.raal) -’G(.id«al)

=n,, RNny,, +n. RTlny.+n, RNiny;
=, RTIn Yy, +neg RTINY S o0 (3-12)

4. NEW MODEL

Many classical models, {e.g. Margules, Vah Laar, Redlich-Kister, Scatchard-
Hildebrand, Flory-Huggins), have been used for nonelectrolyte systems whose
molecules experience only short-range forces. For such systems, better results
are often obtained upon using the local-composition concept of Wilson(14)
which has led to the development of several flexible local-composition models
which are so popular today(15,6). For engineering purposes, such models as
Wilson(14), NRTL({18) and UNIQUAC(17) often provide a significant improvement
over previous models. But if a local-composition model is used to account for

the contribution from long-range electrostatic forces, we expect that the long-
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range electrostatic forces influence.the local composition. In contrast to previ-
ous models, our model takes into account the effect of lange-range electrostatic

forces on local composition.

Let us.arbitrarily choose an ion in the solution which, for simplicity, con-
tains only a single electrolyte. The local composition, in the immediate vicinity
of that central ion, is determined by the overall composition of the mixture, by
the sizes of the species in the solution and by the energies of interaction
between the central ion and all species (ions or uncharged molecules) in the
first coordination shell. As shown in Figure 1, at the center, there is a cation G,
surrounded by near neighbors that form a first coordination shell. The dis-
tance between the center of cation C; and the outer boundary of the first coor-
dination shell is given by 7. The ions, such as {; and 4;, are located outside the
first coordination-shell where cation C; is the center, i.e., their distances from
cation ( are larger than 7. The interaction energy between central cation G
and anion 4; in the first coordination shell is given by ¢.4, which includes contri-

butions from both dispersion and electrostatic forces.

Since g, includes an electrostatic contribution, the unsymmetric excess
Gibbs energy, GE°, is given by the sum of two contributions

GE =G5+ G (4-1)

where Gf7 is the contribution from lohg-range electrostatic interaction forces

between each central ion and all ions putside the first coordination shell; GE is

the contribution from both the short-range interaction:forces of-all kinds-and

the long-range electrostatic forces between each.central ion-and all ions inside

the first coordination shell.

For Gf;. we use a modified Debye-Hlickel expression. For GE; we use a
local-composition expression similar to those proposed by Renon and

Prausnitz(19) and Chen(11). Both expressions are based on the assumption of
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complete dissociation of electrolytes. Through the usual thermodynamic rela-
tions, we obtain

Iny; ca=In7ce 1R+ INYca SR (4-2)
where 7; ¢, is the unsymmetric mean activity coefficient of the electrolyte, (ca),
on a true mole fraction scale.

Subscript (LR) denotes only the contribution from the long-range electros-
tatic forces which exist between each central ion and all ions putside the first
coordination shell. Subscript (SR) denotes the contribution from both the
short-range interaction forces of all kinds and the long-range electrostatic

forces which exist between each central ion and all ions inside the first coordi-

nation shell.

For simplicity, the following expression is developed for a single aqueous

electrolyte. The expression can be extended to mixed-electrolyte systems.

5. LONG-RANGE INTERACTION CONTRIBUTION

The long-range interaction contribution is represented by a modified
Debye-Huckel expression. The derivation of the modified Debye-Htickel expres-
sion is based on the Poisson equation of electrostatic theory, the Boltzmann

distribution law and the local-composition concept.

Although the individual ionic activity coefficient cannot be measured
separately, if complete dissociation of electrolytes is assumed, it is theoretically
preferable to derive first the Debye-Hlickel expression for the individual ionic
activity coefficient, and then to obtain the mean activity coefficient by Equation
(3-5)

We consider first the non-ideal behavior of the cation. We consider two con-
tributions: first, the long-range contribution from electrostatic interaction with
ions outside the first coordination shell; second, the contribution from electros-

tatic interaction with ions jingide the first coordination shell plus the
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contribution from interaction with all species in the first coordination shell due

to all kinds of short-range forces. Then we may write the chemical potential of

one mole of cations, u., as

e =p+RTInZ, + RTIny, 1o+ ETIny, sp (5-1)

where z,; is the true mole fraction of cations.

From Appendix A, we obtain

v.e? VaZaZc ]exp[rc('r'-'r, )]
Inye 1r= 2Dr; le[ Zo+Zy Gucas |  (L+kT]) Ve (5-2)

where 7, ;» is the individual activity coefficient of the cation arising from the
long-range contribution; k is the Boltzmann constant; e is the protonic charge;
v, and v, are the algebraic valevnces of the cation and the anion, respectively; D
is the dielectric constant; k is defined by (A-10) or (A-16); 2, is the coordination
number of the cation; r, is the'radius of the cation;»] is the outer radius of the
first coordination shell where the cation is-at the-center; z; and z,, are the true

mole fractions of anions and water, respectively; G, o, is defined by (B-7).

‘Similarly for anions, we obtain

[ |
o _ Vge? | VeZgZg 1 exp[x(ry—r,)] .
In7a..2= ZDerTl[V‘ Zo+Zy Guaca | (L+KT) ”“1 (5-3)

From (3-5), (5-2) and (5-3), we have

ez Ioc Ve l[[ VaZg 2, ] exP[’C(TZ:-Tc )] J
Ve — Ve

Inyc, 1p= 2Dk T{tg+wg) l r, #Zg +Zy Gucrac (1+xr])
Lglg l[ VeTcZg ] exple(r]—r, )] ! 5
* Ta l ® T +Ty Guo.ca J (1+xr]) VBJ (5-4)

Equation (5-4) is a modified Debye-Huckel Equation which differs
significantly from the original Debye-Htickel equation. Equation (5-4) gives only

the contribution due to electrostatic forces between each central ion and the
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ions outside its first coordination shell, while the original equation gives the
contribution due to electrostatic forces between each central ion and all other

ions in the solution.

6. SHORT-RANGE INTERACTION CONTRIBUTION

The local-composition concept is used to account for the contribution due
to short-range interaction forces of .ell kinds, including the electrostatic
interaction forces between each central ion and all ions inside the first coordi-
nation shell.

Our local-composition expfession is superficially similar to that of Chen et
.al.(ll). because it is also based on the NRTL model. But the present work

differs from Chen’'s work in three ways:

First, our local-composition expression is based on a previous derivation of

the three-parameter Wilson equation(19). We apply the local-composition con-
cept to excess enthalpy, HE. (instead of excess Gibbs energy, GEp); we then

integrate the Gibbs-Helmhollz equation

8(GEp/ T)
o/ 1) iR
to obtain GE;. We use the boundary condition G&=0 when 1/ T'=0.

(6-1)

Second, we abandon the second assumption of the Chen model wherein the
distribution of cations and anions around a central solvent molecule is such
that the net local ionic charge is zero. While this assumption may hold for the
concentration range near the fused pure electrolyte, we see no reason to
assume “local electroneutrality” for the dilute and intermediate concentration
range. |

Third, as suggested by Guggenheim's gquasi-chemical lattice theory, we use
& classical definition of the local composition; in our work \the definition of the

local composition is
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”:ij-, _ x; exp(—t.‘j/ET)

: 6-2
.'zkj kaexp(-skJ/kT) ( )

where z;; is the local mole fraction of i in the first coordination shell surround-
ing species j; z; is the true mole fraction of i; g; is the characteristic interac-
tion energy between one nearest-neighbor i-j pair?.

Equation (8-2) is similar to that used by Chen except that Chen introduces
into the argument of the exponential an arbitrary nonrandomness factor.

Both the Debye-Huckel theory and the local-composition concept use the
‘Boltzmann distribution law. Since the Debye-Hiickel theory is based on.a
McMillan-Mayer system while local-composition models are based on a Lewis-
Randall system, there is some inconsistency using (4-2) for multicomponent
electrolyte systems; fortunately, this inconsistency is usually not significant
(22).

From Appendix B, we obtain

[

o . 1 Zy Gew ww
t:_.- _ " L4 N - z PR +
Inye.sh e Fw [zw +Z; Gow aw+Za Gaw ww  © Geww s 1]
o 10 Fa T Curae) | ZaZs Ze%o | (6-3)
¢ (3c +z,,) Guc.ee ZetZwluwaea ZTetZu J
1 [ z, G,
ln ] -2 w - ew ww T - +
Yo SR 2 lzw Tu+Z Gow ww 2 Gawaw Gow ww*1
Z: X, o ZeX A(‘-zxc. +Zy, ,Gwa.caﬂ (6-4)

+ : +2
iZg Ty Guc e Tg+Tu ¢ (zc +Zy ).qu £6 J

From {4-1), we obtain

L rmw (Qc Gew ww + % Gcw.ww)
l bt l Zy +Ze Gow ww +Zo Gow ww

Inyc, sp=— 2{eg +0g)

+z [w In (za +z, Gwc.ac) N Lg Ty WgZc ]
c[ © T (Zg +2y, ) Guc ac " Zg+ Ty, G ac  ZgtTy J

R Energy paremeter gij is the product of £¢; and Avogadro's number.

1

+(1 =2y, e +0g )= Gep ww ~%a Caw ww | *
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[ (z . +z, G ) W T, oz |
+ 1 ¢ T w Twacal | c<a c*a | -5
%a |90 (xc +zw)qu.ca Ze+Zy Guaca ZTetTy J ( )

Finally, from (4-2), we have the complete expression for the mean ionic
activity coefficient of electrolytes in the single aqueous electrolyte systems.
Further, with the Gibbs-Duhem egquation, we can obtain the activity coefficient
or osmotic coefficient of water in the solution(6).

The sum of Equations (5-4) and (6-5) gives Iny; ... To use these equations
we require the following parameters:

1. radii r, and r, for the cation and anion, respectively. Anionic radius rq
comes from crystal data. In this work, we consider only two anions; for (1~
the radius is 0.181 and for Br~ it is 0.196 nanometers. From fitting of
binary data, we obtain five sets of cationic radii, shown in Table 3. Each set

corresponds to a series of fixed coordination numbers, as shown in Table 1.

2. energy parameters characterizing the interaction l?etween two species.
For example, g, refers to the interaction between cation (C) and water
(W). However, these parameters always appear as differences according to

Gji si=exp[—(9;:~gr: )/ RT)

where subscript (i) denotes the species at the center surrounded by a
coordination shell containing species j and/or k (If i stands for water, then
species i may also be in the first coordination shell.}.

3. the dielectric constant as discussed in Section 7.
To illustrate, consider an aqueous solution of LiCl, we need radii for [i* and

Cl~. The dielectric constant is calculated from readily available data as shown

in Section 7. Further, we require gy, 9w @nd go,,- The first of these must be
obtained from experimental data for LiCl solution but the others could be

obtained from experimental data for other salts where lithium is the cation or

where chloride is the anion.
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‘7. THE DIELECTRIC CONSTANT

Almost 40 years ago, Hasted et al.(23) observed that for agueous systerns,
dielectric constant D is a linear fuction of molarity to 1~2 m, depending on the
electrolyte. However, such linearity cannot be used here becausc we attempt to

cover a much large range of concentration.

A highly concentrated aqueous electrolyte may be considered as a molten
-electrolyte containing a small amount of water. In this condition, the structure
of water does not resemble its normal'structure; therefore,.in a concentrated
electrolyte solution, water does not bave its usual high dielectric constant but a
significantly smaealler value, probably not much diflerent from that of the
ions(24).

Although there has been ‘extensive experimental study of the concentra-
tion-dependence of the dielectric constant of electrolyte solutions, few-attempts
have been made to take it into account when modeling deviations from ideality

. for .electrolyte solutions. Triolo et al.(25) tried to improve the primitive model
~within the framework of the Mean Spherical Approximation{MSA), using eithéna
two-pararneter, density-dependent dielectric constant or an adjustable (but not
density-dependent) dielectric constant up to 2 m. But the calculated values of
the dielectric constant are not realistic, since they are greater than that for
pure water. In the concentration range to 8 m, an extension of Giese's equa-
tion(26)-was used 'by.Ball -et~al.{27) for the -MSA rmodel.of electrolyte:solu-
tions(48). In the Cruz-and-Renon model{10), Cruz and Renon chose Pottel's
expression(49) to estimate the variation of the dielectric constant with concen-
tration.

Based on the assumption that ions are dielectric holes, we assume that at

high electrolyte concentrations, water becomes steam-like. Therefore, we use

here an expression for dielectric constant D based on an equation of Uematsu
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and Franck(28) that represents the experimental dielectric constant of gaseous
and liquid water as a function of temperature and density. In this work, we
change density dependence to apparent-mole-fraction dependence. When cal-
culating the apparent mole fraction, an electrolyte is considered as a molecular
component; in other words, for calculating the dielectric constant, the electro-

iyte is considered to be undissociated.

The calculated dielectric constant is a function of temperature and elec-
trolyte concentration but it is the same for all electrolytes
D=1+(Bl/ Tr)(l"'zcu)"'(-ge/ Tr+BS+BiTr)(1-zca)2

+(Bs/ T, +Bg T, + B, T2 (1=2.o Y34(Bg/ TR+ By/ T, + Byp)(1 =24 )* (7-1)
where z, is the apparent mole fraction of electrolyte ca; 7, = T / 298.15 with T

in Kelvins; Table 6 gives constants B as reported by Uematsu and Franck(28).

Figure 8 shows the dielectric constant as a function of electrolyte concen-

tration at 25 and 50°C.

8. IONIC RADI

In the Debye-Htickel expressions, it is usually assumed that all the ions
bhave the same size. This assumption is reasonable only when electrolyte solu-
tions are dilute, where the distances between ions are so large that the
influence of ionic size can be neglected. For moderate and high concentrations,
bowever, the effect of ionic size is significant. There is a large amount of evi-
dence indicating that, for models covering a high concentration range, results

are sensitive to the values chosen for ionic radii(35,36).

It has been customary to use crystal ionic radii instead of ionic radii in
solution. Several sets of crystal ionic radii are available; the best known and
most widely used are those due to Goldschmidt(37), Pauling(38,39), Gourary
end Adrian{40) and Waddington(41). In the present model, for anions, we

choose Goldschmidt's radii as recommended by the Handbook of Chemistry and
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‘Physics{59th-ed.). For cations, we choose radii'fit from activity-coefficient:data.
However, to obtain radii from activity-coefficient data, it is necessary to assign

values to the coordination numbers.

Table 3 shows sorﬁe results of the fit. We can see that, for potassium ion,
the values of ry are not realistic. One reason, we speculate, is that there is
some distortion in the simultaneous fit because of the presence of hydrogen
ion, e bare proton. Based on complete dissociation, the fit .is done as though
the hydrogen ion existed by itself as the-other cations do. But-a,bare proton
probably does not exist as an entity in agueous solution. If we fit XBr or KCl

separately, we can obtain much more realistic result for 4.

9. DATA CORRELATION AND DISCUSSION

To obtain.binary parameters and cationic radii, we use experimental mean
ionic activity coefficient data for six agueous single-electrolyte systems (HBr,
HCl, KBr, XCl, LiBr, LiCl) (42). We use these data to obtain 11 energy parameters
and 3 cationic radii; they are obtained by least-square analysis on deviations

between calculated and experimental quantities(42):

57=¥(ln7§’2§1.€—1n72:%§‘3¢)"’ (8-1)
The choice of these six aqueous electrolytes follows from several considera-
tions. First, the activity coefficient curves for LiBr and LiCl are different in type
:from those for KBr and KCl as shown in-Figures-4:and.5. Second; there is'a large
‘difference in the: maximumm molalities for these two ty’pes;ofdaqueouStelectro-
lytes. Therefore, fitting data for these four systems to the present model pro-
vides a stringent test. Third, HBr and HCl were chosen to investigate the
behavior of A* in the present model.
The classical Debye-Huckel expression uses the mass density of water

instead of that for the solution. In the high-concentration range, this approxi-

mation may cause large deviations. Toinvestigate this éffect, we initially chose
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Clarke's density model(29) with parameters determined from three sources of
experimental density data(30,31,32) to calculate the densities of these six
agqueous electrolytes. We found, however, that the true mole density, ny, does
not vary significantly among the six electrolytes or with electrolyte concentra-
tions. If we fix the value of the true mole density as 60 moles per liter, the devi-
ations are within £5 % for concentration to 20 m. It is therefore not surprising
that the fit of activity coefficients using the fixed molar density value is almost
as good as that using measured values of the true mole density(see case[5] in
Table 1.).

For the system Hp,0-LiBr at 25 C, Figure 3 shows the modified Debye-
Hiickel contribution and the local-composition contribution to the mean ionic
activity coefficient. The modified Debye-Huckel contribution is always impor-
tant, espeéially at high electrolyte concentrations.

To obtain energy parameters from experimantal activity-coefficient data, it
is necessary to specify coordination numbers.

Table 1 giveS"ﬁve sets of coordination numbers for water and the following
ions: h;',rdrogen, potassium, lithium, bromide and chloride. The last column in
Table 1 gives the standard deviation in fitting experimental activity coefficients
¥:.cc to the new equation. For all five sets, the goodness-of-fit is about the same
but this conclusion may change when we consider large ions.

The size constant A is used to determine the radius of the coordination
shell shown in Figure 1: 77=7_+Ar,. (Similarly, rl=7, +\r;.)

Table 2 gives energy parameters g; / F at 25 C upon setting gy, =0.

Table 4 gives a comparison between the present model and that of Chen.
Unfortunately, the comparison is not as strict as we might wish because results

from the Chen model are obtained from his paper(11), which uses data sources

different from ours. Nevertheless, for most systems studied here, the present
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model gives a much better representation of the experimental data.

9.1. CHARACTERISTICS OF PARAMETERS

Whereas the parameters in the Chen model are salt-specific, those in the
present model are ion-specific. There is only one adjustable parameter, g.,. for
each electroiyte; other parameters like gey. Gouw. 7c 8nd 7,, are common to all
.electrolyte systems containing the same cation and/or the same anion (For-rg,

~we use literature values.).

In the present model, all interaction-energy parameters appear as
differences, i.e., g;;—gy. therefore, we can arbitrarily fix one interaction energy
parameter; we choose g,,,=0. All other interaction-energy parameters are

relative values.

In view of the serni-empirical nature of our model, we cannot assign definite
physical significance to the parameters. We may, however, notice some regular-
ities. The present model suggests that the magnitudes of the attraction ener-
gies between various ‘pairs are in the order: gg,, <gcs <gcw (Table 2). Also, from

‘Table 2, we see some reasonable attraction-energy segquences: gxp <Ggrip-
Ixa<9ua and g <Frw-

Table 5 indicates that for accurate results, the interaction energy parame-

ters must be considered to be temperature-dependent if the present model is

-used over-a wide temperature range.

“9.2. JON ASSOCIATION

Electrolytes may dissociate partially or completely in solution. With rising
temperature, the dielectric constant decreases and association increases. With
increasing electirolyte concentration, association rises due to both a mass-

action effect and lower dielectric constant.
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Molecular-thermodynamic models for electrolyte systems can be divided
into two lirniting categories: one is based on the assumption of complete dissoci-
ation of electrolytes and the other on chemical equilibria to describe the extent
of ion association(2). Although the chemical-association models may be
regarded as more realistic and flexible(33), they have serious disadvan-

tages(34), especially upon extension to mixed-electrolyte systems.

The complete-ionization assumption has been used consistently in previous
work based on the local-composition concept. It has therefore become cus-
tomary to ascribe inadequacies of local-composition correlations to ion associ-
ation. However, we believe that the local-composition models can generally
represent the contribution due to the short-range forces whether there is some

ion association or not.

For nonelectrolyte systems, the UNIFAC model(44), based on the locgal-
composition concept and the group contribution method, often provides a good
approximation. If a molecule can be divided int.o groups, we can similarly divide
the ion pair into ionic *“groups” and then use the "groups" in our expression
representing-the contribution from the short-range forces. Therefore, ion asso-
ciation mainly affects the expression representing the contribution from the
long-range forces. In the present model], altﬁough assuming complete dissocia-
tion, the modified Debye-Hlickel expression accounts indirectly for ion associa-
tion, as indicated in Appendix A.

In effect, the present model makes a detour around the problem of ion
association. The Cruz-and-Renon model(10) uses a known dissociation constant
and six parameters to describe the vapor-liquid equilibrium of HCI-H,0 system
at 25 C for acici composition from infinite dilution to 18 m. By contrast, as
shown in Figure 2, the present model uses only one specific adjustable parame-

ter in addition to two common parameters and one effective cationic radius to
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“represent the mean ionic activity coefficient' 6f the HCI-H,0 system at.25°C for
concentrations from infinite dilution to 16 m. For this system, the specific

parameter is gyq and the two common parameters are gy, and gq,,-

We cannot claim that the present model has overcome the problem of ion
association. But it is probably more flexible than previous strong-electrolyte

models for describing electrolyte systems with significant association.

10. CONCLUSION

A new molecular-thermodynamic model has been proposed for agueous
electrolyte solutions. It goes beyond previoﬁs models because it is based on a
theoretically improved combination of Debye-Htickel theory and the local-
composition concept and because it is designed to represent the properties of a
wide variety of electrolyte systems over the entire range of electrolyte concen-
tration. As shown here, preliminary application of the new model indicates

encouraging results.
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NOTATION

B = constants in Equation {7-1)
D = dieclectric constant

G = Gibbs energy

Gjiex = quantity defined by (B-7)

H = enthalpy

k = Boltzmann constant

N, = Avogadro’'s number

R = gas constant

T = temperature(K)

e = protonic charge

gji = interactlion energy parameler of j-i pairs

m = molality

n; = moles of species i per unit volume (excepl in Appendix A where n; dexiot,es
the number of species i per unit volume)

r = the distance from the ion which is the origin of the coordinates

r.(r) = radius of cations {or anions) (A)

r" = outer radius of the first coordination shell

z; = true mole fraction of species i based on all species (molecular and ionic)

z = Jocal niole fraction of species j where speéies iis the center

2 = coordination number

Greek Letters

Yy = aclivity coefficient on true mole-fraction scale

Bji = interaction energy for one j}-i pair

© = gquantity defined by (A-10)

A =  sgize constant in (A-4)
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7 = chemical potenlial of species k

Ve Vg = algebraic valences-of calions and anions'respeclively

Pc = charge densily at distance 7 from the cation which is the
origin of the coordinates

(] = slandard devialion

¥ =  the eleclric potential

(AN AR = nurobers of cations and anions, respectively, produced by
the complele dissociation of one electrolyle molecule

Superscripts

B = excess properties

i = ideal solution

° = stlandard state

? = unsymmelric convention

o = infinite dilution

.eale. = calculated value

exp. = experimental value

LR = Jong-range

SR = shori-range

Subscripts

a ‘= anion

] = calion

ea = electrolyte ca

13X = any species {except in Appendix A where j denoles only ionic species)

m = abbreviation for one mole

water
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APPENDIX A

Derivation of the Modified Debye-Huckel Expression

Based on the Poisson equation of electrostatic theory, the Boltzmann dis-
tribution law and the local-composition concept, the rnodified Debye-Huckel
expression is to account for the long-range electrostatic-interaction contribu-
tion to the excess Gibbs energy.

For a charge distribution possessing spherical symmetry about the origin,

Poisson’'s equation has the form

1 di.dy| _4Am -
e dr% dr] D P (A-1)

where 9 is the potential at a point where the charge density is p; D is the dielec-
tric constant of the medium in which the charges are immersed; r is the dis-
tance from the origin.

Jf a particular ion is chosen as the origin of coordinates and no external
forces act on the ions, the time-average distribution of charges about that ion
bhas spherical symmetry. Equation (A-1) is therefore taken to apply to the
time-average values of the potential, 9, and the charge density, p, at distance r

from the ion.

Since the electrolyte solution as a whole is electrically neutral, we have

2.n;vje =0 (A-2)
where n; denotes the number of io;sj per unit volume, (i.e., the bulk concen-
tration); v; is the valence of ion j; e is the protonic charge (equal and opposite
in sign to that of an electron) and the summation is over all ionic species in the
solution.

We select a cation as the center of the coordinates. According to the local
composition conceptl, we consider a cell which consists of the central cation and

its first coordination shell. The condition of electrical neutrality tells us that
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the net charge in the solution outside this central cation cell must be equal but
of opposite sign to the net charge inside the cell. "Thus (A-2) may be replaced by

f4ﬂ7°2pc dr+y.e+ Ny vge=0 (A-3)

e

where 77 is the outer radius of the central cation cell. This outer radius is given
by

FI=T +AT,g (A-4a)

-where 7, is the radius of the cation; 7, is the radius of the anion; A is the size
constant to account for the effect due to the outside shape of the first coordi-
nation shell. This size constant is in the range 1 to 2.
Similarly
rI=rg +AT,. (A-4b)
Ny, is the time-average number of anions in the first coordination shell of
the cell having a cation at the center; it is given by
Nccv STacZe (A°5)
where z, is-the coordination number of the cation and z,4, is the local mole frac-

tion of anions around the central cation:

Zg

= (A-6)
Tyt Ty, Gwc.ﬂ.c

Zac

Equation (A-8) is discussed further in Appendix B.

Equation (A-3) is related to the 'like-ion repulsion’ assumption(11), which
states that the local composition of cations around cations is zero, -and simi-
larly for anions. This assumption is equivalent to assuming that repulsive
forces between ions of like charge are extremely large; equation (A-3) does not

include the term N, v e because, ., =0.

According to the Boltzmann distribution law, the average local number of

ions j per unit volume, n;, at distance r, is
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v;e
n;=n; exp[ -—l—-ic— (A-7)
where k is Boltzmann constant and T is the absolute temperature.

The product, v;ey,. is the electrical potential energy of ion j when the
coordinate system is centered on the cation. The product, kT, is its thermal
energy.

For the volume element considered, the net-charge density is oblained by

summing over all ionic species

p,_.:z’:njvjeexp{—z;:—jgc— (A-Ba)
Upon expanding the exponentials in (A-Ba), we obtain
viey jelv;e ]2 -
ch eEnvg[’ ]+}JZ o [J‘,--~- (a-8b)

The first term on the right of (A-8b) vanishes by the condition of electrical
neutrality (A-2), (For electrolytes with symmetric valence, the third term also °
vanishes.). If v;ey <<kT, only the second term (linear in ¥.) is appreciable, giv-

ing the result:

pe __zn sze #/c (A'BC)

kT

Since (A-8Bc) states that 9, is directly proportional to p.. this approximate
form is consistent with the superposition principle of electrostatics, which says
that the potential due to two systems of charges in specified positions is the

surn of the potentials due to each system taken separately.

Equation {A-Bc) is.strictly valid only when the potential energy, vjeyc, of
the ion j is small compared to its thermal energy, kT. Although this may well be
true for the majority of the ions j in the solution, it is questionable for those
ions which are close to the central cation. But those ions are not of concern to

us because the potential calculated here does not include the ions in the first
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coordination shell.

Substituting (A-Bc) into the Poisson equation (A-1), we have

1 d].9Y:) . .
2 dr[f ar | "~ Ve (A-9)
where x is defined by
4nezz’;nju§
K2= DT (A-10)

Equation (A-9) is a linear second-order differential equation relating ¢, to
r. To-solve (A-89),~we use two physical-conditions: first, that the_ potential must
remain finite at large values of r; second, that electroneutrality must hold in
the entire solution. We use equation (A-3) for electroneutrality. Finally, we

obtain

(A-11)

VgZg 2, e EXP['C("Z-T)] 1
Zo+ZTy Gucac | D (14xrl) T

—
This.fundamental.expression is ’valid':pnly.;at the region r77. For the case r=7_ ,
we have to.add the potentalil, 'glc.};.'cs . due to the.ions in the first coordination
:shell.

For an isolated cation in a medium of dielectric constant, D, the potential

9. at distance r is given by

A -

vc_’pr (A'12)

By the principle of linear superposition of potential fields, for r=r_, , we

.have

Vot ¥ ros=Ve +¥e +¥e Fos (A-13)
where ¥, is the potential due to all the ions outside the first coordination shell.

Substituting (A-11) and (A-12) into {(A-13), we obtain

‘wa =l + VaTgZc ] e exP["(":”’:)] Ve
| Za+ZuGucac | DT (1467]) D,

¥hithin #<7, , no other ions can penetrate and ¢, is therefore constant for all

(A-14)
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r <r. and equal to its value at r=r,. Thus (A-14) accounts for the contribution
of all ions outside the first coordination shell on the potential of the central
cation.

The change of electrical ehergy of the central cation, due to interaction
with ions outside the first coordination shell, is equal to the product of its
charge, v e, and the potentiél. Y. - However, if we apply the argument to every
ion in the solution, we count each ion twice, once as the central ion and once as
part of the surrounding ions. Thus the change of the electrical energy for one

mole of cations, Ay, ;5 .is given by

Bpse 2= RTInY. 1= 22w ey, (A-15)
where N, ié Avogadro's number.
Substituting (A-14) into (A-15), we obtain (5-2). Similarly, we obtain {5-3).
To maintain concentration scales consistent with the local-composition

expression {6-5), we rewrite (A-10) to

4re? nj 4re?

where ns is the total number of all species per unit volume.

nz=§:m ' (A-17)
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APPENDIX B

Derivation of the Local-Composition Expression

While the derivation that follows may be generalized, the derivation given

here is based on a single completely dissociated agueous electrolyte.

1t is assumed that in the solution there are three types of cells as shown in
Figure 7. One type consists of a central water molecule with water molecules, w,
anions, a, and cations, ¢, in the first coordination shell. The other two, based on
the 'like-ion repulsion” "assumption, have either an anion or cation-at the
center and a first coordination shell consisting of water molecules and
oppositely-charged ions, but no ions of like charge (i.e., z,.=z,,=0). The like-
ion repulsion assurnption follows from assuming that the attractive interaction
energies between ions of like charge are much greater than any other attrac-

tive interaction energies.

According to.the two:fluid theory(45), we have

- En =N, (z, eV ez el 4z, £18)) (B-1)
where E,, is the interaction-energy of one-mole of'solptionrt(“’) is the-interac-
tion energy of one cell where water is the center, with similar definitions for &)

and g(®),

The local mole fractions are related to one another by

T +Tow +Tqw =1 (central —water cell) (B-2a)
2 Zye¥E. =1 (central —cation cell) (B-2b)
ZystZea=1 (central —anion cell) (B-2c)

For each type of cell,"we have

g

gW)= fzi-(zww Eunw +Zew Eew +Tow Eaw ) (B-3a)
z

ele)= fzf-(:c.wc Ewe +ZgcEac) (B-3b)

g
glo)= fz“—(xw Ewe +Zcatea) (B-3c)
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where ¢j; is the interaction energy of one j-i pair (s,,;=e;,.).

For one mole of pure water or pure completely dissociated "liquid” electro-

lyte, we have

where

Fji=Notj

(B-4a)
(B-4b)

(B-4c)

The excess interaction energy of one mole of solution, EE, is defined by

Eﬁ=Em = w&uw —zcEcc "zcEcc

(B-5)

Since we are concerned with low pressures, following Renon and

Prausnitz{16), we use the approximation

HE=Ef

where HE is the excess enthalpy of one mole solution.

¥Ye now define

Gji ;i =exp[—(gji—gx: )/ RT]
where R is the gas constant.

Upon combining {B-2) and (5-2), we have

z; Giw W

T, = i=w,c,a)
W zw+xc Gcw.ww +zu Gaw JSw (
T = « Ly Gic ac (i = ﬂ.)
w za"'szwc.ac )
Z2:Gig ¢ .
Zin L (i=w.,c)

zc +xw GIDC €0

(B-6)

(B-7)

(B-8b)

(B-8c)

To obtain an expression for the excess mole Gibbs energy, GE, we use the

Gibbs-Helmholtz equation

8(GE/T) _

— ~ - pE
8(1/ T) Him

(B-9)
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Assuming g;; independent of temperature, we integrate (B-9), giving

Gg{ =_Zl_[z z In (zw +z. Gey, wu TZq Gaw.ww)
RT 2w (2o +xz +x,)
(%o + Zw Guus o0 (Ze*+Zu Go ca) |
+2z.z.1n Goiz) 2,Z, 1N Gotz.) J (B-10)

At the low limit of the integration, we use 1/ I'=0. Therefore, Gg/ T=0 at
this limit.

"Through the thermodynamic relations

‘”'=RTln7“ f

P Ty

ony |r

finally, we obtain

[
In =-._1_ z 2w Cow z
Ye.SR 2 Yz, +z,. Gy ww +Zg Gow w v

+z,1 (%o Guc oc) R 2,Zg 2T, } (B-11a)

n-— + ,
(2.'“ +Xy ) Xz, Gwa cg Tty

|
iy oLl [ G .
Y. SR 2| Y zytz, Gy v +Zg Gow ww v

+2,1n

"ZeXe x| (2 +2u Gua -°°)1 {B-11b)
Zg+Zy, Guc gc o+ Ty (zc+zy) j |

Equations (B-11a) and (B-11b) give symmetrically normalized, individual
ionic activity coefficients. For consistency with the unsymmetrically normalized
modified Debye-Hlickel expression, we renormalize the activity coefficients in

+«Equations (B-11a) and (B-11b) using the relations
Iny; sp=In7y, sp—InyZ sp (B-12a)

Inyg sp=1n7, sp-1In75 sr (B-12b)
where (*) denotes unsymmetric convention and (=) denotes infinite dilution.

From Equations (B-12a) and (B-12b). we obtain Equations (6-3) and (6-4).
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outer boundary of the first coordination shell
O’O‘ O
/d ~N
7 \
/ K o)
! T :
3

\ ‘-
H0e5

Figure 1. Long-range and Short-range Interaction

in a Single-electrolyte System
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Table 2.

Table 3.
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The Influence of Coordination Number on the Simultaneous Fit of
Mean-Ilonic-Activity-Coeflicient. Data for Aqueous Electrolytes-at.25C

Sev | 2w Bpe  Zpe 2 Zpo 2. Oiny o,
{1] 45 4.5 4.5 4.5 4.5 4.5 0.017
{2] 10.0 10.0 10.0 10.0 10.0 10.0 0.0i8
{3] 45 4.0 4.0 5.0 5.0 4.0 0.018
{4] 4.5 4.0 4.0 6.0 7.0 3.0 0.015
(5] 4.5 4.0 4.0 8.0 7.0 3.0 0.016

Date from Hemer et 8l(42). Meximum molelies are 11.0(H3r), 16.0(HCY, 5.5(X3r),
5.0(XC:), 20.0(1.i8-) end 18.2(LiCl).

A = 1.5 for ell eleciroiytes except"H3r where A = 1'70

In ell celculetions, the crysial red:i of Goldschmid<(37) ere used for the radi: of anions.

In Set[5], the true density defined by (A-17) is fixed a1 60 mo)/ L. -

Interaction Energy Parameters, g;;/ & (X), frorn Simultaneous Fit of
Mean-Jonic-Activity-Coefficient Data for Aqueous Electrolytes at 25°C,
upon Setting g, =0.

Br- , ___a- H,0
Set[4]  Set[4]) | Sez[4) Set[4]” | Setf4]  Sei[4]
a* -113.86 186.34 14.0 -58.75 | -113.33  -137.12
K* -203.85 -190.34 | -19582 -3175.19 | -287.88 -270.69

it -280.34  -185.66 | -274.89  -190.28 | -494.51  -443.50
H,0 315.38 325.13 296.69  316.13 0.00 0.00

Set[4) as in Table 1.
Set[4] is the seme as Set[4] except that rnaximum molekities ave 8.0(H3r), 6.0(HC),
5.5(KBr), 5.0(KC1), 6.0(LiBr) end 6.0(LiCl).

Effective Radii for Cations (!.ﬂ.) from Simultaneous Fit of Mean-lonic-
Activity-Coefficient Dala for Aqueous Electrolytes at 25°C

[1] | 0.6881 016753 ~0.7698
[2] | 0.86582 0.5542 0.7084
{3) | 08835 0.6458  0.7447
[¢] | 05824 0.8154 0.6956
{5] | 05241 1.0301 0.5008

All sets as in Teble 1.
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Table 4. Comparison Between the Present Model and the Chen Model

(Results from Fit of Mean-lonic-Activity-Coefficient Data of Aqueous
Electrolytes at 25 C)

Setf4] Set[4)’ Chen Model®

ah’"x.cﬂ max.m Uln"z.cn max.m Uh,.,:m mazx.m

HBr 0.013 11.0 0.005 6.0 0.015 3.0

i HCl 0.023 18.0 0.003 6.0 0.035 8.0
KBr 0.005 5.5 0.004 5.5 0.004 5.5
KCl 0.007 5.0 0.005 5.0 0.003 4.5
* LiBr 0.012 20.0 0.004 6.0 0.050 6.0

LiCl 0.028 18.2 0.004 6.0 0.040 €.0

* From Chen et al.(11)
Set[4] end Se¢{4] asin Table 1. and 2.

Table 5. Eflect of Temperature on Standard Deviation of Mean lonic Activity
Coeflicient for Aqueous Potassium Chloride Using Temperature-
Independent Parameters Obtained at 25°C

T(C) { 0 18 25 5 50
o 0.056 0.017 0.005 0.037 0.088

Data from Caramazzea(43)
Maximum molality is 4.0 m.
Parameters are those in Set[4] at 288.15 K.

o denotes the standard deviation of mean ionic activity coefficient for aqueous potassium
chloride.

Table 8. Numerical Values of the Constants in Eq. (7-1) for the Dielectric Con-
stant (From Uematsu and Franck(28))

B = 7.82571
By =  244.003
By = -140.568
By, = 27.7841
By =  -9B.2805
* By = 41.7909
B, =  -10.2099
. By =  -45.20508
' By = 84.6395
B 10 = -35.8644
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