
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Data Augmentation Policies for Cancer Classification

Permalink
https://escholarship.org/uc/item/0wn5g57t

Author
Vyas, Aditya

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wn5g57t
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,

IRVINE

Data Augmentation Policies for Cancer Classification

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Biomedical Engineering

by

Aditya Vyas

Thesis Committee:
Associate Professor James Brody, Chair

Associate Professor Michelle Digman
Associate Professor Jered Haun

Associate Professor Elliot Hui

2020

© 2020 Aditya Vyas

ii

DEDICATION

To Professor James Brody for his guidance that has taught me to research and write
independently with confidence,

To my mother and father, Mrs. Anita Vyas and Dr. Kamlesh Vyas, who taught me the value

of education and critical thought.

This thesis is also dedicated to my family and friends who have supported me
unconditionally, and to my mentor Dr. Nitin Sapre who encouraged me in pursuit of my

interests.

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGEMENTS

ABSTRACT OF THE THESIS

iv

v

vi

vii

1. INTRODUCTION 1

 1.1 Data Description 1
 1.2 Motivation 4

2. EXPERIMENTS AND RESULTS 7

 2.1 Experiment 1 7

 2.1.1 Dataset description 7
 2.1.2 Handling missing data 7
 2.1.3 Data augmentation Policies 8
 2.1.4 Testing with other classification models 12

 2.2 Experiment 2 12

 2.2.1 Dataset description 12
 2.2.2 Testing with other classification models 13
 2.2.3 Results 13

3 DISCUSSION 16

4 FUTURE WORKS AND LIMITATIONS 18

5 BIBLIOGRAPHY 19

6 APPENDIX 1 20

iv

LIST OF FIGURES

 Page

Figure 1 Visualization of sample dataset 3

Figure 2 Handling missing data 4

Figure 3 Receiver operating characteristic diagram 8

Figure 4 Semantic graph of Policy 1 9

Figure 5 Sample code snippet for implementation of policy 1

9

Figure 6 Augmented data visualization (dataset 1) 10

Figure 7 Sample code snippet for implementation of policy 2

11

Figure 8 Sample code to augment the data row-wise

13

Figure 9 Augmented data visualization (dataset 2) 14

v

LIST OF TABLES

 Page

Table 1 Performance of XGBoost on the handled data 7

Table 2 Performance of XGBoost on Augmented Data 9

Table 3 Performance of combined classification models on augmented and non-

augmented data

12

Table 4 Performance of different classification models 13

Table 5 Performance of XGBoost classifier on augmented data 15

vi

ACKNOWLEDGEMENTS

I would like to express the most profound appreciation to my thesis advisor, Professor James
Brody. The door to Professor Brody's office was always open whenever I ran into a trouble
spot or had a question about my research or writing. He has consistently allowed this thesis
to be my own work but steered me in the right direction whenever he thought I needed it.
Without his guidance and persistent help, this thesis would not have been possible.

I would like to thank the members of my thesis committee: Professor Michelle Digman,
Professor Jered Haun and Professor Elliot Hui for generously offering their time, support,
guidance, and goodwill throughout the preparation and review of this document.

I would like to thank the rest of the Biomedical Engineering department at UC Irvine for
providing such a collaborative environment. I would like to thank the University of
California, Irvine, for giving me a platform to grow holistically and professionally.
Furthermore, I would like to thank my roommates and all my friends for their consistent
support throughout my master's journey.

Finally, I must express my very profound gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study and through
the process of researching and writing this thesis. This accomplishment would not have been
possible without them. Thank you.

vii

ABSTRACT OF THE THESIS

Data Augmentation Policies for Cancer Classification

By

Aditya Vyas

Master of Science in Biomedical Engineering

University of California, Irvine, 2020

Professor James Brody, Chair

Data augmentation is a beneficial technique to improve the performance of modern classifiers.

However, current data augmentation implementations are mostly for image-related data. In this

thesis, two data augmentation policies have been created to augment non-image limited data. The

policies are modeled after the measurement errors found in scientific measurements and aims to

increase the limited data by inducing those errors. The second purpose of this thesis is to study the

role of Copy Number Variations (CNVs) in cancer manifestation. CNVs are structural variations,

and they can be useful to identify who will develop particular cancers. The germ line data is

collected from The Cancer Genome Atlas Program (TCGA), and contemporary machine learning

models are being used to classify cancer types. However, these classification models perform

poorly due to limited availability of data, thereby, the data augmentation policies are used to

increase data diversity. The usage of these policies has significantly improved the classifier's

performance, giving an improvement of ≈3-4%, which can be highly beneficial for future research.

These policies can be used to find dominant chromosomal regions which are correlated with

respective cancer type, thereby giving more insights to the medical community for further analysis.

1

INTRODUCTION

Data augmentation is the process of expanding the volume and diversity of data. Instead of

collecting new data, rather we transform the already existing data. Data augmentation adds value

to base data by combining information derived from internal and external sources within an

enterprise. Data augmentation is an indispensable process in deep learning, as in deep learning, we

need large amounts of data, and in some cases, it is not feasible to collect thousands or millions of

data samples, so data augmentation comes to the rescue.

Recent advancements in deep learning models are mainly due to the quantity and diversity

of data gathered in recent years. For example, Google has reached state-of-the-art accuracy on

datasets such as CIFAR-10 with 'AutoAugment,' a new automated data augmentation technique

[1]. The usage of Data Augmentation is prominent for an Image-Based Neural Network model,

and there has been much ongoing research on creating a better data augmentation

policy. Krizhevsky et al. developed AlexNet CNN architecture for image classification by

applying convolution networks to ImageNet (a sizeable visual database designed for use in visual

object recognition software research) dataset and increased their data size by a magnitude of 2048

with the help of data augmentation [2].

We can apply multiple operations to augment our data; for example, in the case of image

data, we can apply Rotation, Shearing, Zooming, Cropping, Flipping, and Changing the color

characteristics etcetera. As mentioned earlier, data augmentation has been popular with image-

based datasets, unlike standard numerical datasets. Therefore, this thesis research focuses on using

data augmentation techniques on standard numerical data taken from The Cancer Genome Atlas

Program (TCGA) [3].

1.1. Data Description

2

Cancer genomics, a prominent research area that uses state of the art technology to study our full

set of DNAs, and aims to find genomic alterations in DNA, i.e., cause of cancer. One of the

significant DNA mutations that are associated with human cancer is DNA Copy Number Variants

(CNV). CNVs are a type of structural variation which involves deletion or duplication of relatively

vast stretches of DNA (that is, thousands of nucleotides [>1 kb], which may span many different

genes), but can vary in size as well as prevalence [4].

The degree to which copy number variation contributes to human disease is not yet known. There

has been ongoing research in the field to relate the significance of CNVs to specific cancer. Zhang

et al. classified cancers based on copy number variation landscape with an accuracy of 0.75 by

using only the CNVs of 19 genes based on the Dagging method in 10-fold cross-validation [5].

 In this research, two different types of datasets obtained from TCGA are being used. TCGA

translates noisy intensity measurements into chromosomal regions of equal copy number with the

help of Affymetrix SNP 6.0 array data along with Circular Binary Segmentation (CBS) analysis.

CBS, in general, is used to find the changepoints in sequential data, i.e., it is an algorithm that

translates noisy intensity measurements into regions of equal copy number [6]. These copy number

values are further transformed into segment values, which are equal to log2(copy number/2).

Therefore, diploid regions, amplified regions, and deletions will correspond to zero, positive and

negative segment mean value, respectively.

These datasets mainly contain segment mean information at different chromosomes along with the

patient’s gender and the cancer type. The main aim of this research would be to classify the cancer

type based on segment mean data. While neural network architectures have been investigated in-

depth, more focus has been put into discovering durable data augmentation policies that capture

data invariances.

3

Figure 1: Visualization of a sample

dataset obtained from TCGA (top),

Segment Mean values over a single

chromosomal region (left),

Visualizing segment mean values over

different chromosomal regions of a

breast cancer patient(bottom).

4

1.2. Motivation

When dealing with segment mean data, we face the issue of missing data. To handle the missing

data, we can either delete a specific sample or impute the missing value by inference. The process

to use to handle the missing data is shown below:

Figure 2: Handling Missing Data [7]

If we start with the deletion of the sample (a single patient’s information) who have some missing

values, then, data size would reduce by ≈ 95% as we might not have segment mean value for a

specific chromosome. Therefore, the better choice would be to go with data imputation, where, we

can statistically assign a value lying in the expected range of that parameter, for example, replacing

the missing value by the mean value of its relevant set. There have been instances where

Generative Adversarial Networks (GANs) to generate synthetic data from training data [8];

Handling Missing
Data

Deletion

Deleting
Rows(Listwise

Deletion)

Pairwise Deletion

Deleting columns

Imputation

Time-Series
Problem

Data without
Trend & without

Seasonality

Data with Trend &
without

Seasonality

Data with Trend &
Seasonality

General Problem

Categorical

Continuous

5

Therefore, another possible approach would be to use Generative Adversarial Network to create

discrete synthetic samples based on characteristics on available training data.

Even after we have handled the missing values, we still have the problem of limited data,

and that’s where our data augmentation policy comes in. It has been assumed that the measurement

of the segment means might have an error (let’s say the measurement method has 98% accuracy;

therefore, the error rate is 2%). This error can be caused either by technical errors in an experiment

or by aberrant copy number in a region covering only a single marker. We will use this fact to

create the data augmentation policy and later on analyze the efficiency of deep learning-based

cancer classification model trained on both, augmented/non-augmented dataset.

In order to keep consistency in the results, it's been decided to use XGBoost, a popular

applied machine learning algorithm for the classification model. XGBoost supports three primary

forms of gradient boosting i.e., Gradient Boosting, Stochastic Gradient Boosting, and Regularized

Gradient Boosting with L1/L2 Regularization. The main advantage of using XGBoost is that it is

engineered for the efficiency of computing time and memory resources. Also, to measure the

performance of a classification model, we will be using the essential evaluation metric i.e., AUC

(Area under the curve) - ROC (Receiver Operating characteristics) curve. ROC is a probability

curve, whereas AUC represents the degree or measure of separability. This represents the model's

capability to distinguish between the classes. Prediction of Zero(s) to Zero and One(s) to One will

be better with higher AUC. Thereby, with better AUC (≈1), then the classification model can

distinguish patients having cancer or not. The ROC curve is plotted with True Positive Rate (TPR;

y-axes) against the False Positive Rate (FPR; x-axes).

ROC-AUC curve will be derived from the confusion matrix, which is being created with the help

of real values and the predicted values of our deep learning model. A deep learning model is

6

considered useful if the validation error continues to diminish with the training error. With the help

of data augmentation, we can represent a more comprehensive set of available data points; thereby,

we can reduce the distance between the training and validation set, as well as for any future testing

set. Another metric that has also been included to evaluate a model is 'Accuracy.'

The accuracy is calculated from confusion matrix, i.e.

Accuracy =
True Positive + True Negative

Total Count

The main aim of this research would be to increase the AUC of a classifier from a baseline model.

AUC was chosen as a critical metric to track as it is scale-invariant, i.e., measuring how well

predictions are ranked, rather than their absolute values and irrespective of what classification

threshold is chosen. Another thing to avoid during this experiment is overfitting; for example, if

accuracy is increasing while AUC decreases, this will indicate overfitting, i.e., in general words,

the classifier will perform better over test data, but will give a poor performance on real-time data.

Another reason to avoid accuracy as the key metric is that the provided data is highly unbalanced,

i.e., we will get high accuracy by predicting that all observations belong to the majority class.

7

EXPERIMENT AND RESULTS
2.1. EXPERIMENT 1:

2.1.1. Dataset Description:

This dataset consists of segment mean values over different chromosomal regions of patients

suffering from particular type of cancer, with a total of 8826 observations and 152 attributes.

Before applying the data augmentation, the first step is to preprocess the data. Therefore,

observations with unknown cancer types were removed, decreasing the observations to 8704. This

dataset consists of 32 different cancer types, with Breast Cancer (BRCA) having the highest

number of observations; Thereby, instead of going for the multi-class classification model with

higher complexity, the focus will be kept on a binary classifier to measure the effect of data

augmentation.

 As Breast cancer only occurs in females and rarely in males (≈1%), all the observations

with male patients were removed, thereby decreasing our dataset by almost 50%, i.e. the number

of observations dropped to 4622 with BRCA accounting for 970 observations. These observations

are further divided into a training dataset (80%) and a test dataset (20%) randomly.

2.1.2. Handling Missing Data:

After preprocessing, the next step was to handle the missing values and see which method has

better performance. At first, the data was kept as it is, to have a baseline performance. Later, the

missing values were replaced with the mean and median of their corresponding attribute, i.e., ideal

segment value at that specific chromosomal region. For the latter experiment, Gaussian noise was

added with varying parameters to each value, and the performance was measured. The results are

as follows:

S.

No.

Replacing missing

values with

Accuracy AUC STD

8

1 Not Applicable (NA) 0.81390 0.74460 0.008

2 Zero 0.81173 0.73945 0.008

3 Mean of column 0.81471 0.73819 0.0084

4 Median of column 0.81660 0.74165 0.0096

5 Gaussian Noise 0.81147 0.73378 0.0080

6 Gaussian Noise on

just training set

0.80741 0.49139 0.0092

Table 1: Performance of XGBoost on the handled data

From the above observations (Table 1), it can be observed that the AUC is maximum when the

missing values are kept as it is. XGBoost applies Sparsity-aware Split Finding to learn the best

direction in a tree to deal with these missing values [9].

Figure 3: Receiver Operating Characteristic diagram of an XGBoost model after data pre-

processing. (Refer code at Appendix 1.1)

2.1.3. Data Augmentation Policies

Policy 1

The aim of this policy to add a certain amount of noise (Gaussian noise in this case) to the given

segment mean value and then use this value to create a new observation. The policy is described

below:

1. Take the segment mean value and decide a standard deviation you want to have in the data

9

2. Based on this create a normal distribution of a specific size (say 1000 samples)

3. Select any random value from that 1000 samples

4. Replace the new value from old value and augment it into the data

Figure 4: Semantic graph of Policy 1

1. def augmenter(X_train,y_train,sd,col):
2. dataset = X_train.copy() #DeepCopy the data
3. length= len(dataset) #Take the length of dataset
4. new = pd.DataFrame() #Create a new DF to store data
5. for i in range(length): #Number of times the loop has to run
6. row = dataset.iloc[[i]] #Take the ith element
7. row.insert(0, 'y',y_train.iloc[i]) #To avoid data mismatch - tag the row with i

ts y_train[i]th element
8. #Apply augmentation on that single full row
9. ans = gf.augment_column_byvalue_single(row,col_index=col+1,times=5,std=sd,sampl

e_size=1000,add_initial=False)
10. new=new.append(ans) #Store the data
11. X_train = new.iloc[:,1:] #Extract the new X_train
12. y_train = new.iloc[:,0:1].values.ravel() #Extract the new y_train
13. return X_train,y_train

Figure 5: Augmenter function that takes training/test data and returns augmented data.

(Refer Appendix 1.2 for more information)

The above policy was used to augment the given dataset on all the segment values, and the

performance of the classification model on the augmented data was measured (Check Table 2).

Augmentation

Times

Accuracy AUC Standard

Deviation

1 time 0.80173 0.77749 0.00256

32 times 0.82525 0.74580 0.0109

Table 2: Performance of XGBoost on Augmented Data

Extract the y
counter part and

we have new
agumented value

Select any random
value from those

samples

Create a normal
distribution of
1000 samples

Take a single
value x from the
training set and
tag it with its y

counterpart
(expected output)

Decide standard
deviation

(e.g. std= 0.01) Mean = x

Standard deviation
std = std

New Augmented
value X_new New data =

X_new + y

REPEAT RECURSIVELY

FOR MULTIPLE VALUES

10

It can be observed from the results that AUC was increased by almost 3.3% when the data was

augmented once. However, when the dataset was augmented by the factor of 32, AUC was

decreased, and accuracy was increased, indicating overfitting. Another set of experiments was to

apply Policy 1 feature-wise; therefore, data was increased by 5 times, but the AUC of the classifier

was decreased by 1% (≈0.73). Therefore, it can be concluded from the previous set of results that

we cannot augment each value in the dataset.

Figure 6: Augmented Data Visualization (Blue represents the original data and orange represent

the augmented data.)

Policy 2

This policy was created to apply Policy 1 to the data in, either way, i.e., row-wise or column-wise.

In this, the focus will be kept more on applying policy 1 on the columns (feature-wise). This policy

was inspired by the Genetic Algorithm, where the best performing subjects are selected for the

next round of gene transfer. The policy is described below:

1. Apply Policy 1 to all the features and record the classifier performance (one feature at a

time).

2. Now find the top n features (say n=7) who performed better when augmented.

3. The total number of combinations possible for these features is 2n and Total possible

combination of subset excluding blank and single digits 2n - n -1.

11

4. Now we augment all the possible combinations of top n features and record the classifier

performance.

5. Repeat from step 2. The exit condition can be set up if the metrics are not approved.

This augmentation policy was applied to the given dataset, and n was set to be 7. The top-7

features were selected based on their respective trained classifier's performance. The top-7 features

can be augmented in 120 ways, giving 120 classifier models. To have consistency in the results,

the data was increased by a factor of 5 for each augmentation. Also, each augmentation was

performed just on the given training dataset. Again top-7 models with their combinations were

selected, and the whole process was repeated. One thing to note is that when this process is

repeated for a long time, there might be instances when the possible combinations of features might

have some common features; These common features can be ignored with the help of

programming.

1. """
2. data contains the names of features and their individual
3. performances associated with it.
4. """
5. index_list = get_index_combo(data,num=7) #Get top 7 performing feature indexes and thei

r combinations
6. data1 = pd.DataFrame() #Create a new DF
7. for i in index_list:
8. Xt,yt = X_train.copy(),y_train.copy()
9. print("Currently augmenting {}".format(i))
10. for j in i: #Loop through only selected features and augment those feature data onl

y
11. Xtr,ytr=augmenter(X_train.copy(),y_train.copy(),sd=0.1,col=j) #creating augment

ed values
12. Xt = Xt.append(Xtr)
13. yt = yt.append(pd.Series(ytr))
14. d = gf.run_xgboost(Xt,yt,X_test,y_test)
15. d["combination"]=i
16. data1= data1.append(d,ignore_index=True)
17. print(d["accuracy"])
18. print("-------")

Figure 7: Code to get indexes of top-7 performing features and their combinations, apply

augmentation to only those features and store the results. This code can be used recursively

to re-apply Policy 2. (Refer Appendix 1.3)

12

After multiple iterations, we got a set of features that profoundly affects the classifier's metrics.

An interesting thing to note was that the maximum accuracy reached in this process was 0.981,

giving us a ≈17% improvement from the baseline classifier; however, the AUC was still 0.74,

indicating overfitting.

2.1.4. Testing with other Classification Models

Since there were many classifiers we created with better performances, this part aimed to combine

those classifiers with the help of different classifier combination techniques. The results are as

follows:

Technique AUC (NON-AUGMENTED) AUC (AUGMENTED)

Voting 0.71921 0.68284

Average 0.74695 0.71355

Weighted Average 0.74807 0.71810

Stacking 0.59798 0.59051

Bagging meta

estimator

0.69035 0.6467

AdaBoost 0.68083 0.67991

Gradient Boost 0.70732 0.706104

Table 3: Performance of combined classification models on augmented and non-augmented data.

(Refer Appendix 1.4)

2.2. EXPERIMENT 2:

2.2.1. Dataset Description

This dataset consists of segment mean information over different chromosomal regions of

female patients, with a total of 5925 observations with 88 attributes/features. Before applying the

data augmentation, the first step is to preprocess the data. Unwanted features were removed, and

each observation is labeled as either 'normal' or 'breast cancer.' This dataset primarily focused on

creating a binary classifier and measure the effects of data augmentation.

13

2.2.2. Testing with other Classification Models

Before selecting XGBoost before-hand as the primary classifier, different types of classification

models were used with their default parameters. The results can be observed in Table 4, where

XGBoost has performed well as compared to its adversaries.

S. No. Classifier Accuracy AUC

1 XGBoost 0.76160 0.68360

2 Naïve Bayes Classifier 0.67763 0.64212

3 Decision Tree Classifier 0.74936 0.63720

4 K Nearest Neighbors 0.74514 0.61838

5 Bagging – Decision Tree 0.75527 0.65859

6 Ada Boost Classifier 0.76202 0.64898

7 Gradient Boosting Classifier 0.75274 0.66287

Table 4: Performance of different classification model

2.2.3. Results

Data augmentation policy 1 was applied to the given dataset row-wise, and Grid Search has been

used to have better hyperparameters for our primary classifier. The standard deviation was set to

0.001, and each value generates about 1000 samples from which one value is randomly selected.

1. #Augmenter function that takes training data and number of augmentation times
2. def augment(X_train,y_train,tim):
3. if len(X_train) != len(y_train):
4. print("Check your data")
5. return False #Something wrong with data
6. df = pd.concat([y_train,X_train],axis=1, sort =False) #Tag y_train to X_train to av

oid mismatch
7. new_data = pd.DataFrame()
8. for i in range(len(df)):
9. row = df.iloc[[i]] #Access the specific row
10. #Apply Augmentation to full row
11. row2 = augment_row_byvalue_all(row,ignore_index=0,times=tim,std=0.001,sample_si

ze=1000,add_initial=True)
12. new_data = new_data.append(row2,ignore_index=True)
13. print("Previous data length {} ".format(len(df))) #Informative print
14. print("New data length {} ".format(len(new_data))) #Informative print
15. return new_data

Figure 8: Code to augment the data row-wise. (Refer Appendix 1.7)

The augmented data can be seen in Figure 3.

14

Figure 9: Augmented Data Visualization (Blue represents the original data and orange represent

the augmented data.)

In figure 3, we can see that the augmented data is pretty close to the original data. Thereby, we

will be testing the effect of augmentation on the performance of the classifier by increasing the

15

augmentation factor. Grid Search will be finding a better classifier at each iteration with the best

hyperparameters by comparing 'ROC-AUC' metrics with the 10 Fold Cross Validation method.

The results are as follows:

Augmentation Times Accuracy AUC

0 0.76160 0.68360

1 0.77468 0.70629

2 0.77215 0.71018

3 0.77046 0.71660

4 0.76962 0.69242

5 0.77468 0.70509

6 0.77215 0.71980

7 0.77721 0.71868

8 0.77299 0.72377

9 0.77383 0.713357

20 0.76624 0.71084

30 0.77383 0.718096

50 0.76624 0.70714

Table 5: Performance of XGBoost classifier on augmented data

From Table 5, it can be observed that the AUC gets higher until iteration 8, i.e., the classification

performs best when this data was increased by a factor of 8. However, later we can see that there

is a decrease in the AUC with a higher augmentation factor because our classifier reaches

overfitting. Thereby, it can be concluded that the augmentation policy does help to increase the

performance of the classifier by 4%. Overdoing the augmentation will lead to overfitting; thereby,

augmentation can help improve the model up to an extent.

16

DISCUSSION

Our genome consists of DNA sequences, and its variations contribute to our uniqueness. These

variations can influence most characteristics, including susceptive to disease. A better

comprehension of genetic variation can help us to know more about our prehistory but also helps

to find the changes like the growth of cancer.

The study of cancer genomics is constructive to uncover the changes that occur in genes

and how cancer growth happens. With dedicated research along with precision medicine, the

growth of cancer can be prevented. For example, Lines of evidence have shown that CNVs of

specific genes are involved in the growth of numerous cancers through the changes of their gene

expression levels on an individual or several cancer types. However, it is not entirely clear whether

the correlation will be a general phenomenon across multiple cancer types.

This thesis aimed to use CNV information to create a binary cancer classifier; meanwhile, studying

the role of data augmentation policy for a numerical non-correlated limited data. From the above

experiments, it can be said that data augmentation policies have given us a hand in increasing the

classifier's performance. This significant improvement with the help of augmentation policy can

help out relative researches dealing with a limited set of data. On the downside, there is always a

risk of overfitting the model with a higher data augmentation factor.

Another problem that can be faced is computation power, i.e., with high data augmentation

factor, the data will grow substantially such that it will increase the training time. For example, in

Experiment 2, when the data augmentation factor was set to 50, it took almost 20 hours, even with

the support of two GPUs, to find the optimal classifier. Therefore, there is only a limited range of

augmentation that can be applied to the dataset to improve classifier performance.

17

The two data augmentation policy can be applied to any numerical data and has multiple

possibilities of how it can be applied. For example, policy 1 and 2, both can be applied to certain

features or specific observations. The possibilities of applying these policies can be increased

based on the noise we are applying. In our experiments, Gaussian noise was applied with a standard

deviation of 0.01, and 0.001 but these values can be varied.

18

FUTURE WORKS AND LIMITATIONS

Research in the field of cancer and its relation to CNVs is in its infancy period but is

maturing quickly. There are dozens of questions that can be addressed with more research in this

field. For example, what are the exact roles of CNVs in cancer manifestation, and how can we use

this information to cure it? How are CNVs related to neoplastic growth? These are questions that

can be answered when using CNVs as potential biomarkers of cancer proliferation. This is an

expanding field where insights from cancer CNVs can be used for new drug development.

The next phase of this thesis can be extended with the usage of Generative Adversarial

Networks (GANs). GANs can be used to generate new data that can be augmented in the model to

increase classifier performance. However, there is a limitation when dealing with generated data,

i.e., it can induce bias and probably decrease the classifier's accuracy. Therefore, one has to ensure

that the generated data has high covariance.

Though these policies are meant to be designed for non-image limited data, it would be interesting

to see the role of these policies in digital image processing. Multiple noise models can be used

along with the augmentation strategies to increase the study power. For example, we can try

modeling the noise that occurs during image acquisition and transmission, then we can combine

image denoising with data augmentation.

Another possible direction to explore is the use of time-series CNV data where the patient's history

of CNVs would be studied concerning time. This approach can indicate the changes in the CNVs

over time, and the patterns can be observed and mimicked by a machine learning model. Therefore,

the more data we have on the patients over time, then, the dataset generated would be instrumental

for future studies.

19

BIBLIOGRAPHY

[1] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment: Learning

Augmentation Strategies From Data,” 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2019.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[3] “The Cancer Genome Atlas Program,” National Cancer Institute. [Online]. Available:

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.

[4] A. Thapar and M. Cooper, “Copy Number Variation: What Is It and What Has It Told Us

About Child Psychiatric Disorders?,” Journal of the American Academy of Child & Adolescent

Psychiatry, vol. 52, no. 8, pp. 772–774, 2013.

[5] N. Zhang, M. Wang, P. Zhang, and T. Huang, “Classification of cancers based on copy

number variation landscapes,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol.

1860, no. 11, pp. 2750–2755, 2016.

[6] A. B. Olshen, E. S. Venkatraman, R. Lucito, and M. Wigler, “Circular binary segmentation

for the analysis of array-based DNA copy number data,” Biostatistics, vol. 5, no. 4, pp. 557–572,

Jan. 2004.

[7] A. Swalin, “How to Handle Missing Data,” Medium, 19-Mar-2018. [Online]. Available:

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4.

[8] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. A. Dickie, M. V.

Herna ́ndez, J. Wardlaw, and D. Rueckert, “Gan augmentation: Augmenting training data using

generative adversarial networks,” arXiv preprint arXiv:1810.10863, 2018.

[9] T. Chen and C. Guestrin, “XGBoost,” Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2016.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4

20

APPENDIX 1

1.1. Code Snippet 1

Description: This is the basic code that takes the ‘TCGA data’, pre-process it and train a

XGBoost classifier.

1. # Importing the libraries
2. import numpy as np
3. import matplotlib.pyplot as plt
4. import pandas as pd
5.
6. #Importing the dataset
7. dataset = pd.read_csv('data/TCGA_data.csv')
8.
9. #Data Cleaning
10. dataset= dataset.drop(columns="Unnamed: 0")
11. dataset= dataset.drop(columns="sample_barcode")
12. dataset.dropna(subset=['project_name'], how='all', inplace = True)
13. dataset.drop(dataset.loc[dataset['gender']=="MALE"].index, inplace=True)
14.
15. #Dividing the dataset
16. X = dataset.iloc[:, 2:]
17. y = dataset.iloc[:, 0]
18.
19. # Splitting the dataset into the Training set and Test set
20. from sklearn.model_selection import train_test_split
21. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state

 = 0)
22.
23. # Fitting XGBoost to the Training set
24. from xgboost import XGBClassifier
25. classifier = XGBClassifier()
26. classifier.fit(X_train, y_train)
27.
28. # Predicting the Test set results
29. y_pred = classifier.predict(X_test)
30.
31. # Making the Confusion Matrix
32. from sklearn.metrics import confusion_matrix
33. cm = confusion_matrix(y_test, y_pred)
34.
35. # Applying k-Fold Cross Validation
36. from sklearn.model_selection import cross_val_score
37. accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)

38. print(accuracies.mean())
39. accuracies.std()
40.
41. # Calculating Performance Metrics
42. import sklearn.metrics as metrics
43. # calculate the fpr and tpr for all thresholds of the classification
44. probs = classifier.predict_proba(X_test)
45. preds = probs[:,1]
46. fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
47. roc_auc = metrics.auc(fpr, tpr)

21

48.
49. # Plotting ROC-AUC curve
50. import matplotlib.pyplot as plt
51. plt.title('Receiver Operating Characteristic')
52. plt.plot(fpr, tpr, 'b', label = 'AUC = %0.3f' % roc_auc)
53. plt.legend(loc = 'lower right')
54. plt.plot([0, 1], [0, 1],'r--')
55. plt.xlim([0, 1])
56. plt.ylim([0, 1])
57. plt.ylabel('True Positive Rate')
58. plt.xlabel('False Positive Rate')
59. plt.show()

1.2. Code Snippet 2

Description: These are the functions that were used to implement Policy 1

2. def gaussiansample(mu,sigma,vals):
3. s = np.random.normal(mu, sigma, 1000) #Use Numpy library function to apply gaussian

 sampling
4. return s
5.
6. def choose_random(lis):
7. return random.choice(lis) #Choose a random value from a list
8.
9. def augment_row_byvalue_single(data,ignore_index,times,std,sample_size,add_initial=Fals

e):
10. a = data.copy() #Copy the original data
11. i,ans = 0,0 #Variables
12. for i in range(len(data.columns)): #Number of Features
13. if i>ignore_index: #Ignore those columns with ignore_index variable
14. if not np.isnan(data.iat[0,i]): #If data not empty
15. ans+=1
16. temp2 = 0 #Variable to run the while loop
17. s = gaussiansample(data.iat[0,i],std,sample_size) #Create samples
18. while temp2<times: #times will run the code multiple times
19. temp = a.copy()
20. val = choose_random(s) #Choose a random value
21. temp.iat[0,i]=val
22. data=data.append(temp) #Store the value
23. temp2+=1
24. #break
25. print("Found {} values in the row and augmented data {} times".format(ans,ans*times

))
26. #Include the first row i.e. the original data
27. if add_initial:
28. return data
29. else:
30. return data.iloc[1:]
31.
32. #Similarly the code can be created for columns
33. def augment_column_byvalue_single(data,col_index,times,std,sample_size,add_initial=Fals

e):
34. new = pd.DataFrame()
35. if add_initial:
36. new = new.append(data,ignore_index=True)
37. if not np.isnan(data.iat[0,col_index]):

22

38. s = gaussiansample(data.iat[0,col_index],std,sample_size)
39. for i in range(times):
40. temp = data.copy()
41. val = choose_random(s)
42. temp.iat[0,col_index]=val
43. new = new.append(temp,ignore_index=True)
44. return new

1. #Augment_row_byvalue_single function can be extended to augment all the value in the ro
ws

2. #The code is as follows:
3. def augment_row_byvalue_all(data,ignore_index,times,std,sample_size,add_initial=False):

4. a = data.copy()
5. i = 0
6. ans=0
7. temp = a.copy()
8. for i in range(len(data.columns)):
9. if i>ignore_index:
10. if not np.isnan(data.iat[0,i]):
11. ans+=1
12. s = gaussiansample(data.iat[0,i],std,sample_size)
13. val = choose_random(s)
14. temp.iat[0,i]=val
15. data=data.append(temp)
16.
17. print("Found {} values in the row and augmented {} values".format(ans,ans*times))
18. #Include the first row i.e. the original data
19. if add_initial:
20. return data
21. else:
22. return data.iloc[1:]

1.3. Code Snippet 3

Description: These are the functions that were used to implement Policy 2.

1. #Return top n indexs based on value
2. def get_top_n(lis,num):
3. return sorted(range(len(lis)), key=lambda i: lis[i], reverse=True)[:num]
4.
5. #Return all the subsets of list except the blank one and itself
6. def subsets(lis):
7. from itertools import chain, combinations
8. def all_subsets(ss):
9. return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
10. comb = []
11. for subset in all_subsets(lis):
12. if len(subset)!=0 and len(subset)!=1:
13. comb.append(subset)
14. return comb
15. """
16. Takes the list of features as data and extracts top n feature names.
17. Returns all the possible subset combinations indexes.
18. """
19. def get_index_combo(data,num):
20. lis=gf.get_top_n(data["accuracy"],num)

23

21. temp = gf.subsets(lis)
22. return temp

1.4. Code Snippet 4

Description: This code represents how multiple predictions can be used to create ensemble

models.

1. from xgboost import XGBClassifier
2. from sklearn.ensemble import RandomForestClassifier
3. from sklearn.tree import DecisionTreeClassifier
4.
5. classifier1 = RandomForestClassifier(n_estimators = 800, criterion = 'entropy', random_

state = 0)
6. classifier1.fit(Xtr, ytr)
7. classifier2 = XGBClassifier()
8. classifier2.fit(Xtr, ytr)
9. classifier3 = DecisionTreeClassifier(criterion = 'entropy', random_state = 100,max_dept

h=1000,
10. min_samples_leaf=60,min_impurity_decrease=0.000

9)
11. classifier3.fit(Xtr, ytr)
12. pred1 = classifier1.predict_proba(Xte)[:,1] #Random Forest
13. pred2 = classifier2.predict_proba(Xte)[:,1] #XGBOOST
14. pred3 = classifier3.predict_proba(Xte)[:,1] #Decision Tree Classifier
15.
16. #Applying Averaging
17. final_pred = np.array([])
18. for i in range(0,len(Xte)):
19. final_pred = np.append(final_pred, np.mean([pred1[i], pred2[i], pred3[i]]))
20.
21. #Weighted Average
22. final_pred = np.array([])
23. for i in range(0,len(Xte)):
24. t = (pred1[i]*0.3)+(pred3[i]*0.3)+(pred2[i]*0.4)
25. final_pred = np.append(final_pred, t)
26. #Similarly We can apply other ensemble models
27. #Refer Table 3 to get the names of the models that can be applied through this code

1.5. Code Snippet 5

Description: This code shows how dataset 2 was gathered, cleaned, and applied to different

classifiers.

1. #Importing Libraries
2. import pandas as pd
3. import numpy as np
4. import matplotlib
5. import matplotlib.pyplot as plt
6.
7. #Method to get the dataset 2
8. def get_dataset():
9. dataset = pd.read_csv('trainingdataBC_UKB.csv')
10. #Data Cleaning

24

11. dataset= dataset.drop(columns="Unnamed: 0")
12. dataset= dataset.drop(columns="PatientIDs")
13. #dataset['sex'].describe()
14. dataset= dataset.drop(columns="sex") #removing sex as all are females
15. dataset["label"] = np.where(dataset["label"]=="Normal",0,1)
16. dataset['cancer_selfreported'].unique()
17. return dataset
18.
19. #Method to divide the dataset into training/test data.
20. def divide(dataset):
21. #Dividing the dataset
22. X = dataset.iloc[:, 5:]
23. y = dataset.iloc[:, 0]
24. # Splitting the dataset into the Training set and Test set
25. from sklearn.model_selection import train_test_split
26. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_s

tate = 1000)
27. return [X_train, X_test, y_train, y_test]
28.
29. #Method that takes confusion matrix and returns the accuracy
30. def accuracy(confusion_matrix):
31. diagonal_sum = confusion_matrix.trace()
32. sum_of_all_elements = confusion_matrix.sum()
33. return diagonal_sum / sum_of_all_elements
34.
35. def run_xgboost(X_train,y_train,X_test,y_test,plot=True):
36. # Fitting XGBoost to the Training set
37. from xgboost import XGBClassifier
38. classifier = XGBClassifier()
39. classifier.fit(X_train, y_train)
40. # Predicting the Test set results
41. y_pred = classifier.predict(X_test)
42. # Applying k-Fold Cross Validation
43. from sklearn.model_selection import cross_val_score
44. accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv =

 10)
45.
46. #Getting AUC-ROC
47. import sklearn.metrics as metrics
48. # calculate the fpr and tpr for all thresholds of the classification
49. probs = classifier.predict_proba(X_test)
50. preds = probs[:,1]
51. fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
52. roc_auc = metrics.auc(fpr, tpr)
53.
54. # Plotting ROC Curve
55. if plot:
56. import matplotlib.pyplot as plt
57. plt.title('Receiver Operating Characteristic')
58. plt.plot(fpr, tpr, 'b', label = 'AUC = %0.3f' % roc_auc)
59. plt.legend(loc = 'lower right')
60. plt.plot([0, 1], [0, 1],'r--')
61. plt.xlim([0, 1])
62. plt.ylim([0, 1])
63. plt.ylabel('True Positive Rate')
64. plt.xlabel('False Positive Rate')
65. plt.show()
66.
67. return {"accuracy":accuracies.mean(),"std":accuracies.std(),"AUC":roc_auc}

25

1.6. Code Snippet 6

Description: This code shows implementation of different classifiers used in Table 4.

1. """
2. Different Classifiers code that were used in Table 4
3. """
4. #Naive Bayes Classifier
5. def naivebayesclassifier(Xtr,ytr,Xte,yte):
6. # Fitting Naive Bayes to the Training set
7. from sklearn.naive_bayes import GaussianNB
8. classifier = GaussianNB()
9. classifier.fit(Xtr, ytr)
10. # Predicting the Test set results
11. y_pred = classifier.predict(Xte)
12. # Making the Confusion Matrix
13. from sklearn.metrics import confusion_matrix
14. cm = confusion_matrix(yte, y_pred)
15. #CALCULATING AUC
16. import sklearn.metrics as metrics
17. p = classifier.predict_proba(Xte)
18. preds = p[:,1]
19. fpr, tpr, threshold = metrics.roc_curve(yte, preds)
20. roc_auc = metrics.auc(fpr, tpr)
21. return {"Accuracy":accuracy(cm),"AUC":roc_auc}
22. print(naivebayesclassifier(X_train,y_train,X_test,y_test))
23.
24. #KNN Classifier
25. def knnclassifier(Xtr,ytr,Xte,yte):
26. from sklearn.neighbors import KNeighborsClassifier
27. classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
28. classifier.fit(Xtr, ytr)
29. # Predicting the Test set results
30. y_pred = classifier.predict(Xte)
31. # Making the Confusion Matrix
32. from sklearn.metrics import confusion_matrix
33. cm = confusion_matrix(yte, y_pred)
34. #CALCULATING AUC
35. import sklearn.metrics as metrics
36. p = classifier.predict_proba(Xte)
37. preds = p[:,1]
38. fpr, tpr, threshold = metrics.roc_curve(yte, preds)
39. roc_auc = metrics.auc(fpr, tpr)
40. return {"Accuracy":accuracy(cm),"AUC":roc_auc}
41. print(knnclassifier(X_train,y_train,X_test,y_test))
42.
43. #Decision Tree Classifier
44. def decisiontreeclassifier(Xtr,ytr,Xte,yte):
45. # Fitting Decision Tree Classification to the Training set
46. from sklearn.tree import DecisionTreeClassifier
47. classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 100,max_d

epth=1000,
48. min_samples_leaf=60,min_impurity_decrease=0.000

9)
49. classifier.fit(Xtr, ytr)
50. # Predicting the Test set results
51. y_pred = classifier.predict(Xte)

26

52. # Making the Confusion Matrix
53. from sklearn.metrics import confusion_matrix
54. cm = confusion_matrix(yte, y_pred)
55. #CALCULATING AUC
56. import sklearn.metrics as metrics
57. p = classifier.predict_proba(Xte)
58. preds = p[:,1]
59. fpr, tpr, threshold = metrics.roc_curve(yte, preds)
60. roc_auc = metrics.auc(fpr, tpr)
61. return {"Accuracy":accuracy(cm),"AUC":roc_auc}
62. print(decisiontreeclassifier(X_train,y_train,X_test,y_test))
63.
64. #Bagging Classifier
65. from sklearn.ensemble import BaggingClassifier
66. from sklearn import tree
67. model = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1),n_jobs=-1)
68. model.fit(Xtr, ytr)
69. print(model.score(Xte,yte))
70.
71. #ADA Boost Classifier
72. from sklearn.ensemble import AdaBoostClassifier
73. model = AdaBoostClassifier(random_state=1)
74. model.fit(Xtr, ytr)
75. print(model.score(Xte,yte))
76.
77. #Gradient Boosting Classifier
78. from sklearn.ensemble import GradientBoostingClassifier
79. model= GradientBoostingClassifier(learning_rate=0.01,random_state=1)
80. model.fit(Xtr, ytr)
81. print(model.score(Xte,yte))

1.7. Code Snippet 7

Description: This code implements a similar augmentation algorithm code to augment the data.

1. #This is similar to code discussed in appendix 1.2.
2. #A new update is that I have added verbosity as a new parameter.
3. def augment_row_byvalue_all(data,ignore_index,times,std,sample_size,add_initial=False,v

erbose=0):
4. a = data.copy()
5. temp = a.copy()
6. for _ in range(times):
7. ans=0
8. for i in range(len(data.columns)):
9. if i>ignore_index:
10. if not np.isnan(data.iat[0,i]):
11. ans+=1
12. s = gaussiansample(data.iat[0,i],std,sample_size)
13. val = choose_random(s)
14. temp.iat[0,i]=val
15. data=data.append(temp)
16. if verbose!=0:
17. print("Found {} values in the row and augmented {} values".format(ans,ans*times

))
18. #Include the first row i.e. the original data
19. if add_initial:
20. return data

27

21. else:
22. return data.iloc[1:]
23. #Visualizing the data
24. row2 = augment_row_byvalue_all(X_train.iloc[[0]],ignore_index=-

1,times=1,std=0.001,sample_size=1000,add_initial=True)
25. fig = plt.figure()
26. ax1 = fig.add_subplot(111)
27. ax1.plot(row2.iloc[0],'.' , label='original')
28. plt.legend(loc='upper left');
29. plt.title('Normal Data')
30. plt.ylabel('Value')
31. plt.xlabel('Features')
32. plt.show()
33.
34. fig = plt.figure()
35. ax1 = fig.add_subplot(111)
36. ax1.plot(row2.iloc[0],'.' , label='original')
37. ax1.plot(row2.iloc[1],'.', label='first')
38. plt.legend(loc='upper left');
39. plt.title('Augmented Data')
40. plt.ylabel('Value')
41. plt.xlabel('Features')
42. plt.show()

1.8. Code Snippet 8

Description: This code shows how grid search was implemented.

1. #Applying Grid Search
2. from sklearn.model_selection import GridSearchCV
3. import xgboost as xgb
4. from xgboost.sklearn import XGBClassifier
5.
6. estimator = XGBClassifier(objective= 'binary:logistic', seed=42)
7. parameters = {
8. 'max_depth': range (10, 15, 1),
9. 'n_estimators': range(160, 260, 40),
10. 'learning_rate': [0.1]
11. }
12. grid_search = GridSearchCV(
13. estimator=estimator,
14. param_grid=parameters,
15. scoring = 'roc_auc',
16. n_jobs = 10,
17. cv = 10,
18. verbose=True
19.)
20. grid_search.fit(X, y)
21. grid_search.best_estimator_
22.
23. #Method that takes test ip/op and the classifier and return it's metrics
24. def accuracy(y_test,x_test,cls):
25. y_pred = cls.predict(x_test)
26. # Making the Confusion Matrix
27. from sklearn.metrics import confusion_matrix
28. cm = confusion_matrix(y_test, y_pred)
29. diagonal_sum = cm.trace()

28

30. sum_of_all_elements = cm.sum()
31. acc= diagonal_sum / sum_of_all_elements
32. #CALCULATING AUC
33. import sklearn.metrics as metrics
34. p = cls.predict_proba(x_test)
35. preds = p[:,1]
36. fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
37. roc_auc = metrics.auc(fpr, tpr)
38. return {"Accuracy":acc,"AUC":roc_auc}
39.
40. accuracy(y_test,X_test,grid_search)

