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Abstract 

The genomic sequence of the horse has been available since 2007, providing critical resources for 

discovering important genomic variants regarding both animal health and population structure. 

However, to fully understand the functional implications of these variants, detailed annotation of the 

horse genome is required. Currently, the horse genome is annotated using the limited available RNA-seq 

data, as well as through comparative genomics by translating human and mouse genome annotation. 

While this approach has served the equine researchers well and led to a number of discoveries 

improving the care and management of horses, many important questions remain unanswered.  

The limitation of the current annotation is two pronged. First, a comparative genomics approach is 

insufficient to identify many genes that are less evolutionarily conserved, especially those that are 

noncoding. The sole reliance on short-read RNA-seq data also meant that alternate isoforms could not 

be accurately resolved. Second, epigenomic regulatory elements are crucial to detailed understanding of 

gene expression network but are yet to be systemically identified in the horse. Many regulatory 

elements, including enhancers, promoters, and insulators, are not transcribed or transcribed at a very 

low level, necessitating alternate approaches to identify them. To solve these problems, the Functional 

Annotation of the Animal Genomes (FAANG) project proposed a systemic approach to tissue collection, 

phenotyping, and data generation, adopting the blueprint laid out by the Encyclopedia of DNA Elements 

(ENCODE) project.  

This thesis describes the equine FAANG team’s effort to map tissue-specific gene expression and 

regulation in the horse genome. Chapter 1 provides an overview of the equine FAANG project’s 

approach to functional annotation. Chapter 2 describes an improved transcriptome that includes novel 

genes and alternate isoforms compared to the current annotation. In Chapter 3, we use ATAC-seq to 

create a catalog of tissue-specific open chromatin regions, which can serve as proxies to active 
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regulatory elements. Chapter 4 provides a complete annotation of chromatin states across nine tissues. 

The Addendum detailed our effort to validate assays for transposase accessible chromatin using 

sequencing (ATAC-seq) in both frozen tissues and cryopreserved nuclei from fresh tissues. This thesis 

presents the first comprehensive overview of gene expression and their regulation in the horse, 

enabling interrogation of complex gene regulatory network and further studies of complex traits in 

horses. Future work should focus on both widening the scope of the equine FAANG project by including 

more tissue types and developmental stages, as well as refining gene network at single-cell resolution. 
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Chapter 1 Decoding the Equine Genome: Lessons from ENCODE 
Keywords: FAANG; gene regulation; horse; functional annotation; transcriptome; epigenetics; welfare; 

health 

Published in: Peng, S.; Petersen, J.L.; Bellone, R.R.; Kalbfleisch, T.; Kings-ley , N.B.; Barber, A.M.; 

Cappelletti, E.; Giulotto, E.; Finno, C.J. Decoding the Equine Genome: Lessons from ENCODE. Genes 

2021, 12, x. https://doi.org/10.3390/genes12111707. 

Abstract 

The horse reference genome assemblies, EquCab2.0 and EquCab3.0, have enabled great advancements 

in the equine genomics field, from tools to novel discoveries. However, significant gaps of knowledge 

regarding genome function remain, hindering the study of complex traits in horses. In an effort to 

address these gaps and with inspiration from the Encyclopedia of DNA Elements (ENCODE) project, the 

equine Functional Annotation of Animal Genome (FAANG) initiative was proposed to bridge the gap 

between genome and gene expression, providing further insights into functional regulation within the 

horse genome. Three years after launching the initiative, the equine FAANG group has generated data 

from more than 400 experiments using over 50 tissues, targeting a variety of regulatory features of the 

equine genome. In this review, we examine how valuable lessons learned from the ENCODE project 

informed our decisions in the equine FAANG project. We report the current state of the equine FAANG 

project and discuss how FAANG can serve as a template for future expansion of functional annotation in 

the equine genome and be used as a reference for studies of complex traits in horse. A well-annotated 

reference functional atlas will also help advance equine genetics in the pan-genome and precision 

medicine era. 

1. The Horse Genome 

The horse reference genomes (Equcab2.0 [1] and EquCab3.0 [2]) are based on a Thoroughbred mare 

Twilight and remain the only high-quality genome assemblies for equids. EquCab2.0 has 42,304 gaps 

comprising 55 Mb (2.2% of the genome) in total, with a scaffold N50 of 46 Mb. In comparison, 

https://doi.org/10.3390/genes12111707
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EquCab3.0 contains 3771 gaps comprising 9 Mb (0.34% of the genome) with a scaffold N50 of 86 Mb. It 

has 99.7% mammalian Benchmarking Universal Single-Copy Orthologs (BUSCO) (5 fragmented and 7 

missing out of 4104 mammalian universal orthologs), compared to that of 99.0% (4064 complete 

orthologs) in EquCab2.0 [2]. Owing to the availability of a high-quality reference genome sequence, 

researchers have been able to utilize a wide variety of high-throughput tools to interrogate genetic 

etiologies for various equine traits. Recently, Raudsepp et al. provided a comprehensive review of major 

discoveries using combinations of recent technologies including genome-wide association studies 

(GWAS), whole-genome sequencing (WGS), and RNA-seq [3].  

Using these tools, successful identification of the genetic variants responsible for simple Mendelian 

traits have been identified, including a novel variant in glutamate metabotropic receptor 6 (GRM6) 

associated with congenital stationary night blindness [4] and a nonsense variant in rap guanine 

nucleotide exchange factor 5 (RAPGEF5) as-sociated with equine familial isolated hypoparathyroidism 

[5]. However, many GWA studies conducted in horses have identified significant regions of association 

that do not contain any known genes. In humans, it was estimated that 88% of trait/disease as-sociated 

single nucleotide polymorphisms (SNPs) identified from GWAS were either intergenic or intronic [6]. 

These SNPs would later be recognized as enriched in various functional elements [7]. Since then, 

numerous studies have examined different mechanisms by which noncoding variants may affect 

phenotype. Variants near these significantly associated SNPs have been found to create transcription 

factor (TF) binding sites [8], disrupt binding motifs [9], or alter TF binding affinities [10,11]. 

These findings support the notion that many noncoding regions of DNA have important regulatory 

functions that affect gene expression. With a comprehensive registry of 926,535 human regulatory 

elements [12], it is now common to include functional annotation in the fine mapping of traits post-

GWAS [13]. However, no such resources are available for most animal species, including horses. To 
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address this critical gap in knowledge, FAANG was proposed as an effort to identify important regulatory 

elements in the major livestock species [14]. 

2. Functional Annotation of Animal Genomes 

The ENCODE initiative was proposed in 2003 as an ambitious effort to “identify all functional elements in 

the human genome sequence” [15]. In 2017, ENCODE concluded its third phase, delivering an integrated 

set of DNA transcription, regulation, and epigenetic modifications from a total of 7495 experiments in 

more than 500 cell types and tissues [12]. 

After almost two decades, ENCODE improved our understanding of gene regulation and delivered a 

wide range of computational tools, as well as a rich deposit of well-documented, publicly available 

experimental datasets [12]. Inspired by its phenomenal success, an international group of researchers 

proposed a similar, coordinated effort to systematically annotate animal genomes, providing vital 

resources to animal genetics research communities, termed Functional Annotation of Animal Genomes 

(FAANG) [14]. As part of the FAANG initiative, the equine FAANG group has been actively working with 

the larger FAANG community and ENCODE researchers to lead the annotation efforts for the horse 

genome. 

The first stage of the equine FAANG initiative was to generate a biobank of reference tissues from 

comprehensively phenotyped animals. Burns et al. [16] and Donnelly et al. [17] detailed the phenotyping 

of four selected reference animals (UCD_AH1 – UCD_AH4) and a collection of over 80 tissues from each 

individual. These healthy animals were selected from the same breed (Thoroughbred) as Twilight, the 

horse used to construct the equine reference genome. When considering selection for the FAANG 

horses, the priority was placed on representing healthy Thoroughbred horses.  Because Twilight was 

selected for the equine reference sequence based on homozygosity across the equine leukocyte antigen 

(ELA) region [1], the decision was made to include three unrelated Thoroughbreds and one (AH4) half-
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sibling of Twilight to achieve this goal while still aligning well with the reference sequence. A unique 

aspect of this biobank is that horses were extensively phenotyped, both antemortem by experienced 

veterinarians and postmortem by veterinary pathologists. This not only ensured that there was no 

evidence of clinical or subclinical disease in these animals, but it also provided in-sight into the cellular 

composition of the tissues selected for assays. These tissues are stored at −80⁰C in a biobank at UC Davis 

and are available to all equine FAANG re-searchers. 

Here, we briefly discuss some of the most relevant findings from ENCODE and their implications for 

functionally annotating the equine genome. 

3. Transcriptome 

The transcriptome is the collection of all transcripts in an organism. It includes protein-coding mRNAs as 

well as noncoding RNAs. During the second phase of EN-CODE, 62% of the human genome was found to 

be transcribed with 31% of transcribed bases located in intergenic regions [18]. Many of these 

transcripts have been recognized as noncoding RNAs with important regulatory roles [19–23]. 

Additionally, in any cell line, 39% of the genome was transcribed on average. Up to 56.7% of 

transcriptome was detected in at least one of fifteen studied cell lines. Interestingly, only 7% of protein-

coding genes were cell-line specific, while 53% were constitutive. In comparison, long-noncoding RNAs 

(lncRNAs) appeared to contribute more to cell-line specificity, with 29% of lncRNAs detected in only one 

of the fifteen studied cell lines and 10% ex-pressed in all cell lines [18]. These results highlighted the 

necessity of characterizing transcriptome in a cell-specific manner.  

As part of ENCODE, GENCODE was initially founded to provide high-quality reference gene annotation 

for the human genome and subsequently expanded into a long-running partnership between several 

groups and institutes. In its most recent re-lease based on GRCh38, a total of 60,649 genes have been 

identified in the human genome, of which 19,955 are protein coding, with an average isoform-to-gene 
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ratio of 3.9 [24]. It was also demonstrated that genes tend to express many isoforms simultaneous-ly, 

with a dominant isoform comprising 30% or more of its corresponding gene expression. Isoforms also 

appeared to contribute to cell type specificity, with over 75% of protein-coding genes having different 

dominant isoforms in different cell lines [18].  

In addition to protein-coding transcripts, the transcriptome also consists of many noncoding RNA 

species, including both small and long noncoding RNAs. The functions of these RNAs have been 

extensively examined and implicated in important bio-logical pathways [25–28]. The small noncoding 

RNAs present a unique opportunity to new therapeutic approaches [29]. Extensive efforts have been put 

into cataloguing noncoding RNAs in the human and mouse genome [30,31]. These efforts have further 

detailed the extent of noncoding RNA regulatory network and the diversity of noncoding RNA species 

and their functions.  

Taken together, these findings from ENCODE demonstrated the importance of noncoding RNAs and of 

alternative splicing in cell-specific expression and regulation. Both Ensembl [32] and RefSeq [33] provide 

noncoding RNA and isoform annotation for EquCab3.0 by utilizing the high-quality annotation of the 

human genome as well as publicly available horse RNA-seq data. RefSeq annotation for EquCab3.0 

consists of 30,022 genes, of which 21,129 are protein coding, with an average isoform-to-gene ratio of 

2.6 [34]. The Ensembl annotation of the equine genome contains 30,371 genes (20,955 protein coding) 

with an average isoform-to-gene ratio of 1.9 [35]. Assuming the human and equine genomes have a 

similar number of genes and consistent isoform-to-gene ratio, the current horse gene annotation likely 

lacks many noncoding RNAs and alternate isoforms.  

The FAANG initiative proposed RNA-seq assays for both mRNA and smRNA to identify and quantify these 

transcripts in a tissue-specific manner [14]. These assays have been performed for eight prioritized 

tissues (liver, lamina, heart, parietal cortex, adipose, skeletal muscle, ovary/testis, and lung) (Table 1.1). 
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Table 1.1 Overview of Available Data and Assay Details 

Project 

Accession 
Assay Samples Tissues Instrument Library Layout 

Number of 

Experiments 

PRJEB2669

8 
WGS Two females 1 

HiSeq 2500 

(San Diego, CA,  USA) 
2 × 250 bp 2 

PRJEB4240

7 
WGS Two males 1 

NovaSeq 6000 

(San Diego, CA, USA) 
2 × 150 bp 2 

PRJEB2678

7 
RNA-seq Two females 30 

HiSeq 2500 

(San Diego, CA, USA) 
2 × 250 bp 60 

PRJEB3264

5 
RRBS Two females 10 

HiScanSQ 

(San Diego, CA, USA) 
1 × 50 bp 20 

PRJEB3530

7 
Histone ChIP-seq Two females 8 

HiSeq 4000 

(San Diego, CA, USA) 
1 × 50 bp 80 

PRJEB4231

5 
Histone ChIP-seq Two females 4 

HiSeq 4000 

(San Diego, CA, USA) 
1 × 50 bp 38 

PRJEB4107

9 
CTCF ChIP-seq Two females 8 

HiSeq 4000 

(San Diego, CA, USA) 
1 × 50 bp 28 

PRJEB4131

7 
ATAC-seq pilot Two females 2 

HiSeq 4000/NextSeq 500 

(San Diego, CA, USA) 
2 × 75 bp/2 × 42 bp 16 

WGS: whole-genome sequencing; RNA-seq: mRNA sequencing; RRBS: reduced-representation bisulfite 

sequencing; Histone ChIP-seq: chromatin immunoprecipitation using sequencing for the four major histone 

marks; CTCF ChIP-seq: chromatin immunoprecipitation using sequencing for CTCF protein; ATAC-seq pilot: assay 

for transposase accessibility using sequencing. 

 

To facilitate data generation for the remaining biobanked tissues, we proposed a unique “Adopt-A-

Tissue” model for mRNA-seq. Researchers were invited to “adopt” a tissue or tissues fitting their 

research interests, which meant they would cover the as-say and sequencing costs. All library 

preparations and sequencing were performed at the same two locations (female samples at UC Davis, 

male samples at University of Nebraska-Lincoln) to minimize variability. This approach allowed the 
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community to contribute to the initiative together while still being able to limit technical variations 

across laboratories during library constructions [36]. Owing to this unique strategy, the equine 

community has sequenced over 40 tissues, and the data have been made publicly available (Table 1.1). 

More recently, long-read sequencing assays such as PacBio Isoform sequencing (Iso-seq) have emerged 

as powerful tools to determine the splicing patterns of transcripts. To address the poor isoform 

annotations currently available for the horse genome, Iso-seq assays are being performed in 8 tissues 

(liver, lung, lamina, heart, ovary, testis, muscle, skin, and parietal cortex) across eight PacBio Sequel 8M 

SMRT cells. By combining a wide variety of assays, the equine FAANG initiative aims to deliver a 

comprehensively annotated transcriptome for the horse genome. 

4. Chromatin Accessibility 

In mammalian cells, DNA molecules are packed by histone proteins to form nucleosomes and are 

subsequently compacted into chromatin [37,38]. Compact chromatin restricts access to DNA molecules 

by transcription factors and serves as a way to regulate gene expression [39]. For example, nucleosomes 

are densely arranged in facultative and constitutive heterochromatin while depleted in active regions 

such as active enhancers, insulators, and transcribed gene bodies [40,41]. Using DNase-seq, a DNase I 

assay quantifying susceptibility of chromatin to DNase I, Boyle et al. identified 94,925 DNase I 

hypersensitive sites (DHS) covering 2.1% of the human genome [42]. It was also found that only 13% of 

DHS were located within promoters, while up to 78% were in intergenic or intronic regions. Remarkably, 

DHS were found in or near the transcription start sites (TSS) of nearly all highly expressed genes. 

However, while DNase I hypersensitivity appeared to be necessary for gene expression, it was not 

sufficient as DHS were also observed in unexpressed genes [42]. The association between accessible 

chromatin and active elements present a unique opportunity to study tissue- and cell-specific gene 

regulation [43–47].  
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Echoing their strong functional implications, accessible chromatin was also shown to be associated with 

noncoding variants identified in GWAS studies of common traits. Maurano et al. examined 5654 

noncoding variants identified in the GWAS studies of 207 diseases and 447 quantitative traits and found 

76.6% of these variants lie either within a DHS or in complete linkage disequilibrium (LD) with another 

SNP in DHS [48]. The data further demonstrated that many of these DHS were strongly correlated with 

the promoter of a distal gene target [48]. Gusev et al. analyzed the heritability of 11 common diseases 

and found that SNPs contained within DHS explained up to 79% of heritability [49]. The strong 

association between accessible chromatin and functional elements warranted efforts to establish a 

catalog of tissue-specific DHS to facilitate discoveries of functionally relevant variants [47]. 

Although DNase-seq has proven successful in identifying accessible chromatin, its laborious protocol, 

slow turn-around time, and large sample size requirements severely limit large-scale applications 

[50,51]. Buenrostro et al. developed Assay for Transposase-Accessible Chromatin with high-throughput 

sequencing (ATAC-seq), which greatly reduced both time and labor costs while requiring lower nuclei 

input [51]. Owing to its simple protocol and comparable output [52], ATAC-seq has been widely adopted 

as a state-of-the-art method for interrogating genome-wide chromatin accessibility; further, several 

variations in methodology have been developed to apply ATAC-seq to frozen tissues [53], cryopreserved 

nuclei [54], or to improve sensitivity in low-input materials [55].  

Using ATAC-seq on cryopreserved nuclei from eight tissues across pig, cattle, and mouse, Halstead et al. 

showed a lack of conservation of sequence and accessibility in accessible sites across evolutionary 

distance, with 20% shared sites between pig and cattle and only 10% between mouse and ungulates 

[56]. Therefore, it is necessary to establish a tissue-specific catalog of accessible sites specifically for the 

horse genome.  A pilot study was recently carried out to evaluate the suitability of frozen equine tissue 

derived nuclei for ATAC-seq [57]. Following protocols established by this study, additional ATAC-seq 
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experiments are underway to expand this assay to eight prioritized tissues for the equine FAANG 

project. 

5. Histone Modifications 

Histone proteins form the basic building blocks of hierarchical chromatin structures and have been 

recognized to play an important role in modulating gene expression through post-transcriptional 

modifications [58–61]. A nucleosome core is formed by two copies of each of the four major types of 

histone proteins: H2A, H2B, H3, and H4 [62]. Since Allfrey first suggested the potential role of histone 

acetylation in regulating gene expression in 1964 [58], extensive research has been carried out to under-

stand the roles, mechanisms, and implications of different histone modifications. His-tone 3 lysine 4 

monomethylation (H3K4me1), H3K4me3, H3K27me3, and H3K27ac are among some of the most studied 

and best understood modifications. Hyun et al. pro-vided a detailed review of molecular mechanisms 

associated with histone lysine modifications and their regulatory functions [63]. Here, we briefly discuss 

ENCODE findings regarding histone marks and how they can be integrated to provide a more com-

prehensive view of regulatory activities. 

Barski et al. first comprehensively assayed histone modifications across the hu-man genome using high-

throughput sequencing [64]. Consistent with previous studies, H3K4 methylation marks were enriched in 

promoter regions. A significant drop in signal between −200 bp and +50 bp of TSS was observed for 

H3K4me3 with major peaks at −300 bp and +100 bp [64]. This was consistent with observations that 

H3K4me3 was primarily associated with promoter regions [65] and that nucleosomes were depleted 

near active TSS [40]. On the other hand, H3K4me1 showed a distinct bimodal signal with peaks around –

900 bp and +1000 bp of TSS [64], in agreement with previous observations that H3K4me1 was enriched 

in enhancer regions [66]. Similarly, H3K27me3 was observed at a higher level around the TSS of silent 

genes than those around active genes, supporting correlation between H3K27me3 and gene repression 
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[67]. Conversely, H3K27ac was observed around active elements and associated with higher expression 

level [68]. 

Taken together, the four histone modifications discussed in this manuscript rep-resent major regulatory 

elements and can provide valuable information regarding tis-sue-specific regulatory activities in the 

horse genome. Using genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) for these 

four marks in eight prioritized tissues in the two female FAANG horses, Kingsley et al. reported over one 

million putative regulatory sites [69]. The utility of these data was demonstrated when a 16 kB 

intergenic deletion associated with an ocular condition in horses, namely distichiasis, was discovered 

and FAANG ChIP-seq data showed that this region harbors a tissue specific active enhancer [70]. 

Undoubtedly, these data will continue to aid in the understanding of other structural variants causing or 

associated with disease in the horse as additional tissues are evaluated. Following the success of the 

mRNA Adopt-A-Tissue initiative, similar efforts have facilitated characterization of histone marks in four 

tissues important to equine health and traits of economic impact (spleen, meta-carpal 3, sesamoid, and 

skin) [71]. Furthermore, additional Adopt-A-Tissue efforts are currently ongoing to facilitate histone 

ChIP-seq assays for the remaining FAANG tis-sues. 

6. CTCF Binding 

CCCTC-binding factor (CTCF) is a well-studied zinc finger protein that serves a central role in the 

formation of chromatin topology and remodeling. It was first dis-covered as a repressive transcription 

factor in chicken for c-MYC [72] as well as LYZ [73]. It was later shown that CTCF may also serve as an 

activator for the Amyloid β-Protein Precursor gene (APP) [74]. In 1999, Bell et al. reported a CTCF 

binding site at the core of an insulator element at the 5′ end of the chicken β-globin gene HBB [75]. 

Insulators are genomic regions that separate genes from cis-regulatory elements [76]. This site also sits 
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at a boundary between active and inactive chromatin [77], a typical feature of an insulator element 

[78,79].  

Many seemingly contradictory functions of CTCF have attracted extensive efforts to understand the 

mechanisms of its multivalent roles. CTCF is highly conserved across species [80,81] and embryonically 

lethal when knocked out in mice [82]. The binding motif of CTCF consists of a ~20 bp core consensus 

sequence and less conserved peripheral sequences, comprising ~50 bp [83,84]. ChIP assays targeting 

CTCF revealed several unique patterns. First, CTCF binding sites were observed across the genome, with 

over 40% within intergenic regions [64,83,85]. Consistent with the insulator activity of CTCF, two distinct 

types of loci with opposing CTCF binding patterns were observed. Loci depleted of CTCF binding sites 

tend to include clusters of related gene families and transcriptionally coregulated genes, while loci 

enriched in CTCF binding sites tend to have genes with alternative promoters [83]. Furthermore, CTCF 

was shown to be crucial for chromatin loop formation at the mouse β-globin locus [86]. Similarly, Hou et 

al. described an alternative loop formation by inserting a CTCF binding insulator HS5 between the β-

globin locus and its upstream locus control region [87]. Additionally, cohesin has been functionally 

associated with CTCF in mediating chromatin loops [88,89]. These results suggested a potential 

mechanism via which CTCF mediates regulation of chromatin conformation and gene expression.  

The introduction of Hi-C technology that enabled genome-wide interrogation of long-range interactions 

[90] quickly brought about new insights into the mechanisms of CTCF function. Refining the resolution of 

the Hi-C interaction maps to kilobases, Rao et al. observed that the majority of chromatin loops were 

associated with convergent pairs of CTCF motifs, as well as colocalizing with cohesin proteins [91]. The 

orientation of CTCF motifs was also shown to determine the directionality of the CTCF mediated 

interactions [92]. Finally, the significance of such directionality was functionally demonstrated by 

inverting CTCF sites with CRISPR to alter genome topology as well as promoter function [93].  
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These findings led to a proposed extrusion model [94,95], where a chromatin loop is pulled through an 

extrusion complex consisting of cohesin and CTCF and is stabilized by a CTCF dimer. This model explains 

the convergence of a CTCF pair surrounding a chromatin loop, as well as the many regulatory functions 

of CTCF observed in early studies. More evidence is emerging in support of this model. Based on this 

model, Fudenberg et al. used simulation to reproduce topologically associated domains (TADs) and 

contact frequencies observed in Hi-C studies as well as to recapitulate experimental results where TADs 

were observed to spread upon depletion of CTCF binding sites [96]. Haarhuis et al. showed that cohesin 

release factor WAPL could restrict chromatin loop extrusion by releasing cohesin from DNA and that 

knocking out WAPL results in enlarged chromatin loops between incorrectly orientated CTCF motifs [97]. 

Allahyar et al., employing a multi-contact 4C technology, showed that such enlarged loops in WAPL 

knockout cells are a result of aggregated CTCF loop anchors, or a “cohesin traffic jam” [98]. 

Given its central role in chromatin loop formation, CTCF binding sites can be considered an intermediate 

between the 1D genomic sequence and 3D chromatin topology. Although there is no simple rule to 

determine the functional outcome of a disrupt-ed CTCF binding site, as it largely depends on its 

interaction with surrounding regulatory elements, there is no doubt that a catalog of CTCF binding sites 

in a given cellular context can provide valuable information when decoding the functional implications 

of DNA variants.  

Following the practices established by the FAANG community, characterization of CTCF binding sites 

using ChIP-seq is being performed on eight prioritized tissues for both sexes. Analyses to identify both 

tissue and sex-specific CTCF binding and integrate all of the FAANG ChIP-seq data into chromatin state 

annotations are currently underway. 
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7. Chromatin States 

While the associations between individual histone marks and regulatory activities are noteworthy, 

combinations of histone marks have proven to be more reliable in the fine-scale predictions of 

regulatory elements. For example, Creyghton et al. observed that the H3K27ac mark could distinguish 

active enhancers from inactive/poised enhancers, which are both marked by H3K4me1 [68]. Bernstein 

et al. similarly identified a bivalent signal with both H3K4 methylation and H3K27 methylation, 

suggesting a poised regulatory element [99]. These findings prompted hypotheses that various 

regulatory functions of noncoding DNA could be explained by either additive properties [100] or unique 

combinations of histone modifications [101]. New unsupervised computational approaches were 

subsequently developed to classify histone modification patterns and partition them into different 

chromatin states [102,103]. Ernst et al. identified 11 promoter states, all marked by H3K4me3 and 

varying presence and levels of several other marks, as well as 4 enhancer-associated states, all marked 

by H3K4me1 and varying frequencies of acetylation marks [103]. These findings suggest that some 

histone modifications (H3K4me1, H3K4me3) designate unique regulatory elements while other 

modifications (acetylation marks including H3K27ac) enhance regulatory activity in an additive fashion.  

The recognition of chromatin states and introduction of computation tools such as ChromHMM [104] 

provided a way to systematically profile the regulatory landscape in any given cellular context. Taking 

advantage of this development and the availability of ChIP-seq data from the four major histone marks 

and CTCF, efforts to compose an integrated tissue-specific chromatin state map are currently underway 

for the equine genome. 

8. Unique Aspects of the Horse Genome 

Centromeres are enigmatic structures because, contrary to other genetic loci, their function is not 

determined by the underlying DNA sequence but depends on epigenetic factors. The Centromere 
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Protein A (CENP-A) is a centromere-specific variant of his-tone H3 that epigenetically identifies, 

maintains, and propagates centromere function [105]. The characteristics of its binding domain have 

been elusive to investigators due to its typical association with tandemly repeated DNA (satellite DNA). 

In this context, a turning point was the discovery that the centromere of horse chromosome 11 (ECA11) 

was completely devoid of satellite DNA, demonstrating for the first time that a natural mammalian 

centromere, fixed in a species, can exist without satellite sequences [1]. Owing to the lack of satellite 

repeats at the centromere of ECA11 and the availability of the horse reference genome, the genomic 

position of the corresponding CENP-A binding domain could be precisely identified by ChIP-on-chip with 

an anti-CENP-A antibody [1]. Later, several satellite-less centromeres were identified by ChIP-seq in the 

donkey genome [106]. These peculiar centromeres found in equid species represent an immature stage 

of “centromerization”, being the result of centromere re-positioning, which is the movement of the 

centromeric function without detectable chromosomal rearrangements. This event was exceptionally 

frequent during the rapid evolution of the genus Equus [107–109]. Such centromeres, being uncoupled 

from satellite DNA, provide a unique model for dissecting the molecular structure of the centromere 

[110].  

The position of the ECA11 satellite-less centromere, identified as the CENP-A binding domain, is not 

fixed in the horse population but slides within an about the 500 kb region, giving rise to different 

positional alleles or “epialleles” [106,111,112]. The analysis of these epialleles carried out on families 

composed by horses, donkeys, and their hybrid offspring (mule/hinny) revealed that they are inherited 

as Mendelian traits, but their position can slide in one generation [106]. Conversely, the position of the 

centromere is stable during mitotic propagation of cultured cells grown for several population 

doublings, suggesting that the sliding may presumably take place during meiosis or early embryogenesis 

[106]. 
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The absence of satellite DNA at these centromeres also provides a unique opportunity to understand 

whether some typical features of mammalian centromeres de-pend on the presence of satellite DNA. In 

particular, it was possible to demonstrate that satellite DNA was not necessary for segregation fidelity of 

the centromere [113] and was not implicated in the suppression of meiotic recombination, which is 

typically exerted by the centromere [112]. 

The rich repository of tissues from different developmental origins available through the FAANG project 

will allow us to answer other important questions on centromere biology using the ECA11 centromere 

as model system. We will test whether the centromere position is conserved during development or if it 

can slide during tis-sue differentiation. In addition, thanks to the large amount of data regarding the 

functional annotation of the horse genome, generated within the FAANG effort, we will be able to map 

the epigenetic marks available through the consortium in the ECA11 centromeric region. The results will 

indicate whether chromatin markers and transcriptional activity at ECA11 centromere vary across 

tissues and individuals, and with respect to centromere position. Furthermore, CENP-A has been shown 

to bind at TF binding sites and promoters, suggesting potential regulatory activities [114]. Therefore, 

utilizing FAANG data, we will be able to identify the regulatory activities of CENP-A and any roles 

centromeres may play during tissue differentiation 

9. Summary and Future Perspectives 

Just three years after starting the tissue and data collection for the equine FAANG initiative, the 

community has completed over 400 experiments from more than 50 tis-sues using a variety of assays 

targeting different features of the horse regulatory landscape (Table 1.2). Data are being made available 

to the public as they are generated and evaluated for passing quality control measures; these data have 

been and continue to be utilized in unrelated research projects [5,70,115]. Integrated analysis is 
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currently on-going to provide a systematic annotation of major functional elements in the horse genome 

available, as a central hub hosted on UCSC genome browser to the research community. 

Table 1.2 Overview of Completed Assays 

Assay Animals Tissue Types Total Experiments 

WGS AH1-AH4 Blood 4 

mRNA-seq 

AH1 47 

140 
AH2 46 

AH3 23 

AH4 24 

Iso-seq AH1–AH4 12 48 

ChIP-seq–H3K4me1 
AH1–AH2 12 

40 
AH3–AH4 8 

ChIP-seq–H3K4me3 
AH1–AH2 12 

40 
AH3–AH4 8 

ChIP-seq–H3K27ac 
AH1–AH2 12 

40 
AH3–AH4 8 

ChIP-seq–H3K27me3 
AH1–AH2 12 

40 
AH3–AH4 8 

ChIP-seq–CTCF 
AH1–AH2 8 

32 
AH3–AH4 8 

ATAC-seq AH1–AH4 10 40 

RRBS AH1–AH2 10 20 

smRNA-seq AH1–AH2 48 96 

Total 48 444 

 

With over 80 tissues collected from four healthy and comprehensively phenotyped animals, we will be 

able to generate a map of gene expression and regulation throughout the horse body, providing unique 

opportunities to investigate tissue-specific gene expression and gene networks. However, this tissue 
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collection presents a serious challenge for data analyses. Heterogeneity both within tissues as a result of 

cell-type differentiation and across tissues as a result of tissue infiltration or contamination during 

collection, can confound analysis of tissue-specific expression and regulation. The prevalence of this 

issue was recently reported by Sturm et al. [116]. To mitigate this issue, careful histological assessment 

was performed during the tissue collection phase to minimize the possibility of tissue infiltration or 

contamination. However, caution should be taken to assess the extent of tissue heterogeneity during 

data analysis. Additionally, single-cell based technologies have proven useful to profile cell types from 

complex tissues [117–120], and the adoption of these technologies to equine FAANG data are being 

discussed within the community and will likely be integrated in the next steps of the multi-phased 

approach of this project. 

While the equine FAANG biobank represents a wide variety of tissue types, the four horses these tissues 

were collected from represent only a narrow subset of the horse population, as well as developmental 

stages. These horses were intentionally selected to be of the same breed as the reference genome 

assembly in order to better an-notate the reference genome assembly. However, caution should be 

taken with interpretation and extrapolation of these data to other breeds or developmental stages. 

Regardless, this initiative will serve as a template and reference point for the future expansion of the 

transcriptome and epigenome of equids.  

FAANG represents a notable international collaborative effort in the equine community that has brought 

together equine researchers and practitioners from around the globe. Most importantly, FAANG 

collaborators have been vocal proponents of open science and broad data accessibility within the 

equine community. The growing number of publicly available datasets is accelerating discoveries and 

powering large-scale analyses. Well-annotated and carefully documented FAANG data with ac-

companying comprehensive metadata will serve as a reference point for many future discoveries in 

horse. 
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Abstract 

A high-quality reference genome assembly, a biobank of diverse equine tissues from the Functional 

Annotation of the Animal Genome (FAANG) initiative, and incorporation of long-read sequencing 

technologies have enabled efforts to build a comprehensive and tissue-specific equine transcriptome. 

The equine FAANG transcriptome reported here provides up to 45% improvement in transcriptome 

completeness across tissue types when compared to either RefSeq and/or Ensembl transcriptomes. This 

updated transcriptome also provides major improvements in the identification of alternatively spliced 

isoforms, novel noncoding genes, and annotation of 3’ transcription termination site (TTS). The equine 

FAANG transcriptome will aid functional studies investigating important equine traits, while providing 

opportunities to identify allele-specific expression and differentially expressed genes across tissues. 

 

Introduction 

Equine genome assemblies [1,2] have provided vital resources for equine genetics research. However, it 

is evident that detailed annotation of the genome is necessary for further investigation of both simple 

and complex traits in horses. Current equine genome assemblies have annotations provided by both 

Ensembl [3,4] and NCBI [5,6] gene annotation pipelines. These annotations relied primarily on limited 
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available RNA-seq data, cross-species alignments, and computational predictions. The equine RefSeq 

annotation release 103 from NCBI contains 33,146 genes and pseudogenes, of which 21,129 are protein 

coding, and 77,102 transcripts, including 60,887 mRNAs and 16,215 non-coding RNAs [6]. This presents a 

total isoform-to-gene ratio of 2.3, or 2.8 if only coding genes are considered. Similarly, the equine 

Ensembl annotation release 105.3 contains 20,955 protein coding genes and 9,014 non-coding genes, 

with 59,087 transcripts, resulting in a transcript-to-gene ratio of 2.04. For comparison, the most recent 

GENCODE human gene annotation release (release 39, GRCh38.p13) includes 61,533 genes, of which 

19,982 are protein coding, with an average isoform-to-gene ratio of 3.9, or 4.3 when only considering 

protein coding genes [7]. Furthermore, the human ENCODE projects determined that genes tend to 

express many isoforms simultaneously, but different dominant isoforms exist in different cell lines [8]. 

The data from humans, in comparison to the horse, supports there are potentially missing alternatively 

spliced isoforms not represented in the current equine gene annotation. In addition, the tissue-specific 

nature of isoform expression represented in the human literature underscores the need for a 

transcriptome with more complete isoform annotation.  

Noncoding RNAs play an important role in many biological pathways [9–12]. With the rising use of 

noncoding RNA therapeutics [13], a more comprehensive noncoding RNA annotation for the horse 

genome will certainly be an asset to the equine research community. The Ensembl annotation for 

EquCab3 includes 9,014 noncoding genes, while the RefSeq annotation contains 8,893 noncoding genes. 

In comparison, the GENCODE human gene annotation release 39 includes 26,378 noncoding genes. A 

particular challenge with annotating noncoding RNAs comes from the fact that noncoding RNAs are 

usually less evolutionarily conserved [14] and present at very low levels [15,16]. Therefore, without 

deep sequencing of diverse tissue types, noncoding RNAs typically remain unannotated. Since the 

current equine gene annotation relies heavily on cross-species conservation, and a limited number of 

RNA-seq data that are publicly available, it is expected that a large number of noncoding RNAs are 
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currently unannotated. Indeed, a previous study identified 20,800 candidate long noncoding RNAs 

(lncRNAs) with low expression, low exon diversity, and low levels of sequence conservation [17]. 

To address these challenges, the equine Functional Annotation of Animal Genome (FAANG) project has 

collected over 80 tissue types and body fluids from 4 adult Thoroughbred horses (two females and two 

males) [18,19]. These horses underwent thorough clinical examinations and were selected as healthy 

references. The FAANG biobank has produced a diverse dataset describing various aspects of equine 

gene regulation [20–22]. Here, we report our efforts to build a comprehensive transcriptome for the 

horse genome using long-read sequence technologies across nine diverse tissues. 

 

Results 

Transcript Annotation 

Full-length non-redundant transcripts were categorized based on their annotated splice junctions as 

compared to reference Ensembl transcripts [4,23] and the genomic overlap between the two, following 

the schematics introduced by Tardaguila et al [24]. Overall, isoforms with novel splice sites (categorized 

as novel not in catalog or NNC) account for over 40% of all Iso-seq transcripts identified (Table 2.1). The 

majority of novel genes (96.6%) identified in the Iso-seq transcriptome have only one isoform per gene, 

59.5% of which are mono-exonic (Fig 2.1A-D). Compared to the Ensembl annotation, the Iso-seq 

transcriptome contains fewer short transcripts (<0.5 Kb, 172 or 0.3% in Iso-seq transcriptome; 2,392 or 

4% in Ensembl transcriptome) but proportionally more long transcripts (>1.5 Kb, 49,523 or 97.0% of Iso-

seq transcriptome; 52,896 or 89.5% of Ensembl transcriptome) (Fig 2.1E). 
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Figure 2.1 Summary of the Iso-seq equine transcriptome.  

The overall number of isoforms (A), known vs. novel genes (B), percentages of known and novel 

transcripts (C) and portion of mono- and multi-exon transcripts by structural categories that were 

annotated in the Iso-seq equine transcriptome. (D) Percentages of mono- and multi-exonic transcripts in 

each structural category; FSM: full-splice match, all exons and splice junctions match a known reference; 

ISM: incomplete-splice match, like FSM but missing 3’ and/or 5’ ends; NIC: novel-in-catalog, novel 

transcripts with known exons and splicing sites; NNC: novel-not-in-catalog, novel transcripts with novel 

splicing sites; Intergenic: novel transcripts with no overlapping known genes; Genic: novel transcripts 

overlapping known introns; Fusion: fusion transcripts; Antisense: novel transcripts on the opposite 

strand of known transcripts (E) Transcripts by length of Iso-seq transcriptome as compared to the 

Ensembl transcriptome. 

 

Table 2.1 FAANG transcript breakdown by structural category 

Structural Category Count Percentage 

Antisense 928 1.64 

FSM 12,470 22.01 

Fusion 684 1.21 

Genic 2,137 3.77 

ISM 4,937 8.71 

Intergenic 4,543 8.02 

NIC 6,330 11.17 

NNIC 24,634 43.47 

FSM: full-splice match; ISM: incomplete-splice match; NIC: novel-in-catalog; 

NNC: novel-not-in-catalog 

 

5’ Completeness 

Since standard Iso-seq libraries do not capture 5’ caps of transcripts [25], an aggressive collapsing 

approach was utilized to remove potentially 5’ degraded transcripts. To assess the completeness of 5’ 

ends of annotated transcripts, short-read RNA-seq and ATAC-seq data from the same tissues were used 

to compare coverage near annotated TSS. Overall, 98.4% transcripts have higher short read RNA-seq 

coverage in the 100bp window downstream of the Iso-seq annotated TSS than upstream (Fig 2.2A). 
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Transcripts with a log2 ratio of greater than 1 were designated as 5’ complete and 89.1% of transcripts 

overall were identified to be complete. A majority of transcripts (66.6%-93.7%) across all structural 

categories were determined to have complete 5’ ends, with novel genes (genic (73.2%), intergenic 

(66.6%), and antisense (71.3%) having a lower percentage of 5’ complete transcripts (Fig 2.2B). 

Additionally, ATAC-seq of the same tissues also show substantial enrichment at annotated TSS with log2 

ratio of ATAC-seq coverage in 100bp immediately down- and up-stream of annotated TSS exceeding 2 in 

all nine tissues (Fig 2.2C). 
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Figure 2.2 5’ Completeness of the FAANG equine transcriptome. 

(A) Log2 of 100 bp downstream as compared to upstream of TSS RNA-seq coverage. Positive ratios 

indicate higher coverage downstream of TSS. The dotted line indicates equal coverage up- and down-

stream of TSS while the solid line indicates 100% higher coverage downstream of the TSS than upstream 

(B) Percentages of transcripts whose log2 ratios are greater than 1, denoted as 5’ complete (green) (C) 

ATAC-seq read coverage in 1 kb upstream and 3 kb downstream of annotated TSS. FSM: full-splice 

match; ISM: incomplete-splice match; NIC: novel-in-catalog; NNC: novel-not-in-catalog; Schematics 

defined by Tardaguila et al [24]. 
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3’ Completeness 

To capture polyadenylated transcripts with complete 3’ ends, poly-T oligonucleotides were used during 

library construction of Iso-seq. However, internal stretches of adenines could also bind to poly-T 

oligonucleotides, a phenomenon known as intra-priming, which results in truncated transcripts [24]. 

Multi-exonic transcripts across all structural categories had approximately 25% adenines on average, 

with fewer than 5% transcripts having over 80% adenines, suggesting a high level of 3’ completeness (Fig 

2.3A). Over 30% of the novel mono-exonic isoforms (NIC) are flagged as potentially intra-primed (Fig 

2.3B). Many of these transcripts retain a partial intron and may be intron-retaining isoforms undergoing 

nonsense-mediated decay (NMD). A comparison between Iso-seq and Ensembl annotation showed 

significant improvement of TTS full-splice matched (FSM) transcripts, with over 4,232 transcripts having 

TTS more than 1 kb downstream of Ensembl annotated TTS, as well as minor improvements of TSS 

annotation with 5,103 transcripts having TSS at least 100 bp upstream of Ensembl annotated TSS (Fig 

2.3C). 
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Figure 2.3 3’ Completeness of the FAANG equine transcriptome. 

(A) Percentages of adenines in 20 bp genomic regions immediately downstream of annotated TTS. Boxes 
indicate interquartile range (IQR) and whiskers indicate 1.5*IQR (B) Portions of transcripts with more 
than 80% adenines in 20bp genomic regions immediately downstream of annotated TTS, by structural 
categories and exon counts. (C) Distance between Iso-seq annotated TTS/TSS and Ensembl annotated 
TTS/TSS, negative values indicate shorter 5’ or 3’ ends. Eg. -1000 indicates that Iso-seq annotated TSS is 
1000 bp downstream of Ensembl annotated TSS (left) or that Iso-seq annotated TTS is 1000 bp upstream 
of Ensembl annotated TTS (right). IQR: interquartile range, the range of second and third quartile of 
data. 

 

Protein Coding and Noncoding Transcripts 

Open reading frames (ORFs) were predicted using GeneMarkS-T (GMST) algorithm [26] by SQANTI3 [24] 

to identify protein-coding transcripts in the FAANG transcriptome. The vast majority of transcripts 

belonging to known genes had ORFs (97.6% of FSM, 96.8% of ISM, 92.5% of NIC, and 95.4% of NNC), 
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while a significant proportion of novel genes had transcripts without ORFs (28% of genic, 60% of 

intergenic, and 67.6% antisense transcripts) (Fig 2.4A). A substantial difference in exon counts among 

coding and noncoding transcripts was identified, with 44.6% of noncoding transcripts being mono-

exonic as compared to 4.6% of coding transcripts. Specifically, coding transcripts with novel junctions 

(NIC) were 96.8% multi-exonic, while noncoding NIC transcripts are 56% multi-exonic. Similarly, 53% of 

coding transcripts that overlap or fall within annotated introns were identified as multi-exonic, while 

only 7.5% of those without an ORF were identified as multi-exonic (Fig 2.4B). 

 

Figure 2.4 Protein coding and non-coding transcripts in the FAANG equine transcriptome. 

(A) Portions of coding vs. noncoding transcripts by structural categories and (B) portions of coding vs. 
noncoding transcripts by structural categories and exon counts. 

 

Splice Junctions 

Any junctions not covered by at least one uniquely mapped read from RNA-seq data were removed, 

along with their associated transcripts. A total of 8,476 transcripts containing 14,738 such junctions 

were removed at this step. On average, known junctions had 4.8x RNA-seq coverage as compared to 

novel junctions. This difference primarily came from canonical junctions (GT-AG, GC-AG and AT-AC) (Fig 

2.5A). Novel isoforms and transcripts of novel genes also had lower minimum junction coverage as 

compared to known isoforms (FSM and ISM, Kruskal-Wallis H-test, p<0.0001; post-hoc Dunn’s test p 

<3.5 x 10-68, Bonferroni corrected α=0.003; Fig 2.5B). 
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Approximately 10% of the splice junctions annotated in Iso-seq transcriptome were novel as compared 

to the Ensembl transcriptome (56,503 out of 581,782). These novel splice junctions contributed to the 

discovery of 36,795 novel isoforms (Fig 2.5C). The GT-AG splice site was observed in 99.2% of splice 

junctions, with GC-AG and AT-AC sites observed in 0.68% and 0.05% of transcripts, respectively. Non-

canonical splice sites were primarily observed at very low frequencies (<3%) (Fig 2.5C; Table 2.2). 

 

Figure 2.5 Splice junctions are better defined in the FAANG equine transcriptome. 

(A) RNA-seq coverage measured as log10(ReadCount+1) at known or novel splice junctions, (B) minimum 
splice junction coverage transcripts by structural categories and (C) splice junction types by structural 
categories, known non-canonical junctions were observed in FSM, ISM, NIC, and NNC at 2.2%, 0.2%, 
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2.0%, and 1.2%, respectively; novel non-canonical junctions were only observed in NNC and intergenic 
isoforms at 2.8% and 2.5%, respectively. 

 

Table 2.2 Portions of different splice junction types by structural categories 

 
% Known 
Canonical 

% Known Non-
canonical 

% Novel 
Canonical 

% Novel Non-
canonical 

Antisense 0.00 0.00 100.00 0.00 

Fusion 80.57 0.00 19.43 0.00 

Genic 0.00 0.00 100.00 0.00 

Intergenic 0.00 0.00 99.97 0.03 

NNC 87.35 0.01 12.61 0.03 

NIC 96.81 0.02 3.17 0.00 

ISM 100.00 0.00 0.00 0.00 

FSM 99.98 0.02 0.00 0.00 

FSM: full-splice match; ISM: incomplete-splice match; NIC: novel-in-catalog; NNC: novel-not-in-catalog 

 

 

Sense-Antisense Transcripts 

A total of 861 novel antisense transcripts were identified, with 2,742 isoforms annotated on the 

opposite strand. Overall, 3,246 transcripts on the plus strand that overlap at least 1 bp with a transcript 

on the minus strand were detected. Among these sense-antisense pairs of transcripts, 2,249 (69.3%) 

were coding-to-coding pairs, 954 (29.4%) coding-to-noncoding pairs, and 43 (1.3%) noncoding-to-

noncoding pairs. 

 

Tissue-specific Expression 

Short-read RNA-seq data from 57 tissues (46 tissues from female animals and 23 tissues from male 

animals, with 12 tissues from both sexes, Supplementary Table 2.1) were used to quantify the Iso-seq 
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transcripts. Approximately 78% of known isoforms were expressed in at least half of the tissues 

sequenced, while novel isoforms of known genes and novel intergenic transcripts each showed a 

bimodal distribution, with 44.3% of novel isoforms and 56.8% of intergenic transcripts detected in less 

than half of the tissues (Fig 2.6A). We also noted that, on average, 61.4% (33.3%-70.9%) of multi-isoform 

genes expressed more than one isoform in any given tissue (Fig 2.6B) and had different dominant major 

isoforms (isoform with highest relative expression of a given gene), depending on the tissue type (Fig 

2.6C-D). Similar to humans, major isoforms in horses accounted for 30%-70% of the corresponding 

genes’ total expression in any given tissue (Fig 2.6E). Notably, our RNA-seq data exhibited prominent 

clustering between sexes within the central nervous system (CNS) tissues (Fig 2.7A), while all other 

tissues clustered as expected regardless of sex. (Fig 2.7B).  
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Figure 2.6 Short-read RNA-seq data mapped to the FAANG equine transcriptome identifies tissue-

specific isoforms. 

(A) Distribution of known vs. novel transcripts detected in different numbers of tissues, (B) number of 
expressed isoforms across all tissues vs. number of total isoforms per gene; boxes indicate IQR and 
whiskers indicate 1.5*IQR, (C) number of different major isoforms expressed across tissues vs. number 
of total isoforms annotated, (D) distribution of genes with different number of major isoforms and their 
total annotated isoforms and (E) relative expression of major isoforms in each tissue vs. total number of 
isoforms annotated. IQR: interquartile range, the range of second and third quartile of data. 
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Figure 2.7 Sex-specific clustering of gene expression across tissue types. 

(A) t-SNE plot of transcript levels (TPM) across samples and tissues and (B) agglomerative clustering of 
RNA-seq samples 
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Comparison with Ensembl and RefSeq Transcriptomes 

To assess the completeness of the Iso-seq transcriptome, all available RNA-seq reads were aligned 

directly to each transcriptome and 3-23% improvement in numbers of properly paired reads in all 

tissues were observed, except for cerebellum vermis, duodenum, fibroblasts, keratinocytes, bone 

marrow, and epididymis (caput, corpus, and cauda).  

To provide a comprehensive set of transcripts for the equine genome, we combined the Iso-seq 

transcriptome with Ensembl and RefSeq transcriptomes into a single annotation, termed the equine 

FAANG transcriptome. The FAANG transcriptome consisted of 153,492 transcripts (of which 128,723 

were multi-exonic) from 36,239 genes, with a gene-to-isoform ratio of 4.2. This combined transcriptome 

contained a total of 26,631 coding genes, with 132,970 coding transcripts. RNA-seq alignments 

suggested an average 19.5% (8-45%) improvement in completeness compared to Ensembl and RefSeq 

transcriptomes across all sequenced tissues (Fig 2.8). 
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Figure 2.8 Comparison of FAANG, RefSeq and Ensembl equine transcriptomes. 

Changes in percentages of properly paired reads aligned to combined FAANG transcriptome when 
compared to Ensembl or RefSeq transcriptomes, whichever has higher percentage. 

 

Discussion 

A comprehensive equine transcriptome with tissue-specific expression utilizing the rich tissue repository 

from the FAANG biobank and advanced long-read sequencing technology was developed. The FAANG 
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equine transcriptome consists of 36,239 unique genes with 153,492 transcripts, presenting a gene-

isoform ratio of 4.2, or 5.0 when only protein-coding genes are considered. This is a substantial 

improvement as compared to the ratios of 2.0 from the Ensembl equine transcriptome or 2.8 from the 

RefSeq equine transcriptome and is more aligned to what is reported for the human genome [7]. We 

also demonstrated improved completeness of our transcriptome across over 40 tissues when assessed 

by companion short-read RNA-seq data, despite having only 9 tissue types included in our Iso-seq 

experiment. 

The previous efforts to annotate the horse genome were limited by the number of tissue types available 

and sequencing lengths available at that time [27–29]. Specifically, Hestand et al. sequenced 43 different 

equine tissues in one pool on an Illumina HiSeq 2000, both single- and paired-end at 75 bp on 4 lanes 

each [28]. While that study included more diverse tissue types than the current FAANG transcriptome, 

the pooling approach employed in that study limited discovery of rare novel and tissue-specific isoforms. 

The non-stranded protocol employed in that study also rendered it impossible to identify antisense 

transcripts. Mansour et al. compared sequences of 8 tissue samples from 59 individuals using short-read 

RNA-seq libraries from several studies (80-125 bp, single- and paired-end, stranded and unstranded) 

[29] and identified 36,876 genes with 76,125 isoforms. Due to the limitation of short-read sequencing 

technology in both the Hestand and Mansour studies, an aggressive filter was necessary to remove 

mono-exonic transcripts that were not evolutionarily conserved, a common strategy in short-read based 

transcriptome assemblies [3,6]. This unfortunately would also remove many small noncoding RNAs. 

Based on recent advances in long isoform sequencing, our approach centered around high-quality full-

length reads from Iso-seq and used abundant RNA-seq data to refine splice junction, TSS, and TTS 

annotation. As a result, we were able to identify 2,833 novel mono-exonic transcripts as well as improve 

TTS annotation for 11,098 known full-splice or incomplete-splice match transcripts.  
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In examining the transcriptional pattern of the horse genome, we revealed similar complexity in gene 

transcription to that of the human [7]. Specifically, we observed that genes with multiple isoforms tend 

to express more than one isoform simultaneously in any given tissue. The major isoforms (the isoform 

with highest expression) differed by tissue type. This aligns with the current understanding that 

isoforms, not genes, are directly associated with tissue-specific biofunctions and regulation occurs in a 

tissue specific manner. Most importantly, our data suggest that most known isoforms annotated in the 

Ensembl equine transcriptome are ubiquitous, while many novel isoforms identified in the Iso-seq 

transcriptome show tissue-specific expression, highlight the need for additional Iso-seq data across 

tissues. The addition of the novel isoforms identified here should aid the equine genetics community in 

advancing studies of complex traits. 

Despite these improvements, the present Iso-seq transcriptome was unable to accurately define TSS due 

to a lack of 5’ captured reads. While an aggressive approach was taken to ensure 5’ completeness, a 

small portion of transcripts were still determined to be potentially 5’ incomplete (Figure 2.2A and B). In 

addition, this approach may hinder the discovery of alternative TSS. Furthermore, small RNAs with non-

polyadenylated tails are missing from the poly-A captured cDNA libraries used for both Iso-seq and RNA-

seq. Assays targeting non-polyadenylated RNAs, such as small RNA sequencing and techniques capturing 

5’ capped transcripts like CAGE-seq are necessary to complement this Iso-seq transcriptome to fully 

capture the transcriptional landscape in the horse genome. Further, while we demonstrate improved 

completeness of the FAANG equine transcriptome, only 9 tissues were utilized to construct it, and many 

rare or tissue-specific transcripts are likely to be missing, especially stem-cell-specific or embryonically 

specific transcripts. Indeed, short read sequencing data from bone marrow was the only tissue that 

showed a drastic decrease in mapping rate when compared to RefSeq or Ensembl transcriptomes, 

suggesting specific isoforms from this tissue are missing in the new transcriptome. In addition, since 
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mare and stallion tissues were prepared at two different laboratories, despite using same protocols, we 

could not distinguish any sex-specific expression from batch effects during RNA-seq library construction. 

For the purpose of providing a comprehensive transcriptome, we focused on assessing the 

completeness of the FAANG equine transcriptome and overall complexities of tissue-specific 

transcription in the horse. However, the long read-length of Iso-seq data also provides unique 

opportunities for phasing exons.  Therefore, future experiments will aim to use this data, coupled with 

whole genome sequencing and quantifiable RNA-seq of the same animals, to study allele-specific 

expression. Additionally, with the FAANG transcriptome and the large repository of RNA-seq data from a 

diverse set of tissues, future studies can focus on quantifying gene expression across tissues and 

conditions. 

 

Methods and Materials 

RNA Extraction and Sequencing 

From the outset of the equine FAANG initiative, researchers were invited to “adopt” tissues of interest. 

This involved sponsorship of the sequencing costs for two biological replicates (2 male or 2 female) of 

the “adopted” tissue. Under this Adopt-A-Tissue model, along with the eight prioritized tissues funded 

by both the USDA National Institute of Food and Agriculture and the Grayson Jockey Club Foundation, 

the equine community collectively generated short-read mRNA-seq data from over forty tissues. All RNA 

extractions for mRNA-seq were performed at two locations (female samples at UC Davis, male samples 

at University of Nebraska-Lincoln). Briefly, tissue aliquots were homogenized using Biopulverisor and 

Genogrinder in TRIzol reagent (ThermoFisher Scientific, Waltham MA). RNA was isolated and purified 

using RNeasy®Plus Mini/Micro columns (Qiagen, Germantown, MD) or Direct-zol RNA Miniprep Plus 

(Zymo Research, Irvine, CA). A detailed protocol can be found in Supplementary Materials 2.1 and 2.2. 
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For the female tissues, cDNA libraries were prepared with Illumina TruSeq Stranded kit and sequenced 

at the University of Minnesota sequencing core facility on an Illumina HiSeq 2500 using 125 bp paired-

end reads. Male samples went through similar library preparation before 150 bp paired-end sequencing 

at Admera Health (South Plainfield, NJ) on an Illumina NovaSeq. 

Nine tissues (lamina, liver, left lung, left ventricle of heart, longissimus muscle, skin, parietal cortex, 

testis, and ovary) from the FAANG biobank [18,19] were selected for Iso-seq to represent a wide range 

of biological functions and therefore, gene expression. RNA for Iso-seq was extracted separately from 

the same tissues as mRNA-seq using the same protocol. All tissues were processed in one batch for Iso-

seq, except for parietal cortex, which was processed in a separate batch as a pilot study. One sample per 

sex per tissue was selected for sequencing based on sample availability and RNA integrity numbers (RINs 

selected > 7). cDNA libraries were prepared and sequenced at UC Berkely QB3 Genomics core facility. 

Two libraries were randomly pooled and sequenced on a single SMRT cell on PacBio Sequel II. 

 

Transcriptome Assembly 

Pooled subreads were first demultiplexed using Lima [30]. Circular consensus reads (ccs) were then 

constructed from demultiplexed subreads using PacBio Ccs program [31].  PolyA tails were trimmed 

from ccs reads using Isoseq3 [32].  This step also removes concatemers and any reads lacking at least 20 

bp of polyA tails. Redundant reads were then clustered based on pair-wise alignment using Isoseq3 [32]. 

Clustered transcripts were aligned to the reference genome EquCab3 [2] using minimap2 [33] without 

reference annotation as guide. Collapsed transcripts were filtered if they were not supported by at least 

two full length reads. Filtered transcripts from each sample were then merged into a single 

transcriptome using Cupcake [34] and further filtered to retain only those detected in more than one 

sample. The merged total transcriptome was again aligned to the reference genome and collapsed to 

remove redundant transcripts. Potential 5’ degraded transcripts were also removed by collapsing 
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transcripts that had identical 3’ ends and only differed at 5’ ends. SQANTI3 [24] was then used to classify 

and annotate the transcriptome. Finally, the total transcriptome was filtered to remove nonsense-

mediated decay transcripts, transcripts without short-read coverage support, and transcripts with a 

splice junction not covered by short-read RNA-seq data to generate the final FAANG equine 

transcriptome. To detect potential intra-primed transcripts, the percentage of adenines in a 20 bp 

window immediately downstream of the annotated transcription termination site (TTS) was calculated 

for every Iso-seq transcript. Transcripts with 80% or more adenines (i.e., allowing for 4 mismatches with 

poly-T oligonucleotides) in a 20 bp window downstream of annotated TTS were designated as potential 

intra-priming candidates.  Data processing, visualization, and statistical analyses were performed using 

pandas [35], matplotlib [36], seaborn [37], scipy [38], and scikit-learn [39]. 

 

RNA-seq analysis 

Short-read RNA-seq data were trimmed to remove adapters and low-quality reads using trim-galore [40] 

and Cutadapt [41]. Read qualities were inspected using fastQC [42] and multiQC [43]. Trimmed reads 

were aligned to equCab3.0 using STAR aligner [44] with standard parameters (with --outSAMstrandField 

intronMotif --outSAMattrIHstart 0). PCR duplicates were marked using sambamba [45]. Mapping rates, 

qualities, and fragment lengths were assessed with samtools [46] and deeptools [47]. Aligned reads 

were used to assess completeness of transcriptomes using deeptools [47]. BWA MEM [48] was used to 

align the RNA-seq reads directly to transcriptomes and samtools [46] was used to calculate the 

percentages of properly paired reads from the transcriptome alignment. Due to the presence of 

alternatively spliced isoforms in transcriptomes, multiple-alignment reads were not removed. 
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ATAC-seq analysis 

ATAC-seq data from the 8 tissues (lamina, liver, left lung, left ventricle of heart, longissimus muscle, 

parietal cortex, testis, and ovary) collected from the same animals were generated and processed 

according to Peng et al. [22] Libraries were sequenced in 50 bp paired-end mode (PE50) on Illumina 

NovaSeq 6000. Aligned reads were used to quantify normalized read counts in 1Kb up- and down-

stream of TSS sites annotated in the equine FAANG transcriptome. 

 

Data Access 

Short read RNA-seq data can be accessed from ENA and SRA under the accession number PRJEB26787 

(female tissues) and PRJEB53382 (male tissues). Iso-seq data can be accessed from ENA and SRA under 

the accession number PRJEB53020. ATAC-seq data can be accessed from ENA and SRA under the 

accession number PRJEB53037.  
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Abstract 

High-quality genome and transcriptome assemblies are the beginning framework necessary to advance 

our understanding of the biology of the horse. In addition to these assemblies, annotation of the 

regulatory elements is needed to provide a comprehensive view of tissue specificity that will aid in 

answering complex biological questions. Active regulatory elements are typically characterized by 

chromatin accessibility, which allows transcription factors (TF) to access regulatory elements in the DNA, 

thereby controlling gene expression. Therefore, we assessed the chromatin accessibility, using the assay 

for transposase-accessible chromatins (ATAC-seq), in nine equine tissues (adipose, heart, lamina, liver, 

lung, ovary, testis, muscle, parietal cortex) from two healthy female and male horses. We annotated a 

total of 332,115 open chromatin regions across the nine tissues and correlated transcript abundance 

with transcription start site (TSS) accessibilities. The identified open regions were enriched in 

transcription start and termination sites (TSS/TTS), exons, and promoter regions and contained many 

known important TF binding sites, including CTCF and Sp/KLF family TFs. These data identified 190,815 

open chromatin regions with tissue specific putative functional roles, paving the way for further 

hypothesis generation and testing of complex genetic diseases in the horse. 

 

Introduction 

Since the completion of the equine reference genome assemblies [1,2], steady progress has been made 

to identify tissue-specific transcription in the horse [3–8]. The Ensembl annotation for EquCab3.0 

characterizes 59,087 transcripts, covering 46.5% of the genome (including introns, UTRs, and 
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pseudogenes) [6,9]. Similarly, the RefSeq annotation contains 77,102 transcripts, covering 46.0% of the 

genome [7,10]. Most recently, we compiled a multi-tissue comprehensive transcriptome containing 

153,492 transcripts, covering 54.9% of the genome (see Chapter 2) [8]. These findings align with many 

studies in other species, suggesting that much of the eukaryotic genome is transcribed, although many 

noncoding transcripts’ functional roles remain unclear [11–16]. 

Nonetheless, many untranscribed regulatory elements, including enhancers and promoters, remain 

poorly characterized. Active regulatory elements are typically characterized by a lack of nucleosome 

binding and therefore, chromatin accessibilities are often used as a proxy for identifying active 

regulatory elements [17]. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) 

is a popular method to assess the genome-wide chromatin accessibilities, owing to its simple protocol 

and quick turn-around time [18]. Several efforts have been made to adapt the original ATAC-seq 

protocol to tissue [19] and cryopreserved nuclei [20] samples. We previously demonstrated the 

feasibility of interrogating genome-wide chromatin accessibility using both flash frozen tissues as well as 

cryopreserved nuclei in the horse [21, see Addendum 1].  

To characterize tissue-specific transcription and regulation, the equine Functional Annotation of the 

Animal Genome (FAANG) initiative generated a biobank of over 80 tissues, cells, body fluids, and 

cryopreserved nuclei samples [22,23]. This rich repository of well-characterized tissue samples provides 

a unique opportunity to interrogate coordinated tissue-specific gene transcription and regulation. 

Indeed, RNA sequencing data from various tissues from this biobank has led to a much-improved 

transcriptome annotation for the equine genome [8]. Taking advantage of this valuable resource, we 

aimed to define tissue-specific open chromatin regions using cryopreserved nuclei of nine tissues 

(adipose, lung, liver, heart, longissimus muscle, cortex, lamina, ovary, and testis) in healthy female and 

male horses. 
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Results 

Library Quality Assessment 

Chromatin accessibility was profiled from nine equine tissues (adipose, heart, lamina, liver, lung, ovary, 

testis, muscle, cortex) of four biological replicates (female: AH1, AH2; male: AH3, AH4) (Fig 3.1A). Most 

libraries contained 60% to > 90% unique reads, with the exception of liver and cerebral cortex samples 

(Fig 3.1B). Data from the female liver samples were generated from our previous study, where excessive 

mitochondria contamination led to lower library complexities and resequencing was performed to reach 

desired unique read counts [21]. After removing polymerase chain reaction (PCR) duplicate reads, all 

libraries contained less than 20% of mitochondria reads (Fig 3.1C). Despite lower library complexities, 

both liver and cerebral cortex samples showed clear nucleosomal periodicities and high enrichment 

around transcription start sites (TSS) (Fig 3.1D). On the other hand, while few PCR duplicates were 

present in lamina libraries, no nucleosomal periodicities or substantial TSS enrichment were apparent in 

these libraries (Supp. Fig 3.1). These data suggested that the lamina libraries, while having high 

complexities, had very high background noise. However, deep sequencing of the female lamina samples 

improved library enrichment. Testis libraries also showed low TSS enrichment while having high 

complexities and apparent nucleosomal periodicities (Supp. Fig 3.1). This was speculated to be a result 

of high proportions of sperm cells in the testis samples. When restricted to a set of genes highly 

expressed in spermatozoa [25], TSS enrichment scores were significantly higher (AH3: 5.7, AH4: 4.4). 
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Figure 3.1 Experimental design and quality control. 

(A) The overall experimental design for this project; (B) Ratio of unique reads across nine tissues; (C) 
Ratio of reads from nuclear genome after removing PCR duplicates; (D) Fragment size distributions and 
TSS enrichment plots (upper right inset plots) of liver and cerebral cortex samples. 

 

Peak Calling 

Since we were particularly interested in nucleosome free regions accessible to transcription factors, 

both ends of the aligned fragments were converted to BED format and peaks were called using MACS3 

[26] single-end BED mode, with each read extended to 150 bp, centered around Tn5 transposition sites 

(5’ and 3’ ends of forward and reverse reads, respectively). After peak calling, peaks were merged 

iteratively, first within each replicate, then between two replicates of each sex, and eventually between 

two sexes of each tissue, except ovary and testis, following the paradigm proposed by Grandi et al. [27] 

Accuracies of the peak calling were assessed using published histone ChIP-seq data from the same 

tissues [28]. Briefly, open chromatin peaks were intersected with “true positive” (H3K4me1 or H3K4me3 
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peaks overlapping H3K27ac) and “true negative” (H3K27me3 peaks) peak sets to calculate true positive 

rates (TPR) and false positive rates (FPR). Since testes were not included in the histone ChIP-seq dataset 

from Kingsley et al. [28], testes’ libraries were not evaluated at this step. Area under curve (AUC) values 

of at least 0.6 were achieved for all tissues evaluated (Fig 3.2A, Supp. Fig 3.2, Table 3.1). Cutoff scores 

were set at 25% FPR to filter a final set of peaks for each tissue, except testis. After filtering, the 

evaluated tissues had 59k-95k peaks remaining (Table 3.1). To apply a filter with a similar retention rate 

for testis, we set a cutoff score of 93 (85th percentile) for testis, which resulted in 78,164 remaining 

peaks (Table 3.1). The filtered peak sets were then merged following the same iterative procedure, 

resulting in a union set of 332,115 non-overlapping peaks. To examine the distributions of these peaks 

across tissues, the union peak set was intersected with each tissue peak set. Testis and liver had the 

highest amounts of tissue-specific peaks (31,880 and 31,460, respectively), while lung had the lowest 

number of tissue-specific peaks (8,447). Only a very small number of peaks were ubiquitous across 

examined tissues. (Fig 3.2B and C) 
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Figure 3.2 Peak metrics. 

(A) ROC plot of liver peaks, as a representative example across tissues. TPR: true positive rate, FPR: false 

positive rate, AUC: area under curve; (B) Intersections of peaks between tissues, bottom right: top 14 

intersections, black dots indicate that peaks in this intersection are found in a particular tissue, bottom 

left: histogram of total peaks in each tissue, top: histogram showing number of peaks in each 

intersection; (C) Number of peaks that were observed in a given number of tissues 
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Table 3.1 Peak metrics 

  
Merged Raw Peak 

Count 
Cutoff TP FP TPR FPR 

Remaining Peak 
Count 

Tissue 
Specific 

Adipose 941,236 67 10,595 2,008 0.59 0.25 77,655 22,884 

Cortex 435,514 114 14,109 1,959 0.78 0.25 65,583 18,249 

Heart 581,396 85 14,955 2,226 0.83 0.25 86,368 19,730 

Lamina 722,387 89 9,423 1,765 0.48 0.25 63,136 21,805 

Liver 557,874 76 16,078 2,815 0.87 0.25 95,048 31,460 

Lung 522,294 103 13,672 1,957 0.76 0.25 59,024 8,447 

Muscle 360,298 98 15,891 2,090 0.86 0.25 74,285 19,772 

Ovary 463,426 109 12,583 1,767 0.64 0.25 66,726 16,588 

Testis 520,160 N/A N/A N/A N/A N/A 78,164* 31,880 

Union 332,115 

Ubiquitou
s 

5,080 

* Testis peaks were filtered by score at 85th quantile since no histone peaks were available for this tissue 

TP: number of true positive peaks, FP: number of false positive peaks; TPR: true positive rate; FPR: false positive 
rate; cutoff: cutoff score below which peaks were removed from final peak set; union: peaks found in any tissue, 

after iterative merging; ubiquitous: peaks found in all nine tissues 

 

Tissue Correlation 

Using the union peak set, a count matrix of transposition events was constructed for all samples. This 

matrix was used to examine the pair-wise correlations between all samples (Fig 3.3A, Supp Fig 3.3). 

Replicates within most tissues were highly correlated, except lamina, consistent with previous 

observations of library qualities. Additionally, testis showed substantial differences from the rest of the 

tissues, likely due to a high proportion of spermatozoa with low transcriptional activities [29] in testis 

samples. Principle component analysis (PCA) revealed substantial tissue-specific structures, with the first 

principal component accounting for 25.2% of the variance in the count matrix (Fig 3.3B).  
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Figure 3.3 Cross- and within-tissue correlation. 

(A) Heatmap and scatter plots of Pearson correlations among biological replicates of liver; (B) Principal 

component analysis (PCA) of transposition counts across all peaks 
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Peak Annotation 

To explore potential functional roles of open chromatin regions, we annotated each peak by its 

proximity to annotated gene features [8]. The total union peaks were enriched in TSS, transcription 

termination sites (TTS), and exon regions (Table 3.2, Supp Table 3.1). This enrichment was more 

apparent in ubiquitous peaks (Fig 3.4). Gene ontology (GO) terms overrepresented in genes associated 

with these ubiquitous peaks were all essential housekeeping biological processes such as TOR signaling 

and kinase activity (Supp Table 3.2). For each tissue, 11-22% peaks were located within promoter-TSS 

regions. However, the same pattern was not observed in tissue-specific peaks. Only 3-5% of tissue 

specific peaks were in the promoter-TSS regions, while substantially more peaks were located in intronic 

or intergenic regions (17-22% intronic, 21-34% intergenic peaks across tissues; 23-26% intronic, 23-45% 

intergenic tissue-specific peaks). Motif analyses of these intergenic regions revealed a diverse range of 

TF binding sites, such as hepatocyte nuclear factor-4 alpha (HNF-4α) and estrogen-related receptor 

alpha (ERRα) binding sites in liver-specific intergenic open chromatin regions, myocyte enhancer factor-2 

(MEF2) family TF binding sites in heart-specific open chromatin regions, and SRY-related HMG-box (SOX) 

family TF binding sites in cerebral cortex-specific open chromatin regions. (Supp Table 3.3). 

 

Figure 3.4 Peak annotations 

Left: Composition of peaks by annotation in union peaks; Right: Composition of peaks by annotation in 

ubiquitous peaks 
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Table 3.2 Peak annotation 

 
Union 

Annotation Number of peaks Log2 Enrichment 

TTS 10,602 0.39 

Exon 116,529 0.38 

Intron 74,505 -0.23 

Intergenic 103,408 -0.41 

Promoter-TSS 26,282 1.54 

TTS: transcription termination site; promoter-TSS: 3kb up- and down-stream of annotated 
transcription start site (TSS) 

 

Differential Accessibility Analyses 

In addition to tissue-specific peaks, we selected a direct comparison of cerebral cortex and heart, two 

neighboring tissues on the PCA plot (Fig 3.3B) with clear separation, to demonstrate the differentially 

accessible regions (DAR) and its correlation with differential gene expression. Overall, approximately 

16% of peaks showed differential accessibility (FDR adjusted p<0.05), with 25,144 peaks (7.6%) more 

accessible in cerebral cortex and 29,206 peaks (8.8%) more accessible in heart (Fig 3.5A). To compare 

DAR with differentially expressed genes (DEG) between cerebral cortex and heart, peaks annotated as 

“promoter-TSS” (2 kb up- or down-stream of a TSS) were associated with their corresponding genes. The 

log2 fold-change (log2FC) of DAR was significantly correlated with log2FC of DEG in the same cortex and 

heart samples (one-sided Wald test, p<1 x 10-5, Pearson correlation coefficient r=0.4, Fig 3.5B). After 

selecting peak-gene pairs whose FDR adjusted p values from both DAR and DEG analyses were below 

0.05, we observed that most genes were located in quadrants 1 and 3 (Q1 and Q3 respectively), showing 

concordant changes in promoter-TSS accessibility and gene expression (Fig 3.5C). GO enrichment 

analyses showed that Q1 genes were primarily associated with neural activities while muscular and 
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cardiac related GO terms were enriched among Q3 genes (Supp Tables 3.3, 3.4). There were also 175 

and 177 genes in Q2 and Q4, respectively. GO Terms related to synaptic activity were enriched in Q2 

(Supp Table 3.5) while Q4 genes were overrepresented in actin-filament based processes. 

 

Figure 3.5 Differential accessibility analysis 

(A) Volcano plot of open chromatin peaks; peaks with FDR adjusted p<0.05 and |log2FC|>1 were colored 

by direction of accessibility change, positive log2FC indicate greater accessibility in cerebral cortex; (B) 

Scatter plot of log2FC from DEG and DAR analyses, Pearson correlation r=0.4; (C) Scatter plot of log2FC 

from DEG and DAR analyses, only those with both FDR adjusted p<0.05 were plotted; shaded areas 

indicate regions where either FCDEG or FCDAR was under 2-fold 
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Discussion 

Using ATAC-seq data from nine equine tissues, we identified a total of 332,115 regions with open 

chromatin genome wide, with 59,024- 95,048 peaks identified in each tissue. Not surprisingly, open 

chromatin regions were enriched around important transcription sites, with promoter-TSS regions 

having log2 enrichment between 1.54 and 2.9, with the noted exception of lamina (Supp. Table 3.1). 

Open regions found in all nine tissues were even more highly enriched in transcription-related sites, with 

69% of those located in promoter-TSS regions (Fig 3.4). This high level of TSS enrichment suggested 

functional elements related to essential biochemical functions that were highly accessible across all 

tissues that we assayed. Indeed, GO enrichment analyses revealed that genes associated with these 

ubiquitous regions were involved primarily in housekeeping functions.  

We observed that, while promoter-TSS regions were highly enriched in open chromatin peaks, especially 

in peaks found in all tissues, they were conspicuously absent from tissue-specific peaks. This echoed the 

findings from Halstead et al. [30], which showed very low numbers of TSS-related peaks in species-

specific open chromatin regions. This would corroborate recent findings that enhancers, not promoters, 

are the main drivers of tissue-specific transcription [31], which would be classified as intergenic in both 

our study as well as in Halstead et al., as all species interrogated in these studies lacked enhancer 

annotation. 

Combining our ATAC-seq data with previously reported mRNA-seq data from the same tissue and 

samples, we showed a strong correlation between differential accessibility of a functional element and 

differential expression of the corresponding gene. When FDR for both DAR and DEG was controlled at 

5%, we observed concordant patterns between the gene expression level and accessibility of promoter-

TSS region. Interestingly, a small number of genes (352 out of 4,566, 7.8%) also showed discordant 

patterns between gene expression and promoter-TSS accessibility. It should be noted that, while we 
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took a similar analytical approach for DEG and DAR, ATAC-seq and RNA-seq signals reflect fundamentally 

different regulatory features. RNA-seq captures total transcriptional activities in a population of cells, 

where a small population of cells with extremely high transcription of a given gene can dominate RNA-

seq signals for the entire population. On the other hand, ATAC-seq captures the proportion of cells 

whose DNA is accessible at a given locus. Thus, if a small population of cells have substantially high 

expression of a given gene, while the remaining cells do not express this gene nor is it accessible, the 

gene would be upregulated in the RNA-seq dataset but not identified as open in an ATAC-seq dataset, 

which could explain the discordant patterns we observed in Q2 and Q4 genes. To further dissect the fine 

regulatory landscape of these genes, single-cell based approaches are advisable for both RNA 

quantification and chromatin accessibility assessment to best match representing cell types across 

assays. 

In all nine tissues, 21-34% of peaks were located in the intergenic regions while 23-45% of tissue-specific 

peaks were in intergenic regions. It is likely that many of these regions have important regulatory 

functions but, since little is known about the annotation of enhancers and CTCF binding sites in the 

horse genome, more work is needed to better characterize these specific peaks and the genes they 

regulate. Motif analyses in this study identified common TF binding sites in many of these intergenic 

open chromatin regions. For example, over 41% (4,112) of the liver-specific intergenic open chromatin 

regions contained binding sites for ERRα, a TF known as a central regulator of energy metabolism [32]. 

Similarly, binding sites for various SOX family TFs were detected in 15-32% of cerebral cortex-specific 

intergenic open chromatin regions. The SOX family TFs have been shown to be important regulators for 

neural differentiation and adult neurogenesis [33].  

In conclusion, we identified 332,115 accessible regions genome wide across nine tissues. These regions 

were shown to harbor both tissue-specific and housekeeping regulatory elements and therefore, should 

be of interest in studies of complex traits in the horse. To further corroborate the functional roles of 
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these important open chromatin regions, ChIP-seq data of important histone modifications and TF 

binding sites can be used to annotate many intergenic and intronic peaks, which is an important next 

step for the equine FAANG project. 

 

Methods and Materials 

RNA-seq analysis 

Short-read mRNA-seq reads were trimmed to remove adapters and low-quality reads using trim-galore 

[34] and Cutadapt [35]. Read qualities were inspected using fastQC [36] and multiQC [37]. These reads 

were quantified against the equine FAANG transcriptome using salmon [38]. 

 

ATAC-seq analysis 

ATAC-seq data from the 9 tissues (adipose, lamina, liver, left lung, left ventricle of heart, longissimus 

muscle, parietal cortex, testis, and ovary) of two sexes collected from the equine FAANG biobank [22,23] 

were generated according to Peng et al. [21] Libraries were sequenced in 50 bp paired-end mode (PE50) 

on Illumina NovaSeq 6000. Reads were aligned to EquCab3.0 [2] using bwa mem with default 

parameters. Alignments were filtered to remove fragments that mapped to mitochondria genome, were 

discordantly mapped, PCR duplicates, or mapped to multiple loci using SAMTools [39]. Remaining reads 

were shifted +4/-5 bp on plus/minus strand, respectively, to account for the 9 bp insertion introduced 

by Tn5 transposase [18] using deepTools [40]. Both forward and reverse reads of the final fragments 

were converted to bed format using bedtools [41] and peaks were called and refined using MACS3 

[26,42] (-f BED -p 0.01 --shift -75 --extsize 150 --nomodel --call-summits --nolambda --keep-dup all). 

After peak calling, we extracted summits from called peaks, and extended them on both sides by 250 bp, 

resulting in a set of 501 bp fixed length peaks. These peaks were then sorted by their score and non-
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overlapping, most significant peaks were retained, as described in Grandi et al [27]. The same procedure 

was employed to subsequently merge biological replicates and then all tissue peak sets to generate a 

union set of peaks. A count matrix was constructed for the union peak set containing number of 

transposition events per peak per sample. This count matrix was used for differential accessibility 

analyses using DESeq2 [24]. The union peak set was then intersected with each tissue peak set to 

determine if a peak was present in each tissue. Peaks only identified in one tissue type were denoted 

“unique” peaks while those identified in all nine tissues were denoted as “ubiquitous”. 

 

ROC Analyses 

For each set of peaks merged by tissues, false positive rates (FPR), true positive rates (TPR), and 

precision were calculated using published Histone ChIP-seq peaks from Kingsley et al [28]: 

First, a set of “real positive” (RP) peaks were collected by merging H3K4me1 and H3K4me3 peaks and 

intersecting the merged peaks with H3K27ac peaks from each tissue. A set of “real negative” (RN) peaks 

were collected from H3K27me3 peaks from each tissue. Subsequently, each set of ATAC-seq peaks were 

intersected with RP and RN peaks, and the number of intersections were recorded as “true positive” 

(TP) and “false positive” (FP). TPR, FPR, and precision were then calculated as follows: 

𝑇𝑃𝑅 =
𝑛𝑇𝑃

𝑛𝑅𝑃
 

𝐹𝑃𝑅 =
𝑛𝐹𝑃

𝑛𝑅𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑇𝑃

𝑛𝑇𝑃 + 𝑛𝐹𝑃
 

 

 

 

 



65 
 

Motif and gene ontology analyses 

Motifs were analyzed using HOMER [43] (-size 250) with custom genome built from EquCab3.0 assembly 

[2] and FAANG transcriptome annotation [8]. GO enrichment analyses were performed using PANTHER 

[44] with default parameters. 

 

Data Access 

RNA-seq data can be accessed from ENA and SRA under the accession number PRJEB26787. ATAC-seq 

data can be accessed from ENA and SRA under the accession number PRJEB53037. Histone modification 

peaks can be accessed from FAANG data portal (https://data.faang.org/) under the accession number 

PRJEB35307 

Funding: This project was supported by the Grayson-Jockey Club Research Foundation, Animal Breeding 

and Functional Annotation of Genomes (A1201) Grant 2019-67015-29340 from the USDA National 

Institute of Food and Agriculture and the UC Davis Center for Equine Health with funds provided by the 

State of California pari-mutuel fund and contributions by private donors. Additional support for C.J.F. 

was provided by NIH L40 TR001136. 

Supplementary Figure 3.1 Library Qualities; fragment size distributions and TSS enrichment plots 

(upper right inset plots) of all tissues 

Supplementary Figure 3.2 Peak Qualities; ROC plots of all tissues 

Supplementary Figure 3.3 Cross- and within-tissue correlation; heatmap of Pearson correlations among 

all tissues and their biological replicates 
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Abstract 

Regulatory elements (REs) are segments of DNA that drive tissue- and developmental stage-specific 

gene expression. Identifying and annotating these REs is an essential step towards understanding the 

gene regulation network underlying complex phenotypes in the horse. Relying on the rich epigenomic 

dataset generated by the Functional Annotation of Animal Genome (FAANG) project, we catalogued 

several types of REs across nine tissues, including promoters, enhancers, and insulators. Through 

leveraging the FAANG transcriptome data, correlations of 84,613 REs were identified across tissues 

based on target gene expression. This dataset, along with the FANNG transcriptome assembly and open 

chromatin annotation from previous studies, are now available as UCSC Genome Browser tracks for the 

equine community. 

 

Introduction 

In eukaryote genomes, DNA is organized in a three-dimensional structure, where nucleosomes are 

dynamically unpacked in actively transcribed or regulatory regions [1–4]. This dynamic chromatin 

remodeling constitutes a crucial aspect of gene regulation: cis-regulatory elements are brought near 

their target regions by formation of chromatin loops and transcription factors (TF) are recruited to 

exposed DNA elements. Genetic variants altering this regulatory landscape have been demonstrated to 

have phenotypic effects [5–7]. Therefore, annotating the genome by specifically defining these 

regulatory elements (REs) can provide significant context to understanding genetic variations 

contributing to many important traits in the horse. 
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While the complex molecular mechanism through which this process is regulated remains an active field 

of research, a growing body of evidence points to histone protein post-translational modifications as an 

important intermediary of transcription regulation [8–10]. Specifically, histone protein 3 lysine 4 mono- 

and tri-methylation (H3K4me1 and H3K4me3) have been shown to be enriched around the enhancer 

and promoter regions, respectively [11,12] with known downstream effectors that further regulate gene 

expression [13–15]. Additionally, H3K27ac is enriched around active elements and associated with 

higher levels of gene expression [16]. On the other hand, H3K27me3 is usually found around genes that 

are not active [17]. 

Since these four histone modifications denote important features of transcription regulation, the equine 

Functional Annotation of Animal Genome (FAANG) group assayed these marks using chromatin 

immunoprecipitation with sequencing (ChIP-seq) in nine tissue types from four animals, as previously 

reported [18,19]. Kingsley et al. [20] and Barber [21] reported tissue specific, as well as conserved 

putative regulatory sites, in these tissues across sexes as the data was available. However, the 

interactions between transcription factors and histone modifications are complex and multifaceted and 

combining these data set with others can advance the understanding of RE. For example, colocalization 

of H3K4me3 and H3K27me3 at bivalent promoters have been correlated with lineage differentiation 

[22], while colocalization of H3K4me1 and H3K27ac separate active enhancers from poised ones [17]. 

Therefore, defining these colocalized signals is necessary to better understand tissue specificity of active 

REs verses those that are poised. 

In addition to histone modifications, three-dimensional structures of chromosomes also play an 

important role in gene regulation. CCCTC-binding factor (CTCF) is a main architectural protein that is 

integral to the formation of chromatin loops, which enables cis-regulatory interactions between DNA 

elements [23]. Given the complex combinatorial effects of various chromatin regulators on gene 

expression, various unsupervised methods [24,25] have been developed to interrogate the unique 
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regulatory states of genomic loci based on its epigenetic profiles, often termed chromatin states. In this 

study, we took advantage of a rich dataset of epigenetic modifications in the horse genome across nine 

tissue types (adipose, parietal cortex of brain, heart, lamina, liver, lung, muscle, ovary, testis) from the 

FAANG biobank. Here we report genome-wide, tissue-specific annotation of the horse genome and 

examine the correlations among each chromatin state’s epigenetic profile, chromatin accessibility, and 

underlying transcription. 

 

Results 

Chromatin state discovery 

Chromatin states were identified using four major histone modifications (H3K4me1, H3K4me3, H3K27ac, 

H3K27me3) as well as CTCF binding. Overall, 14 unique states, corresponding to enhancer, promoter, 

and insulator states of various degrees of activities, as well as polycomb repressed state were identified 

(Fig 4.1A). Notably, the CTCF-bound active transcription start site (TSS) state (state 4), co-enriched with 

CTCF and active promoter marks (H3K4me3 and H3K27ac), was highly enriched around TSS, whereas the 

CTCF-less active TSS state (state 3) was more enriched at approximately 500 bp up- and down-stream of 

TSS. Collectively, states with assayed epigenetic signals (states 1-13) covered up to 20% of the genome, 

with the polycomb repressed state (state 13) covering the largest portion of the genome across tissues, 

followed by enhancer states (states 6-10, Fig 4.1B). While promoter states only accounted for 3-5% of 

the genome, or around 20% of all annotated states, they comprised over 50% of states annotated at TSS 

regions (Fig 4.1B, C). 
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Figure 4.1 Chromatin states 

(A) Emission probabilities, TSS neighborhood enrichment, and different genic features’ enrichment at 

each state; (B) The percentage of genome covered by each state in each tissue; (C) The number of 

segments from each state in each tissue  

 

Tissue specificity 

To examine the tissue specificity of each state, each state’s segments from different tissues were 

merged into a union set of segments and intersected with each tissue. Overall, the majority of segments 

in each state were found in only one tissue type, with the exception of CTCF bound active TSS state 

(CTCF/Active TSS), where only a simple plurality of segments were tissue-specific (Fig 4.2). This state also 

harbored the greatest number of common segments across all nine tissues examined, followed by 

insulator and active promoter states. Additionally, promoter states demonstrated higher levels of 

ubiquity than enhancer states (Fig 4.2). 
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Figure 4.2 Tissue-specificity of states 

The proportion of segments from each state that were identified in different numbers of tissues 

 

Chromatin states predict gene expression 

To correlate gene expression with chromatin state annotation, companion RNA-seq data for each tissue 

from FAANG was used to quantify the equine FAANG transcriptome (Chapter 2) via quasi-mapping [26]. 

Transcript level quantification was then summarized to gene level using tximport [27]. For each tissue, 

genes were classified as high- or low-expression based on their aggregated transcripts per million (TPM) 

values (high: TPM ≥ 1; low: TPM < 1). The enrichment of each state was then estimated across gene 

bodies, in exonic regions, around TSS and transcription end sites (TES) across all nine tissues (Fig 4.3). 

CTCF bound active TSS state (state 4) and showed a 59.4-fold enrichment around TSS of highly expressed 

(TPM ≥ 1) genes, 7.7 times that of lowly expressed genes (TPM < 1). Similarly, active promoter state 

(state 9) showed a 14.7-fold enrichment in promoter-TSS neighborhood (TSS2kb), 6.4 times that of lowly 

expressed genes. On the other hand, poised promoter and enhancer states (states 1 and 7) were more 

enriched around TSS of lowly expressed genes (18.7- and 7.5-fold enrichment, respectively). Polycomb 

repressed states (state 13) were absent around genes with high expression but enriched in low-

expression genes while promoter state marked by a single H3K4me3 mark (state 5) was observed at a 
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similar level in both categories. Since this promoter state also showed the highest tissue-specificity (Fig 

4.2), we further examined its distribution among tissues. Most remarkably, testis harbored a 

substantially greater number of segments of State 5 than any other tissues (46,406 in testis compared to 

5,235 in ovary, which was the next highest tissue) (Fig 4.4). 61% of promoter state (state 5) was found in 

testis and of those, 86% were specific to testis. Similarly, testis also contained the highest numbers of 

CTCF-less active TSS and poised promoter states (Supplementary Fig 4.1). While less pronounced, it also 

accounted for 44% of CTCF-less active TSS state (state 3) and 54% of poised promoter state (state 1). 

 

Figure 4.3 State enrichment in tissue specific genes 

Heatmap of enrichment for each state around genes expressed and not expressed in each tissue. The 

top three color bars denote gene expression status, genic features, and tissues, respectively. Enrichment 

scores were normalized in each column 
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Figure 4.4 Promoter state shared across tissues 

Intersection plot showing number of segments annotated as promoter state (state 5) unique to each 

tissue and shared across tissues. Top: bar plot indicates sizes of each intersection; Bottom right: each 

column denotes a unique intersection with filled dots indicating that segments in this intersection were 

found in the corresponding tissue; Bottom left: bar plot indicates number of segments annotated as 

promoter state (state 5) in each tissue 

 

Chromatin states partially annotate open chromatin regions 

To infer potential functions of open chromatin regions, especially those located in the intergenic 

regions, open chromatin peaks from Chapter 3 were annotated based on overlap with annotated gene 

features as well as chromatin state segments in each tissue. First, we examined overlap between each 

chromatin region and different open chromatin states across tissues (Fig 4.5A). Open chromatin regions 

were categorized into 5 categories, based on their proximity or overlap with annotated gene features: 

overlapping promoter-TSS neighborhood (within 2kb up- and down-stream of TSS), overlapping 

transcription termination sites (TTS), overlapping exons, and overlapping introns. There was an overall 
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agreement in promoter-TSS assignment between open chromatin regions and chromatin state 

annotations: 92.9% of open chromatin peaks located in TSS-promoter regions overlap a TSS or promoter 

state (states 1-5, 9). Additionally, open chromatin regions located in exonic and intergenic regions 

showed higher percentages of enhancer states (28.9% and 17.9%, respectively) (Fig 4. 5A). 

 

Figure 4.5 Chromatin accessibility across states 

(A) Percentage of open chromatin peaks that overlap each chromatin state; (B) Heatmap of enrichment 

for each state around open chromatin peaks. The top three color bars denote shared or tissue-specific 

open chromatin, open chromatin annotation, and tissues, respectively. Enrichment scores were 

normalized in each column 
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Next, we compared chromatin state enrichment among shared and tissue-specific open chromatin 

regions (Fig 4.5B). An open chromatin region was annotated as specific if it was found in only one tissue. 

CTCF bound active TSS state (state 4) was highly enriched in common accessible chromatin regions, 

especially those annotated as promoter-TSS regions (121-fold enrichment), but much less so in tissue-

specific accessible chromatin regions (12-fold enrichment). Similarly, CTCF bound enhancer state (state 

10) was also highly enriched in common accessible chromatin regions outside of promoter-TSS 

neighborhoods (15.3- to 31.5-fold enrichment), and less so in tissue-specific accessible chromatin 

regions (3.9- to 7.6-fold enrichment).  

 

Predicting target genes of REs 

Since many enhancers interact with genes other than their nearest neighbors [28], we calculated 

Spearman correlation coefficients between ChIP-seq and RNA-seq data to predict target genes of REs. To 

identify topologically associated domains (TADs) within which enhancer-promoter interactions occur 

[29] in the absence of Hi-C data, we predicted CTCF-mediated chromatin loops using CTCF ChIP-seq 

data, as described by Oti et al [30]. Overall, we identified 10-14k CTCF-mediated loops per tissue, with 

testis being the only exception, having only 6,146 CTCF-mediated loops. In all tissues, including testis, 

these predicted loops covered 80-85% of the genome. Since we only had at most 4 biological replicates 

per tissue (two for ovary and testis samples), which was not enough samples to reliably estimate 

Spearman correlation coefficients [31], we opted for a pan-tissue approach. Tissue-wise chromatin loops 

were merged across tissues to form a catalog of pan-tissue CTCF-mediated chromatin loops, enabling 

estimation of correlation across 9 tissues and 4 biological replicates. This catalog contained 4,556 non-

overlapping loops, covering 94.0% of the equine genome. This was comparable to a previous study that 

identified 2,200 TADs, spanning 91% of the mouse genome using Hi-C data from mouse cell lines [32].  
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As demonstrated by Kern et al. [33], H3K27ac intensity of an RE is most tightly correlated with its target 

gene’s expression level. Therefore, we correlated H3K27ac ChIP-seq read counts and RNA-seq read 

counts of each RE-gene pair that resided within a same predicted chromatin loop. After adjusting for 

multiple testing using Benjamini-Hochberg procedure to control the false discovery rate at 5%, a total of 

84,613 RE-gene pairs remained as candidates. These REs were then annotated as genic, intergenic, or 

TSS-proximal based on their relative proximities. A majority of these candidate pairs had their REs 

outside of the gene bodies or TSS-proximal regions (intergenic REs, 66,051) while only a small portion of 

them had promoter-like relationship (REs in the TSS-proximal regions, 8,225). Intergenic REs were found 

at varying distances to TSS, with a median distance of 200 Kb and 79% of REs being within 1 Mb their 

target TSS. We also observed more REs (75%) located downstream of their target genes (Fig 4.6). 

 

Figure 4.6 Distance from intergenic RE to target genes’ TSS 

Density plot of distances from intergenic REs to their target genes’ TSS. Negative distance denotes RE 

being upstream of target TSS. Median absolute distance: 200 Kb 
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A track hub of integrated FAANG dataset 

To provide the equine community with an integrated, openly access FAANG dataset, we developed a 

UCSC track hub (https://genome.ucsc.edu/s/cjfinno/equCab3) to host all currently published equine 

FAANG datasets. All features discussed above can be found in this track hub, in addition to the equine 

FAANG transcriptome, mRNA-seq data, as well as open chromatin regions (Chapter 3). Fig 4.7 shows an 

example region from this track set, with two representative tissues displayed: brain and heart. Acyl-CoA 

thioesterase 11 (ACOT11) expression compared to the other tissues is outlined by the RNA-seq tracks.  

This gene was previously shown to be most abundantly expressed in heart [34] and our data corroborate 

this finding.  The high expression of this gene was also supported by the active TSS states (states 3 and 

4) near the second annotated exon of ACOT11 in heart, as well as the ATAC peaks near the same region.  
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Figure 4.7 Equine FAANG UCSC tracks 

An example region showing ACOT11 and its surrounding regulatory elements in UCSC Genome Browser. 

Brain and heart are shown in order from top to bottom. Each tissue contains tracks showing ATAC peaks, 

predicted CTCF-mediated loops, RNA-seq read pileup, and chromatin states. Additional tracks can be 

enabled in the track settings.  
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Discussion 

In this study, we identified 14 unique chromatin states using data from four major histone marks and 

CTCF binding assays. These chromatin states were identified in each of the nine tissue types, covering 7-

21% of the genome, representing major REs. The chromatin state annotation correlated well with 

chromatin accessibility in the same tissues and provided additional information regarding potential 

function of REs in these tissues. These annotated REs will be an invaluable addition to the equine 

reference genome assembly. The similar annotation provided by ENCODE has led to discoveries of many 

regulatory variants in various diseases [5,7,35]. We anticipate this catalog of REs will prove instrumental 

in evaluating complex genetic traits and disease in the horse.   

In developing these unique chromatin states, we noted a particular difference in chromatin state 

annotation for shared and tissue-specific open chromatin peaks. CTCF bound promoter and enhancers 

were highly enriched in shared open chromatin regions but less so in tissue-specific regions. CTCF is a 

chromatin regulator that facilitates formation of chromatin loops. It has been suggested that a subset of 

CTCF binding sites is constitutively bound and critical to well-regulated gene expression [36] and that 

CTCF binding at proximal promoters promotes distal enhancer-promoter interaction, which is essential 

to the activation of many genes across a diverse range of tissues [37]. Our results suggest that these 

CTCF-mediated promoter-enhancer interactions play a large role in genes expressed across multiple 

tissues, rather than tissue-specific genes. This aligns with other findings which suggest that CTCF 

patterns are established early in embryogenesis [38].  

Among the nine tissues assayed in this study, testis showed the most distinct regulatory landscape. It 

had the largest numbers of unique segments annotated as promoter state (state 5), CTCF-less active TSS 

state (state 3), and poised promoter state (state 1), reflecting unique transcriptome complexities in 

testes, as has been previously demonstrated [39,40].  
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Overall, this study presents the first comprehensive overview of REs across a diverse range of tissues in 

the horse. Taken together with the previously reported tissue-specific transcriptome and chromatin 

accessibility map, these annotated states provide a critical resource enable a better understanding of 

the regulatory landscape impacting complex traits in the horse. 

 

Methods and Materials 

Chromatin state discovery 

ChIP-seq data for histone modifications were obtained from previously published studies [20,21]. 

Additionally, ChIP-seq for CTCF was performed for the same nine frozen tissue samples at Diagenode 

Inc. Briefly, CTCF ChIP libraries were sequenced at 50bp single- and paired-end (female and male 

samples, respectively). Reads were aligned to EquCab3.0 [41] using bwa mem [42] with default 

parameters. Aligned reads were subsequently filtered to remove low-quality mapping, PCR duplicates, 

and mitochondria reads using SAMTools [43]. BAM files for all five marks were binarized using 

ChromHMM [24] BinarizeBam (-b 100 -n 140 -p 0.00001) and several models with different numbers of 

states were trained on binarized data using LearnModel function (-b 100). A model with 14 states was 

selected because it had the minimum number of states with strong correlation to all states identified in 

other models. 

 

Transcript analyses 

RNA-seq data was obtained from and processed as described in Chapter 2. In addition, transcript level 

TPM values were summarized to gene level using tximport [27]. Genes were designated “active” if its 

aggregated TPM was at least 1 in a tissue. TSS, promoter-TSS neighborhood (TSS±2kb), exon, intron, and 

TTS coordinates were determined for each gene based on transcriptome from Chapter 2.  
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Enrichment analysis 

Enrichment of each state in genes and open chromatin regions was calculated using the following 

formula: 

𝑁𝐴𝑛𝑛 ⋂ 𝑆𝑡𝑎𝑡𝑒

𝑁𝐴𝑛𝑛

𝑁𝑠𝑡𝑎𝑡𝑒
𝑁𝑔𝑒𝑛𝑜𝑚𝑒

 

where 𝑁𝐴𝑛𝑛 is the number of bases in a particular annotation (gene, exon, TSS, open chromatin peaks, 

etc) and 𝑁𝑠𝑡𝑎𝑡𝑒 is the number bases in each state. 𝑁𝐴𝑛𝑛 ⋂ 𝑆𝑡𝑎𝑡𝑒 refers to the number of bases that are in 

both a particular state and annotation. 𝑁𝑔𝑒𝑛𝑜𝑚𝑒 is the total size of the reference genome.  

 

Open chromatin annotation 

Open chromatin peaks for the same nine tissues were identified as previously discussed (see Chapter 3). 

Each set of open chromatin peaks were annotated based on their proximity to or overlap with several 

geneic features (promtoer-TSS neighborhood, exon, intron, TTS), intergenic regions, and chromatin 

states, using annotatePeaks.pl from HOMER [44]. 

 

Data Access 

CTCF ChIP-seq data can be accessed from SRA/ENA under project accession PRJEB41079. Histone ChIP-

seq data were published by Kingsley et al. [20] and Barber [21].  All other data were discussed in 

previous chapters. 

Funding: This project was supported by the Grayson-Jockey Club Research Foundation, Animal Breeding 

and Functional Annotation of Genomes (A1201) Grant 2019-67015-29340 from the USDA National 

Institute of Food and Agriculture and the UC Davis Center for Equine Health with funds provided by the 
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State of California pari-mutuel fund and contributions by private donors. Additional support for C.J.F. 

was provided by NIH L40 TR001136. 

Supplementary Figure 4.1 Active TSS and poised promoter states shared across tissues; Intersection 

plot showing number of segments annotated as A) Active TSS or B) Poised promoter states unique to 

each tissue and shared across tissues. Top: bar plot indicates sizes of each intersection; Bottom right: 

each column denotes a unique intersection with filled dots indicating that segments in this intersection 

were found in the corresponding tissue; Bottom left: bar plot indicates number of segments annotated 

as A) Active TSS (state 3) or B) Poised promoter state (state 1) in each tissue 
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Concluding Discussion 

In this thesis, we detailed the efforts to create an integrated annotation for the horse genome that will 

aid in deeper understanding of gene expression and regulation across tissues in the horse. We showed, 

in three stages, either improvement to current equine genome annotation or inclusion of newly 

annotated regulatory elements. We anticipate these new resources will play a vital role to 

understanding how genetic variation in the horse contributes to equine biology and health.   

In Chapter 2, we outlined an approach to expand the equine transcriptome annotation. Novel alternate-

spliced isoforms as well as extended 5’ and 3’ transcribed regions were identified using long-read Iso-

seq, validated by abundant short-read mRNA-seq. This combined approach expanded the equine 

transcriptome to 153,492 transcripts (of which 128,723 are multi-exonic) from 36,239 genes, with a 

gene-to-isoform ratio of 4.2 and an average 19.5% (8-45%) improvement in completeness compared to 

Ensembl and RefSeq transcriptomes across all sequenced FAANG tissues. The newly discovered genes 

and isoforms could help identify important coding or regulatory variants in the horse.  

With an improved transcriptome annotation, we set out to identify other non-transcribed or lowly 

transcribed regulatory regions in the horse genome. The first step was to identify regions of the horse 

genome that were accessible to transcription factors, which can then serve as proxies to identifying 

important regulatory regions. Using ATAC-seq, we identified 332,115 regions with open chromatin 

genome wide across tissues, with 59,024- 95,048 peaks identified in each tissue. We showed that these 

open regions were enriched with known TF binding sites, further supporting their potential functional 

roles in gene regulation.  

Next, we identified potential regulatory states genome wide across tissues using signals from 

biochemical assays (histone modifications and CTCF ChIP-seq) and correlated them with accessible DNA 

elements identified from Chapter 3. We observed that active regulatory states were enriched around 
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TSS-promoter regions, especially in genes with high expression. We also noted a significant enrichment 

of CTCF-bound active states among tissue-conserved accessible DNA elements, suggesting important 

housekeeping roles of constitutively bound CTCF and the chromatin structures that they maintain.  

Taking advantage of the extensive research surrounding the relationship between CTCF binding and 3-

dimensional chromatin structures (TADs), we used our CTCF ChIP-seq data to predict chromatin loops 

and were therefore able to predict potential RE-gene interactions across tissues. This dataset should 

dramatically improve our ability to both identify important regulatory variants and predict their target 

genes and gene networks. 

Work from this thesis has opened doors for further exploration. For example, the discordant 

relationships between differentially accessible regions (DARs) and differentially expressed genes (DEGs) 

in brain and heart tissues suggest substantial cell-type differences in these tissues.  Future studies 

utilizing single-cell-based technologies could help unravel such differences and identify cell-type-

defining genes and REs. Additionally, we observed substantial differences between testes and all other 

tissues from both the ATAC-seq and ChIP-seq data. This difference could be a result of significant 

spermatozoa population in our testis samples, or it could be related to the unique transcriptional 

landscape of testis. Future research should focus on separating mature spermatozoa with 

spermatogonium and other cell types in testis to further refine the regulatory landscape of this tissue. 

Overall, we presented an integrated repository of equine FAANG data, encompassing both 

transcriptional and regulatory features that are now freely available to the equine community. We 

anticipate this resource to be integral to future equine research.  
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Addendum 1 Successful ATAC-Seq From Snap-Frozen Equine Tissues 
Published in: Peng, S., Bellone, R., Petersen, J. L., Kalbfleisch, T. S. & Finno, C. J. Successful ATAC-Seq 

From Snap-Frozen Equine Tissues. Front. Genet. 12, 641788 (2021). 

https://doi.org/10.3389/fgene.2021.641788  

Keywords: FAANG; horse; open chromatin; ATAC-seq 

Abstract 

An assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) has become 

an increasingly popular method to assess genome-wide chromatin accessibility in isolated nuclei from 

fresh tissues. However, many biobanks contain only snap-frozen tissue samples. While ATAC-seq has 

been applied to frozen brain tissues in human, its applicability in a wide variety of tissues in horse 

remains unclear. The Functional Annotation of Animal Genome (FAANG) project is an international 

collaboration aimed to provide high quality functional annotation of animal genomes. The equine 

FAANG initiative has generated a biobank of over 80 tissues from two reference female animals and 

experiments to begin to characterize tissue specificity of genome function for prioritized tissues have 

been performed. Due to the logistics of tissue collection and storage, extracting nuclei from a large 

number of tissues for ATAC-seq at the time of collection is not always practical. To assess the feasibility 

of using stored frozen tissues for ATAC-seq and to provide a guideline for the equine FAANG project, we 

compared ATAC-seq results from nuclei isolated from frozen tissue to cryopreserved nuclei (CN) isolated 

at the time of tissue harvest in liver, a highly cellular homogenous tissue, and lamina, a relatively 

acellular tissue unique to the horse. We identified 20,000–33,000 accessible chromatin regions in lamina 

and 22–61,000 in liver, with consistently more peaks identified using CN isolated at time of tissue 

collection. Our results suggest that frozen tissues are an acceptable substitute when CN are not 

available. For more challenging tissues such as lamina, nuclei extraction at the time of tissue collection is 

https://doi.org/10.3389/fgene.2021.641788
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still preferred for optimal results. Therefore, tissue type and accessibility to intact nuclei should be 

considered when designing ATAC-seq experiments. 

 

Introduction 

The completion of the equine genome assembly [1,2] has enabled research leading to novel discoveries 

concerning the health and reproduction of horses [3–5]. However, despite having the same genomic 

sequence, differential regulation of gene expression leads to tissue-specific profiles. A lack of 

understanding of gene regulation has largely stalled research of complex traits in horses. In humans and 

mice, the Encyclopedia of DNA Elements (ENCODE) project has provided an abundance of data for 

understanding gene regulation and its role in complex diseases and traits [6]. Unfortunately, limited 

resources are currently available in the horse. The Functional Annotation of Animal Genome (FAANG) 

initiative [7] is an international collaboration aimed to bridge this gap between genotype and 

phenotype. The equine FAANG project has successfully generated a biobank of over 80 tissues and 

bodily fluids of two reference animals [8]. RNA-seq of 32 tissues (unpublished, data access: 

PRJEB26787), as well as the identification of tissue specific histone marks for eight prioritized tissues, 

from this biobank has been performed (Kingsley et al., 2019). Additional projects are underway to 

identify tissue specific chromatin states to integrate all of these datasets and build a robust tissue 

specific functional annotation atlas in the horse [9]. 

An important component of gene expression and regulation is chromatin accessibility. Active genes and 

regulatory elements are typically found within or near regions of the DNA accessible to transcription 

factors. Therefore, identifying open chromatin regions is a crucial step to identify and categorize tissue 

specific regulatory elements in order to advance our understanding of complex traits in the horse. An 

assay for transposase‐accessible chromatin with high‐throughput sequencing (ATAC‐seq) [10] is 
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commonly used to identify regions of open chromatin. A typical ATAC-seq protocol requires nuclei 

extracted from fresh tissues. Halstead et al proposed a modified ATAC-seq protocol to allow long-term 

storage of cryopreserved nuclei extracted from fresh tissues [11]. Still, the intensive efforts needed to 

prepare and cryopreserve nuclei during a large-scale tissue collection proves to be difficult. 

Alternatively, Corces et al successfully applied a modified ATAC-seq (Omni-ATAC) protocol on frozen 

human brain tissues [12]. However, the applicability of Omni-ATAC has not been tested in a wide variety 

of tissues in horse where nuclei extraction may prove challenging. Additionally, it has been shown that, 

in cultured cells, cryopreservation is preferrable to flash-freezing process in order to preserve native 

chromatin structures [13]. To our knowledge, no studies have investigated the effect of snap freezing on 

tissues for ATAC-seq library generation in comparison to cryopreserved nuclei preps. Additionally, the 

library preparation step is a major source of variation in RNA-seq studies [14], particularly at low read 

depth. As a result, RNA-seq data generated from different laboratories or at different times cannot often 

be directly compared. For a collaborative project, it is important to assess the effect of technical 

variations to better inform project planning and analytical decisions for data integration.  

To address these gaps of knowledge in the applicability of ATAC-seq in snap-frozen horse tissues, and to 

provide a guide for future ATAC-seq studies to assess chromatin accessibility, we compared data from 

cryopreserved nuclei prepared from fresh tissue to that of nuclei extracted from snap-frozen tissues 

collected from the two mares from the initial equine FAANG biobank study [8]. In order for this 

comparison to be informative and applicable to a wide range of tissues, we utilized both liver, a highly 

cellular and homogenous tissue type, and lamina, a relatively acellular tissue unique to the horse. 

Equine laminae are highly vascularized interdigitated dermal and epidermal tissues in the equine foot 

that form the attachment between the hoof wall and the third phalanx. Inflammation of laminae in 

horses (i.e. laminitis) is a devastating disease that impacts many breeds of horses and often leads to 

euthanasia. Therefore, gene regulation in laminae is of particular interest to equine geneticists and 
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veterinary practitioners as this debilitating and life-threatening disease estimated to impact up to 34% 

of the horse population [15]. Laminitis is also the primary clinical consequence of equine metabolic 

syndrome (EMS) [16]. EMS is a complex syndrome that requires constant veterinarian care and diet 

control, impacting an estimated 18 to 27 percent of horse population [16]. Liver is the primary metabolic 

organ with a homogenously cellular structure. Detailed knowledge of gene expressions and regulations 

in healthy liver provides a baseline for studying impaired metabolism in horses with EMS. Additionally, 

to assess the effect of library preparation techniques, snap-frozen tissues and cryopreserved nuclei from 

this pilot study were sent to two different core laboratories for library generation and subsequent 

sequencing. We hypothesized that (1) ATAC-seq using frozen tissues would identify comparable peaks to 

those using cryopreserved nuclei from fresh tissues, (2) libraries generated from liver will have better 

quality than those from laminae, and (3) similar to what was found in RNA-seq studies there will be a 

significant amount of variation between the libraries generated by two laboratories. 

 

Materials and Methods 

Tissue collection and nuclei isolation 

Liver and lamina tissues from two mares (AH2 and AH1) were collected as described in [8]. Briefly, two 

healthy adult Thoroughbred mares (AH1: 5 years old; AH2: 4 years old) were closely examined by 

veterinarians prior to tissue collection. Nuclei were isolated from liver and lamina tissues immediately 

following tissue collection and cryopreserved following protocols published in 11 with some 

modifications for lamina. Briefly, additional incubation periods with collagenase were added to assist in 

homogenization (see Supplementary Materials A1). These are referred to as cryopreserved nuclei (CN). 

Additionally, at time of collection, approximately 1 g aliquots of tissue were snap frozen in liquid 

nitrogen for nuclei extraction at a later time. These are referred to as frozen tissue-derived nuclei 

(FTDN). 



92 
 

ATAC-seq library preparation and sequencing 

Both snap frozen tissues and cryopreserved nuclei were stored at -80°C for 3 years until shipped on dry 

ice overnight to two commercial laboratories (L1 and L2) for library preparation. Nuclei were extracted 

from frozen tissues using each laboratory’s internally optimized protocol (See Supplementary Materials 

A1). Extracted Nuclei (FTDN) and cryopreserved nuclei (CN) were used to prepare ATAC libraries 

(Supplementary Methods and Supplementary Table 1). Libraries were sequenced on an Illumina HiSeq 

4000, paired-end 2x75bp (L1) or NextSeq 500, paired-end 2x42bp (L2) with a targeted depth of 30 

million read pairs.  

 

ATAC-seq data analysis 

Read QC was carried out using FastQC [17]. Adapters and low-quality ends were trimmed using 

TrimGalore [18] and Cutadapt [19]. Reads were then aligned to reference genome EquCab3 using BWA-

MEM algorithm from BWA [20] using default parameters. Post-alignment filtering was employed to 

remove low mapping quality reads, mitochondrial reads, and PCR duplicates using Samtools [21] and 

Sambamba [22]. Genome coverage was analyzed using deepTools [23] Specifically, bamCoverage was 

used to convert bam files to bigwig files, using RPKM to normalize coverage with exact scaling (--

normalizeUsing RPKM --exactScaling). Then multibigwigSummary was used to calculate average 

coverage across 1000bp windows (-bs 1000). plotPCA was used to calculate eigen values based on all 

genomic windows (--ntop 0) and top 2 principle components were plotted using matplotlib [24]. Custom 

scripts were used to analyze sample correlation, clustering, and correlation with ChIP-seq data and 

annotated genes using Python packages numpy [25], scipy [26], pandas [27], and matplotlib [24]. Open 

regions were identified using HMMRATAC (--threshold 2 --score fc -u 20 -l 10) [28] and MACS2 (-q 0.05 -

B –broad -f BAMPE) [29]. Jaccard indices were calculated using pybedtools [30,31] for each pair of 
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biologic replicates with default parameters. More detailed pipeline is available at 

https://github.com/SichongP/FAANG_ATACseq. 

 

Histone ChIP-seq data processing 

Histone ChIP-seq data were downloaded from FAANG data repository  (https://data.faang.org/home) 

under accession PRJEB35307. Histone marks were determined according to [32] and compared with 

open chromatin regions analyzed in this study for both liver and lamina. 

ATAC-seq peak validation with histone marks 

ATAC-seq peaks called by HMMRATAC and MACS2 were validated using histone ChIP-seq data following 

[28] with modifications to utilize available data in the horse. First, the following sets of peaks were 

generated from [32] data: 

Real positive set (RP): peaks from either H3K4me1 or H3K4me3 that overlap H3K27ac peaks 

Real negative set (RN): peaks from H3K27me3 data 

Then, following metrics were calculated for each dataset: 

𝑻𝑷 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒃𝒂𝒔𝒆𝒔 𝒊𝒏 𝒄𝒂𝒍𝒍𝒆𝒅 𝑨𝑻𝑨𝑪 − 𝒔𝒆𝒒 𝒑𝒆𝒂𝒌𝒔 𝒐𝒗𝒆𝒓𝒍𝒂𝒑𝒑𝒊𝒏𝒈 𝑹𝑷  

𝑭𝑷 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒃𝒂𝒔𝒆𝒔 𝒊𝒏 𝒄𝒂𝒍𝒍𝒆𝒅 𝑨𝑻𝑨𝑪 − 𝒔𝒆𝒒 𝒑𝒆𝒂𝒌𝒔 𝒐𝒗𝒆𝒓𝒍𝒂𝒑𝒑𝒊𝒏𝒈 𝑹𝑵 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑹𝑷
 

https://github.com/SichongP/FAANG_ATACseq
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𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑭𝑷𝑹) =
𝑭𝑷

𝑹𝑵
 

Increasing quality scores as produced by MACS2 or HMMRATAC were used as the cutoff score to filter 

peaks before the remaining peaks were used to calculate above metrics. Changes in the metrics as the 

cutoff score increased were used to identify the thresholds at which to filter final sets of open chromatin 

peaks. 

 

RNA-seq data processing 

RNA-seq reads from liver and lamina of the same two animals were available from a separate project 

under European Nucleotide Archive accession PRJEB26787. Briefly, RNA was isolated from liver or 

lamina tissues using Trizol chloroform phase separation followed by a column cleanup using Zymo 

Research Direct-Zol Mini columns. TruSeq mRNA libraries were prepared at Minnesota Genomics Center 

(Minneapolis, MN, USA) and sequenced at 125bp paired-end. These reads were quantified against 

Equcab3 Ensembl annotated genes [2,33] using Salmon [34] mapping-based mode. Transcript level 

counts were aggregated into gene level using the R package tximport [35] and final counts were 

normalized using the variance-stabilizing transformation method from DESeq2 vst function [36]. 

 

ATAC-seq peak validation with RNA-seq data 

Ensembl annotated genes were classified as open or closed depending on whether their presumed 

promoter regions (1kb upstream of annotated gene start) overlapped with identified ATAC-seq peaks. 

These genes were then compared to their RNA abundance estimated using FAANG data. 
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Results 

Libraries prepared by two laboratories (L1 and L2) using nuclei isolated from snap-frozen tissues (FTDN) 

or cryopreserved from tissues at time of collection (CN) from liver and lamina of two animals (AH1 and 

AH2, Thoroughbred adult mares) were sequenced at PE75 on an Illumina HiSeq 4000 (L1) or PE42 on an 

Illumina NextSeq 500 (L2). Figure A1.1 shows a schematic of the experimental design.  

 

Figure A 1.1 A schematic of the experimental design 

All samples were prepared at UC Davis prior to shipment to the core laboratories. Samples used were 

obtained from an equine biobank of two horses (AH1 and AH2), as previously described [8] 

 

Library fragmentation 

ATAC-seq libraries are expected to present a laddering pattern that corresponds to different 

nucleosome-bound fragments. Supplementary Figures A1.1 and A1.2 show fragment size distributions 
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of ATAC libraries as determined by sequencing and Agilent Fragment Analyzer (L1) or TapeStation (L2) 

from L1 and L2, respectively. In general, liver libraries showed distinguishable laddering pattern while in 

lamina libraries, only the fragment size corresponding to nucleosome-free fragments was observed.  

 

Sequencing read lengths  

Since libraries from L1 and L2 were sequenced at different lengths (75bp and 42bp, respectively), we 

trimmed longer reads from L1 from 3’ down to 42bp and compared read alignment statistics to those 

obtained using full length reads (75bp), after appropriate quality trimming. There were no significant 

changes in read alignment statistics, with less than 0.02% fewer reads aligned and less than 0.3% fewer 

reads identified as duplicates for each library after length trimming. Therefore, we proceeded with data 

analysis with using original full length reads from both laboratories. 

 

Duplication rate and mitochondrial contamination 

Overall, liver libraries have higher mitochondrial contamination than lamina libraries, likely due to 

higher metabolic activities in liver (Supplementary Figure A1.3A). Among liver samples, CN libraries 

prepared by L1 contained 56% and 81% duplicates, with 37% and 23% mitochondrial reads in AH1 and 

AH2, respectively. In comparison, the CN libraries from L2 contained 31% and 24% duplicates, with 23% 

and 10% mitochondrial reads from AH1 and AH2 respectively (Supplementary Figure A1.3A). It was 

suspected that the higher amount of mitochondrial contamination contributed to the higher duplication 

rate and led to lower library complexity. To test this hypothesis, resequencing was performed for the 

liver CN libraries from L1. The number of unique nuclear reads from AH2 largely remained unchanged 

despite increasing read depth 3-fold. For AH1, however, twice the number of unique nuclear reads was 

obtained after the total read depth was increased (Supplementary Figure A1.3B). Both the fingerprint 

plot and fraction of reads in peaks (FRiP) identified a decrease in enrichment for AH1 with increased 



97 
 

sequencing depth but little change for AH2 (Supplementary Figure A1.3C and Supplementary Table 

A1.2). This suggests that, in the AH1 library, while further sequencing increased the number of unique 

reads, it did not substantially improve peak detection. Lowered enrichment in the resequenced AH1 

library suggests that a majority of additional unique reads are less enriched background reads. In the 

AH2 library, however, resequencing did not significantly improve library complexity, due to more cycles 

of amplification during library preparation and therefore, higher PCR duplication rate in the library. 

 

Genome coverage and enrichment 

To assess which part of the ATAC-seq protocol contributed more to library variations and complexities, 

we compared genome coverage and enrichment (Figure A1.2). Principle component analysis (PCA) 

revealed that liver libraries generally clustered closely together, while more variation was observed for 

the lamina libraries (Figure A1.2A). Within the lamina libraries, there is a clear clustering based on which 

laboratory prepared the libraries. The lamina libraries from L2 clustered closely with each other and with 

liver libraries while the lamina libraries from L1 clustered further away from liver libraries (Figure 

A1.2A). Heatmaps of the genome coverage Pearson correlation showed that liver CN libraries yielded 

well-correlated results, with the exception of that from AH2 by L1 (Figure A1.2B). This is consistent with 

low complexity of that library shown in Supplementary Figure 3. On the other hand, little correlation is 

observed among lamina library preparations (Figure A1.2B). Since no input libraries were used for ATAC-

seq experiments 10, synthetic Jensen-Shannon distance (SJSD) was used, together with Area Under 

Curve (AUC) from fingerprint plots, to assess the enrichment of each library (Figure A1.2C and 

Supplementary Table A1.3). In general, liver libraries showed higher enrichment than lamina libraries. 

Within liver libraries, CN libraries were more enriched than FTDN libraries from L1, while both libraries 

from L2 showed similar enrichment. Within lamina libraries, both laboratories generated more enriched 
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libraries from CN than from FTDN. This is further exemplified in Figure 2D, showing the FRiP in each 

library. 

 

Figure A 1.2 coverage correlation between libraries. 

Read depth was normalized across all libraries. (A) Principal component analysis of genome coverage, 

showing the first two principal components. (B) Pearson correlation of genome coverage in liver (left) 

and lamina (right) libraries. Linkage was calculated using Farthest Point Algorithm. (C) Fingerprint plot of 

genome coverage in liver (left) and lamina (right) libraries. (D) Enrichment as measured by FRiP in each 

library. 

 

Peak Calling 

To identify accessible chromatin regions, MACS2 29 and HMMRATAC 28 were used to call peaks and 

results from both programs were compared. To control for sequencing depth, all libraries were down-

sampled to 60 million unique reads that are suitable for peak calling using sambamba view function. 

Using MACS2 (-q 0.05 -B –broad -f BAMPE), 31,000-721,000 peaks were identified. While using 

HMMRATAC (--threshold 2 --score fc -u 20 -l 10), 14,000-514,000 peaks were identified. Overall, using 
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HMMRATAC, peaks identified from lamina libraries had lower quality (fewer (Figure A1.3A) and shorter 

peaks (Figure A1.3B) with lower scores (Figure A1.3C)) than those from liver libraries. For liver libraries, 

CN generated comparable results to FTDN while, in lamina libraries, CN outperformed FTDN (Figure 

A1.3D). Similar results were obtained when peaks were called using MACS2 (Supplementary Figure 

A1.4A-D). 

 

Figure A 1.3 HMMRATAC peak calling statistics 

(A) Number of peaks, (B) peak length distribution, (C) peak score distribution, and (D) percent of 

genome covered by peaks for each library. (E-F) Peak metrics assessed using ChIP-seq dataset in liver (E) 

and lamina (F) libraries. 

To better assess the quality of peaks, we used histone mark ChIP-seq data generated from the same 

samples as described in [32]. A set of metrics, precision, recall, and false positive rate (FPR), were 

generated for different cutoff scores as described in Methods. These metrics were then plotted against 

cutoff scores. Consistent with the observation of peak lengths and scores, peaks called using 

HMMRATAC from liver libraries had higher precision and recall rates and lower false positive rates 
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(Figure A1.3E) than lamina (Figure A1.3F). Consistent with observations of library quality, CN liver 

libraries of AH2 from L1 have lower recall and precision rates than that from L2 or that of AH1, despite 

having same unique read depth (Figure A1.3E,F). Comparing peaks identified by two programs, 

HMMRATAC identified peaks with higher recall and precision rates than MACS2 (Supplementary Figure 

A1.4 E-F). 

 

ATAC-seq peak validation 

Despite higher quality from L2 in liver AH2 CN library, L1 produced the only libraries from laminae with 

high quality peaks (Figure A1.3F). Therefore, to maximize usable data, libraries from L1 were chosen for 

all further analyses. HMMRATAC was used as it produced generally better metrics and because it 

allowed interrogation of nucleosome-bound regions vs. nucleosome-free regions for future studies. 

A cutoff score, where the precision and recall lines intercept, was used for each sample set to filter 

peaks identified by HMMRATAC. Final peak counts are shown in Table A1.1. Consistent with previous 

observations, liver samples generated the most high-quality peaks, while CN libraries outperformed 

FTDN libraries. Using UpSetPlot [37] based on [38], we identified overlapping peaks in each dataset 

(Figure A1.4A). AH1 liver CN library generated the most unique peaks, consistent with the previous 

observation that this library has highest library complexity. Since 17,347 unique peaks were identified 

from this library only, a precision score of these unique peaks was calculated using histone ChIP-seq 

data mentioned above. A precision score of 18.4% was observed in these peaks, suggesting a high rate 

of false positive peaks. This further highlights the importance of replicates in an ATAC-seq experiment. 

FTDN libraries did not yield significant number of unique peaks that were not detected in CN libraries. 

Despite a relatively low quality of the lamina libraries, 12,256 unique peaks were detected from the 

lamina libraries. 
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Figure A 1.4 Filtered ATAC-seq peaks 

(A) Intersection plot of quality filtered peaks from each library. Bottom left panel shows filtered peak 

count in each library; bottom right panel shows different intersections (BedTools, 1bp minimum) of 

peaks where filled dots indicate presence of peaks in corresponding library; Top panel shows peak count 

in each intersection. (B) Relationship between promoter accessibility and gene expression (mean vst 

transformed count) in liver (top left) and lamina (top right). Green cell in ATAC peaks indicate presence 

of ATAC peaks and black cells indicate absence. Bottom panel shows bigwig tracks of RNA-seq and ATAC-

seq read abundance (normalized using RPKM) near APO genes (left, liver specific) and F2RL1 (right, 

lamina specific) transcription start sites. 

 

 

 

 

 



102 
 

Table A 1.1 Cutoff used to filter peaks and metrics of filtered peaks 
Filtered peaks and their corresponding cutoff scores in each library. AvePeakLen: Average peak length; 
MedianPeakLen: Median peak length; Bases Covered: number of bases covered by all peaks in a library; 
Confirmed Count: Overlapping peaks in both biological replicates; Jaccard Index: jaccard index of two biological 
replicates 

Tissue Rep 
Nuclei 
Prep 

Cutoff 
Score 

Count 
Ave 
PeakLen 

Median 
PeakLen 

Bases 
Covered 

Confirmed 
Count 

Jaccard 
Index 

Liver AH1 CN 6 61473 2937.0 2600 180,547,240 3646 0.05 

Liver AH2 CN 16 3810 2428.8 2090 9,253,670 

Liver AH1 FTDN 6 22588 3701.6 3300 83,611,751 18596 0.35 

Liver AH2 FTDN 6 33782 3059.1 2650 103,343,612 

Lamina AH1 CN 6 28418 3106.6 2650 88,284,203 23439 0.51 

Lamina AH2 CN 4 30906 2883.5 2480 89,117,724 

Lamina AH1 FTDN 2 19886 5061.4 4300 100,651,092 17619 0.35 

Lamina AH2 FTDN 2 33762 3361.9 3010 113,504,835 

 

As an in silico validation of the results, peaks were overlapped with Ensembl gene annotation for 

EquCab3 2 at promoter regions (1kb upstream of annotated gene start) to classify each promoter as 

open or closed. These classified promoter regions were then compared to RNA abundance at the 

corresponding gene level (Figure A1.4B). In liver, AH1 CN identified more open promoters where RNA 

expression levels are high but the results from the two assays (CN and FTDN) were highly comparable 

for this sample in liver. Fewer peaks were identified from AH2 CN, due to low library quality and issues 

in repeat freeze thaw cycles as outlined in the discussion. In lamina, CN assays identified more open 

promoters than FTDN. Manual inspection of some highly abundant genes in liver and laminae validate 

accurate identification of open chromatin in each tissue (Figure A1.4B) 

Overall, our results confirm that extracting nuclei from snap-frozen tissues for ATAC-seq library 

preparations negatively affects the library quality, resulting in fewer peaks detected. However, when 

cryopreserved nuclei from freshly collected tissue are not available, these data show that snap-frozen 

tissues can be used to prepare ATAC-seq libraries to give reliable peak calls, with the caveat that some 

regions of open chromatin will be missed. However, results from laminae suggest that for more 

challenging tissue types, fresh tissue extraction is a requirement. 
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Discussion 

In this pilot study, we compared two tissues (liver and laminae, representing homogenous cellular and 

relatively acellular nuclei extraction, respectively) from the equine FAANG project for ATAC-seq library 

generation, using two nuclei extraction methods. Nuclei extracted and cryopreserved immediately after 

tissue collection and nuclei isolated from snap-frozen tissues were used to determine suitable methods 

for performing ATAC-seq to identify accessible chromatin regions in a wide variety of equine tissues for 

functional annotation.  Similar to what was identified by [11], we determined that ATAC-seq can be used 

to characterize open chromatin in animal tissue but optimization is necessary to have a robust data set 

across tissues. Further, we found that while cryopreserved nuclei generally yield more peaks, frozen 

tissues can still be used to isolate nuclei and identify accessible regions. However, the quality of libraries 

generated by the frozen tissue protocol suffered when nuclei were extracted from a more challenging, 

relatively acellular tissue, such as laminae. Therefore, for challenging tissues, care should be taken at 

time of collection to prioritize those tissues for nuclei extraction and cryopreservation when possible. 

 We also showed that the frozen tissue protocol is more prone to variations introduced at the library 

preparation step.  Specifically, FTDN liver libraries generated at two different laboratories only have a 

moderate correlation (0.68 for AH1 and 0.76 for AH2). Our analysis suggests that, similar to RNA-seq 

experiments, library preparation can introduce large variation that will impact subsequent data quality, 

specifically peak detection for ATAC-seq studies. However, since the two commercial laboratories used 

different internally optimized protocols, it is impossible to determine whether the variation was 

protocol-specific or lab-specific. Nonetheless, it is advisable for all ATAC-seq library preparations to be 

performed at a single site using the same protocols to minimize variability in datasets when trying to 

integrate information.  
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During library preparation, the cryopreserved nuclei aliquot from AH2 was partially thawed twice by L1 

(first for an optimization experiment (data not shown) and then a second time to perform the data 

collection). The nuclei obtained during the second partial thawing were used in this study. Due to the 

precipitation of nuclei and contaminating mitochondria, this was likely the cause of low quality observed 

in that library preparation. The effect of different read lengths used by two laboratories was 

investigated and deemed to have no significant impact on read alignment. Our analysis suggested a 

detrimental impact on data quality by this practice and resequencing of this particular library also did 

not improve data quality nor was this resequencing effort able to identify more peaks. Therefore, it is 

advisable to avoid repeated partial thawing of cryopreserved nuclei aliquots.  

Library fragment size screening using gel electrophoresis proved to be predictive of final fragment size 

distribution in sequencing results and data quality. As indicated in Supplementary Figures A1.1 and 

A1.2, a strong signature corresponding to nucleosome-free fragments without accompanying signatures 

for nucleosome-bound regions does not necessarily mean a high enrichment of nucleosome-free 

fragments. It could also indicate high levels of mitochondria contamination or fragmentation of 

chromatins before tagmentation, which are likely the cases in lamina libraries from L2.  

We identified 20-33,000 accessible chromatin regions in lamina and 22-61,000 in liver, largely in line 

with observations of liver ATAC-seq from studies in other species [39–42]. As a preliminary study, we 

opted to include laboratory replicates in lieu of technical replicates in order to assess the effect of 

technical variations introduced during the library preparation step. Technical replicates would allow 

further validation of tissue specific open-chromatin. Following ENCODE standard [43] for ChIP-seq 

experiments, two biological replicates were collected for the FAANG project. However, more replicates 

would have allowed a more robust comparison between different protocols. 
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In this study, we demonstrated the feasibility of using snap-frozen tissues for ATAC-seq experiments for 

the equine FAANG project. For acellular tissues, more optimization is required for ATAC-seq 

experiments. We also showed that significant variation can be introduced during library preparation. 

This study provides important guidelines for planning future ATAC-seq experiments using equine FAANG 

tissues.  We will use the guidelines established here to conduct ATAC-seq experiments on six other 

prioritized tissues in the mares. Furthermore, following these guidelines should enable the most 

meaningful integration of datasets across studies thus building a reliable functional tissue specific atlas 

of the equine genome which would advance our understanding of complex traits in the horse. 
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Supplementary Figure A1.1 Fragment size distributions of libraries from L1 as determined 

by sequencing and Fragment Analyzer. 

Supplementary Figure A1.2 Fragment size distributions of libraries from L2 as determined 

by sequencing and tapestation. 

Supplementary Figure A1.3 Duplication and mitochondrial contamination rates. (A) Total, 

mitochondrial, and unique nuclear read counts of all libraries; (B) Comparison between first 

sequencing run (left) and combined reads (right) from L1 liver CN libraries; (C) Fingerprint plot 

of L1 CN liver libraries. 

Supplementary Figure A1.4 MACS2 peak calling statistics A) Number of peaks, (B) peak 

length distribution, (C) peak score distribution, and (D) percent of genome covered by peaks for 

each library. (E-F) Peak metrics assessed using ChIP-seq dataset in liver (E) and lamina (F) 

libraries. 
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